tests/tcg/s390x: Add cdsg.c
[qemu/armbru.git] / block / qed.c
blob4473465bba8c549d1fdca8b77cfa0cd6bc62ba69
1 /*
2 * QEMU Enhanced Disk Format
4 * Copyright IBM, Corp. 2010
6 * Authors:
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "block/qdict.h"
17 #include "qapi/error.h"
18 #include "qemu/timer.h"
19 #include "qemu/bswap.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/module.h"
22 #include "qemu/option.h"
23 #include "qemu/memalign.h"
24 #include "trace.h"
25 #include "qed.h"
26 #include "sysemu/block-backend.h"
27 #include "qapi/qmp/qdict.h"
28 #include "qapi/qobject-input-visitor.h"
29 #include "qapi/qapi-visit-block-core.h"
31 static QemuOptsList qed_create_opts;
33 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
34 const char *filename)
36 const QEDHeader *header = (const QEDHeader *)buf;
38 if (buf_size < sizeof(*header)) {
39 return 0;
41 if (le32_to_cpu(header->magic) != QED_MAGIC) {
42 return 0;
44 return 100;
47 /**
48 * Check whether an image format is raw
50 * @fmt: Backing file format, may be NULL
52 static bool qed_fmt_is_raw(const char *fmt)
54 return fmt && strcmp(fmt, "raw") == 0;
57 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
59 cpu->magic = le32_to_cpu(le->magic);
60 cpu->cluster_size = le32_to_cpu(le->cluster_size);
61 cpu->table_size = le32_to_cpu(le->table_size);
62 cpu->header_size = le32_to_cpu(le->header_size);
63 cpu->features = le64_to_cpu(le->features);
64 cpu->compat_features = le64_to_cpu(le->compat_features);
65 cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
66 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
67 cpu->image_size = le64_to_cpu(le->image_size);
68 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
69 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
72 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
74 le->magic = cpu_to_le32(cpu->magic);
75 le->cluster_size = cpu_to_le32(cpu->cluster_size);
76 le->table_size = cpu_to_le32(cpu->table_size);
77 le->header_size = cpu_to_le32(cpu->header_size);
78 le->features = cpu_to_le64(cpu->features);
79 le->compat_features = cpu_to_le64(cpu->compat_features);
80 le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
81 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
82 le->image_size = cpu_to_le64(cpu->image_size);
83 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
84 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
87 int qed_write_header_sync(BDRVQEDState *s)
89 QEDHeader le;
91 qed_header_cpu_to_le(&s->header, &le);
92 return bdrv_pwrite(s->bs->file, 0, sizeof(le), &le, 0);
95 /**
96 * Update header in-place (does not rewrite backing filename or other strings)
98 * This function only updates known header fields in-place and does not affect
99 * extra data after the QED header.
101 * No new allocating reqs can start while this function runs.
103 static int coroutine_fn qed_write_header(BDRVQEDState *s)
105 /* We must write full sectors for O_DIRECT but cannot necessarily generate
106 * the data following the header if an unrecognized compat feature is
107 * active. Therefore, first read the sectors containing the header, update
108 * them, and write back.
111 int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
112 size_t len = nsectors * BDRV_SECTOR_SIZE;
113 uint8_t *buf;
114 int ret;
116 assert(s->allocating_acb || s->allocating_write_reqs_plugged);
118 buf = qemu_blockalign(s->bs, len);
120 ret = bdrv_co_pread(s->bs->file, 0, len, buf, 0);
121 if (ret < 0) {
122 goto out;
125 /* Update header */
126 qed_header_cpu_to_le(&s->header, (QEDHeader *) buf);
128 ret = bdrv_co_pwrite(s->bs->file, 0, len, buf, 0);
129 if (ret < 0) {
130 goto out;
133 ret = 0;
134 out:
135 qemu_vfree(buf);
136 return ret;
139 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
141 uint64_t table_entries;
142 uint64_t l2_size;
144 table_entries = (table_size * cluster_size) / sizeof(uint64_t);
145 l2_size = table_entries * cluster_size;
147 return l2_size * table_entries;
150 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
152 if (cluster_size < QED_MIN_CLUSTER_SIZE ||
153 cluster_size > QED_MAX_CLUSTER_SIZE) {
154 return false;
156 if (cluster_size & (cluster_size - 1)) {
157 return false; /* not power of 2 */
159 return true;
162 static bool qed_is_table_size_valid(uint32_t table_size)
164 if (table_size < QED_MIN_TABLE_SIZE ||
165 table_size > QED_MAX_TABLE_SIZE) {
166 return false;
168 if (table_size & (table_size - 1)) {
169 return false; /* not power of 2 */
171 return true;
174 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
175 uint32_t table_size)
177 if (image_size % BDRV_SECTOR_SIZE != 0) {
178 return false; /* not multiple of sector size */
180 if (image_size > qed_max_image_size(cluster_size, table_size)) {
181 return false; /* image is too large */
183 return true;
187 * Read a string of known length from the image file
189 * @file: Image file
190 * @offset: File offset to start of string, in bytes
191 * @n: String length in bytes
192 * @buf: Destination buffer
193 * @buflen: Destination buffer length in bytes
194 * @ret: 0 on success, -errno on failure
196 * The string is NUL-terminated.
198 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n,
199 char *buf, size_t buflen)
201 int ret;
202 if (n >= buflen) {
203 return -EINVAL;
205 ret = bdrv_pread(file, offset, n, buf, 0);
206 if (ret < 0) {
207 return ret;
209 buf[n] = '\0';
210 return 0;
214 * Allocate new clusters
216 * @s: QED state
217 * @n: Number of contiguous clusters to allocate
218 * @ret: Offset of first allocated cluster
220 * This function only produces the offset where the new clusters should be
221 * written. It updates BDRVQEDState but does not make any changes to the image
222 * file.
224 * Called with table_lock held.
