2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qemu/main-loop.h"
25 #include "qapi/error.h"
26 #include "hw/sysbus.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/qdev-properties.h"
31 #include "hw/i386/pc.h"
32 #include "hw/i386/apic-msidef.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "sysemu/kvm.h"
36 #include "sysemu/dma.h"
37 #include "sysemu/sysemu.h"
38 #include "hw/i386/apic_internal.h"
39 #include "kvm/kvm_i386.h"
40 #include "migration/vmstate.h"
43 /* context entry operations */
44 #define VTD_CE_GET_RID2PASID(ce) \
45 ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
46 #define VTD_CE_GET_PASID_DIR_TABLE(ce) \
47 ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
50 #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
51 #define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
52 #define VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write) {\
55 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) { \
56 trace_vtd_fault_disabled(); \
58 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write); \
64 static void vtd_address_space_refresh_all(IntelIOMMUState
*s
);
65 static void vtd_address_space_unmap(VTDAddressSpace
*as
, IOMMUNotifier
*n
);
67 static void vtd_panic_require_caching_mode(void)
69 error_report("We need to set caching-mode=on for intel-iommu to enable "
70 "device assignment with IOMMU protection.");
74 static void vtd_define_quad(IntelIOMMUState
*s
, hwaddr addr
, uint64_t val
,
75 uint64_t wmask
, uint64_t w1cmask
)
77 stq_le_p(&s
->csr
[addr
], val
);
78 stq_le_p(&s
->wmask
[addr
], wmask
);
79 stq_le_p(&s
->w1cmask
[addr
], w1cmask
);
82 static void vtd_define_quad_wo(IntelIOMMUState
*s
, hwaddr addr
, uint64_t mask
)
84 stq_le_p(&s
->womask
[addr
], mask
);
87 static void vtd_define_long(IntelIOMMUState
*s
, hwaddr addr
, uint32_t val
,
88 uint32_t wmask
, uint32_t w1cmask
)
90 stl_le_p(&s
->csr
[addr
], val
);
91 stl_le_p(&s
->wmask
[addr
], wmask
);
92 stl_le_p(&s
->w1cmask
[addr
], w1cmask
);
95 static void vtd_define_long_wo(IntelIOMMUState
*s
, hwaddr addr
, uint32_t mask
)
97 stl_le_p(&s
->womask
[addr
], mask
);
100 /* "External" get/set operations */
101 static void vtd_set_quad(IntelIOMMUState
*s
, hwaddr addr
, uint64_t val
)
103 uint64_t oldval
= ldq_le_p(&s
->csr
[addr
]);
104 uint64_t wmask
= ldq_le_p(&s
->wmask
[addr
]);
105 uint64_t w1cmask
= ldq_le_p(&s
->w1cmask
[addr
]);
106 stq_le_p(&s
->csr
[addr
],
107 ((oldval
& ~wmask
) | (val
& wmask
)) & ~(w1cmask
& val
));
110 static void vtd_set_long(IntelIOMMUState
*s
, hwaddr addr
, uint32_t val
)
112 uint32_t oldval
= ldl_le_p(&s
->csr
[addr
]);
113 uint32_t wmask
= ldl_le_p(&s
->wmask
[addr
]);
114 uint32_t w1cmask
= ldl_le_p(&s
->w1cmask
[addr
]);
115 stl_le_p(&s
->csr
[addr
],
116 ((oldval
& ~wmask
) | (val
& wmask
)) & ~(w1cmask
& val
));
119 static uint64_t vtd_get_quad(IntelIOMMUState
*s
, hwaddr addr
)
121 uint64_t val
= ldq_le_p(&s
->csr
[addr
]);
122 uint64_t womask
= ldq_le_p(&s
->womask
[addr
]);
123 return val
& ~womask
;
126 static uint32_t vtd_get_long(IntelIOMMUState
*s
, hwaddr addr
)
128 uint32_t val
= ldl_le_p(&s
->csr
[addr
]);
129 uint32_t womask
= ldl_le_p(&s
->womask
[addr
]);
130 return val
& ~womask
;
133 /* "Internal" get/set operations */
134 static uint64_t vtd_get_quad_raw(IntelIOMMUState
*s
, hwaddr addr
)
136 return ldq_le_p(&s
->csr
[addr
]);
139 static uint32_t vtd_get_long_raw(IntelIOMMUState
*s
, hwaddr addr
)
141 return ldl_le_p(&s
->csr
[addr
]);
144 static void vtd_set_quad_raw(IntelIOMMUState
*s
, hwaddr addr
, uint64_t val
)
146 stq_le_p(&s
->csr
[addr
], val
);
149 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState
*s
, hwaddr addr
,
150 uint32_t clear
, uint32_t mask
)
152 uint32_t new_val
= (ldl_le_p(&s
->csr
[addr
]) & ~clear
) | mask
;
153 stl_le_p(&s
->csr
[addr
], new_val
);
157 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState
*s
, hwaddr addr
,
158 uint64_t clear
, uint64_t mask
)
160 uint64_t new_val
= (ldq_le_p(&s
->csr
[addr
]) & ~clear
) | mask
;
161 stq_le_p(&s
->csr
[addr
], new_val
);
165 static inline void vtd_iommu_lock(IntelIOMMUState
*s
)
167 qemu_mutex_lock(&s
->iommu_lock
);
170 static inline void vtd_iommu_unlock(IntelIOMMUState
*s
)
172 qemu_mutex_unlock(&s
->iommu_lock
);
175 static void vtd_update_scalable_state(IntelIOMMUState
*s
)
177 uint64_t val
= vtd_get_quad_raw(s
, DMAR_RTADDR_REG
);
179 if (s
->scalable_mode
) {
180 s
->root_scalable
= val
& VTD_RTADDR_SMT
;
184 /* Whether the address space needs to notify new mappings */
185 static inline gboolean
vtd_as_has_map_notifier(VTDAddressSpace
*as
)
187 return as
->notifier_flags
& IOMMU_NOTIFIER_MAP
;
190 /* GHashTable functions */
191 static gboolean
vtd_uint64_equal(gconstpointer v1
, gconstpointer v2
)
193 return *((const uint64_t *)v1
) == *((const uint64_t *)v2
);
196 static guint
vtd_uint64_hash(gconstpointer v
)
198 return (guint
)*(const uint64_t *)v
;
201 static gboolean
vtd_hash_remove_by_domain(gpointer key
, gpointer value
,
204 VTDIOTLBEntry
*entry
= (VTDIOTLBEntry
*)value
;
205 uint16_t domain_id
= *(uint16_t *)user_data
;
206 return entry
->domain_id
== domain_id
;
209 /* The shift of an addr for a certain level of paging structure */
210 static inline uint32_t vtd_slpt_level_shift(uint32_t level
)
213 return VTD_PAGE_SHIFT_4K
+ (level
- 1) * VTD_SL_LEVEL_BITS
;
216 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level
)
218 return ~((1ULL << vtd_slpt_level_shift(level
)) - 1);
221 static gboolean
vtd_hash_remove_by_page(gpointer key
, gpointer value
,
224 VTDIOTLBEntry
*entry
= (VTDIOTLBEntry
*)value
;
225 VTDIOTLBPageInvInfo
*info
= (VTDIOTLBPageInvInfo
*)user_data
;
226 uint64_t gfn
= (info
->addr
>> VTD_PAGE_SHIFT_4K
) & info
->mask
;
227 uint64_t gfn_tlb
= (info
->addr
& entry
->mask
) >> VTD_PAGE_SHIFT_4K
;
228 return (entry
->domain_id
== info
->domain_id
) &&
229 (((entry
->gfn
& info
->mask
) == gfn
) ||
230 (entry
->gfn
== gfn_tlb
));
233 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
234 * IntelIOMMUState to 1. Must be called with IOMMU lock held.
236 static void vtd_reset_context_cache_locked(IntelIOMMUState
*s
)
238 VTDAddressSpace
*vtd_as
;
240 GHashTableIter bus_it
;
243 trace_vtd_context_cache_reset();
245 g_hash_table_iter_init(&bus_it
, s
->vtd_as_by_busptr
);
247 while (g_hash_table_iter_next (&bus_it
, NULL
, (void**)&vtd_bus
)) {
248 for (devfn_it
= 0; devfn_it
< PCI_DEVFN_MAX
; ++devfn_it
) {
249 vtd_as
= vtd_bus
->dev_as
[devfn_it
];
253 vtd_as
->context_cache_entry
.context_cache_gen
= 0;
256 s
->context_cache_gen
= 1;
259 /* Must be called with IOMMU lock held. */
260 static void vtd_reset_iotlb_locked(IntelIOMMUState
*s
)
263 g_hash_table_remove_all(s
->iotlb
);
266 static void vtd_reset_iotlb(IntelIOMMUState
*s
)
269 vtd_reset_iotlb_locked(s
);
273 static void vtd_reset_caches(IntelIOMMUState
*s
)
276 vtd_reset_iotlb_locked(s
);
277 vtd_reset_context_cache_locked(s
);
281 static uint64_t vtd_get_iotlb_key(uint64_t gfn
, uint16_t source_id
,
284 return gfn
| ((uint64_t)(source_id
) << VTD_IOTLB_SID_SHIFT
) |
285 ((uint64_t)(level
) << VTD_IOTLB_LVL_SHIFT
);
288 static uint64_t vtd_get_iotlb_gfn(hwaddr addr
, uint32_t level
)
290 return (addr
& vtd_slpt_level_page_mask(level
)) >> VTD_PAGE_SHIFT_4K
;
293 /* Must be called with IOMMU lock held */
294 static VTDIOTLBEntry
*vtd_lookup_iotlb(IntelIOMMUState
*s
, uint16_t source_id
,
297 VTDIOTLBEntry
*entry
;
301 for (level
= VTD_SL_PT_LEVEL
; level
< VTD_SL_PML4_LEVEL
; level
++) {
302 key
= vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr
, level
),
304 entry
= g_hash_table_lookup(s
->iotlb
, &key
);
314 /* Must be with IOMMU lock held */
315 static void vtd_update_iotlb(IntelIOMMUState
*s
, uint16_t source_id
,
316 uint16_t domain_id
, hwaddr addr
, uint64_t slpte
,
317 uint8_t access_flags
, uint32_t level
)
319 VTDIOTLBEntry
*entry
= g_malloc(sizeof(*entry
));
320 uint64_t *key
= g_malloc(sizeof(*key
));
321 uint64_t gfn
= vtd_get_iotlb_gfn(addr
, level
);
323 trace_vtd_iotlb_page_update(source_id
, addr
, slpte
, domain_id
);
324 if (g_hash_table_size(s
->iotlb
) >= VTD_IOTLB_MAX_SIZE
) {
325 trace_vtd_iotlb_reset("iotlb exceeds size limit");
326 vtd_reset_iotlb_locked(s
);
330 entry
->domain_id
= domain_id
;
331 entry
->slpte
= slpte
;
332 entry
->access_flags
= access_flags
;
333 entry
->mask
= vtd_slpt_level_page_mask(level
);
334 *key
= vtd_get_iotlb_key(gfn
, source_id
, level
);
335 g_hash_table_replace(s
->iotlb
, key
, entry
);
338 /* Given the reg addr of both the message data and address, generate an
341 static void vtd_generate_interrupt(IntelIOMMUState
*s
, hwaddr mesg_addr_reg
,
342 hwaddr mesg_data_reg
)
346 assert(mesg_data_reg
< DMAR_REG_SIZE
);
347 assert(mesg_addr_reg
< DMAR_REG_SIZE
);
349 msi
.address
= vtd_get_long_raw(s
, mesg_addr_reg
);
350 msi
.data
= vtd_get_long_raw(s
, mesg_data_reg
);
352 trace_vtd_irq_generate(msi
.address
, msi
.data
);
354 apic_get_class()->send_msi(&msi
);
357 /* Generate a fault event to software via MSI if conditions are met.
358 * Notice that the value of FSTS_REG being passed to it should be the one
361 static void vtd_generate_fault_event(IntelIOMMUState
*s
, uint32_t pre_fsts
)
363 if (pre_fsts
& VTD_FSTS_PPF
|| pre_fsts
& VTD_FSTS_PFO
||
364 pre_fsts
& VTD_FSTS_IQE
) {
365 error_report_once("There are previous interrupt conditions "
366 "to be serviced by software, fault event "
370 vtd_set_clear_mask_long(s
, DMAR_FECTL_REG
, 0, VTD_FECTL_IP
);
371 if (vtd_get_long_raw(s
, DMAR_FECTL_REG
) & VTD_FECTL_IM
) {
372 error_report_once("Interrupt Mask set, irq is not generated");
374 vtd_generate_interrupt(s
, DMAR_FEADDR_REG
, DMAR_FEDATA_REG
);
375 vtd_set_clear_mask_long(s
, DMAR_FECTL_REG
, VTD_FECTL_IP
, 0);
379 /* Check if the Fault (F) field of the Fault Recording Register referenced by
382 static bool vtd_is_frcd_set(IntelIOMMUState
*s
, uint16_t index
)
384 /* Each reg is 128-bit */
385 hwaddr addr
= DMAR_FRCD_REG_OFFSET
+ (((uint64_t)index
) << 4);
386 addr
+= 8; /* Access the high 64-bit half */
388 assert(index
< DMAR_FRCD_REG_NR
);
390 return vtd_get_quad_raw(s
, addr
) & VTD_FRCD_F
;
393 /* Update the PPF field of Fault Status Register.
394 * Should be called whenever change the F field of any fault recording
397 static void vtd_update_fsts_ppf(IntelIOMMUState
*s
)
400 uint32_t ppf_mask
= 0;
402 for (i
= 0; i
< DMAR_FRCD_REG_NR
; i
++) {
403 if (vtd_is_frcd_set(s
, i
)) {
404 ppf_mask
= VTD_FSTS_PPF
;
408 vtd_set_clear_mask_long(s
, DMAR_FSTS_REG
, VTD_FSTS_PPF
, ppf_mask
);
409 trace_vtd_fsts_ppf(!!ppf_mask
);
412 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState
*s
, uint16_t index
)
414 /* Each reg is 128-bit */
415 hwaddr addr
= DMAR_FRCD_REG_OFFSET
+ (((uint64_t)index
) << 4);
416 addr
+= 8; /* Access the high 64-bit half */
418 assert(index
< DMAR_FRCD_REG_NR
);
420 vtd_set_clear_mask_quad(s
, addr
, 0, VTD_FRCD_F
);
421 vtd_update_fsts_ppf(s
);
424 /* Must not update F field now, should be done later */
425 static void vtd_record_frcd(IntelIOMMUState
*s
, uint16_t index
,
426 uint16_t source_id
, hwaddr addr
,
427 VTDFaultReason fault
, bool is_write
)
430 hwaddr frcd_reg_addr
= DMAR_FRCD_REG_OFFSET
+ (((uint64_t)index
) << 4);
432 assert(index
< DMAR_FRCD_REG_NR
);
434 lo
= VTD_FRCD_FI(addr
);
435 hi
= VTD_FRCD_SID(source_id
) | VTD_FRCD_FR(fault
);
439 vtd_set_quad_raw(s
, frcd_reg_addr
, lo
);
440 vtd_set_quad_raw(s
, frcd_reg_addr
+ 8, hi
);
442 trace_vtd_frr_new(index
, hi
, lo
);
445 /* Try to collapse multiple pending faults from the same requester */
446 static bool vtd_try_collapse_fault(IntelIOMMUState
*s
, uint16_t source_id
)
450 hwaddr addr
= DMAR_FRCD_REG_OFFSET
+ 8; /* The high 64-bit half */
452 for (i
= 0; i
< DMAR_FRCD_REG_NR
; i
++) {
453 frcd_reg
= vtd_get_quad_raw(s
, addr
);
454 if ((frcd_reg
& VTD_FRCD_F
) &&
455 ((frcd_reg
& VTD_FRCD_SID_MASK
) == source_id
)) {
458 addr
+= 16; /* 128-bit for each */
463 /* Log and report an DMAR (address translation) fault to software */
464 static void vtd_report_dmar_fault(IntelIOMMUState
*s
, uint16_t source_id
,
465 hwaddr addr
, VTDFaultReason fault
,
468 uint32_t fsts_reg
= vtd_get_long_raw(s
, DMAR_FSTS_REG
);
470 assert(fault
< VTD_FR_MAX
);
472 if (fault
== VTD_FR_RESERVED_ERR
) {
473 /* This is not a normal fault reason case. Drop it. */
477 trace_vtd_dmar_fault(source_id
, fault
, addr
, is_write
);
479 if (fsts_reg
& VTD_FSTS_PFO
) {
480 error_report_once("New fault is not recorded due to "
481 "Primary Fault Overflow");
485 if (vtd_try_collapse_fault(s
, source_id
)) {
486 error_report_once("New fault is not recorded due to "
487 "compression of faults");
491 if (vtd_is_frcd_set(s
, s
->next_frcd_reg
)) {
492 error_report_once("Next Fault Recording Reg is used, "
493 "new fault is not recorded, set PFO field");
494 vtd_set_clear_mask_long(s
, DMAR_FSTS_REG
, 0, VTD_FSTS_PFO
);
498 vtd_record_frcd(s
, s
->next_frcd_reg
, source_id
, addr
, fault
, is_write
);
500 if (fsts_reg
& VTD_FSTS_PPF
) {
501 error_report_once("There are pending faults already, "
502 "fault event is not generated");
503 vtd_set_frcd_and_update_ppf(s
, s
->next_frcd_reg
);
505 if (s
->next_frcd_reg
== DMAR_FRCD_REG_NR
) {
506 s
->next_frcd_reg
= 0;
509 vtd_set_clear_mask_long(s
, DMAR_FSTS_REG
, VTD_FSTS_FRI_MASK
,
510 VTD_FSTS_FRI(s
->next_frcd_reg
));
511 vtd_set_frcd_and_update_ppf(s
, s
->next_frcd_reg
); /* Will set PPF */
513 if (s
->next_frcd_reg
== DMAR_FRCD_REG_NR
) {
514 s
->next_frcd_reg
= 0;
516 /* This case actually cause the PPF to be Set.
