Fix performance regression in qemu_get_ram_ptr
[qemu/armbru.git] / cpus.c
blob0f339459a59700e49faa3b4453279e19dfc2441c
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 /* Needed early for CONFIG_BSD etc. */
26 #include "config-host.h"
28 #include "monitor.h"
29 #include "sysemu.h"
30 #include "gdbstub.h"
31 #include "dma.h"
32 #include "kvm.h"
33 #include "exec-all.h"
35 #include "cpus.h"
36 #include "compatfd.h"
38 #ifdef SIGRTMIN
39 #define SIG_IPI (SIGRTMIN+4)
40 #else
41 #define SIG_IPI SIGUSR1
42 #endif
44 #ifdef CONFIG_LINUX
46 #include <sys/prctl.h>
48 #ifndef PR_MCE_KILL
49 #define PR_MCE_KILL 33
50 #endif
52 #ifndef PR_MCE_KILL_SET
53 #define PR_MCE_KILL_SET 1
54 #endif
56 #ifndef PR_MCE_KILL_EARLY
57 #define PR_MCE_KILL_EARLY 1
58 #endif
60 #endif /* CONFIG_LINUX */
62 static CPUState *next_cpu;
64 /***********************************************************/
65 void hw_error(const char *fmt, ...)
67 va_list ap;
68 CPUState *env;
70 va_start(ap, fmt);
71 fprintf(stderr, "qemu: hardware error: ");
72 vfprintf(stderr, fmt, ap);
73 fprintf(stderr, "\n");
74 for(env = first_cpu; env != NULL; env = env->next_cpu) {
75 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
76 #ifdef TARGET_I386
77 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
78 #else
79 cpu_dump_state(env, stderr, fprintf, 0);
80 #endif
82 va_end(ap);
83 abort();
86 void cpu_synchronize_all_states(void)
88 CPUState *cpu;
90 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
91 cpu_synchronize_state(cpu);
95 void cpu_synchronize_all_post_reset(void)
97 CPUState *cpu;
99 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
100 cpu_synchronize_post_reset(cpu);
104 void cpu_synchronize_all_post_init(void)
106 CPUState *cpu;
108 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
109 cpu_synchronize_post_init(cpu);
113 int cpu_is_stopped(CPUState *env)
115 return !vm_running || env->stopped;
118 static void do_vm_stop(int reason)
120 if (vm_running) {
121 cpu_disable_ticks();
122 vm_running = 0;
123 pause_all_vcpus();
124 vm_state_notify(0, reason);
125 qemu_aio_flush();
126 bdrv_flush_all();
127 monitor_protocol_event(QEVENT_STOP, NULL);
131 static int cpu_can_run(CPUState *env)
133 if (env->stop) {
134 return 0;
136 if (env->stopped || !vm_running) {
137 return 0;
139 return 1;
142 static bool cpu_thread_is_idle(CPUState *env)
144 if (env->stop || env->queued_work_first) {
145 return false;
147 if (env->stopped || !vm_running) {
148 return true;
150 if (!env->halted || qemu_cpu_has_work(env)) {
151 return false;
153 return true;
156 static bool all_cpu_threads_idle(void)
158 CPUState *env;
160 for (env = first_cpu; env != NULL; env = env->next_cpu) {
161 if (!cpu_thread_is_idle(env)) {
162 return false;
165 return true;
168 static CPUDebugExcpHandler *debug_excp_handler;
170 CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
172 CPUDebugExcpHandler *old_handler = debug_excp_handler;
174 debug_excp_handler = handler;
175 return old_handler;
