2 * QEMU PowerPC pSeries Logical Partition NUMA associativity handling
4 * Copyright IBM Corp. 2020
7 * Daniel Henrique Barboza <danielhb413@gmail.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
13 #include "qemu/osdep.h"
14 #include "hw/ppc/spapr_numa.h"
15 #include "hw/pci-host/spapr.h"
16 #include "hw/ppc/fdt.h"
18 /* Moved from hw/ppc/spapr_pci_nvlink2.c */
19 #define SPAPR_GPU_NUMA_ID (cpu_to_be32(1))
22 * Retrieves max_dist_ref_points of the current NUMA affinity.
24 static int get_max_dist_ref_points(SpaprMachineState
*spapr
)
26 if (spapr_ovec_test(spapr
->ov5_cas
, OV5_FORM2_AFFINITY
)) {
27 return FORM2_DIST_REF_POINTS
;
30 return FORM1_DIST_REF_POINTS
;
34 * Retrieves numa_assoc_size of the current NUMA affinity.
36 static int get_numa_assoc_size(SpaprMachineState
*spapr
)
38 if (spapr_ovec_test(spapr
->ov5_cas
, OV5_FORM2_AFFINITY
)) {
39 return FORM2_NUMA_ASSOC_SIZE
;
42 return FORM1_NUMA_ASSOC_SIZE
;
46 * Retrieves vcpu_assoc_size of the current NUMA affinity.
48 * vcpu_assoc_size is the size of ibm,associativity array
49 * for CPUs, which has an extra element (vcpu_id) in the end.
51 static int get_vcpu_assoc_size(SpaprMachineState
*spapr
)
53 return get_numa_assoc_size(spapr
) + 1;
57 * Retrieves the ibm,associativity array of NUMA node 'node_id'
58 * for the current NUMA affinity.
60 static const uint32_t *get_associativity(SpaprMachineState
*spapr
, int node_id
)
62 if (spapr_ovec_test(spapr
->ov5_cas
, OV5_FORM2_AFFINITY
)) {
63 return spapr
->FORM2_assoc_array
[node_id
];
65 return spapr
->FORM1_assoc_array
[node_id
];
69 * Wrapper that returns node distance from ms->numa_state->nodes
70 * after handling edge cases where the distance might be absent.
72 static int get_numa_distance(MachineState
*ms
, int src
, int dst
)
74 NodeInfo
*numa_info
= ms
->numa_state
->nodes
;
75 int ret
= numa_info
[src
].distance
[dst
];
82 * In case QEMU adds a default NUMA single node when the user
83 * did not add any, or where the user did not supply distances,
84 * the distance will be absent (zero). Return local/remote
85 * distance in this case.
88 return NUMA_DISTANCE_MIN
;
91 return NUMA_DISTANCE_DEFAULT
;
94 static bool spapr_numa_is_symmetrical(MachineState
*ms
)
96 int nb_numa_nodes
= ms
->numa_state
->num_nodes
;
99 for (src
= 0; src
< nb_numa_nodes
; src
++) {
100 for (dst
= src
; dst
< nb_numa_nodes
; dst
++) {
101 if (get_numa_distance(ms
, src
, dst
) !=
102 get_numa_distance(ms
, dst
, src
)) {
112 * This function will translate the user distances into
113 * what the kernel understand as possible values: 10
114 * (local distance), 20, 40, 80 and 160, and return the equivalent
115 * NUMA level for each. Current heuristic is:
116 * - local distance (10) returns numa_level = 0x4, meaning there is
117 * no rounding for local distance
118 * - distances between 11 and 30 inclusive -> rounded to 20,
120 * - distances between 31 and 60 inclusive -> rounded to 40,
122 * - distances between 61 and 120 inclusive -> rounded to 80,
124 * - everything above 120 returns numa_level = 0 to indicate that
125 * there is no match. This will be calculated as disntace = 160
126 * by the kernel (as of v5.9)
128 static uint8_t spapr_numa_get_numa_level(uint8_t distance
)
130 if (distance
== 10) {
132 } else if (distance
> 11 && distance
<= 30) {
134 } else if (distance
> 31 && distance
<= 60) {
136 } else if (distance
> 61 && distance
<= 120) {
143 static void spapr_numa_define_FORM1_domains(SpaprMachineState
*spapr
)
145 MachineState
*ms
= MACHINE(spapr
);
146 int nb_numa_nodes
= ms
->numa_state
->num_nodes
;
150 * Fill all associativity domains of non-zero NUMA nodes with
151 * node_id. This is required because the default value (0) is
152 * considered a match with associativity domains of node 0.
