qapi: generate trace events by default
[qemu/armbru.git] / hw / i386 / intel_iommu.c
blob4c6c0163887b69245f866fb5ccbffbf1ea1b1abb
1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qemu/main-loop.h"
25 #include "qapi/error.h"
26 #include "hw/sysbus.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/qdev-properties.h"
31 #include "hw/i386/pc.h"
32 #include "hw/i386/apic-msidef.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "sysemu/kvm.h"
36 #include "sysemu/dma.h"
37 #include "sysemu/sysemu.h"
38 #include "hw/i386/apic_internal.h"
39 #include "kvm/kvm_i386.h"
40 #include "migration/vmstate.h"
41 #include "trace.h"
43 /* context entry operations */
44 #define VTD_CE_GET_RID2PASID(ce) \
45 ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
46 #define VTD_CE_GET_PASID_DIR_TABLE(ce) \
47 ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
49 /* pe operations */
50 #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
51 #define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
52 #define VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write) {\
53 if (ret_fr) { \
54 ret_fr = -ret_fr; \
55 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) { \
56 trace_vtd_fault_disabled(); \
57 } else { \
58 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write); \
59 } \
60 goto error; \
61 } \
64 static void vtd_address_space_refresh_all(IntelIOMMUState *s);
65 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
67 static void vtd_panic_require_caching_mode(void)
69 error_report("We need to set caching-mode=on for intel-iommu to enable "
70 "device assignment with IOMMU protection.");
71 exit(1);
74 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
75 uint64_t wmask, uint64_t w1cmask)
77 stq_le_p(&s->csr[addr], val);
78 stq_le_p(&s->wmask[addr], wmask);
79 stq_le_p(&s->w1cmask[addr], w1cmask);
82 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
84 stq_le_p(&s->womask[addr], mask);
87 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
88 uint32_t wmask, uint32_t w1cmask)
90 stl_le_p(&s->csr[addr], val);
91 stl_le_p(&s->wmask[addr], wmask);
92 stl_le_p(&s->w1cmask[addr], w1cmask);
95 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
97 stl_le_p(&s->womask[addr], mask);
100 /* "External" get/set operations */
101 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
103 uint64_t oldval = ldq_le_p(&s->csr[addr]);
104 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
105 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
106 stq_le_p(&s->csr[addr],
107 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
110 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
112 uint32_t oldval = ldl_le_p(&s->csr[addr]);
113 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
114 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
115 stl_le_p(&s->csr[addr],
116 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
119 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
121 uint64_t val = ldq_le_p(&s->csr[addr]);
122 uint64_t womask = ldq_le_p(&s->womask[addr]);
123 return val & ~womask;
126 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
128 uint32_t val = ldl_le_p(&s->csr[addr]);
129 uint32_t womask = ldl_le_p(&s->womask[addr]);
130 return val & ~womask;
133 /* "Internal" get/set operations */
134 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
136 return ldq_le_p(&s->csr[addr]);
139 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
141 return ldl_le_p(&s->csr[addr]);
144 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
146 stq_le_p(&s->csr[addr], val);
149 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
150 uint32_t clear, uint32_t mask)
152 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
153 stl_le_p(&s->csr[addr], new_val);
154 return new_val;
157 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
158 uint64_t clear, uint64_t mask)
160 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
161 stq_le_p(&s->csr[addr], new_val);
162 return new_val;
165 static inline void vtd_iommu_lock(IntelIOMMUState *s)
167 qemu_mutex_lock(&s->iommu_lock);
170 static inline void vtd_iommu_unlock(IntelIOMMUState *s)
172 qemu_mutex_unlock(&s->iommu_lock);
175 static void vtd_update_scalable_state(IntelIOMMUState *s)
177 uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
179 if (s->scalable_mode) {
180 s->root_scalable = val & VTD_RTADDR_SMT;
184 /* Whether the address space needs to notify new mappings */
185 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
187 return as->notifier_flags & IOMMU_NOTIFIER_MAP;
190 /* GHashTable functions */
191 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
193 return *((const uint64_t *)v1) == *((const uint64_t *)v2);
196 static guint vtd_uint64_hash(gconstpointer v)
198 return (guint)*(const uint64_t *)v;
201 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
202 gpointer user_data)
204 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
205 uint16_t domain_id = *(uint16_t *)user_data;
206 return entry->domain_id == domain_id;
209 /* The shift of an addr for a certain level of paging structure */
210 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
212 assert(level != 0);
213 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
216 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
218 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
221 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
222 gpointer user_data)
224 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
225 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
226 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
227 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
228 return (entry->domain_id == info->domain_id) &&
229 (((entry->gfn & info->mask) == gfn) ||
230 (entry->gfn == gfn_tlb));
233 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
234 * IntelIOMMUState to 1. Must be called with IOMMU lock held.
236 static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
238 VTDAddressSpace *vtd_as;
239 VTDBus *vtd_bus;
240 GHashTableIter bus_it;
241 uint32_t devfn_it;
243 trace_vtd_context_cache_reset();
245 g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
247 while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
248 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
249 vtd_as = vtd_bus->dev_as[devfn_it];
250 if (!vtd_as) {
251 continue;
253 vtd_as->context_cache_entry.context_cache_gen = 0;
256 s->context_cache_gen = 1;
259 /* Must be called with IOMMU lock held. */
260 static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
262 assert(s->iotlb);
263 g_hash_table_remove_all(s->iotlb);
266 static void vtd_reset_iotlb(IntelIOMMUState *s)
268 vtd_iommu_lock(s);
269 vtd_reset_iotlb_locked(s);
270 vtd_iommu_unlock(s);
273 static void vtd_reset_caches(IntelIOMMUState *s)
275 vtd_iommu_lock(s);
276 vtd_reset_iotlb_locked(s);
277 vtd_reset_context_cache_locked(s);
278 vtd_iommu_unlock(s);
281 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
282 uint32_t level)
284 return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
285 ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
288 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
290 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
293 /* Must be called with IOMMU lock held */
294 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
295 hwaddr addr)
297 VTDIOTLBEntry *entry;
298 uint64_t key;
299 int level;
301 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
302 key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
303 source_id, level);
304 entry = g_hash_table_lookup(s->iotlb, &key);
305 if (entry) {
306 goto out;
310 out:
311 return entry;
314 /* Must be with IOMMU lock held */
315 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
316 uint16_t domain_id, hwaddr addr, uint64_t slpte,
317 uint8_t access_flags, uint32_t level)
319 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
320 uint64_t *key = g_malloc(sizeof(*key));
321 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
323 trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
324 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
325 trace_vtd_iotlb_reset("iotlb exceeds size limit");
326 vtd_reset_iotlb_locked(s);
329 entry->gfn = gfn;
330 entry->domain_id = domain_id;
331 entry->slpte = slpte;
332 entry->access_flags = access_flags;
333 entry->mask = vtd_slpt_level_page_mask(level);
334 *key = vtd_get_iotlb_key(gfn, source_id, level);
335 g_hash_table_replace(s->iotlb, key, entry);
338 /* Given the reg addr of both the message data and address, generate an
339 * interrupt via MSI.
341 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
342 hwaddr mesg_data_reg)
344 MSIMessage msi;
346 assert(mesg_data_reg < DMAR_REG_SIZE);
347 assert(mesg_addr_reg < DMAR_REG_SIZE);
349 msi.address = vtd_get_long_raw(s, mesg_addr_reg);
350 msi.data = vtd_get_long_raw(s, mesg_data_reg);
352 trace_vtd_irq_generate(msi.address, msi.data);
354 apic_get_class()->send_msi(&msi);
357 /* Generate a fault event to software via MSI if conditions are met.
358 * Notice that the value of FSTS_REG being passed to it should be the one
359 * before any update.
361 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
363 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
364 pre_fsts & VTD_FSTS_IQE) {
365 error_report_once("There are previous interrupt conditions "
366 "to be serviced by software, fault event "
367 "is not generated");
368 return;
370 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
371 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
372 error_report_once("Interrupt Mask set, irq is not generated");
373 } else {
374 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
375 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
379 /* Check if the Fault (F) field of the Fault Recording Register referenced by
380 * @index is Set.
382 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
384 /* Each reg is 128-bit */
385 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
386 addr += 8; /* Access the high 64-bit half */
388 assert(index < DMAR_FRCD_REG_NR);
390 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
393 /* Update the PPF field of Fault Status Register.
394 * Should be called whenever change the F field of any fault recording
395 * registers.
397 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
399 uint32_t i;
400 uint32_t ppf_mask = 0;
402 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
403 if (vtd_is_frcd_set(s, i)) {
404 ppf_mask = VTD_FSTS_PPF;
405 break;
408 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
409 trace_vtd_fsts_ppf(!!ppf_mask);
412 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
414 /* Each reg is 128-bit */
415 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
416 addr += 8; /* Access the high 64-bit half */
418 assert(index < DMAR_FRCD_REG_NR);
420 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
421 vtd_update_fsts_ppf(s);
424 /* Must not update F field now, should be done later */
425 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
426 uint16_t source_id, hwaddr addr,
427 VTDFaultReason fault, bool is_write)
429 uint64_t hi = 0, lo;
430 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
432 assert(index < DMAR_FRCD_REG_NR);
434 lo = VTD_FRCD_FI(addr);
435 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
436 if (!is_write) {
437 hi |= VTD_FRCD_T;
439 vtd_set_quad_raw(s, frcd_reg_addr, lo);
440 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
442 trace_vtd_frr_new(index, hi, lo);
445 /* Try to collapse multiple pending faults from the same requester */
446 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
448 uint32_t i;
449 uint64_t frcd_reg;
450 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
452 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
453 frcd_reg = vtd_get_quad_raw(s, addr);
454 if ((frcd_reg & VTD_FRCD_F) &&
455 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
456 return true;
458 addr += 16; /* 128-bit for each */
460 return false;
463 /* Log and report an DMAR (address translation) fault to software */
464 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
465 hwaddr addr, VTDFaultReason fault,
466 bool is_write)
468 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
470 assert(fault < VTD_FR_MAX);
472 if (fault == VTD_FR_RESERVED_ERR) {
473 /* This is not a normal fault reason case. Drop it. */
474 return;
477 trace_vtd_dmar_fault(source_id, fault, addr, is_write);
479 if (fsts_reg & VTD_FSTS_PFO) {
480 error_report_once("New fault is not recorded due to "
481 "Primary Fault Overflow");
482 return;
485 if (vtd_try_collapse_fault(s, source_id)) {
486 error_report_once("New fault is not recorded due to "
487 "compression of faults");
488 return;
491 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
492 error_report_once("Next Fault Recording Reg is used, "
493 "new fault is not recorded, set PFO field");
494 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
495 return;
498 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
500 if (fsts_reg & VTD_FSTS_PPF) {
501 error_report_once("There are pending faults already, "
502 "fault event is not generated");
503 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
504 s->next_frcd_reg++;
505 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
506 s->next_frcd_reg = 0;
508 } else {
509 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
510 VTD_FSTS_FRI(s->next_frcd_reg));
511 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
512 s->next_frcd_reg++;
513 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
514 s->next_frcd_reg = 0;
516 /* This case actually cause the PPF to be Set.
517 * So generate fault event (interrupt).
519 vtd_generate_fault_event(s, fsts_reg);
523 /* Handle Invalidation Queue Errors of queued invalidation interface error
524 * conditions.
526 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
528 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
530 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
531 vtd_generate_fault_event(s, fsts_reg);
534 /* Set the IWC field and try to generate an invalidation completion interrupt */
535 static void vtd_generate_completion_event(IntelIOMMUState *s)
537 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
538 trace_vtd_inv_desc_wait_irq("One pending, skip current");
539 return;
541 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
542 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
543 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
544 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
545 "new event not generated");
546 return;
547 } else {
548 /* Generate the interrupt event */
549 trace_vtd_inv_desc_wait_irq("Generating complete event");
550 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
551 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
555 static inline bool vtd_root_entry_present(IntelIOMMUState *s,
556 VTDRootEntry *re,
557 uint8_t devfn)
559 if (s->root_scalable && devfn > UINT8_MAX / 2) {
560 return re->hi & VTD_ROOT_ENTRY_P;
563 return re->lo & VTD_ROOT_ENTRY_P;
566 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
567 VTDRootEntry *re)
569 dma_addr_t addr;
571 addr = s->root + index * sizeof(*re);
572 if (dma_memory_read(&address_space_memory, addr,
573 re, sizeof(*re), MEMTXATTRS_UNSPECIFIED)) {
574 re->lo = 0;
575 return -VTD_FR_ROOT_TABLE_INV;
577 re->lo = le64_to_cpu(re->lo);
578 re->hi = le64_to_cpu(re->hi);
579 return 0;
582 static inline bool vtd_ce_present(VTDContextEntry *context)
584 return context->lo & VTD_CONTEXT_ENTRY_P;
587 static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
588 VTDRootEntry *re,
589 uint8_t index,
590 VTDContextEntry *ce)
592 dma_addr_t addr, ce_size;
594 /* we have checked that root entry is present */
595 ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
596 VTD_CTX_ENTRY_LEGACY_SIZE;
598 if (s->root_scalable && index > UINT8_MAX / 2) {
599 index = index & (~VTD_DEVFN_CHECK_MASK);
600 addr = re->hi & VTD_ROOT_ENTRY_CTP;
601 } else {
602 addr = re->lo & VTD_ROOT_ENTRY_CTP;
605 addr = addr + index * ce_size;
606 if (dma_memory_read(&address_space_memory, addr,
607 ce, ce_size, MEMTXATTRS_UNSPECIFIED)) {
608 return -VTD_FR_CONTEXT_TABLE_INV;
611 ce->lo = le64_to_cpu(ce->lo);
612 ce->hi = le64_to_cpu(ce->hi);
613 if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
614 ce->val[2] = le64_to_cpu(ce->val[2]);
615 ce->val[3] = le64_to_cpu(ce->val[3]);
617 return 0;
620 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
622 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
625 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
627 return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
630 /* Whether the pte indicates the address of the page frame */
631 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
633 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
636 /* Get the content of a spte located in @base_addr[@index] */
637 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
639 uint64_t slpte;
641 assert(index < VTD_SL_PT_ENTRY_NR);
643 if (dma_memory_read(&address_space_memory,
644 base_addr + index * sizeof(slpte),
645 &slpte, sizeof(slpte), MEMTXATTRS_UNSPECIFIED)) {
646 slpte = (uint64_t)-1;
647 return slpte;
649 slpte = le64_to_cpu(slpte);
650 return slpte;
653 /* Given an iova and the level of paging structure, return the offset
654 * of current level.