178 static void cpu_handle_debug_exception(CPUState *env)
180 CPUWatchpoint *wp;
182 if (!env->watchpoint_hit) {
183 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
184 wp->flags &= ~BP_WATCHPOINT_HIT;
187 if (debug_excp_handler) {
188 debug_excp_handler(env);
191 gdb_set_stop_cpu(env);
192 qemu_system_debug_request();
193 #ifdef CONFIG_IOTHREAD
194 env->stopped = 1;
195 #endif
198 #ifdef CONFIG_LINUX
199 static void sigbus_reraise(void)
201 sigset_t set;
202 struct sigaction action;
204 memset(&action, 0, sizeof(action));
205 action.sa_handler = SIG_DFL;
206 if (!sigaction(SIGBUS, &action, NULL)) {
207 raise(SIGBUS);
208 sigemptyset(&set);
209 sigaddset(&set, SIGBUS);
210 sigprocmask(SIG_UNBLOCK, &set, NULL);
212 perror("Failed to re-raise SIGBUS!\n");
213 abort();
216 static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
217 void *ctx)
219 if (kvm_on_sigbus(siginfo->ssi_code,
220 (void *)(intptr_t)siginfo->ssi_addr)) {
221 sigbus_reraise();
225 static void qemu_init_sigbus(void)
227 struct sigaction action;
229 memset(&action, 0, sizeof(action));
230 action.sa_flags = SA_SIGINFO;
231 action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
232 sigaction(SIGBUS, &action, NULL);
234 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
237 #else /* !CONFIG_LINUX */
239 static void qemu_init_sigbus(void)
242 #endif /* !CONFIG_LINUX */
244 #ifndef _WIN32
245 static int io_thread_fd = -1;
247 static void qemu_event_increment(void)
249 /* Write 8 bytes to be compatible with eventfd. */
250 static const uint64_t val = 1;
251 ssize_t ret;
253 if (io_thread_fd == -1) {
254 return;
256 do {
257 ret = write(io_thread_fd, &val, sizeof(val));
258 } while (ret < 0 && errno == EINTR);
260 /* EAGAIN is fine, a read must be pending. */
261 if (ret < 0 && errno != EAGAIN) {
262 fprintf(stderr, "qemu_event_increment: write() filed: %s\n",
263 strerror(errno));
264 exit (1);
268 static void qemu_event_read(void *opaque)
270 int fd = (unsigned long)opaque;
271 ssize_t len;
272 char buffer[512];
274 /* Drain the notify pipe. For eventfd, only 8 bytes will be read. */
275 do {
276 len = read(fd, buffer, sizeof(buffer));
277 } while ((len == -1 && errno == EINTR) || len == sizeof(buffer));
280 static int qemu_event_init(void)
282 int err;
283 int fds[2];
285 err = qemu_eventfd(fds);
286 if (err == -1) {
287 return -errno;
289 err = fcntl_setfl(fds[0], O_NONBLOCK);
290 if (err < 0) {
291 goto fail;
293 err = fcntl_setfl(fds[1], O_NONBLOCK);
294 if (err < 0) {
295 goto fail;
297 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
298 (void *)(unsigned long)fds[0]);
300 io_thread_fd = fds[1];
301 return 0;
303 fail:
304 close(fds[0]);
305 close(fds[1]);
306 return err;
309 static void dummy_signal(int sig)
313 /* If we have signalfd, we mask out the signals we want to handle and then
314 * use signalfd to listen for them. We rely on whatever the current signal
315 * handler is to dispatch the signals when we receive them.