226 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
228 uint64_t offset = s->file_size;
229 s->file_size += n * s->header.cluster_size;
230 return offset;
233 QEDTable *qed_alloc_table(BDRVQEDState *s)
235 /* Honor O_DIRECT memory alignment requirements */
236 return qemu_blockalign(s->bs,
237 s->header.cluster_size * s->header.table_size);
241 * Allocate a new zeroed L2 table
243 * Called with table_lock held.
245 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
247 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
249 l2_table->table = qed_alloc_table(s);
250 l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
252 memset(l2_table->table->offsets, 0,
253 s->header.cluster_size * s->header.table_size);
254 return l2_table;
257 static bool coroutine_fn qed_plug_allocating_write_reqs(BDRVQEDState *s)
259 qemu_co_mutex_lock(&s->table_lock);
261 /* No reentrancy is allowed. */
262 assert(!s->allocating_write_reqs_plugged);
263 if (s->allocating_acb != NULL) {
264 /* Another allocating write came concurrently. This cannot happen
265 * from bdrv_qed_drain_begin, but it can happen when the timer runs.
267 qemu_co_mutex_unlock(&s->table_lock);
268 return false;
271 s->allocating_write_reqs_plugged = true;
272 qemu_co_mutex_unlock(&s->table_lock);
273 return true;
276 static void coroutine_fn qed_unplug_allocating_write_reqs(BDRVQEDState *s)
278 qemu_co_mutex_lock(&s->table_lock);
279 assert(s->allocating_write_reqs_plugged);
280 s->allocating_write_reqs_plugged = false;
281 qemu_co_queue_next(&s->allocating_write_reqs);
282 qemu_co_mutex_unlock(&s->table_lock);
285 static void coroutine_fn qed_need_check_timer(BDRVQEDState *s)
287 int ret;
289 trace_qed_need_check_timer_cb(s);
291 if (!qed_plug_allocating_write_reqs(s)) {
292 return;
295 /* Ensure writes are on disk before clearing flag */
296 ret = bdrv_co_flush(s->bs->file->bs);
297 if (ret < 0) {
298 qed_unplug_allocating_write_reqs(s);
299 return;
302 s->header.features &= ~QED_F_NEED_CHECK;
303 ret = qed_write_header(s);
304 (void) ret;
306 qed_unplug_allocating_write_reqs(s);
308 ret = bdrv_co_flush(s->bs);
309 (void) ret;
312 static void coroutine_fn qed_need_check_timer_entry(void *opaque)
314 BDRVQEDState *s = opaque;
316 qed_need_check_timer(opaque);
317 bdrv_dec_in_flight(s->bs);
320 static void qed_need_check_timer_cb(void *opaque)
322 BDRVQEDState *s = opaque;
323 Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque);
325 bdrv_inc_in_flight(s->bs);
326 qemu_coroutine_enter(co);
329 static void qed_start_need_check_timer(BDRVQEDState *s)
331 trace_qed_start_need_check_timer(s);
333 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
334 * migration.
336 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
337 NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
340 /* It's okay to call this multiple times or when no timer is started */
341 static void qed_cancel_need_check_timer(BDRVQEDState *s)
343 trace_qed_cancel_need_check_timer(s);
344 timer_del(s->need_check_timer);
347 static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
349 BDRVQEDState *s = bs->opaque;
351 qed_cancel_need_check_timer(s);
352 timer_free(s->need_check_timer);
355 static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
356 AioContext *new_context)
358 BDRVQEDState *s = bs->opaque;
360 s->need_check_timer = aio_timer_new(new_context,
361 QEMU_CLOCK_VIRTUAL, SCALE_NS,
362 qed_need_check_timer_cb, s);
363 if (s->header.features & QED_F_NEED_CHECK) {
364 qed_start_need_check_timer(s);
368 static void bdrv_qed_drain_begin(BlockDriverState *bs)
370 BDRVQEDState *s = bs->opaque;
372 /* Fire the timer immediately in order to start doing I/O as soon as the
373 * header is flushed.
375 if (s->need_check_timer && timer_pending(s->need_check_timer)) {
376 Coroutine *co;
378 qed_cancel_need_check_timer(s);
379 co = qemu_coroutine_create(qed_need_check_timer_entry, s);
380 bdrv_inc_in_flight(bs);
381 aio_co_enter(bdrv_get_aio_context(bs), co);
385 static void bdrv_qed_init_state(BlockDriverState *bs)
387 BDRVQEDState *s = bs->opaque;
389 memset(s, 0, sizeof(BDRVQEDState));
390 s->bs = bs;
391 qemu_co_mutex_init(&s->table_lock);
392 qemu_co_queue_init(&s->allocating_write_reqs);
395 /* Called with table_lock held. */
396 static int coroutine_fn bdrv_qed_do_open(BlockDriverState *bs, QDict *options,
397 int flags, Error **errp)
399 BDRVQEDState *s = bs->opaque;
400 QEDHeader le_header;
401 int64_t file_size;
402 int ret;
404 ret = bdrv_co_pread(bs->file, 0, sizeof(le_header), &le_header, 0);
405 if (ret < 0) {
406 error_setg(errp, "Failed to read QED header");
407 return ret;
409 qed_header_le_to_cpu(&le_header, &s->header);
411 if (s->header.magic != QED_MAGIC) {
412 error_setg(errp, "Image not in QED format");
413 return -EINVAL;
415 if (s->header.features & ~QED_FEATURE_MASK) {
416 /* image uses unsupported feature bits */
417 error_setg(errp, "Unsupported QED features: %" PRIx64,
418 s->header.features & ~QED_FEATURE_MASK);
419 return -ENOTSUP;
421 if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
422 error_setg(errp, "QED cluster size is invalid");
423 return -EINVAL;
426 /* Round down file size to the last cluster */
427 file_size = bdrv_co_getlength(bs->file->bs);
428 if (file_size < 0) {
429 error_setg(errp, "Failed to get file length");
430 return file_size;
432 s->file_size = qed_start_of_cluster(s, file_size);
434 if (!qed_is_table_size_valid(s->header.table_size)) {
435 error_setg(errp, "QED table size is invalid");
436 return -EINVAL;
438 if (!qed_is_image_size_valid(s->header.image_size,
439 s->header.cluster_size,
440 s->header.table_size)) {
441 error_setg(errp, "QED image size is invalid");
442 return -EINVAL;
444 if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
445 error_setg(errp, "QED table offset is invalid");
