2 * plugin-gen.c - TCG-related bits of plugin infrastructure
4 * Copyright (C) 2018, Emilio G. Cota <cota@braap.org>
5 * License: GNU GPL, version 2 or later.
6 * See the COPYING file in the top-level directory.
8 * We support instrumentation at an instruction granularity. That is,
9 * if a plugin wants to instrument the memory accesses performed by a
10 * particular instruction, it can just do that instead of instrumenting
11 * all memory accesses. Thus, in order to do this we first have to
12 * translate a TB, so that plugins can decide what/where to instrument.
14 * Injecting the desired instrumentation could be done with a second
15 * translation pass that combined the instrumentation requests, but that
16 * would be ugly and inefficient since we would decode the guest code twice.
17 * Instead, during TB translation we add "empty" instrumentation calls for all
18 * possible instrumentation events, and then once we collect the instrumentation
19 * requests from plugins, we either "fill in" those empty events or remove them
20 * if they have no requests.
22 * When "filling in" an event we first copy the empty callback's TCG ops. This
23 * might seem unnecessary, but it is done to support an arbitrary number
24 * of callbacks per event. Take for example a regular instruction callback.
25 * We first generate a callback to an empty helper function. Then, if two
26 * plugins register one callback each for this instruction, we make two copies
27 * of the TCG ops generated for the empty callback, substituting the function
28 * pointer that points to the empty helper function with the plugins' desired
29 * callback functions. After that we remove the empty callback's ops.
31 * Note that the location in TCGOp.args[] of the pointer to a helper function
32 * varies across different guest and host architectures. Instead of duplicating
33 * the logic that figures this out, we rely on the fact that the empty
34 * callbacks point to empty functions that are unique pointers in the program.
35 * Thus, to find the right location we just have to look for a match in
36 * TCGOp.args[]. This is the main reason why we first copy an empty callback's
37 * TCG ops and then fill them in; regardless of whether we have one or many
38 * callbacks for that event, the logic to add all of them is the same.
40 * When generating more than one callback per event, we make a small
41 * optimization to avoid generating redundant operations. For instance, for the
42 * second and all subsequent callbacks of an event, we do not need to reload the
43 * CPU's index into a TCG temp, since the first callback did it already.
45 #include "qemu/osdep.h"
46 #include "qemu/plugin.h"
50 #include "tcg/tcg-temp-internal.h"
51 #include "tcg/tcg-op.h"
52 #include "exec/exec-all.h"
53 #include "exec/plugin-gen.h"
54 #include "exec/translator.h"
56 enum plugin_gen_from
{
59 PLUGIN_GEN_AFTER_INSN
,
63 static void plugin_gen_empty_callback(enum plugin_gen_from from
)
66 case PLUGIN_GEN_AFTER_INSN
:
67 case PLUGIN_GEN_FROM_TB
:
68 case PLUGIN_GEN_FROM_INSN
:
69 tcg_gen_plugin_cb(from
);
72 g_assert_not_reached();
76 /* called before finishing a TB with exit_tb, goto_tb or goto_ptr */
77 void plugin_gen_disable_mem_helpers(void)
79 if (tcg_ctx
->plugin_insn
) {
80 tcg_gen_plugin_cb(PLUGIN_GEN_AFTER_TB
);
84 static void gen_enable_mem_helper(struct qemu_plugin_tb
*ptb
,
85 struct qemu_plugin_insn
*insn
)
91 * Tracking memory accesses performed from helpers requires extra work.
92 * If an instruction is emulated with helpers, we do two things:
93 * (1) copy the CB descriptors, and keep track of it so that they can be
94 * freed later on, and (2) point CPUState.plugin_mem_cbs to the
95 * descriptors, so that we can read them at run-time
96 * (i.e. when the helper executes).
97 * This run-time access is performed from qemu_plugin_vcpu_mem_cb.