317 static void sigfd_handler(void *opaque)
319 int fd = (unsigned long) opaque;
320 struct qemu_signalfd_siginfo info;
321 struct sigaction action;
322 ssize_t len;
324 while (1) {
325 do {
326 len = read(fd, &info, sizeof(info));
327 } while (len == -1 && errno == EINTR);
329 if (len == -1 && errno == EAGAIN) {
330 break;
333 if (len != sizeof(info)) {
334 printf("read from sigfd returned %zd: %m\n", len);
335 return;
338 sigaction(info.ssi_signo, NULL, &action);
339 if ((action.sa_flags & SA_SIGINFO) && action.sa_sigaction) {
340 action.sa_sigaction(info.ssi_signo,
341 (siginfo_t *)&info, NULL);
342 } else if (action.sa_handler) {
343 action.sa_handler(info.ssi_signo);
348 static int qemu_signalfd_init(sigset_t mask)
350 int sigfd;
352 sigfd = qemu_signalfd(&mask);
353 if (sigfd == -1) {
354 fprintf(stderr, "failed to create signalfd\n");
355 return -errno;
358 fcntl_setfl(sigfd, O_NONBLOCK);
360 qemu_set_fd_handler2(sigfd, NULL, sigfd_handler, NULL,
361 (void *)(unsigned long) sigfd);
363 return 0;
366 static void qemu_kvm_eat_signals(CPUState *env)
368 struct timespec ts = { 0, 0 };
369 siginfo_t siginfo;
370 sigset_t waitset;
371 sigset_t chkset;
372 int r;
374 sigemptyset(&waitset);
375 sigaddset(&waitset, SIG_IPI);
376 sigaddset(&waitset, SIGBUS);
378 do {
379 r = sigtimedwait(&waitset, &siginfo, &ts);
380 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
381 perror("sigtimedwait");
382 exit(1);
385 switch (r) {
386 case SIGBUS:
387 if (kvm_on_sigbus_vcpu(env, siginfo.si_code, siginfo.si_addr)) {
388 sigbus_reraise();
390 break;
391 default:
392 break;
395 r = sigpending(&chkset);
396 if (r == -1) {
397 perror("sigpending");
398 exit(1);
400 } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
402 #ifndef CONFIG_IOTHREAD
403 if (sigismember(&chkset, SIGIO) || sigismember(&chkset, SIGALRM)) {
404 qemu_notify_event();
406 #endif
409 #else /* _WIN32 */
411 HANDLE qemu_event_handle;
413 static void dummy_event_handler(void *opaque)
417 static int qemu_event_init(void)
419 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
420 if (!qemu_event_handle) {
421 fprintf(stderr, "Failed CreateEvent: %ld\n", GetLastError());
422 return -1;
424 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
425 return 0;
428 static void qemu_event_increment(void)
430 if (!SetEvent(qemu_event_handle)) {
431 fprintf(stderr, "qemu_event_increment: SetEvent failed: %ld\n",
432 GetLastError());
433 exit (1);
437 static void qemu_kvm_eat_signals(CPUState *env)
440 #endif /* _WIN32 */
442 #ifndef CONFIG_IOTHREAD
443 static void qemu_kvm_init_cpu_signals(CPUState *env)
445 #ifndef _WIN32
446 int r;
447 sigset_t set;
448 struct sigaction sigact;
450 memset(&sigact, 0, sizeof(sigact));
451 sigact.sa_handler = dummy_signal;
452 sigaction(SIG_IPI, &sigact, NULL);
454 sigemptyset(&set);
455 sigaddset(&set, SIG_IPI);
456 sigaddset(&set, SIGIO);
457 sigaddset(&set, SIGALRM);
458 pthread_sigmask(SIG_BLOCK, &set, NULL);
460 pthread_sigmask(SIG_BLOCK, NULL, &set);
461 sigdelset(&set, SIG_IPI);
462 sigdelset(&set, SIGBUS);
463 sigdelset(&set, SIGIO);
464 sigdelset(&set, SIGALRM);
465 r = kvm_set_signal_mask(env, &set);
466 if (r) {
467 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
468 exit(1);
470 #endif
473 #ifndef _WIN32
474 static sigset_t block_synchronous_signals(void)
476 sigset_t set;
478 sigemptyset(&set);
479 sigaddset(&set, SIGBUS);
480 if (kvm_enabled()) {
482 * We need to process timer signals synchronously to avoid a race
483 * between exit_request check and KVM vcpu entry.
