2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
5 * Copyright Red Hat, Inc. 2015-2016
8 * Michael R. Hines <mrhines@us.ibm.com>
9 * Jiuxing Liu <jl@us.ibm.com>
10 * Daniel P. Berrange <berrange@redhat.com>
12 * This work is licensed under the terms of the GNU GPL, version 2 or
13 * later. See the COPYING file in the top-level directory.
17 #include "qemu/osdep.h"
18 #include "qapi/error.h"
19 #include "qemu/cutils.h"
20 #include "exec/target_page.h"
22 #include "migration.h"
23 #include "migration-stats.h"
24 #include "qemu-file.h"
26 #include "qemu/error-report.h"
27 #include "qemu/main-loop.h"
28 #include "qemu/module.h"
30 #include "qemu/sockets.h"
31 #include "qemu/bitmap.h"
32 #include "qemu/coroutine.h"
33 #include "exec/memory.h"
34 #include <sys/socket.h>
36 #include <arpa/inet.h>
37 #include <rdma/rdma_cma.h>
39 #include "qom/object.h"
43 #define RDMA_RESOLVE_TIMEOUT_MS 10000
45 /* Do not merge data if larger than this. */
46 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
47 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
49 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
52 * This is only for non-live state being migrated.
53 * Instead of RDMA_WRITE messages, we use RDMA_SEND
54 * messages for that state, which requires a different
55 * delivery design than main memory.
57 #define RDMA_SEND_INCREMENT 32768
60 * Maximum size infiniband SEND message
62 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
63 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
65 #define RDMA_CONTROL_VERSION_CURRENT 1
67 * Capabilities for negotiation.
69 #define RDMA_CAPABILITY_PIN_ALL 0x01
72 * Add the other flags above to this list of known capabilities
73 * as they are introduced.
75 static uint32_t known_capabilities
= RDMA_CAPABILITY_PIN_ALL
;
78 * A work request ID is 64-bits and we split up these bits
81 * bits 0-15 : type of control message, 2^16
82 * bits 16-29: ram block index, 2^14
83 * bits 30-63: ram block chunk number, 2^34
85 * The last two bit ranges are only used for RDMA writes,
86 * in order to track their completion and potentially
87 * also track unregistration status of the message.
89 #define RDMA_WRID_TYPE_SHIFT 0UL
90 #define RDMA_WRID_BLOCK_SHIFT 16UL
91 #define RDMA_WRID_CHUNK_SHIFT 30UL
93 #define RDMA_WRID_TYPE_MASK \
94 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
96 #define RDMA_WRID_BLOCK_MASK \
97 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
99 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
102 * RDMA migration protocol:
103 * 1. RDMA Writes (data messages, i.e. RAM)
104 * 2. IB Send/Recv (control channel messages)
108 RDMA_WRID_RDMA_WRITE
= 1,
109 RDMA_WRID_SEND_CONTROL
= 2000,
110 RDMA_WRID_RECV_CONTROL
= 4000,
114 * Work request IDs for IB SEND messages only (not RDMA writes).
115 * This is used by the migration protocol to transmit
116 * control messages (such as device state and registration commands)
118 * We could use more WRs, but we have enough for now.
128 * SEND/RECV IB Control Messages.
131 RDMA_CONTROL_NONE
= 0,
133 RDMA_CONTROL_READY
, /* ready to receive */
134 RDMA_CONTROL_QEMU_FILE
, /* QEMUFile-transmitted bytes */
135 RDMA_CONTROL_RAM_BLOCKS_REQUEST
, /* RAMBlock synchronization */
136 RDMA_CONTROL_RAM_BLOCKS_RESULT
, /* RAMBlock synchronization */
137 RDMA_CONTROL_COMPRESS
, /* page contains repeat values */
138 RDMA_CONTROL_REGISTER_REQUEST
, /* dynamic page registration */
139 RDMA_CONTROL_REGISTER_RESULT
, /* key to use after registration */
140 RDMA_CONTROL_REGISTER_FINISHED
, /* current iteration finished */
141 RDMA_CONTROL_UNREGISTER_REQUEST
, /* dynamic UN-registration */
142 RDMA_CONTROL_UNREGISTER_FINISHED
, /* unpinning finished */
147 * Memory and MR structures used to represent an IB Send/Recv work request.
148 * This is *not* used for RDMA writes, only IB Send/Recv.
151 uint8_t control
[RDMA_CONTROL_MAX_BUFFER
]; /* actual buffer to register */
152 struct ibv_mr
*control_mr
; /* registration metadata */
153 size_t control_len
; /* length of the message */
154 uint8_t *control_curr
; /* start of unconsumed bytes */
155 } RDMAWorkRequestData
;
158 * Negotiate RDMA capabilities during connection-setup time.
165 static void caps_to_network(RDMACapabilities
*cap
)
167 cap
->version
= htonl(cap
->version
);
168 cap
->flags
= htonl(cap
->flags
);
171 static void network_to_caps(RDMACapabilities
*cap
)
173 cap
->version
= ntohl(cap
->version
);
174 cap
->flags
= ntohl(cap
->flags
);
178 * Representation of a RAMBlock from an RDMA perspective.
179 * This is not transmitted, only local.
180 * This and subsequent structures cannot be linked lists
181 * because we're using a single IB message to transmit
182 * the information. It's small anyway, so a list is overkill.
184 typedef struct RDMALocalBlock
{
186 uint8_t *local_host_addr
; /* local virtual address */
187 uint64_t remote_host_addr
; /* remote virtual address */
190 struct ibv_mr
**pmr
; /* MRs for chunk-level registration */
191 struct ibv_mr
*mr
; /* MR for non-chunk-level registration */
192 uint32_t *remote_keys
; /* rkeys for chunk-level registration */
193 uint32_t remote_rkey
; /* rkeys for non-chunk-level registration */
194 int index
; /* which block are we */
195 unsigned int src_index
; /* (Only used on dest) */
198 unsigned long *transit_bitmap
;
199 unsigned long *unregister_bitmap
;
203 * Also represents a RAMblock, but only on the dest.
204 * This gets transmitted by the dest during connection-time
205 * to the source VM and then is used to populate the
206 * corresponding RDMALocalBlock with
207 * the information needed to perform the actual RDMA.
209 typedef struct QEMU_PACKED RDMADestBlock
{
210 uint64_t remote_host_addr
;
213 uint32_t remote_rkey
;
217 static const char *control_desc(unsigned int rdma_control
)
219 static const char *strs
[] = {
220 [RDMA_CONTROL_NONE
] = "NONE",
221 [RDMA_CONTROL_ERROR
] = "ERROR",
222 [RDMA_CONTROL_READY
] = "READY",
223 [RDMA_CONTROL_QEMU_FILE
] = "QEMU FILE",
224 [RDMA_CONTROL_RAM_BLOCKS_REQUEST
] = "RAM BLOCKS REQUEST",
225 [RDMA_CONTROL_RAM_BLOCKS_RESULT
] = "RAM BLOCKS RESULT",
226 [RDMA_CONTROL_COMPRESS
] = "COMPRESS",
227 [RDMA_CONTROL_REGISTER_REQUEST
] = "REGISTER REQUEST",
228 [RDMA_CONTROL_REGISTER_RESULT
] = "REGISTER RESULT",
229 [RDMA_CONTROL_REGISTER_FINISHED
] = "REGISTER FINISHED",
230 [RDMA_CONTROL_UNREGISTER_REQUEST
] = "UNREGISTER REQUEST",
231 [RDMA_CONTROL_UNREGISTER_FINISHED
] = "UNREGISTER FINISHED",
234 if (rdma_control
> RDMA_CONTROL_UNREGISTER_FINISHED
) {
235 return "??BAD CONTROL VALUE??";
238 return strs
[rdma_control
];
241 static uint64_t htonll(uint64_t v
)
243 union { uint32_t lv
[2]; uint64_t llv
; } u
;
244 u
.lv
[0] = htonl(v
>> 32);
245 u
.lv
[1] = htonl(v
& 0xFFFFFFFFULL
);
249 static uint64_t ntohll(uint64_t v
)
251 union { uint32_t lv
[2]; uint64_t llv
; } u
;
253 return ((uint64_t)ntohl(u
.lv
[0]) << 32) | (uint64_t) ntohl(u
.lv
[1]);
256 static void dest_block_to_network(RDMADestBlock
*db
)
258 db
->remote_host_addr
= htonll(db
->remote_host_addr
);
259 db
->offset
= htonll(db
->offset
);
260 db
->length
= htonll(db
->length
);
261 db
->remote_rkey
= htonl(db
->remote_rkey
);
264 static void network_to_dest_block(RDMADestBlock
*db
)
266 db
->remote_host_addr
= ntohll(db
->remote_host_addr
);
267 db
->offset
= ntohll(db
->offset
);
268 db
->length
= ntohll(db
->length
);
269 db
->remote_rkey
= ntohl(db
->remote_rkey
);
273 * Virtual address of the above structures used for transmitting
274 * the RAMBlock descriptions at connection-time.
