migration/rdma: Silence qemu_rdma_block_for_wrid()
[qemu/armbru.git] / migration / rdma.c
blob459dcb002e29eb301b36c971123115e27cba2f81
1 /*
2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
5 * Copyright Red Hat, Inc. 2015-2016
7 * Authors:
8 * Michael R. Hines <mrhines@us.ibm.com>
9 * Jiuxing Liu <jl@us.ibm.com>
10 * Daniel P. Berrange <berrange@redhat.com>
12 * This work is licensed under the terms of the GNU GPL, version 2 or
13 * later. See the COPYING file in the top-level directory.
17 #include "qemu/osdep.h"
18 #include "qapi/error.h"
19 #include "qemu/cutils.h"
20 #include "exec/target_page.h"
21 #include "rdma.h"
22 #include "migration.h"
23 #include "migration-stats.h"
24 #include "qemu-file.h"
25 #include "ram.h"
26 #include "qemu/error-report.h"
27 #include "qemu/main-loop.h"
28 #include "qemu/module.h"
29 #include "qemu/rcu.h"
30 #include "qemu/sockets.h"
31 #include "qemu/bitmap.h"
32 #include "qemu/coroutine.h"
33 #include "exec/memory.h"
34 #include <sys/socket.h>
35 #include <netdb.h>
36 #include <arpa/inet.h>
37 #include <rdma/rdma_cma.h>
38 #include "trace.h"
39 #include "qom/object.h"
40 #include "options.h"
41 #include <poll.h>
43 #define RDMA_RESOLVE_TIMEOUT_MS 10000
45 /* Do not merge data if larger than this. */
46 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
47 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
49 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
52 * This is only for non-live state being migrated.
53 * Instead of RDMA_WRITE messages, we use RDMA_SEND
54 * messages for that state, which requires a different
55 * delivery design than main memory.
57 #define RDMA_SEND_INCREMENT 32768
60 * Maximum size infiniband SEND message
62 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
63 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
65 #define RDMA_CONTROL_VERSION_CURRENT 1
67 * Capabilities for negotiation.
69 #define RDMA_CAPABILITY_PIN_ALL 0x01
72 * Add the other flags above to this list of known capabilities
73 * as they are introduced.
75 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
78 * A work request ID is 64-bits and we split up these bits
79 * into 3 parts:
81 * bits 0-15 : type of control message, 2^16
82 * bits 16-29: ram block index, 2^14
83 * bits 30-63: ram block chunk number, 2^34
85 * The last two bit ranges are only used for RDMA writes,
86 * in order to track their completion and potentially
87 * also track unregistration status of the message.
89 #define RDMA_WRID_TYPE_SHIFT 0UL
90 #define RDMA_WRID_BLOCK_SHIFT 16UL
91 #define RDMA_WRID_CHUNK_SHIFT 30UL
93 #define RDMA_WRID_TYPE_MASK \
94 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
96 #define RDMA_WRID_BLOCK_MASK \
97 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
99 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
102 * RDMA migration protocol:
103 * 1. RDMA Writes (data messages, i.e. RAM)
104 * 2. IB Send/Recv (control channel messages)
106 enum {
107 RDMA_WRID_NONE = 0,
108 RDMA_WRID_RDMA_WRITE = 1,
109 RDMA_WRID_SEND_CONTROL = 2000,
110 RDMA_WRID_RECV_CONTROL = 4000,
114 * Work request IDs for IB SEND messages only (not RDMA writes).
115 * This is used by the migration protocol to transmit
116 * control messages (such as device state and registration commands)
118 * We could use more WRs, but we have enough for now.
120 enum {
121 RDMA_WRID_READY = 0,
122 RDMA_WRID_DATA,
123 RDMA_WRID_CONTROL,
124 RDMA_WRID_MAX,
128 * SEND/RECV IB Control Messages.
130 enum {
131 RDMA_CONTROL_NONE = 0,
132 RDMA_CONTROL_ERROR,
133 RDMA_CONTROL_READY, /* ready to receive */
134 RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */
135 RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */
136 RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */
137 RDMA_CONTROL_COMPRESS, /* page contains repeat values */
138 RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */
139 RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */
140 RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */
141 RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */
142 RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
147 * Memory and MR structures used to represent an IB Send/Recv work request.
148 * This is *not* used for RDMA writes, only IB Send/Recv.
150 typedef struct {
151 uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
152 struct ibv_mr *control_mr; /* registration metadata */
153 size_t control_len; /* length of the message */
154 uint8_t *control_curr; /* start of unconsumed bytes */
155 } RDMAWorkRequestData;
158 * Negotiate RDMA capabilities during connection-setup time.
160 typedef struct {
161 uint32_t version;
162 uint32_t flags;
163 } RDMACapabilities;
165 static void caps_to_network(RDMACapabilities *cap)
167 cap->version = htonl(cap->version);
168 cap->flags = htonl(cap->flags);
171 static void network_to_caps(RDMACapabilities *cap)
173 cap->version = ntohl(cap->version);
174 cap->flags = ntohl(cap->flags);
178 * Representation of a RAMBlock from an RDMA perspective.
179 * This is not transmitted, only local.
180 * This and subsequent structures cannot be linked lists
181 * because we're using a single IB message to transmit
182 * the information. It's small anyway, so a list is overkill.
184 typedef struct RDMALocalBlock {
185 char *block_name;
186 uint8_t *local_host_addr; /* local virtual address */
187 uint64_t remote_host_addr; /* remote virtual address */
188 uint64_t offset;
189 uint64_t length;
190 struct ibv_mr **pmr; /* MRs for chunk-level registration */
191 struct ibv_mr *mr; /* MR for non-chunk-level registration */
192 uint32_t *remote_keys; /* rkeys for chunk-level registration */
193 uint32_t remote_rkey; /* rkeys for non-chunk-level registration */
194 int index; /* which block are we */
195 unsigned int src_index; /* (Only used on dest) */
196 bool is_ram_block;
197 int nb_chunks;
198 unsigned long *transit_bitmap;
199 unsigned long *unregister_bitmap;
200 } RDMALocalBlock;
203 * Also represents a RAMblock, but only on the dest.
204 * This gets transmitted by the dest during connection-time
205 * to the source VM and then is used to populate the
206 * corresponding RDMALocalBlock with
207 * the information needed to perform the actual RDMA.
209 typedef struct QEMU_PACKED RDMADestBlock {
210 uint64_t remote_host_addr;
211 uint64_t offset;
212 uint64_t length;
213 uint32_t remote_rkey;
214 uint32_t padding;
215 } RDMADestBlock;
217 static const char *control_desc(unsigned int rdma_control)
219 static const char *strs[] = {
220 [RDMA_CONTROL_NONE] = "NONE",
221 [RDMA_CONTROL_ERROR] = "ERROR",
222 [RDMA_CONTROL_READY] = "READY",
223 [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
224 [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
225 [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
226 [RDMA_CONTROL_COMPRESS] = "COMPRESS",
227 [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
228 [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
229 [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
230 [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
231 [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
234 if (rdma_control > RDMA_CONTROL_UNREGISTER_FINISHED) {
235 return "??BAD CONTROL VALUE??";
238 return strs[rdma_control];
241 static uint64_t htonll(uint64_t v)
243 union { uint32_t lv[2]; uint64_t llv; } u;
244 u.lv[0] = htonl(v >> 32);
245 u.lv[1] = htonl(v & 0xFFFFFFFFULL);
246 return u.llv;
249 static uint64_t ntohll(uint64_t v)
251 union { uint32_t lv[2]; uint64_t llv; } u;
252 u.llv = v;
253 return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
256 static void dest_block_to_network(RDMADestBlock *db)
258 db->remote_host_addr = htonll(db->remote_host_addr);
259 db->offset = htonll(db->offset);
260 db->length = htonll(db->length);
261 db->remote_rkey = htonl(db->remote_rkey);
264 static void network_to_dest_block(RDMADestBlock *db)
266 db->remote_host_addr = ntohll(db->remote_host_addr);
267 db->offset = ntohll(db->offset);
268 db->length = ntohll(db->length);
269 db->remote_rkey = ntohl(db->remote_rkey);
273 * Virtual address of the above structures used for transmitting
274 * the RAMBlock descriptions at connection-time.
275 * This structure is *not* transmitted.
277 typedef struct RDMALocalBlocks {
278 int nb_blocks;
279 bool init; /* main memory init complete */
280 RDMALocalBlock *block;
281 } RDMALocalBlocks;
284 * Main data structure for RDMA state.
285 * While there is only one copy of this structure being allocated right now,
286 * this is the place where one would start if you wanted to consider
287 * having more than one RDMA connection open at the same time.
289 typedef struct RDMAContext {
290 char *host;
291 int port;
292 char *host_port;
294 RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
297 * This is used by *_exchange_send() to figure out whether or not
298 * the initial "READY" message has already been received or not.
299 * This is because other functions may potentially poll() and detect
300 * the READY message before send() does, in which case we need to
301 * know if it completed.
303 int control_ready_expected;
305 /* number of outstanding writes */
306 int nb_sent;
308 /* store info about current buffer so that we can
309 merge it with future sends */
310 uint64_t current_addr;
311 uint64_t current_length;
312 /* index of ram block the current buffer belongs to */
313 int current_index;
314 /* index of the chunk in the current ram block */
315 int current_chunk;
317 bool pin_all;
320 * infiniband-specific variables for opening the device
321 * and maintaining connection state and so forth.
323 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
324 * cm_id->verbs, cm_id->channel, and cm_id->qp.
326 struct rdma_cm_id *cm_id; /* connection manager ID */
327 struct rdma_cm_id *listen_id;
328 bool connected;
330 struct ibv_context *verbs;
331 struct rdma_event_channel *channel;
332 struct ibv_qp *qp; /* queue pair */
333 struct ibv_comp_channel *recv_comp_channel; /* recv completion channel */
334 struct ibv_comp_channel *send_comp_channel; /* send completion channel */
335 struct ibv_pd *pd; /* protection domain */
336 struct ibv_cq *recv_cq; /* recvieve completion queue */
337 struct ibv_cq *send_cq; /* send completion queue */
340 * If a previous write failed (perhaps because of a failed
341 * memory registration, then do not attempt any future work
342 * and remember the error state.
344 bool errored;
345 bool error_reported;
346 bool received_error;
349 * Description of ram blocks used throughout the code.
351 RDMALocalBlocks local_ram_blocks;
352 RDMADestBlock *dest_blocks;
354 /* Index of the next RAMBlock received during block registration */
355 unsigned int next_src_index;
358 * Migration on *destination* started.
359 * Then use coroutine yield function.
360 * Source runs in a thread, so we don't care.
362 int migration_started_on_destination;
364 int total_registrations;
365 int total_writes;
367 int unregister_current, unregister_next;
368 uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
370 GHashTable *blockmap;
372 /* the RDMAContext for return path */
373 struct RDMAContext *return_path;
374 bool is_return_path;
375 } RDMAContext;
377 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
378 OBJECT_DECLARE_SIMPLE_TYPE(QIOChannelRDMA, QIO_CHANNEL_RDMA)
382 struct QIOChannelRDMA {
383 QIOChannel parent;
384 RDMAContext *rdmain;
385 RDMAContext *rdmaout;
386 QEMUFile *file;
387 bool blocking; /* XXX we don't actually honour this yet */
391 * Main structure for IB Send/Recv control messages.
392 * This gets prepended at the beginning of every Send/Recv.
394 typedef struct QEMU_PACKED {
395 uint32_t len; /* Total length of data portion */
396 uint32_t type; /* which control command to perform */
397 uint32_t repeat; /* number of commands in data portion of same type */
398 uint32_t padding;
399 } RDMAControlHeader;
401 static void control_to_network(RDMAControlHeader *control)
403 control->type = htonl(control->type);
404 control->len = htonl(control->len);
405 control->repeat = htonl(control->repeat);
408 static void network_to_control(RDMAControlHeader *control)
410 control->type = ntohl(control->type);
411 control->len = ntohl(control->len);
412 control->repeat = ntohl(control->repeat);
416 * Register a single Chunk.
417 * Information sent by the source VM to inform the dest
418 * to register an single chunk of memory before we can perform
419 * the actual RDMA operation.
421 typedef struct QEMU_PACKED {
422 union QEMU_PACKED {
423 uint64_t current_addr; /* offset into the ram_addr_t space */
424 uint64_t chunk; /* chunk to lookup if unregistering */
425 } key;
426 uint32_t current_index; /* which ramblock the chunk belongs to */
427 uint32_t padding;
428 uint64_t chunks; /* how many sequential chunks to register */
429 } RDMARegister;
431 static bool rdma_errored(RDMAContext *rdma)
433 if (rdma->errored && !rdma->error_reported) {
434 error_report("RDMA is in an error state waiting migration"
435 " to abort!");
436 rdma->error_reported = true;
438 return rdma->errored;
441 static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
443 RDMALocalBlock *local_block;
444 local_block = &rdma->local_ram_blocks.block[reg->current_index];
446 if (local_block->is_ram_block) {
448 * current_addr as passed in is an address in the local ram_addr_t
449 * space, we need to translate this for the destination
451 reg->key.current_addr -= local_block->offset;
452 reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
454 reg->key.current_addr = htonll(reg->key.current_addr);
455 reg->current_index = htonl(reg->current_index);
456 reg->chunks = htonll(reg->chunks);
459 static void network_to_register(RDMARegister *reg)
461 reg->key.current_addr = ntohll(reg->key.current_addr);
462 reg->current_index = ntohl(reg->current_index);
463 reg->chunks = ntohll(reg->chunks);
466 typedef struct QEMU_PACKED {
467 uint32_t value; /* if zero, we will madvise() */
468 uint32_t block_idx; /* which ram block index */
469 uint64_t offset; /* Address in remote ram_addr_t space */
470 uint64_t length; /* length of the chunk */
471 } RDMACompress;
473 static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
475 comp->value = htonl(comp->value);
477 * comp->offset as passed in is an address in the local ram_addr_t
478 * space, we need to translate this for the destination
480 comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
481 comp->offset += rdma->dest_blocks[comp->block_idx].offset;
482 comp->block_idx = htonl(comp->block_idx);
483 comp->offset = htonll(comp->offset);
484 comp->length = htonll(comp->length);
487 static void network_to_compress(RDMACompress *comp)
489 comp->value = ntohl(comp->value);
490 comp->block_idx = ntohl(comp->block_idx);
491 comp->offset = ntohll(comp->offset);
492 comp->length = ntohll(comp->length);
496 * The result of the dest's memory registration produces an "rkey"
497 * which the source VM must reference in order to perform
498 * the RDMA operation.