485 sigaddset(&set, SIGIO);
486 sigaddset(&set, SIGALRM);
489 return set;
491 #endif
493 int qemu_init_main_loop(void)
495 #ifndef _WIN32
496 sigset_t blocked_signals;
497 int ret;
499 blocked_signals = block_synchronous_signals();
501 ret = qemu_signalfd_init(blocked_signals);
502 if (ret) {
503 return ret;
505 #endif
507 qemu_init_sigbus();
509 return qemu_event_init();
512 void qemu_main_loop_start(void)
516 void qemu_init_vcpu(void *_env)
518 CPUState *env = _env;
519 int r;
521 env->nr_cores = smp_cores;
522 env->nr_threads = smp_threads;
524 if (kvm_enabled()) {
525 r = kvm_init_vcpu(env);
526 if (r < 0) {
527 fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
528 exit(1);
530 qemu_kvm_init_cpu_signals(env);
534 int qemu_cpu_self(void *env)
536 return 1;
539 void run_on_cpu(CPUState *env, void (*func)(void *data), void *data)
541 func(data);
544 void resume_all_vcpus(void)
548 void pause_all_vcpus(void)
552 void qemu_cpu_kick(void *env)
556 void qemu_cpu_kick_self(void)
558 #ifndef _WIN32
559 assert(cpu_single_env);
561 raise(SIG_IPI);
562 #else
563 abort();
564 #endif
567 void qemu_notify_event(void)
569 CPUState *env = cpu_single_env;
571 qemu_event_increment ();
572 if (env) {
573 cpu_exit(env);
575 if (next_cpu && env != next_cpu) {
576 cpu_exit(next_cpu);
578 exit_request = 1;
581 void qemu_mutex_lock_iothread(void) {}
582 void qemu_mutex_unlock_iothread(void) {}
584 void cpu_stop_current(void)
588 void vm_stop(int reason)
590 do_vm_stop(reason);
593 #else /* CONFIG_IOTHREAD */
595 #include "qemu-thread.h"
597 QemuMutex qemu_global_mutex;
598 static QemuMutex qemu_fair_mutex;
600 static QemuThread io_thread;
602 static QemuThread *tcg_cpu_thread;
603 static QemuCond *tcg_halt_cond;
605 static int qemu_system_ready;
606 /* cpu creation */
607 static QemuCond qemu_cpu_cond;
608 /* system init */
609 static QemuCond qemu_system_cond;
610 static QemuCond qemu_pause_cond;
611 static QemuCond qemu_work_cond;
613 static void cpu_signal(int sig)
615 if (cpu_single_env) {
616 cpu_exit(cpu_single_env);
618 exit_request = 1;
621 static void qemu_kvm_init_cpu_signals(CPUState *env)
623 int r;
624 sigset_t set;
625 struct sigaction sigact;
627 memset(&sigact, 0, sizeof(sigact));
628 sigact.sa_handler = dummy_signal;
629 sigaction(SIG_IPI, &sigact, NULL);
631 pthread_sigmask(SIG_BLOCK, NULL, &set);
632 sigdelset(&set, SIG_IPI);
633 sigdelset(&set, SIGBUS);
634 r = kvm_set_signal_mask(env, &set);
635 if (r) {
636 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
637 exit(1);
641 static void qemu_tcg_init_cpu_signals(void)
643 sigset_t set;
644 struct sigaction sigact;
646 memset(&sigact, 0, sizeof(sigact));
647 sigact.sa_handler = cpu_signal;
648 sigaction(SIG_IPI, &sigact, NULL);
650 sigemptyset(&set);
651 sigaddset(&set, SIG_IPI);
652 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
655 static sigset_t block_io_signals(void)
657 sigset_t set;
659 /* SIGUSR2 used by posix-aio-compat.c */
660 sigemptyset(&set);
661 sigaddset(&set, SIGUSR2);
662 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
664 sigemptyset(&set);
665 sigaddset(&set, SIGIO);
666 sigaddset(&set, SIGALRM);
667 sigaddset(&set, SIG_IPI);
668 sigaddset(&set, SIGBUS);
669 pthread_sigmask(SIG_BLOCK, &set, NULL);
671 return set;
674 int qemu_init_main_loop(void)
676 int ret;
677 sigset_t blocked_signals;
679 qemu_init_sigbus();
681 blocked_signals = block_io_signals();
683 ret = qemu_signalfd_init(blocked_signals);
684 if (ret) {
685 return ret;
688 /* Note eventfd must be drained before signalfd handlers run */