517 * So generate fault event (interrupt).
519 vtd_generate_fault_event(s
, fsts_reg
);
523 /* Handle Invalidation Queue Errors of queued invalidation interface error
526 static void vtd_handle_inv_queue_error(IntelIOMMUState
*s
)
528 uint32_t fsts_reg
= vtd_get_long_raw(s
, DMAR_FSTS_REG
);
530 vtd_set_clear_mask_long(s
, DMAR_FSTS_REG
, 0, VTD_FSTS_IQE
);
531 vtd_generate_fault_event(s
, fsts_reg
);
534 /* Set the IWC field and try to generate an invalidation completion interrupt */
535 static void vtd_generate_completion_event(IntelIOMMUState
*s
)
537 if (vtd_get_long_raw(s
, DMAR_ICS_REG
) & VTD_ICS_IWC
) {
538 trace_vtd_inv_desc_wait_irq("One pending, skip current");
541 vtd_set_clear_mask_long(s
, DMAR_ICS_REG
, 0, VTD_ICS_IWC
);
542 vtd_set_clear_mask_long(s
, DMAR_IECTL_REG
, 0, VTD_IECTL_IP
);
543 if (vtd_get_long_raw(s
, DMAR_IECTL_REG
) & VTD_IECTL_IM
) {
544 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
545 "new event not generated");
548 /* Generate the interrupt event */
549 trace_vtd_inv_desc_wait_irq("Generating complete event");
550 vtd_generate_interrupt(s
, DMAR_IEADDR_REG
, DMAR_IEDATA_REG
);
551 vtd_set_clear_mask_long(s
, DMAR_IECTL_REG
, VTD_IECTL_IP
, 0);
555 static inline bool vtd_root_entry_present(IntelIOMMUState
*s
,
559 if (s
->root_scalable
&& devfn
> UINT8_MAX
/ 2) {
560 return re
->hi
& VTD_ROOT_ENTRY_P
;
563 return re
->lo
& VTD_ROOT_ENTRY_P
;
566 static int vtd_get_root_entry(IntelIOMMUState
*s
, uint8_t index
,
571 addr
= s
->root
+ index
* sizeof(*re
);
572 if (dma_memory_read(&address_space_memory
, addr
,
573 re
, sizeof(*re
), MEMTXATTRS_UNSPECIFIED
)) {
575 return -VTD_FR_ROOT_TABLE_INV
;
577 re
->lo
= le64_to_cpu(re
->lo
);
578 re
->hi
= le64_to_cpu(re
->hi
);
582 static inline bool vtd_ce_present(VTDContextEntry
*context
)
584 return context
->lo
& VTD_CONTEXT_ENTRY_P
;
587 static int vtd_get_context_entry_from_root(IntelIOMMUState
*s
,
592 dma_addr_t addr
, ce_size
;
594 /* we have checked that root entry is present */
595 ce_size
= s
->root_scalable
? VTD_CTX_ENTRY_SCALABLE_SIZE
:
596 VTD_CTX_ENTRY_LEGACY_SIZE
;
598 if (s
->root_scalable
&& index
> UINT8_MAX
/ 2) {
599 index
= index
& (~VTD_DEVFN_CHECK_MASK
);
600 addr
= re
->hi
& VTD_ROOT_ENTRY_CTP
;
602 addr
= re
->lo
& VTD_ROOT_ENTRY_CTP
;
605 addr
= addr
+ index
* ce_size
;
606 if (dma_memory_read(&address_space_memory
, addr
,
607 ce
, ce_size
, MEMTXATTRS_UNSPECIFIED
)) {
608 return -VTD_FR_CONTEXT_TABLE_INV
;
611 ce
->lo
= le64_to_cpu(ce
->lo
);
612 ce
->hi
= le64_to_cpu(ce
->hi
);
613 if (ce_size
== VTD_CTX_ENTRY_SCALABLE_SIZE
) {
614 ce
->val
[2] = le64_to_cpu(ce
->val
[2]);
615 ce
->val
[3] = le64_to_cpu(ce
->val
[3]);
620 static inline dma_addr_t
vtd_ce_get_slpt_base(VTDContextEntry
*ce
)
622 return ce
->lo
& VTD_CONTEXT_ENTRY_SLPTPTR
;
625 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte
, uint8_t aw
)
627 return slpte
& VTD_SL_PT_BASE_ADDR_MASK(aw
);
630 /* Whether the pte indicates the address of the page frame */
631 static inline bool vtd_is_last_slpte(uint64_t slpte
, uint32_t level
)
633 return level
== VTD_SL_PT_LEVEL
|| (slpte
& VTD_SL_PT_PAGE_SIZE_MASK
);
636 /* Get the content of a spte located in @base_addr[@index] */
637 static uint64_t vtd_get_slpte(dma_addr_t base_addr
, uint32_t index
)
641 assert(index
< VTD_SL_PT_ENTRY_NR
);
643 if (dma_memory_read(&address_space_memory
,
644 base_addr
+ index
* sizeof(slpte
),
645 &slpte
, sizeof(slpte
), MEMTXATTRS_UNSPECIFIED
)) {
646 slpte
= (uint64_t)-1;
649 slpte
= le64_to_cpu(slpte
);
653 /* Given an iova and the level of paging structure, return the offset
656 static inline uint32_t vtd_iova_level_offset(uint64_t iova
, uint32_t level
)
658 return (iova
>> vtd_slpt_level_shift(level
)) &
659 ((1ULL << VTD_SL_LEVEL_BITS
) - 1);
662 /* Check Capability Register to see if the @level of page-table is supported */
663 static inline bool vtd_is_level_supported(IntelIOMMUState
*s
, uint32_t level
)
665 return VTD_CAP_SAGAW_MASK
& s
->cap
&
666 (1ULL << (level
- 2 + VTD_CAP_SAGAW_SHIFT
));
669 /* Return true if check passed, otherwise false */
670 static inline bool vtd_pe_type_check(X86IOMMUState
*x86_iommu
,
673 switch (VTD_PE_GET_TYPE(pe
)) {
674 case VTD_SM_PASID_ENTRY_FLT
:
675 case VTD_SM_PASID_ENTRY_SLT
:
676 case VTD_SM_PASID_ENTRY_NESTED
:
678 case VTD_SM_PASID_ENTRY_PT
:
679 if (!x86_iommu
->pt_supported
) {
690 static inline bool vtd_pdire_present(VTDPASIDDirEntry
*pdire
)
692 return pdire
->val
& 1;
696 * Caller of this function should check present bit if wants
697 * to use pdir entry for further usage except for fpd bit check.
699 static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base
,
701 VTDPASIDDirEntry
*pdire
)
704 dma_addr_t addr
, entry_size
;
706 index
= VTD_PASID_DIR_INDEX(pasid
);
707 entry_size
= VTD_PASID_DIR_ENTRY_SIZE
;
708 addr
= pasid_dir_base
+ index
* entry_size
;
709 if (dma_memory_read(&address_space_memory
, addr
,
710 pdire
, entry_size
, MEMTXATTRS_UNSPECIFIED
)) {
711 return -VTD_FR_PASID_TABLE_INV
;
717 static inline bool vtd_pe_present(VTDPASIDEntry
*pe
)
719 return pe
->val
[0] & VTD_PASID_ENTRY_P
;
722 static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState
*s
,
728 dma_addr_t entry_size
;
729 X86IOMMUState
*x86_iommu
= X86_IOMMU_DEVICE(s
);
731 index
= VTD_PASID_TABLE_INDEX(pasid
);
732 entry_size
= VTD_PASID_ENTRY_SIZE
;
733 addr
= addr
+ index
* entry_size
;
734 if (dma_memory_read(&address_space_memory
, addr
,
735 pe
, entry_size
, MEMTXATTRS_UNSPECIFIED
)) {
736 return -VTD_FR_PASID_TABLE_INV
;
739 /* Do translation type check */
740 if (!vtd_pe_type_check(x86_iommu
, pe
)) {
741 return -VTD_FR_PASID_TABLE_INV
;
744 if (!vtd_is_level_supported(s
, VTD_PE_GET_LEVEL(pe
))) {
745 return -VTD_FR_PASID_TABLE_INV
;
752 * Caller of this function should check present bit if wants
753 * to use pasid entry for further usage except for fpd bit check.
755 static int vtd_get_pe_from_pdire(IntelIOMMUState
*s
,
757 VTDPASIDDirEntry
*pdire
,
760 dma_addr_t addr
= pdire
->val
& VTD_PASID_TABLE_BASE_ADDR_MASK
;
762 return vtd_get_pe_in_pasid_leaf_table(s
, pasid
, addr
, pe
);
766 * This function gets a pasid entry from a specified pasid
767 * table (includes dir and leaf table) with a specified pasid.
768 * Sanity check should be done to ensure return a present
769 * pasid entry to caller.
771 static int vtd_get_pe_from_pasid_table(IntelIOMMUState
*s
,
772 dma_addr_t pasid_dir_base
,
777 VTDPASIDDirEntry pdire
;
779 ret
= vtd_get_pdire_from_pdir_table(pasid_dir_base
,
785 if (!vtd_pdire_present(&pdire
)) {
786 return -VTD_FR_PASID_TABLE_INV
;
789 ret
= vtd_get_pe_from_pdire(s
, pasid
, &pdire
, pe
);
794 if (!vtd_pe_present(pe
)) {
795 return -VTD_FR_PASID_TABLE_INV
;
801 static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState
*s
,
806 dma_addr_t pasid_dir_base
;
809 pasid
= VTD_CE_GET_RID2PASID(ce
);
810 pasid_dir_base
= VTD_CE_GET_PASID_DIR_TABLE(ce
);
811 ret
= vtd_get_pe_from_pasid_table(s
, pasid_dir_base
, pasid
, pe
);
816 static int vtd_ce_get_pasid_fpd(IntelIOMMUState
*s
,
822 dma_addr_t pasid_dir_base
;
823 VTDPASIDDirEntry pdire
;
826 pasid
= VTD_CE_GET_RID2PASID(ce
);
827 pasid_dir_base
= VTD_CE_GET_PASID_DIR_TABLE(ce
);
830 * No present bit check since fpd is meaningful even
831 * if the present bit is clear.
833 ret
= vtd_get_pdire_from_pdir_table(pasid_dir_base
, pasid
, &pdire
);
838 if (pdire
.val
& VTD_PASID_DIR_FPD
) {
843 if (!vtd_pdire_present(&pdire
)) {
844 return -VTD_FR_PASID_TABLE_INV
;
848 * No present bit check since fpd is meaningful even
849 * if the present bit is clear.
851 ret
= vtd_get_pe_from_pdire(s
, pasid
, &pdire
, &pe
);
856 if (pe
.val
[0] & VTD_PASID_ENTRY_FPD
) {
863 /* Get the page-table level that hardware should use for the second-level
864 * page-table walk from the Address Width field of context-entry.
866 static inline uint32_t vtd_ce_get_level(VTDContextEntry
*ce
)
868 return 2 + (ce
->hi
& VTD_CONTEXT_ENTRY_AW
);
871 static uint32_t vtd_get_iova_level(IntelIOMMUState
*s
,
876 if (s
->root_scalable
) {
877 vtd_ce_get_rid2pasid_entry(s
, ce
, &pe
);
878 return VTD_PE_GET_LEVEL(&pe
);
881 return vtd_ce_get_level(ce
);
884 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry
*ce
)
886 return 30 + (ce
->hi
& VTD_CONTEXT_ENTRY_AW
) * 9;
889 static uint32_t vtd_get_iova_agaw(IntelIOMMUState
*s
,
894 if (s
->root_scalable
) {
895 vtd_ce_get_rid2pasid_entry(s
, ce
, &pe
);
896 return 30 + ((pe
.val
[0] >> 2) & VTD_SM_PASID_ENTRY_AW
) * 9;
899 return vtd_ce_get_agaw(ce
);
902 static inline uint32_t vtd_ce_get_type(VTDContextEntry
*ce
)
904 return ce
->lo
& VTD_CONTEXT_ENTRY_TT
;
907 /* Only for Legacy Mode. Return true if check passed, otherwise false */
908 static inline bool vtd_ce_type_check(X86IOMMUState
*x86_iommu
,
911 switch (vtd_ce_get_type(ce
)) {
912 case VTD_CONTEXT_TT_MULTI_LEVEL
:
913 /* Always supported */
915 case VTD_CONTEXT_TT_DEV_IOTLB
:
916 if (!x86_iommu
->dt_supported
) {
917 error_report_once("%s: DT specified but not supported", __func__
);
921 case VTD_CONTEXT_TT_PASS_THROUGH
:
922 if (!x86_iommu
->pt_supported
) {
923 error_report_once("%s: PT specified but not supported", __func__
);
929 error_report_once("%s: unknown ce type: %"PRIu32
, __func__
,
930 vtd_ce_get_type(ce
));
936 static inline uint64_t vtd_iova_limit(IntelIOMMUState
*s
,
937 VTDContextEntry
*ce
, uint8_t aw
)
939 uint32_t ce_agaw
= vtd_get_iova_agaw(s
, ce
);
940 return 1ULL << MIN(ce_agaw
, aw
);
943 /* Return true if IOVA passes range check, otherwise false. */
944 static inline bool vtd_iova_range_check(IntelIOMMUState
*s
,
945 uint64_t iova
, VTDContextEntry
*ce
,
949 * Check if @iova is above 2^X-1, where X is the minimum of MGAW
950 * in CAP_REG and AW in context-entry.
952 return !(iova
& ~(vtd_iova_limit(s
, ce
, aw
) - 1));
955 static dma_addr_t
vtd_get_iova_pgtbl_base(IntelIOMMUState
*s
,
960 if (s
->root_scalable
) {
961 vtd_ce_get_rid2pasid_entry(s
, ce
, &pe
);
962 return pe
.val
[0] & VTD_SM_PASID_ENTRY_SLPTPTR
;
965 return vtd_ce_get_slpt_base(ce
);
969 * Rsvd field masks for spte:
970 * vtd_spte_rsvd 4k pages
971 * vtd_spte_rsvd_large large pages
973 static uint64_t vtd_spte_rsvd
[5];
974 static uint64_t vtd_spte_rsvd_large
[5];
976 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte
, uint32_t level
)
978 uint64_t rsvd_mask
= vtd_spte_rsvd
[level
];
980 if ((level
== VTD_SL_PD_LEVEL
|| level
== VTD_SL_PDP_LEVEL
) &&
981 (slpte
& VTD_SL_PT_PAGE_SIZE_MASK
)) {
983 rsvd_mask
= vtd_spte_rsvd_large
[level
];
986 return slpte
& rsvd_mask
;
989 /* Find the VTD address space associated with a given bus number */
990 static VTDBus
*vtd_find_as_from_bus_num(IntelIOMMUState
*s
, uint8_t bus_num
)
992 VTDBus
*vtd_bus
= s
->vtd_as_by_bus_num
[bus_num
];
1000 * Iterate over the registered buses to find the one which
1001 * currently holds this bus number and update the bus_num
1004 g_hash_table_iter_init(&iter
, s
->vtd_as_by_busptr
);
1005 while (g_hash_table_iter_next(&iter
, NULL
, (void **)&vtd_bus
)) {
1006 if (pci_bus_num(vtd_bus
->bus
) == bus_num
) {
1007 s
->vtd_as_by_bus_num
[bus_num
] = vtd_bus
;
1015 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
1016 * of the translation, can be used for deciding the size of large page.