446 return -EINVAL;
449 s->table_nelems = (s->header.cluster_size * s->header.table_size) /
450 sizeof(uint64_t);
451 s->l2_shift = ctz32(s->header.cluster_size);
452 s->l2_mask = s->table_nelems - 1;
453 s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
455 /* Header size calculation must not overflow uint32_t */
456 if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
457 error_setg(errp, "QED header size is too large");
458 return -EINVAL;
461 if ((s->header.features & QED_F_BACKING_FILE)) {
462 g_autofree char *backing_file_str = NULL;
464 if ((uint64_t)s->header.backing_filename_offset +
465 s->header.backing_filename_size >
466 s->header.cluster_size * s->header.header_size) {
467 error_setg(errp, "QED backing filename offset is invalid");
468 return -EINVAL;
471 backing_file_str = g_malloc(sizeof(bs->backing_file));
472 ret = qed_read_string(bs->file, s->header.backing_filename_offset,
473 s->header.backing_filename_size,
474 backing_file_str, sizeof(bs->backing_file));
475 if (ret < 0) {
476 error_setg(errp, "Failed to read backing filename");
477 return ret;
480 if (!g_str_equal(backing_file_str, bs->backing_file)) {
481 pstrcpy(bs->backing_file, sizeof(bs->backing_file),
482 backing_file_str);
483 pstrcpy(bs->auto_backing_file, sizeof(bs->auto_backing_file),
484 backing_file_str);
487 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
488 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
492 /* Reset unknown autoclear feature bits. This is a backwards
493 * compatibility mechanism that allows images to be opened by older
494 * programs, which "knock out" unknown feature bits. When an image is
495 * opened by a newer program again it can detect that the autoclear
496 * feature is no longer valid.
498 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
499 !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
500 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
502 ret = qed_write_header_sync(s);
503 if (ret) {
504 error_setg(errp, "Failed to update header");
505 return ret;
508 /* From here on only known autoclear feature bits are valid */
509 bdrv_co_flush(bs->file->bs);
512 s->l1_table = qed_alloc_table(s);
513 qed_init_l2_cache(&s->l2_cache);
515 ret = qed_read_l1_table_sync(s);
516 if (ret) {
517 error_setg(errp, "Failed to read L1 table");
518 goto out;
521 /* If image was not closed cleanly, check consistency */
522 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
523 /* Read-only images cannot be fixed. There is no risk of corruption
524 * since write operations are not possible. Therefore, allow
525 * potentially inconsistent images to be opened read-only. This can
526 * aid data recovery from an otherwise inconsistent image.
528 if (!bdrv_is_read_only(bs->file->bs) &&
529 !(flags & BDRV_O_INACTIVE)) {
530 BdrvCheckResult result = {0};
532 ret = qed_check(s, &result, true);
533 if (ret) {
534 error_setg(errp, "Image corrupted");
535 goto out;
540 bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
542 out:
543 if (ret) {
544 qed_free_l2_cache(&s->l2_cache);
545 qemu_vfree(s->l1_table);
547 return ret;
550 typedef struct QEDOpenCo {
551 BlockDriverState *bs;
552 QDict *options;
553 int flags;
554 Error **errp;
555 int ret;
556 } QEDOpenCo;
558 static void coroutine_fn bdrv_qed_open_entry(void *opaque)
560 QEDOpenCo *qoc = opaque;
561 BDRVQEDState *s = qoc->bs->opaque;
563 qemu_co_mutex_lock(&s->table_lock);
564 qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp);
565 qemu_co_mutex_unlock(&s->table_lock);
568 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
569 Error **errp)
571 QEDOpenCo qoc = {
572 .bs = bs,
573 .options = options,
574 .flags = flags,
575 .errp = errp,
576 .ret = -EINPROGRESS
578 int ret;
580 ret = bdrv_open_file_child(NULL, options, "file", bs, errp);
581 if (ret < 0) {
582 return ret;
585 bdrv_qed_init_state(bs);
586 if (qemu_in_coroutine()) {
587 bdrv_qed_open_entry(&qoc);
588 } else {
589 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
590 qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc));
591 BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
593 BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
594 return qoc.ret;
597 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
599 BDRVQEDState *s = bs->opaque;
601 bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
602 bs->bl.max_pwrite_zeroes = QEMU_ALIGN_DOWN(INT_MAX, s->header.cluster_size);
605 /* We have nothing to do for QED reopen, stubs just return
606 * success */
607 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
608 BlockReopenQueue *queue, Error **errp)
610 return 0;
613 static void bdrv_qed_close(BlockDriverState *bs)
615 BDRVQEDState *s = bs->opaque;
617 bdrv_qed_detach_aio_context(bs);
619 /* Ensure writes reach stable storage */
620 bdrv_flush(bs->file->bs);
622 /* Clean shutdown, no check required on next open */
623 if (s->header.features & QED_F_NEED_CHECK) {
624 s->header.features &= ~QED_F_NEED_CHECK;
625 qed_write_header_sync(s);
628 qed_free_l2_cache(&s->l2_cache);
629 qemu_vfree(s->l1_table);
632 static int coroutine_fn bdrv_qed_co_create(BlockdevCreateOptions *opts,
633 Error **errp)
635 BlockdevCreateOptionsQed *qed_opts;
636 BlockBackend *blk = NULL;
637 BlockDriverState *bs = NULL;
639 QEDHeader header;
640 QEDHeader le_header;
641 uint8_t *l1_table = NULL;
642 size_t l1_size;
643 int ret = 0;
645 assert(opts->driver == BLOCKDEV_DRIVER_QED);
646 qed_opts = &opts->u.qed;
648 /* Validate options and set default values */
649 if (!qed_opts->has_cluster_size) {
650 qed_opts->cluster_size = QED_DEFAULT_CLUSTER_SIZE;
652 if (!qed_opts->has_table_size) {
653 qed_opts->table_size = QED_DEFAULT_TABLE_SIZE;
656 if (!qed_is_cluster_size_valid(qed_opts->cluster_size)) {