656 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
658 return (iova >> vtd_slpt_level_shift(level)) &
659 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
662 /* Check Capability Register to see if the @level of page-table is supported */
663 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
665 return VTD_CAP_SAGAW_MASK & s->cap &
666 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
669 /* Return true if check passed, otherwise false */
670 static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
671 VTDPASIDEntry *pe)
673 switch (VTD_PE_GET_TYPE(pe)) {
674 case VTD_SM_PASID_ENTRY_FLT:
675 case VTD_SM_PASID_ENTRY_SLT:
676 case VTD_SM_PASID_ENTRY_NESTED:
677 break;
678 case VTD_SM_PASID_ENTRY_PT:
679 if (!x86_iommu->pt_supported) {
680 return false;
682 break;
683 default:
684 /* Unknown type */
685 return false;
687 return true;
690 static inline bool vtd_pdire_present(VTDPASIDDirEntry *pdire)
692 return pdire->val & 1;
696 * Caller of this function should check present bit if wants
697 * to use pdir entry for further usage except for fpd bit check.
699 static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base,
700 uint32_t pasid,
701 VTDPASIDDirEntry *pdire)
703 uint32_t index;
704 dma_addr_t addr, entry_size;
706 index = VTD_PASID_DIR_INDEX(pasid);
707 entry_size = VTD_PASID_DIR_ENTRY_SIZE;
708 addr = pasid_dir_base + index * entry_size;
709 if (dma_memory_read(&address_space_memory, addr,
710 pdire, entry_size, MEMTXATTRS_UNSPECIFIED)) {
711 return -VTD_FR_PASID_TABLE_INV;
714 return 0;
717 static inline bool vtd_pe_present(VTDPASIDEntry *pe)
719 return pe->val[0] & VTD_PASID_ENTRY_P;
722 static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState *s,
723 uint32_t pasid,
724 dma_addr_t addr,
725 VTDPASIDEntry *pe)
727 uint32_t index;
728 dma_addr_t entry_size;
729 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
731 index = VTD_PASID_TABLE_INDEX(pasid);
732 entry_size = VTD_PASID_ENTRY_SIZE;
733 addr = addr + index * entry_size;
734 if (dma_memory_read(&address_space_memory, addr,
735 pe, entry_size, MEMTXATTRS_UNSPECIFIED)) {
736 return -VTD_FR_PASID_TABLE_INV;
739 /* Do translation type check */
740 if (!vtd_pe_type_check(x86_iommu, pe)) {
741 return -VTD_FR_PASID_TABLE_INV;
744 if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
745 return -VTD_FR_PASID_TABLE_INV;
748 return 0;
752 * Caller of this function should check present bit if wants
753 * to use pasid entry for further usage except for fpd bit check.
755 static int vtd_get_pe_from_pdire(IntelIOMMUState *s,
756 uint32_t pasid,
757 VTDPASIDDirEntry *pdire,
758 VTDPASIDEntry *pe)
760 dma_addr_t addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
762 return vtd_get_pe_in_pasid_leaf_table(s, pasid, addr, pe);
766 * This function gets a pasid entry from a specified pasid
767 * table (includes dir and leaf table) with a specified pasid.
768 * Sanity check should be done to ensure return a present
769 * pasid entry to caller.
771 static int vtd_get_pe_from_pasid_table(IntelIOMMUState *s,
772 dma_addr_t pasid_dir_base,
773 uint32_t pasid,
774 VTDPASIDEntry *pe)
776 int ret;
777 VTDPASIDDirEntry pdire;
779 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base,
780 pasid, &pdire);
781 if (ret) {
782 return ret;
785 if (!vtd_pdire_present(&pdire)) {
786 return -VTD_FR_PASID_TABLE_INV;
789 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, pe);
790 if (ret) {
791 return ret;
794 if (!vtd_pe_present(pe)) {
795 return -VTD_FR_PASID_TABLE_INV;
798 return 0;
801 static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
802 VTDContextEntry *ce,
803 VTDPASIDEntry *pe)
805 uint32_t pasid;
806 dma_addr_t pasid_dir_base;
807 int ret = 0;
809 pasid = VTD_CE_GET_RID2PASID(ce);
810 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
811 ret = vtd_get_pe_from_pasid_table(s, pasid_dir_base, pasid, pe);
813 return ret;
816 static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
817 VTDContextEntry *ce,
818 bool *pe_fpd_set)
820 int ret;
821 uint32_t pasid;
822 dma_addr_t pasid_dir_base;
823 VTDPASIDDirEntry pdire;
824 VTDPASIDEntry pe;
826 pasid = VTD_CE_GET_RID2PASID(ce);
827 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
830 * No present bit check since fpd is meaningful even
831 * if the present bit is clear.
833 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, pasid, &pdire);
834 if (ret) {
835 return ret;
838 if (pdire.val & VTD_PASID_DIR_FPD) {
839 *pe_fpd_set = true;
840 return 0;
843 if (!vtd_pdire_present(&pdire)) {
844 return -VTD_FR_PASID_TABLE_INV;
848 * No present bit check since fpd is meaningful even
849 * if the present bit is clear.
851 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, &pe);
852 if (ret) {
853 return ret;
856 if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
857 *pe_fpd_set = true;
860 return 0;
863 /* Get the page-table level that hardware should use for the second-level
864 * page-table walk from the Address Width field of context-entry.
866 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
868 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
871 static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
872 VTDContextEntry *ce)
874 VTDPASIDEntry pe;
876 if (s->root_scalable) {
877 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
878 return VTD_PE_GET_LEVEL(&pe);
881 return vtd_ce_get_level(ce);
884 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
886 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
889 static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
890 VTDContextEntry *ce)
892 VTDPASIDEntry pe;
894 if (s->root_scalable) {
895 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
896 return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
899 return vtd_ce_get_agaw(ce);
902 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
904 return ce->lo & VTD_CONTEXT_ENTRY_TT;
907 /* Only for Legacy Mode. Return true if check passed, otherwise false */
908 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
909 VTDContextEntry *ce)
911 switch (vtd_ce_get_type(ce)) {
912 case VTD_CONTEXT_TT_MULTI_LEVEL:
913 /* Always supported */
914 break;
915 case VTD_CONTEXT_TT_DEV_IOTLB:
916 if (!x86_iommu->dt_supported) {
917 error_report_once("%s: DT specified but not supported", __func__);
918 return false;
920 break;
921 case VTD_CONTEXT_TT_PASS_THROUGH:
922 if (!x86_iommu->pt_supported) {
923 error_report_once("%s: PT specified but not supported", __func__);
924 return false;
926 break;
927 default:
928 /* Unknown type */
929 error_report_once("%s: unknown ce type: %"PRIu32, __func__,
930 vtd_ce_get_type(ce));
931 return false;
933 return true;
936 static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
937 VTDContextEntry *ce, uint8_t aw)
939 uint32_t ce_agaw = vtd_get_iova_agaw(s, ce);
940 return 1ULL << MIN(ce_agaw, aw);
943 /* Return true if IOVA passes range check, otherwise false. */
944 static inline bool vtd_iova_range_check(IntelIOMMUState *s,
945 uint64_t iova, VTDContextEntry *ce,
946 uint8_t aw)
949 * Check if @iova is above 2^X-1, where X is the minimum of MGAW
950 * in CAP_REG and AW in context-entry.
952 return !(iova & ~(vtd_iova_limit(s, ce, aw) - 1));
955 static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
956 VTDContextEntry *ce)
958 VTDPASIDEntry pe;
960 if (s->root_scalable) {
961 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
962 return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
965 return vtd_ce_get_slpt_base(ce);
969 * Rsvd field masks for spte:
970 * vtd_spte_rsvd 4k pages
971 * vtd_spte_rsvd_large large pages
973 static uint64_t vtd_spte_rsvd[5];
974 static uint64_t vtd_spte_rsvd_large[5];
976 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
978 uint64_t rsvd_mask = vtd_spte_rsvd[level];
980 if ((level == VTD_SL_PD_LEVEL || level == VTD_SL_PDP_LEVEL) &&
981 (slpte & VTD_SL_PT_PAGE_SIZE_MASK)) {
982 /* large page */
983 rsvd_mask = vtd_spte_rsvd_large[level];
986 return slpte & rsvd_mask;
989 /* Find the VTD address space associated with a given bus number */
990 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
992 VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
993 GHashTableIter iter;
995 if (vtd_bus) {
996 return vtd_bus;
1000 * Iterate over the registered buses to find the one which
1001 * currently holds this bus number and update the bus_num
1002 * lookup table.
1004 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1005 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1006 if (pci_bus_num(vtd_bus->bus) == bus_num) {
1007 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
1008 return vtd_bus;
1012 return NULL;
1015 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
1016 * of the translation, can be used for deciding the size of large page.
1018 static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
1019 uint64_t iova, bool is_write,
1020 uint64_t *slptep, uint32_t *slpte_level,
1021 bool *reads, bool *writes, uint8_t aw_bits)
1023 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
1024 uint32_t level = vtd_get_iova_level(s, ce);
1025 uint32_t offset;
1026 uint64_t slpte;
1027 uint64_t access_right_check;
1029 if (!vtd_iova_range_check(s, iova, ce, aw_bits)) {
1030 error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ")",
1031 __func__, iova);
1032 return -VTD_FR_ADDR_BEYOND_MGAW;
1035 /* FIXME: what is the Atomics request here? */
1036 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
1038 while (true) {
1039 offset = vtd_iova_level_offset(iova, level);
1040 slpte = vtd_get_slpte(addr, offset);
1042 if (slpte == (uint64_t)-1) {
1043 error_report_once("%s: detected read error on DMAR slpte "
1044 "(iova=0x%" PRIx64 ")", __func__, iova);
1045 if (level == vtd_get_iova_level(s, ce)) {
1046 /* Invalid programming of context-entry */
1047 return -VTD_FR_CONTEXT_ENTRY_INV;
1048 } else {
1049 return -VTD_FR_PAGING_ENTRY_INV;
1052 *reads = (*reads) && (slpte & VTD_SL_R);
1053 *writes = (*writes) && (slpte & VTD_SL_W);
1054 if (!(slpte & access_right_check)) {
1055 error_report_once("%s: detected slpte permission error "
1056 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1057 "slpte=0x%" PRIx64 ", write=%d)", __func__,
1058 iova, level, slpte, is_write);
1059 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
1061 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1062 error_report_once("%s: detected splte reserve non-zero "
1063 "iova=0x%" PRIx64 ", level=0x%" PRIx32
1064 "slpte=0x%" PRIx64 ")", __func__, iova,
1065 level, slpte);
1066 return -VTD_FR_PAGING_ENTRY_RSVD;
1069 if (vtd_is_last_slpte(slpte, level)) {
1070 *slptep = slpte;
1071 *slpte_level = level;
1072 return 0;
1074 addr = vtd_get_slpte_addr(slpte, aw_bits);
1075 level--;
1079 typedef int (*vtd_page_walk_hook)(IOMMUTLBEvent *event, void *private);
1082 * Constant information used during page walking
1084 * @hook_fn: hook func to be called when detected page
1085 * @private: private data to be passed into hook func
1086 * @notify_unmap: whether we should notify invalid entries
1087 * @as: VT-d address space of the device
1088 * @aw: maximum address width
1089 * @domain: domain ID of the page walk
1091 typedef struct {
1092 VTDAddressSpace *as;
1093 vtd_page_walk_hook hook_fn;
1094 void *private;
1095 bool notify_unmap;
1096 uint8_t aw;
1097 uint16_t domain_id;
1098 } vtd_page_walk_info;
1100 static int vtd_page_walk_one(IOMMUTLBEvent *event, vtd_page_walk_info *info)
1102 VTDAddressSpace *as = info->as;
1103 vtd_page_walk_hook hook_fn = info->hook_fn;
1104 void *private = info->private;
1105 IOMMUTLBEntry *entry = &event->entry;
1106 DMAMap target = {
1107 .iova = entry->iova,
1108 .size = entry->addr_mask,
1109 .translated_addr = entry->translated_addr,
1110 .perm = entry->perm,
1112 const DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
1114 if (event->type == IOMMU_NOTIFIER_UNMAP && !info->notify_unmap) {
1115 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1116 return 0;
1119 assert(hook_fn);
1121 /* Update local IOVA mapped ranges */
1122 if (event->type == IOMMU_NOTIFIER_MAP) {
1123 if (mapped) {
1124 /* If it's exactly the same translation, skip */
1125 if (!memcmp(mapped, &target, sizeof(target))) {
1126 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
1127 entry->translated_addr);
1128 return 0;
1129 } else {
1131 * Translation changed. Normally this should not
1132 * happen, but it can happen when with buggy guest
1133 * OSes. Note that there will be a small window that
1134 * we don't have map at all. But that's the best
1135 * effort we can do. The ideal way to emulate this is
1136 * atomically modify the PTE to follow what has
1137 * changed, but we can't. One example is that vfio
1138 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1139 * interface to modify a mapping (meanwhile it seems
1140 * meaningless to even provide one). Anyway, let's
1141 * mark this as a TODO in case one day we'll have
1142 * a better solution.