689 ret = qemu_event_init();
690 if (ret) {
691 return ret;
694 qemu_cond_init(&qemu_cpu_cond);
695 qemu_cond_init(&qemu_system_cond);
696 qemu_cond_init(&qemu_pause_cond);
697 qemu_cond_init(&qemu_work_cond);
698 qemu_mutex_init(&qemu_fair_mutex);
699 qemu_mutex_init(&qemu_global_mutex);
700 qemu_mutex_lock(&qemu_global_mutex);
702 qemu_thread_self(&io_thread);
704 return 0;
707 void qemu_main_loop_start(void)
709 qemu_system_ready = 1;
710 qemu_cond_broadcast(&qemu_system_cond);
713 void run_on_cpu(CPUState *env, void (*func)(void *data), void *data)
715 struct qemu_work_item wi;
717 if (qemu_cpu_self(env)) {
718 func(data);
719 return;
722 wi.func = func;
723 wi.data = data;
724 if (!env->queued_work_first) {
725 env->queued_work_first = &wi;
726 } else {
727 env->queued_work_last->next = &wi;
729 env->queued_work_last = &wi;
730 wi.next = NULL;
731 wi.done = false;
733 qemu_cpu_kick(env);
734 while (!wi.done) {
735 CPUState *self_env = cpu_single_env;
737 qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
738 cpu_single_env = self_env;
742 static void flush_queued_work(CPUState *env)
744 struct qemu_work_item *wi;
746 if (!env->queued_work_first) {
747 return;
750 while ((wi = env->queued_work_first)) {
751 env->queued_work_first = wi->next;
752 wi->func(wi->data);
753 wi->done = true;
755 env->queued_work_last = NULL;
756 qemu_cond_broadcast(&qemu_work_cond);
759 static void qemu_wait_io_event_common(CPUState *env)
761 if (env->stop) {
762 env->stop = 0;
763 env->stopped = 1;
764 qemu_cond_signal(&qemu_pause_cond);
766 flush_queued_work(env);
767 env->thread_kicked = false;
770 static void qemu_tcg_wait_io_event(void)
772 CPUState *env;
774 while (all_cpu_threads_idle()) {
775 qemu_cond_timedwait(tcg_halt_cond, &qemu_global_mutex, 1000);
778 qemu_mutex_unlock(&qemu_global_mutex);
781 * Users of qemu_global_mutex can be starved, having no chance
782 * to acquire it since this path will get to it first.
783 * So use another lock to provide fairness.
785 qemu_mutex_lock(&qemu_fair_mutex);
786 qemu_mutex_unlock(&qemu_fair_mutex);
788 qemu_mutex_lock(&qemu_global_mutex);
790 for (env = first_cpu; env != NULL; env = env->next_cpu) {
791 qemu_wait_io_event_common(env);
795 static void qemu_kvm_wait_io_event(CPUState *env)
797 while (cpu_thread_is_idle(env)) {
798 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
801 qemu_kvm_eat_signals(env);
802 qemu_wait_io_event_common(env);
805 static void *qemu_kvm_cpu_thread_fn(void *arg)
807 CPUState *env = arg;
808 int r;
810 qemu_mutex_lock(&qemu_global_mutex);
811 qemu_thread_self(env->thread);
813 r = kvm_init_vcpu(env);
814 if (r < 0) {
815 fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
816 exit(1);
819 qemu_kvm_init_cpu_signals(env);
821 /* signal CPU creation */
822 env->created = 1;
823 qemu_cond_signal(&qemu_cpu_cond);
825 /* and wait for machine initialization */
826 while (!qemu_system_ready) {
827 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
830 while (1) {
831 if (cpu_can_run(env)) {
832 r = kvm_cpu_exec(env);
833 if (r == EXCP_DEBUG) {
834 cpu_handle_debug_exception(env);
837 qemu_kvm_wait_io_event(env);
840 return NULL;
843 static void *qemu_tcg_cpu_thread_fn(void *arg)
845 CPUState *env = arg;
847 qemu_tcg_init_cpu_signals();
848 qemu_thread_self(env->thread);
850 /* signal CPU creation */
851 qemu_mutex_lock(&qemu_global_mutex);
852 for (env = first_cpu; env != NULL; env = env->next_cpu) {
853 env->created = 1;
855 qemu_cond_signal(&qemu_cpu_cond);
857 /* and wait for machine initialization */