657 error_setg(errp, "QED cluster size must be within range [%u, %u] "
658 "and power of 2",
659 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
660 return -EINVAL;
662 if (!qed_is_table_size_valid(qed_opts->table_size)) {
663 error_setg(errp, "QED table size must be within range [%u, %u] "
664 "and power of 2",
665 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
666 return -EINVAL;
668 if (!qed_is_image_size_valid(qed_opts->size, qed_opts->cluster_size,
669 qed_opts->table_size))
671 error_setg(errp, "QED image size must be a non-zero multiple of "
672 "cluster size and less than %" PRIu64 " bytes",
673 qed_max_image_size(qed_opts->cluster_size,
674 qed_opts->table_size));
675 return -EINVAL;
678 /* Create BlockBackend to write to the image */
679 bs = bdrv_open_blockdev_ref(qed_opts->file, errp);
680 if (bs == NULL) {
681 return -EIO;
684 blk = blk_new_with_bs(bs, BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL,
685 errp);
686 if (!blk) {
687 ret = -EPERM;
688 goto out;
690 blk_set_allow_write_beyond_eof(blk, true);
692 /* Prepare image format */
693 header = (QEDHeader) {
694 .magic = QED_MAGIC,
695 .cluster_size = qed_opts->cluster_size,
696 .table_size = qed_opts->table_size,
697 .header_size = 1,
698 .features = 0,
699 .compat_features = 0,
700 .l1_table_offset = qed_opts->cluster_size,
701 .image_size = qed_opts->size,
704 l1_size = header.cluster_size * header.table_size;
707 * The QED format associates file length with allocation status,
708 * so a new file (which is empty) must have a length of 0.
710 ret = blk_co_truncate(blk, 0, true, PREALLOC_MODE_OFF, 0, errp);
711 if (ret < 0) {
712 goto out;
715 if (qed_opts->backing_file) {
716 header.features |= QED_F_BACKING_FILE;
717 header.backing_filename_offset = sizeof(le_header);
718 header.backing_filename_size = strlen(qed_opts->backing_file);
720 if (qed_opts->has_backing_fmt) {
721 const char *backing_fmt = BlockdevDriver_str(qed_opts->backing_fmt);
722 if (qed_fmt_is_raw(backing_fmt)) {
723 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
728 qed_header_cpu_to_le(&header, &le_header);
729 ret = blk_co_pwrite(blk, 0, sizeof(le_header), &le_header, 0);
730 if (ret < 0) {
731 goto out;
733 ret = blk_co_pwrite(blk, sizeof(le_header), header.backing_filename_size,
734 qed_opts->backing_file, 0);
735 if (ret < 0) {
736 goto out;
739 l1_table = g_malloc0(l1_size);
740 ret = blk_co_pwrite(blk, header.l1_table_offset, l1_size, l1_table, 0);
741 if (ret < 0) {
742 goto out;
745 ret = 0; /* success */
746 out:
747 g_free(l1_table);
748 blk_unref(blk);
749 bdrv_unref(bs);
750 return ret;
753 static int coroutine_fn bdrv_qed_co_create_opts(BlockDriver *drv,
754 const char *filename,
755 QemuOpts *opts,
756 Error **errp)
758 BlockdevCreateOptions *create_options = NULL;
759 QDict *qdict;
760 Visitor *v;
761 BlockDriverState *bs = NULL;
762 int ret;
764 static const QDictRenames opt_renames[] = {
765 { BLOCK_OPT_BACKING_FILE, "backing-file" },
766 { BLOCK_OPT_BACKING_FMT, "backing-fmt" },
767 { BLOCK_OPT_CLUSTER_SIZE, "cluster-size" },
768 { BLOCK_OPT_TABLE_SIZE, "table-size" },
769 { NULL, NULL },
772 /* Parse options and convert legacy syntax */
773 qdict = qemu_opts_to_qdict_filtered(opts, NULL, &qed_create_opts, true);
775 if (!qdict_rename_keys(qdict, opt_renames, errp)) {
776 ret = -EINVAL;
777 goto fail;
780 /* Create and open the file (protocol layer) */
781 ret = bdrv_co_create_file(filename, opts, errp);
782 if (ret < 0) {
783 goto fail;
786 bs = bdrv_open(filename, NULL, NULL,
787 BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp);
788 if (bs == NULL) {
789 ret = -EIO;
790 goto fail;
793 /* Now get the QAPI type BlockdevCreateOptions */
794 qdict_put_str(qdict, "driver", "qed");
795 qdict_put_str(qdict, "file", bs->node_name);
797 v = qobject_input_visitor_new_flat_confused(qdict, errp);
798 if (!v) {
799 ret = -EINVAL;
800 goto fail;
803 visit_type_BlockdevCreateOptions(v, NULL, &create_options, errp);
804 visit_free(v);
805 if (!create_options) {
806 ret = -EINVAL;
807 goto fail;
810 /* Silently round up size */
811 assert(create_options->driver == BLOCKDEV_DRIVER_QED);
812 create_options->u.qed.size =
813 ROUND_UP(create_options->u.qed.size, BDRV_SECTOR_SIZE);
815 /* Create the qed image (format layer) */
816 ret = bdrv_qed_co_create(create_options, errp);
818 fail:
819 qobject_unref(qdict);
820 bdrv_unref(bs);
821 qapi_free_BlockdevCreateOptions(create_options);
822 return ret;
825 static int coroutine_fn bdrv_qed_co_block_status(BlockDriverState *bs,
826 bool want_zero,
827 int64_t pos, int64_t bytes,
828 int64_t *pnum, int64_t *map,
829 BlockDriverState **file)
831 BDRVQEDState *s = bs->opaque;
832 size_t len = MIN(bytes, SIZE_MAX);
833 int status;
834 QEDRequest request = { .l2_table = NULL };
835 uint64_t offset;
836 int ret;
838 qemu_co_mutex_lock(&s->table_lock);
839 ret = qed_find_cluster(s, &request, pos, &len, &offset);
841 *pnum = len;
842 switch (ret) {
843 case QED_CLUSTER_FOUND:
844 *map = offset | qed_offset_into_cluster(s, pos);
845 status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
846 *file = bs->file->bs;
847 break;
848 case QED_CLUSTER_ZERO:
849 status = BDRV_BLOCK_ZERO;
850 break;
851 case QED_CLUSTER_L2:
852 case QED_CLUSTER_L1:
853 status = 0;
854 break;
855 default:
856 assert(ret < 0);
857 status = ret;
858 break;
861 qed_unref_l2_cache_entry(request.l2_table);
862 qemu_co_mutex_unlock(&s->table_lock);
864 return status;
867 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
869 return acb->bs->opaque;
873 * Read from the backing file or zero-fill if no backing file
875 * @s: QED state
876 * @pos: Byte position in device
877 * @qiov: Destination I/O vector
879 * This function reads qiov->size bytes starting at pos from the backing file.