1144 IOMMUAccessFlags cache_perm = entry->perm;
1145 int ret;
1147 /* Emulate an UNMAP */
1148 event->type = IOMMU_NOTIFIER_UNMAP;
1149 entry->perm = IOMMU_NONE;
1150 trace_vtd_page_walk_one(info->domain_id,
1151 entry->iova,
1152 entry->translated_addr,
1153 entry->addr_mask,
1154 entry->perm);
1155 ret = hook_fn(event, private);
1156 if (ret) {
1157 return ret;
1159 /* Drop any existing mapping */
1160 iova_tree_remove(as->iova_tree, &target);
1161 /* Recover the correct type */
1162 event->type = IOMMU_NOTIFIER_MAP;
1163 entry->perm = cache_perm;
1166 iova_tree_insert(as->iova_tree, &target);
1167 } else {
1168 if (!mapped) {
1169 /* Skip since we didn't map this range at all */
1170 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1171 return 0;
1173 iova_tree_remove(as->iova_tree, &target);
1176 trace_vtd_page_walk_one(info->domain_id, entry->iova,
1177 entry->translated_addr, entry->addr_mask,
1178 entry->perm);
1179 return hook_fn(event, private);
1183 * vtd_page_walk_level - walk over specific level for IOVA range
1185 * @addr: base GPA addr to start the walk
1186 * @start: IOVA range start address
1187 * @end: IOVA range end address (start <= addr < end)
1188 * @read: whether parent level has read permission
1189 * @write: whether parent level has write permission
1190 * @info: constant information for the page walk
1192 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
1193 uint64_t end, uint32_t level, bool read,
1194 bool write, vtd_page_walk_info *info)
1196 bool read_cur, write_cur, entry_valid;
1197 uint32_t offset;
1198 uint64_t slpte;
1199 uint64_t subpage_size, subpage_mask;
1200 IOMMUTLBEvent event;
1201 uint64_t iova = start;
1202 uint64_t iova_next;
1203 int ret = 0;
1205 trace_vtd_page_walk_level(addr, level, start, end);
1207 subpage_size = 1ULL << vtd_slpt_level_shift(level);
1208 subpage_mask = vtd_slpt_level_page_mask(level);
1210 while (iova < end) {
1211 iova_next = (iova & subpage_mask) + subpage_size;
1213 offset = vtd_iova_level_offset(iova, level);
1214 slpte = vtd_get_slpte(addr, offset);
1216 if (slpte == (uint64_t)-1) {
1217 trace_vtd_page_walk_skip_read(iova, iova_next);
1218 goto next;
1221 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1222 trace_vtd_page_walk_skip_reserve(iova, iova_next);
1223 goto next;
1226 /* Permissions are stacked with parents' */
1227 read_cur = read && (slpte & VTD_SL_R);
1228 write_cur = write && (slpte & VTD_SL_W);
1231 * As long as we have either read/write permission, this is a
1232 * valid entry. The rule works for both page entries and page
1233 * table entries.
1235 entry_valid = read_cur | write_cur;
1237 if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
1239 * This is a valid PDE (or even bigger than PDE). We need
1240 * to walk one further level.
1242 ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
1243 iova, MIN(iova_next, end), level - 1,
1244 read_cur, write_cur, info);
1245 } else {
1247 * This means we are either:
1249 * (1) the real page entry (either 4K page, or huge page)
1250 * (2) the whole range is invalid
1252 * In either case, we send an IOTLB notification down.
1254 event.entry.target_as = &address_space_memory;
1255 event.entry.iova = iova & subpage_mask;
1256 event.entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
1257 event.entry.addr_mask = ~subpage_mask;
1258 /* NOTE: this is only meaningful if entry_valid == true */
1259 event.entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
1260 event.type = event.entry.perm ? IOMMU_NOTIFIER_MAP :
1261 IOMMU_NOTIFIER_UNMAP;
1262 ret = vtd_page_walk_one(&event, info);
1265 if (ret < 0) {
1266 return ret;
1269 next:
1270 iova = iova_next;
1273 return 0;
1277 * vtd_page_walk - walk specific IOVA range, and call the hook
1279 * @s: intel iommu state
1280 * @ce: context entry to walk upon
1281 * @start: IOVA address to start the walk
1282 * @end: IOVA range end address (start <= addr < end)
1283 * @info: page walking information struct
1285 static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
1286 uint64_t start, uint64_t end,
1287 vtd_page_walk_info *info)
1289 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
1290 uint32_t level = vtd_get_iova_level(s, ce);
1292 if (!vtd_iova_range_check(s, start, ce, info->aw)) {
1293 return -VTD_FR_ADDR_BEYOND_MGAW;
1296 if (!vtd_iova_range_check(s, end, ce, info->aw)) {
1297 /* Fix end so that it reaches the maximum */
1298 end = vtd_iova_limit(s, ce, info->aw);
1301 return vtd_page_walk_level(addr, start, end, level, true, true, info);
1304 static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
1305 VTDRootEntry *re)
1307 /* Legacy Mode reserved bits check */
1308 if (!s->root_scalable &&
1309 (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1310 goto rsvd_err;
1312 /* Scalable Mode reserved bits check */
1313 if (s->root_scalable &&
1314 ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
1315 (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1316 goto rsvd_err;
1318 return 0;
1320 rsvd_err:
1321 error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1322 ", lo=0x%"PRIx64,
1323 __func__, re->hi, re->lo);
1324 return -VTD_FR_ROOT_ENTRY_RSVD;
1327 static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
1328 VTDContextEntry *ce)
1330 if (!s->root_scalable &&
1331 (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
1332 ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1333 error_report_once("%s: invalid context entry: hi=%"PRIx64
1334 ", lo=%"PRIx64" (reserved nonzero)",
1335 __func__, ce->hi, ce->lo);
1336 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1339 if (s->root_scalable &&
1340 (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
1341 ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
1342 ce->val[2] ||
1343 ce->val[3])) {
1344 error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1345 ", val[2]=%"PRIx64
1346 ", val[1]=%"PRIx64
1347 ", val[0]=%"PRIx64" (reserved nonzero)",
1348 __func__, ce->val[3], ce->val[2],
1349 ce->val[1], ce->val[0]);
1350 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1353 return 0;
1356 static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
1357 VTDContextEntry *ce)
1359 VTDPASIDEntry pe;
1362 * Make sure in Scalable Mode, a present context entry
1363 * has valid rid2pasid setting, which includes valid
1364 * rid2pasid field and corresponding pasid entry setting
1366 return vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1369 /* Map a device to its corresponding domain (context-entry) */
1370 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
1371 uint8_t devfn, VTDContextEntry *ce)
1373 VTDRootEntry re;
1374 int ret_fr;
1375 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1377 ret_fr = vtd_get_root_entry(s, bus_num, &re);
1378 if (ret_fr) {
1379 return ret_fr;
1382 if (!vtd_root_entry_present(s, &re, devfn)) {
1383 /* Not error - it's okay we don't have root entry. */
1384 trace_vtd_re_not_present(bus_num);
1385 return -VTD_FR_ROOT_ENTRY_P;
1388 ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
1389 if (ret_fr) {
1390 return ret_fr;
1393 ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
1394 if (ret_fr) {
1395 return ret_fr;
1398 if (!vtd_ce_present(ce)) {
1399 /* Not error - it's okay we don't have context entry. */
1400 trace_vtd_ce_not_present(bus_num, devfn);
1401 return -VTD_FR_CONTEXT_ENTRY_P;
1404 ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
1405 if (ret_fr) {
1406 return ret_fr;
1409 /* Check if the programming of context-entry is valid */
1410 if (!s->root_scalable &&
1411 !vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1412 error_report_once("%s: invalid context entry: hi=%"PRIx64
1413 ", lo=%"PRIx64" (level %d not supported)",
1414 __func__, ce->hi, ce->lo,
1415 vtd_ce_get_level(ce));
1416 return -VTD_FR_CONTEXT_ENTRY_INV;
1419 if (!s->root_scalable) {
1420 /* Do translation type check */
1421 if (!vtd_ce_type_check(x86_iommu, ce)) {
1422 /* Errors dumped in vtd_ce_type_check() */
1423 return -VTD_FR_CONTEXT_ENTRY_INV;
1425 } else {
1427 * Check if the programming of context-entry.rid2pasid
1428 * and corresponding pasid setting is valid, and thus
1429 * avoids to check pasid entry fetching result in future
1430 * helper function calling.
1432 ret_fr = vtd_ce_rid2pasid_check(s, ce);
1433 if (ret_fr) {
1434 return ret_fr;
1438 return 0;
1441 static int vtd_sync_shadow_page_hook(IOMMUTLBEvent *event,
1442 void *private)
1444 memory_region_notify_iommu(private, 0, *event);
1445 return 0;
1448 static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
1449 VTDContextEntry *ce)
1451 VTDPASIDEntry pe;
1453 if (s->root_scalable) {
1454 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1455 return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
1458 return VTD_CONTEXT_ENTRY_DID(ce->hi);
1461 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1462 VTDContextEntry *ce,
1463 hwaddr addr, hwaddr size)
1465 IntelIOMMUState *s = vtd_as->iommu_state;
1466 vtd_page_walk_info info = {
1467 .hook_fn = vtd_sync_shadow_page_hook,
1468 .private = (void *)&vtd_as->iommu,
1469 .notify_unmap = true,
1470 .aw = s->aw_bits,
1471 .as = vtd_as,
1472 .domain_id = vtd_get_domain_id(s, ce),
1475 return vtd_page_walk(s, ce, addr, addr + size, &info);
1478 static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as)
1480 int ret;
1481 VTDContextEntry ce;
1482 IOMMUNotifier *n;
1484 if (!(vtd_as->iommu.iommu_notify_flags & IOMMU_NOTIFIER_IOTLB_EVENTS)) {
1485 return 0;
1488 ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1489 pci_bus_num(vtd_as->bus),
1490 vtd_as->devfn, &ce);
1491 if (ret) {
1492 if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1494 * It's a valid scenario to have a context entry that is
1495 * not present. For example, when a device is removed
1496 * from an existing domain then the context entry will be
1497 * zeroed by the guest before it was put into another
1498 * domain. When this happens, instead of synchronizing
1499 * the shadow pages we should invalidate all existing
1500 * mappings and notify the backends.
1502 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1503 vtd_address_space_unmap(vtd_as, n);
1505 ret = 0;
1507 return ret;
1510 return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
1514 * Check if specific device is configured to bypass address
1515 * translation for DMA requests. In Scalable Mode, bypass
1516 * 1st-level translation or 2nd-level translation, it depends
1517 * on PGTT setting.
1519 static bool vtd_dev_pt_enabled(IntelIOMMUState *s, VTDContextEntry *ce)
1521 VTDPASIDEntry pe;
1522 int ret;
1524 if (s->root_scalable) {
1525 ret = vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1526 if (ret) {
1527 error_report_once("%s: vtd_ce_get_rid2pasid_entry error: %"PRId32,
1528 __func__, ret);
1529 return false;
1531 return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
1534 return (vtd_ce_get_type(ce) == VTD_CONTEXT_TT_PASS_THROUGH);
1538 static bool vtd_as_pt_enabled(VTDAddressSpace *as)
1540 IntelIOMMUState *s;
1541 VTDContextEntry ce;
1542 int ret;
1544 assert(as);
1546 s = as->iommu_state;
1547 ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
1548 as->devfn, &ce);
1549 if (ret) {
1551 * Possibly failed to parse the context entry for some reason
1552 * (e.g., during init, or any guest configuration errors on
1553 * context entries). We should assume PT not enabled for
1554 * safety.