154 for (i
= 1; i
< nb_numa_nodes
; i
++) {
155 for (j
= 1; j
< FORM1_DIST_REF_POINTS
; j
++) {
156 spapr
->FORM1_assoc_array
[i
][j
] = cpu_to_be32(i
);
160 for (src
= 0; src
< nb_numa_nodes
; src
++) {
161 for (dst
= src
; dst
< nb_numa_nodes
; dst
++) {
163 * This is how the associativity domain between A and B
166 * - get the distance D between them
167 * - get the correspondent NUMA level 'n_level' for D
168 * - all associativity arrays were initialized with their own
169 * numa_ids, and we're calculating the distance in node_id
170 * ascending order, starting from node id 0 (the first node
171 * retrieved by numa_state). This will have a cascade effect in
172 * the algorithm because the associativity domains that node 0
173 * defines will be carried over to other nodes, and node 1
174 * associativities will be carried over after taking node 0
175 * associativities into account, and so on. This happens because
176 * we'll assign assoc_src as the associativity domain of dst
177 * as well, for all NUMA levels beyond and including n_level.
179 * The PPC kernel expects the associativity domains of node 0 to
180 * be always 0, and this algorithm will grant that by default.
182 uint8_t distance
= get_numa_distance(ms
, src
, dst
);
183 uint8_t n_level
= spapr_numa_get_numa_level(distance
);
187 * n_level = 0 means that the distance is greater than our last
188 * rounded value (120). In this case there is no NUMA level match
189 * between src and dst and we can skip the remaining of the loop.
191 * The Linux kernel will assume that the distance between src and
192 * dst, in this case of no match, is 10 (local distance) doubled
193 * for each NUMA it didn't match. We have FORM1_DIST_REF_POINTS
194 * levels (4), so this gives us 10*2*2*2*2 = 160.
196 * This logic can be seen in the Linux kernel source code, as of
197 * v5.9, in arch/powerpc/mm/numa.c, function __node_distance().
204 * We must assign all assoc_src to dst, starting from n_level
205 * and going up to 0x1.
207 for (i
= n_level
; i
> 0; i
--) {
208 assoc_src
= spapr
->FORM1_assoc_array
[src
][i
];
209 spapr
->FORM1_assoc_array
[dst
][i
] = assoc_src
;
216 static void spapr_numa_FORM1_affinity_check(MachineState
*machine
)
221 * Check we don't have a memory-less/cpu-less NUMA node
222 * Firmware relies on the existing memory/cpu topology to provide the
223 * NUMA topology to the kernel.
224 * And the linux kernel needs to know the NUMA topology at start
225 * to be able to hotplug CPUs later.
227 if (machine
->numa_state
->num_nodes
) {
228 for (i
= 0; i
< machine
->numa_state
->num_nodes
; ++i
) {
229 /* check for memory-less node */
230 if (machine
->numa_state
->nodes
[i
].node_mem
== 0) {
233 /* check for cpu-less node */
235 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
236 if (cpu
->node_id
== i
) {
241 /* memory-less and cpu-less node */
244 "Memory-less/cpu-less nodes are not supported with FORM1 NUMA (node %d)", i
);
251 if (!spapr_numa_is_symmetrical(machine
)) {
253 "Asymmetrical NUMA topologies aren't supported in the pSeries machine using FORM1 NUMA");
259 * Set NUMA machine state data based on FORM1 affinity semantics.
261 static void spapr_numa_FORM1_affinity_init(SpaprMachineState
*spapr
,
262 MachineState
*machine
)
264 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
265 int nb_numa_nodes
= machine
->numa_state
->num_nodes
;
269 * For all associativity arrays: first position is the size,
270 * position FORM1_DIST_REF_POINTS is always the numa_id,
271 * represented by the index 'i'.
273 * This will break on sparse NUMA setups, when/if QEMU starts
274 * to support it, because there will be no more guarantee that
275 * 'i' will be a valid node_id set by the user.
277 for (i
= 0; i
< nb_numa_nodes
; i
++) {
278 spapr
->FORM1_assoc_array
[i
][0] = cpu_to_be32(FORM1_DIST_REF_POINTS
);
279 spapr
->FORM1_assoc_array
[i
][FORM1_DIST_REF_POINTS
] = cpu_to_be32(i
);
282 for (i
= nb_numa_nodes
; i
< nb_numa_nodes
; i
++) {
283 spapr
->FORM1_assoc_array
[i
][0] = cpu_to_be32(FORM1_DIST_REF_POINTS
);
285 for (j
= 1; j
< FORM1_DIST_REF_POINTS
; j
++) {
286 uint32_t gpu_assoc
= smc
->pre_5_1_assoc_refpoints
?