880 * If there is no backing file then zeroes are read.
882 static int coroutine_fn qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
883 QEMUIOVector *qiov)
885 if (s->bs->backing) {
886 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
887 return bdrv_co_preadv(s->bs->backing, pos, qiov->size, qiov, 0);
889 qemu_iovec_memset(qiov, 0, 0, qiov->size);
890 return 0;
894 * Copy data from backing file into the image
896 * @s: QED state
897 * @pos: Byte position in device
898 * @len: Number of bytes
899 * @offset: Byte offset in image file
901 static int coroutine_fn qed_copy_from_backing_file(BDRVQEDState *s,
902 uint64_t pos, uint64_t len,
903 uint64_t offset)
905 QEMUIOVector qiov;
906 int ret;
908 /* Skip copy entirely if there is no work to do */
909 if (len == 0) {
910 return 0;
913 qemu_iovec_init_buf(&qiov, qemu_blockalign(s->bs, len), len);
915 ret = qed_read_backing_file(s, pos, &qiov);
917 if (ret) {
918 goto out;
921 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
922 ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0);
923 if (ret < 0) {
924 goto out;
926 ret = 0;
927 out:
928 qemu_vfree(qemu_iovec_buf(&qiov));
929 return ret;
933 * Link one or more contiguous clusters into a table
935 * @s: QED state
936 * @table: L2 table
937 * @index: First cluster index
938 * @n: Number of contiguous clusters
939 * @cluster: First cluster offset
941 * The cluster offset may be an allocated byte offset in the image file, the
942 * zero cluster marker, or the unallocated cluster marker.
944 * Called with table_lock held.
946 static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table,
947 int index, unsigned int n,
948 uint64_t cluster)
950 int i;
951 for (i = index; i < index + n; i++) {
952 table->offsets[i] = cluster;
953 if (!qed_offset_is_unalloc_cluster(cluster) &&
954 !qed_offset_is_zero_cluster(cluster)) {
955 cluster += s->header.cluster_size;
960 /* Called with table_lock held. */
961 static void coroutine_fn qed_aio_complete(QEDAIOCB *acb)
963 BDRVQEDState *s = acb_to_s(acb);
965 /* Free resources */
966 qemu_iovec_destroy(&acb->cur_qiov);
967 qed_unref_l2_cache_entry(acb->request.l2_table);
969 /* Free the buffer we may have allocated for zero writes */
970 if (acb->flags & QED_AIOCB_ZERO) {
971 qemu_vfree(acb->qiov->iov[0].iov_base);
972 acb->qiov->iov[0].iov_base = NULL;
975 /* Start next allocating write request waiting behind this one. Note that
976 * requests enqueue themselves when they first hit an unallocated cluster
977 * but they wait until the entire request is finished before waking up the
978 * next request in the queue. This ensures that we don't cycle through
979 * requests multiple times but rather finish one at a time completely.
981 if (acb == s->allocating_acb) {
982 s->allocating_acb = NULL;
983 if (!qemu_co_queue_empty(&s->allocating_write_reqs)) {
984 qemu_co_queue_next(&s->allocating_write_reqs);
985 } else if (s->header.features & QED_F_NEED_CHECK) {
986 qed_start_need_check_timer(s);
992 * Update L1 table with new L2 table offset and write it out
994 * Called with table_lock held.
996 static int coroutine_fn qed_aio_write_l1_update(QEDAIOCB *acb)
998 BDRVQEDState *s = acb_to_s(acb);
999 CachedL2Table *l2_table = acb->request.l2_table;
1000 uint64_t l2_offset = l2_table->offset;
1001 int index, ret;
1003 index = qed_l1_index(s, acb->cur_pos);
1004 s->l1_table->offsets[index] = l2_table->offset;
1006 ret = qed_write_l1_table(s, index, 1);
1008 /* Commit the current L2 table to the cache */
1009 qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
1011 /* This is guaranteed to succeed because we just committed the entry to the
1012 * cache.
1014 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
1015 assert(acb->request.l2_table != NULL);
1017 return ret;
1022 * Update L2 table with new cluster offsets and write them out
1024 * Called with table_lock held.
1026 static int coroutine_fn qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset)
1028 BDRVQEDState *s = acb_to_s(acb);
1029 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
1030 int index, ret;
1032 if (need_alloc) {
1033 qed_unref_l2_cache_entry(acb->request.l2_table);
1034 acb->request.l2_table = qed_new_l2_table(s);
1037 index = qed_l2_index(s, acb->cur_pos);
1038 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1039 offset);
1041 if (need_alloc) {
1042 /* Write out the whole new L2 table */
1043 ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true);
1044 if (ret) {
1045 return ret;
1047 return qed_aio_write_l1_update(acb);
1048 } else {
1049 /* Write out only the updated part of the L2 table */
1050 ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters,
1051 false);
1052 if (ret) {
1053 return ret;
1056 return 0;
1060 * Write data to the image file
1062 * Called with table_lock *not* held.