275 * This structure is *not* transmitted.
277 typedef struct RDMALocalBlocks
{
279 bool init
; /* main memory init complete */
280 RDMALocalBlock
*block
;
284 * Main data structure for RDMA state.
285 * While there is only one copy of this structure being allocated right now,
286 * this is the place where one would start if you wanted to consider
287 * having more than one RDMA connection open at the same time.
289 typedef struct RDMAContext
{
294 RDMAWorkRequestData wr_data
[RDMA_WRID_MAX
];
297 * This is used by *_exchange_send() to figure out whether or not
298 * the initial "READY" message has already been received or not.
299 * This is because other functions may potentially poll() and detect
300 * the READY message before send() does, in which case we need to
301 * know if it completed.
303 int control_ready_expected
;
305 /* number of outstanding writes */
308 /* store info about current buffer so that we can
309 merge it with future sends */
310 uint64_t current_addr
;
311 uint64_t current_length
;
312 /* index of ram block the current buffer belongs to */
314 /* index of the chunk in the current ram block */
320 * infiniband-specific variables for opening the device
321 * and maintaining connection state and so forth.
323 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
324 * cm_id->verbs, cm_id->channel, and cm_id->qp.
326 struct rdma_cm_id
*cm_id
; /* connection manager ID */
327 struct rdma_cm_id
*listen_id
;
330 struct ibv_context
*verbs
;
331 struct rdma_event_channel
*channel
;
332 struct ibv_qp
*qp
; /* queue pair */
333 struct ibv_comp_channel
*recv_comp_channel
; /* recv completion channel */
334 struct ibv_comp_channel
*send_comp_channel
; /* send completion channel */
335 struct ibv_pd
*pd
; /* protection domain */
336 struct ibv_cq
*recv_cq
; /* recvieve completion queue */
337 struct ibv_cq
*send_cq
; /* send completion queue */
340 * If a previous write failed (perhaps because of a failed
341 * memory registration, then do not attempt any future work
342 * and remember the error state.
349 * Description of ram blocks used throughout the code.
351 RDMALocalBlocks local_ram_blocks
;
352 RDMADestBlock
*dest_blocks
;
354 /* Index of the next RAMBlock received during block registration */
355 unsigned int next_src_index
;
358 * Migration on *destination* started.
359 * Then use coroutine yield function.
360 * Source runs in a thread, so we don't care.
362 int migration_started_on_destination
;
364 int total_registrations
;
367 int unregister_current
, unregister_next
;
368 uint64_t unregistrations
[RDMA_SIGNALED_SEND_MAX
];
370 GHashTable
*blockmap
;
372 /* the RDMAContext for return path */
373 struct RDMAContext
*return_path
;
377 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
378 OBJECT_DECLARE_SIMPLE_TYPE(QIOChannelRDMA
, QIO_CHANNEL_RDMA
)
382 struct QIOChannelRDMA
{
385 RDMAContext
*rdmaout
;
387 bool blocking
; /* XXX we don't actually honour this yet */
391 * Main structure for IB Send/Recv control messages.
392 * This gets prepended at the beginning of every Send/Recv.
394 typedef struct QEMU_PACKED
{
395 uint32_t len
; /* Total length of data portion */
396 uint32_t type
; /* which control command to perform */
397 uint32_t repeat
; /* number of commands in data portion of same type */
401 static void control_to_network(RDMAControlHeader
*control
)
403 control
->type
= htonl(control
->type
);
404 control
->len
= htonl(control
->len
);
405 control
->repeat
= htonl(control
->repeat
);
408 static void network_to_control(RDMAControlHeader
*control
)
410 control
->type
= ntohl(control
->type
);
411 control
->len
= ntohl(control
->len
);
412 control
->repeat
= ntohl(control
->repeat
);
416 * Register a single Chunk.
417 * Information sent by the source VM to inform the dest
418 * to register an single chunk of memory before we can perform
419 * the actual RDMA operation.
421 typedef struct QEMU_PACKED
{
423 uint64_t current_addr
; /* offset into the ram_addr_t space */
424 uint64_t chunk
; /* chunk to lookup if unregistering */
426 uint32_t current_index
; /* which ramblock the chunk belongs to */
428 uint64_t chunks
; /* how many sequential chunks to register */
431 static bool rdma_errored(RDMAContext
*rdma
)
433 if (rdma
->errored
&& !rdma
->error_reported
) {
434 error_report("RDMA is in an error state waiting migration"
436 rdma
->error_reported
= true;
438 return rdma
->errored
;
441 static void register_to_network(RDMAContext
*rdma
, RDMARegister
*reg
)
443 RDMALocalBlock
*local_block
;
444 local_block
= &rdma
->local_ram_blocks
.block
[reg
->current_index
];
446 if (local_block
->is_ram_block
) {
448 * current_addr as passed in is an address in the local ram_addr_t
449 * space, we need to translate this for the destination
451 reg
->key
.current_addr
-= local_block
->offset
;
452 reg
->key
.current_addr
+= rdma
->dest_blocks
[reg
->current_index
].offset
;
454 reg
->key
.current_addr
= htonll(reg
->key
.current_addr
);
455 reg
->current_index
= htonl(reg
->current_index
);
456 reg
->chunks
= htonll(reg
->chunks
);
459 static void network_to_register(RDMARegister
*reg
)
461 reg
->key
.current_addr
= ntohll(reg
->key
.current_addr
);
462 reg
->current_index
= ntohl(reg
->current_index
);
463 reg
->chunks
= ntohll(reg
->chunks
);
466 typedef struct QEMU_PACKED
{
467 uint32_t value
; /* if zero, we will madvise() */
468 uint32_t block_idx
; /* which ram block index */
469 uint64_t offset
; /* Address in remote ram_addr_t space */
470 uint64_t length
; /* length of the chunk */
473 static void compress_to_network(RDMAContext
*rdma
, RDMACompress
*comp
)
475 comp
->value
= htonl(comp
->value
);
477 * comp->offset as passed in is an address in the local ram_addr_t
478 * space, we need to translate this for the destination
480 comp
->offset
-= rdma
->local_ram_blocks
.block
[comp
->block_idx
].offset
;
481 comp
->offset
+= rdma
->dest_blocks
[comp
->block_idx
].offset
;
482 comp
->block_idx
= htonl(comp
->block_idx
);
483 comp
->offset
= htonll(comp
->offset
);
484 comp
->length
= htonll(comp
->length
);
487 static void network_to_compress(RDMACompress
*comp
)
489 comp
->value
= ntohl(comp
->value
);
490 comp
->block_idx
= ntohl(comp
->block_idx
);
491 comp
->offset
= ntohll(comp
->offset
);
492 comp
->length
= ntohll(comp
->length
);
496 * The result of the dest's memory registration produces an "rkey"
497 * which the source VM must reference in order to perform
498 * the RDMA operation.