287 SPAPR_GPU_NUMA_ID
: cpu_to_be32(i
);
288 spapr
->FORM1_assoc_array
[i
][j
] = gpu_assoc
;
291 spapr
->FORM1_assoc_array
[i
][FORM1_DIST_REF_POINTS
] = cpu_to_be32(i
);
295 * Guests pseries-5.1 and older uses zeroed associativity domains,
296 * i.e. no domain definition based on NUMA distance input.
298 * Same thing with guests that have only one NUMA node.
300 if (smc
->pre_5_2_numa_associativity
||
301 machine
->numa_state
->num_nodes
<= 1) {
305 spapr_numa_define_FORM1_domains(spapr
);
309 * Init NUMA FORM2 machine state data
311 static void spapr_numa_FORM2_affinity_init(SpaprMachineState
*spapr
)
316 * For all resources but CPUs, FORM2 associativity arrays will
317 * be a size 2 array with the following format:
319 * ibm,associativity = {1, numa_id}
321 * CPUs will write an additional 'vcpu_id' on top of the arrays
322 * being initialized here. 'numa_id' is represented by the
323 * index 'i' of the loop.
325 for (i
= 0; i
< NUMA_NODES_MAX_NUM
; i
++) {
326 spapr
->FORM2_assoc_array
[i
][0] = cpu_to_be32(1);
327 spapr
->FORM2_assoc_array
[i
][1] = cpu_to_be32(i
);
331 void spapr_numa_associativity_init(SpaprMachineState
*spapr
,
332 MachineState
*machine
)
334 spapr_numa_FORM1_affinity_init(spapr
, machine
);
335 spapr_numa_FORM2_affinity_init(spapr
);
338 void spapr_numa_associativity_check(SpaprMachineState
*spapr
)
341 * FORM2 does not have any restrictions we need to handle
342 * at CAS time, for now.
344 if (spapr_ovec_test(spapr
->ov5_cas
, OV5_FORM2_AFFINITY
)) {
348 spapr_numa_FORM1_affinity_check(MACHINE(spapr
));
351 void spapr_numa_write_associativity_dt(SpaprMachineState
*spapr
, void *fdt
,
352 int offset
, int nodeid
)
354 const uint32_t *associativity
= get_associativity(spapr
, nodeid
);
356 _FDT((fdt_setprop(fdt
, offset
, "ibm,associativity",
358 get_numa_assoc_size(spapr
) * sizeof(uint32_t))));
361 static uint32_t *spapr_numa_get_vcpu_assoc(SpaprMachineState
*spapr
,
364 const uint32_t *associativity
= get_associativity(spapr
, cpu
->node_id
);
365 int max_distance_ref_points
= get_max_dist_ref_points(spapr
);
366 int vcpu_assoc_size
= get_vcpu_assoc_size(spapr
);
367 uint32_t *vcpu_assoc
= g_new(uint32_t, vcpu_assoc_size
);
368 int index
= spapr_get_vcpu_id(cpu
);
371 * VCPUs have an extra 'cpu_id' value in ibm,associativity
372 * compared to other resources. Increment the size at index
373 * 0, put cpu_id last, then copy the remaining associativity
376 vcpu_assoc
[0] = cpu_to_be32(max_distance_ref_points
+ 1);
377 vcpu_assoc
[vcpu_assoc_size
- 1] = cpu_to_be32(index
);
378 memcpy(vcpu_assoc
+ 1, associativity
+ 1,
379 (vcpu_assoc_size
- 2) * sizeof(uint32_t));
384 int spapr_numa_fixup_cpu_dt(SpaprMachineState
*spapr
, void *fdt
,
385 int offset
, PowerPCCPU
*cpu
)
387 g_autofree
uint32_t *vcpu_assoc
= NULL
;
388 int vcpu_assoc_size
= get_vcpu_assoc_size(spapr
);
390 vcpu_assoc
= spapr_numa_get_vcpu_assoc(spapr
, cpu
);
392 /* Advertise NUMA via ibm,associativity */
393 return fdt_setprop(fdt
, offset
, "ibm,associativity", vcpu_assoc
,
394 vcpu_assoc_size
* sizeof(uint32_t));
398 int spapr_numa_write_assoc_lookup_arrays(SpaprMachineState
*spapr
, void *fdt
,
401 MachineState
*machine
= MACHINE(spapr
);
402 int max_distance_ref_points
= get_max_dist_ref_points(spapr
);
403 int nb_numa_nodes
= machine
->numa_state
->num_nodes
;
404 int nr_nodes
= nb_numa_nodes
? nb_numa_nodes
: 1;
405 g_autofree
uint32_t *int_buf
= NULL
;
409 /* ibm,associativity-lookup-arrays */
410 int_buf
= g_new0(uint32_t, nr_nodes
* max_distance_ref_points
+ 2);
412 int_buf
[0] = cpu_to_be32(nr_nodes
);
413 /* Number of entries per associativity list */
414 int_buf
[1] = cpu_to_be32(max_distance_ref_points
);
416 for (i
= 0; i
< nr_nodes
; i
++) {
418 * For the lookup-array we use the ibm,associativity array of the
419 * current NUMA affinity, without the first element (size).