1018 static int vtd_iova_to_slpte(IntelIOMMUState
*s
, VTDContextEntry
*ce
,
1019 uint64_t iova
, bool is_write
,
1020 uint64_t *slptep
, uint32_t *slpte_level
,
1021 bool *reads
, bool *writes
, uint8_t aw_bits
)
1023 dma_addr_t addr
= vtd_get_iova_pgtbl_base(s
, ce
);
1024 uint32_t level
= vtd_get_iova_level(s
, ce
);
1027 uint64_t access_right_check
;
1029 if (!vtd_iova_range_check(s
, iova
, ce
, aw_bits
)) {
1030 error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64
")",
1032 return -VTD_FR_ADDR_BEYOND_MGAW
;
1035 /* FIXME: what is the Atomics request here? */
1036 access_right_check
= is_write
? VTD_SL_W
: VTD_SL_R
;
1039 offset
= vtd_iova_level_offset(iova
, level
);
1040 slpte
= vtd_get_slpte(addr
, offset
);
1042 if (slpte
== (uint64_t)-1) {
1043 error_report_once("%s: detected read error on DMAR slpte "
1044 "(iova=0x%" PRIx64
")", __func__
, iova
);
1045 if (level
== vtd_get_iova_level(s
, ce
)) {
1046 /* Invalid programming of context-entry */
1047 return -VTD_FR_CONTEXT_ENTRY_INV
;
1049 return -VTD_FR_PAGING_ENTRY_INV
;
1052 *reads
= (*reads
) && (slpte
& VTD_SL_R
);
1053 *writes
= (*writes
) && (slpte
& VTD_SL_W
);
1054 if (!(slpte
& access_right_check
)) {
1055 error_report_once("%s: detected slpte permission error "
1056 "(iova=0x%" PRIx64
", level=0x%" PRIx32
", "
1057 "slpte=0x%" PRIx64
", write=%d)", __func__
,
1058 iova
, level
, slpte
, is_write
);
1059 return is_write
? -VTD_FR_WRITE
: -VTD_FR_READ
;
1061 if (vtd_slpte_nonzero_rsvd(slpte
, level
)) {
1062 error_report_once("%s: detected splte reserve non-zero "
1063 "iova=0x%" PRIx64
", level=0x%" PRIx32
1064 "slpte=0x%" PRIx64
")", __func__
, iova
,
1066 return -VTD_FR_PAGING_ENTRY_RSVD
;
1069 if (vtd_is_last_slpte(slpte
, level
)) {
1071 *slpte_level
= level
;
1074 addr
= vtd_get_slpte_addr(slpte
, aw_bits
);
1079 typedef int (*vtd_page_walk_hook
)(IOMMUTLBEvent
*event
, void *private);
1082 * Constant information used during page walking
1084 * @hook_fn: hook func to be called when detected page
1085 * @private: private data to be passed into hook func
1086 * @notify_unmap: whether we should notify invalid entries
1087 * @as: VT-d address space of the device
1088 * @aw: maximum address width
1089 * @domain: domain ID of the page walk
1092 VTDAddressSpace
*as
;
1093 vtd_page_walk_hook hook_fn
;
1098 } vtd_page_walk_info
;
1100 static int vtd_page_walk_one(IOMMUTLBEvent
*event
, vtd_page_walk_info
*info
)
1102 VTDAddressSpace
*as
= info
->as
;
1103 vtd_page_walk_hook hook_fn
= info
->hook_fn
;
1104 void *private = info
->private;
1105 IOMMUTLBEntry
*entry
= &event
->entry
;
1107 .iova
= entry
->iova
,
1108 .size
= entry
->addr_mask
,
1109 .translated_addr
= entry
->translated_addr
,
1110 .perm
= entry
->perm
,
1112 const DMAMap
*mapped
= iova_tree_find(as
->iova_tree
, &target
);
1114 if (event
->type
== IOMMU_NOTIFIER_UNMAP
&& !info
->notify_unmap
) {
1115 trace_vtd_page_walk_one_skip_unmap(entry
->iova
, entry
->addr_mask
);
1121 /* Update local IOVA mapped ranges */
1122 if (event
->type
== IOMMU_NOTIFIER_MAP
) {
1124 /* If it's exactly the same translation, skip */
1125 if (!memcmp(mapped
, &target
, sizeof(target
))) {
1126 trace_vtd_page_walk_one_skip_map(entry
->iova
, entry
->addr_mask
,
1127 entry
->translated_addr
);
1131 * Translation changed. Normally this should not
1132 * happen, but it can happen when with buggy guest
1133 * OSes. Note that there will be a small window that
1134 * we don't have map at all. But that's the best
1135 * effort we can do. The ideal way to emulate this is
1136 * atomically modify the PTE to follow what has
1137 * changed, but we can't. One example is that vfio
1138 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1139 * interface to modify a mapping (meanwhile it seems
1140 * meaningless to even provide one). Anyway, let's
1141 * mark this as a TODO in case one day we'll have
1142 * a better solution.
1144 IOMMUAccessFlags cache_perm
= entry
->perm
;
1147 /* Emulate an UNMAP */
1148 event
->type
= IOMMU_NOTIFIER_UNMAP
;
1149 entry
->perm
= IOMMU_NONE
;
1150 trace_vtd_page_walk_one(info
->domain_id
,
1152 entry
->translated_addr
,
1155 ret
= hook_fn(event
, private);
1159 /* Drop any existing mapping */
1160 iova_tree_remove(as
->iova_tree
, &target
);
1161 /* Recover the correct type */
1162 event
->type
= IOMMU_NOTIFIER_MAP
;
1163 entry
->perm
= cache_perm
;
1166 iova_tree_insert(as
->iova_tree
, &target
);
1169 /* Skip since we didn't map this range at all */
1170 trace_vtd_page_walk_one_skip_unmap(entry
->iova
, entry
->addr_mask
);
1173 iova_tree_remove(as
->iova_tree
, &target
);
1176 trace_vtd_page_walk_one(info
->domain_id
, entry
->iova
,
1177 entry
->translated_addr
, entry
->addr_mask
,
1179 return hook_fn(event
, private);
1183 * vtd_page_walk_level - walk over specific level for IOVA range
1185 * @addr: base GPA addr to start the walk
1186 * @start: IOVA range start address
1187 * @end: IOVA range end address (start <= addr < end)
1188 * @read: whether parent level has read permission
1189 * @write: whether parent level has write permission
1190 * @info: constant information for the page walk
1192 static int vtd_page_walk_level(dma_addr_t addr
, uint64_t start
,
1193 uint64_t end
, uint32_t level
, bool read
,
1194 bool write
, vtd_page_walk_info
*info
)
1196 bool read_cur
, write_cur
, entry_valid
;
1199 uint64_t subpage_size
, subpage_mask
;
1200 IOMMUTLBEvent event
;
1201 uint64_t iova
= start
;
1205 trace_vtd_page_walk_level(addr
, level
, start
, end
);
1207 subpage_size
= 1ULL << vtd_slpt_level_shift(level
);
1208 subpage_mask
= vtd_slpt_level_page_mask(level
);
1210 while (iova
< end
) {
1211 iova_next
= (iova
& subpage_mask
) + subpage_size
;
1213 offset
= vtd_iova_level_offset(iova
, level
);
1214 slpte
= vtd_get_slpte(addr
, offset
);
1216 if (slpte
== (uint64_t)-1) {
1217 trace_vtd_page_walk_skip_read(iova
, iova_next
);
1221 if (vtd_slpte_nonzero_rsvd(slpte
, level
)) {
1222 trace_vtd_page_walk_skip_reserve(iova
, iova_next
);
1226 /* Permissions are stacked with parents' */
1227 read_cur
= read
&& (slpte
& VTD_SL_R
);
1228 write_cur
= write
&& (slpte
& VTD_SL_W
);
1231 * As long as we have either read/write permission, this is a
1232 * valid entry. The rule works for both page entries and page
1235 entry_valid
= read_cur
| write_cur
;
1237 if (!vtd_is_last_slpte(slpte
, level
) && entry_valid
) {
1239 * This is a valid PDE (or even bigger than PDE). We need
1240 * to walk one further level.
1242 ret
= vtd_page_walk_level(vtd_get_slpte_addr(slpte
, info
->aw
),
1243 iova
, MIN(iova_next
, end
), level
- 1,
1244 read_cur
, write_cur
, info
);
1247 * This means we are either:
1249 * (1) the real page entry (either 4K page, or huge page)
1250 * (2) the whole range is invalid
1252 * In either case, we send an IOTLB notification down.
1254 event
.entry
.target_as
= &address_space_memory
;
1255 event
.entry
.iova
= iova
& subpage_mask
;
1256 event
.entry
.perm
= IOMMU_ACCESS_FLAG(read_cur
, write_cur
);
1257 event
.entry
.addr_mask
= ~subpage_mask
;
1258 /* NOTE: this is only meaningful if entry_valid == true */
1259 event
.entry
.translated_addr
= vtd_get_slpte_addr(slpte
, info
->aw
);
1260 event
.type
= event
.entry
.perm
? IOMMU_NOTIFIER_MAP
:
1261 IOMMU_NOTIFIER_UNMAP
;
1262 ret
= vtd_page_walk_one(&event
, info
);
1277 * vtd_page_walk - walk specific IOVA range, and call the hook
1279 * @s: intel iommu state
1280 * @ce: context entry to walk upon
1281 * @start: IOVA address to start the walk
1282 * @end: IOVA range end address (start <= addr < end)
1283 * @info: page walking information struct
1285 static int vtd_page_walk(IntelIOMMUState
*s
, VTDContextEntry
*ce
,
1286 uint64_t start
, uint64_t end
,
1287 vtd_page_walk_info
*info
)
1289 dma_addr_t addr
= vtd_get_iova_pgtbl_base(s
, ce
);
1290 uint32_t level
= vtd_get_iova_level(s
, ce
);
1292 if (!vtd_iova_range_check(s
, start
, ce
, info
->aw
)) {
1293 return -VTD_FR_ADDR_BEYOND_MGAW
;
1296 if (!vtd_iova_range_check(s
, end
, ce
, info
->aw
)) {
1297 /* Fix end so that it reaches the maximum */
1298 end
= vtd_iova_limit(s
, ce
, info
->aw
);
1301 return vtd_page_walk_level(addr
, start
, end
, level
, true, true, info
);
1304 static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState
*s
,
1307 /* Legacy Mode reserved bits check */
1308 if (!s
->root_scalable
&&
1309 (re
->hi
|| (re
->lo
& VTD_ROOT_ENTRY_RSVD(s
->aw_bits
))))
1312 /* Scalable Mode reserved bits check */
1313 if (s
->root_scalable
&&
1314 ((re
->lo
& VTD_ROOT_ENTRY_RSVD(s
->aw_bits
)) ||
1315 (re
->hi
& VTD_ROOT_ENTRY_RSVD(s
->aw_bits
))))
1321 error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1323 __func__
, re
->hi
, re
->lo
);
1324 return -VTD_FR_ROOT_ENTRY_RSVD
;
1327 static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState
*s
,
1328 VTDContextEntry
*ce
)
1330 if (!s
->root_scalable
&&
1331 (ce
->hi
& VTD_CONTEXT_ENTRY_RSVD_HI
||
1332 ce
->lo
& VTD_CONTEXT_ENTRY_RSVD_LO(s
->aw_bits
))) {
1333 error_report_once("%s: invalid context entry: hi=%"PRIx64
1334 ", lo=%"PRIx64
" (reserved nonzero)",
1335 __func__
, ce
->hi
, ce
->lo
);
1336 return -VTD_FR_CONTEXT_ENTRY_RSVD
;
1339 if (s
->root_scalable
&&
1340 (ce
->val
[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s
->aw_bits
) ||
1341 ce
->val
[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1
||
1344 error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1347 ", val[0]=%"PRIx64
" (reserved nonzero)",
1348 __func__
, ce
->val
[3], ce
->val
[2],
1349 ce
->val
[1], ce
->val
[0]);
1350 return -VTD_FR_CONTEXT_ENTRY_RSVD
;
1356 static int vtd_ce_rid2pasid_check(IntelIOMMUState
*s
,
1357 VTDContextEntry
*ce
)
1362 * Make sure in Scalable Mode, a present context entry
1363 * has valid rid2pasid setting, which includes valid
1364 * rid2pasid field and corresponding pasid entry setting
1366 return vtd_ce_get_rid2pasid_entry(s
, ce
, &pe
);
1369 /* Map a device to its corresponding domain (context-entry) */
1370 static int vtd_dev_to_context_entry(IntelIOMMUState
*s
, uint8_t bus_num
,
1371 uint8_t devfn
, VTDContextEntry
*ce
)
1375 X86IOMMUState
*x86_iommu
= X86_IOMMU_DEVICE(s
);
1377 ret_fr
= vtd_get_root_entry(s
, bus_num
, &re
);
1382 if (!vtd_root_entry_present(s
, &re
, devfn
)) {
1383 /* Not error - it's okay we don't have root entry. */
1384 trace_vtd_re_not_present(bus_num
);
1385 return -VTD_FR_ROOT_ENTRY_P
;
1388 ret_fr
= vtd_root_entry_rsvd_bits_check(s
, &re
);
1393 ret_fr
= vtd_get_context_entry_from_root(s
, &re
, devfn
, ce
);
1398 if (!vtd_ce_present(ce
)) {
1399 /* Not error - it's okay we don't have context entry. */
1400 trace_vtd_ce_not_present(bus_num
, devfn
);
1401 return -VTD_FR_CONTEXT_ENTRY_P
;
1404 ret_fr
= vtd_context_entry_rsvd_bits_check(s
, ce
);
1409 /* Check if the programming of context-entry is valid */
1410 if (!s
->root_scalable
&&
1411 !vtd_is_level_supported(s
, vtd_ce_get_level(ce
))) {
1412 error_report_once("%s: invalid context entry: hi=%"PRIx64
1413 ", lo=%"PRIx64
" (level %d not supported)",
1414 __func__
, ce
->hi
, ce
->lo
,
1415 vtd_ce_get_level(ce
));
1416 return -VTD_FR_CONTEXT_ENTRY_INV
;
1419 if (!s
->root_scalable
) {
1420 /* Do translation type check */
1421 if (!vtd_ce_type_check(x86_iommu
, ce
)) {
1422 /* Errors dumped in vtd_ce_type_check() */
1423 return -VTD_FR_CONTEXT_ENTRY_INV
;
1427 * Check if the programming of context-entry.rid2pasid
1428 * and corresponding pasid setting is valid, and thus
1429 * avoids to check pasid entry fetching result in future
1430 * helper function calling.
1432 ret_fr
= vtd_ce_rid2pasid_check(s
, ce
);
1441 static int vtd_sync_shadow_page_hook(IOMMUTLBEvent
*event
,
1444 memory_region_notify_iommu(private, 0, *event
);
1448 static uint16_t vtd_get_domain_id(IntelIOMMUState
*s
,
1449 VTDContextEntry
*ce
)
1453 if (s
->root_scalable
) {
1454 vtd_ce_get_rid2pasid_entry(s
, ce
, &pe
);
1455 return VTD_SM_PASID_ENTRY_DID(pe
.val
[1]);
1458 return VTD_CONTEXT_ENTRY_DID(ce
->hi
);
1461 static int vtd_sync_shadow_page_table_range(VTDAddressSpace
*vtd_as
,
1462 VTDContextEntry
*ce
,
1463 hwaddr addr
, hwaddr size
)
1465 IntelIOMMUState
*s
= vtd_as
->iommu_state
;
1466 vtd_page_walk_info info
= {
1467 .hook_fn
= vtd_sync_shadow_page_hook
,
1468 .private = (void *)&vtd_as
->iommu
,
1469 .notify_unmap
= true,
1472 .domain_id
= vtd_get_domain_id(s
, ce
),
1475 return vtd_page_walk(s
, ce
, addr
, addr
+ size
, &info
);
1478 static int vtd_sync_shadow_page_table(VTDAddressSpace
*vtd_as
)
1484 if (!(vtd_as
->iommu
.iommu_notify_flags
& IOMMU_NOTIFIER_IOTLB_EVENTS
)) {
1488 ret
= vtd_dev_to_context_entry(vtd_as
->iommu_state
,
1489 pci_bus_num(vtd_as
->bus
),
1490 vtd_as
->devfn
, &ce
);
1492 if (ret
== -VTD_FR_CONTEXT_ENTRY_P
) {
1494 * It's a valid scenario to have a context entry that is
1495 * not present. For example, when a device is removed
1496 * from an existing domain then the context entry will be
1497 * zeroed by the guest before it was put into another
1498 * domain. When this happens, instead of synchronizing
1499 * the shadow pages we should invalidate all existing
1500 * mappings and notify the backends.
1502 IOMMU_NOTIFIER_FOREACH(n
, &vtd_as
->iommu
) {
1503 vtd_address_space_unmap(vtd_as
, n
);
1510 return vtd_sync_shadow_page_table_range(vtd_as
, &ce
, 0, UINT64_MAX
);
1514 * Check if specific device is configured to bypass address
1515 * translation for DMA requests. In Scalable Mode, bypass
1516 * 1st-level translation or 2nd-level translation, it depends
1519 static bool vtd_dev_pt_enabled(IntelIOMMUState
*s
, VTDContextEntry
*ce
)
1524 if (s
->root_scalable
) {
1525 ret
= vtd_ce_get_rid2pasid_entry(s
, ce
, &pe
);
1527 error_report_once("%s: vtd_ce_get_rid2pasid_entry error: %"PRId32
,
1531 return (VTD_PE_GET_TYPE(&pe
) == VTD_SM_PASID_ENTRY_PT
);
1534 return (vtd_ce_get_type(ce
) == VTD_CONTEXT_TT_PASS_THROUGH
);
1538 static bool vtd_as_pt_enabled(VTDAddressSpace
*as
)
1546 s
= as
->iommu_state
;
1547 ret
= vtd_dev_to_context_entry(s
, pci_bus_num(as
->bus
),
1551 * Possibly failed to parse the context entry for some reason
1552 * (e.g., during init, or any guest configuration errors on
1553 * context entries). We should assume PT not enabled for
1559 return vtd_dev_pt_enabled(s
, &ce
);
1562 /* Return whether the device is using IOMMU translation. */
1563 static bool vtd_switch_address_space(VTDAddressSpace
*as
)
1566 /* Whether we need to take the BQL on our own */
1567 bool take_bql
= !qemu_mutex_iothread_locked();
1571 use_iommu
= as
->iommu_state
->dmar_enabled
&& !vtd_as_pt_enabled(as
);
1573 trace_vtd_switch_address_space(pci_bus_num(as
->bus
),
1574 VTD_PCI_SLOT(as
->devfn
),
1575 VTD_PCI_FUNC(as
->devfn
),
1579 * It's possible that we reach here without BQL, e.g., when called
1580 * from vtd_pt_enable_fast_path(). However the memory APIs need
1581 * it. We'd better make sure we have had it already, or, take it.