1064 static int coroutine_fn qed_aio_write_main(QEDAIOCB *acb)
1066 BDRVQEDState *s = acb_to_s(acb);
1067 uint64_t offset = acb->cur_cluster +
1068 qed_offset_into_cluster(s, acb->cur_pos);
1070 trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size);
1072 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1073 return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size,
1074 &acb->cur_qiov, 0);
1078 * Populate untouched regions of new data cluster
1080 * Called with table_lock held.
1082 static int coroutine_fn qed_aio_write_cow(QEDAIOCB *acb)
1084 BDRVQEDState *s = acb_to_s(acb);
1085 uint64_t start, len, offset;
1086 int ret;
1088 qemu_co_mutex_unlock(&s->table_lock);
1090 /* Populate front untouched region of new data cluster */
1091 start = qed_start_of_cluster(s, acb->cur_pos);
1092 len = qed_offset_into_cluster(s, acb->cur_pos);
1094 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1095 ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster);
1096 if (ret < 0) {
1097 goto out;
1100 /* Populate back untouched region of new data cluster */
1101 start = acb->cur_pos + acb->cur_qiov.size;
1102 len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1103 offset = acb->cur_cluster +
1104 qed_offset_into_cluster(s, acb->cur_pos) +
1105 acb->cur_qiov.size;
1107 trace_qed_aio_write_postfill(s, acb, start, len, offset);
1108 ret = qed_copy_from_backing_file(s, start, len, offset);
1109 if (ret < 0) {
1110 goto out;
1113 ret = qed_aio_write_main(acb);
1114 if (ret < 0) {
1115 goto out;
1118 if (s->bs->backing) {
1120 * Flush new data clusters before updating the L2 table
1122 * This flush is necessary when a backing file is in use. A crash
1123 * during an allocating write could result in empty clusters in the
1124 * image. If the write only touched a subregion of the cluster,
1125 * then backing image sectors have been lost in the untouched
1126 * region. The solution is to flush after writing a new data
1127 * cluster and before updating the L2 table.
1129 ret = bdrv_co_flush(s->bs->file->bs);
1132 out:
1133 qemu_co_mutex_lock(&s->table_lock);
1134 return ret;
1138 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1140 static bool qed_should_set_need_check(BDRVQEDState *s)
1142 /* The flush before L2 update path ensures consistency */
1143 if (s->bs->backing) {
1144 return false;
1147 return !(s->header.features & QED_F_NEED_CHECK);
1151 * Write new data cluster
1153 * @acb: Write request
1154 * @len: Length in bytes
1156 * This path is taken when writing to previously unallocated clusters.
1158 * Called with table_lock held.
1160 static int coroutine_fn qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1162 BDRVQEDState *s = acb_to_s(acb);
1163 int ret;
1165 /* Cancel timer when the first allocating request comes in */
1166 if (s->allocating_acb == NULL) {
1167 qed_cancel_need_check_timer(s);
1170 /* Freeze this request if another allocating write is in progress */
1171 if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) {
1172 if (s->allocating_acb != NULL) {
1173 qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock);
1174 assert(s->allocating_acb == NULL);
1176 s->allocating_acb = acb;
1177 return -EAGAIN; /* start over with looking up table entries */
1180 acb->cur_nclusters = qed_bytes_to_clusters(s,
1181 qed_offset_into_cluster(s, acb->cur_pos) + len);
1182 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1184 if (acb->flags & QED_AIOCB_ZERO) {
1185 /* Skip ahead if the clusters are already zero */
1186 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1187 return 0;
1189 acb->cur_cluster = 1;
1190 } else {
1191 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1194 if (qed_should_set_need_check(s)) {
1195 s->header.features |= QED_F_NEED_CHECK;
1196 ret = qed_write_header(s);
1197 if (ret < 0) {
1198 return ret;
1202 if (!(acb->flags & QED_AIOCB_ZERO)) {
1203 ret = qed_aio_write_cow(acb);
1204 if (ret < 0) {
1205 return ret;
1209 return qed_aio_write_l2_update(acb, acb->cur_cluster);
1213 * Write data cluster in place
1215 * @acb: Write request
1216 * @offset: Cluster offset in bytes
1217 * @len: Length in bytes
1219 * This path is taken when writing to already allocated clusters.
1221 * Called with table_lock held.
1223 static int coroutine_fn qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset,
1224 size_t len)
1226 BDRVQEDState *s = acb_to_s(acb);
1227 int r;
1229 qemu_co_mutex_unlock(&s->table_lock);
1231 /* Allocate buffer for zero writes */
1232 if (acb->flags & QED_AIOCB_ZERO) {
1233 struct iovec *iov = acb->qiov->iov;
1235 if (!iov->iov_base) {
1236 iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len);
1237 if (iov->iov_base == NULL) {
1238 r = -ENOMEM;
1239 goto out;
1241 memset(iov->iov_base, 0, iov->iov_len);
1245 /* Calculate the I/O vector */
1246 acb->cur_cluster = offset;
1247 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1249 /* Do the actual write. */
1250 r = qed_aio_write_main(acb);
1251 out:
1252 qemu_co_mutex_lock(&s->table_lock);
1253 return r;
1257 * Write data cluster
1259 * @opaque: Write request
1260 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1261 * @offset: Cluster offset in bytes
1262 * @len: Length in bytes
1264 * Called with table_lock held.
1266 static int coroutine_fn qed_aio_write_data(void *opaque, int ret,
1267 uint64_t offset, size_t len)
1269 QEDAIOCB *acb = opaque;
1271 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1273 acb->find_cluster_ret = ret;
1275 switch (ret) {
1276 case QED_CLUSTER_FOUND:
1277 return qed_aio_write_inplace(acb, offset, len);
1279 case QED_CLUSTER_L2:
1280 case QED_CLUSTER_L1:
1281 case QED_CLUSTER_ZERO:
1282 return qed_aio_write_alloc(acb, len);
1284 default:
1285 g_assert_not_reached();
1290 * Read data cluster
1292 * @opaque: Read request
1293 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1294 * @offset: Cluster offset in bytes
1295 * @len: Length in bytes
1297 * Called with table_lock held.