421 const uint32_t *associativity
= get_associativity(spapr
, i
);
422 memcpy(cur_index
, ++associativity
,
423 sizeof(uint32_t) * max_distance_ref_points
);
424 cur_index
+= max_distance_ref_points
;
427 return fdt_setprop(fdt
, offset
, "ibm,associativity-lookup-arrays",
428 int_buf
, (cur_index
- int_buf
) * sizeof(uint32_t));
431 static void spapr_numa_FORM1_write_rtas_dt(SpaprMachineState
*spapr
,
434 MachineState
*ms
= MACHINE(spapr
);
435 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
436 uint32_t refpoints
[] = {
442 uint32_t nr_refpoints
= ARRAY_SIZE(refpoints
);
443 uint32_t maxdomain
= ms
->numa_state
->num_nodes
;
444 uint32_t maxdomains
[] = {
446 cpu_to_be32(maxdomain
),
447 cpu_to_be32(maxdomain
),
448 cpu_to_be32(maxdomain
),
449 cpu_to_be32(maxdomain
)
452 if (smc
->pre_5_2_numa_associativity
||
453 ms
->numa_state
->num_nodes
<= 1) {
454 uint32_t legacy_refpoints
[] = {
459 uint32_t legacy_maxdomains
[] = {
464 cpu_to_be32(maxdomain
? maxdomain
: 1),
467 G_STATIC_ASSERT(sizeof(legacy_refpoints
) <= sizeof(refpoints
));
468 G_STATIC_ASSERT(sizeof(legacy_maxdomains
) <= sizeof(maxdomains
));
472 memcpy(refpoints
, legacy_refpoints
, sizeof(legacy_refpoints
));
473 memcpy(maxdomains
, legacy_maxdomains
, sizeof(legacy_maxdomains
));
475 /* pseries-5.0 and older reference-points array is {0x4, 0x4} */
476 if (smc
->pre_5_1_assoc_refpoints
) {
481 _FDT(fdt_setprop(fdt
, rtas
, "ibm,associativity-reference-points",
482 refpoints
, nr_refpoints
* sizeof(refpoints
[0])));
484 _FDT(fdt_setprop(fdt
, rtas
, "ibm,max-associativity-domains",
485 maxdomains
, sizeof(maxdomains
)));
488 static void spapr_numa_FORM2_write_rtas_tables(SpaprMachineState
*spapr
,
491 MachineState
*ms
= MACHINE(spapr
);
492 int nb_numa_nodes
= ms
->numa_state
->num_nodes
;
493 int distance_table_entries
= nb_numa_nodes
* nb_numa_nodes
;
494 g_autofree
uint32_t *lookup_index_table
= NULL
;
495 g_autofree
uint8_t *distance_table
= NULL
;
496 int src
, dst
, i
, distance_table_size
;
499 * ibm,numa-lookup-index-table: array with length and a
500 * list of NUMA ids present in the guest.
502 lookup_index_table
= g_new0(uint32_t, nb_numa_nodes
+ 1);
503 lookup_index_table
[0] = cpu_to_be32(nb_numa_nodes
);
505 for (i
= 0; i
< nb_numa_nodes
; i
++) {
506 lookup_index_table
[i
+ 1] = cpu_to_be32(i
);
509 _FDT(fdt_setprop(fdt
, rtas
, "ibm,numa-lookup-index-table",
511 (nb_numa_nodes
+ 1) * sizeof(uint32_t)));
514 * ibm,numa-distance-table: contains all node distances. First
515 * element is the size of the table as uint32, followed up
516 * by all the uint8 distances from the first NUMA node, then all
517 * distances from the second NUMA node and so on.
519 * ibm,numa-lookup-index-table is used by guest to navigate this
520 * array because NUMA ids can be sparse (node 0 is the first,
521 * node 8 is the second ...).