1584 qemu_mutex_lock_iothread();
1587 /* Turn off first then on the other */
1589 memory_region_set_enabled(&as
->nodmar
, false);
1590 memory_region_set_enabled(MEMORY_REGION(&as
->iommu
), true);
1592 memory_region_set_enabled(MEMORY_REGION(&as
->iommu
), false);
1593 memory_region_set_enabled(&as
->nodmar
, true);
1597 qemu_mutex_unlock_iothread();
1603 static void vtd_switch_address_space_all(IntelIOMMUState
*s
)
1605 GHashTableIter iter
;
1609 g_hash_table_iter_init(&iter
, s
->vtd_as_by_busptr
);
1610 while (g_hash_table_iter_next(&iter
, NULL
, (void **)&vtd_bus
)) {
1611 for (i
= 0; i
< PCI_DEVFN_MAX
; i
++) {
1612 if (!vtd_bus
->dev_as
[i
]) {
1615 vtd_switch_address_space(vtd_bus
->dev_as
[i
]);
1620 static inline uint16_t vtd_make_source_id(uint8_t bus_num
, uint8_t devfn
)
1622 return ((bus_num
& 0xffUL
) << 8) | (devfn
& 0xffUL
);
1625 static const bool vtd_qualified_faults
[] = {
1626 [VTD_FR_RESERVED
] = false,
1627 [VTD_FR_ROOT_ENTRY_P
] = false,
1628 [VTD_FR_CONTEXT_ENTRY_P
] = true,
1629 [VTD_FR_CONTEXT_ENTRY_INV
] = true,
1630 [VTD_FR_ADDR_BEYOND_MGAW
] = true,
1631 [VTD_FR_WRITE
] = true,
1632 [VTD_FR_READ
] = true,
1633 [VTD_FR_PAGING_ENTRY_INV
] = true,
1634 [VTD_FR_ROOT_TABLE_INV
] = false,
1635 [VTD_FR_CONTEXT_TABLE_INV
] = false,
1636 [VTD_FR_ROOT_ENTRY_RSVD
] = false,
1637 [VTD_FR_PAGING_ENTRY_RSVD
] = true,
1638 [VTD_FR_CONTEXT_ENTRY_TT
] = true,
1639 [VTD_FR_PASID_TABLE_INV
] = false,
1640 [VTD_FR_RESERVED_ERR
] = false,
1641 [VTD_FR_MAX
] = false,
1644 /* To see if a fault condition is "qualified", which is reported to software
1645 * only if the FPD field in the context-entry used to process the faulting
1648 static inline bool vtd_is_qualified_fault(VTDFaultReason fault
)
1650 return vtd_qualified_faults
[fault
];
1653 static inline bool vtd_is_interrupt_addr(hwaddr addr
)
1655 return VTD_INTERRUPT_ADDR_FIRST
<= addr
&& addr
<= VTD_INTERRUPT_ADDR_LAST
;
1658 static void vtd_pt_enable_fast_path(IntelIOMMUState
*s
, uint16_t source_id
)
1661 VTDAddressSpace
*vtd_as
;
1662 bool success
= false;
1664 vtd_bus
= vtd_find_as_from_bus_num(s
, VTD_SID_TO_BUS(source_id
));
1669 vtd_as
= vtd_bus
->dev_as
[VTD_SID_TO_DEVFN(source_id
)];
1674 if (vtd_switch_address_space(vtd_as
) == false) {
1675 /* We switched off IOMMU region successfully. */
1680 trace_vtd_pt_enable_fast_path(source_id
, success
);
1683 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1686 * Called from RCU critical section.
1688 * @bus_num: The bus number
1689 * @devfn: The devfn, which is the combined of device and function number
1690 * @is_write: The access is a write operation
1691 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1693 * Returns true if translation is successful, otherwise false.
1695 static bool vtd_do_iommu_translate(VTDAddressSpace
*vtd_as
, PCIBus
*bus
,
1696 uint8_t devfn
, hwaddr addr
, bool is_write
,
1697 IOMMUTLBEntry
*entry
)
1699 IntelIOMMUState
*s
= vtd_as
->iommu_state
;
1701 uint8_t bus_num
= pci_bus_num(bus
);
1702 VTDContextCacheEntry
*cc_entry
;
1703 uint64_t slpte
, page_mask
;
1705 uint16_t source_id
= vtd_make_source_id(bus_num
, devfn
);
1707 bool is_fpd_set
= false;
1710 uint8_t access_flags
;
1711 VTDIOTLBEntry
*iotlb_entry
;
1714 * We have standalone memory region for interrupt addresses, we
1715 * should never receive translation requests in this region.
1717 assert(!vtd_is_interrupt_addr(addr
));
1721 cc_entry
= &vtd_as
->context_cache_entry
;
1723 /* Try to fetch slpte form IOTLB */
1724 iotlb_entry
= vtd_lookup_iotlb(s
, source_id
, addr
);
1726 trace_vtd_iotlb_page_hit(source_id
, addr
, iotlb_entry
->slpte
,
1727 iotlb_entry
->domain_id
);
1728 slpte
= iotlb_entry
->slpte
;
1729 access_flags
= iotlb_entry
->access_flags
;
1730 page_mask
= iotlb_entry
->mask
;
1734 /* Try to fetch context-entry from cache first */
1735 if (cc_entry
->context_cache_gen
== s
->context_cache_gen
) {
1736 trace_vtd_iotlb_cc_hit(bus_num
, devfn
, cc_entry
->context_entry
.hi
,
1737 cc_entry
->context_entry
.lo
,
1738 cc_entry
->context_cache_gen
);
1739 ce
= cc_entry
->context_entry
;
1740 is_fpd_set
= ce
.lo
& VTD_CONTEXT_ENTRY_FPD
;
1741 if (!is_fpd_set
&& s
->root_scalable
) {
1742 ret_fr
= vtd_ce_get_pasid_fpd(s
, &ce
, &is_fpd_set
);
1743 VTD_PE_GET_FPD_ERR(ret_fr
, is_fpd_set
, s
, source_id
, addr
, is_write
);
1746 ret_fr
= vtd_dev_to_context_entry(s
, bus_num
, devfn
, &ce
);
1747 is_fpd_set
= ce
.lo
& VTD_CONTEXT_ENTRY_FPD
;
1748 if (!ret_fr
&& !is_fpd_set
&& s
->root_scalable
) {
1749 ret_fr
= vtd_ce_get_pasid_fpd(s
, &ce
, &is_fpd_set
);
1751 VTD_PE_GET_FPD_ERR(ret_fr
, is_fpd_set
, s
, source_id
, addr
, is_write
);
1752 /* Update context-cache */
1753 trace_vtd_iotlb_cc_update(bus_num
, devfn
, ce
.hi
, ce
.lo
,
1754 cc_entry
->context_cache_gen
,
1755 s
->context_cache_gen
);
1756 cc_entry
->context_entry
= ce
;
1757 cc_entry
->context_cache_gen
= s
->context_cache_gen
;
1761 * We don't need to translate for pass-through context entries.
1762 * Also, let's ignore IOTLB caching as well for PT devices.
1764 if (vtd_dev_pt_enabled(s
, &ce
)) {
1765 entry
->iova
= addr
& VTD_PAGE_MASK_4K
;
1766 entry
->translated_addr
= entry
->iova
;
1767 entry
->addr_mask
= ~VTD_PAGE_MASK_4K
;
1768 entry
->perm
= IOMMU_RW
;
1769 trace_vtd_translate_pt(source_id
, entry
->iova
);
1772 * When this happens, it means firstly caching-mode is not
1773 * enabled, and this is the first passthrough translation for
1774 * the device. Let's enable the fast path for passthrough.
1776 * When passthrough is disabled again for the device, we can
1777 * capture it via the context entry invalidation, then the
1778 * IOMMU region can be swapped back.
1780 vtd_pt_enable_fast_path(s
, source_id
);
1781 vtd_iommu_unlock(s
);
1785 ret_fr
= vtd_iova_to_slpte(s
, &ce
, addr
, is_write
, &slpte
, &level
,
1786 &reads
, &writes
, s
->aw_bits
);
1787 VTD_PE_GET_FPD_ERR(ret_fr
, is_fpd_set
, s
, source_id
, addr
, is_write
);
1789 page_mask
= vtd_slpt_level_page_mask(level
);
1790 access_flags
= IOMMU_ACCESS_FLAG(reads
, writes
);
1791 vtd_update_iotlb(s
, source_id
, vtd_get_domain_id(s
, &ce
), addr
, slpte
,
1792 access_flags
, level
);
1794 vtd_iommu_unlock(s
);
1795 entry
->iova
= addr
& page_mask
;
1796 entry
->translated_addr
= vtd_get_slpte_addr(slpte
, s
->aw_bits
) & page_mask
;
1797 entry
->addr_mask
= ~page_mask
;
1798 entry
->perm
= access_flags
;
1802 vtd_iommu_unlock(s
);
1804 entry
->translated_addr
= 0;
1805 entry
->addr_mask
= 0;
1806 entry
->perm
= IOMMU_NONE
;
1810 static void vtd_root_table_setup(IntelIOMMUState
*s
)
1812 s
->root
= vtd_get_quad_raw(s
, DMAR_RTADDR_REG
);
1813 s
->root
&= VTD_RTADDR_ADDR_MASK(s
->aw_bits
);
1815 vtd_update_scalable_state(s
);
1817 trace_vtd_reg_dmar_root(s
->root
, s
->root_scalable
);
1820 static void vtd_iec_notify_all(IntelIOMMUState
*s
, bool global
,
1821 uint32_t index
, uint32_t mask
)
1823 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s
), global
, index
, mask
);
1826 static void vtd_interrupt_remap_table_setup(IntelIOMMUState
*s
)
1829 value
= vtd_get_quad_raw(s
, DMAR_IRTA_REG
);
1830 s
->intr_size
= 1UL << ((value
& VTD_IRTA_SIZE_MASK
) + 1);
1831 s
->intr_root
= value
& VTD_IRTA_ADDR_MASK(s
->aw_bits
);
1832 s
->intr_eime
= value
& VTD_IRTA_EIME
;
1834 /* Notify global invalidation */
1835 vtd_iec_notify_all(s
, true, 0, 0);
1837 trace_vtd_reg_ir_root(s
->intr_root
, s
->intr_size
);
1840 static void vtd_iommu_replay_all(IntelIOMMUState
*s
)
1842 VTDAddressSpace
*vtd_as
;
1844 QLIST_FOREACH(vtd_as
, &s
->vtd_as_with_notifiers
, next
) {
1845 vtd_sync_shadow_page_table(vtd_as
);
1849 static void vtd_context_global_invalidate(IntelIOMMUState
*s
)
1851 trace_vtd_inv_desc_cc_global();
1852 /* Protects context cache */
1854 s
->context_cache_gen
++;
1855 if (s
->context_cache_gen
== VTD_CONTEXT_CACHE_GEN_MAX
) {
1856 vtd_reset_context_cache_locked(s
);
1858 vtd_iommu_unlock(s
);
1859 vtd_address_space_refresh_all(s
);
1861 * From VT-d spec 6.5.2.1, a global context entry invalidation
1862 * should be followed by a IOTLB global invalidation, so we should
1863 * be safe even without this. Hoewever, let's replay the region as
1864 * well to be safer, and go back here when we need finer tunes for
1865 * VT-d emulation codes.
1867 vtd_iommu_replay_all(s
);
1870 /* Do a context-cache device-selective invalidation.
1871 * @func_mask: FM field after shifting
1873 static void vtd_context_device_invalidate(IntelIOMMUState
*s
,
1879 VTDAddressSpace
*vtd_as
;
1880 uint8_t bus_n
, devfn
;
1883 trace_vtd_inv_desc_cc_devices(source_id
, func_mask
);
1885 switch (func_mask
& 3) {
1887 mask
= 0; /* No bits in the SID field masked */
1890 mask
= 4; /* Mask bit 2 in the SID field */
1893 mask
= 6; /* Mask bit 2:1 in the SID field */
1896 mask
= 7; /* Mask bit 2:0 in the SID field */
1899 g_assert_not_reached();
1903 bus_n
= VTD_SID_TO_BUS(source_id
);
1904 vtd_bus
= vtd_find_as_from_bus_num(s
, bus_n
);
1906 devfn
= VTD_SID_TO_DEVFN(source_id
);
1907 for (devfn_it
= 0; devfn_it
< PCI_DEVFN_MAX
; ++devfn_it
) {
1908 vtd_as
= vtd_bus
->dev_as
[devfn_it
];
1909 if (vtd_as
&& ((devfn_it
& mask
) == (devfn
& mask
))) {
1910 trace_vtd_inv_desc_cc_device(bus_n
, VTD_PCI_SLOT(devfn_it
),
1911 VTD_PCI_FUNC(devfn_it
));
1913 vtd_as
->context_cache_entry
.context_cache_gen
= 0;
1914 vtd_iommu_unlock(s
);
1916 * Do switch address space when needed, in case if the
1917 * device passthrough bit is switched.
1919 vtd_switch_address_space(vtd_as
);
1921 * So a device is moving out of (or moving into) a
1922 * domain, resync the shadow page table.
1923 * This won't bring bad even if we have no such
1924 * notifier registered - the IOMMU notification
1925 * framework will skip MAP notifications if that
1928 vtd_sync_shadow_page_table(vtd_as
);
1934 /* Context-cache invalidation
1935 * Returns the Context Actual Invalidation Granularity.
1936 * @val: the content of the CCMD_REG
1938 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState
*s
, uint64_t val
)
1941 uint64_t type
= val
& VTD_CCMD_CIRG_MASK
;
1944 case VTD_CCMD_DOMAIN_INVL
:
1946 case VTD_CCMD_GLOBAL_INVL
:
1947 caig
= VTD_CCMD_GLOBAL_INVL_A
;
1948 vtd_context_global_invalidate(s
);
1951 case VTD_CCMD_DEVICE_INVL
:
1952 caig
= VTD_CCMD_DEVICE_INVL_A
;
1953 vtd_context_device_invalidate(s
, VTD_CCMD_SID(val
), VTD_CCMD_FM(val
));
1957 error_report_once("%s: invalid context: 0x%" PRIx64
,
1964 static void vtd_iotlb_global_invalidate(IntelIOMMUState
*s
)
1966 trace_vtd_inv_desc_iotlb_global();
1968 vtd_iommu_replay_all(s
);
1971 static void vtd_iotlb_domain_invalidate(IntelIOMMUState
*s
, uint16_t domain_id
)
1974 VTDAddressSpace
*vtd_as
;
1976 trace_vtd_inv_desc_iotlb_domain(domain_id
);
1979 g_hash_table_foreach_remove(s
->iotlb
, vtd_hash_remove_by_domain
,
1981 vtd_iommu_unlock(s
);
1983 QLIST_FOREACH(vtd_as
, &s
->vtd_as_with_notifiers
, next
) {
1984 if (!vtd_dev_to_context_entry(s
, pci_bus_num(vtd_as
->bus
),
1985 vtd_as
->devfn
, &ce
) &&
1986 domain_id
== vtd_get_domain_id(s
, &ce
)) {
1987 vtd_sync_shadow_page_table(vtd_as
);
1992 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState
*s
,
1993 uint16_t domain_id
, hwaddr addr
,
1996 VTDAddressSpace
*vtd_as
;
1999 hwaddr size
= (1 << am
) * VTD_PAGE_SIZE
;
2001 QLIST_FOREACH(vtd_as
, &(s
->vtd_as_with_notifiers
), next
) {
2002 ret
= vtd_dev_to_context_entry(s
, pci_bus_num(vtd_as
->bus
),
2003 vtd_as
->devfn
, &ce
);
2004 if (!ret
&& domain_id
== vtd_get_domain_id(s
, &ce
)) {
2005 if (vtd_as_has_map_notifier(vtd_as
)) {
2007 * As long as we have MAP notifications registered in
2008 * any of our IOMMU notifiers, we need to sync the
2009 * shadow page table.
2011 vtd_sync_shadow_page_table_range(vtd_as
, &ce
, addr
, size
);
2014 * For UNMAP-only notifiers, we don't need to walk the
2015 * page tables. We just deliver the PSI down to
2016 * invalidate caches.
2018 IOMMUTLBEvent event
= {
2019 .type
= IOMMU_NOTIFIER_UNMAP
,
2021 .target_as
= &address_space_memory
,
2023 .translated_addr
= 0,
2024 .addr_mask
= size
- 1,
2028 memory_region_notify_iommu(&vtd_as
->iommu
, 0, event
);
2034 static void vtd_iotlb_page_invalidate(IntelIOMMUState
*s
, uint16_t domain_id
,
2035 hwaddr addr
, uint8_t am
)
2037 VTDIOTLBPageInvInfo info
;
2039 trace_vtd_inv_desc_iotlb_pages(domain_id
, addr
, am
);
2041 assert(am
<= VTD_MAMV
);
2042 info
.domain_id
= domain_id
;
2044 info
.mask
= ~((1 << am
) - 1);
2046 g_hash_table_foreach_remove(s
->iotlb
, vtd_hash_remove_by_page
, &info
);
2047 vtd_iommu_unlock(s
);
2048 vtd_iotlb_page_invalidate_notify(s
, domain_id
, addr
, am
);
2052 * Returns the IOTLB Actual Invalidation Granularity.