1556 return false;
1559 return vtd_dev_pt_enabled(s, &ce);
1562 /* Return whether the device is using IOMMU translation. */
1563 static bool vtd_switch_address_space(VTDAddressSpace *as)
1565 bool use_iommu;
1566 /* Whether we need to take the BQL on our own */
1567 bool take_bql = !qemu_mutex_iothread_locked();
1569 assert(as);
1571 use_iommu = as->iommu_state->dmar_enabled && !vtd_as_pt_enabled(as);
1573 trace_vtd_switch_address_space(pci_bus_num(as->bus),
1574 VTD_PCI_SLOT(as->devfn),
1575 VTD_PCI_FUNC(as->devfn),
1576 use_iommu);
1579 * It's possible that we reach here without BQL, e.g., when called
1580 * from vtd_pt_enable_fast_path(). However the memory APIs need
1581 * it. We'd better make sure we have had it already, or, take it.
1583 if (take_bql) {
1584 qemu_mutex_lock_iothread();
1587 /* Turn off first then on the other */
1588 if (use_iommu) {
1589 memory_region_set_enabled(&as->nodmar, false);
1590 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1591 } else {
1592 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1593 memory_region_set_enabled(&as->nodmar, true);
1596 if (take_bql) {
1597 qemu_mutex_unlock_iothread();
1600 return use_iommu;
1603 static void vtd_switch_address_space_all(IntelIOMMUState *s)
1605 GHashTableIter iter;
1606 VTDBus *vtd_bus;
1607 int i;
1609 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1610 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1611 for (i = 0; i < PCI_DEVFN_MAX; i++) {
1612 if (!vtd_bus->dev_as[i]) {
1613 continue;
1615 vtd_switch_address_space(vtd_bus->dev_as[i]);
1620 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1622 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1625 static const bool vtd_qualified_faults[] = {
1626 [VTD_FR_RESERVED] = false,
1627 [VTD_FR_ROOT_ENTRY_P] = false,
1628 [VTD_FR_CONTEXT_ENTRY_P] = true,
1629 [VTD_FR_CONTEXT_ENTRY_INV] = true,
1630 [VTD_FR_ADDR_BEYOND_MGAW] = true,
1631 [VTD_FR_WRITE] = true,
1632 [VTD_FR_READ] = true,
1633 [VTD_FR_PAGING_ENTRY_INV] = true,
1634 [VTD_FR_ROOT_TABLE_INV] = false,
1635 [VTD_FR_CONTEXT_TABLE_INV] = false,
1636 [VTD_FR_ROOT_ENTRY_RSVD] = false,
1637 [VTD_FR_PAGING_ENTRY_RSVD] = true,
1638 [VTD_FR_CONTEXT_ENTRY_TT] = true,
1639 [VTD_FR_PASID_TABLE_INV] = false,
1640 [VTD_FR_RESERVED_ERR] = false,
1641 [VTD_FR_MAX] = false,
1644 /* To see if a fault condition is "qualified", which is reported to software
1645 * only if the FPD field in the context-entry used to process the faulting
1646 * request is 0.
1648 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1650 return vtd_qualified_faults[fault];
1653 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1655 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1658 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1660 VTDBus *vtd_bus;
1661 VTDAddressSpace *vtd_as;
1662 bool success = false;
1664 vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1665 if (!vtd_bus) {
1666 goto out;
1669 vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1670 if (!vtd_as) {
1671 goto out;
1674 if (vtd_switch_address_space(vtd_as) == false) {
1675 /* We switched off IOMMU region successfully. */
1676 success = true;
1679 out:
1680 trace_vtd_pt_enable_fast_path(source_id, success);
1683 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1684 * translation.
1686 * Called from RCU critical section.
1688 * @bus_num: The bus number
1689 * @devfn: The devfn, which is the combined of device and function number
1690 * @is_write: The access is a write operation
1691 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1693 * Returns true if translation is successful, otherwise false.
1695 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1696 uint8_t devfn, hwaddr addr, bool is_write,
1697 IOMMUTLBEntry *entry)
1699 IntelIOMMUState *s = vtd_as->iommu_state;
1700 VTDContextEntry ce;
1701 uint8_t bus_num = pci_bus_num(bus);
1702 VTDContextCacheEntry *cc_entry;
1703 uint64_t slpte, page_mask;
1704 uint32_t level;
1705 uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1706 int ret_fr;
1707 bool is_fpd_set = false;
1708 bool reads = true;
1709 bool writes = true;
1710 uint8_t access_flags;
1711 VTDIOTLBEntry *iotlb_entry;
1714 * We have standalone memory region for interrupt addresses, we
1715 * should never receive translation requests in this region.
1717 assert(!vtd_is_interrupt_addr(addr));
1719 vtd_iommu_lock(s);
1721 cc_entry = &vtd_as->context_cache_entry;
1723 /* Try to fetch slpte form IOTLB */
1724 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1725 if (iotlb_entry) {
1726 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1727 iotlb_entry->domain_id);
1728 slpte = iotlb_entry->slpte;
1729 access_flags = iotlb_entry->access_flags;
1730 page_mask = iotlb_entry->mask;
1731 goto out;
1734 /* Try to fetch context-entry from cache first */
1735 if (cc_entry->context_cache_gen == s->context_cache_gen) {
1736 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1737 cc_entry->context_entry.lo,
1738 cc_entry->context_cache_gen);
1739 ce = cc_entry->context_entry;
1740 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1741 if (!is_fpd_set && s->root_scalable) {
1742 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1743 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1745 } else {
1746 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1747 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1748 if (!ret_fr && !is_fpd_set && s->root_scalable) {
1749 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1751 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1752 /* Update context-cache */
1753 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1754 cc_entry->context_cache_gen,
1755 s->context_cache_gen);
1756 cc_entry->context_entry = ce;
1757 cc_entry->context_cache_gen = s->context_cache_gen;
1761 * We don't need to translate for pass-through context entries.
1762 * Also, let's ignore IOTLB caching as well for PT devices.
1764 if (vtd_dev_pt_enabled(s, &ce)) {
1765 entry->iova = addr & VTD_PAGE_MASK_4K;
1766 entry->translated_addr = entry->iova;
1767 entry->addr_mask = ~VTD_PAGE_MASK_4K;
1768 entry->perm = IOMMU_RW;
1769 trace_vtd_translate_pt(source_id, entry->iova);
1772 * When this happens, it means firstly caching-mode is not
1773 * enabled, and this is the first passthrough translation for
1774 * the device. Let's enable the fast path for passthrough.
1776 * When passthrough is disabled again for the device, we can
1777 * capture it via the context entry invalidation, then the
1778 * IOMMU region can be swapped back.
1780 vtd_pt_enable_fast_path(s, source_id);
1781 vtd_iommu_unlock(s);
1782 return true;
1785 ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
1786 &reads, &writes, s->aw_bits);
1787 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1789 page_mask = vtd_slpt_level_page_mask(level);
1790 access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1791 vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce), addr, slpte,
1792 access_flags, level);
1793 out:
1794 vtd_iommu_unlock(s);
1795 entry->iova = addr & page_mask;
1796 entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
1797 entry->addr_mask = ~page_mask;
1798 entry->perm = access_flags;
1799 return true;
1801 error:
1802 vtd_iommu_unlock(s);
1803 entry->iova = 0;
1804 entry->translated_addr = 0;
1805 entry->addr_mask = 0;
1806 entry->perm = IOMMU_NONE;
1807 return false;
1810 static void vtd_root_table_setup(IntelIOMMUState *s)
1812 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1813 s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1815 vtd_update_scalable_state(s);
1817 trace_vtd_reg_dmar_root(s->root, s->root_scalable);
1820 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1821 uint32_t index, uint32_t mask)
1823 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1826 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1828 uint64_t value = 0;
1829 value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1830 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1831 s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
1832 s->intr_eime = value & VTD_IRTA_EIME;
1834 /* Notify global invalidation */
1835 vtd_iec_notify_all(s, true, 0, 0);
1837 trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
1840 static void vtd_iommu_replay_all(IntelIOMMUState *s)
1842 VTDAddressSpace *vtd_as;
1844 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1845 vtd_sync_shadow_page_table(vtd_as);
1849 static void vtd_context_global_invalidate(IntelIOMMUState *s)
1851 trace_vtd_inv_desc_cc_global();
1852 /* Protects context cache */
1853 vtd_iommu_lock(s);
1854 s->context_cache_gen++;
1855 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1856 vtd_reset_context_cache_locked(s);
1858 vtd_iommu_unlock(s);
1859 vtd_address_space_refresh_all(s);
1861 * From VT-d spec 6.5.2.1, a global context entry invalidation
1862 * should be followed by a IOTLB global invalidation, so we should
1863 * be safe even without this. Hoewever, let's replay the region as
1864 * well to be safer, and go back here when we need finer tunes for
1865 * VT-d emulation codes.
1867 vtd_iommu_replay_all(s);
1870 /* Do a context-cache device-selective invalidation.
1871 * @func_mask: FM field after shifting
1873 static void vtd_context_device_invalidate(IntelIOMMUState *s,
1874 uint16_t source_id,
1875 uint16_t func_mask)
1877 uint16_t mask;
1878 VTDBus *vtd_bus;
1879 VTDAddressSpace *vtd_as;
1880 uint8_t bus_n, devfn;
1881 uint16_t devfn_it;
1883 trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1885 switch (func_mask & 3) {
1886 case 0:
1887 mask = 0; /* No bits in the SID field masked */
1888 break;
1889 case 1:
1890 mask = 4; /* Mask bit 2 in the SID field */
1891 break;
1892 case 2:
1893 mask = 6; /* Mask bit 2:1 in the SID field */
1894 break;
1895 case 3:
1896 mask = 7; /* Mask bit 2:0 in the SID field */
1897 break;
1898 default:
1899 g_assert_not_reached();
1901 mask = ~mask;
1903 bus_n = VTD_SID_TO_BUS(source_id);
1904 vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
1905 if (vtd_bus) {
1906 devfn = VTD_SID_TO_DEVFN(source_id);
1907 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
1908 vtd_as = vtd_bus->dev_as[devfn_it];
1909 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1910 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1911 VTD_PCI_FUNC(devfn_it));
1912 vtd_iommu_lock(s);
1913 vtd_as->context_cache_entry.context_cache_gen = 0;
1914 vtd_iommu_unlock(s);
1916 * Do switch address space when needed, in case if the
1917 * device passthrough bit is switched.
1919 vtd_switch_address_space(vtd_as);
1921 * So a device is moving out of (or moving into) a
1922 * domain, resync the shadow page table.
1923 * This won't bring bad even if we have no such
1924 * notifier registered - the IOMMU notification
1925 * framework will skip MAP notifications if that
1926 * happened.
1928 vtd_sync_shadow_page_table(vtd_as);
1934 /* Context-cache invalidation
1935 * Returns the Context Actual Invalidation Granularity.
1936 * @val: the content of the CCMD_REG
1938 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1940 uint64_t caig;
1941 uint64_t type = val & VTD_CCMD_CIRG_MASK;
1943 switch (type) {
1944 case VTD_CCMD_DOMAIN_INVL:
1945 /* Fall through */
1946 case VTD_CCMD_GLOBAL_INVL:
1947 caig = VTD_CCMD_GLOBAL_INVL_A;
1948 vtd_context_global_invalidate(s);
1949 break;
1951 case VTD_CCMD_DEVICE_INVL:
1952 caig = VTD_CCMD_DEVICE_INVL_A;
1953 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1954 break;
1956 default:
1957 error_report_once("%s: invalid context: 0x%" PRIx64,
1958 __func__, val);
1959 caig = 0;
1961 return caig;
1964 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1966 trace_vtd_inv_desc_iotlb_global();
1967 vtd_reset_iotlb(s);
1968 vtd_iommu_replay_all(s);
1971 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1973 VTDContextEntry ce;
1974 VTDAddressSpace *vtd_as;
1976 trace_vtd_inv_desc_iotlb_domain(domain_id);
1978 vtd_iommu_lock(s);
1979 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1980 &domain_id);
1981 vtd_iommu_unlock(s);
1983 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1984 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1985 vtd_as->devfn, &ce) &&
1986 domain_id == vtd_get_domain_id(s, &ce)) {
1987 vtd_sync_shadow_page_table(vtd_as);
1992 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
1993 uint16_t domain_id, hwaddr addr,
1994 uint8_t am)
1996 VTDAddressSpace *vtd_as;
1997 VTDContextEntry ce;
1998 int ret;
1999 hwaddr size = (1 << am) * VTD_PAGE_SIZE;
2001 QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
2002 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2003 vtd_as->devfn, &ce);
2004 if (!ret && domain_id == vtd_get_domain_id(s, &ce)) {
2005 if (vtd_as_has_map_notifier(vtd_as)) {
2007 * As long as we have MAP notifications registered in
2008 * any of our IOMMU notifiers, we need to sync the
2009 * shadow page table.
2011 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
2012 } else {
2014 * For UNMAP-only notifiers, we don't need to walk the
2015 * page tables. We just deliver the PSI down to
2016 * invalidate caches.