500 typedef struct QEMU_PACKED {
501 uint32_t rkey;
502 uint32_t padding;
503 uint64_t host_addr;
504 } RDMARegisterResult;
506 static void result_to_network(RDMARegisterResult *result)
508 result->rkey = htonl(result->rkey);
509 result->host_addr = htonll(result->host_addr);
512 static void network_to_result(RDMARegisterResult *result)
514 result->rkey = ntohl(result->rkey);
515 result->host_addr = ntohll(result->host_addr);
518 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
519 uint8_t *data, RDMAControlHeader *resp,
520 int *resp_idx,
521 int (*callback)(RDMAContext *rdma,
522 Error **errp),
523 Error **errp);
525 static inline uint64_t ram_chunk_index(const uint8_t *start,
526 const uint8_t *host)
528 return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
531 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
532 uint64_t i)
534 return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
535 (i << RDMA_REG_CHUNK_SHIFT));
538 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
539 uint64_t i)
541 uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
542 (1UL << RDMA_REG_CHUNK_SHIFT);
544 if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
545 result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
548 return result;
551 static void rdma_add_block(RDMAContext *rdma, const char *block_name,
552 void *host_addr,
553 ram_addr_t block_offset, uint64_t length)
555 RDMALocalBlocks *local = &rdma->local_ram_blocks;
556 RDMALocalBlock *block;
557 RDMALocalBlock *old = local->block;
559 local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1);
561 if (local->nb_blocks) {
562 int x;
564 if (rdma->blockmap) {
565 for (x = 0; x < local->nb_blocks; x++) {
566 g_hash_table_remove(rdma->blockmap,
567 (void *)(uintptr_t)old[x].offset);
568 g_hash_table_insert(rdma->blockmap,
569 (void *)(uintptr_t)old[x].offset,
570 &local->block[x]);
573 memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
574 g_free(old);
577 block = &local->block[local->nb_blocks];
579 block->block_name = g_strdup(block_name);
580 block->local_host_addr = host_addr;
581 block->offset = block_offset;
582 block->length = length;
583 block->index = local->nb_blocks;
584 block->src_index = ~0U; /* Filled in by the receipt of the block list */
585 block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
586 block->transit_bitmap = bitmap_new(block->nb_chunks);
587 bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
588 block->unregister_bitmap = bitmap_new(block->nb_chunks);
589 bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
590 block->remote_keys = g_new0(uint32_t, block->nb_chunks);
592 block->is_ram_block = local->init ? false : true;
594 if (rdma->blockmap) {
595 g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block);
598 trace_rdma_add_block(block_name, local->nb_blocks,
599 (uintptr_t) block->local_host_addr,
600 block->offset, block->length,
601 (uintptr_t) (block->local_host_addr + block->length),
602 BITS_TO_LONGS(block->nb_chunks) *
603 sizeof(unsigned long) * 8,
604 block->nb_chunks);
606 local->nb_blocks++;
610 * Memory regions need to be registered with the device and queue pairs setup
611 * in advanced before the migration starts. This tells us where the RAM blocks
612 * are so that we can register them individually.
614 static int qemu_rdma_init_one_block(RAMBlock *rb, void *opaque)
616 const char *block_name = qemu_ram_get_idstr(rb);
617 void *host_addr = qemu_ram_get_host_addr(rb);
618 ram_addr_t block_offset = qemu_ram_get_offset(rb);
619 ram_addr_t length = qemu_ram_get_used_length(rb);
620 rdma_add_block(opaque, block_name, host_addr, block_offset, length);
621 return 0;
625 * Identify the RAMBlocks and their quantity. They will be references to
626 * identify chunk boundaries inside each RAMBlock and also be referenced
627 * during dynamic page registration.
629 static void qemu_rdma_init_ram_blocks(RDMAContext *rdma)
631 RDMALocalBlocks *local = &rdma->local_ram_blocks;
632 int ret;
634 assert(rdma->blockmap == NULL);
635 memset(local, 0, sizeof *local);
636 ret = foreach_not_ignored_block(qemu_rdma_init_one_block, rdma);
637 assert(!ret);
638 trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
639 rdma->dest_blocks = g_new0(RDMADestBlock,
640 rdma->local_ram_blocks.nb_blocks);
641 local->init = true;
645 * Note: If used outside of cleanup, the caller must ensure that the destination
646 * block structures are also updated
648 static void rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
650 RDMALocalBlocks *local = &rdma->local_ram_blocks;
651 RDMALocalBlock *old = local->block;
652 int x;
654 if (rdma->blockmap) {
655 g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
657 if (block->pmr) {
658 int j;
660 for (j = 0; j < block->nb_chunks; j++) {
661 if (!block->pmr[j]) {
662 continue;
664 ibv_dereg_mr(block->pmr[j]);
665 rdma->total_registrations--;
667 g_free(block->pmr);
668 block->pmr = NULL;
671 if (block->mr) {
672 ibv_dereg_mr(block->mr);
673 rdma->total_registrations--;
674 block->mr = NULL;
677 g_free(block->transit_bitmap);
678 block->transit_bitmap = NULL;
680 g_free(block->unregister_bitmap);
681 block->unregister_bitmap = NULL;
683 g_free(block->remote_keys);
684 block->remote_keys = NULL;
686 g_free(block->block_name);
687 block->block_name = NULL;
689 if (rdma->blockmap) {
690 for (x = 0; x < local->nb_blocks; x++) {
691 g_hash_table_remove(rdma->blockmap,
692 (void *)(uintptr_t)old[x].offset);
696 if (local->nb_blocks > 1) {
698 local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1);
700 if (block->index) {
701 memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
704 if (block->index < (local->nb_blocks - 1)) {
705 memcpy(local->block + block->index, old + (block->index + 1),
706 sizeof(RDMALocalBlock) *
707 (local->nb_blocks - (block->index + 1)));
708 for (x = block->index; x < local->nb_blocks - 1; x++) {
709 local->block[x].index--;
712 } else {
713 assert(block == local->block);
714 local->block = NULL;
717 trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
718 block->offset, block->length,
719 (uintptr_t)(block->local_host_addr + block->length),
720 BITS_TO_LONGS(block->nb_chunks) *
721 sizeof(unsigned long) * 8, block->nb_chunks);
723 g_free(old);
725 local->nb_blocks--;
727 if (local->nb_blocks && rdma->blockmap) {
728 for (x = 0; x < local->nb_blocks; x++) {
729 g_hash_table_insert(rdma->blockmap,
730 (void *)(uintptr_t)local->block[x].offset,
731 &local->block[x]);
737 * Put in the log file which RDMA device was opened and the details
738 * associated with that device.
740 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
742 struct ibv_port_attr port;
744 if (ibv_query_port(verbs, 1, &port)) {
745 error_report("Failed to query port information");
746 return;
749 printf("%s RDMA Device opened: kernel name %s "
750 "uverbs device name %s, "
751 "infiniband_verbs class device path %s, "
752 "infiniband class device path %s, "
753 "transport: (%d) %s\n",
754 who,
755 verbs->device->name,
756 verbs->device->dev_name,
757 verbs->device->dev_path,
758 verbs->device->ibdev_path,
759 port.link_layer,
760 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
761 ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
762 ? "Ethernet" : "Unknown"));
766 * Put in the log file the RDMA gid addressing information,
767 * useful for folks who have trouble understanding the
768 * RDMA device hierarchy in the kernel.
770 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
772 char sgid[33];
773 char dgid[33];
774 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
775 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
776 trace_qemu_rdma_dump_gid(who, sgid, dgid);
780 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
781 * We will try the next addrinfo struct, and fail if there are
782 * no other valid addresses to bind against.
784 * If user is listening on '[::]', then we will not have a opened a device
785 * yet and have no way of verifying if the device is RoCE or not.
787 * In this case, the source VM will throw an error for ALL types of
788 * connections (both IPv4 and IPv6) if the destination machine does not have
789 * a regular infiniband network available for use.
791 * The only way to guarantee that an error is thrown for broken kernels is
792 * for the management software to choose a *specific* interface at bind time
793 * and validate what time of hardware it is.
795 * Unfortunately, this puts the user in a fix:
797 * If the source VM connects with an IPv4 address without knowing that the
798 * destination has bound to '[::]' the migration will unconditionally fail
799 * unless the management software is explicitly listening on the IPv4
800 * address while using a RoCE-based device.
802 * If the source VM connects with an IPv6 address, then we're OK because we can
803 * throw an error on the source (and similarly on the destination).
805 * But in mixed environments, this will be broken for a while until it is fixed
806 * inside linux.
808 * We do provide a *tiny* bit of help in this function: We can list all of the
809 * devices in the system and check to see if all the devices are RoCE or
810 * Infiniband.
812 * If we detect that we have a *pure* RoCE environment, then we can safely
813 * thrown an error even if the management software has specified '[::]' as the
814 * bind address.
816 * However, if there is are multiple hetergeneous devices, then we cannot make
817 * this assumption and the user just has to be sure they know what they are
818 * doing.
820 * Patches are being reviewed on linux-rdma.
822 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context *verbs, Error **errp)
824 /* This bug only exists in linux, to our knowledge. */
825 #ifdef CONFIG_LINUX
826 struct ibv_port_attr port_attr;
829 * Verbs are only NULL if management has bound to '[::]'.
831 * Let's iterate through all the devices and see if there any pure IB
832 * devices (non-ethernet).
834 * If not, then we can safely proceed with the migration.
835 * Otherwise, there are no guarantees until the bug is fixed in linux.
837 if (!verbs) {
838 int num_devices, x;
839 struct ibv_device **dev_list = ibv_get_device_list(&num_devices);
840 bool roce_found = false;
841 bool ib_found = false;
843 for (x = 0; x < num_devices; x++) {
844 verbs = ibv_open_device(dev_list[x]);
846 * ibv_open_device() is not documented to set errno. If
847 * it does, it's somebody else's doc bug. If it doesn't,
848 * the use of errno below is wrong.
849 * TODO Find out whether ibv_open_device() sets errno.
851 if (!verbs) {
852 if (errno == EPERM) {
853 continue;
854 } else {
855 error_setg_errno(errp, errno,
856 "could not open RDMA device context");
857 return -1;
861 if (ibv_query_port(verbs, 1, &port_attr)) {
862 ibv_close_device(verbs);
863 error_setg(errp,
864 "RDMA ERROR: Could not query initial IB port");
865 return -1;
868 if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
869 ib_found = true;
870 } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
871 roce_found = true;
874 ibv_close_device(verbs);
878 if (roce_found) {
879 if (ib_found) {
880 fprintf(stderr, "WARN: migrations may fail:"
881 " IPv6 over RoCE / iWARP in linux"
882 " is broken. But since you appear to have a"
883 " mixed RoCE / IB environment, be sure to only"
884 " migrate over the IB fabric until the kernel "
885 " fixes the bug.\n");
886 } else {
887 error_setg(errp, "RDMA ERROR: "
888 "You only have RoCE / iWARP devices in your systems"
889 " and your management software has specified '[::]'"
890 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
891 return -1;
895 return 0;
899 * If we have a verbs context, that means that some other than '[::]' was
900 * used by the management software for binding. In which case we can
901 * actually warn the user about a potentially broken kernel.
904 /* IB ports start with 1, not 0 */
905 if (ibv_query_port(verbs, 1, &port_attr)) {
906 error_setg(errp, "RDMA ERROR: Could not query initial IB port");
907 return -1;
910 if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
911 error_setg(errp, "RDMA ERROR: "
912 "Linux kernel's RoCE / iWARP does not support IPv6 "
913 "(but patches on linux-rdma in progress)");
914 return -1;
917 #endif
919 return 0;
923 * Figure out which RDMA device corresponds to the requested IP hostname
924 * Also create the initial connection manager identifiers for opening
925 * the connection.
927 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
929 Error *err = NULL;
930 int ret;
931 struct rdma_addrinfo *res;
932 char port_str[16];
933 struct rdma_cm_event *cm_event;
934 char ip[40] = "unknown";
935 struct rdma_addrinfo *e;
937 if (rdma->host == NULL || !strcmp(rdma->host, "")) {
938 error_setg(errp, "RDMA ERROR: RDMA hostname has not been set");
939 return -1;
942 /* create CM channel */
943 rdma->channel = rdma_create_event_channel();
944 if (!rdma->channel) {
945 error_setg(errp, "RDMA ERROR: could not create CM channel");
946 return -1;
949 /* create CM id */
950 ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
951 if (ret < 0) {
952 error_setg(errp, "RDMA ERROR: could not create channel id");
953 goto err_resolve_create_id;
956 snprintf(port_str, 16, "%d", rdma->port);
957 port_str[15] = '\0';
959 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
960 if (ret) {
961 error_setg(errp, "RDMA ERROR: could not rdma_getaddrinfo address %s",
962 rdma->host);
963 goto err_resolve_get_addr;
966 /* Try all addresses, saving the first error in @err */
967 for (e = res; e != NULL; e = e->ai_next) {
968 Error **local_errp = err ? NULL : &err;
970 inet_ntop(e->ai_family,
971 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
972 trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
974 ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
975 RDMA_RESOLVE_TIMEOUT_MS);
976 if (ret >= 0) {
977 if (e->ai_family == AF_INET6) {
978 ret = qemu_rdma_broken_ipv6_kernel(rdma->cm_id->verbs,
979 local_errp);
980 if (ret < 0) {
981 continue;
984 error_free(err);
985 goto route;
989 rdma_freeaddrinfo(res);
990 if (err) {
991 error_propagate(errp, err);
992 } else {
993 error_setg(errp, "RDMA ERROR: could not resolve address %s",
994 rdma->host);
996 goto err_resolve_get_addr;
998 route:
999 rdma_freeaddrinfo(res);
1000 qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
1002 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1003 if (ret < 0) {
1004 error_setg(errp, "RDMA ERROR: could not perform event_addr_resolved");
1005 goto err_resolve_get_addr;
1008 if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
1009 error_setg(errp,
1010 "RDMA ERROR: result not equal to event_addr_resolved %s",
1011 rdma_event_str(cm_event->event));
1012 rdma_ack_cm_event(cm_event);
1013 goto err_resolve_get_addr;
1015 rdma_ack_cm_event(cm_event);
1017 /* resolve route */
1018 ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
1019 if (ret < 0) {
1020 error_setg(errp, "RDMA ERROR: could not resolve rdma route");
1021 goto err_resolve_get_addr;
1024 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1025 if (ret < 0) {
1026 error_setg(errp, "RDMA ERROR: could not perform event_route_resolved");
1027 goto err_resolve_get_addr;
1029 if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
1030 error_setg(errp, "RDMA ERROR: "
1031 "result not equal to event_route_resolved: %s",
1032 rdma_event_str(cm_event->event));
1033 rdma_ack_cm_event(cm_event);
1034 goto err_resolve_get_addr;
1036 rdma_ack_cm_event(cm_event);
1037 rdma->verbs = rdma->cm_id->verbs;
1038 qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
1039 qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
1040 return 0;
1042 err_resolve_get_addr:
1043 rdma_destroy_id(rdma->cm_id);
1044 rdma->cm_id = NULL;
1045 err_resolve_create_id:
1046 rdma_destroy_event_channel(rdma->channel);
1047 rdma->channel = NULL;
1048 return -1;
1052 * Create protection domain and completion queues
1054 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma, Error **errp)
1056 /* allocate pd */
1057 rdma->pd = ibv_alloc_pd(rdma->verbs);
1058 if (!rdma->pd) {
1059 error_setg(errp, "failed to allocate protection domain");
1060 return -1;
1063 /* create receive completion channel */
1064 rdma->recv_comp_channel = ibv_create_comp_channel(rdma->verbs);
1065 if (!rdma->recv_comp_channel) {
1066 error_setg(errp, "failed to allocate receive completion channel");
1067 goto err_alloc_pd_cq;
1071 * Completion queue can be filled by read work requests.