1299 static int coroutine_fn qed_aio_read_data(void *opaque, int ret,
1300 uint64_t offset, size_t len)
1302 QEDAIOCB *acb = opaque;
1303 BDRVQEDState *s = acb_to_s(acb);
1304 BlockDriverState *bs = acb->bs;
1305 int r;
1307 qemu_co_mutex_unlock(&s->table_lock);
1309 /* Adjust offset into cluster */
1310 offset += qed_offset_into_cluster(s, acb->cur_pos);
1312 trace_qed_aio_read_data(s, acb, ret, offset, len);
1314 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1316 /* Handle zero cluster and backing file reads, otherwise read
1317 * data cluster directly.
1319 if (ret == QED_CLUSTER_ZERO) {
1320 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1321 r = 0;
1322 } else if (ret != QED_CLUSTER_FOUND) {
1323 r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov);
1324 } else {
1325 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1326 r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size,
1327 &acb->cur_qiov, 0);
1330 qemu_co_mutex_lock(&s->table_lock);
1331 return r;
1335 * Begin next I/O or complete the request
1337 static int coroutine_fn qed_aio_next_io(QEDAIOCB *acb)
1339 BDRVQEDState *s = acb_to_s(acb);
1340 uint64_t offset;
1341 size_t len;
1342 int ret;
1344 qemu_co_mutex_lock(&s->table_lock);
1345 while (1) {
1346 trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size);
1348 acb->qiov_offset += acb->cur_qiov.size;
1349 acb->cur_pos += acb->cur_qiov.size;
1350 qemu_iovec_reset(&acb->cur_qiov);
1352 /* Complete request */
1353 if (acb->cur_pos >= acb->end_pos) {
1354 ret = 0;
1355 break;
1358 /* Find next cluster and start I/O */
1359 len = acb->end_pos - acb->cur_pos;
1360 ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset);
1361 if (ret < 0) {
1362 break;
1365 if (acb->flags & QED_AIOCB_WRITE) {
1366 ret = qed_aio_write_data(acb, ret, offset, len);
1367 } else {
1368 ret = qed_aio_read_data(acb, ret, offset, len);
1371 if (ret < 0 && ret != -EAGAIN) {
1372 break;
1376 trace_qed_aio_complete(s, acb, ret);
1377 qed_aio_complete(acb);
1378 qemu_co_mutex_unlock(&s->table_lock);
1379 return ret;
1382 static int coroutine_fn qed_co_request(BlockDriverState *bs, int64_t sector_num,
1383 QEMUIOVector *qiov, int nb_sectors,
1384 int flags)
1386 QEDAIOCB acb = {
1387 .bs = bs,
1388 .cur_pos = (uint64_t) sector_num * BDRV_SECTOR_SIZE,
1389 .end_pos = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE,
1390 .qiov = qiov,
1391 .flags = flags,
1393 qemu_iovec_init(&acb.cur_qiov, qiov->niov);
1395 trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags);
1397 /* Start request */
1398 return qed_aio_next_io(&acb);
1401 static int coroutine_fn bdrv_qed_co_readv(BlockDriverState *bs,
1402 int64_t sector_num, int nb_sectors,
1403 QEMUIOVector *qiov)
1405 return qed_co_request(bs, sector_num, qiov, nb_sectors, 0);
1408 static int coroutine_fn bdrv_qed_co_writev(BlockDriverState *bs,
1409 int64_t sector_num, int nb_sectors,
1410 QEMUIOVector *qiov, int flags)
1412 return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE);
1415 static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs,
1416 int64_t offset,
1417 int64_t bytes,
1418 BdrvRequestFlags flags)
1420 BDRVQEDState *s = bs->opaque;
1423 * Zero writes start without an I/O buffer. If a buffer becomes necessary
1424 * then it will be allocated during request processing.
1426 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
1429 * QED is not prepared for 63bit write-zero requests, so rely on
1430 * max_pwrite_zeroes.
1432 assert(bytes <= INT_MAX);
1434 /* Fall back if the request is not aligned */
1435 if (qed_offset_into_cluster(s, offset) ||
1436 qed_offset_into_cluster(s, bytes)) {
1437 return -ENOTSUP;
1440 return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1441 bytes >> BDRV_SECTOR_BITS,
1442 QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1445 static int coroutine_fn bdrv_qed_co_truncate(BlockDriverState *bs,
1446 int64_t offset,
1447 bool exact,
1448 PreallocMode prealloc,
1449 BdrvRequestFlags flags,
1450 Error **errp)
1452 BDRVQEDState *s = bs->opaque;
1453 uint64_t old_image_size;
1454 int ret;
1456 if (prealloc != PREALLOC_MODE_OFF) {
1457 error_setg(errp, "Unsupported preallocation mode '%s'",
1458 PreallocMode_str(prealloc));
1459 return -ENOTSUP;
1462 if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1463 s->header.table_size)) {
1464 error_setg(errp, "Invalid image size specified");
1465 return -EINVAL;
1468 if ((uint64_t)offset < s->header.image_size) {
1469 error_setg(errp, "Shrinking images is currently not supported");
1470 return -ENOTSUP;
1473 old_image_size = s->header.image_size;
1474 s->header.image_size = offset;
1475 ret = qed_write_header_sync(s);
1476 if (ret < 0) {
1477 s->header.image_size = old_image_size;
1478 error_setg_errno(errp, -ret, "Failed to update the image size");
1480 return ret;
1483 static int64_t coroutine_fn bdrv_qed_co_getlength(BlockDriverState *bs)
1485 BDRVQEDState *s = bs->opaque;
1486 return s->header.image_size;
1489 static int coroutine_fn
1490 bdrv_qed_co_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1492 BDRVQEDState *s = bs->opaque;
1494 memset(bdi, 0, sizeof(*bdi));
1495 bdi->cluster_size = s->header.cluster_size;
1496 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1497 return 0;
1500 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1501 const char *backing_file,
1502 const char *backing_fmt)
1504 BDRVQEDState *s = bs->opaque;
1505 QEDHeader new_header, le_header;
1506 void *buffer;
1507 size_t buffer_len, backing_file_len;
1508 int ret;
1510 /* Refuse to set backing filename if unknown compat feature bits are
1511 * active. If the image uses an unknown compat feature then we may not
1512 * know the layout of data following the header structure and cannot safely
1513 * add a new string.