99 * Note that plugin_gen_disable_mem_helpers undoes (2). Since it
100 * is possible that the code we generate after the instruction is
101 * dead, we also add checks before generating tb_exit etc.
103 if (!insn
->calls_helpers
) {
107 if (!insn
->mem_cbs
|| !insn
->mem_cbs
->len
) {
108 insn
->mem_helper
= false;
111 insn
->mem_helper
= true;
112 ptb
->mem_helper
= true;
115 * TODO: It seems like we should be able to use ref/unref
116 * to avoid needing to actually copy this array.
117 * Alternately, perhaps we could allocate new memory adjacent
118 * to the TranslationBlock itself, so that we do not have to
119 * actively manage the lifetime after this.
121 len
= insn
->mem_cbs
->len
;
122 arr
= g_array_sized_new(false, false,
123 sizeof(struct qemu_plugin_dyn_cb
), len
);
124 memcpy(arr
->data
, insn
->mem_cbs
->data
,
125 len
* sizeof(struct qemu_plugin_dyn_cb
));
126 qemu_plugin_add_dyn_cb_arr(arr
);
128 tcg_gen_st_ptr(tcg_constant_ptr((intptr_t)arr
), tcg_env
,
129 offsetof(CPUState
, plugin_mem_cbs
) -
130 offsetof(ArchCPU
, env
));
133 static void gen_disable_mem_helper(void)
135 tcg_gen_st_ptr(tcg_constant_ptr(0), tcg_env
,
136 offsetof(CPUState
, plugin_mem_cbs
) -
137 offsetof(ArchCPU
, env
));
140 static void gen_udata_cb(struct qemu_plugin_dyn_cb
*cb
)
142 TCGv_i32 cpu_index
= tcg_temp_ebb_new_i32();
144 tcg_gen_ld_i32(cpu_index
, tcg_env
,
145 -offsetof(ArchCPU
, env
) + offsetof(CPUState
, cpu_index
));
146 tcg_gen_call2(cb
->regular
.f
.vcpu_udata
, cb
->regular
.info
, NULL
,
147 tcgv_i32_temp(cpu_index
),
148 tcgv_ptr_temp(tcg_constant_ptr(cb
->userp
)));
149 tcg_temp_free_i32(cpu_index
);
152 static void gen_inline_cb(struct qemu_plugin_dyn_cb
*cb
)
154 GArray
*arr
= cb
->inline_insn
.entry
.score
->data
;
155 size_t offset
= cb
->inline_insn
.entry
.offset
;
156 TCGv_i32 cpu_index
= tcg_temp_ebb_new_i32();
157 TCGv_i64 val
= tcg_temp_ebb_new_i64();
158 TCGv_ptr ptr
= tcg_temp_ebb_new_ptr();
160 tcg_gen_ld_i32(cpu_index
, tcg_env
,
161 -offsetof(ArchCPU
, env
) + offsetof(CPUState
, cpu_index
));
162 tcg_gen_muli_i32(cpu_index
, cpu_index
, g_array_get_element_size(arr
));
163 tcg_gen_ext_i32_ptr(ptr
, cpu_index
);
164 tcg_temp_free_i32(cpu_index
);
166 tcg_gen_addi_ptr(ptr
, ptr
, (intptr_t)arr
->data
);
167 tcg_gen_ld_i64(val
, ptr
, offset
);
168 tcg_gen_addi_i64(val
, val
, cb
->inline_insn
.imm
);
169 tcg_gen_st_i64(val
, ptr
, offset
);
171 tcg_temp_free_i64(val
);
172 tcg_temp_free_ptr(ptr
);
175 static void gen_mem_cb(struct qemu_plugin_dyn_cb
*cb
,
176 qemu_plugin_meminfo_t meminfo
, TCGv_i64 addr
)
178 TCGv_i32 cpu_index