1073 rdma->recv_cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1074 NULL, rdma->recv_comp_channel, 0);
1075 if (!rdma->recv_cq) {
1076 error_setg(errp, "failed to allocate receive completion queue");
1077 goto err_alloc_pd_cq;
1080 /* create send completion channel */
1081 rdma->send_comp_channel = ibv_create_comp_channel(rdma->verbs);
1082 if (!rdma->send_comp_channel) {
1083 error_setg(errp, "failed to allocate send completion channel");
1084 goto err_alloc_pd_cq;
1087 rdma->send_cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1088 NULL, rdma->send_comp_channel, 0);
1089 if (!rdma->send_cq) {
1090 error_setg(errp, "failed to allocate send completion queue");
1091 goto err_alloc_pd_cq;
1094 return 0;
1096 err_alloc_pd_cq:
1097 if (rdma->pd) {
1098 ibv_dealloc_pd(rdma->pd);
1100 if (rdma->recv_comp_channel) {
1101 ibv_destroy_comp_channel(rdma->recv_comp_channel);
1103 if (rdma->send_comp_channel) {
1104 ibv_destroy_comp_channel(rdma->send_comp_channel);
1106 if (rdma->recv_cq) {
1107 ibv_destroy_cq(rdma->recv_cq);
1108 rdma->recv_cq = NULL;
1110 rdma->pd = NULL;
1111 rdma->recv_comp_channel = NULL;
1112 rdma->send_comp_channel = NULL;
1113 return -1;
1118 * Create queue pairs.
1120 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1122 struct ibv_qp_init_attr attr = { 0 };
1123 int ret;
1125 attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1126 attr.cap.max_recv_wr = 3;
1127 attr.cap.max_send_sge = 1;
1128 attr.cap.max_recv_sge = 1;
1129 attr.send_cq = rdma->send_cq;
1130 attr.recv_cq = rdma->recv_cq;
1131 attr.qp_type = IBV_QPT_RC;
1133 ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1134 if (ret < 0) {
1135 return -1;
1138 rdma->qp = rdma->cm_id->qp;
1139 return 0;
1142 /* Check whether On-Demand Paging is supported by RDAM device */
1143 static bool rdma_support_odp(struct ibv_context *dev)
1145 struct ibv_device_attr_ex attr = {0};
1146 int ret = ibv_query_device_ex(dev, NULL, &attr);
1147 if (ret) {
1148 return false;
1151 if (attr.odp_caps.general_caps & IBV_ODP_SUPPORT) {
1152 return true;
1155 return false;
1159 * ibv_advise_mr to avoid RNR NAK error as far as possible.
1160 * The responder mr registering with ODP will sent RNR NAK back to
1161 * the requester in the face of the page fault.
1163 static void qemu_rdma_advise_prefetch_mr(struct ibv_pd *pd, uint64_t addr,
1164 uint32_t len, uint32_t lkey,
1165 const char *name, bool wr)
1167 #ifdef HAVE_IBV_ADVISE_MR
1168 int ret;
1169 int advice = wr ? IBV_ADVISE_MR_ADVICE_PREFETCH_WRITE :
1170 IBV_ADVISE_MR_ADVICE_PREFETCH;
1171 struct ibv_sge sg_list = {.lkey = lkey, .addr = addr, .length = len};
1173 ret = ibv_advise_mr(pd, advice,
1174 IBV_ADVISE_MR_FLAG_FLUSH, &sg_list, 1);
1175 /* ignore the error */
1176 trace_qemu_rdma_advise_mr(name, len, addr, strerror(ret));
1177 #endif
1180 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma, Error **errp)
1182 int i;
1183 RDMALocalBlocks *local = &rdma->local_ram_blocks;
1185 for (i = 0; i < local->nb_blocks; i++) {
1186 int access = IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE;
1188 local->block[i].mr =
1189 ibv_reg_mr(rdma->pd,
1190 local->block[i].local_host_addr,
1191 local->block[i].length, access
1194 * ibv_reg_mr() is not documented to set errno. If it does,
1195 * it's somebody else's doc bug. If it doesn't, the use of
1196 * errno below is wrong.
1197 * TODO Find out whether ibv_reg_mr() sets errno.
1199 if (!local->block[i].mr &&
1200 errno == ENOTSUP && rdma_support_odp(rdma->verbs)) {
1201 access |= IBV_ACCESS_ON_DEMAND;
1202 /* register ODP mr */
1203 local->block[i].mr =
1204 ibv_reg_mr(rdma->pd,
1205 local->block[i].local_host_addr,
1206 local->block[i].length, access);
1207 trace_qemu_rdma_register_odp_mr(local->block[i].block_name);
1209 if (local->block[i].mr) {
1210 qemu_rdma_advise_prefetch_mr(rdma->pd,
1211 (uintptr_t)local->block[i].local_host_addr,
1212 local->block[i].length,
1213 local->block[i].mr->lkey,
1214 local->block[i].block_name,
1215 true);
1219 if (!local->block[i].mr) {
1220 error_setg_errno(errp, errno,
1221 "Failed to register local dest ram block!");
1222 goto err;
1224 rdma->total_registrations++;
1227 return 0;
1229 err:
1230 for (i--; i >= 0; i--) {
1231 ibv_dereg_mr(local->block[i].mr);
1232 local->block[i].mr = NULL;
1233 rdma->total_registrations--;
1236 return -1;
1241 * Find the ram block that corresponds to the page requested to be
1242 * transmitted by QEMU.
1244 * Once the block is found, also identify which 'chunk' within that
1245 * block that the page belongs to.
1247 static void qemu_rdma_search_ram_block(RDMAContext *rdma,
1248 uintptr_t block_offset,
1249 uint64_t offset,
1250 uint64_t length,
1251 uint64_t *block_index,
1252 uint64_t *chunk_index)
1254 uint64_t current_addr = block_offset + offset;
1255 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1256 (void *) block_offset);
1257 assert(block);
1258 assert(current_addr >= block->offset);
1259 assert((current_addr + length) <= (block->offset + block->length));
1261 *block_index = block->index;
1262 *chunk_index = ram_chunk_index(block->local_host_addr,
1263 block->local_host_addr + (current_addr - block->offset));
1267 * Register a chunk with IB. If the chunk was already registered
1268 * previously, then skip.
1270 * Also return the keys associated with the registration needed
1271 * to perform the actual RDMA operation.
1273 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1274 RDMALocalBlock *block, uintptr_t host_addr,
1275 uint32_t *lkey, uint32_t *rkey, int chunk,
1276 uint8_t *chunk_start, uint8_t *chunk_end)
1278 if (block->mr) {
1279 if (lkey) {
1280 *lkey = block->mr->lkey;
1282 if (rkey) {
1283 *rkey = block->mr->rkey;
1285 return 0;
1288 /* allocate memory to store chunk MRs */
1289 if (!block->pmr) {
1290 block->pmr = g_new0(struct ibv_mr *, block->nb_chunks);
1294 * If 'rkey', then we're the destination, so grant access to the source.
1296 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1298 if (!block->pmr[chunk]) {
1299 uint64_t len = chunk_end - chunk_start;
1300 int access = rkey ? IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE :
1303 trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1305 block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access);
1307 * ibv_reg_mr() is not documented to set errno. If it does,
1308 * it's somebody else's doc bug. If it doesn't, the use of
1309 * errno below is wrong.
1310 * TODO Find out whether ibv_reg_mr() sets errno.
1312 if (!block->pmr[chunk] &&
1313 errno == ENOTSUP && rdma_support_odp(rdma->verbs)) {
1314 access |= IBV_ACCESS_ON_DEMAND;
1315 /* register ODP mr */
1316 block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access);
1317 trace_qemu_rdma_register_odp_mr(block->block_name);
1319 if (block->pmr[chunk]) {
1320 qemu_rdma_advise_prefetch_mr(rdma->pd, (uintptr_t)chunk_start,
1321 len, block->pmr[chunk]->lkey,
1322 block->block_name, rkey);
1327 if (!block->pmr[chunk]) {
1328 perror("Failed to register chunk!");
1329 fprintf(stderr, "Chunk details: block: %d chunk index %d"
1330 " start %" PRIuPTR " end %" PRIuPTR
1331 " host %" PRIuPTR
1332 " local %" PRIuPTR " registrations: %d\n",
1333 block->index, chunk, (uintptr_t)chunk_start,
1334 (uintptr_t)chunk_end, host_addr,
1335 (uintptr_t)block->local_host_addr,
1336 rdma->total_registrations);
1337 return -1;
1339 rdma->total_registrations++;
1341 if (lkey) {
1342 *lkey = block->pmr[chunk]->lkey;
1344 if (rkey) {
1345 *rkey = block->pmr[chunk]->rkey;
1347 return 0;
1351 * Register (at connection time) the memory used for control
1352 * channel messages.
1354 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1356 rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1357 rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1358 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1359 if (rdma->wr_data[idx].control_mr) {
1360 rdma->total_registrations++;
1361 return 0;
1363 return -1;
1367 * Perform a non-optimized memory unregistration after every transfer
1368 * for demonstration purposes, only if pin-all is not requested.
1370 * Potential optimizations:
1371 * 1. Start a new thread to run this function continuously
1372 - for bit clearing
1373 - and for receipt of unregister messages
1374 * 2. Use an LRU.
1375 * 3. Use workload hints.
1377 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1379 Error *err = NULL;
1381 while (rdma->unregistrations[rdma->unregister_current]) {
1382 int ret;
1383 uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1384 uint64_t chunk =
1385 (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1386 uint64_t index =
1387 (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1388 RDMALocalBlock *block =
1389 &(rdma->local_ram_blocks.block[index]);
1390 RDMARegister reg = { .current_index = index };
1391 RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1393 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1394 .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1395 .repeat = 1,
1398 trace_qemu_rdma_unregister_waiting_proc(chunk,
1399 rdma->unregister_current);
1401 rdma->unregistrations[rdma->unregister_current] = 0;
1402 rdma->unregister_current++;
1404 if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1405 rdma->unregister_current = 0;
1410 * Unregistration is speculative (because migration is single-threaded
1411 * and we cannot break the protocol's inifinband message ordering).
1412 * Thus, if the memory is currently being used for transmission,
1413 * then abort the attempt to unregister and try again
1414 * later the next time a completion is received for this memory.
1416 clear_bit(chunk, block->unregister_bitmap);
1418 if (test_bit(chunk, block->transit_bitmap)) {
1419 trace_qemu_rdma_unregister_waiting_inflight(chunk);
1420 continue;
1423 trace_qemu_rdma_unregister_waiting_send(chunk);
1425 ret = ibv_dereg_mr(block->pmr[chunk]);
1426 block->pmr[chunk] = NULL;
1427 block->remote_keys[chunk] = 0;
1429 if (ret != 0) {
1431 * FIXME perror() is problematic, bcause ibv_dereg_mr() is
1432 * not documented to set errno. Will go away later in
1433 * this series.
1435 perror("unregistration chunk failed");
1436 return -1;
1438 rdma->total_registrations--;
1440 reg.key.chunk = chunk;
1441 register_to_network(rdma, &reg);
1442 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1443 &resp, NULL, NULL, &err);
1444 if (ret < 0) {
1445 error_report_err(err);
1446 return -1;
1449 trace_qemu_rdma_unregister_waiting_complete(chunk);
1452 return 0;
1455 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1456 uint64_t chunk)
1458 uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1460 result |= (index << RDMA_WRID_BLOCK_SHIFT);
1461 result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1463 return result;
1467 * Consult the connection manager to see a work request
1468 * (of any kind) has completed.
1469 * Return the work request ID that completed.
1471 static int qemu_rdma_poll(RDMAContext *rdma, struct ibv_cq *cq,
1472 uint64_t *wr_id_out, uint32_t *byte_len)
1474 int ret;
1475 struct ibv_wc wc;
1476 uint64_t wr_id;
1478 ret = ibv_poll_cq(cq, 1, &wc);
1480 if (!ret) {
1481 *wr_id_out = RDMA_WRID_NONE;
1482 return 0;
1485 if (ret < 0) {
1486 return -1;
1489 wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1491 if (wc.status != IBV_WC_SUCCESS) {
1492 return -1;
1495 if (rdma->control_ready_expected &&
1496 (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1497 trace_qemu_rdma_poll_recv(wr_id - RDMA_WRID_RECV_CONTROL, wr_id,
1498 rdma->nb_sent);
1499 rdma->control_ready_expected = 0;
1502 if (wr_id == RDMA_WRID_RDMA_WRITE) {
1503 uint64_t chunk =
1504 (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1505 uint64_t index =
1506 (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1507 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1509 trace_qemu_rdma_poll_write(wr_id, rdma->nb_sent,
1510 index, chunk, block->local_host_addr,
1511 (void *)(uintptr_t)block->remote_host_addr);
1513 clear_bit(chunk, block->transit_bitmap);
1515 if (rdma->nb_sent > 0) {
1516 rdma->nb_sent--;
1518 } else {
1519 trace_qemu_rdma_poll_other(wr_id, rdma->nb_sent);
1522 *wr_id_out = wc.wr_id;
1523 if (byte_len) {
1524 *byte_len = wc.byte_len;
1527 return 0;
1530 /* Wait for activity on the completion channel.
1531 * Returns 0 on success, none-0 on error.
1533 static int qemu_rdma_wait_comp_channel(RDMAContext *rdma,
1534 struct ibv_comp_channel *comp_channel)
1536 struct rdma_cm_event *cm_event;
1537 int ret;
1540 * Coroutine doesn't start until migration_fd_process_incoming()
1541 * so don't yield unless we know we're running inside of a coroutine.
1543 if (rdma->migration_started_on_destination &&
1544 migration_incoming_get_current()->state == MIGRATION_STATUS_ACTIVE) {
1545 yield_until_fd_readable(comp_channel->fd);
1546 } else {
1547 /* This is the source side, we're in a separate thread
1548 * or destination prior to migration_fd_process_incoming()
1549 * after postcopy, the destination also in a separate thread.
1550 * we can't yield; so we have to poll the fd.
1551 * But we need to be able to handle 'cancel' or an error
1552 * without hanging forever.