2053 * @val: the content of the IOTLB_REG
2055 static uint64_t vtd_iotlb_flush(IntelIOMMUState
*s
, uint64_t val
)
2058 uint64_t type
= val
& VTD_TLB_FLUSH_GRANU_MASK
;
2064 case VTD_TLB_GLOBAL_FLUSH
:
2065 iaig
= VTD_TLB_GLOBAL_FLUSH_A
;
2066 vtd_iotlb_global_invalidate(s
);
2069 case VTD_TLB_DSI_FLUSH
:
2070 domain_id
= VTD_TLB_DID(val
);
2071 iaig
= VTD_TLB_DSI_FLUSH_A
;
2072 vtd_iotlb_domain_invalidate(s
, domain_id
);
2075 case VTD_TLB_PSI_FLUSH
:
2076 domain_id
= VTD_TLB_DID(val
);
2077 addr
= vtd_get_quad_raw(s
, DMAR_IVA_REG
);
2078 am
= VTD_IVA_AM(addr
);
2079 addr
= VTD_IVA_ADDR(addr
);
2080 if (am
> VTD_MAMV
) {
2081 error_report_once("%s: address mask overflow: 0x%" PRIx64
,
2082 __func__
, vtd_get_quad_raw(s
, DMAR_IVA_REG
));
2086 iaig
= VTD_TLB_PSI_FLUSH_A
;
2087 vtd_iotlb_page_invalidate(s
, domain_id
, addr
, am
);
2091 error_report_once("%s: invalid granularity: 0x%" PRIx64
,
2098 static void vtd_fetch_inv_desc(IntelIOMMUState
*s
);
2100 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState
*s
)
2102 return s
->qi_enabled
&& (s
->iq_tail
== s
->iq_head
) &&
2103 (s
->iq_last_desc_type
== VTD_INV_DESC_WAIT
);
2106 static void vtd_handle_gcmd_qie(IntelIOMMUState
*s
, bool en
)
2108 uint64_t iqa_val
= vtd_get_quad_raw(s
, DMAR_IQA_REG
);
2110 trace_vtd_inv_qi_enable(en
);
2113 s
->iq
= iqa_val
& VTD_IQA_IQA_MASK(s
->aw_bits
);
2114 /* 2^(x+8) entries */
2115 s
->iq_size
= 1UL << ((iqa_val
& VTD_IQA_QS
) + 8 - (s
->iq_dw
? 1 : 0));
2116 s
->qi_enabled
= true;
2117 trace_vtd_inv_qi_setup(s
->iq
, s
->iq_size
);
2118 /* Ok - report back to driver */
2119 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, 0, VTD_GSTS_QIES
);
2121 if (s
->iq_tail
!= 0) {
2123 * This is a spec violation but Windows guests are known to set up
2124 * Queued Invalidation this way so we allow the write and process
2125 * Invalidation Descriptors right away.
2127 trace_vtd_warn_invalid_qi_tail(s
->iq_tail
);
2128 if (!(vtd_get_long_raw(s
, DMAR_FSTS_REG
) & VTD_FSTS_IQE
)) {
2129 vtd_fetch_inv_desc(s
);
2133 if (vtd_queued_inv_disable_check(s
)) {
2134 /* disable Queued Invalidation */
2135 vtd_set_quad_raw(s
, DMAR_IQH_REG
, 0);
2137 s
->qi_enabled
= false;
2138 /* Ok - report back to driver */
2139 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, VTD_GSTS_QIES
, 0);
2141 error_report_once("%s: detected improper state when disable QI "
2142 "(head=0x%x, tail=0x%x, last_type=%d)",
2144 s
->iq_head
, s
->iq_tail
, s
->iq_last_desc_type
);
2149 /* Set Root Table Pointer */
2150 static void vtd_handle_gcmd_srtp(IntelIOMMUState
*s
)
2152 vtd_root_table_setup(s
);
2153 /* Ok - report back to driver */
2154 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, 0, VTD_GSTS_RTPS
);
2155 vtd_reset_caches(s
);
2156 vtd_address_space_refresh_all(s
);
2159 /* Set Interrupt Remap Table Pointer */
2160 static void vtd_handle_gcmd_sirtp(IntelIOMMUState
*s
)
2162 vtd_interrupt_remap_table_setup(s
);
2163 /* Ok - report back to driver */
2164 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, 0, VTD_GSTS_IRTPS
);
2167 /* Handle Translation Enable/Disable */
2168 static void vtd_handle_gcmd_te(IntelIOMMUState
*s
, bool en
)
2170 if (s
->dmar_enabled
== en
) {
2174 trace_vtd_dmar_enable(en
);
2177 s
->dmar_enabled
= true;
2178 /* Ok - report back to driver */
2179 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, 0, VTD_GSTS_TES
);
2181 s
->dmar_enabled
= false;
2183 /* Clear the index of Fault Recording Register */
2184 s
->next_frcd_reg
= 0;
2185 /* Ok - report back to driver */
2186 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, VTD_GSTS_TES
, 0);
2189 vtd_reset_caches(s
);
2190 vtd_address_space_refresh_all(s
);
2193 /* Handle Interrupt Remap Enable/Disable */
2194 static void vtd_handle_gcmd_ire(IntelIOMMUState
*s
, bool en
)
2196 trace_vtd_ir_enable(en
);
2199 s
->intr_enabled
= true;
2200 /* Ok - report back to driver */
2201 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, 0, VTD_GSTS_IRES
);
2203 s
->intr_enabled
= false;
2204 /* Ok - report back to driver */
2205 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, VTD_GSTS_IRES
, 0);
2209 /* Handle write to Global Command Register */
2210 static void vtd_handle_gcmd_write(IntelIOMMUState
*s
)
2212 uint32_t status
= vtd_get_long_raw(s
, DMAR_GSTS_REG
);
2213 uint32_t val
= vtd_get_long_raw(s
, DMAR_GCMD_REG
);
2214 uint32_t changed
= status
^ val
;
2216 trace_vtd_reg_write_gcmd(status
, val
);
2217 if (changed
& VTD_GCMD_TE
) {
2218 /* Translation enable/disable */
2219 vtd_handle_gcmd_te(s
, val
& VTD_GCMD_TE
);
2221 if (val
& VTD_GCMD_SRTP
) {
2222 /* Set/update the root-table pointer */
2223 vtd_handle_gcmd_srtp(s
);
2225 if (changed
& VTD_GCMD_QIE
) {
2226 /* Queued Invalidation Enable */
2227 vtd_handle_gcmd_qie(s
, val
& VTD_GCMD_QIE
);
2229 if (val
& VTD_GCMD_SIRTP
) {
2230 /* Set/update the interrupt remapping root-table pointer */
2231 vtd_handle_gcmd_sirtp(s
);
2233 if (changed
& VTD_GCMD_IRE
) {
2234 /* Interrupt remap enable/disable */
2235 vtd_handle_gcmd_ire(s
, val
& VTD_GCMD_IRE
);
2239 /* Handle write to Context Command Register */
2240 static void vtd_handle_ccmd_write(IntelIOMMUState
*s
)
2243 uint64_t val
= vtd_get_quad_raw(s
, DMAR_CCMD_REG
);
2245 /* Context-cache invalidation request */
2246 if (val
& VTD_CCMD_ICC
) {
2247 if (s
->qi_enabled
) {
2248 error_report_once("Queued Invalidation enabled, "
2249 "should not use register-based invalidation");
2252 ret
= vtd_context_cache_invalidate(s
, val
);
2253 /* Invalidation completed. Change something to show */
2254 vtd_set_clear_mask_quad(s
, DMAR_CCMD_REG
, VTD_CCMD_ICC
, 0ULL);
2255 ret
= vtd_set_clear_mask_quad(s
, DMAR_CCMD_REG
, VTD_CCMD_CAIG_MASK
,
2260 /* Handle write to IOTLB Invalidation Register */
2261 static void vtd_handle_iotlb_write(IntelIOMMUState
*s
)
2264 uint64_t val
= vtd_get_quad_raw(s
, DMAR_IOTLB_REG
);
2266 /* IOTLB invalidation request */
2267 if (val
& VTD_TLB_IVT
) {
2268 if (s
->qi_enabled
) {
2269 error_report_once("Queued Invalidation enabled, "
2270 "should not use register-based invalidation");
2273 ret
= vtd_iotlb_flush(s
, val
);
2274 /* Invalidation completed. Change something to show */
2275 vtd_set_clear_mask_quad(s
, DMAR_IOTLB_REG
, VTD_TLB_IVT
, 0ULL);
2276 ret
= vtd_set_clear_mask_quad(s
, DMAR_IOTLB_REG
,
2277 VTD_TLB_FLUSH_GRANU_MASK_A
, ret
);
2281 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
2282 static bool vtd_get_inv_desc(IntelIOMMUState
*s
,
2283 VTDInvDesc
*inv_desc
)
2285 dma_addr_t base_addr
= s
->iq
;
2286 uint32_t offset
= s
->iq_head
;
2287 uint32_t dw
= s
->iq_dw
? 32 : 16;
2288 dma_addr_t addr
= base_addr
+ offset
* dw
;
2290 if (dma_memory_read(&address_space_memory
, addr
,
2291 inv_desc
, dw
, MEMTXATTRS_UNSPECIFIED
)) {
2292 error_report_once("Read INV DESC failed.");
2295 inv_desc
->lo
= le64_to_cpu(inv_desc
->lo
);
2296 inv_desc
->hi
= le64_to_cpu(inv_desc
->hi
);
2298 inv_desc
->val
[2] = le64_to_cpu(inv_desc
->val
[2]);
2299 inv_desc
->val
[3] = le64_to_cpu(inv_desc
->val
[3]);
2304 static bool vtd_process_wait_desc(IntelIOMMUState
*s
, VTDInvDesc
*inv_desc
)
2306 if ((inv_desc
->hi
& VTD_INV_DESC_WAIT_RSVD_HI
) ||
2307 (inv_desc
->lo
& VTD_INV_DESC_WAIT_RSVD_LO
)) {
2308 error_report_once("%s: invalid wait desc: hi=%"PRIx64
", lo=%"PRIx64
2309 " (reserved nonzero)", __func__
, inv_desc
->hi
,
2313 if (inv_desc
->lo
& VTD_INV_DESC_WAIT_SW
) {
2315 uint32_t status_data
= (uint32_t)(inv_desc
->lo
>>
2316 VTD_INV_DESC_WAIT_DATA_SHIFT
);
2318 assert(!(inv_desc
->lo
& VTD_INV_DESC_WAIT_IF
));
2320 /* FIXME: need to be masked with HAW? */
2321 dma_addr_t status_addr
= inv_desc
->hi
;
2322 trace_vtd_inv_desc_wait_sw(status_addr
, status_data
);
2323 status_data
= cpu_to_le32(status_data
);
2324 if (dma_memory_write(&address_space_memory
, status_addr
,
2325 &status_data
, sizeof(status_data
),
2326 MEMTXATTRS_UNSPECIFIED
)) {
2327 trace_vtd_inv_desc_wait_write_fail(inv_desc
->hi
, inv_desc
->lo
);
2330 } else if (inv_desc
->lo
& VTD_INV_DESC_WAIT_IF
) {
2331 /* Interrupt flag */
2332 vtd_generate_completion_event(s
);
2334 error_report_once("%s: invalid wait desc: hi=%"PRIx64
", lo=%"PRIx64
2335 " (unknown type)", __func__
, inv_desc
->hi
,
2342 static bool vtd_process_context_cache_desc(IntelIOMMUState
*s
,
2343 VTDInvDesc
*inv_desc
)
2345 uint16_t sid
, fmask
;
2347 if ((inv_desc
->lo
& VTD_INV_DESC_CC_RSVD
) || inv_desc
->hi
) {
2348 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64
", lo=%"PRIx64
2349 " (reserved nonzero)", __func__
, inv_desc
->hi
,
2353 switch (inv_desc
->lo
& VTD_INV_DESC_CC_G
) {
2354 case VTD_INV_DESC_CC_DOMAIN
:
2355 trace_vtd_inv_desc_cc_domain(
2356 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc
->lo
));
2358 case VTD_INV_DESC_CC_GLOBAL
:
2359 vtd_context_global_invalidate(s
);
2362 case VTD_INV_DESC_CC_DEVICE
:
2363 sid
= VTD_INV_DESC_CC_SID(inv_desc
->lo
);
2364 fmask
= VTD_INV_DESC_CC_FM(inv_desc
->lo
);
2365 vtd_context_device_invalidate(s
, sid
, fmask
);
2369 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64
", lo=%"PRIx64
2370 " (invalid type)", __func__
, inv_desc
->hi
,
2377 static bool vtd_process_iotlb_desc(IntelIOMMUState
*s
, VTDInvDesc
*inv_desc
)
2383 if ((inv_desc
->lo
& VTD_INV_DESC_IOTLB_RSVD_LO
) ||
2384 (inv_desc
->hi
& VTD_INV_DESC_IOTLB_RSVD_HI
)) {
2385 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2386 ", lo=0x%"PRIx64
" (reserved bits unzero)",
2387 __func__
, inv_desc
->hi
, inv_desc
->lo
);
2391 switch (inv_desc
->lo
& VTD_INV_DESC_IOTLB_G
) {
2392 case VTD_INV_DESC_IOTLB_GLOBAL
:
2393 vtd_iotlb_global_invalidate(s
);
2396 case VTD_INV_DESC_IOTLB_DOMAIN
:
2397 domain_id
= VTD_INV_DESC_IOTLB_DID(inv_desc
->lo
);
2398 vtd_iotlb_domain_invalidate(s
, domain_id
);
2401 case VTD_INV_DESC_IOTLB_PAGE
:
2402 domain_id
= VTD_INV_DESC_IOTLB_DID(inv_desc
->lo
);
2403 addr
= VTD_INV_DESC_IOTLB_ADDR(inv_desc
->hi
);
2404 am
= VTD_INV_DESC_IOTLB_AM(inv_desc
->hi
);
2405 if (am
> VTD_MAMV
) {
2406 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2407 ", lo=0x%"PRIx64
" (am=%u > VTD_MAMV=%u)",
2408 __func__
, inv_desc
->hi
, inv_desc
->lo
,
2409 am
, (unsigned)VTD_MAMV
);
2412 vtd_iotlb_page_invalidate(s
, domain_id
, addr
, am
);
2416 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2417 ", lo=0x%"PRIx64
" (type mismatch: 0x%llx)",
2418 __func__
, inv_desc
->hi
, inv_desc
->lo
,
2419 inv_desc
->lo
& VTD_INV_DESC_IOTLB_G
);
2425 static bool vtd_process_inv_iec_desc(IntelIOMMUState
*s
,
2426 VTDInvDesc
*inv_desc
)
2428 trace_vtd_inv_desc_iec(inv_desc
->iec
.granularity
,
2429 inv_desc
->iec
.index
,
2430 inv_desc
->iec
.index_mask
);
2432 vtd_iec_notify_all(s
, !inv_desc
->iec
.granularity
,
2433 inv_desc
->iec
.index
,
2434 inv_desc
->iec
.index_mask
);
2438 static bool vtd_process_device_iotlb_desc(IntelIOMMUState
*s
,
2439 VTDInvDesc
*inv_desc
)
2441 VTDAddressSpace
*vtd_dev_as
;
2442 IOMMUTLBEvent event
;
2443 struct VTDBus
*vtd_bus
;
2451 addr
= VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc
->hi
);
2452 sid
= VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc
->lo
);
2455 size
= VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc
->hi
);
2457 if ((inv_desc
->lo
& VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO
) ||
2458 (inv_desc
->hi
& VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI
)) {
2459 error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
2460 ", lo=%"PRIx64
" (reserved nonzero)", __func__
,
2461 inv_desc
->hi
, inv_desc
->lo
);
2465 vtd_bus
= vtd_find_as_from_bus_num(s
, bus_num
);
2470 vtd_dev_as
= vtd_bus
->dev_as
[devfn
];
2475 /* According to ATS spec table 2.4:
2476 * S = 0, bits 15:12 = xxxx range size: 4K
2477 * S = 1, bits 15:12 = xxx0 range size: 8K
2478 * S = 1, bits 15:12 = xx01 range size: 16K
2479 * S = 1, bits 15:12 = x011 range size: 32K
2480 * S = 1, bits 15:12 = 0111 range size: 64K
2484 sz
= (VTD_PAGE_SIZE
* 2) << cto64(addr
>> VTD_PAGE_SHIFT
);
2490 event
.type
= IOMMU_NOTIFIER_DEVIOTLB_UNMAP
;
2491 event
.entry
.target_as
= &vtd_dev_as
->as
;
2492 event
.entry
.addr_mask
= sz
- 1;
2493 event
.entry
.iova
= addr
;
2494 event
.entry
.perm
= IOMMU_NONE
;
2495 event
.entry
.translated_addr
= 0;
2496 memory_region_notify_iommu(&vtd_dev_as
->iommu
, 0, event
);
2502 static bool vtd_process_inv_desc(IntelIOMMUState
*s
)
2504 VTDInvDesc inv_desc
;
2507 trace_vtd_inv_qi_head(s
->iq_head
);
2508 if (!vtd_get_inv_desc(s
, &inv_desc
)) {
2509 s
->iq_last_desc_type
= VTD_INV_DESC_NONE
;
2513 desc_type
= inv_desc
.lo
& VTD_INV_DESC_TYPE
;
2514 /* FIXME: should update at first or at last? */
2515 s
->iq_last_desc_type
= desc_type
;
2517 switch (desc_type
) {
2518 case VTD_INV_DESC_CC
:
2519 trace_vtd_inv_desc("context-cache", inv_desc
.hi
, inv_desc
.lo
);
2520 if (!vtd_process_context_cache_desc(s
, &inv_desc
)) {
2525 case VTD_INV_DESC_IOTLB
:
2526 trace_vtd_inv_desc("iotlb", inv_desc
.hi
, inv_desc
.lo
);
2527 if (!vtd_process_iotlb_desc(s
, &inv_desc
)) {
2533 * TODO: the entity of below two cases will be implemented in future series.