523 distance_table_size
= distance_table_entries
* sizeof(uint8_t) +
525 distance_table
= g_new0(uint8_t, distance_table_size
);
526 stl_be_p(distance_table
, distance_table_entries
);
528 /* Skip the uint32_t array length at the start */
529 i
= sizeof(uint32_t);
531 for (src
= 0; src
< nb_numa_nodes
; src
++) {
532 for (dst
= 0; dst
< nb_numa_nodes
; dst
++) {
533 distance_table
[i
++] = get_numa_distance(ms
, src
, dst
);
537 _FDT(fdt_setprop(fdt
, rtas
, "ibm,numa-distance-table",
538 distance_table
, distance_table_size
));
542 * This helper could be compressed in a single function with
543 * FORM1 logic since we're setting the same DT values, with the
544 * difference being a call to spapr_numa_FORM2_write_rtas_tables()
545 * in the end. The separation was made to avoid clogging FORM1 code
546 * which already has to deal with compat modes from previous
547 * QEMU machine types.
549 static void spapr_numa_FORM2_write_rtas_dt(SpaprMachineState
*spapr
,
552 MachineState
*ms
= MACHINE(spapr
);
555 * In FORM2, ibm,associativity-reference-points will point to
556 * the element in the ibm,associativity array that contains the
557 * primary domain index (for FORM2, the first element).
559 * This value (in our case, the numa-id) is then used as an index
560 * to retrieve all other attributes of the node (distance,
561 * bandwidth, latency) via ibm,numa-lookup-index-table and other
562 * ibm,numa-*-table properties.
564 uint32_t refpoints
[] = { cpu_to_be32(1) };
566 uint32_t maxdomain
= ms
->numa_state
->num_nodes
;
567 uint32_t maxdomains
[] = { cpu_to_be32(1), cpu_to_be32(maxdomain
) };
569 _FDT(fdt_setprop(fdt
, rtas
, "ibm,associativity-reference-points",
570 refpoints
, sizeof(refpoints
)));
572 _FDT(fdt_setprop(fdt
, rtas
, "ibm,max-associativity-domains",
573 maxdomains
, sizeof(maxdomains
)));
575 spapr_numa_FORM2_write_rtas_tables(spapr
, fdt
, rtas
);
579 * Helper that writes ibm,associativity-reference-points and
580 * max-associativity-domains in the RTAS pointed by @rtas
583 void spapr_numa_write_rtas_dt(SpaprMachineState
*spapr
, void *fdt
, int rtas
)
585 if (spapr_ovec_test(spapr
->ov5_cas
, OV5_FORM2_AFFINITY
)) {
586 spapr_numa_FORM2_write_rtas_dt(spapr
, fdt
, rtas
);
590 spapr_numa_FORM1_write_rtas_dt(spapr
, fdt
, rtas
);
593 static target_ulong
h_home_node_associativity(PowerPCCPU
*cpu
,
594 SpaprMachineState
*spapr
,
598 g_autofree
uint32_t *vcpu_assoc
= NULL
;
599 target_ulong flags
= args
[0];
600 target_ulong procno
= args
[1];
603 int vcpu_assoc_size
= get_vcpu_assoc_size(spapr
);
605 /* only support procno from H_REGISTER_VPA */
610 tcpu
= spapr_find_cpu(procno
);
616 * Given that we want to be flexible with the sizes and indexes,
617 * we must consider that there is a hard limit of how many
618 * associativities domain we can fit in R4 up to R9, which would be
619 * 12 associativity domains for vcpus. Assert and bail if that's
622 g_assert((vcpu_assoc_size
- 1) <= 12);
624 vcpu_assoc
= spapr_numa_get_vcpu_assoc(spapr
, tcpu
);
625 /* assoc_idx starts at 1 to skip associativity size */
628 #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \
629 ((uint64_t)(b) & 0xffffffff))
631 for (idx
= 0; idx
< 6; idx
++) {
635 * vcpu_assoc[] will contain the associativity domains for tcpu,
636 * including tcpu->node_id and procno, meaning that we don't
637 * need to use these variables here.
639 * We'll read 2 values at a time to fill up the ASSOCIATIVITY()
640 * macro. The ternary will fill the remaining registers with -1
641 * after we went through vcpu_assoc[].
643 a
= assoc_idx
< vcpu_assoc_size
?
644 be32_to_cpu(vcpu_assoc
[assoc_idx
++]) : -1;
645 b
= assoc_idx
< vcpu_assoc_size
?
646 be32_to_cpu(vcpu_assoc
[assoc_idx
++]) : -1;
648 args
[idx
] = ASSOCIATIVITY(a
, b
);
655 static void spapr_numa_register_types(void)
657 /* Virtual Processor Home Node */
658 spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY
,
659 h_home_node_associativity
);
662 type_init(spapr_numa_register_types
)