500 typedef struct QEMU_PACKED
{
504 } RDMARegisterResult
;
506 static void result_to_network(RDMARegisterResult
*result
)
508 result
->rkey
= htonl(result
->rkey
);
509 result
->host_addr
= htonll(result
->host_addr
);
512 static void network_to_result(RDMARegisterResult
*result
)
514 result
->rkey
= ntohl(result
->rkey
);
515 result
->host_addr
= ntohll(result
->host_addr
);
518 static int qemu_rdma_exchange_send(RDMAContext
*rdma
, RDMAControlHeader
*head
,
519 uint8_t *data
, RDMAControlHeader
*resp
,
521 int (*callback
)(RDMAContext
*rdma
,
525 static inline uint64_t ram_chunk_index(const uint8_t *start
,
528 return ((uintptr_t) host
- (uintptr_t) start
) >> RDMA_REG_CHUNK_SHIFT
;
531 static inline uint8_t *ram_chunk_start(const RDMALocalBlock
*rdma_ram_block
,
534 return (uint8_t *)(uintptr_t)(rdma_ram_block
->local_host_addr
+
535 (i
<< RDMA_REG_CHUNK_SHIFT
));
538 static inline uint8_t *ram_chunk_end(const RDMALocalBlock
*rdma_ram_block
,
541 uint8_t *result
= ram_chunk_start(rdma_ram_block
, i
) +
542 (1UL << RDMA_REG_CHUNK_SHIFT
);
544 if (result
> (rdma_ram_block
->local_host_addr
+ rdma_ram_block
->length
)) {
545 result
= rdma_ram_block
->local_host_addr
+ rdma_ram_block
->length
;
551 static void rdma_add_block(RDMAContext
*rdma
, const char *block_name
,
553 ram_addr_t block_offset
, uint64_t length
)
555 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
556 RDMALocalBlock
*block
;
557 RDMALocalBlock
*old
= local
->block
;
559 local
->block
= g_new0(RDMALocalBlock
, local
->nb_blocks
+ 1);
561 if (local
->nb_blocks
) {
564 if (rdma
->blockmap
) {
565 for (x
= 0; x
< local
->nb_blocks
; x
++) {
566 g_hash_table_remove(rdma
->blockmap
,
567 (void *)(uintptr_t)old
[x
].offset
);
568 g_hash_table_insert(rdma
->blockmap
,
569 (void *)(uintptr_t)old
[x
].offset
,
573 memcpy(local
->block
, old
, sizeof(RDMALocalBlock
) * local
->nb_blocks
);
577 block
= &local
->block
[local
->nb_blocks
];
579 block
->block_name
= g_strdup(block_name
);
580 block
->local_host_addr
= host_addr
;
581 block
->offset
= block_offset
;
582 block
->length
= length
;
583 block
->index
= local
->nb_blocks
;
584 block
->src_index
= ~0U; /* Filled in by the receipt of the block list */
585 block
->nb_chunks
= ram_chunk_index(host_addr
, host_addr
+ length
) + 1UL;
586 block
->transit_bitmap
= bitmap_new(block
->nb_chunks
);
587 bitmap_clear(block
->transit_bitmap
, 0, block
->nb_chunks
);
588 block
->unregister_bitmap
= bitmap_new(block
->nb_chunks
);
589 bitmap_clear(block
->unregister_bitmap
, 0, block
->nb_chunks
);
590 block
->remote_keys
= g_new0(uint32_t, block
->nb_chunks
);
592 block
->is_ram_block
= local
->init
? false : true;
594 if (rdma
->blockmap
) {
595 g_hash_table_insert(rdma
->blockmap
, (void *)(uintptr_t)block_offset
, block
);
598 trace_rdma_add_block(block_name
, local
->nb_blocks
,
599 (uintptr_t) block
->local_host_addr
,
600 block
->offset
, block
->length
,
601 (uintptr_t) (block
->local_host_addr
+ block
->length
),
602 BITS_TO_LONGS(block
->nb_chunks
) *
603 sizeof(unsigned long) * 8,
610 * Memory regions need to be registered with the device and queue pairs setup
611 * in advanced before the migration starts. This tells us where the RAM blocks
612 * are so that we can register them individually.
614 static int qemu_rdma_init_one_block(RAMBlock
*rb
, void *opaque
)
616 const char *block_name
= qemu_ram_get_idstr(rb
);
617 void *host_addr
= qemu_ram_get_host_addr(rb
);
618 ram_addr_t block_offset
= qemu_ram_get_offset(rb
);
619 ram_addr_t length
= qemu_ram_get_used_length(rb
);
620 rdma_add_block(opaque
, block_name
, host_addr
, block_offset
, length
);
625 * Identify the RAMBlocks and their quantity. They will be references to
626 * identify chunk boundaries inside each RAMBlock and also be referenced
627 * during dynamic page registration.
629 static void qemu_rdma_init_ram_blocks(RDMAContext
*rdma
)
631 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
634 assert(rdma
->blockmap
== NULL
);
635 memset(local
, 0, sizeof *local
);
636 ret
= foreach_not_ignored_block(qemu_rdma_init_one_block
, rdma
);
638 trace_qemu_rdma_init_ram_blocks(local
->nb_blocks
);
639 rdma
->dest_blocks
= g_new0(RDMADestBlock
,
640 rdma
->local_ram_blocks
.nb_blocks
);
645 * Note: If used outside of cleanup, the caller must ensure that the destination
646 * block structures are also updated
648 static void rdma_delete_block(RDMAContext
*rdma
, RDMALocalBlock
*block
)
650 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
651 RDMALocalBlock
*old
= local
->block
;
654 if (rdma
->blockmap
) {
655 g_hash_table_remove(rdma
->blockmap
, (void *)(uintptr_t)block
->offset
);
660 for (j
= 0; j
< block
->nb_chunks
; j
++) {
661 if (!block
->pmr
[j
]) {
664 ibv_dereg_mr(block
->pmr
[j
]);
665 rdma
->total_registrations
--;
672 ibv_dereg_mr(block
->mr
);
673 rdma
->total_registrations
--;
677 g_free(block
->transit_bitmap
);
678 block
->transit_bitmap
= NULL
;
680 g_free(block
->unregister_bitmap
);
681 block
->unregister_bitmap
= NULL
;
683 g_free(block
->remote_keys
);
684 block
->remote_keys
= NULL
;
686 g_free(block
->block_name
);
687 block
->block_name
= NULL
;
689 if (rdma
->blockmap
) {
690 for (x
= 0; x
< local
->nb_blocks
; x
++) {
691 g_hash_table_remove(rdma
->blockmap
,
692 (void *)(uintptr_t)old
[x
].offset
);
696 if (local
->nb_blocks
> 1) {
698 local
->block
= g_new0(RDMALocalBlock
, local
->nb_blocks
- 1);
701 memcpy(local
->block
, old
, sizeof(RDMALocalBlock
) * block
->index
);
704 if (block
->index
< (local
->nb_blocks
- 1)) {
705 memcpy(local
->block
+ block
->index
, old
+ (block
->index
+ 1),
706 sizeof(RDMALocalBlock
) *
707 (local
->nb_blocks
- (block
->index
+ 1)));
708 for (x
= block
->index
; x
< local
->nb_blocks
- 1; x
++) {
709 local
->block
[x
].index
--;
713 assert(block
== local
->block
);
717 trace_rdma_delete_block(block
, (uintptr_t)block
->local_host_addr
,
718 block
->offset
, block
->length
,
719 (uintptr_t)(block
->local_host_addr
+ block
->length
),
720 BITS_TO_LONGS(block
->nb_chunks
) *
721 sizeof(unsigned long) * 8, block
->nb_chunks
);
727 if (local
->nb_blocks
&& rdma
->blockmap
) {
728 for (x
= 0; x
< local
->nb_blocks
; x
++) {
729 g_hash_table_insert(rdma
->blockmap
,
730 (void *)(uintptr_t)local
->block
[x
].offset
,
737 * Put in the log file which RDMA device was opened and the details
738 * associated with that device.
740 static void qemu_rdma_dump_id(const char *who
, struct ibv_context
*verbs
)
742 struct ibv_port_attr port
;
744 if (ibv_query_port(verbs
, 1, &port
)) {
745 error_report("Failed to query port information");
749 printf("%s RDMA Device opened: kernel name %s "
750 "uverbs device name %s, "
751 "infiniband_verbs class device path %s, "
752 "infiniband class device path %s, "
753 "transport: (%d) %s\n",
756 verbs
->device
->dev_name
,
757 verbs
->device
->dev_path
,
758 verbs
->device
->ibdev_path
,
760 (port
.link_layer
== IBV_LINK_LAYER_INFINIBAND
) ? "Infiniband" :
761 ((port
.link_layer
== IBV_LINK_LAYER_ETHERNET
)
762 ? "Ethernet" : "Unknown"));
766 * Put in the log file the RDMA gid addressing information,
767 * useful for folks who have trouble understanding the
768 * RDMA device hierarchy in the kernel.
770 static void qemu_rdma_dump_gid(const char *who
, struct rdma_cm_id
*id
)
774 inet_ntop(AF_INET6
, &id
->route
.addr
.addr
.ibaddr
.sgid
, sgid
, sizeof sgid
);
775 inet_ntop(AF_INET6
, &id
->route
.addr
.addr
.ibaddr
.dgid
, dgid
, sizeof dgid
);
776 trace_qemu_rdma_dump_gid(who
, sgid
, dgid
);
780 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
781 * We will try the next addrinfo struct, and fail if there are
782 * no other valid addresses to bind against.
784 * If user is listening on '[::]', then we will not have a opened a device
785 * yet and have no way of verifying if the device is RoCE or not.