1515 if (backing_file && (s->header.compat_features &
1516 ~QED_COMPAT_FEATURE_MASK)) {
1517 return -ENOTSUP;
1520 memcpy(&new_header, &s->header, sizeof(new_header));
1522 new_header.features &= ~(QED_F_BACKING_FILE |
1523 QED_F_BACKING_FORMAT_NO_PROBE);
1525 /* Adjust feature flags */
1526 if (backing_file) {
1527 new_header.features |= QED_F_BACKING_FILE;
1529 if (qed_fmt_is_raw(backing_fmt)) {
1530 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1534 /* Calculate new header size */
1535 backing_file_len = 0;
1537 if (backing_file) {
1538 backing_file_len = strlen(backing_file);
1541 buffer_len = sizeof(new_header);
1542 new_header.backing_filename_offset = buffer_len;
1543 new_header.backing_filename_size = backing_file_len;
1544 buffer_len += backing_file_len;
1546 /* Make sure we can rewrite header without failing */
1547 if (buffer_len > new_header.header_size * new_header.cluster_size) {
1548 return -ENOSPC;
1551 /* Prepare new header */
1552 buffer = g_malloc(buffer_len);
1554 qed_header_cpu_to_le(&new_header, &le_header);
1555 memcpy(buffer, &le_header, sizeof(le_header));
1556 buffer_len = sizeof(le_header);
1558 if (backing_file) {
1559 memcpy(buffer + buffer_len, backing_file, backing_file_len);
1560 buffer_len += backing_file_len;
1563 /* Write new header */
1564 ret = bdrv_pwrite_sync(bs->file, 0, buffer_len, buffer, 0);
1565 g_free(buffer);
1566 if (ret == 0) {
1567 memcpy(&s->header, &new_header, sizeof(new_header));
1569 return ret;
1572 static void coroutine_fn bdrv_qed_co_invalidate_cache(BlockDriverState *bs,
1573 Error **errp)
1575 BDRVQEDState *s = bs->opaque;
1576 int ret;
1578 bdrv_qed_close(bs);
1580 bdrv_qed_init_state(bs);
1581 qemu_co_mutex_lock(&s->table_lock);
1582 ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, errp);
1583 qemu_co_mutex_unlock(&s->table_lock);
1584 if (ret < 0) {
1585 error_prepend(errp, "Could not reopen qed layer: ");
1589 static int coroutine_fn bdrv_qed_co_check(BlockDriverState *bs,
1590 BdrvCheckResult *result,
1591 BdrvCheckMode fix)
1593 BDRVQEDState *s = bs->opaque;
1594 int ret;
1596 qemu_co_mutex_lock(&s->table_lock);
1597 ret = qed_check(s, result, !!fix);
1598 qemu_co_mutex_unlock(&s->table_lock);
1600 return ret;
1603 static QemuOptsList qed_create_opts = {
1604 .name = "qed-create-opts",
1605 .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1606 .desc = {
1608 .name = BLOCK_OPT_SIZE,
1609 .type = QEMU_OPT_SIZE,
1610 .help = "Virtual disk size"
1613 .name = BLOCK_OPT_BACKING_FILE,
1614 .type = QEMU_OPT_STRING,
1615 .help = "File name of a base image"
1618 .name = BLOCK_OPT_BACKING_FMT,
1619 .type = QEMU_OPT_STRING,
1620 .help = "Image format of the base image"
1623 .name = BLOCK_OPT_CLUSTER_SIZE,
1624 .type = QEMU_OPT_SIZE,
1625 .help = "Cluster size (in bytes)",
1626 .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1629 .name = BLOCK_OPT_TABLE_SIZE,
1630 .type = QEMU_OPT_SIZE,
1631 .help = "L1/L2 table size (in clusters)"
1633 { /* end of list */ }
1637 static BlockDriver bdrv_qed = {
1638 .format_name = "qed",
1639 .instance_size = sizeof(BDRVQEDState),
1640 .create_opts = &qed_create_opts,
1641 .is_format = true,
1642 .supports_backing = true,
1644 .bdrv_probe = bdrv_qed_probe,
1645 .bdrv_open = bdrv_qed_open,
1646 .bdrv_close = bdrv_qed_close,
1647 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare,
1648 .bdrv_child_perm = bdrv_default_perms,
1649 .bdrv_co_create = bdrv_qed_co_create,
1650 .bdrv_co_create_opts = bdrv_qed_co_create_opts,
1651 .bdrv_has_zero_init = bdrv_has_zero_init_1,
1652 .bdrv_co_block_status = bdrv_qed_co_block_status,
1653 .bdrv_co_readv = bdrv_qed_co_readv,
1654 .bdrv_co_writev = bdrv_qed_co_writev,
1655 .bdrv_co_pwrite_zeroes = bdrv_qed_co_pwrite_zeroes,
1656 .bdrv_co_truncate = bdrv_qed_co_truncate,
1657 .bdrv_co_getlength = bdrv_qed_co_getlength,
1658 .bdrv_co_get_info = bdrv_qed_co_get_info,
1659 .bdrv_refresh_limits = bdrv_qed_refresh_limits,
1660 .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1661 .bdrv_co_invalidate_cache = bdrv_qed_co_invalidate_cache,
1662 .bdrv_co_check = bdrv_qed_co_check,
1663 .bdrv_detach_aio_context = bdrv_qed_detach_aio_context,
1664 .bdrv_attach_aio_context = bdrv_qed_attach_aio_context,
1665 .bdrv_drain_begin = bdrv_qed_drain_begin,
1668 static void bdrv_qed_init(void)
1670 bdrv_register(&bdrv_qed);
1673 block_init(bdrv_qed_init);