= tcg_temp_ebb_new_i32();
180 tcg_gen_ld_i32(cpu_index
, tcg_env
,
181 -offsetof(ArchCPU
, env
) + offsetof(CPUState
, cpu_index
));
182 tcg_gen_call4(cb
->regular
.f
.vcpu_mem
, cb
->regular
.info
, NULL
,
183 tcgv_i32_temp(cpu_index
),
184 tcgv_i32_temp(tcg_constant_i32(meminfo
)),
186 tcgv_ptr_temp(tcg_constant_ptr(cb
->userp
)));
187 tcg_temp_free_i32(cpu_index
);
190 static void inject_cb(struct qemu_plugin_dyn_cb
*cb
)
194 case PLUGIN_CB_REGULAR
:
197 case PLUGIN_CB_INLINE
:
201 g_assert_not_reached();
205 static void inject_mem_cb(struct qemu_plugin_dyn_cb
*cb
,
206 enum qemu_plugin_mem_rw rw
,
207 qemu_plugin_meminfo_t meminfo
, TCGv_i64 addr
)
211 case PLUGIN_CB_MEM_REGULAR
:
212 gen_mem_cb(cb
, meminfo
, addr
);
221 static void plugin_gen_inject(struct qemu_plugin_tb
*plugin_tb
)
226 if (unlikely(qemu_loglevel_mask(LOG_TB_OP_PLUGIN
)
227 && qemu_log_in_addr_range(plugin_tb
->vaddr
))) {
228 FILE *logfile
= qemu_log_trylock();
230 fprintf(logfile
, "OP before plugin injection:\n");
231 tcg_dump_ops(tcg_ctx
, logfile
, false);
232 fprintf(logfile
, "\n");
233 qemu_log_unlock(logfile
);
238 * While injecting code, we cannot afford to reuse any ebb temps
239 * that might be live within the existing opcode stream.
240 * The simplest solution is to release them all and create new.
242 memset(tcg_ctx
->free_temps
, 0, sizeof(tcg_ctx
->free_temps
));
244 QTAILQ_FOREACH_SAFE(op
, &tcg_ctx
->ops
, link
, next
) {
246 case INDEX_op_insn_start
:
250 case INDEX_op_plugin_cb
:
252 enum plugin_gen_from from
= op
->args
[0];
253 struct qemu_plugin_insn
*insn
= NULL
;
258 insn
= g_ptr_array_index(plugin_tb
->insns
, insn_idx
);
261 tcg_ctx
->emit_before_op
= op
;
264 case PLUGIN_GEN_AFTER_TB
:
265 if (plugin_tb
->mem_helper
) {
266 gen_disable_mem_helper();
270 case PLUGIN_GEN_AFTER_INSN
:
271 assert(insn
!= NULL
);
272 if (insn
->mem_helper
) {
273 gen_disable_mem_helper();
277 case PLUGIN_GEN_FROM_TB
:
278 assert(insn
== NULL
);
280 cbs
= plugin_tb
->cbs
;
281 for (i
= 0, n
= (cbs
? cbs
->len
: 0); i
< n
; i
++) {
283 &g_array_index(cbs
, struct qemu_plugin_dyn_cb
, i
));
287 case PLUGIN_GEN_FROM_INSN
:
288 assert(insn
!= NULL
);
290 gen_enable_mem_helper(plugin_tb
, insn
);
292 cbs
= insn
->insn_cbs
;
293 for (i
= 0, n
= (cbs
? cbs
->len
: 0); i
< n
; i
++) {
295 &g_array_index(cbs
, struct qemu_plugin_dyn_cb
, i
));
300 g_assert_not_reached();
303 tcg_ctx
->emit_before_op
= NULL
;
304 tcg_op_remove(tcg_ctx
, op
);
308 case INDEX_op_plugin_mem_cb
:
310 TCGv_i64 addr
= temp_tcgv_i64(arg_temp(op
->args
[0]));
311 qemu_plugin_meminfo_t meminfo
= op
->args
[1];
312 enum qemu_plugin_mem_rw rw