787 * In this case, the source VM will throw an error for ALL types of
788 * connections (both IPv4 and IPv6) if the destination machine does not have
789 * a regular infiniband network available for use.
791 * The only way to guarantee that an error is thrown for broken kernels is
792 * for the management software to choose a *specific* interface at bind time
793 * and validate what time of hardware it is.
795 * Unfortunately, this puts the user in a fix:
797 * If the source VM connects with an IPv4 address without knowing that the
798 * destination has bound to '[::]' the migration will unconditionally fail
799 * unless the management software is explicitly listening on the IPv4
800 * address while using a RoCE-based device.
802 * If the source VM connects with an IPv6 address, then we're OK because we can
803 * throw an error on the source (and similarly on the destination).
805 * But in mixed environments, this will be broken for a while until it is fixed
808 * We do provide a *tiny* bit of help in this function: We can list all of the
809 * devices in the system and check to see if all the devices are RoCE or
812 * If we detect that we have a *pure* RoCE environment, then we can safely
813 * thrown an error even if the management software has specified '[::]' as the
816 * However, if there is are multiple hetergeneous devices, then we cannot make
817 * this assumption and the user just has to be sure they know what they are
820 * Patches are being reviewed on linux-rdma.
822 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context
*verbs
, Error
**errp
)
824 /* This bug only exists in linux, to our knowledge. */
826 struct ibv_port_attr port_attr
;
829 * Verbs are only NULL if management has bound to '[::]'.
831 * Let's iterate through all the devices and see if there any pure IB
832 * devices (non-ethernet).
834 * If not, then we can safely proceed with the migration.
835 * Otherwise, there are no guarantees until the bug is fixed in linux.
839 struct ibv_device
**dev_list
= ibv_get_device_list(&num_devices
);
840 bool roce_found
= false;
841 bool ib_found
= false;
843 for (x
= 0; x
< num_devices
; x
++) {
844 verbs
= ibv_open_device(dev_list
[x
]);
846 * ibv_open_device() is not documented to set errno. If
847 * it does, it's somebody else's doc bug. If it doesn't,
848 * the use of errno below is wrong.
849 * TODO Find out whether ibv_open_device() sets errno.
852 if (errno
== EPERM
) {
855 error_setg_errno(errp
, errno
,
856 "could not open RDMA device context");
861 if (ibv_query_port(verbs
, 1, &port_attr
)) {
862 ibv_close_device(verbs
);
864 "RDMA ERROR: Could not query initial IB port");
868 if (port_attr
.link_layer
== IBV_LINK_LAYER_INFINIBAND
) {
870 } else if (port_attr
.link_layer
== IBV_LINK_LAYER_ETHERNET
) {
874 ibv_close_device(verbs
);
880 fprintf(stderr
, "WARN: migrations may fail:"
881 " IPv6 over RoCE / iWARP in linux"
882 " is broken. But since you appear to have a"
883 " mixed RoCE / IB environment, be sure to only"
884 " migrate over the IB fabric until the kernel "
885 " fixes the bug.\n");
887 error_setg(errp
, "RDMA ERROR: "
888 "You only have RoCE / iWARP devices in your systems"
889 " and your management software has specified '[::]'"
890 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
899 * If we have a verbs context, that means that some other than '[::]' was
900 * used by the management software for binding. In which case we can
901 * actually warn the user about a potentially broken kernel.
904 /* IB ports start with 1, not 0 */
905 if (ibv_query_port(verbs
, 1, &port_attr
)) {
906 error_setg(errp
, "RDMA ERROR: Could not query initial IB port");
910 if (port_attr
.link_layer
== IBV_LINK_LAYER_ETHERNET
) {
911 error_setg(errp
, "RDMA ERROR: "
912 "Linux kernel's RoCE / iWARP does not support IPv6 "
913 "(but patches on linux-rdma in progress)");
923 * Figure out which RDMA device corresponds to the requested IP hostname
924 * Also create the initial connection manager identifiers for opening
927 static int qemu_rdma_resolve_host(RDMAContext
*rdma
, Error
**errp
)
931 struct rdma_addrinfo
*res
;
933 struct rdma_cm_event
*cm_event
;
934 char ip
[40] = "unknown";
935 struct rdma_addrinfo
*e
;
937 if (rdma
->host
== NULL
|| !strcmp(rdma
->host
, "")) {
938 error_setg(errp
, "RDMA ERROR: RDMA hostname has not been set");
942 /* create CM channel */
943 rdma
->channel
= rdma_create_event_channel();
944 if (!rdma
->channel
) {
945 error_setg(errp
, "RDMA ERROR: could not create CM channel");
950 ret
= rdma_create_id(rdma
->channel
, &rdma
->cm_id
, NULL
, RDMA_PS_TCP
);
952 error_setg(errp
, "RDMA ERROR: could not create channel id");
953 goto err_resolve_create_id
;
956 snprintf(port_str
, 16, "%d", rdma
->port
);
959 ret
= rdma_getaddrinfo(rdma
->host
, port_str
, NULL
, &res
);
961 error_setg(errp
, "RDMA ERROR: could not rdma_getaddrinfo address %s",
963 goto err_resolve_get_addr
;
966 /* Try all addresses, saving the first error in @err */
967 for (e
= res
; e
!= NULL
; e
= e
->ai_next
) {
968 Error
**local_errp
= err
? NULL
: &err
;
970 inet_ntop(e
->ai_family
,
971 &((struct sockaddr_in
*) e
->ai_dst_addr
)->sin_addr
, ip
, sizeof ip
);
972 trace_qemu_rdma_resolve_host_trying(rdma
->host
, ip
);
974 ret
= rdma_resolve_addr(rdma
->cm_id
, NULL
, e
->ai_dst_addr
,
975 RDMA_RESOLVE_TIMEOUT_MS
);
977 if (e
->ai_family
== AF_INET6
) {
978 ret
= qemu_rdma_broken_ipv6_kernel(rdma
->cm_id
->verbs
,
989 rdma_freeaddrinfo(res
);
991 error_propagate(errp
, err
);
993 error_setg(errp
, "RDMA ERROR: could not resolve address %s",
996 goto err_resolve_get_addr
;
999 rdma_freeaddrinfo(res
);
1000 qemu_rdma_dump_gid("source_resolve_addr", rdma
->cm_id
);
1002 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
1004 error_setg(errp
, "RDMA ERROR: could not perform event_addr_resolved");
1005 goto err_resolve_get_addr
;
1008 if (cm_event
->event
!= RDMA_CM_EVENT_ADDR_RESOLVED
) {
1010 "RDMA ERROR: result not equal to event_addr_resolved %s",
1011 rdma_event_str(cm_event
->event
));
1012 rdma_ack_cm_event(cm_event
);
1013 goto err_resolve_get_addr
;
1015 rdma_ack_cm_event(cm_event
);
1018 ret
= rdma_resolve_route(rdma
->cm_id
, RDMA_RESOLVE_TIMEOUT_MS
);
1020 error_setg(errp
, "RDMA ERROR: could not resolve rdma route");
1021 goto err_resolve_get_addr
;
1024 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
1026 error_setg(errp
, "RDMA ERROR: could not perform event_route_resolved");
1027 goto err_resolve_get_addr
;
1029 if (cm_event
->event
!= RDMA_CM_EVENT_ROUTE_RESOLVED
) {
1030 error_setg(errp
, "RDMA ERROR: "
1031 "result not equal to event_route_resolved: %s",
1032 rdma_event_str(cm_event
->event
));
1033 rdma_ack_cm_event(cm_event
);
1034 goto err_resolve_get_addr
;
1036 rdma_ack_cm_event(cm_event
);
1037 rdma
->verbs
= rdma
->cm_id
->verbs
;
1038 qemu_rdma_dump_id("source_resolve_host", rdma
->cm_id
->verbs
);
1039 qemu_rdma_dump_gid("source_resolve_host", rdma
->cm_id
);
1042 err_resolve_get_addr
:
1043 rdma_destroy_id(rdma
->cm_id
);
1045 err_resolve_create_id
:
1046 rdma_destroy_event_channel(rdma
->channel
);
1047 rdma
->channel
= NULL
;
1052 * Create protection domain and completion queues
1054 static int qemu_rdma_alloc_pd_cq(RDMAContext
*rdma
, Error
**errp
)
1057 rdma
->pd
= ibv_alloc_pd(rdma
->verbs
);
1059 error_setg(errp
, "failed to allocate protection domain");
1063 /* create receive completion channel */
1064 rdma
->recv_comp_channel
= ibv_create_comp_channel(rdma
->verbs
);
1065 if (!rdma
->recv_comp_channel
) {
1066 error_setg(errp
, "failed to allocate receive completion channel");
1067 goto err_alloc_pd_cq
;
1071 * Completion queue can be filled by read work requests.