1554 while (!rdma->errored && !rdma->received_error) {
1555 GPollFD pfds[2];
1556 pfds[0].fd = comp_channel->fd;
1557 pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1558 pfds[0].revents = 0;
1560 pfds[1].fd = rdma->channel->fd;
1561 pfds[1].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1562 pfds[1].revents = 0;
1564 /* 0.1s timeout, should be fine for a 'cancel' */
1565 switch (qemu_poll_ns(pfds, 2, 100 * 1000 * 1000)) {
1566 case 2:
1567 case 1: /* fd active */
1568 if (pfds[0].revents) {
1569 return 0;
1572 if (pfds[1].revents) {
1573 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1574 if (ret < 0) {
1575 return -1;
1578 if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
1579 cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
1580 rdma_ack_cm_event(cm_event);
1581 return -1;
1583 rdma_ack_cm_event(cm_event);
1585 break;
1587 case 0: /* Timeout, go around again */
1588 break;
1590 default: /* Error of some type -
1591 * I don't trust errno from qemu_poll_ns
1593 return -1;
1596 if (migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) {
1597 /* Bail out and let the cancellation happen */
1598 return -1;
1603 if (rdma->received_error) {
1604 return -1;
1606 return -rdma->errored;
1609 static struct ibv_comp_channel *to_channel(RDMAContext *rdma, uint64_t wrid)
1611 return wrid < RDMA_WRID_RECV_CONTROL ? rdma->send_comp_channel :
1612 rdma->recv_comp_channel;
1615 static struct ibv_cq *to_cq(RDMAContext *rdma, uint64_t wrid)
1617 return wrid < RDMA_WRID_RECV_CONTROL ? rdma->send_cq : rdma->recv_cq;
1621 * Block until the next work request has completed.
1623 * First poll to see if a work request has already completed,
1624 * otherwise block.
1626 * If we encounter completed work requests for IDs other than
1627 * the one we're interested in, then that's generally an error.
1629 * The only exception is actual RDMA Write completions. These
1630 * completions only need to be recorded, but do not actually
1631 * need further processing.
1633 static int qemu_rdma_block_for_wrid(RDMAContext *rdma,
1634 uint64_t wrid_requested,
1635 uint32_t *byte_len)
1637 int num_cq_events = 0, ret;
1638 struct ibv_cq *cq;
1639 void *cq_ctx;
1640 uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1641 struct ibv_comp_channel *ch = to_channel(rdma, wrid_requested);
1642 struct ibv_cq *poll_cq = to_cq(rdma, wrid_requested);
1644 if (ibv_req_notify_cq(poll_cq, 0)) {
1645 return -1;
1647 /* poll cq first */
1648 while (wr_id != wrid_requested) {
1649 ret = qemu_rdma_poll(rdma, poll_cq, &wr_id_in, byte_len);
1650 if (ret < 0) {
1651 return -1;
1654 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1656 if (wr_id == RDMA_WRID_NONE) {
1657 break;
1659 if (wr_id != wrid_requested) {
1660 trace_qemu_rdma_block_for_wrid_miss(wrid_requested, wr_id);
1664 if (wr_id == wrid_requested) {
1665 return 0;
1668 while (1) {
1669 ret = qemu_rdma_wait_comp_channel(rdma, ch);
1670 if (ret < 0) {
1671 goto err_block_for_wrid;
1674 ret = ibv_get_cq_event(ch, &cq, &cq_ctx);
1675 if (ret < 0) {
1676 goto err_block_for_wrid;
1679 num_cq_events++;
1681 if (ibv_req_notify_cq(cq, 0)) {
1682 goto err_block_for_wrid;
1685 while (wr_id != wrid_requested) {
1686 ret = qemu_rdma_poll(rdma, poll_cq, &wr_id_in, byte_len);
1687 if (ret < 0) {
1688 goto err_block_for_wrid;
1691 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1693 if (wr_id == RDMA_WRID_NONE) {
1694 break;
1696 if (wr_id != wrid_requested) {
1697 trace_qemu_rdma_block_for_wrid_miss(wrid_requested, wr_id);
1701 if (wr_id == wrid_requested) {
1702 goto success_block_for_wrid;
1706 success_block_for_wrid:
1707 if (num_cq_events) {
1708 ibv_ack_cq_events(cq, num_cq_events);
1710 return 0;
1712 err_block_for_wrid:
1713 if (num_cq_events) {
1714 ibv_ack_cq_events(cq, num_cq_events);
1717 rdma->errored = true;
1718 return -1;
1722 * Post a SEND message work request for the control channel
1723 * containing some data and block until the post completes.
1725 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1726 RDMAControlHeader *head,
1727 Error **errp)
1729 int ret;
1730 RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1731 struct ibv_send_wr *bad_wr;
1732 struct ibv_sge sge = {
1733 .addr = (uintptr_t)(wr->control),
1734 .length = head->len + sizeof(RDMAControlHeader),
1735 .lkey = wr->control_mr->lkey,
1737 struct ibv_send_wr send_wr = {
1738 .wr_id = RDMA_WRID_SEND_CONTROL,
1739 .opcode = IBV_WR_SEND,
1740 .send_flags = IBV_SEND_SIGNALED,
1741 .sg_list = &sge,
1742 .num_sge = 1,
1745 trace_qemu_rdma_post_send_control(control_desc(head->type));
1748 * We don't actually need to do a memcpy() in here if we used
1749 * the "sge" properly, but since we're only sending control messages
1750 * (not RAM in a performance-critical path), then its OK for now.
1752 * The copy makes the RDMAControlHeader simpler to manipulate
1753 * for the time being.
1755 assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1756 memcpy(wr->control, head, sizeof(RDMAControlHeader));
1757 control_to_network((void *) wr->control);
1759 if (buf) {
1760 memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1764 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1766 if (ret > 0) {
1767 error_setg(errp, "Failed to use post IB SEND for control");
1768 return -1;
1771 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1772 if (ret < 0) {
1773 error_setg(errp, "rdma migration: send polling control error");
1774 return -1;
1777 return 0;
1781 * Post a RECV work request in anticipation of some future receipt
1782 * of data on the control channel.
1784 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx,
1785 Error **errp)
1787 struct ibv_recv_wr *bad_wr;
1788 struct ibv_sge sge = {
1789 .addr = (uintptr_t)(rdma->wr_data[idx].control),
1790 .length = RDMA_CONTROL_MAX_BUFFER,
1791 .lkey = rdma->wr_data[idx].control_mr->lkey,
1794 struct ibv_recv_wr recv_wr = {
1795 .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1796 .sg_list = &sge,
1797 .num_sge = 1,
1801 if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1802 error_setg(errp, "error posting control recv");
1803 return -1;
1806 return 0;
1810 * Block and wait for a RECV control channel message to arrive.
1812 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1813 RDMAControlHeader *head, uint32_t expecting, int idx,
1814 Error **errp)
1816 uint32_t byte_len;
1817 int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1818 &byte_len);
1820 if (ret < 0) {
1821 error_setg(errp, "rdma migration: recv polling control error!");
1822 return -1;
1825 network_to_control((void *) rdma->wr_data[idx].control);
1826 memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1828 trace_qemu_rdma_exchange_get_response_start(control_desc(expecting));
1830 if (expecting == RDMA_CONTROL_NONE) {
1831 trace_qemu_rdma_exchange_get_response_none(control_desc(head->type),
1832 head->type);
1833 } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1834 error_setg(errp, "Was expecting a %s (%d) control message"
1835 ", but got: %s (%d), length: %d",
1836 control_desc(expecting), expecting,
1837 control_desc(head->type), head->type, head->len);
1838 if (head->type == RDMA_CONTROL_ERROR) {
1839 rdma->received_error = true;
1841 return -1;
1843 if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1844 error_setg(errp, "too long length: %d", head->len);
1845 return -1;
1847 if (sizeof(*head) + head->len != byte_len) {
1848 error_setg(errp, "Malformed length: %d byte_len %d",
1849 head->len, byte_len);
1850 return -1;
1853 return 0;
1857 * When a RECV work request has completed, the work request's
1858 * buffer is pointed at the header.
1860 * This will advance the pointer to the data portion
1861 * of the control message of the work request's buffer that
1862 * was populated after the work request finished.
1864 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1865 RDMAControlHeader *head)
1867 rdma->wr_data[idx].control_len = head->len;
1868 rdma->wr_data[idx].control_curr =
1869 rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1873 * This is an 'atomic' high-level operation to deliver a single, unified
1874 * control-channel message.
1876 * Additionally, if the user is expecting some kind of reply to this message,
1877 * they can request a 'resp' response message be filled in by posting an
1878 * additional work request on behalf of the user and waiting for an additional
1879 * completion.
1881 * The extra (optional) response is used during registration to us from having
1882 * to perform an *additional* exchange of message just to provide a response by
1883 * instead piggy-backing on the acknowledgement.
1885 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1886 uint8_t *data, RDMAControlHeader *resp,
1887 int *resp_idx,
1888 int (*callback)(RDMAContext *rdma,
1889 Error **errp),
1890 Error **errp)
1892 int ret;
1895 * Wait until the dest is ready before attempting to deliver the message
1896 * by waiting for a READY message.
1898 if (rdma->control_ready_expected) {
1899 RDMAControlHeader resp_ignored;
1901 ret = qemu_rdma_exchange_get_response(rdma, &resp_ignored,
1902 RDMA_CONTROL_READY,
1903 RDMA_WRID_READY, errp);
1904 if (ret < 0) {
1905 return -1;
1910 * If the user is expecting a response, post a WR in anticipation of it.
1912 if (resp) {
1913 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA, errp);
1914 if (ret < 0) {
1915 return -1;
1920 * Post a WR to replace the one we just consumed for the READY message.
1922 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY, errp);
1923 if (ret < 0) {
1924 return -1;
1928 * Deliver the control message that was requested.
1930 ret = qemu_rdma_post_send_control(rdma, data, head, errp);
1932 if (ret < 0) {
1933 return -1;
1937 * If we're expecting a response, block and wait for it.
1939 if (resp) {
1940 if (callback) {
1941 trace_qemu_rdma_exchange_send_issue_callback();
1942 ret = callback(rdma, errp);
1943 if (ret < 0) {
1944 return -1;
1948 trace_qemu_rdma_exchange_send_waiting(control_desc(resp->type));
1949 ret = qemu_rdma_exchange_get_response(rdma, resp,
1950 resp->type, RDMA_WRID_DATA,
1951 errp);
1953 if (ret < 0) {
1954 return -1;
1957 qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1958 if (resp_idx) {
1959 *resp_idx = RDMA_WRID_DATA;
1961 trace_qemu_rdma_exchange_send_received(control_desc(resp->type));
1964 rdma->control_ready_expected = 1;
1966 return 0;
1970 * This is an 'atomic' high-level operation to receive a single, unified
1971 * control-channel message.
1973 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1974 uint32_t expecting, Error **errp)
1976 RDMAControlHeader ready = {
1977 .len = 0,
1978 .type = RDMA_CONTROL_READY,
1979 .repeat = 1,
1981 int ret;
1984 * Inform the source that we're ready to receive a message.
1986 ret = qemu_rdma_post_send_control(rdma, NULL, &ready, errp);
1988 if (ret < 0) {
1989 return -1;
1993 * Block and wait for the message.
1995 ret = qemu_rdma_exchange_get_response(rdma, head,
1996 expecting, RDMA_WRID_READY, errp);
1998 if (ret < 0) {
1999 return -1;
2002 qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
2005 * Post a new RECV work request to replace the one we just consumed.
2007 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY, errp);
2008 if (ret < 0) {
2009 return -1;
2012 return 0;
2016 * Write an actual chunk of memory using RDMA.
2018 * If we're using dynamic registration on the dest-side, we have to
2019 * send a registration command first.
2021 static int qemu_rdma_write_one(RDMAContext *rdma,
2022 int current_index, uint64_t current_addr,
2023 uint64_t length, Error **errp)
2025 struct ibv_sge sge;
2026 struct ibv_send_wr send_wr = { 0 };
2027 struct ibv_send_wr *bad_wr;
2028 int reg_result_idx, ret, count = 0;
2029 uint64_t chunk, chunks;
2030 uint8_t *chunk_start, *chunk_end;
2031 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
2032 RDMARegister reg;
2033 RDMARegisterResult *reg_result;
2034 RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
2035 RDMAControlHeader head = { .len = sizeof(RDMARegister),
2036 .type = RDMA_CONTROL_REGISTER_REQUEST,
2037 .repeat = 1,
2040 retry:
2041 sge.addr = (uintptr_t)(block->local_host_addr +
2042 (current_addr - block->offset));
2043 sge.length = length;
2045 chunk = ram_chunk_index(block->local_host_addr,
2046 (uint8_t *)(uintptr_t)sge.addr);
2047 chunk_start = ram_chunk_start(block, chunk);
2049 if (block->is_ram_block) {
2050 chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
2052 if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2053 chunks--;
2055 } else {
2056 chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
2058 if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2059 chunks--;
2063 trace_qemu_rdma_write_one_top(chunks + 1,
2064 (chunks + 1) *
2065 (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
2067 chunk_end = ram_chunk_end(block, chunk + chunks);
2070 while (test_bit(chunk, block->transit_bitmap)) {
2071 (void)count;
2072 trace_qemu_rdma_write_one_block(count++, current_index, chunk,
2073 sge.addr, length, rdma->nb_sent, block->nb_chunks);
2075 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2077 if (ret < 0) {
2078 error_setg(errp, "Failed to Wait for previous write to complete "
2079 "block %d chunk %" PRIu64
2080 " current %" PRIu64 " len %" PRIu64 " %d",
2081 current_index, chunk, sge.addr, length, rdma->nb_sent);
2082 return -1;
2086 if (!rdma->pin_all || !block->is_ram_block) {
2087 if (!block->remote_keys[chunk]) {
2089 * This chunk has not yet been registered, so first check to see
2090 * if the entire chunk is zero. If so, tell the other size to
2091 * memset() + madvise() the entire chunk without RDMA.
2094 if (buffer_is_zero((void *)(uintptr_t)sge.addr, length)) {
2095 RDMACompress comp = {
2096 .offset = current_addr,
2097 .value = 0,
2098 .block_idx = current_index,
2099 .length = length,
2102 head.len = sizeof(comp);
2103 head.type = RDMA_CONTROL_COMPRESS;
2105 trace_qemu_rdma_write_one_zero(chunk, sge.length,
2106 current_index, current_addr);
2108 compress_to_network(rdma, &comp);
2109 ret = qemu_rdma_exchange_send(rdma, &head,
2110 (uint8_t *) &comp, NULL, NULL, NULL, errp);
2112 if (ret < 0) {
2113 return -1;
2117 * TODO: Here we are sending something, but we are not
2118 * accounting for anything transferred. The following is wrong:
2120 * stat64_add(&mig_stats.rdma_bytes, sge.length);
2122 * because we are using some kind of compression. I
2123 * would think that head.len would be the more similar
2124 * thing to a correct value.