858 while (!qemu_system_ready) {
859 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
862 while (1) {
863 cpu_exec_all();
864 qemu_tcg_wait_io_event();
867 return NULL;
870 void qemu_cpu_kick(void *_env)
872 CPUState *env = _env;
874 qemu_cond_broadcast(env->halt_cond);
875 if (!env->thread_kicked) {
876 qemu_thread_signal(env->thread, SIG_IPI);
877 env->thread_kicked = true;
881 void qemu_cpu_kick_self(void)
883 assert(cpu_single_env);
885 if (!cpu_single_env->thread_kicked) {
886 qemu_thread_signal(cpu_single_env->thread, SIG_IPI);
887 cpu_single_env->thread_kicked = true;
891 int qemu_cpu_self(void *_env)
893 CPUState *env = _env;
894 QemuThread this;
896 qemu_thread_self(&this);
898 return qemu_thread_equal(&this, env->thread);
901 void qemu_mutex_lock_iothread(void)
903 if (kvm_enabled()) {
904 qemu_mutex_lock(&qemu_global_mutex);
905 } else {
906 qemu_mutex_lock(&qemu_fair_mutex);
907 if (qemu_mutex_trylock(&qemu_global_mutex)) {
908 qemu_thread_signal(tcg_cpu_thread, SIG_IPI);
909 qemu_mutex_lock(&qemu_global_mutex);
911 qemu_mutex_unlock(&qemu_fair_mutex);
915 void qemu_mutex_unlock_iothread(void)
917 qemu_mutex_unlock(&qemu_global_mutex);
920 static int all_vcpus_paused(void)
922 CPUState *penv = first_cpu;
924 while (penv) {
925 if (!penv->stopped) {
926 return 0;
928 penv = (CPUState *)penv->next_cpu;
931 return 1;
934 void pause_all_vcpus(void)
936 CPUState *penv = first_cpu;
938 while (penv) {
939 penv->stop = 1;
940 qemu_cpu_kick(penv);
941 penv = (CPUState *)penv->next_cpu;
944 while (!all_vcpus_paused()) {
945 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
946 penv = first_cpu;
947 while (penv) {
948 qemu_cpu_kick(penv);
949 penv = (CPUState *)penv->next_cpu;
954 void resume_all_vcpus(void)
956 CPUState *penv = first_cpu;
958 while (penv) {
959 penv->stop = 0;
960 penv->stopped = 0;
961 qemu_cpu_kick(penv);
962 penv = (CPUState *)penv->next_cpu;
966 static void qemu_tcg_init_vcpu(void *_env)
968 CPUState *env = _env;
970 /* share a single thread for all cpus with TCG */
971 if (!tcg_cpu_thread) {
972 env->thread = qemu_mallocz(sizeof(QemuThread));
973 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
974 qemu_cond_init(env->halt_cond);
975 qemu_thread_create(env->thread, qemu_tcg_cpu_thread_fn, env);
976 while (env->created == 0) {
977 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
979 tcg_cpu_thread = env->thread;
980 tcg_halt_cond = env->halt_cond;
981 } else {
982 env->thread = tcg_cpu_thread;
983 env->halt_cond = tcg_halt_cond;
987 static void qemu_kvm_start_vcpu(CPUState *env)
989 env->thread = qemu_mallocz(sizeof(QemuThread));
990 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
991 qemu_cond_init(env->halt_cond);
992 qemu_thread_create(env->thread, qemu_kvm_cpu_thread_fn, env);
993 while (env->created == 0) {
994 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
998 void qemu_init_vcpu(void *_env)
1000 CPUState *env = _env;
1002 env->nr_cores = smp_cores;
1003 env->nr_threads = smp_threads;
1004 if (kvm_enabled()) {
1005 qemu_kvm_start_vcpu(env);
1006 } else {
1007 qemu_tcg_init_vcpu(env);
1011 void qemu_notify_event(void)
1013 qemu_event_increment();
1016 void cpu_stop_current(void)
1018 if (cpu_single_env) {
1019 cpu_single_env->stopped = 1;
1020 cpu_exit(cpu_single_env);
1024 void vm_stop(int reason)
1026 QemuThread me;
1027 qemu_thread_self(&me);
1029 if (!qemu_thread_equal(&me, &io_thread)) {
1030 qemu_system_vmstop_request(reason);
1032 * FIXME: should not return to device code in case
1033 * vm_stop() has been requested.