1073 rdma
->recv_cq
= ibv_create_cq(rdma
->verbs
, (RDMA_SIGNALED_SEND_MAX
* 3),
1074 NULL
, rdma
->recv_comp_channel
, 0);
1075 if (!rdma
->recv_cq
) {
1076 error_setg(errp
, "failed to allocate receive completion queue");
1077 goto err_alloc_pd_cq
;
1080 /* create send completion channel */
1081 rdma
->send_comp_channel
= ibv_create_comp_channel(rdma
->verbs
);
1082 if (!rdma
->send_comp_channel
) {
1083 error_setg(errp
, "failed to allocate send completion channel");
1084 goto err_alloc_pd_cq
;
1087 rdma
->send_cq
= ibv_create_cq(rdma
->verbs
, (RDMA_SIGNALED_SEND_MAX
* 3),
1088 NULL
, rdma
->send_comp_channel
, 0);
1089 if (!rdma
->send_cq
) {
1090 error_setg(errp
, "failed to allocate send completion queue");
1091 goto err_alloc_pd_cq
;
1098 ibv_dealloc_pd(rdma
->pd
);
1100 if (rdma
->recv_comp_channel
) {
1101 ibv_destroy_comp_channel(rdma
->recv_comp_channel
);
1103 if (rdma
->send_comp_channel
) {
1104 ibv_destroy_comp_channel(rdma
->send_comp_channel
);
1106 if (rdma
->recv_cq
) {
1107 ibv_destroy_cq(rdma
->recv_cq
);
1108 rdma
->recv_cq
= NULL
;
1111 rdma
->recv_comp_channel
= NULL
;
1112 rdma
->send_comp_channel
= NULL
;
1118 * Create queue pairs.
1120 static int qemu_rdma_alloc_qp(RDMAContext
*rdma
)
1122 struct ibv_qp_init_attr attr
= { 0 };
1125 attr
.cap
.max_send_wr
= RDMA_SIGNALED_SEND_MAX
;
1126 attr
.cap
.max_recv_wr
= 3;
1127 attr
.cap
.max_send_sge
= 1;
1128 attr
.cap
.max_recv_sge
= 1;
1129 attr
.send_cq
= rdma
->send_cq
;
1130 attr
.recv_cq
= rdma
->recv_cq
;
1131 attr
.qp_type
= IBV_QPT_RC
;
1133 ret
= rdma_create_qp(rdma
->cm_id
, rdma
->pd
, &attr
);
1138 rdma
->qp
= rdma
->cm_id
->qp
;
1142 /* Check whether On-Demand Paging is supported by RDAM device */
1143 static bool rdma_support_odp(struct ibv_context
*dev
)
1145 struct ibv_device_attr_ex attr
= {0};
1146 int ret
= ibv_query_device_ex(dev
, NULL
, &attr
);
1151 if (attr
.odp_caps
.general_caps
& IBV_ODP_SUPPORT
) {
1159 * ibv_advise_mr to avoid RNR NAK error as far as possible.
1160 * The responder mr registering with ODP will sent RNR NAK back to
1161 * the requester in the face of the page fault.
1163 static void qemu_rdma_advise_prefetch_mr(struct ibv_pd
*pd
, uint64_t addr
,
1164 uint32_t len
, uint32_t lkey
,
1165 const char *name
, bool wr
)
1167 #ifdef HAVE_IBV_ADVISE_MR
1169 int advice
= wr
? IBV_ADVISE_MR_ADVICE_PREFETCH_WRITE
:
1170 IBV_ADVISE_MR_ADVICE_PREFETCH
;
1171 struct ibv_sge sg_list
= {.lkey
= lkey
, .addr
= addr
, .length
= len
};
1173 ret
= ibv_advise_mr(pd
, advice
,
1174 IBV_ADVISE_MR_FLAG_FLUSH
, &sg_list
, 1);
1175 /* ignore the error */
1176 trace_qemu_rdma_advise_mr(name
, len
, addr
, strerror(ret
));
1180 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext
*rdma
, Error
**errp
)
1183 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
1185 for (i
= 0; i
< local
->nb_blocks
; i
++) {
1186 int access
= IBV_ACCESS_LOCAL_WRITE
| IBV_ACCESS_REMOTE_WRITE
;
1188 local
->block
[i
].mr
=
1189 ibv_reg_mr(rdma
->pd
,
1190 local
->block
[i
].local_host_addr
,
1191 local
->block
[i
].length
, access
1194 * ibv_reg_mr() is not documented to set errno. If it does,
1195 * it's somebody else's doc bug. If it doesn't, the use of
1196 * errno below is wrong.
1197 * TODO Find out whether ibv_reg_mr() sets errno.
1199 if (!local
->block
[i
].mr
&&
1200 errno
== ENOTSUP
&& rdma_support_odp(rdma
->verbs
)) {
1201 access
|= IBV_ACCESS_ON_DEMAND
;
1202 /* register ODP mr */
1203 local
->block
[i
].mr
=
1204 ibv_reg_mr(rdma
->pd
,
1205 local
->block
[i
].local_host_addr
,
1206 local
->block
[i
].length
, access
);
1207 trace_qemu_rdma_register_odp_mr(local
->block
[i
].block_name
);
1209 if (local
->block
[i
].mr
) {
1210 qemu_rdma_advise_prefetch_mr(rdma
->pd
,
1211 (uintptr_t)local
->block
[i
].local_host_addr
,
1212 local
->block
[i
].length
,
1213 local
->block
[i
].mr
->lkey
,
1214 local
->block
[i
].block_name
,
1219 if (!local
->block
[i
].mr
) {
1220 error_setg_errno(errp
, errno
,
1221 "Failed to register local dest ram block!");
1224 rdma
->total_registrations
++;
1230 for (i
--; i
>= 0; i
--) {
1231 ibv_dereg_mr(local
->block
[i
].mr
);
1232 local
->block
[i
].mr
= NULL
;
1233 rdma
->total_registrations
--;
1241 * Find the ram block that corresponds to the page requested to be
1242 * transmitted by QEMU.
1244 * Once the block is found, also identify which 'chunk' within that
1245 * block that the page belongs to.
1247 static void qemu_rdma_search_ram_block(RDMAContext
*rdma
,
1248 uintptr_t block_offset
,
1251 uint64_t *block_index
,
1252 uint64_t *chunk_index
)
1254 uint64_t current_addr
= block_offset
+ offset
;
1255 RDMALocalBlock
*block
= g_hash_table_lookup(rdma
->blockmap
,
1256 (void *) block_offset
);
1258 assert(current_addr
>= block
->offset
);
1259 assert((current_addr
+ length
) <= (block
->offset
+ block
->length
));
1261 *block_index
= block
->index
;
1262 *chunk_index
= ram_chunk_index(block
->local_host_addr
,
1263 block
->local_host_addr
+ (current_addr
- block
->offset
));
1267 * Register a chunk with IB. If the chunk was already registered
1268 * previously, then skip.
1270 * Also return the keys associated with the registration needed
1271 * to perform the actual RDMA operation.
1273 static int qemu_rdma_register_and_get_keys(RDMAContext
*rdma
,
1274 RDMALocalBlock
*block
, uintptr_t host_addr
,
1275 uint32_t *lkey
, uint32_t *rkey
, int chunk
,
1276 uint8_t *chunk_start
, uint8_t *chunk_end
)
1280 *lkey
= block
->mr
->lkey
;
1283 *rkey
= block
->mr
->rkey
;
1288 /* allocate memory to store chunk MRs */
1290 block
->pmr
= g_new0(struct ibv_mr
*, block
->nb_chunks
);
1294 * If 'rkey', then we're the destination, so grant access to the source.
1296 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1298 if (!block
->pmr
[chunk
]) {
1299 uint64_t len
= chunk_end
- chunk_start
;
1300 int access
= rkey
? IBV_ACCESS_LOCAL_WRITE
| IBV_ACCESS_REMOTE_WRITE
:
1303 trace_qemu_rdma_register_and_get_keys(len
, chunk_start
);
1305 block
->pmr
[chunk
] = ibv_reg_mr(rdma
->pd
, chunk_start
, len
, access
);
1307 * ibv_reg_mr() is not documented to set errno. If it does,
1308 * it's somebody else's doc bug. If it doesn't, the use of
1309 * errno below is wrong.