2018 IOMMUTLBEvent event = {
2019 .type = IOMMU_NOTIFIER_UNMAP,
2020 .entry = {
2021 .target_as = &address_space_memory,
2022 .iova = addr,
2023 .translated_addr = 0,
2024 .addr_mask = size - 1,
2025 .perm = IOMMU_NONE,
2028 memory_region_notify_iommu(&vtd_as->iommu, 0, event);
2034 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
2035 hwaddr addr, uint8_t am)
2037 VTDIOTLBPageInvInfo info;
2039 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
2041 assert(am <= VTD_MAMV);
2042 info.domain_id = domain_id;
2043 info.addr = addr;
2044 info.mask = ~((1 << am) - 1);
2045 vtd_iommu_lock(s);
2046 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
2047 vtd_iommu_unlock(s);
2048 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
2051 /* Flush IOTLB
2052 * Returns the IOTLB Actual Invalidation Granularity.
2053 * @val: the content of the IOTLB_REG
2055 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
2057 uint64_t iaig;
2058 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
2059 uint16_t domain_id;
2060 hwaddr addr;
2061 uint8_t am;
2063 switch (type) {
2064 case VTD_TLB_GLOBAL_FLUSH:
2065 iaig = VTD_TLB_GLOBAL_FLUSH_A;
2066 vtd_iotlb_global_invalidate(s);
2067 break;
2069 case VTD_TLB_DSI_FLUSH:
2070 domain_id = VTD_TLB_DID(val);
2071 iaig = VTD_TLB_DSI_FLUSH_A;
2072 vtd_iotlb_domain_invalidate(s, domain_id);
2073 break;
2075 case VTD_TLB_PSI_FLUSH:
2076 domain_id = VTD_TLB_DID(val);
2077 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
2078 am = VTD_IVA_AM(addr);
2079 addr = VTD_IVA_ADDR(addr);
2080 if (am > VTD_MAMV) {
2081 error_report_once("%s: address mask overflow: 0x%" PRIx64,
2082 __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
2083 iaig = 0;
2084 break;
2086 iaig = VTD_TLB_PSI_FLUSH_A;
2087 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2088 break;
2090 default:
2091 error_report_once("%s: invalid granularity: 0x%" PRIx64,
2092 __func__, val);
2093 iaig = 0;
2095 return iaig;
2098 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
2100 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
2102 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
2103 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
2106 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
2108 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
2110 trace_vtd_inv_qi_enable(en);
2112 if (en) {
2113 s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
2114 /* 2^(x+8) entries */
2115 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
2116 s->qi_enabled = true;
2117 trace_vtd_inv_qi_setup(s->iq, s->iq_size);
2118 /* Ok - report back to driver */
2119 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
2121 if (s->iq_tail != 0) {
2123 * This is a spec violation but Windows guests are known to set up
2124 * Queued Invalidation this way so we allow the write and process
2125 * Invalidation Descriptors right away.
2127 trace_vtd_warn_invalid_qi_tail(s->iq_tail);
2128 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2129 vtd_fetch_inv_desc(s);
2132 } else {
2133 if (vtd_queued_inv_disable_check(s)) {
2134 /* disable Queued Invalidation */
2135 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
2136 s->iq_head = 0;
2137 s->qi_enabled = false;
2138 /* Ok - report back to driver */
2139 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
2140 } else {
2141 error_report_once("%s: detected improper state when disable QI "
2142 "(head=0x%x, tail=0x%x, last_type=%d)",
2143 __func__,
2144 s->iq_head, s->iq_tail, s->iq_last_desc_type);
2149 /* Set Root Table Pointer */
2150 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
2152 vtd_root_table_setup(s);
2153 /* Ok - report back to driver */
2154 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
2155 vtd_reset_caches(s);
2156 vtd_address_space_refresh_all(s);
2159 /* Set Interrupt Remap Table Pointer */
2160 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
2162 vtd_interrupt_remap_table_setup(s);
2163 /* Ok - report back to driver */
2164 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
2167 /* Handle Translation Enable/Disable */
2168 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
2170 if (s->dmar_enabled == en) {
2171 return;
2174 trace_vtd_dmar_enable(en);
2176 if (en) {
2177 s->dmar_enabled = true;
2178 /* Ok - report back to driver */
2179 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
2180 } else {
2181 s->dmar_enabled = false;
2183 /* Clear the index of Fault Recording Register */
2184 s->next_frcd_reg = 0;
2185 /* Ok - report back to driver */
2186 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
2189 vtd_reset_caches(s);
2190 vtd_address_space_refresh_all(s);
2193 /* Handle Interrupt Remap Enable/Disable */
2194 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
2196 trace_vtd_ir_enable(en);
2198 if (en) {
2199 s->intr_enabled = true;
2200 /* Ok - report back to driver */
2201 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
2202 } else {
2203 s->intr_enabled = false;
2204 /* Ok - report back to driver */
2205 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
2209 /* Handle write to Global Command Register */
2210 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
2212 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
2213 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
2214 uint32_t changed = status ^ val;
2216 trace_vtd_reg_write_gcmd(status, val);
2217 if (changed & VTD_GCMD_TE) {
2218 /* Translation enable/disable */
2219 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
2221 if (val & VTD_GCMD_SRTP) {
2222 /* Set/update the root-table pointer */
2223 vtd_handle_gcmd_srtp(s);
2225 if (changed & VTD_GCMD_QIE) {
2226 /* Queued Invalidation Enable */
2227 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
2229 if (val & VTD_GCMD_SIRTP) {
2230 /* Set/update the interrupt remapping root-table pointer */
2231 vtd_handle_gcmd_sirtp(s);
2233 if (changed & VTD_GCMD_IRE) {
2234 /* Interrupt remap enable/disable */
2235 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
2239 /* Handle write to Context Command Register */
2240 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
2242 uint64_t ret;
2243 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
2245 /* Context-cache invalidation request */
2246 if (val & VTD_CCMD_ICC) {
2247 if (s->qi_enabled) {
2248 error_report_once("Queued Invalidation enabled, "
2249 "should not use register-based invalidation");
2250 return;
2252 ret = vtd_context_cache_invalidate(s, val);
2253 /* Invalidation completed. Change something to show */
2254 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
2255 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
2256 ret);
2260 /* Handle write to IOTLB Invalidation Register */
2261 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
2263 uint64_t ret;
2264 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
2266 /* IOTLB invalidation request */
2267 if (val & VTD_TLB_IVT) {
2268 if (s->qi_enabled) {
2269 error_report_once("Queued Invalidation enabled, "
2270 "should not use register-based invalidation");
2271 return;
2273 ret = vtd_iotlb_flush(s, val);
2274 /* Invalidation completed. Change something to show */
2275 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
2276 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
2277 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
2281 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
2282 static bool vtd_get_inv_desc(IntelIOMMUState *s,
2283 VTDInvDesc *inv_desc)
2285 dma_addr_t base_addr = s->iq;
2286 uint32_t offset = s->iq_head;
2287 uint32_t dw = s->iq_dw ? 32 : 16;
2288 dma_addr_t addr = base_addr + offset * dw;
2290 if (dma_memory_read(&address_space_memory, addr,
2291 inv_desc, dw, MEMTXATTRS_UNSPECIFIED)) {
2292 error_report_once("Read INV DESC failed.");
2293 return false;
2295 inv_desc->lo = le64_to_cpu(inv_desc->lo);
2296 inv_desc->hi = le64_to_cpu(inv_desc->hi);
2297 if (dw == 32) {
2298 inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
2299 inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
2301 return true;
2304 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2306 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
2307 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
2308 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2309 " (reserved nonzero)", __func__, inv_desc->hi,
2310 inv_desc->lo);
2311 return false;
2313 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
2314 /* Status Write */
2315 uint32_t status_data = (uint32_t)(inv_desc->lo >>
2316 VTD_INV_DESC_WAIT_DATA_SHIFT);
2318 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
2320 /* FIXME: need to be masked with HAW? */
2321 dma_addr_t status_addr = inv_desc->hi;
2322 trace_vtd_inv_desc_wait_sw(status_addr, status_data);
2323 status_data = cpu_to_le32(status_data);
2324 if (dma_memory_write(&address_space_memory, status_addr,
2325 &status_data, sizeof(status_data),
2326 MEMTXATTRS_UNSPECIFIED)) {
2327 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
2328 return false;
2330 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
2331 /* Interrupt flag */
2332 vtd_generate_completion_event(s);
2333 } else {
2334 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2335 " (unknown type)", __func__, inv_desc->hi,
2336 inv_desc->lo);
2337 return false;
2339 return true;
2342 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
2343 VTDInvDesc *inv_desc)
2345 uint16_t sid, fmask;
2347 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
2348 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2349 " (reserved nonzero)", __func__, inv_desc->hi,
2350 inv_desc->lo);
2351 return false;
2353 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
2354 case VTD_INV_DESC_CC_DOMAIN:
2355 trace_vtd_inv_desc_cc_domain(
2356 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
2357 /* Fall through */
2358 case VTD_INV_DESC_CC_GLOBAL:
2359 vtd_context_global_invalidate(s);
2360 break;
2362 case VTD_INV_DESC_CC_DEVICE:
2363 sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
2364 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
2365 vtd_context_device_invalidate(s, sid, fmask);
2366 break;
2368 default:
2369 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2370 " (invalid type)", __func__, inv_desc->hi,
2371 inv_desc->lo);
2372 return false;
2374 return true;
2377 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2379 uint16_t domain_id;
2380 uint8_t am;
2381 hwaddr addr;
2383 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
2384 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
2385 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2386 ", lo=0x%"PRIx64" (reserved bits unzero)",
2387 __func__, inv_desc->hi, inv_desc->lo);
2388 return false;
2391 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
2392 case VTD_INV_DESC_IOTLB_GLOBAL:
2393 vtd_iotlb_global_invalidate(s);
2394 break;
2396 case VTD_INV_DESC_IOTLB_DOMAIN:
2397 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2398 vtd_iotlb_domain_invalidate(s, domain_id);
2399 break;
2401 case VTD_INV_DESC_IOTLB_PAGE:
2402 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2403 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
2404 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
2405 if (am > VTD_MAMV) {
2406 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2407 ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)",
2408 __func__, inv_desc->hi, inv_desc->lo,
2409 am, (unsigned)VTD_MAMV);
2410 return false;
2412 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2413 break;
2415 default:
2416 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2417 ", lo=0x%"PRIx64" (type mismatch: 0x%llx)",
2418 __func__, inv_desc->hi, inv_desc->lo,
2419 inv_desc->lo & VTD_INV_DESC_IOTLB_G);
2420 return false;
2422 return true;
2425 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
2426 VTDInvDesc *inv_desc)
2428 trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
2429 inv_desc->iec.index,
2430 inv_desc->iec.index_mask);
2432 vtd_iec_notify_all(s, !inv_desc->iec.granularity,
2433 inv_desc->iec.index,
2434 inv_desc->iec.index_mask);
2435 return true;
2438 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
2439 VTDInvDesc *inv_desc)
2441 VTDAddressSpace *vtd_dev_as;
2442 IOMMUTLBEvent event;
2443 struct VTDBus *vtd_bus;
2444 hwaddr addr;
2445 uint64_t sz;
2446 uint16_t sid;
2447 uint8_t devfn;
2448 bool size;
2449 uint8_t bus_num;
2451 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
2452 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
2453 devfn = sid & 0xff;
2454 bus_num = sid >> 8;
2455 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
2457 if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
2458 (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
2459 error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
2460 ", lo=%"PRIx64" (reserved nonzero)", __func__,
2461 inv_desc->hi, inv_desc->lo);
2462 return false;
2465 vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
2466 if (!vtd_bus) {
2467 goto done;
2470 vtd_dev_as = vtd_bus->dev_as[devfn];
2471 if (!vtd_dev_as) {
2472 goto done;
2475 /* According to ATS spec table 2.4:
2476 * S = 0, bits 15:12 = xxxx range size: 4K
2477 * S = 1, bits 15:12 = xxx0 range size: 8K
2478 * S = 1, bits 15:12 = xx01 range size: 16K
2479 * S = 1, bits 15:12 = x011 range size: 32K
2480 * S = 1, bits 15:12 = 0111 range size: 64K
2481 * ...
2483 if (size) {
2484 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2485 addr &= ~(sz - 1);
2486 } else {
2487 sz = VTD_PAGE_SIZE;
2490 event.type = IOMMU_NOTIFIER_DEVIOTLB_UNMAP;
2491 event.entry.target_as = &vtd_dev_as->as;
2492 event.entry.addr_mask = sz - 1;
2493 event.entry.iova = addr;
2494 event.entry.perm = IOMMU_NONE;
2495 event.entry.translated_addr = 0;
2496 memory_region_notify_iommu(&vtd_dev_as->iommu, 0, event);
2498 done:
2499 return true;
2502 static bool vtd_process_inv_desc(IntelIOMMUState *s)
2504 VTDInvDesc inv_desc;
2505 uint8_t desc_type;
2507 trace_vtd_inv_qi_head(s->iq_head);
2508 if (!vtd_get_inv_desc(s, &inv_desc)) {
2509 s->iq_last_desc_type = VTD_INV_DESC_NONE;
2510 return false;
2513 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2514 /* FIXME: should update at first or at last? */
2515 s->iq_last_desc_type = desc_type;
2517 switch (desc_type) {
2518 case VTD_INV_DESC_CC:
2519 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2520 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2521 return false;
2523 break;
2525 case VTD_INV_DESC_IOTLB:
2526 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2527 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2528 return false;
2530 break;
2533 * TODO: the entity of below two cases will be implemented in future series.