2534 * To make guest (which integrates scalable mode support patch set in
2535 * iommu driver) work, just return true is enough so far.
2537 case VTD_INV_DESC_PC
:
2540 case VTD_INV_DESC_PIOTLB
:
2543 case VTD_INV_DESC_WAIT
:
2544 trace_vtd_inv_desc("wait", inv_desc
.hi
, inv_desc
.lo
);
2545 if (!vtd_process_wait_desc(s
, &inv_desc
)) {
2550 case VTD_INV_DESC_IEC
:
2551 trace_vtd_inv_desc("iec", inv_desc
.hi
, inv_desc
.lo
);
2552 if (!vtd_process_inv_iec_desc(s
, &inv_desc
)) {
2557 case VTD_INV_DESC_DEVICE
:
2558 trace_vtd_inv_desc("device", inv_desc
.hi
, inv_desc
.lo
);
2559 if (!vtd_process_device_iotlb_desc(s
, &inv_desc
)) {
2565 error_report_once("%s: invalid inv desc: hi=%"PRIx64
", lo=%"PRIx64
2566 " (unknown type)", __func__
, inv_desc
.hi
,
2571 if (s
->iq_head
== s
->iq_size
) {
2577 /* Try to fetch and process more Invalidation Descriptors */
2578 static void vtd_fetch_inv_desc(IntelIOMMUState
*s
)
2582 /* Refer to 10.4.23 of VT-d spec 3.0 */
2583 qi_shift
= s
->iq_dw
? VTD_IQH_QH_SHIFT_5
: VTD_IQH_QH_SHIFT_4
;
2585 trace_vtd_inv_qi_fetch();
2587 if (s
->iq_tail
>= s
->iq_size
) {
2588 /* Detects an invalid Tail pointer */
2589 error_report_once("%s: detected invalid QI tail "
2590 "(tail=0x%x, size=0x%x)",
2591 __func__
, s
->iq_tail
, s
->iq_size
);
2592 vtd_handle_inv_queue_error(s
);
2595 while (s
->iq_head
!= s
->iq_tail
) {
2596 if (!vtd_process_inv_desc(s
)) {
2597 /* Invalidation Queue Errors */
2598 vtd_handle_inv_queue_error(s
);
2601 /* Must update the IQH_REG in time */
2602 vtd_set_quad_raw(s
, DMAR_IQH_REG
,
2603 (((uint64_t)(s
->iq_head
)) << qi_shift
) &
2608 /* Handle write to Invalidation Queue Tail Register */
2609 static void vtd_handle_iqt_write(IntelIOMMUState
*s
)
2611 uint64_t val
= vtd_get_quad_raw(s
, DMAR_IQT_REG
);
2613 if (s
->iq_dw
&& (val
& VTD_IQT_QT_256_RSV_BIT
)) {
2614 error_report_once("%s: RSV bit is set: val=0x%"PRIx64
,
2618 s
->iq_tail
= VTD_IQT_QT(s
->iq_dw
, val
);
2619 trace_vtd_inv_qi_tail(s
->iq_tail
);
2621 if (s
->qi_enabled
&& !(vtd_get_long_raw(s
, DMAR_FSTS_REG
) & VTD_FSTS_IQE
)) {
2622 /* Process Invalidation Queue here */
2623 vtd_fetch_inv_desc(s
);
2627 static void vtd_handle_fsts_write(IntelIOMMUState
*s
)
2629 uint32_t fsts_reg
= vtd_get_long_raw(s
, DMAR_FSTS_REG
);
2630 uint32_t fectl_reg
= vtd_get_long_raw(s
, DMAR_FECTL_REG
);
2631 uint32_t status_fields
= VTD_FSTS_PFO
| VTD_FSTS_PPF
| VTD_FSTS_IQE
;
2633 if ((fectl_reg
& VTD_FECTL_IP
) && !(fsts_reg
& status_fields
)) {
2634 vtd_set_clear_mask_long(s
, DMAR_FECTL_REG
, VTD_FECTL_IP
, 0);
2635 trace_vtd_fsts_clear_ip();
2637 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2638 * Descriptors if there are any when Queued Invalidation is enabled?
2642 static void vtd_handle_fectl_write(IntelIOMMUState
*s
)
2645 /* FIXME: when software clears the IM field, check the IP field. But do we
2646 * need to compare the old value and the new value to conclude that
2647 * software clears the IM field? Or just check if the IM field is zero?
2649 fectl_reg
= vtd_get_long_raw(s
, DMAR_FECTL_REG
);
2651 trace_vtd_reg_write_fectl(fectl_reg
);
2653 if ((fectl_reg
& VTD_FECTL_IP
) && !(fectl_reg
& VTD_FECTL_IM
)) {
2654 vtd_generate_interrupt(s
, DMAR_FEADDR_REG
, DMAR_FEDATA_REG
);
2655 vtd_set_clear_mask_long(s
, DMAR_FECTL_REG
, VTD_FECTL_IP
, 0);
2659 static void vtd_handle_ics_write(IntelIOMMUState
*s
)
2661 uint32_t ics_reg
= vtd_get_long_raw(s
, DMAR_ICS_REG
);
2662 uint32_t iectl_reg
= vtd_get_long_raw(s
, DMAR_IECTL_REG
);
2664 if ((iectl_reg
& VTD_IECTL_IP
) && !(ics_reg
& VTD_ICS_IWC
)) {
2665 trace_vtd_reg_ics_clear_ip();
2666 vtd_set_clear_mask_long(s
, DMAR_IECTL_REG
, VTD_IECTL_IP
, 0);
2670 static void vtd_handle_iectl_write(IntelIOMMUState
*s
)
2673 /* FIXME: when software clears the IM field, check the IP field. But do we
2674 * need to compare the old value and the new value to conclude that
2675 * software clears the IM field? Or just check if the IM field is zero?
2677 iectl_reg
= vtd_get_long_raw(s
, DMAR_IECTL_REG
);
2679 trace_vtd_reg_write_iectl(iectl_reg
);
2681 if ((iectl_reg
& VTD_IECTL_IP
) && !(iectl_reg
& VTD_IECTL_IM
)) {
2682 vtd_generate_interrupt(s
, DMAR_IEADDR_REG
, DMAR_IEDATA_REG
);
2683 vtd_set_clear_mask_long(s
, DMAR_IECTL_REG
, VTD_IECTL_IP
, 0);
2687 static uint64_t vtd_mem_read(void *opaque
, hwaddr addr
, unsigned size
)
2689 IntelIOMMUState
*s
= opaque
;
2692 trace_vtd_reg_read(addr
, size
);
2694 if (addr
+ size
> DMAR_REG_SIZE
) {
2695 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2696 " size=0x%x", __func__
, addr
, size
);
2697 return (uint64_t)-1;
2701 /* Root Table Address Register, 64-bit */
2702 case DMAR_RTADDR_REG
:
2703 val
= vtd_get_quad_raw(s
, DMAR_RTADDR_REG
);
2705 val
= val
& ((1ULL << 32) - 1);
2709 case DMAR_RTADDR_REG_HI
:
2711 val
= vtd_get_quad_raw(s
, DMAR_RTADDR_REG
) >> 32;
2714 /* Invalidation Queue Address Register, 64-bit */
2716 val
= s
->iq
| (vtd_get_quad(s
, DMAR_IQA_REG
) & VTD_IQA_QS
);
2718 val
= val
& ((1ULL << 32) - 1);
2722 case DMAR_IQA_REG_HI
:
2729 val
= vtd_get_long(s
, addr
);
2731 val
= vtd_get_quad(s
, addr
);
2738 static void vtd_mem_write(void *opaque
, hwaddr addr
,
2739 uint64_t val
, unsigned size
)
2741 IntelIOMMUState
*s
= opaque
;
2743 trace_vtd_reg_write(addr
, size
, val
);
2745 if (addr
+ size
> DMAR_REG_SIZE
) {
2746 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2747 " size=0x%x", __func__
, addr
, size
);
2752 /* Global Command Register, 32-bit */
2754 vtd_set_long(s
, addr
, val
);
2755 vtd_handle_gcmd_write(s
);
2758 /* Context Command Register, 64-bit */
2761 vtd_set_long(s
, addr
, val
);
2763 vtd_set_quad(s
, addr
, val
);
2764 vtd_handle_ccmd_write(s
);
2768 case DMAR_CCMD_REG_HI
:
2770 vtd_set_long(s
, addr
, val
);
2771 vtd_handle_ccmd_write(s
);
2774 /* IOTLB Invalidation Register, 64-bit */
2775 case DMAR_IOTLB_REG
:
2777 vtd_set_long(s
, addr
, val
);
2779 vtd_set_quad(s
, addr
, val
);
2780 vtd_handle_iotlb_write(s
);
2784 case DMAR_IOTLB_REG_HI
:
2786 vtd_set_long(s
, addr
, val
);
2787 vtd_handle_iotlb_write(s
);
2790 /* Invalidate Address Register, 64-bit */
2793 vtd_set_long(s
, addr
, val
);
2795 vtd_set_quad(s
, addr
, val
);
2799 case DMAR_IVA_REG_HI
:
2801 vtd_set_long(s
, addr
, val
);
2804 /* Fault Status Register, 32-bit */
2807 vtd_set_long(s
, addr
, val
);
2808 vtd_handle_fsts_write(s
);
2811 /* Fault Event Control Register, 32-bit */
2812 case DMAR_FECTL_REG
:
2814 vtd_set_long(s
, addr
, val
);
2815 vtd_handle_fectl_write(s
);
2818 /* Fault Event Data Register, 32-bit */
2819 case DMAR_FEDATA_REG
:
2821 vtd_set_long(s
, addr
, val
);
2824 /* Fault Event Address Register, 32-bit */
2825 case DMAR_FEADDR_REG
:
2827 vtd_set_long(s
, addr
, val
);
2830 * While the register is 32-bit only, some guests (Xen...) write to
2833 vtd_set_quad(s
, addr
, val
);
2837 /* Fault Event Upper Address Register, 32-bit */
2838 case DMAR_FEUADDR_REG
:
2840 vtd_set_long(s
, addr
, val
);
2843 /* Protected Memory Enable Register, 32-bit */
2846 vtd_set_long(s
, addr
, val
);
2849 /* Root Table Address Register, 64-bit */
2850 case DMAR_RTADDR_REG
:
2852 vtd_set_long(s
, addr
, val
);
2854 vtd_set_quad(s
, addr
, val
);
2858 case DMAR_RTADDR_REG_HI
:
2860 vtd_set_long(s
, addr
, val
);
2863 /* Invalidation Queue Tail Register, 64-bit */
2866 vtd_set_long(s
, addr
, val
);
2868 vtd_set_quad(s
, addr
, val
);
2870 vtd_handle_iqt_write(s
);
2873 case DMAR_IQT_REG_HI
:
2875 vtd_set_long(s
, addr
, val
);
2876 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2879 /* Invalidation Queue Address Register, 64-bit */
2882 vtd_set_long(s
, addr
, val
);
2884 vtd_set_quad(s
, addr
, val
);
2886 if (s
->ecap
& VTD_ECAP_SMTS
&&
2887 val
& VTD_IQA_DW_MASK
) {
2894 case DMAR_IQA_REG_HI
:
2896 vtd_set_long(s
, addr
, val
);
2899 /* Invalidation Completion Status Register, 32-bit */
2902 vtd_set_long(s
, addr
, val
);
2903 vtd_handle_ics_write(s
);
2906 /* Invalidation Event Control Register, 32-bit */
2907 case DMAR_IECTL_REG
:
2909 vtd_set_long(s
, addr
, val
);
2910 vtd_handle_iectl_write(s
);
2913 /* Invalidation Event Data Register, 32-bit */
2914 case DMAR_IEDATA_REG
:
2916 vtd_set_long(s
, addr
, val
);
2919 /* Invalidation Event Address Register, 32-bit */
2920 case DMAR_IEADDR_REG
:
2922 vtd_set_long(s
, addr
, val
);
2925 /* Invalidation Event Upper Address Register, 32-bit */
2926 case DMAR_IEUADDR_REG
:
2928 vtd_set_long(s
, addr
, val
);
2931 /* Fault Recording Registers, 128-bit */
2932 case DMAR_FRCD_REG_0_0
:
2934 vtd_set_long(s
, addr
, val
);
2936 vtd_set_quad(s
, addr
, val
);
2940 case DMAR_FRCD_REG_0_1
:
2942 vtd_set_long(s
, addr
, val
);
2945 case DMAR_FRCD_REG_0_2
:
2947 vtd_set_long(s
, addr
, val
);
2949 vtd_set_quad(s
, addr
, val
);
2950 /* May clear bit 127 (Fault), update PPF */
2951 vtd_update_fsts_ppf(s
);
2955 case DMAR_FRCD_REG_0_3
:
2957 vtd_set_long(s
, addr
, val
);
2958 /* May clear bit 127 (Fault), update PPF */
2959 vtd_update_fsts_ppf(s
);
2964 vtd_set_long(s
, addr
, val
);
2966 vtd_set_quad(s
, addr
, val
);
2970 case DMAR_IRTA_REG_HI
:
2972 vtd_set_long(s
, addr
, val
);
2977 vtd_set_long(s
, addr
, val
);
2979 vtd_set_quad(s
, addr
, val
);
2984 static IOMMUTLBEntry
vtd_iommu_translate(IOMMUMemoryRegion
*iommu
, hwaddr addr
,
2985 IOMMUAccessFlags flag
, int iommu_idx
)
2987 VTDAddressSpace
*vtd_as
= container_of(iommu
, VTDAddressSpace
, iommu
);
2988 IntelIOMMUState
*s
= vtd_as
->iommu_state
;
2989 IOMMUTLBEntry iotlb
= {
2990 /* We'll fill in the rest later. */
2991 .target_as
= &address_space_memory
,
2995 if (likely(s
->dmar_enabled
)) {
2996 success
= vtd_do_iommu_translate(vtd_as
, vtd_as
->bus
, vtd_as
->devfn
,
2997 addr
, flag
& IOMMU_WO
, &iotlb
);
2999 /* DMAR disabled, passthrough, use 4k-page*/
3000 iotlb
.iova
= addr
& VTD_PAGE_MASK_4K
;
3001 iotlb
.translated_addr
= addr
& VTD_PAGE_MASK_4K
;
3002 iotlb
.addr_mask
= ~VTD_PAGE_MASK_4K
;
3003 iotlb
.perm
= IOMMU_RW
;
3007 if (likely(success
)) {
3008 trace_vtd_dmar_translate(pci_bus_num(vtd_as
->bus
),
3009 VTD_PCI_SLOT(vtd_as
->devfn
),
3010 VTD_PCI_FUNC(vtd_as
->devfn
),
3011 iotlb
.iova
, iotlb
.translated_addr
,
3014 error_report_once("%s: detected translation failure "
3015 "(dev=%02x:%02x:%02x, iova=0x%" PRIx64
")",
3016 __func__
, pci_bus_num(vtd_as
->bus
),
3017 VTD_PCI_SLOT(vtd_as
->devfn
),
3018 VTD_PCI_FUNC(vtd_as
->devfn
),
3025 static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion
*iommu
,
3026 IOMMUNotifierFlag old
,
3027 IOMMUNotifierFlag
new,
3030 VTDAddressSpace
*vtd_as
= container_of(iommu
, VTDAddressSpace
, iommu
);
3031 IntelIOMMUState
*s
= vtd_as
->iommu_state
;
3033 /* Update per-address-space notifier flags */
3034 vtd_as
->notifier_flags
= new;
3036 if (old
== IOMMU_NOTIFIER_NONE
) {
3037 QLIST_INSERT_HEAD(&s
->vtd_as_with_notifiers
, vtd_as
, next
);
3038 } else if (new == IOMMU_NOTIFIER_NONE
) {
3039 QLIST_REMOVE(vtd_as
, next
);
3044 static int vtd_post_load(void *opaque
, int version_id
)
3046 IntelIOMMUState
*iommu
= opaque
;
3049 * Memory regions are dynamically turned on/off depending on
3050 * context entry configurations from the guest. After migration,
3051 * we need to make sure the memory regions are still correct.
3053 vtd_switch_address_space_all(iommu
);
3056 * We don't need to migrate the root_scalable because we can
3057 * simply do the calculation after the loading is complete. We
3058 * can actually do similar things with root, dmar_enabled, etc.
3059 * however since we've had them already so we'd better keep them
3060 * for compatibility of migration.