1310 * TODO Find out whether ibv_reg_mr() sets errno.
1312 if (!block
->pmr
[chunk
] &&
1313 errno
== ENOTSUP
&& rdma_support_odp(rdma
->verbs
)) {
1314 access
|= IBV_ACCESS_ON_DEMAND
;
1315 /* register ODP mr */
1316 block
->pmr
[chunk
] = ibv_reg_mr(rdma
->pd
, chunk_start
, len
, access
);
1317 trace_qemu_rdma_register_odp_mr(block
->block_name
);
1319 if (block
->pmr
[chunk
]) {
1320 qemu_rdma_advise_prefetch_mr(rdma
->pd
, (uintptr_t)chunk_start
,
1321 len
, block
->pmr
[chunk
]->lkey
,
1322 block
->block_name
, rkey
);
1327 if (!block
->pmr
[chunk
]) {
1328 perror("Failed to register chunk!");
1329 fprintf(stderr
, "Chunk details: block: %d chunk index %d"
1330 " start %" PRIuPTR
" end %" PRIuPTR
1332 " local %" PRIuPTR
" registrations: %d\n",
1333 block
->index
, chunk
, (uintptr_t)chunk_start
,
1334 (uintptr_t)chunk_end
, host_addr
,
1335 (uintptr_t)block
->local_host_addr
,
1336 rdma
->total_registrations
);
1339 rdma
->total_registrations
++;
1342 *lkey
= block
->pmr
[chunk
]->lkey
;
1345 *rkey
= block
->pmr
[chunk
]->rkey
;
1351 * Register (at connection time) the memory used for control
1354 static int qemu_rdma_reg_control(RDMAContext
*rdma
, int idx
)
1356 rdma
->wr_data
[idx
].control_mr
= ibv_reg_mr(rdma
->pd
,
1357 rdma
->wr_data
[idx
].control
, RDMA_CONTROL_MAX_BUFFER
,
1358 IBV_ACCESS_LOCAL_WRITE
| IBV_ACCESS_REMOTE_WRITE
);
1359 if (rdma
->wr_data
[idx
].control_mr
) {
1360 rdma
->total_registrations
++;
1367 * Perform a non-optimized memory unregistration after every transfer
1368 * for demonstration purposes, only if pin-all is not requested.
1370 * Potential optimizations:
1371 * 1. Start a new thread to run this function continuously
1373 - and for receipt of unregister messages
1375 * 3. Use workload hints.
1377 static int qemu_rdma_unregister_waiting(RDMAContext
*rdma
)
1381 while (rdma
->unregistrations
[rdma
->unregister_current
]) {
1383 uint64_t wr_id
= rdma
->unregistrations
[rdma
->unregister_current
];
1385 (wr_id
& RDMA_WRID_CHUNK_MASK
) >> RDMA_WRID_CHUNK_SHIFT
;
1387 (wr_id
& RDMA_WRID_BLOCK_MASK
) >> RDMA_WRID_BLOCK_SHIFT
;
1388 RDMALocalBlock
*block
=
1389 &(rdma
->local_ram_blocks
.block
[index
]);
1390 RDMARegister reg
= { .current_index
= index
};
1391 RDMAControlHeader resp
= { .type
= RDMA_CONTROL_UNREGISTER_FINISHED
,
1393 RDMAControlHeader head
= { .len
= sizeof(RDMARegister
),
1394 .type
= RDMA_CONTROL_UNREGISTER_REQUEST
,
1398 trace_qemu_rdma_unregister_waiting_proc(chunk
,
1399 rdma
->unregister_current
);
1401 rdma
->unregistrations
[rdma
->unregister_current
] = 0;
1402 rdma
->unregister_current
++;
1404 if (rdma
->unregister_current
== RDMA_SIGNALED_SEND_MAX
) {
1405 rdma
->unregister_current
= 0;
1410 * Unregistration is speculative (because migration is single-threaded
1411 * and we cannot break the protocol's inifinband message ordering).
1412 * Thus, if the memory is currently being used for transmission,
1413 * then abort the attempt to unregister and try again
1414 * later the next time a completion is received for this memory.
1416 clear_bit(chunk
, block
->unregister_bitmap
);
1418 if (test_bit(chunk
, block
->transit_bitmap
)) {
1419 trace_qemu_rdma_unregister_waiting_inflight(chunk
);
1423 trace_qemu_rdma_unregister_waiting_send(chunk
);
1425 ret
= ibv_dereg_mr(block
->pmr
[chunk
]);
1426 block
->pmr
[chunk
] = NULL
;
1427 block
->remote_keys
[chunk
] = 0;
1431 * FIXME perror() is problematic, bcause ibv_dereg_mr() is
1432 * not documented to set errno. Will go away later in
1435 perror("unregistration chunk failed");
1438 rdma
->total_registrations
--;
1440 reg
.key
.chunk
= chunk
;
1441 register_to_network(rdma
, ®
);
1442 ret
= qemu_rdma_exchange_send(rdma
, &head
, (uint8_t *) ®
,
1443 &resp
, NULL
, NULL
, &err
);
1445 error_report_err(err
);
1449 trace_qemu_rdma_unregister_waiting_complete(chunk
);
1455 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id
, uint64_t index
,
1458 uint64_t result
= wr_id
& RDMA_WRID_TYPE_MASK
;
1460 result
|= (index
<< RDMA_WRID_BLOCK_SHIFT
);
1461 result
|= (chunk
<< RDMA_WRID_CHUNK_SHIFT
);
1467 * Consult the connection manager to see a work request
1468 * (of any kind) has completed.
1469 * Return the work request ID that completed.
1471 static int qemu_rdma_poll(RDMAContext
*rdma
, struct ibv_cq
*cq
,
1472 uint64_t *wr_id_out
, uint32_t *byte_len
)
1478 ret
= ibv_poll_cq(cq
, 1, &wc
);
1481 *wr_id_out
= RDMA_WRID_NONE
;
1489 wr_id
= wc
.wr_id
& RDMA_WRID_TYPE_MASK
;
1491 if (wc
.status
!= IBV_WC_SUCCESS
) {
1495 if (rdma
->control_ready_expected
&&
1496 (wr_id
>= RDMA_WRID_RECV_CONTROL
)) {
1497 trace_qemu_rdma_poll_recv(wr_id
- RDMA_WRID_RECV_CONTROL
, wr_id
,
1499 rdma
->control_ready_expected
= 0;
1502 if (wr_id
== RDMA_WRID_RDMA_WRITE
) {
1504 (wc
.wr_id
& RDMA_WRID_CHUNK_MASK
) >> RDMA_WRID_CHUNK_SHIFT
;
1506 (wc
.wr_id
& RDMA_WRID_BLOCK_MASK
) >> RDMA_WRID_BLOCK_SHIFT
;
1507 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[index
]);
1509 trace_qemu_rdma_poll_write(wr_id
, rdma
->nb_sent
,
1510 index
, chunk
, block
->local_host_addr
,
1511 (void *)(uintptr_t)block
->remote_host_addr
);
1513 clear_bit(chunk
, block
->transit_bitmap
);
1515 if (rdma
->nb_sent
> 0) {
1519 trace_qemu_rdma_poll_other(wr_id
, rdma
->nb_sent
);
1522 *wr_id_out
= wc
.wr_id
;
1524 *byte_len
= wc
.byte_len
;
1530 /* Wait for activity on the completion channel.
1531 * Returns 0 on success, none-0 on error.
1533 static int qemu_rdma_wait_comp_channel(RDMAContext
*rdma
,
1534 struct ibv_comp_channel
*comp_channel
)
1536 struct rdma_cm_event
*cm_event
;
1540 * Coroutine doesn't start until migration_fd_process_incoming()
1541 * so don't yield unless we know we're running inside of a coroutine.
1543 if (rdma
->migration_started_on_destination
&&
1544 migration_incoming_get_current()->state
== MIGRATION_STATUS_ACTIVE
) {
1545 yield_until_fd_readable(comp_channel
->fd
);
1547 /* This is the source side, we're in a separate thread
1548 * or destination prior to migration_fd_process_incoming()
1549 * after postcopy, the destination also in a separate thread.
1550 * we can't yield; so we have to poll the fd.
1551 * But we need to be able to handle 'cancel' or an error
1552 * without hanging forever.