2534 * To make guest (which integrates scalable mode support patch set in
2535 * iommu driver) work, just return true is enough so far.
2537 case VTD_INV_DESC_PC:
2538 break;
2540 case VTD_INV_DESC_PIOTLB:
2541 break;
2543 case VTD_INV_DESC_WAIT:
2544 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2545 if (!vtd_process_wait_desc(s, &inv_desc)) {
2546 return false;
2548 break;
2550 case VTD_INV_DESC_IEC:
2551 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2552 if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2553 return false;
2555 break;
2557 case VTD_INV_DESC_DEVICE:
2558 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2559 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2560 return false;
2562 break;
2564 default:
2565 error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
2566 " (unknown type)", __func__, inv_desc.hi,
2567 inv_desc.lo);
2568 return false;
2570 s->iq_head++;
2571 if (s->iq_head == s->iq_size) {
2572 s->iq_head = 0;
2574 return true;
2577 /* Try to fetch and process more Invalidation Descriptors */
2578 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2580 int qi_shift;
2582 /* Refer to 10.4.23 of VT-d spec 3.0 */
2583 qi_shift = s->iq_dw ? VTD_IQH_QH_SHIFT_5 : VTD_IQH_QH_SHIFT_4;
2585 trace_vtd_inv_qi_fetch();
2587 if (s->iq_tail >= s->iq_size) {
2588 /* Detects an invalid Tail pointer */
2589 error_report_once("%s: detected invalid QI tail "
2590 "(tail=0x%x, size=0x%x)",
2591 __func__, s->iq_tail, s->iq_size);
2592 vtd_handle_inv_queue_error(s);
2593 return;
2595 while (s->iq_head != s->iq_tail) {
2596 if (!vtd_process_inv_desc(s)) {
2597 /* Invalidation Queue Errors */
2598 vtd_handle_inv_queue_error(s);
2599 break;
2601 /* Must update the IQH_REG in time */
2602 vtd_set_quad_raw(s, DMAR_IQH_REG,
2603 (((uint64_t)(s->iq_head)) << qi_shift) &
2604 VTD_IQH_QH_MASK);
2608 /* Handle write to Invalidation Queue Tail Register */
2609 static void vtd_handle_iqt_write(IntelIOMMUState *s)
2611 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2613 if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
2614 error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
2615 __func__, val);
2616 return;
2618 s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
2619 trace_vtd_inv_qi_tail(s->iq_tail);
2621 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2622 /* Process Invalidation Queue here */
2623 vtd_fetch_inv_desc(s);
2627 static void vtd_handle_fsts_write(IntelIOMMUState *s)
2629 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2630 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2631 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2633 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2634 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2635 trace_vtd_fsts_clear_ip();
2637 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2638 * Descriptors if there are any when Queued Invalidation is enabled?
2642 static void vtd_handle_fectl_write(IntelIOMMUState *s)
2644 uint32_t fectl_reg;
2645 /* FIXME: when software clears the IM field, check the IP field. But do we
2646 * need to compare the old value and the new value to conclude that
2647 * software clears the IM field? Or just check if the IM field is zero?
2649 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2651 trace_vtd_reg_write_fectl(fectl_reg);
2653 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2654 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2655 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2659 static void vtd_handle_ics_write(IntelIOMMUState *s)
2661 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2662 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2664 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2665 trace_vtd_reg_ics_clear_ip();
2666 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2670 static void vtd_handle_iectl_write(IntelIOMMUState *s)
2672 uint32_t iectl_reg;
2673 /* FIXME: when software clears the IM field, check the IP field. But do we
2674 * need to compare the old value and the new value to conclude that
2675 * software clears the IM field? Or just check if the IM field is zero?
2677 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2679 trace_vtd_reg_write_iectl(iectl_reg);
2681 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2682 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2683 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2687 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2689 IntelIOMMUState *s = opaque;
2690 uint64_t val;
2692 trace_vtd_reg_read(addr, size);
2694 if (addr + size > DMAR_REG_SIZE) {
2695 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2696 " size=0x%x", __func__, addr, size);
2697 return (uint64_t)-1;
2700 switch (addr) {
2701 /* Root Table Address Register, 64-bit */
2702 case DMAR_RTADDR_REG:
2703 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
2704 if (size == 4) {
2705 val = val & ((1ULL << 32) - 1);
2707 break;
2709 case DMAR_RTADDR_REG_HI:
2710 assert(size == 4);
2711 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG) >> 32;
2712 break;
2714 /* Invalidation Queue Address Register, 64-bit */
2715 case DMAR_IQA_REG:
2716 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2717 if (size == 4) {
2718 val = val & ((1ULL << 32) - 1);
2720 break;
2722 case DMAR_IQA_REG_HI:
2723 assert(size == 4);
2724 val = s->iq >> 32;
2725 break;
2727 default:
2728 if (size == 4) {
2729 val = vtd_get_long(s, addr);
2730 } else {
2731 val = vtd_get_quad(s, addr);
2735 return val;
2738 static void vtd_mem_write(void *opaque, hwaddr addr,
2739 uint64_t val, unsigned size)
2741 IntelIOMMUState *s = opaque;
2743 trace_vtd_reg_write(addr, size, val);
2745 if (addr + size > DMAR_REG_SIZE) {
2746 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2747 " size=0x%x", __func__, addr, size);
2748 return;
2751 switch (addr) {
2752 /* Global Command Register, 32-bit */
2753 case DMAR_GCMD_REG:
2754 vtd_set_long(s, addr, val);
2755 vtd_handle_gcmd_write(s);
2756 break;
2758 /* Context Command Register, 64-bit */
2759 case DMAR_CCMD_REG:
2760 if (size == 4) {
2761 vtd_set_long(s, addr, val);
2762 } else {
2763 vtd_set_quad(s, addr, val);
2764 vtd_handle_ccmd_write(s);
2766 break;
2768 case DMAR_CCMD_REG_HI:
2769 assert(size == 4);
2770 vtd_set_long(s, addr, val);
2771 vtd_handle_ccmd_write(s);
2772 break;
2774 /* IOTLB Invalidation Register, 64-bit */
2775 case DMAR_IOTLB_REG:
2776 if (size == 4) {
2777 vtd_set_long(s, addr, val);
2778 } else {
2779 vtd_set_quad(s, addr, val);
2780 vtd_handle_iotlb_write(s);
2782 break;
2784 case DMAR_IOTLB_REG_HI:
2785 assert(size == 4);
2786 vtd_set_long(s, addr, val);
2787 vtd_handle_iotlb_write(s);
2788 break;
2790 /* Invalidate Address Register, 64-bit */
2791 case DMAR_IVA_REG:
2792 if (size == 4) {
2793 vtd_set_long(s, addr, val);
2794 } else {
2795 vtd_set_quad(s, addr, val);
2797 break;
2799 case DMAR_IVA_REG_HI:
2800 assert(size == 4);
2801 vtd_set_long(s, addr, val);
2802 break;
2804 /* Fault Status Register, 32-bit */
2805 case DMAR_FSTS_REG:
2806 assert(size == 4);
2807 vtd_set_long(s, addr, val);
2808 vtd_handle_fsts_write(s);
2809 break;
2811 /* Fault Event Control Register, 32-bit */
2812 case DMAR_FECTL_REG:
2813 assert(size == 4);
2814 vtd_set_long(s, addr, val);
2815 vtd_handle_fectl_write(s);
2816 break;
2818 /* Fault Event Data Register, 32-bit */
2819 case DMAR_FEDATA_REG:
2820 assert(size == 4);
2821 vtd_set_long(s, addr, val);
2822 break;
2824 /* Fault Event Address Register, 32-bit */
2825 case DMAR_FEADDR_REG:
2826 if (size == 4) {
2827 vtd_set_long(s, addr, val);
2828 } else {
2830 * While the register is 32-bit only, some guests (Xen...) write to
2831 * it with 64-bit.
2833 vtd_set_quad(s, addr, val);
2835 break;
2837 /* Fault Event Upper Address Register, 32-bit */
2838 case DMAR_FEUADDR_REG:
2839 assert(size == 4);
2840 vtd_set_long(s, addr, val);
2841 break;
2843 /* Protected Memory Enable Register, 32-bit */
2844 case DMAR_PMEN_REG:
2845 assert(size == 4);
2846 vtd_set_long(s, addr, val);
2847 break;
2849 /* Root Table Address Register, 64-bit */
2850 case DMAR_RTADDR_REG:
2851 if (size == 4) {
2852 vtd_set_long(s, addr, val);
2853 } else {
2854 vtd_set_quad(s, addr, val);
2856 break;
2858 case DMAR_RTADDR_REG_HI:
2859 assert(size == 4);
2860 vtd_set_long(s, addr, val);
2861 break;
2863 /* Invalidation Queue Tail Register, 64-bit */
2864 case DMAR_IQT_REG:
2865 if (size == 4) {
2866 vtd_set_long(s, addr, val);
2867 } else {
2868 vtd_set_quad(s, addr, val);
2870 vtd_handle_iqt_write(s);
2871 break;
2873 case DMAR_IQT_REG_HI:
2874 assert(size == 4);
2875 vtd_set_long(s, addr, val);
2876 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2877 break;
2879 /* Invalidation Queue Address Register, 64-bit */
2880 case DMAR_IQA_REG:
2881 if (size == 4) {
2882 vtd_set_long(s, addr, val);
2883 } else {
2884 vtd_set_quad(s, addr, val);
2886 if (s->ecap & VTD_ECAP_SMTS &&
2887 val & VTD_IQA_DW_MASK) {
2888 s->iq_dw = true;
2889 } else {
2890 s->iq_dw = false;
2892 break;
2894 case DMAR_IQA_REG_HI:
2895 assert(size == 4);
2896 vtd_set_long(s, addr, val);
2897 break;
2899 /* Invalidation Completion Status Register, 32-bit */
2900 case DMAR_ICS_REG:
2901 assert(size == 4);
2902 vtd_set_long(s, addr, val);
2903 vtd_handle_ics_write(s);
2904 break;
2906 /* Invalidation Event Control Register, 32-bit */
2907 case DMAR_IECTL_REG:
2908 assert(size == 4);
2909 vtd_set_long(s, addr, val);
2910 vtd_handle_iectl_write(s);
2911 break;
2913 /* Invalidation Event Data Register, 32-bit */
2914 case DMAR_IEDATA_REG:
2915 assert(size == 4);
2916 vtd_set_long(s, addr, val);
2917 break;
2919 /* Invalidation Event Address Register, 32-bit */
2920 case DMAR_IEADDR_REG:
2921 assert(size == 4);
2922 vtd_set_long(s, addr, val);
2923 break;
2925 /* Invalidation Event Upper Address Register, 32-bit */
2926 case DMAR_IEUADDR_REG:
2927 assert(size == 4);
2928 vtd_set_long(s, addr, val);
2929 break;
2931 /* Fault Recording Registers, 128-bit */
2932 case DMAR_FRCD_REG_0_0:
2933 if (size == 4) {
2934 vtd_set_long(s, addr, val);
2935 } else {
2936 vtd_set_quad(s, addr, val);
2938 break;
2940 case DMAR_FRCD_REG_0_1:
2941 assert(size == 4);
2942 vtd_set_long(s, addr, val);
2943 break;
2945 case DMAR_FRCD_REG_0_2:
2946 if (size == 4) {
2947 vtd_set_long(s, addr, val);
2948 } else {
2949 vtd_set_quad(s, addr, val);
2950 /* May clear bit 127 (Fault), update PPF */
2951 vtd_update_fsts_ppf(s);
2953 break;
2955 case DMAR_FRCD_REG_0_3:
2956 assert(size == 4);
2957 vtd_set_long(s, addr, val);
2958 /* May clear bit 127 (Fault), update PPF */
2959 vtd_update_fsts_ppf(s);
2960 break;
2962 case DMAR_IRTA_REG:
2963 if (size == 4) {
2964 vtd_set_long(s, addr, val);
2965 } else {
2966 vtd_set_quad(s, addr, val);
2968 break;
2970 case DMAR_IRTA_REG_HI:
2971 assert(size == 4);
2972 vtd_set_long(s, addr, val);
2973 break;
2975 default:
2976 if (size == 4) {
2977 vtd_set_long(s, addr, val);
2978 } else {
2979 vtd_set_quad(s, addr, val);
2984 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
2985 IOMMUAccessFlags flag, int iommu_idx)
2987 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2988 IntelIOMMUState *s = vtd_as->iommu_state;
2989 IOMMUTLBEntry iotlb = {
2990 /* We'll fill in the rest later. */
2991 .target_as = &address_space_memory,
2993 bool success;
2995 if (likely(s->dmar_enabled)) {
2996 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
2997 addr, flag & IOMMU_WO, &iotlb);
2998 } else {
2999 /* DMAR disabled, passthrough, use 4k-page*/
3000 iotlb.iova = addr & VTD_PAGE_MASK_4K;
3001 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
3002 iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
3003 iotlb.perm = IOMMU_RW;
3004 success = true;
3007 if (likely(success)) {
3008 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
3009 VTD_PCI_SLOT(vtd_as->devfn),
3010 VTD_PCI_FUNC(vtd_as->devfn),
3011 iotlb.iova, iotlb.translated_addr,
3012 iotlb.addr_mask);
3013 } else {
3014 error_report_once("%s: detected translation failure "
3015 "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
3016 __func__, pci_bus_num(vtd_as->bus),
3017 VTD_PCI_SLOT(vtd_as->devfn),
3018 VTD_PCI_FUNC(vtd_as->devfn),
3019 addr);
3022 return iotlb;
3025 static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
3026 IOMMUNotifierFlag old,
3027 IOMMUNotifierFlag new,
3028 Error **errp)
3030 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3031 IntelIOMMUState *s = vtd_as->iommu_state;
3033 /* Update per-address-space notifier flags */
3034 vtd_as->notifier_flags = new;
3036 if (old == IOMMU_NOTIFIER_NONE) {
3037 QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
3038 } else if (new == IOMMU_NOTIFIER_NONE) {
3039 QLIST_REMOVE(vtd_as, next);
3041 return 0;
3044 static int vtd_post_load(void *opaque, int version_id)
3046 IntelIOMMUState *iommu = opaque;
3049 * Memory regions are dynamically turned on/off depending on
3050 * context entry configurations from the guest. After migration,
3051 * we need to make sure the memory regions are still correct.