2126 stat64_add(&mig_stats.zero_pages,
2127 sge.length / qemu_target_page_size());
2128 return 1;
2132 * Otherwise, tell other side to register.
2134 reg.current_index = current_index;
2135 if (block->is_ram_block) {
2136 reg.key.current_addr = current_addr;
2137 } else {
2138 reg.key.chunk = chunk;
2140 reg.chunks = chunks;
2142 trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
2143 current_addr);
2145 register_to_network(rdma, &reg);
2146 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
2147 &resp, &reg_result_idx, NULL, errp);
2148 if (ret < 0) {
2149 return -1;
2152 /* try to overlap this single registration with the one we sent. */
2153 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2154 &sge.lkey, NULL, chunk,
2155 chunk_start, chunk_end)) {
2156 error_setg(errp, "cannot get lkey");
2157 return -1;
2160 reg_result = (RDMARegisterResult *)
2161 rdma->wr_data[reg_result_idx].control_curr;
2163 network_to_result(reg_result);
2165 trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
2166 reg_result->rkey, chunk);
2168 block->remote_keys[chunk] = reg_result->rkey;
2169 block->remote_host_addr = reg_result->host_addr;
2170 } else {
2171 /* already registered before */
2172 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2173 &sge.lkey, NULL, chunk,
2174 chunk_start, chunk_end)) {
2175 error_setg(errp, "cannot get lkey!");
2176 return -1;
2180 send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2181 } else {
2182 send_wr.wr.rdma.rkey = block->remote_rkey;
2184 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2185 &sge.lkey, NULL, chunk,
2186 chunk_start, chunk_end)) {
2187 error_setg(errp, "cannot get lkey!");
2188 return -1;
2193 * Encode the ram block index and chunk within this wrid.
2194 * We will use this information at the time of completion
2195 * to figure out which bitmap to check against and then which
2196 * chunk in the bitmap to look for.
2198 send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2199 current_index, chunk);
2201 send_wr.opcode = IBV_WR_RDMA_WRITE;
2202 send_wr.send_flags = IBV_SEND_SIGNALED;
2203 send_wr.sg_list = &sge;
2204 send_wr.num_sge = 1;
2205 send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2206 (current_addr - block->offset);
2208 trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2209 sge.length);
2212 * ibv_post_send() does not return negative error numbers,
2213 * per the specification they are positive - no idea why.
2215 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2217 if (ret == ENOMEM) {
2218 trace_qemu_rdma_write_one_queue_full();
2219 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2220 if (ret < 0) {
2221 error_setg(errp, "rdma migration: failed to make "
2222 "room in full send queue!");
2223 return -1;
2226 goto retry;
2228 } else if (ret > 0) {
2229 error_setg_errno(errp, ret,
2230 "rdma migration: post rdma write failed");
2231 return -1;
2234 set_bit(chunk, block->transit_bitmap);
2235 stat64_add(&mig_stats.normal_pages, sge.length / qemu_target_page_size());
2237 * We are adding to transferred the amount of data written, but no
2238 * overhead at all. I will asume that RDMA is magicaly and don't
2239 * need to transfer (at least) the addresses where it wants to
2240 * write the pages. Here it looks like it should be something
2241 * like:
2242 * sizeof(send_wr) + sge.length
2243 * but this being RDMA, who knows.
2245 stat64_add(&mig_stats.rdma_bytes, sge.length);
2246 ram_transferred_add(sge.length);
2247 rdma->total_writes++;
2249 return 0;
2253 * Push out any unwritten RDMA operations.
2255 * We support sending out multiple chunks at the same time.
2256 * Not all of them need to get signaled in the completion queue.
2258 static int qemu_rdma_write_flush(RDMAContext *rdma, Error **errp)
2260 int ret;
2262 if (!rdma->current_length) {
2263 return 0;
2266 ret = qemu_rdma_write_one(rdma, rdma->current_index, rdma->current_addr,
2267 rdma->current_length, errp);
2269 if (ret < 0) {
2270 return -1;
2273 if (ret == 0) {
2274 rdma->nb_sent++;
2275 trace_qemu_rdma_write_flush(rdma->nb_sent);
2278 rdma->current_length = 0;
2279 rdma->current_addr = 0;
2281 return 0;
2284 static inline bool qemu_rdma_buffer_mergeable(RDMAContext *rdma,
2285 uint64_t offset, uint64_t len)
2287 RDMALocalBlock *block;
2288 uint8_t *host_addr;
2289 uint8_t *chunk_end;
2291 if (rdma->current_index < 0) {
2292 return false;
2295 if (rdma->current_chunk < 0) {
2296 return false;
2299 block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2300 host_addr = block->local_host_addr + (offset - block->offset);
2301 chunk_end = ram_chunk_end(block, rdma->current_chunk);
2303 if (rdma->current_length == 0) {
2304 return false;
2308 * Only merge into chunk sequentially.
2310 if (offset != (rdma->current_addr + rdma->current_length)) {
2311 return false;
2314 if (offset < block->offset) {
2315 return false;
2318 if ((offset + len) > (block->offset + block->length)) {
2319 return false;
2322 if ((host_addr + len) > chunk_end) {
2323 return false;
2326 return true;
2330 * We're not actually writing here, but doing three things:
2332 * 1. Identify the chunk the buffer belongs to.
2333 * 2. If the chunk is full or the buffer doesn't belong to the current
2334 * chunk, then start a new chunk and flush() the old chunk.
2335 * 3. To keep the hardware busy, we also group chunks into batches
2336 * and only require that a batch gets acknowledged in the completion
2337 * queue instead of each individual chunk.
2339 static int qemu_rdma_write(RDMAContext *rdma,
2340 uint64_t block_offset, uint64_t offset,
2341 uint64_t len, Error **errp)
2343 uint64_t current_addr = block_offset + offset;
2344 uint64_t index = rdma->current_index;
2345 uint64_t chunk = rdma->current_chunk;
2346 int ret;
2348 /* If we cannot merge it, we flush the current buffer first. */
2349 if (!qemu_rdma_buffer_mergeable(rdma, current_addr, len)) {
2350 ret = qemu_rdma_write_flush(rdma, errp);
2351 if (ret < 0) {
2352 return -1;
2354 rdma->current_length = 0;
2355 rdma->current_addr = current_addr;
2357 qemu_rdma_search_ram_block(rdma, block_offset,
2358 offset, len, &index, &chunk);
2359 rdma->current_index = index;
2360 rdma->current_chunk = chunk;
2363 /* merge it */
2364 rdma->current_length += len;
2366 /* flush it if buffer is too large */
2367 if (rdma->current_length >= RDMA_MERGE_MAX) {
2368 return qemu_rdma_write_flush(rdma, errp);
2371 return 0;
2374 static void qemu_rdma_cleanup(RDMAContext *rdma)
2376 Error *err = NULL;
2377 int idx;
2379 if (rdma->cm_id && rdma->connected) {
2380 if ((rdma->errored ||
2381 migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) &&
2382 !rdma->received_error) {
2383 RDMAControlHeader head = { .len = 0,
2384 .type = RDMA_CONTROL_ERROR,
2385 .repeat = 1,
2387 error_report("Early error. Sending error.");
2388 if (qemu_rdma_post_send_control(rdma, NULL, &head, &err) < 0) {
2389 error_report_err(err);
2393 rdma_disconnect(rdma->cm_id);
2394 trace_qemu_rdma_cleanup_disconnect();
2395 rdma->connected = false;
2398 if (rdma->channel) {
2399 qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
2401 g_free(rdma->dest_blocks);
2402 rdma->dest_blocks = NULL;
2404 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2405 if (rdma->wr_data[idx].control_mr) {
2406 rdma->total_registrations--;
2407 ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2409 rdma->wr_data[idx].control_mr = NULL;
2412 if (rdma->local_ram_blocks.block) {
2413 while (rdma->local_ram_blocks.nb_blocks) {
2414 rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2418 if (rdma->qp) {
2419 rdma_destroy_qp(rdma->cm_id);
2420 rdma->qp = NULL;
2422 if (rdma->recv_cq) {
2423 ibv_destroy_cq(rdma->recv_cq);
2424 rdma->recv_cq = NULL;
2426 if (rdma->send_cq) {
2427 ibv_destroy_cq(rdma->send_cq);
2428 rdma->send_cq = NULL;
2430 if (rdma->recv_comp_channel) {
2431 ibv_destroy_comp_channel(rdma->recv_comp_channel);
2432 rdma->recv_comp_channel = NULL;
2434 if (rdma->send_comp_channel) {
2435 ibv_destroy_comp_channel(rdma->send_comp_channel);
2436 rdma->send_comp_channel = NULL;
2438 if (rdma->pd) {
2439 ibv_dealloc_pd(rdma->pd);
2440 rdma->pd = NULL;
2442 if (rdma->cm_id) {
2443 rdma_destroy_id(rdma->cm_id);
2444 rdma->cm_id = NULL;
2447 /* the destination side, listen_id and channel is shared */
2448 if (rdma->listen_id) {
2449 if (!rdma->is_return_path) {
2450 rdma_destroy_id(rdma->listen_id);
2452 rdma->listen_id = NULL;
2454 if (rdma->channel) {
2455 if (!rdma->is_return_path) {
2456 rdma_destroy_event_channel(rdma->channel);
2458 rdma->channel = NULL;
2462 if (rdma->channel) {
2463 rdma_destroy_event_channel(rdma->channel);
2464 rdma->channel = NULL;
2466 g_free(rdma->host);
2467 g_free(rdma->host_port);
2468 rdma->host = NULL;
2469 rdma->host_port = NULL;
2473 static int qemu_rdma_source_init(RDMAContext *rdma, bool pin_all, Error **errp)
2475 int ret, idx;
2478 * Will be validated against destination's actual capabilities
2479 * after the connect() completes.
2481 rdma->pin_all = pin_all;
2483 ret = qemu_rdma_resolve_host(rdma, errp);
2484 if (ret < 0) {
2485 goto err_rdma_source_init;
2488 ret = qemu_rdma_alloc_pd_cq(rdma, errp);
2489 if (ret < 0) {
2490 goto err_rdma_source_init;
2493 ret = qemu_rdma_alloc_qp(rdma);
2494 if (ret < 0) {
2495 error_setg(errp, "RDMA ERROR: rdma migration: error allocating qp!");
2496 goto err_rdma_source_init;
2499 qemu_rdma_init_ram_blocks(rdma);
2501 /* Build the hash that maps from offset to RAMBlock */
2502 rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2503 for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) {
2504 g_hash_table_insert(rdma->blockmap,
2505 (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset,
2506 &rdma->local_ram_blocks.block[idx]);
2509 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2510 ret = qemu_rdma_reg_control(rdma, idx);
2511 if (ret < 0) {
2512 error_setg(errp,
2513 "RDMA ERROR: rdma migration: error registering %d control!",
2514 idx);
2515 goto err_rdma_source_init;
2519 return 0;
2521 err_rdma_source_init:
2522 qemu_rdma_cleanup(rdma);
2523 return -1;
2526 static int qemu_get_cm_event_timeout(RDMAContext *rdma,
2527 struct rdma_cm_event **cm_event,
2528 long msec, Error **errp)
2530 int ret;
2531 struct pollfd poll_fd = {
2532 .fd = rdma->channel->fd,
2533 .events = POLLIN,
2534 .revents = 0
2537 do {
2538 ret = poll(&poll_fd, 1, msec);
2539 } while (ret < 0 && errno == EINTR);
2541 if (ret == 0) {
2542 error_setg(errp, "RDMA ERROR: poll cm event timeout");
2543 return -1;
2544 } else if (ret < 0) {
2545 error_setg(errp, "RDMA ERROR: failed to poll cm event, errno=%i",
2546 errno);
2547 return -1;
2548 } else if (poll_fd.revents & POLLIN) {
2549 if (rdma_get_cm_event(rdma->channel, cm_event) < 0) {
2550 error_setg(errp, "RDMA ERROR: failed to get cm event");
2551 return -1;
2553 return 0;
2554 } else {
2555 error_setg(errp, "RDMA ERROR: no POLLIN event, revent=%x",
2556 poll_fd.revents);
2557 return -1;
2561 static int qemu_rdma_connect(RDMAContext *rdma, bool return_path,
2562 Error **errp)
2564 RDMACapabilities cap = {
2565 .version = RDMA_CONTROL_VERSION_CURRENT,
2566 .flags = 0,
2568 struct rdma_conn_param conn_param = { .initiator_depth = 2,
2569 .retry_count = 5,
2570 .private_data = &cap,
2571 .private_data_len = sizeof(cap),
2573 struct rdma_cm_event *cm_event;
2574 int ret;
2577 * Only negotiate the capability with destination if the user
2578 * on the source first requested the capability.
2580 if (rdma->pin_all) {
2581 trace_qemu_rdma_connect_pin_all_requested();
2582 cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2585 caps_to_network(&cap);
2587 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY, errp);
2588 if (ret < 0) {
2589 goto err_rdma_source_connect;
2592 ret = rdma_connect(rdma->cm_id, &conn_param);
2593 if (ret < 0) {
2594 error_setg_errno(errp, errno,
2595 "RDMA ERROR: connecting to destination!");
2596 goto err_rdma_source_connect;
2599 if (return_path) {
2600 ret = qemu_get_cm_event_timeout(rdma, &cm_event, 5000, errp);
2601 } else {
2602 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2603 if (ret < 0) {
2604 error_setg_errno(errp, errno,
2605 "RDMA ERROR: failed to get cm event");
2608 if (ret < 0) {
2609 goto err_rdma_source_connect;
2612 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2613 error_setg(errp, "RDMA ERROR: connecting to destination!");
2614 rdma_ack_cm_event(cm_event);
2615 goto err_rdma_source_connect;
2617 rdma->connected = true;
2619 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2620 network_to_caps(&cap);
2623 * Verify that the *requested* capabilities are supported by the destination
2624 * and disable them otherwise.