3062 vtd_update_scalable_state(iommu
);
3067 static const VMStateDescription vtd_vmstate
= {
3068 .name
= "iommu-intel",
3070 .minimum_version_id
= 1,
3071 .priority
= MIG_PRI_IOMMU
,
3072 .post_load
= vtd_post_load
,
3073 .fields
= (VMStateField
[]) {
3074 VMSTATE_UINT64(root
, IntelIOMMUState
),
3075 VMSTATE_UINT64(intr_root
, IntelIOMMUState
),
3076 VMSTATE_UINT64(iq
, IntelIOMMUState
),
3077 VMSTATE_UINT32(intr_size
, IntelIOMMUState
),
3078 VMSTATE_UINT16(iq_head
, IntelIOMMUState
),
3079 VMSTATE_UINT16(iq_tail
, IntelIOMMUState
),
3080 VMSTATE_UINT16(iq_size
, IntelIOMMUState
),
3081 VMSTATE_UINT16(next_frcd_reg
, IntelIOMMUState
),
3082 VMSTATE_UINT8_ARRAY(csr
, IntelIOMMUState
, DMAR_REG_SIZE
),
3083 VMSTATE_UINT8(iq_last_desc_type
, IntelIOMMUState
),
3084 VMSTATE_UNUSED(1), /* bool root_extended is obsolete by VT-d */
3085 VMSTATE_BOOL(dmar_enabled
, IntelIOMMUState
),
3086 VMSTATE_BOOL(qi_enabled
, IntelIOMMUState
),
3087 VMSTATE_BOOL(intr_enabled
, IntelIOMMUState
),
3088 VMSTATE_BOOL(intr_eime
, IntelIOMMUState
),
3089 VMSTATE_END_OF_LIST()
3093 static const MemoryRegionOps vtd_mem_ops
= {
3094 .read
= vtd_mem_read
,
3095 .write
= vtd_mem_write
,
3096 .endianness
= DEVICE_LITTLE_ENDIAN
,
3098 .min_access_size
= 4,
3099 .max_access_size
= 8,
3102 .min_access_size
= 4,
3103 .max_access_size
= 8,
3107 static Property vtd_properties
[] = {
3108 DEFINE_PROP_UINT32("version", IntelIOMMUState
, version
, 0),
3109 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState
, intr_eim
,
3111 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState
, buggy_eim
, false),
3112 DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState
, aw_bits
,
3113 VTD_HOST_ADDRESS_WIDTH
),
3114 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState
, caching_mode
, FALSE
),
3115 DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState
, scalable_mode
, FALSE
),
3116 DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState
, dma_drain
, true),
3117 DEFINE_PROP_END_OF_LIST(),
3120 /* Read IRTE entry with specific index */
3121 static int vtd_irte_get(IntelIOMMUState
*iommu
, uint16_t index
,
3122 VTD_IR_TableEntry
*entry
, uint16_t sid
)
3124 static const uint16_t vtd_svt_mask
[VTD_SQ_MAX
] = \
3125 {0xffff, 0xfffb, 0xfff9, 0xfff8};
3126 dma_addr_t addr
= 0x00;
3127 uint16_t mask
, source_id
;
3128 uint8_t bus
, bus_max
, bus_min
;
3130 if (index
>= iommu
->intr_size
) {
3131 error_report_once("%s: index too large: ind=0x%x",
3133 return -VTD_FR_IR_INDEX_OVER
;
3136 addr
= iommu
->intr_root
+ index
* sizeof(*entry
);
3137 if (dma_memory_read(&address_space_memory
, addr
,
3138 entry
, sizeof(*entry
), MEMTXATTRS_UNSPECIFIED
)) {
3139 error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64
,
3140 __func__
, index
, addr
);
3141 return -VTD_FR_IR_ROOT_INVAL
;
3144 trace_vtd_ir_irte_get(index
, le64_to_cpu(entry
->data
[1]),
3145 le64_to_cpu(entry
->data
[0]));
3147 if (!entry
->irte
.present
) {
3148 error_report_once("%s: detected non-present IRTE "
3149 "(index=%u, high=0x%" PRIx64
", low=0x%" PRIx64
")",
3150 __func__
, index
, le64_to_cpu(entry
->data
[1]),
3151 le64_to_cpu(entry
->data
[0]));
3152 return -VTD_FR_IR_ENTRY_P
;
3155 if (entry
->irte
.__reserved_0
|| entry
->irte
.__reserved_1
||
3156 entry
->irte
.__reserved_2
) {
3157 error_report_once("%s: detected non-zero reserved IRTE "
3158 "(index=%u, high=0x%" PRIx64
", low=0x%" PRIx64
")",
3159 __func__
, index
, le64_to_cpu(entry
->data
[1]),
3160 le64_to_cpu(entry
->data
[0]));
3161 return -VTD_FR_IR_IRTE_RSVD
;
3164 if (sid
!= X86_IOMMU_SID_INVALID
) {
3165 /* Validate IRTE SID */
3166 source_id
= le32_to_cpu(entry
->irte
.source_id
);
3167 switch (entry
->irte
.sid_vtype
) {
3172 mask
= vtd_svt_mask
[entry
->irte
.sid_q
];
3173 if ((source_id
& mask
) != (sid
& mask
)) {
3174 error_report_once("%s: invalid IRTE SID "
3175 "(index=%u, sid=%u, source_id=%u)",
3176 __func__
, index
, sid
, source_id
);
3177 return -VTD_FR_IR_SID_ERR
;
3182 bus_max
= source_id
>> 8;
3183 bus_min
= source_id
& 0xff;
3185 if (bus
> bus_max
|| bus
< bus_min
) {
3186 error_report_once("%s: invalid SVT_BUS "
3187 "(index=%u, bus=%u, min=%u, max=%u)",
3188 __func__
, index
, bus
, bus_min
, bus_max
);
3189 return -VTD_FR_IR_SID_ERR
;
3194 error_report_once("%s: detected invalid IRTE SVT "
3195 "(index=%u, type=%d)", __func__
,
3196 index
, entry
->irte
.sid_vtype
);
3197 /* Take this as verification failure. */
3198 return -VTD_FR_IR_SID_ERR
;
3205 /* Fetch IRQ information of specific IR index */
3206 static int vtd_remap_irq_get(IntelIOMMUState
*iommu
, uint16_t index
,
3207 X86IOMMUIrq
*irq
, uint16_t sid
)
3209 VTD_IR_TableEntry irte
= {};
3212 ret
= vtd_irte_get(iommu
, index
, &irte
, sid
);
3217 irq
->trigger_mode
= irte
.irte
.trigger_mode
;
3218 irq
->vector
= irte
.irte
.vector
;
3219 irq
->delivery_mode
= irte
.irte
.delivery_mode
;
3220 irq
->dest
= le32_to_cpu(irte
.irte
.dest_id
);
3221 if (!iommu
->intr_eime
) {
3222 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
3223 #define VTD_IR_APIC_DEST_SHIFT (8)
3224 irq
->dest
= (irq
->dest
& VTD_IR_APIC_DEST_MASK
) >>
3225 VTD_IR_APIC_DEST_SHIFT
;
3227 irq
->dest_mode
= irte
.irte
.dest_mode
;
3228 irq
->redir_hint
= irte
.irte
.redir_hint
;
3230 trace_vtd_ir_remap(index
, irq
->trigger_mode
, irq
->vector
,
3231 irq
->delivery_mode
, irq
->dest
, irq
->dest_mode
);
3236 /* Interrupt remapping for MSI/MSI-X entry */
3237 static int vtd_interrupt_remap_msi(IntelIOMMUState
*iommu
,
3239 MSIMessage
*translated
,
3243 VTD_IR_MSIAddress addr
;
3245 X86IOMMUIrq irq
= {};
3247 assert(origin
&& translated
);
3249 trace_vtd_ir_remap_msi_req(origin
->address
, origin
->data
);
3251 if (!iommu
|| !iommu
->intr_enabled
) {
3252 memcpy(translated
, origin
, sizeof(*origin
));
3256 if (origin
->address
& VTD_MSI_ADDR_HI_MASK
) {
3257 error_report_once("%s: MSI address high 32 bits non-zero detected: "
3258 "address=0x%" PRIx64
, __func__
, origin
->address
);
3259 return -VTD_FR_IR_REQ_RSVD
;
3262 addr
.data
= origin
->address
& VTD_MSI_ADDR_LO_MASK
;
3263 if (addr
.addr
.__head
!= 0xfee) {
3264 error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32
,
3265 __func__
, addr
.data
);
3266 return -VTD_FR_IR_REQ_RSVD
;
3269 /* This is compatible mode. */
3270 if (addr
.addr
.int_mode
!= VTD_IR_INT_FORMAT_REMAP
) {
3271 memcpy(translated
, origin
, sizeof(*origin
));
3275 index
= addr
.addr
.index_h
<< 15 | le16_to_cpu(addr
.addr
.index_l
);
3277 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
3278 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
3280 if (addr
.addr
.sub_valid
) {
3281 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
3282 index
+= origin
->data
& VTD_IR_MSI_DATA_SUBHANDLE
;
3285 ret
= vtd_remap_irq_get(iommu
, index
, &irq
, sid
);
3290 if (addr
.addr
.sub_valid
) {
3291 trace_vtd_ir_remap_type("MSI");
3292 if (origin
->data
& VTD_IR_MSI_DATA_RESERVED
) {
3293 error_report_once("%s: invalid IR MSI "
3294 "(sid=%u, address=0x%" PRIx64
3295 ", data=0x%" PRIx32
")",
3296 __func__
, sid
, origin
->address
, origin
->data
);
3297 return -VTD_FR_IR_REQ_RSVD
;
3300 uint8_t vector
= origin
->data
& 0xff;
3301 uint8_t trigger_mode
= (origin
->data
>> MSI_DATA_TRIGGER_SHIFT
) & 0x1;
3303 trace_vtd_ir_remap_type("IOAPIC");
3304 /* IOAPIC entry vector should be aligned with IRTE vector
3305 * (see vt-d spec 5.1.5.1). */
3306 if (vector
!= irq
.vector
) {
3307 trace_vtd_warn_ir_vector(sid
, index
, vector
, irq
.vector
);
3310 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
3311 * (see vt-d spec 5.1.5.1). */
3312 if (trigger_mode
!= irq
.trigger_mode
) {
3313 trace_vtd_warn_ir_trigger(sid
, index
, trigger_mode
,
3319 * We'd better keep the last two bits, assuming that guest OS
3320 * might modify it. Keep it does not hurt after all.
3322 irq
.msi_addr_last_bits
= addr
.addr
.__not_care
;
3324 /* Translate X86IOMMUIrq to MSI message */
3325 x86_iommu_irq_to_msi_message(&irq
, translated
);
3328 trace_vtd_ir_remap_msi(origin
->address
, origin
->data
,
3329 translated
->address
, translated
->data
);
3333 static int vtd_int_remap(X86IOMMUState
*iommu
, MSIMessage
*src
,
3334 MSIMessage
*dst
, uint16_t sid
)
3336 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu
),
3340 static MemTxResult
vtd_mem_ir_read(void *opaque
, hwaddr addr
,
3341 uint64_t *data
, unsigned size
,
3347 static MemTxResult
vtd_mem_ir_write(void *opaque
, hwaddr addr
,
3348 uint64_t value
, unsigned size
,
3352 MSIMessage from
= {}, to
= {};
3353 uint16_t sid
= X86_IOMMU_SID_INVALID
;
3355 from
.address
= (uint64_t) addr
+ VTD_INTERRUPT_ADDR_FIRST
;
3356 from
.data
= (uint32_t) value
;
3358 if (!attrs
.unspecified
) {
3359 /* We have explicit Source ID */
3360 sid
= attrs
.requester_id
;
3363 ret
= vtd_interrupt_remap_msi(opaque
, &from
, &to
, sid
);
3365 /* TODO: report error */
3366 /* Drop this interrupt */
3370 apic_get_class()->send_msi(&to
);
3375 static const MemoryRegionOps vtd_mem_ir_ops
= {
3376 .read_with_attrs
= vtd_mem_ir_read
,
3377 .write_with_attrs
= vtd_mem_ir_write
,
3378 .endianness
= DEVICE_LITTLE_ENDIAN
,
3380 .min_access_size
= 4,
3381 .max_access_size
= 4,
3384 .min_access_size
= 4,
3385 .max_access_size
= 4,
3389 VTDAddressSpace
*vtd_find_add_as(IntelIOMMUState
*s
, PCIBus
*bus
, int devfn
)
3391 uintptr_t key
= (uintptr_t)bus
;
3392 VTDBus
*vtd_bus
= g_hash_table_lookup(s
->vtd_as_by_busptr
, &key
);
3393 VTDAddressSpace
*vtd_dev_as
;
3397 uintptr_t *new_key
= g_malloc(sizeof(*new_key
));
3398 *new_key
= (uintptr_t)bus
;
3399 /* No corresponding free() */
3400 vtd_bus
= g_malloc0(sizeof(VTDBus
) + sizeof(VTDAddressSpace
*) * \
3403 g_hash_table_insert(s
->vtd_as_by_busptr
, new_key
, vtd_bus
);
3406 vtd_dev_as
= vtd_bus
->dev_as
[devfn
];
3409 snprintf(name
, sizeof(name
), "vtd-%02x.%x", PCI_SLOT(devfn
),
3411 vtd_bus
->dev_as
[devfn
] = vtd_dev_as
= g_malloc0(sizeof(VTDAddressSpace
));
3413 vtd_dev_as
->bus
= bus
;
3414 vtd_dev_as
->devfn
= (uint8_t)devfn
;
3415 vtd_dev_as
->iommu_state
= s
;
3416 vtd_dev_as
->context_cache_entry
.context_cache_gen
= 0;
3417 vtd_dev_as
->iova_tree
= iova_tree_new();
3419 memory_region_init(&vtd_dev_as
->root
, OBJECT(s
), name
, UINT64_MAX
);
3420 address_space_init(&vtd_dev_as
->as
, &vtd_dev_as
->root
, "vtd-root");
3423 * Build the DMAR-disabled container with aliases to the
3424 * shared MRs. Note that aliasing to a shared memory region
3425 * could help the memory API to detect same FlatViews so we
3426 * can have devices to share the same FlatView when DMAR is
3427 * disabled (either by not providing "intel_iommu=on" or with
3428 * "iommu=pt"). It will greatly reduce the total number of
3429 * FlatViews of the system hence VM runs faster.
3431 memory_region_init_alias(&vtd_dev_as
->nodmar
, OBJECT(s
),
3432 "vtd-nodmar", &s
->mr_nodmar
, 0,
3433 memory_region_size(&s
->mr_nodmar
));
3436 * Build the per-device DMAR-enabled container.
3438 * TODO: currently we have per-device IOMMU memory region only
3439 * because we have per-device IOMMU notifiers for devices. If
3440 * one day we can abstract the IOMMU notifiers out of the
3441 * memory regions then we can also share the same memory
3442 * region here just like what we've done above with the nodmar
3445 strcat(name
, "-dmar");
3446 memory_region_init_iommu(&vtd_dev_as
->iommu
, sizeof(vtd_dev_as
->iommu
),
3447 TYPE_INTEL_IOMMU_MEMORY_REGION
, OBJECT(s
),
3449 memory_region_init_alias(&vtd_dev_as
->iommu_ir
, OBJECT(s
), "vtd-ir",
3450 &s
->mr_ir
, 0, memory_region_size(&s
->mr_ir
));
3451 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as
->iommu
),
3452 VTD_INTERRUPT_ADDR_FIRST
,
3453 &vtd_dev_as
->iommu_ir
, 1);
3456 * Hook both the containers under the root container, we
3457 * switch between DMAR & noDMAR by enable/disable
3458 * corresponding sub-containers
3460 memory_region_add_subregion_overlap(&vtd_dev_as
->root
, 0,
3461 MEMORY_REGION(&vtd_dev_as
->iommu
),
3463 memory_region_add_subregion_overlap(&vtd_dev_as
->root
, 0,
3464 &vtd_dev_as
->nodmar
, 0);
3466 vtd_switch_address_space(vtd_dev_as
);
3471 /* Unmap the whole range in the notifier's scope. */
3472 static void vtd_address_space_unmap(VTDAddressSpace
*as
, IOMMUNotifier
*n
)
3474 hwaddr size
, remain
;
3475 hwaddr start
= n
->start
;
3476 hwaddr end
= n
->end
;
3477 IntelIOMMUState
*s
= as
->iommu_state
;
3481 * Note: all the codes in this function has a assumption that IOVA
3482 * bits are no more than VTD_MGAW bits (which is restricted by
3483 * VT-d spec), otherwise we need to consider overflow of 64 bits.
3486 if (end
> VTD_ADDRESS_SIZE(s
->aw_bits
) - 1) {
3488 * Don't need to unmap regions that is bigger than the whole
3489 * VT-d supported address space size
3491 end
= VTD_ADDRESS_SIZE(s
->aw_bits
) - 1;
3494 assert(start
<= end
);
3495 size
= remain
= end
- start
+ 1;
3497 while (remain
>= VTD_PAGE_SIZE
) {
3498 IOMMUTLBEvent event
;
3499 uint64_t mask
= dma_aligned_pow2_mask(start
, end
, s
->aw_bits
);
3500 uint64_t size
= mask
+ 1;
3504 event
.type
= IOMMU_NOTIFIER_UNMAP
;
3505 event
.entry
.iova
= start
;
3506 event
.entry
.addr_mask
= mask
;
3507 event
.entry
.target_as
= &address_space_memory
;
3508 event
.entry
.perm
= IOMMU_NONE
;
3509 /* This field is meaningless for unmap */
3510 event
.entry
.translated_addr
= 0;
3512 memory_region_notify_iommu_one(n
, &event
);
3520 trace_vtd_as_unmap_whole(pci_bus_num(as
->bus
),
3521 VTD_PCI_SLOT(as
->devfn
),
3522 VTD_PCI_FUNC(as
->devfn
),
3525 map
.iova
= n
->start
;
3527 iova_tree_remove(as
->iova_tree
, &map
);
3530 static void vtd_address_space_unmap_all(IntelIOMMUState
*s
)
3532 VTDAddressSpace
*vtd_as
;
3535 QLIST_FOREACH(vtd_as
, &s
->vtd_as_with_notifiers
, next
) {
3536 IOMMU_NOTIFIER_FOREACH(n
, &vtd_as
->iommu
) {
3537 vtd_address_space_unmap(vtd_as
, n
);
3542 static void vtd_address_space_refresh_all(IntelIOMMUState
*s
)
3544 vtd_address_space_unmap_all(s
);
3545 vtd_switch_address_space_all(s
);
3548 static int vtd_replay_hook(IOMMUTLBEvent
*event
, void *private)
3550 memory_region_notify_iommu_one(private, event
);
3554 static void vtd_iommu_replay(IOMMUMemoryRegion
*iommu_mr
, IOMMUNotifier
*n
)
3556 VTDAddressSpace
*vtd_as
= container_of(iommu_mr
, VTDAddressSpace
, iommu
);
3557 IntelIOMMUState
*s
= vtd_as
->iommu_state
;
3558 uint8_t bus_n
= pci_bus_num(vtd_as
->bus
);
3562 * The replay can be triggered by either a invalidation or a newly
3563 * created entry. No matter what, we release existing mappings
3564 * (it means flushing caches for UNMAP-only registers).