=
313 (qemu_plugin_mem_is_store(meminfo
)
314 ? QEMU_PLUGIN_MEM_W
: QEMU_PLUGIN_MEM_R
);
315 struct qemu_plugin_insn
*insn
;
319 assert(insn_idx
>= 0);
320 insn
= g_ptr_array_index(plugin_tb
->insns
, insn_idx
);
322 tcg_ctx
->emit_before_op
= op
;
325 for (i
= 0, n
= (cbs
? cbs
->len
: 0); i
< n
; i
++) {
326 inject_mem_cb(&g_array_index(cbs
, struct qemu_plugin_dyn_cb
, i
),
330 tcg_ctx
->emit_before_op
= NULL
;
331 tcg_op_remove(tcg_ctx
, op
);
336 /* plugins don't care about any other ops */
342 bool plugin_gen_tb_start(CPUState
*cpu
, const DisasContextBase
*db
,
347 if (test_bit(QEMU_PLUGIN_EV_VCPU_TB_TRANS
, cpu
->plugin_state
->event_mask
)) {
348 struct qemu_plugin_tb
*ptb
= tcg_ctx
->plugin_tb
;
350 /* reset callbacks */
352 g_array_set_size(ptb
->cbs
, 0);
358 ptb
->vaddr
= db
->pc_first
;
360 ptb
->haddr1
= db
->host_addr
[0];
362 ptb
->mem_only
= mem_only
;
363 ptb
->mem_helper
= false;
365 plugin_gen_empty_callback(PLUGIN_GEN_FROM_TB
);
368 tcg_ctx
->plugin_insn
= NULL
;
373 void plugin_gen_insn_start(CPUState
*cpu
, const DisasContextBase
*db
)
375 struct qemu_plugin_tb
*ptb
= tcg_ctx
->plugin_tb
;
376 struct qemu_plugin_insn
*pinsn
;
378 pinsn
= qemu_plugin_tb_insn_get(ptb
, db
->pc_next
);
379 tcg_ctx
->plugin_insn
= pinsn
;
380 plugin_gen_empty_callback(PLUGIN_GEN_FROM_INSN
);
383 * Detect page crossing to get the new host address.
384 * Note that we skip this when haddr1 == NULL, e.g. when we're
385 * fetching instructions from a region not backed by RAM.
387 if (ptb
->haddr1
== NULL
) {
389 } else if (is_same_page(db
, db
->pc_next
)) {
390 pinsn
->haddr
= ptb
->haddr1
+ pinsn
->vaddr
- ptb
->vaddr
;
392 if (ptb
->vaddr2
== -1) {
393 ptb
->vaddr2
= TARGET_PAGE_ALIGN(db
->pc_first
);
394 get_page_addr_code_hostp(cpu_env(cpu
), ptb
->vaddr2
, &ptb
->haddr2
);
396 pinsn
->haddr
= ptb
->haddr2
+ pinsn
->vaddr
- ptb
->vaddr2
;
400 void plugin_gen_insn_end(void)
402 plugin_gen_empty_callback(PLUGIN_GEN_AFTER_INSN
);
406 * There are cases where we never get to finalise a translation - for
407 * example a page fault during translation. As a result we shouldn't
408 * do any clean-up here and make sure things are reset in
409 * plugin_gen_tb_start.
411 void plugin_gen_tb_end(CPUState
*cpu
, size_t num_insns
)
413 struct qemu_plugin_tb
*ptb
= tcg_ctx
->plugin_tb
;
415 /* translator may have removed instructions, update final count */
416 g_assert(num_insns
<= ptb
->n
);
419 /* collect instrumentation requests */
420 qemu_plugin_tb_trans_cb(cpu
, ptb
);
422 /* inject the instrumentation at the appropriate places */
423 plugin_gen_inject(ptb
);