2626 if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2627 warn_report("RDMA: Server cannot support pinning all memory. "
2628 "Will register memory dynamically.");
2629 rdma->pin_all = false;
2632 trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2634 rdma_ack_cm_event(cm_event);
2636 rdma->control_ready_expected = 1;
2637 rdma->nb_sent = 0;
2638 return 0;
2640 err_rdma_source_connect:
2641 qemu_rdma_cleanup(rdma);
2642 return -1;
2645 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2647 Error *err = NULL;
2648 int ret, idx;
2649 struct rdma_cm_id *listen_id;
2650 char ip[40] = "unknown";
2651 struct rdma_addrinfo *res, *e;
2652 char port_str[16];
2653 int reuse = 1;
2655 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2656 rdma->wr_data[idx].control_len = 0;
2657 rdma->wr_data[idx].control_curr = NULL;
2660 if (!rdma->host || !rdma->host[0]) {
2661 error_setg(errp, "RDMA ERROR: RDMA host is not set!");
2662 rdma->errored = true;
2663 return -1;
2665 /* create CM channel */
2666 rdma->channel = rdma_create_event_channel();
2667 if (!rdma->channel) {
2668 error_setg(errp, "RDMA ERROR: could not create rdma event channel");
2669 rdma->errored = true;
2670 return -1;
2673 /* create CM id */
2674 ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2675 if (ret < 0) {
2676 error_setg(errp, "RDMA ERROR: could not create cm_id!");
2677 goto err_dest_init_create_listen_id;
2680 snprintf(port_str, 16, "%d", rdma->port);
2681 port_str[15] = '\0';
2683 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2684 if (ret) {
2685 error_setg(errp, "RDMA ERROR: could not rdma_getaddrinfo address %s",
2686 rdma->host);
2687 goto err_dest_init_bind_addr;
2690 ret = rdma_set_option(listen_id, RDMA_OPTION_ID, RDMA_OPTION_ID_REUSEADDR,
2691 &reuse, sizeof reuse);
2692 if (ret < 0) {
2693 error_setg(errp, "RDMA ERROR: Error: could not set REUSEADDR option");
2694 goto err_dest_init_bind_addr;
2697 /* Try all addresses, saving the first error in @err */
2698 for (e = res; e != NULL; e = e->ai_next) {
2699 Error **local_errp = err ? NULL : &err;
2701 inet_ntop(e->ai_family,
2702 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2703 trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2704 ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2705 if (ret < 0) {
2706 continue;
2708 if (e->ai_family == AF_INET6) {
2709 ret = qemu_rdma_broken_ipv6_kernel(listen_id->verbs,
2710 local_errp);
2711 if (ret < 0) {
2712 continue;
2715 error_free(err);
2716 break;
2719 rdma_freeaddrinfo(res);
2720 if (!e) {
2721 if (err) {
2722 error_propagate(errp, err);
2723 } else {
2724 error_setg(errp, "RDMA ERROR: Error: could not rdma_bind_addr!");
2726 goto err_dest_init_bind_addr;
2729 rdma->listen_id = listen_id;
2730 qemu_rdma_dump_gid("dest_init", listen_id);
2731 return 0;
2733 err_dest_init_bind_addr:
2734 rdma_destroy_id(listen_id);
2735 err_dest_init_create_listen_id:
2736 rdma_destroy_event_channel(rdma->channel);
2737 rdma->channel = NULL;
2738 rdma->errored = true;
2739 return -1;
2743 static void qemu_rdma_return_path_dest_init(RDMAContext *rdma_return_path,
2744 RDMAContext *rdma)
2746 int idx;
2748 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2749 rdma_return_path->wr_data[idx].control_len = 0;
2750 rdma_return_path->wr_data[idx].control_curr = NULL;
2753 /*the CM channel and CM id is shared*/
2754 rdma_return_path->channel = rdma->channel;
2755 rdma_return_path->listen_id = rdma->listen_id;
2757 rdma->return_path = rdma_return_path;
2758 rdma_return_path->return_path = rdma;
2759 rdma_return_path->is_return_path = true;
2762 static RDMAContext *qemu_rdma_data_init(const char *host_port, Error **errp)
2764 RDMAContext *rdma = NULL;
2765 InetSocketAddress *addr;
2767 rdma = g_new0(RDMAContext, 1);
2768 rdma->current_index = -1;
2769 rdma->current_chunk = -1;
2771 addr = g_new(InetSocketAddress, 1);
2772 if (!inet_parse(addr, host_port, NULL)) {
2773 rdma->port = atoi(addr->port);
2774 rdma->host = g_strdup(addr->host);
2775 rdma->host_port = g_strdup(host_port);
2776 } else {
2777 error_setg(errp, "RDMA ERROR: bad RDMA migration address '%s'",
2778 host_port);
2779 g_free(rdma);
2780 rdma = NULL;
2783 qapi_free_InetSocketAddress(addr);
2784 return rdma;
2788 * QEMUFile interface to the control channel.
2789 * SEND messages for control only.
2790 * VM's ram is handled with regular RDMA messages.
2792 static ssize_t qio_channel_rdma_writev(QIOChannel *ioc,
2793 const struct iovec *iov,
2794 size_t niov,
2795 int *fds,
2796 size_t nfds,
2797 int flags,
2798 Error **errp)
2800 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2801 RDMAContext *rdma;
2802 int ret;
2803 ssize_t done = 0;
2804 size_t i, len;
2806 RCU_READ_LOCK_GUARD();
2807 rdma = qatomic_rcu_read(&rioc->rdmaout);
2809 if (!rdma) {
2810 error_setg(errp, "RDMA control channel output is not set");
2811 return -1;
2814 if (rdma->errored) {
2815 error_setg(errp,
2816 "RDMA is in an error state waiting migration to abort!");
2817 return -1;
2821 * Push out any writes that
2822 * we're queued up for VM's ram.
2824 ret = qemu_rdma_write_flush(rdma, errp);
2825 if (ret < 0) {
2826 rdma->errored = true;
2827 return -1;
2830 for (i = 0; i < niov; i++) {
2831 size_t remaining = iov[i].iov_len;
2832 uint8_t * data = (void *)iov[i].iov_base;
2833 while (remaining) {
2834 RDMAControlHeader head = {};
2836 len = MIN(remaining, RDMA_SEND_INCREMENT);
2837 remaining -= len;
2839 head.len = len;
2840 head.type = RDMA_CONTROL_QEMU_FILE;
2842 ret = qemu_rdma_exchange_send(rdma, &head,
2843 data, NULL, NULL, NULL, errp);
2845 if (ret < 0) {
2846 rdma->errored = true;
2847 return -1;
2850 data += len;
2851 done += len;
2855 return done;
2858 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2859 size_t size, int idx)
2861 size_t len = 0;
2863 if (rdma->wr_data[idx].control_len) {
2864 trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2866 len = MIN(size, rdma->wr_data[idx].control_len);
2867 memcpy(buf, rdma->wr_data[idx].control_curr, len);
2868 rdma->wr_data[idx].control_curr += len;
2869 rdma->wr_data[idx].control_len -= len;
2872 return len;
2876 * QEMUFile interface to the control channel.
2877 * RDMA links don't use bytestreams, so we have to
2878 * return bytes to QEMUFile opportunistically.
2880 static ssize_t qio_channel_rdma_readv(QIOChannel *ioc,
2881 const struct iovec *iov,
2882 size_t niov,
2883 int **fds,
2884 size_t *nfds,
2885 int flags,
2886 Error **errp)
2888 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2889 RDMAContext *rdma;
2890 RDMAControlHeader head;
2891 int ret;
2892 ssize_t done = 0;
2893 size_t i, len;
2895 RCU_READ_LOCK_GUARD();
2896 rdma = qatomic_rcu_read(&rioc->rdmain);
2898 if (!rdma) {
2899 error_setg(errp, "RDMA control channel input is not set");
2900 return -1;
2903 if (rdma->errored) {
2904 error_setg(errp,
2905 "RDMA is in an error state waiting migration to abort!");
2906 return -1;
2909 for (i = 0; i < niov; i++) {
2910 size_t want = iov[i].iov_len;
2911 uint8_t *data = (void *)iov[i].iov_base;
2914 * First, we hold on to the last SEND message we
2915 * were given and dish out the bytes until we run
2916 * out of bytes.
2918 len = qemu_rdma_fill(rdma, data, want, 0);
2919 done += len;
2920 want -= len;
2921 /* Got what we needed, so go to next iovec */
2922 if (want == 0) {
2923 continue;
2926 /* If we got any data so far, then don't wait
2927 * for more, just return what we have */
2928 if (done > 0) {
2929 break;
2933 /* We've got nothing at all, so lets wait for
2934 * more to arrive
2936 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE,
2937 errp);
2939 if (ret < 0) {
2940 rdma->errored = true;
2941 return -1;
2945 * SEND was received with new bytes, now try again.
2947 len = qemu_rdma_fill(rdma, data, want, 0);
2948 done += len;
2949 want -= len;
2951 /* Still didn't get enough, so lets just return */
2952 if (want) {
2953 if (done == 0) {
2954 return QIO_CHANNEL_ERR_BLOCK;
2955 } else {
2956 break;
2960 return done;
2964 * Block until all the outstanding chunks have been delivered by the hardware.
2966 static int qemu_rdma_drain_cq(RDMAContext *rdma)
2968 Error *err = NULL;
2969 int ret;
2971 if (qemu_rdma_write_flush(rdma, &err) < 0) {
2972 error_report_err(err);
2973 return -1;
2976 while (rdma->nb_sent) {
2977 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2978 if (ret < 0) {
2979 error_report("rdma migration: complete polling error!");
2980 return -1;
2984 qemu_rdma_unregister_waiting(rdma);
2986 return 0;
2990 static int qio_channel_rdma_set_blocking(QIOChannel *ioc,
2991 bool blocking,
2992 Error **errp)
2994 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2995 /* XXX we should make readv/writev actually honour this :-) */
2996 rioc->blocking = blocking;
2997 return 0;
3001 typedef struct QIOChannelRDMASource QIOChannelRDMASource;
3002 struct QIOChannelRDMASource {
3003 GSource parent;
3004 QIOChannelRDMA *rioc;
3005 GIOCondition condition;
3008 static gboolean
3009 qio_channel_rdma_source_prepare(GSource *source,
3010 gint *timeout)
3012 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3013 RDMAContext *rdma;
3014 GIOCondition cond = 0;
3015 *timeout = -1;
3017 RCU_READ_LOCK_GUARD();
3018 if (rsource->condition == G_IO_IN) {
3019 rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3020 } else {
3021 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3024 if (!rdma) {
3025 error_report("RDMAContext is NULL when prepare Gsource");
3026 return FALSE;
3029 if (rdma->wr_data[0].control_len) {
3030 cond |= G_IO_IN;
3032 cond |= G_IO_OUT;
3034 return cond & rsource->condition;
3037 static gboolean
3038 qio_channel_rdma_source_check(GSource *source)
3040 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3041 RDMAContext *rdma;
3042 GIOCondition cond = 0;
3044 RCU_READ_LOCK_GUARD();
3045 if (rsource->condition == G_IO_IN) {
3046 rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3047 } else {
3048 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3051 if (!rdma) {
3052 error_report("RDMAContext is NULL when check Gsource");
3053 return FALSE;
3056 if (rdma->wr_data[0].control_len) {
3057 cond |= G_IO_IN;
3059 cond |= G_IO_OUT;
3061 return cond & rsource->condition;
3064 static gboolean
3065 qio_channel_rdma_source_dispatch(GSource *source,
3066 GSourceFunc callback,
3067 gpointer user_data)
3069 QIOChannelFunc func = (QIOChannelFunc)callback;
3070 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3071 RDMAContext *rdma;
3072 GIOCondition cond = 0;
3074 RCU_READ_LOCK_GUARD();
3075 if (rsource->condition == G_IO_IN) {
3076 rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3077 } else {
3078 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3081 if (!rdma) {
3082 error_report("RDMAContext is NULL when dispatch Gsource");
3083 return FALSE;
3086 if (rdma->wr_data[0].control_len) {
3087 cond |= G_IO_IN;
3089 cond |= G_IO_OUT;
3091 return (*func)(QIO_CHANNEL(rsource->rioc),
3092 (cond & rsource->condition),
3093 user_data);
3096 static void
3097 qio_channel_rdma_source_finalize(GSource *source)
3099 QIOChannelRDMASource *ssource = (QIOChannelRDMASource *)source;
3101 object_unref(OBJECT(ssource->rioc));
3104 static GSourceFuncs qio_channel_rdma_source_funcs = {
3105 qio_channel_rdma_source_prepare,
3106 qio_channel_rdma_source_check,
3107 qio_channel_rdma_source_dispatch,
3108 qio_channel_rdma_source_finalize
3111 static GSource *qio_channel_rdma_create_watch(QIOChannel *ioc,
3112 GIOCondition condition)
3114 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3115 QIOChannelRDMASource *ssource;
3116 GSource *source;
3118 source = g_source_new(&qio_channel_rdma_source_funcs,
3119 sizeof(QIOChannelRDMASource));
3120 ssource = (QIOChannelRDMASource *)source;
3122 ssource->rioc = rioc;
3123 object_ref(OBJECT(rioc));
3125 ssource->condition = condition;
3127 return source;
3130 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel *ioc,
3131 AioContext *read_ctx,
3132 IOHandler *io_read,
3133 AioContext *write_ctx,
3134 IOHandler *io_write,
3135 void *opaque)
3137 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3138 if (io_read) {
3139 aio_set_fd_handler(read_ctx, rioc->rdmain->recv_comp_channel->fd,
3140 io_read, io_write, NULL, NULL, opaque);
3141 aio_set_fd_handler(read_ctx, rioc->rdmain->send_comp_channel->fd,
3142 io_read, io_write, NULL, NULL, opaque);
3143 } else {
3144 aio_set_fd_handler(write_ctx, rioc->rdmaout->recv_comp_channel->fd,
3145 io_read, io_write, NULL, NULL, opaque);
3146 aio_set_fd_handler(write_ctx, rioc->rdmaout->send_comp_channel->fd,
3147 io_read, io_write, NULL, NULL, opaque);
3151 struct rdma_close_rcu {
3152 struct rcu_head rcu;
3153 RDMAContext *rdmain;
3154 RDMAContext *rdmaout;
3157 /* callback from qio_channel_rdma_close via call_rcu */
3158 static void qio_channel_rdma_close_rcu(struct rdma_close_rcu *rcu)
3160 if (rcu->rdmain) {
3161 qemu_rdma_cleanup(rcu->rdmain);
3164 if (rcu->rdmaout) {
3165 qemu_rdma_cleanup(rcu->rdmaout);
3168 g_free(rcu->rdmain);
3169 g_free(rcu->rdmaout);
3170 g_free(rcu);
3173 static int qio_channel_rdma_close(QIOChannel *ioc,
3174 Error **errp)
3176 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3177 RDMAContext *rdmain, *rdmaout;
3178 struct rdma_close_rcu *rcu = g_new(struct rdma_close_rcu, 1);
3180 trace_qemu_rdma_close();
3182 rdmain = rioc->rdmain;
3183 if (rdmain) {
3184 qatomic_rcu_set(&rioc->rdmain, NULL);
3187 rdmaout = rioc->rdmaout;
3188 if (rdmaout) {
3189 qatomic_rcu_set(&rioc->rdmaout, NULL);
3192 rcu->rdmain = rdmain;
3193 rcu->rdmaout = rdmaout;
3194 call_rcu(rcu, qio_channel_rdma_close_rcu, rcu);
3196 return 0;
3199 static int
3200 qio_channel_rdma_shutdown(QIOChannel *ioc,
3201 QIOChannelShutdown how,
3202 Error **errp)
3204 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3205 RDMAContext *rdmain, *rdmaout;
3207 RCU_READ_LOCK_GUARD();
3209 rdmain = qatomic_rcu_read(&rioc->rdmain);
3210 rdmaout = qatomic_rcu_read(&rioc->rdmain);
3212 switch (how) {
3213 case QIO_CHANNEL_SHUTDOWN_READ:
3214 if (rdmain) {
3215 rdmain->errored = true;
3217 break;
3218 case QIO_CHANNEL_SHUTDOWN_WRITE:
3219 if (rdmaout) {
3220 rdmaout->errored = true;
3222 break;
3223 case QIO_CHANNEL_SHUTDOWN_BOTH:
3224 default:
3225 if (rdmain) {
3226 rdmain->errored = true;
3228 if (rdmaout) {
3229 rdmaout->errored = true;
3231 break;
3234 return 0;
3238 * Parameters:
3239 * @offset == 0 :
3240 * This means that 'block_offset' is a full virtual address that does not
3241 * belong to a RAMBlock of the virtual machine and instead
3242 * represents a private malloc'd memory area that the caller wishes to
3243 * transfer.