3566 vtd_address_space_unmap(vtd_as
, n
);
3568 if (vtd_dev_to_context_entry(s
, bus_n
, vtd_as
->devfn
, &ce
) == 0) {
3569 trace_vtd_replay_ce_valid(s
->root_scalable
? "scalable mode" :
3571 bus_n
, PCI_SLOT(vtd_as
->devfn
),
3572 PCI_FUNC(vtd_as
->devfn
),
3573 vtd_get_domain_id(s
, &ce
),
3575 if (vtd_as_has_map_notifier(vtd_as
)) {
3576 /* This is required only for MAP typed notifiers */
3577 vtd_page_walk_info info
= {
3578 .hook_fn
= vtd_replay_hook
,
3579 .private = (void *)n
,
3580 .notify_unmap
= false,
3583 .domain_id
= vtd_get_domain_id(s
, &ce
),
3586 vtd_page_walk(s
, &ce
, 0, ~0ULL, &info
);
3589 trace_vtd_replay_ce_invalid(bus_n
, PCI_SLOT(vtd_as
->devfn
),
3590 PCI_FUNC(vtd_as
->devfn
));
3596 /* Do the initialization. It will also be called when reset, so pay
3597 * attention when adding new initialization stuff.
3599 static void vtd_init(IntelIOMMUState
*s
)
3601 X86IOMMUState
*x86_iommu
= X86_IOMMU_DEVICE(s
);
3603 memset(s
->csr
, 0, DMAR_REG_SIZE
);
3604 memset(s
->wmask
, 0, DMAR_REG_SIZE
);
3605 memset(s
->w1cmask
, 0, DMAR_REG_SIZE
);
3606 memset(s
->womask
, 0, DMAR_REG_SIZE
);
3609 s
->root_scalable
= false;
3610 s
->dmar_enabled
= false;
3611 s
->intr_enabled
= false;
3616 s
->qi_enabled
= false;
3617 s
->iq_last_desc_type
= VTD_INV_DESC_NONE
;
3619 s
->next_frcd_reg
= 0;
3620 s
->cap
= VTD_CAP_FRO
| VTD_CAP_NFR
| VTD_CAP_ND
|
3621 VTD_CAP_MAMV
| VTD_CAP_PSI
| VTD_CAP_SLLPS
|
3622 VTD_CAP_SAGAW_39bit
| VTD_CAP_MGAW(s
->aw_bits
);
3624 s
->cap
|= VTD_CAP_DRAIN
;
3626 if (s
->aw_bits
== VTD_HOST_AW_48BIT
) {
3627 s
->cap
|= VTD_CAP_SAGAW_48bit
;
3629 s
->ecap
= VTD_ECAP_QI
| VTD_ECAP_IRO
;
3632 * Rsvd field masks for spte
3634 vtd_spte_rsvd
[0] = ~0ULL;
3635 vtd_spte_rsvd
[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s
->aw_bits
,
3636 x86_iommu
->dt_supported
);
3637 vtd_spte_rsvd
[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s
->aw_bits
);
3638 vtd_spte_rsvd
[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s
->aw_bits
);
3639 vtd_spte_rsvd
[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s
->aw_bits
);
3641 vtd_spte_rsvd_large
[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s
->aw_bits
,
3642 x86_iommu
->dt_supported
);
3643 vtd_spte_rsvd_large
[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s
->aw_bits
,
3644 x86_iommu
->dt_supported
);
3646 if (s
->scalable_mode
) {
3647 vtd_spte_rsvd
[1] &= ~VTD_SPTE_SNP
;
3648 vtd_spte_rsvd_large
[2] &= ~VTD_SPTE_SNP
;
3649 vtd_spte_rsvd_large
[3] &= ~VTD_SPTE_SNP
;
3652 if (x86_iommu_ir_supported(x86_iommu
)) {
3653 s
->ecap
|= VTD_ECAP_IR
| VTD_ECAP_MHMV
;
3654 if (s
->intr_eim
== ON_OFF_AUTO_ON
) {
3655 s
->ecap
|= VTD_ECAP_EIM
;
3657 assert(s
->intr_eim
!= ON_OFF_AUTO_AUTO
);
3660 if (x86_iommu
->dt_supported
) {
3661 s
->ecap
|= VTD_ECAP_DT
;
3664 if (x86_iommu
->pt_supported
) {
3665 s
->ecap
|= VTD_ECAP_PT
;
3668 if (s
->caching_mode
) {
3669 s
->cap
|= VTD_CAP_CM
;
3672 /* TODO: read cap/ecap from host to decide which cap to be exposed. */
3673 if (s
->scalable_mode
) {
3674 s
->ecap
|= VTD_ECAP_SMTS
| VTD_ECAP_SRS
| VTD_ECAP_SLTS
;
3677 vtd_reset_caches(s
);
3679 /* Define registers with default values and bit semantics */
3680 vtd_define_long(s
, DMAR_VER_REG
, 0x10UL
, 0, 0);
3681 vtd_define_quad(s
, DMAR_CAP_REG
, s
->cap
, 0, 0);
3682 vtd_define_quad(s
, DMAR_ECAP_REG
, s
->ecap
, 0, 0);
3683 vtd_define_long(s
, DMAR_GCMD_REG
, 0, 0xff800000UL
, 0);
3684 vtd_define_long_wo(s
, DMAR_GCMD_REG
, 0xff800000UL
);
3685 vtd_define_long(s
, DMAR_GSTS_REG
, 0, 0, 0);
3686 vtd_define_quad(s
, DMAR_RTADDR_REG
, 0, 0xfffffffffffffc00ULL
, 0);
3687 vtd_define_quad(s
, DMAR_CCMD_REG
, 0, 0xe0000003ffffffffULL
, 0);
3688 vtd_define_quad_wo(s
, DMAR_CCMD_REG
, 0x3ffff0000ULL
);
3690 /* Advanced Fault Logging not supported */
3691 vtd_define_long(s
, DMAR_FSTS_REG
, 0, 0, 0x11UL
);
3692 vtd_define_long(s
, DMAR_FECTL_REG
, 0x80000000UL
, 0x80000000UL
, 0);
3693 vtd_define_long(s
, DMAR_FEDATA_REG
, 0, 0x0000ffffUL
, 0);
3694 vtd_define_long(s
, DMAR_FEADDR_REG
, 0, 0xfffffffcUL
, 0);
3696 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3697 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3699 vtd_define_long(s
, DMAR_FEUADDR_REG
, 0, 0, 0);
3701 /* Treated as RO for implementations that PLMR and PHMR fields reported
3702 * as Clear in the CAP_REG.
3703 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3705 vtd_define_long(s
, DMAR_PMEN_REG
, 0, 0, 0);
3707 vtd_define_quad(s
, DMAR_IQH_REG
, 0, 0, 0);
3708 vtd_define_quad(s
, DMAR_IQT_REG
, 0, 0x7fff0ULL
, 0);
3709 vtd_define_quad(s
, DMAR_IQA_REG
, 0, 0xfffffffffffff807ULL
, 0);
3710 vtd_define_long(s
, DMAR_ICS_REG
, 0, 0, 0x1UL
);
3711 vtd_define_long(s
, DMAR_IECTL_REG
, 0x80000000UL
, 0x80000000UL
, 0);
3712 vtd_define_long(s
, DMAR_IEDATA_REG
, 0, 0xffffffffUL
, 0);
3713 vtd_define_long(s
, DMAR_IEADDR_REG
, 0, 0xfffffffcUL
, 0);
3714 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3715 vtd_define_long(s
, DMAR_IEUADDR_REG
, 0, 0, 0);
3717 /* IOTLB registers */
3718 vtd_define_quad(s
, DMAR_IOTLB_REG
, 0, 0Xb003ffff00000000ULL
, 0);
3719 vtd_define_quad(s
, DMAR_IVA_REG
, 0, 0xfffffffffffff07fULL
, 0);
3720 vtd_define_quad_wo(s
, DMAR_IVA_REG
, 0xfffffffffffff07fULL
);
3722 /* Fault Recording Registers, 128-bit */
3723 vtd_define_quad(s
, DMAR_FRCD_REG_0_0
, 0, 0, 0);
3724 vtd_define_quad(s
, DMAR_FRCD_REG_0_2
, 0, 0, 0x8000000000000000ULL
);
3727 * Interrupt remapping registers.
3729 vtd_define_quad(s
, DMAR_IRTA_REG
, 0, 0xfffffffffffff80fULL
, 0);
3732 /* Should not reset address_spaces when reset because devices will still use
3733 * the address space they got at first (won't ask the bus again).
3735 static void vtd_reset(DeviceState
*dev
)
3737 IntelIOMMUState
*s
= INTEL_IOMMU_DEVICE(dev
);
3740 vtd_address_space_refresh_all(s
);
3743 static AddressSpace
*vtd_host_dma_iommu(PCIBus
*bus
, void *opaque
, int devfn
)
3745 IntelIOMMUState
*s
= opaque
;
3746 VTDAddressSpace
*vtd_as
;
3748 assert(0 <= devfn
&& devfn
< PCI_DEVFN_MAX
);
3750 vtd_as
= vtd_find_add_as(s
, bus
, devfn
);
3754 static bool vtd_decide_config(IntelIOMMUState
*s
, Error
**errp
)
3756 X86IOMMUState
*x86_iommu
= X86_IOMMU_DEVICE(s
);
3758 if (s
->intr_eim
== ON_OFF_AUTO_ON
&& !x86_iommu_ir_supported(x86_iommu
)) {
3759 error_setg(errp
, "eim=on cannot be selected without intremap=on");
3763 if (s
->intr_eim
== ON_OFF_AUTO_AUTO
) {
3764 s
->intr_eim
= (kvm_irqchip_in_kernel() || s
->buggy_eim
)
3765 && x86_iommu_ir_supported(x86_iommu
) ?
3766 ON_OFF_AUTO_ON
: ON_OFF_AUTO_OFF
;
3768 if (s
->intr_eim
== ON_OFF_AUTO_ON
&& !s
->buggy_eim
) {
3769 if (!kvm_irqchip_in_kernel()) {
3770 error_setg(errp
, "eim=on requires accel=kvm,kernel-irqchip=split");
3773 if (!kvm_enable_x2apic()) {
3774 error_setg(errp
, "eim=on requires support on the KVM side"
3775 "(X2APIC_API, first shipped in v4.7)");
3780 /* Currently only address widths supported are 39 and 48 bits */
3781 if ((s
->aw_bits
!= VTD_HOST_AW_39BIT
) &&
3782 (s
->aw_bits
!= VTD_HOST_AW_48BIT
)) {
3783 error_setg(errp
, "Supported values for aw-bits are: %d, %d",
3784 VTD_HOST_AW_39BIT
, VTD_HOST_AW_48BIT
);
3788 if (s
->scalable_mode
&& !s
->dma_drain
) {
3789 error_setg(errp
, "Need to set dma_drain for scalable mode");
3796 static int vtd_machine_done_notify_one(Object
*child
, void *unused
)
3798 IntelIOMMUState
*iommu
= INTEL_IOMMU_DEVICE(x86_iommu_get_default());
3801 * We hard-coded here because vfio-pci is the only special case
3802 * here. Let's be more elegant in the future when we can, but so
3803 * far there seems to be no better way.
3805 if (object_dynamic_cast(child
, "vfio-pci") && !iommu
->caching_mode
) {
3806 vtd_panic_require_caching_mode();
3812 static void vtd_machine_done_hook(Notifier
*notifier
, void *unused
)
3814 object_child_foreach_recursive(object_get_root(),
3815 vtd_machine_done_notify_one
, NULL
);
3818 static Notifier vtd_machine_done_notify
= {
3819 .notify
= vtd_machine_done_hook
,
3822 static void vtd_realize(DeviceState
*dev
, Error
**errp
)
3824 MachineState
*ms
= MACHINE(qdev_get_machine());
3825 PCMachineState
*pcms
= PC_MACHINE(ms
);
3826 X86MachineState
*x86ms
= X86_MACHINE(ms
);
3827 PCIBus
*bus
= pcms
->bus
;
3828 IntelIOMMUState
*s
= INTEL_IOMMU_DEVICE(dev
);
3830 if (!vtd_decide_config(s
, errp
)) {
3834 QLIST_INIT(&s
->vtd_as_with_notifiers
);
3835 qemu_mutex_init(&s
->iommu_lock
);
3836 memset(s
->vtd_as_by_bus_num
, 0, sizeof(s
->vtd_as_by_bus_num
));
3837 memory_region_init_io(&s
->csrmem
, OBJECT(s
), &vtd_mem_ops
, s
,
3838 "intel_iommu", DMAR_REG_SIZE
);
3840 /* Create the shared memory regions by all devices */
3841 memory_region_init(&s
->mr_nodmar
, OBJECT(s
), "vtd-nodmar",
3843 memory_region_init_io(&s
->mr_ir
, OBJECT(s
), &vtd_mem_ir_ops
,
3844 s
, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE
);
3845 memory_region_init_alias(&s
->mr_sys_alias
, OBJECT(s
),
3846 "vtd-sys-alias", get_system_memory(), 0,
3847 memory_region_size(get_system_memory()));
3848 memory_region_add_subregion_overlap(&s
->mr_nodmar
, 0,
3849 &s
->mr_sys_alias
, 0);
3850 memory_region_add_subregion_overlap(&s
->mr_nodmar
,
3851 VTD_INTERRUPT_ADDR_FIRST
,
3854 sysbus_init_mmio(SYS_BUS_DEVICE(s
), &s
->csrmem
);
3855 /* No corresponding destroy */
3856 s
->iotlb
= g_hash_table_new_full(vtd_uint64_hash
, vtd_uint64_equal
,
3858 s
->vtd_as_by_busptr
= g_hash_table_new_full(vtd_uint64_hash
, vtd_uint64_equal
,
3861 sysbus_mmio_map(SYS_BUS_DEVICE(s
), 0, Q35_HOST_BRIDGE_IOMMU_ADDR
);
3862 pci_setup_iommu(bus
, vtd_host_dma_iommu
, dev
);
3863 /* Pseudo address space under root PCI bus. */
3864 x86ms
->ioapic_as
= vtd_host_dma_iommu(bus
, s
, Q35_PSEUDO_DEVFN_IOAPIC
);
3865 qemu_add_machine_init_done_notifier(&vtd_machine_done_notify
);
3868 static void vtd_class_init(ObjectClass
*klass
, void *data
)
3870 DeviceClass
*dc
= DEVICE_CLASS(klass
);
3871 X86IOMMUClass
*x86_class
= X86_IOMMU_DEVICE_CLASS(klass
);
3873 dc
->reset
= vtd_reset
;
3874 dc
->vmsd
= &vtd_vmstate
;
3875 device_class_set_props(dc
, vtd_properties
);
3876 dc
->hotpluggable
= false;
3877 x86_class
->realize
= vtd_realize
;
3878 x86_class
->int_remap
= vtd_int_remap
;
3879 /* Supported by the pc-q35-* machine types */
3880 dc
->user_creatable
= true;
3881 set_bit(DEVICE_CATEGORY_MISC
, dc
->categories
);
3882 dc
->desc
= "Intel IOMMU (VT-d) DMA Remapping device";
3885 static const TypeInfo vtd_info
= {
3886 .name
= TYPE_INTEL_IOMMU_DEVICE
,
3887 .parent
= TYPE_X86_IOMMU_DEVICE
,
3888 .instance_size
= sizeof(IntelIOMMUState
),
3889 .class_init
= vtd_class_init
,
3892 static void vtd_iommu_memory_region_class_init(ObjectClass
*klass
,
3895 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_CLASS(klass
);
3897 imrc
->translate
= vtd_iommu_translate
;
3898 imrc
->notify_flag_changed
= vtd_iommu_notify_flag_changed
;
3899 imrc
->replay
= vtd_iommu_replay
;
3902 static const TypeInfo vtd_iommu_memory_region_info
= {
3903 .parent
= TYPE_IOMMU_MEMORY_REGION
,
3904 .name
= TYPE_INTEL_IOMMU_MEMORY_REGION
,
3905 .class_init
= vtd_iommu_memory_region_class_init
,
3908 static void vtd_register_types(void)
3910 type_register_static(&vtd_info
);
3911 type_register_static(&vtd_iommu_memory_region_info
);
3914 type_init(vtd_register_types
)