1035 cpu_stop_current();
1036 return;
1038 do_vm_stop(reason);
1041 #endif
1043 static int tcg_cpu_exec(CPUState *env)
1045 int ret;
1046 #ifdef CONFIG_PROFILER
1047 int64_t ti;
1048 #endif
1050 #ifdef CONFIG_PROFILER
1051 ti = profile_getclock();
1052 #endif
1053 if (use_icount) {
1054 int64_t count;
1055 int decr;
1056 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
1057 env->icount_decr.u16.low = 0;
1058 env->icount_extra = 0;
1059 count = qemu_icount_round (qemu_next_deadline());
1060 qemu_icount += count;
1061 decr = (count > 0xffff) ? 0xffff : count;
1062 count -= decr;
1063 env->icount_decr.u16.low = decr;
1064 env->icount_extra = count;
1066 ret = cpu_exec(env);
1067 #ifdef CONFIG_PROFILER
1068 qemu_time += profile_getclock() - ti;
1069 #endif
1070 if (use_icount) {
1071 /* Fold pending instructions back into the
1072 instruction counter, and clear the interrupt flag. */
1073 qemu_icount -= (env->icount_decr.u16.low
1074 + env->icount_extra);
1075 env->icount_decr.u32 = 0;
1076 env->icount_extra = 0;
1078 return ret;
1081 bool cpu_exec_all(void)
1083 int r;
1085 if (next_cpu == NULL) {
1086 next_cpu = first_cpu;
1088 for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
1089 CPUState *env = next_cpu;
1091 qemu_clock_enable(vm_clock,
1092 (env->singlestep_enabled & SSTEP_NOTIMER) == 0);
1094 if (qemu_alarm_pending()) {
1095 break;
1097 if (cpu_can_run(env)) {
1098 if (kvm_enabled()) {
1099 r = kvm_cpu_exec(env);
1100 qemu_kvm_eat_signals(env);
1101 } else {
1102 r = tcg_cpu_exec(env);
1104 if (r == EXCP_DEBUG) {
1105 cpu_handle_debug_exception(env);
1106 break;
1108 } else if (env->stop) {
1109 break;
1112 exit_request = 0;
1113 return !all_cpu_threads_idle();
1116 void set_numa_modes(void)
1118 CPUState *env;
1119 int i;
1121 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1122 for (i = 0; i < nb_numa_nodes; i++) {
1123 if (node_cpumask[i] & (1 << env->cpu_index)) {
1124 env->numa_node = i;
1130 void set_cpu_log(const char *optarg)
1132 int mask;
1133 const CPULogItem *item;
1135 mask = cpu_str_to_log_mask(optarg);
1136 if (!mask) {
1137 printf("Log items (comma separated):\n");
1138 for (item = cpu_log_items; item->mask != 0; item++) {
1139 printf("%-10s %s\n", item->name, item->help);
1141 exit(1);
1143 cpu_set_log(mask);
1146 /* Return the virtual CPU time, based on the instruction counter. */
1147 int64_t cpu_get_icount(void)
1149 int64_t icount;
1150 CPUState *env = cpu_single_env;;
1152 icount = qemu_icount;
1153 if (env) {
1154 if (!can_do_io(env)) {
1155 fprintf(stderr, "Bad clock read\n");
1157 icount -= (env->icount_decr.u16.low + env->icount_extra);
1159 return qemu_icount_bias + (icount << icount_time_shift);
1162 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1164 /* XXX: implement xxx_cpu_list for targets that still miss it */
1165 #if defined(cpu_list_id)
1166 cpu_list_id(f, cpu_fprintf, optarg);
1167 #elif defined(cpu_list)
1168 cpu_list(f, cpu_fprintf); /* deprecated */
1169 #endif