3245 * @offset != 0 :
3246 * Offset is an offset to be added to block_offset and used
3247 * to also lookup the corresponding RAMBlock.
3249 * @size : Number of bytes to transfer
3251 * @pages_sent : User-specificed pointer to indicate how many pages were
3252 * sent. Usually, this will not be more than a few bytes of
3253 * the protocol because most transfers are sent asynchronously.
3255 static int qemu_rdma_save_page(QEMUFile *f, ram_addr_t block_offset,
3256 ram_addr_t offset, size_t size)
3258 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3259 Error *err = NULL;
3260 RDMAContext *rdma;
3261 int ret;
3263 if (migration_in_postcopy()) {
3264 return RAM_SAVE_CONTROL_NOT_SUPP;
3267 RCU_READ_LOCK_GUARD();
3268 rdma = qatomic_rcu_read(&rioc->rdmaout);
3270 if (!rdma) {
3271 return -1;
3274 if (rdma_errored(rdma)) {
3275 return -1;
3278 qemu_fflush(f);
3281 * Add this page to the current 'chunk'. If the chunk
3282 * is full, or the page doesn't belong to the current chunk,
3283 * an actual RDMA write will occur and a new chunk will be formed.
3285 ret = qemu_rdma_write(rdma, block_offset, offset, size, &err);
3286 if (ret < 0) {
3287 error_report_err(err);
3288 goto err;
3292 * Drain the Completion Queue if possible, but do not block,
3293 * just poll.
3295 * If nothing to poll, the end of the iteration will do this
3296 * again to make sure we don't overflow the request queue.
3298 while (1) {
3299 uint64_t wr_id, wr_id_in;
3300 ret = qemu_rdma_poll(rdma, rdma->recv_cq, &wr_id_in, NULL);
3302 if (ret < 0) {
3303 error_report("rdma migration: polling error");
3304 goto err;
3307 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3309 if (wr_id == RDMA_WRID_NONE) {
3310 break;
3314 while (1) {
3315 uint64_t wr_id, wr_id_in;
3316 ret = qemu_rdma_poll(rdma, rdma->send_cq, &wr_id_in, NULL);
3318 if (ret < 0) {
3319 error_report("rdma migration: polling error");
3320 goto err;
3323 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3325 if (wr_id == RDMA_WRID_NONE) {
3326 break;
3330 return RAM_SAVE_CONTROL_DELAYED;
3332 err:
3333 rdma->errored = true;
3334 return -1;
3337 static void rdma_accept_incoming_migration(void *opaque);
3339 static void rdma_cm_poll_handler(void *opaque)
3341 RDMAContext *rdma = opaque;
3342 int ret;
3343 struct rdma_cm_event *cm_event;
3344 MigrationIncomingState *mis = migration_incoming_get_current();
3346 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3347 if (ret < 0) {
3348 error_report("get_cm_event failed %d", errno);
3349 return;
3352 if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
3353 cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
3354 if (!rdma->errored &&
3355 migration_incoming_get_current()->state !=
3356 MIGRATION_STATUS_COMPLETED) {
3357 error_report("receive cm event, cm event is %d", cm_event->event);
3358 rdma->errored = true;
3359 if (rdma->return_path) {
3360 rdma->return_path->errored = true;
3363 rdma_ack_cm_event(cm_event);
3364 if (mis->loadvm_co) {
3365 qemu_coroutine_enter(mis->loadvm_co);
3367 return;
3369 rdma_ack_cm_event(cm_event);
3372 static int qemu_rdma_accept(RDMAContext *rdma)
3374 Error *err = NULL;
3375 RDMACapabilities cap;
3376 struct rdma_conn_param conn_param = {
3377 .responder_resources = 2,
3378 .private_data = &cap,
3379 .private_data_len = sizeof(cap),
3381 RDMAContext *rdma_return_path = NULL;
3382 struct rdma_cm_event *cm_event;
3383 struct ibv_context *verbs;
3384 int ret;
3385 int idx;
3387 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3388 if (ret < 0) {
3389 goto err_rdma_dest_wait;
3392 if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
3393 rdma_ack_cm_event(cm_event);
3394 goto err_rdma_dest_wait;
3398 * initialize the RDMAContext for return path for postcopy after first
3399 * connection request reached.
3401 if ((migrate_postcopy() || migrate_return_path())
3402 && !rdma->is_return_path) {
3403 rdma_return_path = qemu_rdma_data_init(rdma->host_port, NULL);
3404 if (rdma_return_path == NULL) {
3405 rdma_ack_cm_event(cm_event);
3406 goto err_rdma_dest_wait;
3409 qemu_rdma_return_path_dest_init(rdma_return_path, rdma);
3412 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
3414 network_to_caps(&cap);
3416 if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
3417 error_report("Unknown source RDMA version: %d, bailing...",
3418 cap.version);
3419 rdma_ack_cm_event(cm_event);
3420 goto err_rdma_dest_wait;
3424 * Respond with only the capabilities this version of QEMU knows about.
3426 cap.flags &= known_capabilities;
3429 * Enable the ones that we do know about.
3430 * Add other checks here as new ones are introduced.
3432 if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
3433 rdma->pin_all = true;
3436 rdma->cm_id = cm_event->id;
3437 verbs = cm_event->id->verbs;
3439 rdma_ack_cm_event(cm_event);
3441 trace_qemu_rdma_accept_pin_state(rdma->pin_all);
3443 caps_to_network(&cap);
3445 trace_qemu_rdma_accept_pin_verbsc(verbs);
3447 if (!rdma->verbs) {
3448 rdma->verbs = verbs;
3449 } else if (rdma->verbs != verbs) {
3450 error_report("ibv context not matching %p, %p!", rdma->verbs,
3451 verbs);
3452 goto err_rdma_dest_wait;
3455 qemu_rdma_dump_id("dest_init", verbs);
3457 ret = qemu_rdma_alloc_pd_cq(rdma, &err);
3458 if (ret < 0) {
3459 error_report_err(err);
3460 goto err_rdma_dest_wait;
3463 ret = qemu_rdma_alloc_qp(rdma);
3464 if (ret < 0) {
3465 error_report("rdma migration: error allocating qp!");
3466 goto err_rdma_dest_wait;
3469 qemu_rdma_init_ram_blocks(rdma);
3471 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
3472 ret = qemu_rdma_reg_control(rdma, idx);
3473 if (ret < 0) {
3474 error_report("rdma: error registering %d control", idx);
3475 goto err_rdma_dest_wait;
3479 /* Accept the second connection request for return path */
3480 if ((migrate_postcopy() || migrate_return_path())
3481 && !rdma->is_return_path) {
3482 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3483 NULL,
3484 (void *)(intptr_t)rdma->return_path);
3485 } else {
3486 qemu_set_fd_handler(rdma->channel->fd, rdma_cm_poll_handler,
3487 NULL, rdma);
3490 ret = rdma_accept(rdma->cm_id, &conn_param);
3491 if (ret < 0) {
3492 error_report("rdma_accept failed");
3493 goto err_rdma_dest_wait;
3496 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3497 if (ret < 0) {
3498 error_report("rdma_accept get_cm_event failed");
3499 goto err_rdma_dest_wait;
3502 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
3503 error_report("rdma_accept not event established");
3504 rdma_ack_cm_event(cm_event);
3505 goto err_rdma_dest_wait;
3508 rdma_ack_cm_event(cm_event);
3509 rdma->connected = true;
3511 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY, &err);
3512 if (ret < 0) {
3513 error_report_err(err);
3514 goto err_rdma_dest_wait;
3517 qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
3519 return 0;
3521 err_rdma_dest_wait:
3522 rdma->errored = true;
3523 qemu_rdma_cleanup(rdma);
3524 g_free(rdma_return_path);
3525 return -1;
3528 static int dest_ram_sort_func(const void *a, const void *b)
3530 unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
3531 unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
3533 return (a_index < b_index) ? -1 : (a_index != b_index);
3537 * During each iteration of the migration, we listen for instructions
3538 * by the source VM to perform dynamic page registrations before they
3539 * can perform RDMA operations.
3541 * We respond with the 'rkey'.
3543 * Keep doing this until the source tells us to stop.
3545 static int qemu_rdma_registration_handle(QEMUFile *f)
3547 RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
3548 .type = RDMA_CONTROL_REGISTER_RESULT,
3549 .repeat = 0,
3551 RDMAControlHeader unreg_resp = { .len = 0,
3552 .type = RDMA_CONTROL_UNREGISTER_FINISHED,
3553 .repeat = 0,
3555 RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
3556 .repeat = 1 };
3557 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3558 Error *err = NULL;
3559 RDMAContext *rdma;
3560 RDMALocalBlocks *local;
3561 RDMAControlHeader head;
3562 RDMARegister *reg, *registers;
3563 RDMACompress *comp;
3564 RDMARegisterResult *reg_result;
3565 static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
3566 RDMALocalBlock *block;
3567 void *host_addr;
3568 int ret;
3569 int idx = 0;
3570 int count = 0;
3571 int i = 0;
3573 RCU_READ_LOCK_GUARD();
3574 rdma = qatomic_rcu_read(&rioc->rdmain);
3576 if (!rdma) {
3577 return -1;
3580 if (rdma_errored(rdma)) {
3581 return -1;
3584 local = &rdma->local_ram_blocks;
3585 do {
3586 trace_qemu_rdma_registration_handle_wait();
3588 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE, &err);
3590 if (ret < 0) {
3591 error_report_err(err);
3592 break;
3595 if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
3596 error_report("rdma: Too many requests in this message (%d)."
3597 "Bailing.", head.repeat);
3598 break;
3601 switch (head.type) {
3602 case RDMA_CONTROL_COMPRESS:
3603 comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
3604 network_to_compress(comp);
3606 trace_qemu_rdma_registration_handle_compress(comp->length,
3607 comp->block_idx,
3608 comp->offset);
3609 if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
3610 error_report("rdma: 'compress' bad block index %u (vs %d)",
3611 (unsigned int)comp->block_idx,
3612 rdma->local_ram_blocks.nb_blocks);
3613 goto err;
3615 block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3617 host_addr = block->local_host_addr +
3618 (comp->offset - block->offset);
3620 ram_handle_compressed(host_addr, comp->value, comp->length);
3621 break;
3623 case RDMA_CONTROL_REGISTER_FINISHED:
3624 trace_qemu_rdma_registration_handle_finished();
3625 return 0;
3627 case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3628 trace_qemu_rdma_registration_handle_ram_blocks();
3630 /* Sort our local RAM Block list so it's the same as the source,
3631 * we can do this since we've filled in a src_index in the list
3632 * as we received the RAMBlock list earlier.
3634 qsort(rdma->local_ram_blocks.block,
3635 rdma->local_ram_blocks.nb_blocks,
3636 sizeof(RDMALocalBlock), dest_ram_sort_func);
3637 for (i = 0; i < local->nb_blocks; i++) {
3638 local->block[i].index = i;
3641 if (rdma->pin_all) {
3642 ret = qemu_rdma_reg_whole_ram_blocks(rdma, &err);
3643 if (ret < 0) {
3644 error_report_err(err);
3645 goto err;
3650 * Dest uses this to prepare to transmit the RAMBlock descriptions
3651 * to the source VM after connection setup.
3652 * Both sides use the "remote" structure to communicate and update
3653 * their "local" descriptions with what was sent.
3655 for (i = 0; i < local->nb_blocks; i++) {
3656 rdma->dest_blocks[i].remote_host_addr =
3657 (uintptr_t)(local->block[i].local_host_addr);
3659 if (rdma->pin_all) {
3660 rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3663 rdma->dest_blocks[i].offset = local->block[i].offset;
3664 rdma->dest_blocks[i].length = local->block[i].length;
3666 dest_block_to_network(&rdma->dest_blocks[i]);
3667 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3668 local->block[i].block_name,
3669 local->block[i].offset,
3670 local->block[i].length,
3671 local->block[i].local_host_addr,
3672 local->block[i].src_index);
3675 blocks.len = rdma->local_ram_blocks.nb_blocks
3676 * sizeof(RDMADestBlock);
3679 ret = qemu_rdma_post_send_control(rdma,
3680 (uint8_t *) rdma->dest_blocks, &blocks,
3681 &err);
3683 if (ret < 0) {
3684 error_report_err(err);
3685 goto err;
3688 break;
3689 case RDMA_CONTROL_REGISTER_REQUEST:
3690 trace_qemu_rdma_registration_handle_register(head.repeat);
3692 reg_resp.repeat = head.repeat;
3693 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3695 for (count = 0; count < head.repeat; count++) {
3696 uint64_t chunk;
3697 uint8_t *chunk_start, *chunk_end;
3699 reg = &registers[count];
3700 network_to_register(reg);
3702 reg_result = &results[count];
3704 trace_qemu_rdma_registration_handle_register_loop(count,
3705 reg->current_index, reg->key.current_addr, reg->chunks);
3707 if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3708 error_report("rdma: 'register' bad block index %u (vs %d)",
3709 (unsigned int)reg->current_index,
3710 rdma->local_ram_blocks.nb_blocks);
3711 goto err;
3713 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3714 if (block->is_ram_block) {
3715 if (block->offset > reg->key.current_addr) {
3716 error_report("rdma: bad register address for block %s"
3717 " offset: %" PRIx64 " current_addr: %" PRIx64,
3718 block->block_name, block->offset,
3719 reg->key.current_addr);
3720 goto err;
3722 host_addr = (block->local_host_addr +
3723 (reg->key.current_addr - block->offset));
3724 chunk = ram_chunk_index(block->local_host_addr,
3725 (uint8_t *) host_addr);
3726 } else {
3727 chunk = reg->key.chunk;
3728 host_addr = block->local_host_addr +
3729 (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3730 /* Check for particularly bad chunk value */
3731 if (host_addr < (void *)block->local_host_addr) {
3732 error_report("rdma: bad chunk for block %s"
3733 " chunk: %" PRIx64,
3734 block->block_name, reg->key.chunk);
3735 goto err;
3738 chunk_start = ram_chunk_start(block, chunk);
3739 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3740 /* avoid "-Waddress-of-packed-member" warning */
3741 uint32_t tmp_rkey = 0;
3742 if (qemu_rdma_register_and_get_keys(rdma, block,
3743 (uintptr_t)host_addr, NULL, &tmp_rkey,
3744 chunk, chunk_start, chunk_end)) {
3745 error_report("cannot get rkey");
3746 goto err;
3748 reg_result->rkey = tmp_rkey;
3750 reg_result->host_addr = (uintptr_t)block->local_host_addr;
3752 trace_qemu_rdma_registration_handle_register_rkey(
3753 reg_result->rkey);
3755 result_to_network(reg_result);
3758 ret = qemu_rdma_post_send_control(rdma,
3759 (uint8_t *) results, &reg_resp, &err);
3761 if (ret < 0) {
3762 error_report_err(err);
3763 goto err;
3765 break;
3766 case RDMA_CONTROL_UNREGISTER_REQUEST:
3767 trace_qemu_rdma_registration_handle_unregister(head.repeat);
3768 unreg_resp.repeat = head.repeat;
3769 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3771 for (count = 0; count < head.repeat; count++) {
3772 reg = &registers[count];
3773 network_to_register(reg);
3775 trace_qemu_rdma_registration_handle_unregister_loop(count,
3776 reg->current_index, reg->key.chunk);
3778 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3780 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3781 block->pmr[reg->key.chunk] = NULL;
3783 if (ret != 0) {
3784 perror("rdma unregistration chunk failed");
3785 goto err;
3788 rdma->total_registrations--;
3790 trace_qemu_rdma_registration_handle_unregister_success(
3791 reg->key.chunk);
3794 ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp, &err);
3796 if (ret < 0) {
3797 error_report_err(err);
3798 goto err;
3800 break;
3801 case RDMA_CONTROL_REGISTER_RESULT:
3802 error_report("Invalid RESULT message at dest.");
3803 goto err;
3804 default:
3805 error_report("Unknown control message %s", control_desc(head.type));
3806 goto err;
3808 } while (1);
3810 err:
3811 rdma->errored = true;
3812 return -1;
3815 /* Destination:
3816 * Called via a ram_control_load_hook during the initial RAM load section which
3817 * lists the RAMBlocks by name. This lets us know the order of the RAMBlocks
3818 * on the source.