1554 while (!rdma
->errored
&& !rdma
->received_error
) {
1556 pfds
[0].fd
= comp_channel
->fd
;
1557 pfds
[0].events
= G_IO_IN
| G_IO_HUP
| G_IO_ERR
;
1558 pfds
[0].revents
= 0;
1560 pfds
[1].fd
= rdma
->channel
->fd
;
1561 pfds
[1].events
= G_IO_IN
| G_IO_HUP
| G_IO_ERR
;
1562 pfds
[1].revents
= 0;
1564 /* 0.1s timeout, should be fine for a 'cancel' */
1565 switch (qemu_poll_ns(pfds
, 2, 100 * 1000 * 1000)) {
1567 case 1: /* fd active */
1568 if (pfds
[0].revents
) {
1572 if (pfds
[1].revents
) {
1573 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
1578 if (cm_event
->event
== RDMA_CM_EVENT_DISCONNECTED
||
1579 cm_event
->event
== RDMA_CM_EVENT_DEVICE_REMOVAL
) {
1580 rdma_ack_cm_event(cm_event
);
1583 rdma_ack_cm_event(cm_event
);
1587 case 0: /* Timeout, go around again */
1590 default: /* Error of some type -
1591 * I don't trust errno from qemu_poll_ns
1596 if (migrate_get_current()->state
== MIGRATION_STATUS_CANCELLING
) {
1597 /* Bail out and let the cancellation happen */
1603 if (rdma
->received_error
) {
1606 return -rdma
->errored
;
1609 static struct ibv_comp_channel
*to_channel(RDMAContext
*rdma
, uint64_t wrid
)
1611 return wrid
< RDMA_WRID_RECV_CONTROL
? rdma
->send_comp_channel
:
1612 rdma
->recv_comp_channel
;
1615 static struct ibv_cq
*to_cq(RDMAContext
*rdma
, uint64_t wrid
)
1617 return wrid
< RDMA_WRID_RECV_CONTROL
? rdma
->send_cq
: rdma
->recv_cq
;
1621 * Block until the next work request has completed.
1623 * First poll to see if a work request has already completed,
1626 * If we encounter completed work requests for IDs other than
1627 * the one we're interested in, then that's generally an error.
1629 * The only exception is actual RDMA Write completions. These
1630 * completions only need to be recorded, but do not actually
1631 * need further processing.
1633 static int qemu_rdma_block_for_wrid(RDMAContext
*rdma
,
1634 uint64_t wrid_requested
,
1637 int num_cq_events
= 0, ret
;
1640 uint64_t wr_id
= RDMA_WRID_NONE
, wr_id_in
;
1641 struct ibv_comp_channel
*ch
= to_channel(rdma
, wrid_requested
);
1642 struct ibv_cq
*poll_cq
= to_cq(rdma
, wrid_requested
);
1644 if (ibv_req_notify_cq(poll_cq
, 0)) {
1648 while (wr_id
!= wrid_requested
) {
1649 ret
= qemu_rdma_poll(rdma
, poll_cq
, &wr_id_in
, byte_len
);
1654 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
1656 if (wr_id
== RDMA_WRID_NONE
) {
1659 if (wr_id
!= wrid_requested
) {
1660 trace_qemu_rdma_block_for_wrid_miss(wrid_requested
, wr_id
);
1664 if (wr_id
== wrid_requested
) {
1669 ret
= qemu_rdma_wait_comp_channel(rdma
, ch
);
1671 goto err_block_for_wrid
;
1674 ret
= ibv_get_cq_event(ch
, &cq
, &cq_ctx
);
1676 goto err_block_for_wrid
;
1681 if (ibv_req_notify_cq(cq
, 0)) {
1682 goto err_block_for_wrid
;
1685 while (wr_id
!= wrid_requested
) {
1686 ret
= qemu_rdma_poll(rdma
, poll_cq
, &wr_id_in
, byte_len
);
1688 goto err_block_for_wrid
;
1691 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
1693 if (wr_id
== RDMA_WRID_NONE
) {
1696 if (wr_id
!= wrid_requested
) {
1697 trace_qemu_rdma_block_for_wrid_miss(wrid_requested
, wr_id
);
1701 if (wr_id
== wrid_requested
) {
1702 goto success_block_for_wrid
;
1706 success_block_for_wrid
:
1707 if (num_cq_events
) {
1708 ibv_ack_cq_events(cq
, num_cq_events
);
1713 if (num_cq_events
) {
1714 ibv_ack_cq_events(cq
, num_cq_events
);
1717 rdma
->errored
= true;
1722 * Post a SEND message work request for the control channel
1723 * containing some data and block until the post completes.
1725 static int qemu_rdma_post_send_control(RDMAContext
*rdma
, uint8_t *buf
,
1726 RDMAControlHeader
*head
,
1730 RDMAWorkRequestData
*wr
= &rdma
->wr_data
[RDMA_WRID_CONTROL
];
1731 struct ibv_send_wr
*bad_wr
;
1732 struct ibv_sge sge
= {
1733 .addr
= (uintptr_t)(wr
->control
),
1734 .length
= head
->len
+ sizeof(RDMAControlHeader
),
1735 .lkey
= wr
->control_mr
->lkey
,
1737 struct ibv_send_wr send_wr
= {
1738 .wr_id
= RDMA_WRID_SEND_CONTROL
,
1739 .opcode
= IBV_WR_SEND
,
1740 .send_flags
= IBV_SEND_SIGNALED
,
1745 trace_qemu_rdma_post_send_control(control_desc(head
->type
));
1748 * We don't actually need to do a memcpy() in here if we used
1749 * the "sge" properly, but since we're only sending control messages
1750 * (not RAM in a performance-critical path), then its OK for now.
1752 * The copy makes the RDMAControlHeader simpler to manipulate
1753 * for the time being.
1755 assert(head
->len
<= RDMA_CONTROL_MAX_BUFFER
- sizeof(*head
));
1756 memcpy(wr
->control
, head
, sizeof(RDMAControlHeader
));
1757 control_to_network((void *) wr
->control
);
1760 memcpy(wr
->control
+ sizeof(RDMAControlHeader
), buf
, head
->len
);
1764 ret
= ibv_post_send(rdma
->qp
, &send_wr
, &bad_wr
);
1767 error_setg(errp
, "Failed to use post IB SEND for control");
1771 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_SEND_CONTROL
, NULL
);
1773 error_setg(errp
, "rdma migration: send polling control error");
1781 * Post a RECV work request in anticipation of some future receipt
1782 * of data on the control channel.
1784 static int qemu_rdma_post_recv_control(RDMAContext
*rdma
, int idx
,
1787 struct ibv_recv_wr
*bad_wr
;
1788 struct ibv_sge sge
= {
1789 .addr
= (uintptr_t)(rdma
->wr_data
[idx
].control
),
1790 .length
= RDMA_CONTROL_MAX_BUFFER
,
1791 .lkey
= rdma
->wr_data
[idx
].control_mr
->lkey
,
1794 struct ibv_recv_wr recv_wr
= {
1795 .wr_id
= RDMA_WRID_RECV_CONTROL
+ idx
,
1801 if (ibv_post_recv(rdma
->qp
, &recv_wr
, &bad_wr
)) {
1802 error_setg(errp
, "error posting control recv");
1810 * Block and wait for a RECV control channel message to arrive.
1812 static int qemu_rdma_exchange_get_response(RDMAContext
*rdma
,
1813 RDMAControlHeader
*head
, uint32_t expecting
, int idx
,
1817 int ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RECV_CONTROL
+ idx
,
1821 error_setg(errp
, "rdma migration: recv polling control error!");
1825 network_to_control((void *) rdma
->wr_data
[idx
].control
);
1826 memcpy(head
, rdma
->wr_data
[idx
].control
, sizeof(RDMAControlHeader
));
1828 trace_qemu_rdma_exchange_get_response_start(control_desc(expecting
));
1830 if (expecting
== RDMA_CONTROL_NONE
) {
1831 trace_qemu_rdma_exchange_get_response_none(control_desc(head
->type
),
1833 } else if (head
->type
!= expecting
|| head
->type
== RDMA_CONTROL_ERROR
) {
1834 error_setg(errp
, "Was expecting a %s (%d) control message"
1835 ", but got: %s (%d), length: %d",
1836 control_desc(expecting
), expecting
,
1837 control_desc(head
->type
), head
->type
, head
->len
);
1838 if (head
->type
== RDMA_CONTROL_ERROR
) {
1839 rdma
->received_error
= true;
1843 if (head
->len
> RDMA_CONTROL_MAX_BUFFER
- sizeof(*head
)) {
1844 error_setg(errp
, "too long length: %d", head
->len
);
1847 if (sizeof(*head
) + head
->len
!= byte_len
) {
1848 error_setg(errp
, "Malformed length: %d byte_len %d",
1849 head
->len
, byte_len
);
1857 * When a RECV work request has completed, the work request's
1858 * buffer is pointed at the header.