3053 vtd_switch_address_space_all(iommu);
3056 * We don't need to migrate the root_scalable because we can
3057 * simply do the calculation after the loading is complete. We
3058 * can actually do similar things with root, dmar_enabled, etc.
3059 * however since we've had them already so we'd better keep them
3060 * for compatibility of migration.
3062 vtd_update_scalable_state(iommu);
3064 return 0;
3067 static const VMStateDescription vtd_vmstate = {
3068 .name = "iommu-intel",
3069 .version_id = 1,
3070 .minimum_version_id = 1,
3071 .priority = MIG_PRI_IOMMU,
3072 .post_load = vtd_post_load,
3073 .fields = (VMStateField[]) {
3074 VMSTATE_UINT64(root, IntelIOMMUState),
3075 VMSTATE_UINT64(intr_root, IntelIOMMUState),
3076 VMSTATE_UINT64(iq, IntelIOMMUState),
3077 VMSTATE_UINT32(intr_size, IntelIOMMUState),
3078 VMSTATE_UINT16(iq_head, IntelIOMMUState),
3079 VMSTATE_UINT16(iq_tail, IntelIOMMUState),
3080 VMSTATE_UINT16(iq_size, IntelIOMMUState),
3081 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
3082 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
3083 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
3084 VMSTATE_UNUSED(1), /* bool root_extended is obsolete by VT-d */
3085 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
3086 VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
3087 VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
3088 VMSTATE_BOOL(intr_eime, IntelIOMMUState),
3089 VMSTATE_END_OF_LIST()
3093 static const MemoryRegionOps vtd_mem_ops = {
3094 .read = vtd_mem_read,
3095 .write = vtd_mem_write,
3096 .endianness = DEVICE_LITTLE_ENDIAN,
3097 .impl = {
3098 .min_access_size = 4,
3099 .max_access_size = 8,
3101 .valid = {
3102 .min_access_size = 4,
3103 .max_access_size = 8,
3107 static Property vtd_properties[] = {
3108 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
3109 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
3110 ON_OFF_AUTO_AUTO),
3111 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
3112 DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
3113 VTD_HOST_ADDRESS_WIDTH),
3114 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
3115 DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
3116 DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
3117 DEFINE_PROP_END_OF_LIST(),
3120 /* Read IRTE entry with specific index */
3121 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
3122 VTD_IR_TableEntry *entry, uint16_t sid)
3124 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
3125 {0xffff, 0xfffb, 0xfff9, 0xfff8};
3126 dma_addr_t addr = 0x00;
3127 uint16_t mask, source_id;
3128 uint8_t bus, bus_max, bus_min;
3130 if (index >= iommu->intr_size) {
3131 error_report_once("%s: index too large: ind=0x%x",
3132 __func__, index);
3133 return -VTD_FR_IR_INDEX_OVER;
3136 addr = iommu->intr_root + index * sizeof(*entry);
3137 if (dma_memory_read(&address_space_memory, addr,
3138 entry, sizeof(*entry), MEMTXATTRS_UNSPECIFIED)) {
3139 error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
3140 __func__, index, addr);
3141 return -VTD_FR_IR_ROOT_INVAL;
3144 trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
3145 le64_to_cpu(entry->data[0]));
3147 if (!entry->irte.present) {
3148 error_report_once("%s: detected non-present IRTE "
3149 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3150 __func__, index, le64_to_cpu(entry->data[1]),
3151 le64_to_cpu(entry->data[0]));
3152 return -VTD_FR_IR_ENTRY_P;
3155 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
3156 entry->irte.__reserved_2) {
3157 error_report_once("%s: detected non-zero reserved IRTE "
3158 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3159 __func__, index, le64_to_cpu(entry->data[1]),
3160 le64_to_cpu(entry->data[0]));
3161 return -VTD_FR_IR_IRTE_RSVD;
3164 if (sid != X86_IOMMU_SID_INVALID) {
3165 /* Validate IRTE SID */
3166 source_id = le32_to_cpu(entry->irte.source_id);
3167 switch (entry->irte.sid_vtype) {
3168 case VTD_SVT_NONE:
3169 break;
3171 case VTD_SVT_ALL:
3172 mask = vtd_svt_mask[entry->irte.sid_q];
3173 if ((source_id & mask) != (sid & mask)) {
3174 error_report_once("%s: invalid IRTE SID "
3175 "(index=%u, sid=%u, source_id=%u)",
3176 __func__, index, sid, source_id);
3177 return -VTD_FR_IR_SID_ERR;
3179 break;
3181 case VTD_SVT_BUS:
3182 bus_max = source_id >> 8;
3183 bus_min = source_id & 0xff;
3184 bus = sid >> 8;
3185 if (bus > bus_max || bus < bus_min) {
3186 error_report_once("%s: invalid SVT_BUS "
3187 "(index=%u, bus=%u, min=%u, max=%u)",
3188 __func__, index, bus, bus_min, bus_max);
3189 return -VTD_FR_IR_SID_ERR;
3191 break;
3193 default:
3194 error_report_once("%s: detected invalid IRTE SVT "
3195 "(index=%u, type=%d)", __func__,
3196 index, entry->irte.sid_vtype);
3197 /* Take this as verification failure. */
3198 return -VTD_FR_IR_SID_ERR;
3202 return 0;
3205 /* Fetch IRQ information of specific IR index */
3206 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
3207 X86IOMMUIrq *irq, uint16_t sid)
3209 VTD_IR_TableEntry irte = {};
3210 int ret = 0;
3212 ret = vtd_irte_get(iommu, index, &irte, sid);
3213 if (ret) {
3214 return ret;
3217 irq->trigger_mode = irte.irte.trigger_mode;
3218 irq->vector = irte.irte.vector;
3219 irq->delivery_mode = irte.irte.delivery_mode;
3220 irq->dest = le32_to_cpu(irte.irte.dest_id);
3221 if (!iommu->intr_eime) {
3222 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
3223 #define VTD_IR_APIC_DEST_SHIFT (8)
3224 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
3225 VTD_IR_APIC_DEST_SHIFT;
3227 irq->dest_mode = irte.irte.dest_mode;
3228 irq->redir_hint = irte.irte.redir_hint;
3230 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
3231 irq->delivery_mode, irq->dest, irq->dest_mode);
3233 return 0;
3236 /* Interrupt remapping for MSI/MSI-X entry */
3237 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
3238 MSIMessage *origin,
3239 MSIMessage *translated,
3240 uint16_t sid)
3242 int ret = 0;
3243 VTD_IR_MSIAddress addr;
3244 uint16_t index;
3245 X86IOMMUIrq irq = {};
3247 assert(origin && translated);
3249 trace_vtd_ir_remap_msi_req(origin->address, origin->data);
3251 if (!iommu || !iommu->intr_enabled) {
3252 memcpy(translated, origin, sizeof(*origin));
3253 goto out;
3256 if (origin->address & VTD_MSI_ADDR_HI_MASK) {
3257 error_report_once("%s: MSI address high 32 bits non-zero detected: "
3258 "address=0x%" PRIx64, __func__, origin->address);
3259 return -VTD_FR_IR_REQ_RSVD;
3262 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
3263 if (addr.addr.__head != 0xfee) {
3264 error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
3265 __func__, addr.data);
3266 return -VTD_FR_IR_REQ_RSVD;
3269 /* This is compatible mode. */
3270 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
3271 memcpy(translated, origin, sizeof(*origin));
3272 goto out;
3275 index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
3277 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
3278 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
3280 if (addr.addr.sub_valid) {
3281 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
3282 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
3285 ret = vtd_remap_irq_get(iommu, index, &irq, sid);
3286 if (ret) {
3287 return ret;
3290 if (addr.addr.sub_valid) {
3291 trace_vtd_ir_remap_type("MSI");
3292 if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
3293 error_report_once("%s: invalid IR MSI "
3294 "(sid=%u, address=0x%" PRIx64
3295 ", data=0x%" PRIx32 ")",
3296 __func__, sid, origin->address, origin->data);
3297 return -VTD_FR_IR_REQ_RSVD;
3299 } else {
3300 uint8_t vector = origin->data & 0xff;
3301 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
3303 trace_vtd_ir_remap_type("IOAPIC");
3304 /* IOAPIC entry vector should be aligned with IRTE vector
3305 * (see vt-d spec 5.1.5.1). */
3306 if (vector != irq.vector) {
3307 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
3310 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
3311 * (see vt-d spec 5.1.5.1). */
3312 if (trigger_mode != irq.trigger_mode) {
3313 trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
3314 irq.trigger_mode);
3319 * We'd better keep the last two bits, assuming that guest OS
3320 * might modify it. Keep it does not hurt after all.
3322 irq.msi_addr_last_bits = addr.addr.__not_care;
3324 /* Translate X86IOMMUIrq to MSI message */
3325 x86_iommu_irq_to_msi_message(&irq, translated);
3327 out:
3328 trace_vtd_ir_remap_msi(origin->address, origin->data,
3329 translated->address, translated->data);
3330 return 0;
3333 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
3334 MSIMessage *dst, uint16_t sid)
3336 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
3337 src, dst, sid);
3340 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
3341 uint64_t *data, unsigned size,
3342 MemTxAttrs attrs)
3344 return MEMTX_OK;
3347 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
3348 uint64_t value, unsigned size,
3349 MemTxAttrs attrs)
3351 int ret = 0;
3352 MSIMessage from = {}, to = {};
3353 uint16_t sid = X86_IOMMU_SID_INVALID;
3355 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
3356 from.data = (uint32_t) value;
3358 if (!attrs.unspecified) {
3359 /* We have explicit Source ID */
3360 sid = attrs.requester_id;
3363 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
3364 if (ret) {
3365 /* TODO: report error */
3366 /* Drop this interrupt */
3367 return MEMTX_ERROR;
3370 apic_get_class()->send_msi(&to);
3372 return MEMTX_OK;
3375 static const MemoryRegionOps vtd_mem_ir_ops = {
3376 .read_with_attrs = vtd_mem_ir_read,
3377 .write_with_attrs = vtd_mem_ir_write,
3378 .endianness = DEVICE_LITTLE_ENDIAN,
3379 .impl = {
3380 .min_access_size = 4,
3381 .max_access_size = 4,
3383 .valid = {
3384 .min_access_size = 4,
3385 .max_access_size = 4,
3389 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
3391 uintptr_t key = (uintptr_t)bus;
3392 VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
3393 VTDAddressSpace *vtd_dev_as;
3394 char name[128];
3396 if (!vtd_bus) {
3397 uintptr_t *new_key = g_malloc(sizeof(*new_key));
3398 *new_key = (uintptr_t)bus;
3399 /* No corresponding free() */
3400 vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
3401 PCI_DEVFN_MAX);
3402 vtd_bus->bus = bus;
3403 g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
3406 vtd_dev_as = vtd_bus->dev_as[devfn];
3408 if (!vtd_dev_as) {
3409 snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
3410 PCI_FUNC(devfn));
3411 vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
3413 vtd_dev_as->bus = bus;
3414 vtd_dev_as->devfn = (uint8_t)devfn;
3415 vtd_dev_as->iommu_state = s;
3416 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
3417 vtd_dev_as->iova_tree = iova_tree_new();
3419 memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
3420 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
3423 * Build the DMAR-disabled container with aliases to the
3424 * shared MRs. Note that aliasing to a shared memory region
3425 * could help the memory API to detect same FlatViews so we
3426 * can have devices to share the same FlatView when DMAR is
3427 * disabled (either by not providing "intel_iommu=on" or with
3428 * "iommu=pt"). It will greatly reduce the total number of
3429 * FlatViews of the system hence VM runs faster.