3819 * We've already built our local RAMBlock list, but not yet sent the list to
3820 * the source.
3822 static int
3823 rdma_block_notification_handle(QEMUFile *f, const char *name)
3825 RDMAContext *rdma;
3826 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3827 int curr;
3828 int found = -1;
3830 RCU_READ_LOCK_GUARD();
3831 rdma = qatomic_rcu_read(&rioc->rdmain);
3833 if (!rdma) {
3834 return -1;
3837 /* Find the matching RAMBlock in our local list */
3838 for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3839 if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3840 found = curr;
3841 break;
3845 if (found == -1) {
3846 error_report("RAMBlock '%s' not found on destination", name);
3847 return -1;
3850 rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3851 trace_rdma_block_notification_handle(name, rdma->next_src_index);
3852 rdma->next_src_index++;
3854 return 0;
3857 static int rdma_load_hook(QEMUFile *f, uint64_t flags, void *data)
3859 switch (flags) {
3860 case RAM_CONTROL_BLOCK_REG:
3861 return rdma_block_notification_handle(f, data);
3863 case RAM_CONTROL_HOOK:
3864 return qemu_rdma_registration_handle(f);
3866 default:
3867 /* Shouldn't be called with any other values */
3868 abort();
3872 static int qemu_rdma_registration_start(QEMUFile *f,
3873 uint64_t flags, void *data)
3875 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3876 RDMAContext *rdma;
3878 if (migration_in_postcopy()) {
3879 return 0;
3882 RCU_READ_LOCK_GUARD();
3883 rdma = qatomic_rcu_read(&rioc->rdmaout);
3884 if (!rdma) {
3885 return -1;
3888 if (rdma_errored(rdma)) {
3889 return -1;
3892 trace_qemu_rdma_registration_start(flags);
3893 qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3894 qemu_fflush(f);
3896 return 0;
3900 * Inform dest that dynamic registrations are done for now.
3901 * First, flush writes, if any.
3903 static int qemu_rdma_registration_stop(QEMUFile *f,
3904 uint64_t flags, void *data)
3906 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3907 Error *err = NULL;
3908 RDMAContext *rdma;
3909 RDMAControlHeader head = { .len = 0, .repeat = 1 };
3910 int ret;
3912 if (migration_in_postcopy()) {
3913 return 0;
3916 RCU_READ_LOCK_GUARD();
3917 rdma = qatomic_rcu_read(&rioc->rdmaout);
3918 if (!rdma) {
3919 return -1;
3922 if (rdma_errored(rdma)) {
3923 return -1;
3926 qemu_fflush(f);
3927 ret = qemu_rdma_drain_cq(rdma);
3929 if (ret < 0) {
3930 goto err;
3933 if (flags == RAM_CONTROL_SETUP) {
3934 RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3935 RDMALocalBlocks *local = &rdma->local_ram_blocks;
3936 int reg_result_idx, i, nb_dest_blocks;
3938 head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3939 trace_qemu_rdma_registration_stop_ram();
3942 * Make sure that we parallelize the pinning on both sides.
3943 * For very large guests, doing this serially takes a really
3944 * long time, so we have to 'interleave' the pinning locally
3945 * with the control messages by performing the pinning on this
3946 * side before we receive the control response from the other
3947 * side that the pinning has completed.
3949 ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3950 &reg_result_idx, rdma->pin_all ?
3951 qemu_rdma_reg_whole_ram_blocks : NULL,
3952 &err);
3953 if (ret < 0) {
3954 error_report_err(err);
3955 return -1;
3958 nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
3961 * The protocol uses two different sets of rkeys (mutually exclusive):
3962 * 1. One key to represent the virtual address of the entire ram block.
3963 * (dynamic chunk registration disabled - pin everything with one rkey.)
3964 * 2. One to represent individual chunks within a ram block.
3965 * (dynamic chunk registration enabled - pin individual chunks.)
3967 * Once the capability is successfully negotiated, the destination transmits
3968 * the keys to use (or sends them later) including the virtual addresses
3969 * and then propagates the remote ram block descriptions to his local copy.
3972 if (local->nb_blocks != nb_dest_blocks) {
3973 fprintf(stderr, "ram blocks mismatch (Number of blocks %d vs %d) "
3974 "Your QEMU command line parameters are probably "
3975 "not identical on both the source and destination.",
3976 local->nb_blocks, nb_dest_blocks);
3977 rdma->errored = true;
3978 return -1;
3981 qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3982 memcpy(rdma->dest_blocks,
3983 rdma->wr_data[reg_result_idx].control_curr, resp.len);
3984 for (i = 0; i < nb_dest_blocks; i++) {
3985 network_to_dest_block(&rdma->dest_blocks[i]);
3987 /* We require that the blocks are in the same order */
3988 if (rdma->dest_blocks[i].length != local->block[i].length) {
3989 fprintf(stderr, "Block %s/%d has a different length %" PRIu64
3990 "vs %" PRIu64, local->block[i].block_name, i,
3991 local->block[i].length,
3992 rdma->dest_blocks[i].length);
3993 rdma->errored = true;
3994 return -1;
3996 local->block[i].remote_host_addr =
3997 rdma->dest_blocks[i].remote_host_addr;
3998 local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
4002 trace_qemu_rdma_registration_stop(flags);
4004 head.type = RDMA_CONTROL_REGISTER_FINISHED;
4005 ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL, &err);
4007 if (ret < 0) {
4008 error_report_err(err);
4009 goto err;
4012 return 0;
4013 err:
4014 rdma->errored = true;
4015 return -1;
4018 static const QEMUFileHooks rdma_read_hooks = {
4019 .hook_ram_load = rdma_load_hook,
4022 static const QEMUFileHooks rdma_write_hooks = {
4023 .before_ram_iterate = qemu_rdma_registration_start,
4024 .after_ram_iterate = qemu_rdma_registration_stop,
4025 .save_page = qemu_rdma_save_page,
4029 static void qio_channel_rdma_finalize(Object *obj)
4031 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(obj);
4032 if (rioc->rdmain) {
4033 qemu_rdma_cleanup(rioc->rdmain);
4034 g_free(rioc->rdmain);
4035 rioc->rdmain = NULL;
4037 if (rioc->rdmaout) {
4038 qemu_rdma_cleanup(rioc->rdmaout);
4039 g_free(rioc->rdmaout);
4040 rioc->rdmaout = NULL;
4044 static void qio_channel_rdma_class_init(ObjectClass *klass,
4045 void *class_data G_GNUC_UNUSED)
4047 QIOChannelClass *ioc_klass = QIO_CHANNEL_CLASS(klass);
4049 ioc_klass->io_writev = qio_channel_rdma_writev;
4050 ioc_klass->io_readv = qio_channel_rdma_readv;
4051 ioc_klass->io_set_blocking = qio_channel_rdma_set_blocking;
4052 ioc_klass->io_close = qio_channel_rdma_close;
4053 ioc_klass->io_create_watch = qio_channel_rdma_create_watch;
4054 ioc_klass->io_set_aio_fd_handler = qio_channel_rdma_set_aio_fd_handler;
4055 ioc_klass->io_shutdown = qio_channel_rdma_shutdown;
4058 static const TypeInfo qio_channel_rdma_info = {
4059 .parent = TYPE_QIO_CHANNEL,
4060 .name = TYPE_QIO_CHANNEL_RDMA,
4061 .instance_size = sizeof(QIOChannelRDMA),
4062 .instance_finalize = qio_channel_rdma_finalize,
4063 .class_init = qio_channel_rdma_class_init,
4066 static void qio_channel_rdma_register_types(void)
4068 type_register_static(&qio_channel_rdma_info);
4071 type_init(qio_channel_rdma_register_types);
4073 static QEMUFile *rdma_new_input(RDMAContext *rdma)
4075 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
4077 rioc->file = qemu_file_new_input(QIO_CHANNEL(rioc));
4078 rioc->rdmain = rdma;
4079 rioc->rdmaout = rdma->return_path;
4080 qemu_file_set_hooks(rioc->file, &rdma_read_hooks);
4082 return rioc->file;
4085 static QEMUFile *rdma_new_output(RDMAContext *rdma)
4087 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
4089 rioc->file = qemu_file_new_output(QIO_CHANNEL(rioc));
4090 rioc->rdmaout = rdma;
4091 rioc->rdmain = rdma->return_path;
4092 qemu_file_set_hooks(rioc->file, &rdma_write_hooks);
4094 return rioc->file;
4097 static void rdma_accept_incoming_migration(void *opaque)
4099 RDMAContext *rdma = opaque;
4100 int ret;
4101 QEMUFile *f;
4102 Error *local_err = NULL;
4104 trace_qemu_rdma_accept_incoming_migration();
4105 ret = qemu_rdma_accept(rdma);
4107 if (ret < 0) {
4108 fprintf(stderr, "RDMA ERROR: Migration initialization failed\n");
4109 return;
4112 trace_qemu_rdma_accept_incoming_migration_accepted();
4114 if (rdma->is_return_path) {
4115 return;
4118 f = rdma_new_input(rdma);
4119 if (f == NULL) {
4120 fprintf(stderr, "RDMA ERROR: could not open RDMA for input\n");
4121 qemu_rdma_cleanup(rdma);
4122 return;
4125 rdma->migration_started_on_destination = 1;
4126 migration_fd_process_incoming(f, &local_err);
4127 if (local_err) {
4128 error_reportf_err(local_err, "RDMA ERROR:");
4132 void rdma_start_incoming_migration(const char *host_port, Error **errp)
4134 int ret;
4135 RDMAContext *rdma;
4137 trace_rdma_start_incoming_migration();
4139 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4140 if (ram_block_discard_is_required()) {
4141 error_setg(errp, "RDMA: cannot disable RAM discard");
4142 return;
4145 rdma = qemu_rdma_data_init(host_port, errp);
4146 if (rdma == NULL) {
4147 goto err;
4150 ret = qemu_rdma_dest_init(rdma, errp);
4151 if (ret < 0) {
4152 goto err;
4155 trace_rdma_start_incoming_migration_after_dest_init();
4157 ret = rdma_listen(rdma->listen_id, 5);
4159 if (ret < 0) {
4160 error_setg(errp, "RDMA ERROR: listening on socket!");
4161 goto cleanup_rdma;
4164 trace_rdma_start_incoming_migration_after_rdma_listen();
4166 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
4167 NULL, (void *)(intptr_t)rdma);
4168 return;
4170 cleanup_rdma:
4171 qemu_rdma_cleanup(rdma);
4172 err:
4173 if (rdma) {
4174 g_free(rdma->host);
4175 g_free(rdma->host_port);
4177 g_free(rdma);
4180 void rdma_start_outgoing_migration(void *opaque,
4181 const char *host_port, Error **errp)
4183 MigrationState *s = opaque;
4184 RDMAContext *rdma_return_path = NULL;
4185 RDMAContext *rdma;
4186 int ret;
4188 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4189 if (ram_block_discard_is_required()) {
4190 error_setg(errp, "RDMA: cannot disable RAM discard");
4191 return;
4194 rdma = qemu_rdma_data_init(host_port, errp);
4195 if (rdma == NULL) {
4196 goto err;
4199 ret = qemu_rdma_source_init(rdma, migrate_rdma_pin_all(), errp);
4201 if (ret < 0) {
4202 goto err;
4205 trace_rdma_start_outgoing_migration_after_rdma_source_init();
4206 ret = qemu_rdma_connect(rdma, false, errp);
4208 if (ret < 0) {
4209 goto err;
4212 /* RDMA postcopy need a separate queue pair for return path */
4213 if (migrate_postcopy() || migrate_return_path()) {
4214 rdma_return_path = qemu_rdma_data_init(host_port, errp);
4216 if (rdma_return_path == NULL) {
4217 goto return_path_err;
4220 ret = qemu_rdma_source_init(rdma_return_path,
4221 migrate_rdma_pin_all(), errp);
4223 if (ret < 0) {
4224 goto return_path_err;
4227 ret = qemu_rdma_connect(rdma_return_path, true, errp);
4229 if (ret < 0) {
4230 goto return_path_err;
4233 rdma->return_path = rdma_return_path;
4234 rdma_return_path->return_path = rdma;
4235 rdma_return_path->is_return_path = true;
4238 trace_rdma_start_outgoing_migration_after_rdma_connect();
4240 s->to_dst_file = rdma_new_output(rdma);
4241 migrate_fd_connect(s, NULL);
4242 return;
4243 return_path_err:
4244 qemu_rdma_cleanup(rdma);
4245 err:
4246 g_free(rdma);
4247 g_free(rdma_return_path);