3431 memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
3432 "vtd-nodmar", &s->mr_nodmar, 0,
3433 memory_region_size(&s->mr_nodmar));
3436 * Build the per-device DMAR-enabled container.
3438 * TODO: currently we have per-device IOMMU memory region only
3439 * because we have per-device IOMMU notifiers for devices. If
3440 * one day we can abstract the IOMMU notifiers out of the
3441 * memory regions then we can also share the same memory
3442 * region here just like what we've done above with the nodmar
3443 * region.
3445 strcat(name, "-dmar");
3446 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
3447 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
3448 name, UINT64_MAX);
3449 memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
3450 &s->mr_ir, 0, memory_region_size(&s->mr_ir));
3451 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
3452 VTD_INTERRUPT_ADDR_FIRST,
3453 &vtd_dev_as->iommu_ir, 1);
3456 * Hook both the containers under the root container, we
3457 * switch between DMAR & noDMAR by enable/disable
3458 * corresponding sub-containers
3460 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3461 MEMORY_REGION(&vtd_dev_as->iommu),
3463 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3464 &vtd_dev_as->nodmar, 0);
3466 vtd_switch_address_space(vtd_dev_as);
3468 return vtd_dev_as;
3471 /* Unmap the whole range in the notifier's scope. */
3472 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
3474 hwaddr size, remain;
3475 hwaddr start = n->start;
3476 hwaddr end = n->end;
3477 IntelIOMMUState *s = as->iommu_state;
3478 DMAMap map;
3481 * Note: all the codes in this function has a assumption that IOVA
3482 * bits are no more than VTD_MGAW bits (which is restricted by
3483 * VT-d spec), otherwise we need to consider overflow of 64 bits.
3486 if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) {
3488 * Don't need to unmap regions that is bigger than the whole
3489 * VT-d supported address space size
3491 end = VTD_ADDRESS_SIZE(s->aw_bits) - 1;
3494 assert(start <= end);
3495 size = remain = end - start + 1;
3497 while (remain >= VTD_PAGE_SIZE) {
3498 IOMMUTLBEvent event;
3499 uint64_t mask = dma_aligned_pow2_mask(start, end, s->aw_bits);
3500 uint64_t size = mask + 1;
3502 assert(size);
3504 event.type = IOMMU_NOTIFIER_UNMAP;
3505 event.entry.iova = start;
3506 event.entry.addr_mask = mask;
3507 event.entry.target_as = &address_space_memory;
3508 event.entry.perm = IOMMU_NONE;
3509 /* This field is meaningless for unmap */
3510 event.entry.translated_addr = 0;
3512 memory_region_notify_iommu_one(n, &event);
3514 start += size;
3515 remain -= size;
3518 assert(!remain);
3520 trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
3521 VTD_PCI_SLOT(as->devfn),
3522 VTD_PCI_FUNC(as->devfn),
3523 n->start, size);
3525 map.iova = n->start;
3526 map.size = size;
3527 iova_tree_remove(as->iova_tree, &map);
3530 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3532 VTDAddressSpace *vtd_as;
3533 IOMMUNotifier *n;
3535 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
3536 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3537 vtd_address_space_unmap(vtd_as, n);
3542 static void vtd_address_space_refresh_all(IntelIOMMUState *s)
3544 vtd_address_space_unmap_all(s);
3545 vtd_switch_address_space_all(s);
3548 static int vtd_replay_hook(IOMMUTLBEvent *event, void *private)
3550 memory_region_notify_iommu_one(private, event);
3551 return 0;
3554 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
3556 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
3557 IntelIOMMUState *s = vtd_as->iommu_state;
3558 uint8_t bus_n = pci_bus_num(vtd_as->bus);
3559 VTDContextEntry ce;
3562 * The replay can be triggered by either a invalidation or a newly
3563 * created entry. No matter what, we release existing mappings
3564 * (it means flushing caches for UNMAP-only registers).
3566 vtd_address_space_unmap(vtd_as, n);
3568 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3569 trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
3570 "legacy mode",
3571 bus_n, PCI_SLOT(vtd_as->devfn),
3572 PCI_FUNC(vtd_as->devfn),
3573 vtd_get_domain_id(s, &ce),
3574 ce.hi, ce.lo);
3575 if (vtd_as_has_map_notifier(vtd_as)) {
3576 /* This is required only for MAP typed notifiers */
3577 vtd_page_walk_info info = {
3578 .hook_fn = vtd_replay_hook,
3579 .private = (void *)n,
3580 .notify_unmap = false,
3581 .aw = s->aw_bits,
3582 .as = vtd_as,
3583 .domain_id = vtd_get_domain_id(s, &ce),
3586 vtd_page_walk(s, &ce, 0, ~0ULL, &info);
3588 } else {
3589 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
3590 PCI_FUNC(vtd_as->devfn));
3593 return;
3596 /* Do the initialization. It will also be called when reset, so pay
3597 * attention when adding new initialization stuff.
3599 static void vtd_init(IntelIOMMUState *s)
3601 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3603 memset(s->csr, 0, DMAR_REG_SIZE);
3604 memset(s->wmask, 0, DMAR_REG_SIZE);
3605 memset(s->w1cmask, 0, DMAR_REG_SIZE);
3606 memset(s->womask, 0, DMAR_REG_SIZE);
3608 s->root = 0;
3609 s->root_scalable = false;
3610 s->dmar_enabled = false;
3611 s->intr_enabled = false;
3612 s->iq_head = 0;
3613 s->iq_tail = 0;
3614 s->iq = 0;
3615 s->iq_size = 0;
3616 s->qi_enabled = false;
3617 s->iq_last_desc_type = VTD_INV_DESC_NONE;
3618 s->iq_dw = false;
3619 s->next_frcd_reg = 0;
3620 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
3621 VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
3622 VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits);
3623 if (s->dma_drain) {
3624 s->cap |= VTD_CAP_DRAIN;
3626 if (s->aw_bits == VTD_HOST_AW_48BIT) {
3627 s->cap |= VTD_CAP_SAGAW_48bit;
3629 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
3632 * Rsvd field masks for spte
3634 vtd_spte_rsvd[0] = ~0ULL;
3635 vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits,
3636 x86_iommu->dt_supported);
3637 vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
3638 vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
3639 vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
3641 vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits,
3642 x86_iommu->dt_supported);
3643 vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits,
3644 x86_iommu->dt_supported);
3646 if (s->scalable_mode) {
3647 vtd_spte_rsvd[1] &= ~VTD_SPTE_SNP;
3648 vtd_spte_rsvd_large[2] &= ~VTD_SPTE_SNP;
3649 vtd_spte_rsvd_large[3] &= ~VTD_SPTE_SNP;
3652 if (x86_iommu_ir_supported(x86_iommu)) {
3653 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
3654 if (s->intr_eim == ON_OFF_AUTO_ON) {
3655 s->ecap |= VTD_ECAP_EIM;
3657 assert(s->intr_eim != ON_OFF_AUTO_AUTO);
3660 if (x86_iommu->dt_supported) {
3661 s->ecap |= VTD_ECAP_DT;
3664 if (x86_iommu->pt_supported) {
3665 s->ecap |= VTD_ECAP_PT;
3668 if (s->caching_mode) {
3669 s->cap |= VTD_CAP_CM;
3672 /* TODO: read cap/ecap from host to decide which cap to be exposed. */
3673 if (s->scalable_mode) {
3674 s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
3677 vtd_reset_caches(s);
3679 /* Define registers with default values and bit semantics */
3680 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
3681 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
3682 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
3683 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
3684 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
3685 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
3686 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
3687 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
3688 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
3690 /* Advanced Fault Logging not supported */
3691 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
3692 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3693 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
3694 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
3696 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3697 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3699 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
3701 /* Treated as RO for implementations that PLMR and PHMR fields reported
3702 * as Clear in the CAP_REG.
3703 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3705 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
3707 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
3708 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
3709 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
3710 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
3711 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3712 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
3713 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
3714 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3715 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
3717 /* IOTLB registers */
3718 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
3719 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
3720 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
3722 /* Fault Recording Registers, 128-bit */
3723 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
3724 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
3727 * Interrupt remapping registers.
3729 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
3732 /* Should not reset address_spaces when reset because devices will still use
3733 * the address space they got at first (won't ask the bus again).
3735 static void vtd_reset(DeviceState *dev)
3737 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3739 vtd_init(s);
3740 vtd_address_space_refresh_all(s);
3743 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
3745 IntelIOMMUState *s = opaque;
3746 VTDAddressSpace *vtd_as;
3748 assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
3750 vtd_as = vtd_find_add_as(s, bus, devfn);
3751 return &vtd_as->as;
3754 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
3756 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3758 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
3759 error_setg(errp, "eim=on cannot be selected without intremap=on");
3760 return false;
3763 if (s->intr_eim == ON_OFF_AUTO_AUTO) {
3764 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
3765 && x86_iommu_ir_supported(x86_iommu) ?
3766 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
3768 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
3769 if (!kvm_irqchip_in_kernel()) {
3770 error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3771 return false;
3773 if (!kvm_enable_x2apic()) {
3774 error_setg(errp, "eim=on requires support on the KVM side"
3775 "(X2APIC_API, first shipped in v4.7)");
3776 return false;
3780 /* Currently only address widths supported are 39 and 48 bits */
3781 if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
3782 (s->aw_bits != VTD_HOST_AW_48BIT)) {
3783 error_setg(errp, "Supported values for aw-bits are: %d, %d",
3784 VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
3785 return false;
3788 if (s->scalable_mode && !s->dma_drain) {
3789 error_setg(errp, "Need to set dma_drain for scalable mode");
3790 return false;
3793 return true;
3796 static int vtd_machine_done_notify_one(Object *child, void *unused)
3798 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
3801 * We hard-coded here because vfio-pci is the only special case
3802 * here. Let's be more elegant in the future when we can, but so
3803 * far there seems to be no better way.
3805 if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) {
3806 vtd_panic_require_caching_mode();
3809 return 0;
3812 static void vtd_machine_done_hook(Notifier *notifier, void *unused)
3814 object_child_foreach_recursive(object_get_root(),
3815 vtd_machine_done_notify_one, NULL);
3818 static Notifier vtd_machine_done_notify = {
3819 .notify = vtd_machine_done_hook,
3822 static void vtd_realize(DeviceState *dev, Error **errp)
3824 MachineState *ms = MACHINE(qdev_get_machine());
3825 PCMachineState *pcms = PC_MACHINE(ms);
3826 X86MachineState *x86ms = X86_MACHINE(ms);
3827 PCIBus *bus = pcms->bus;
3828 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3830 if (!vtd_decide_config(s, errp)) {
3831 return;
3834 QLIST_INIT(&s->vtd_as_with_notifiers);
3835 qemu_mutex_init(&s->iommu_lock);
3836 memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
3837 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3838 "intel_iommu", DMAR_REG_SIZE);
3840 /* Create the shared memory regions by all devices */
3841 memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
3842 UINT64_MAX);
3843 memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
3844 s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
3845 memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
3846 "vtd-sys-alias", get_system_memory(), 0,
3847 memory_region_size(get_system_memory()));
3848 memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
3849 &s->mr_sys_alias, 0);
3850 memory_region_add_subregion_overlap(&s->mr_nodmar,
3851 VTD_INTERRUPT_ADDR_FIRST,
3852 &s->mr_ir, 1);
3854 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
3855 /* No corresponding destroy */
3856 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3857 g_free, g_free);
3858 s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3859 g_free, g_free);
3860 vtd_init(s);
3861 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3862 pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
3863 /* Pseudo address space under root PCI bus. */
3864 x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
3865 qemu_add_machine_init_done_notifier(&vtd_machine_done_notify);
3868 static void vtd_class_init(ObjectClass *klass, void *data)
3870 DeviceClass *dc = DEVICE_CLASS(klass);
3871 X86IOMMUClass *x86_class = X86_IOMMU_DEVICE_CLASS(klass);
3873 dc->reset = vtd_reset;
3874 dc->vmsd = &vtd_vmstate;
3875 device_class_set_props(dc, vtd_properties);
3876 dc->hotpluggable = false;
3877 x86_class->realize = vtd_realize;
3878 x86_class->int_remap = vtd_int_remap;
3879 /* Supported by the pc-q35-* machine types */
3880 dc->user_creatable = true;
3881 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
3882 dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
3885 static const TypeInfo vtd_info = {
3886 .name = TYPE_INTEL_IOMMU_DEVICE,
3887 .parent = TYPE_X86_IOMMU_DEVICE,
3888 .instance_size = sizeof(IntelIOMMUState),
3889 .class_init = vtd_class_init,
3892 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3893 void *data)
3895 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3897 imrc->translate = vtd_iommu_translate;
3898 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3899 imrc->replay = vtd_iommu_replay;
3902 static const TypeInfo vtd_iommu_memory_region_info = {
3903 .parent = TYPE_IOMMU_MEMORY_REGION,
3904 .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3905 .class_init = vtd_iommu_memory_region_class_init,
3908 static void vtd_register_types(void)
3910 type_register_static(&vtd_info);
3911 type_register_static(&vtd_iommu_memory_region_info);
3914 type_init(vtd_register_types)