1860 * This will advance the pointer to the data portion
1861 * of the control message of the work request's buffer that
1862 * was populated after the work request finished.
1864 static void qemu_rdma_move_header(RDMAContext
*rdma
, int idx
,
1865 RDMAControlHeader
*head
)
1867 rdma
->wr_data
[idx
].control_len
= head
->len
;
1868 rdma
->wr_data
[idx
].control_curr
=
1869 rdma
->wr_data
[idx
].control
+ sizeof(RDMAControlHeader
);
1873 * This is an 'atomic' high-level operation to deliver a single, unified
1874 * control-channel message.
1876 * Additionally, if the user is expecting some kind of reply to this message,
1877 * they can request a 'resp' response message be filled in by posting an
1878 * additional work request on behalf of the user and waiting for an additional
1881 * The extra (optional) response is used during registration to us from having
1882 * to perform an *additional* exchange of message just to provide a response by
1883 * instead piggy-backing on the acknowledgement.
1885 static int qemu_rdma_exchange_send(RDMAContext
*rdma
, RDMAControlHeader
*head
,
1886 uint8_t *data
, RDMAControlHeader
*resp
,
1888 int (*callback
)(RDMAContext
*rdma
,
1895 * Wait until the dest is ready before attempting to deliver the message
1896 * by waiting for a READY message.
1898 if (rdma
->control_ready_expected
) {
1899 RDMAControlHeader resp_ignored
;
1901 ret
= qemu_rdma_exchange_get_response(rdma
, &resp_ignored
,
1903 RDMA_WRID_READY
, errp
);
1910 * If the user is expecting a response, post a WR in anticipation of it.
1913 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_DATA
, errp
);
1920 * Post a WR to replace the one we just consumed for the READY message.
1922 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
, errp
);
1928 * Deliver the control message that was requested.
1930 ret
= qemu_rdma_post_send_control(rdma
, data
, head
, errp
);
1937 * If we're expecting a response, block and wait for it.
1941 trace_qemu_rdma_exchange_send_issue_callback();
1942 ret
= callback(rdma
, errp
);
1948 trace_qemu_rdma_exchange_send_waiting(control_desc(resp
->type
));
1949 ret
= qemu_rdma_exchange_get_response(rdma
, resp
,
1950 resp
->type
, RDMA_WRID_DATA
,
1957 qemu_rdma_move_header(rdma
, RDMA_WRID_DATA
, resp
);
1959 *resp_idx
= RDMA_WRID_DATA
;
1961 trace_qemu_rdma_exchange_send_received(control_desc(resp
->type
));
1964 rdma
->control_ready_expected
= 1;
1970 * This is an 'atomic' high-level operation to receive a single, unified
1971 * control-channel message.
1973 static int qemu_rdma_exchange_recv(RDMAContext
*rdma
, RDMAControlHeader
*head
,
1974 uint32_t expecting
, Error
**errp
)
1976 RDMAControlHeader ready
= {
1978 .type
= RDMA_CONTROL_READY
,
1984 * Inform the source that we're ready to receive a message.
1986 ret
= qemu_rdma_post_send_control(rdma
, NULL
, &ready
, errp
);
1993 * Block and wait for the message.
1995 ret
= qemu_rdma_exchange_get_response(rdma
, head
,
1996 expecting
, RDMA_WRID_READY
, errp
);
2002 qemu_rdma_move_header(rdma
, RDMA_WRID_READY
, head
);
2005 * Post a new RECV work request to replace the one we just consumed.
2007 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
, errp
);
2016 * Write an actual chunk of memory using RDMA.
2018 * If we're using dynamic registration on the dest-side, we have to
2019 * send a registration command first.
2021 static int qemu_rdma_write_one(RDMAContext
*rdma
,
2022 int current_index
, uint64_t current_addr
,
2023 uint64_t length
, Error
**errp
)
2026 struct ibv_send_wr send_wr
= { 0 };
2027 struct ibv_send_wr
*bad_wr
;
2028 int reg_result_idx
, ret
, count
= 0;
2029 uint64_t chunk
, chunks
;
2030 uint8_t *chunk_start
, *chunk_end
;
2031 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[current_index
]);
2033 RDMARegisterResult
*reg_result
;
2034 RDMAControlHeader resp
= { .type
= RDMA_CONTROL_REGISTER_RESULT
};
2035 RDMAControlHeader head
= { .len
= sizeof(RDMARegister
),
2036 .type
= RDMA_CONTROL_REGISTER_REQUEST
,
2041 sge
.addr
= (uintptr_t)(block
->local_host_addr
+
2042 (current_addr
- block
->offset
));
2043 sge
.length
= length
;
2045 chunk
= ram_chunk_index(block
->local_host_addr
,
2046 (uint8_t *)(uintptr_t)sge
.addr
);
2047 chunk_start
= ram_chunk_start(block
, chunk
);
2049 if (block
->is_ram_block
) {
2050 chunks
= length
/ (1UL << RDMA_REG_CHUNK_SHIFT
);
2052 if (chunks
&& ((length
% (1UL << RDMA_REG_CHUNK_SHIFT
)) == 0)) {
2056 chunks
= block
->length
/ (1UL << RDMA_REG_CHUNK_SHIFT
);
2058 if (chunks
&& ((block
->length
% (1UL << RDMA_REG_CHUNK_SHIFT
)) == 0)) {
2063 trace_qemu_rdma_write_one_top(chunks
+ 1,
2065 (1UL << RDMA_REG_CHUNK_SHIFT
) / 1024 / 1024);
2067 chunk_end
= ram_chunk_end(block
, chunk
+ chunks
);
2070 while (test_bit(chunk
, block
->transit_bitmap
)) {
2072 trace_qemu_rdma_write_one_block(count
++, current_index
, chunk
,
2073 sge
.addr
, length
, rdma
->nb_sent
, block
->nb_chunks
);
2075 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
2078 error_setg(errp
, "Failed to Wait for previous write to complete "
2079 "block %d chunk %" PRIu64
2080 " current %" PRIu64
" len %" PRIu64
" %d",
2081 current_index
, chunk
, sge
.addr
, length
, rdma
->nb_sent
);
2086 if (!rdma
->pin_all
|| !block
->is_ram_block
) {
2087 if (!block
->remote_keys
[chunk
]) {
2089 * This chunk has not yet been registered, so first check to see
2090 * if the entire chunk is zero. If so, tell the other size to
2091 * memset() + madvise() the entire chunk without RDMA.
2094 if (buffer_is_zero((void *)(uintptr_t)sge
.addr
, length
)) {
2095 RDMACompress comp
= {
2096 .offset
= current_addr
,
2098 .block_idx
= current_index
,
2102 head
.len
= sizeof(comp
);
2103 head
.type
= RDMA_CONTROL_COMPRESS
;
2105 trace_qemu_rdma_write_one_zero(chunk
, sge
.length
,
2106 current_index
, current_addr
);
2108 compress_to_network(rdma
, &comp
);
2109 ret
= qemu_rdma_exchange_send(rdma
, &head
,
2110 (uint8_t *) &comp
, NULL
, NULL
, NULL
, errp
);
2117 * TODO: Here we are sending something, but we are not
2118 * accounting for anything transferred. The following is wrong:
2120 * stat64_add(&mig_stats.rdma_bytes, sge.length);
2122 * because we are using some kind of compression. I
2123 * would think that head.len would be the more similar
2124 * thing to a correct value.
2126 stat64_add(&mig_stats
.zero_pages
,
2127 sge
.length
/ qemu_target_page_size());
2132 * Otherwise, tell other side to register.
2134 reg
.current_index
= current_index
;
2135 if (block
->is_ram_block
) {
2136 reg
.key
.current_addr
= current_addr
;
2138 reg
.key
.chunk
= chunk
;
2140 reg
.chunks
= chunks
;
2142 trace_qemu_rdma_write_one_sendreg(chunk
, sge
.length
, current_index
,
2145 register_to_network(rdma
, ®
);
2146 ret
= qemu_rdma_exchange_send(rdma
, &head
, (uint8_t *) ®
,
2147 &resp
, ®_result_idx
, NULL
, errp
);
2152 /* try to overlap this single registration with the one we sent. */
2153 if (qemu_rdma_register_and_get_keys(rdma
, block
, sge
.addr
,
2154 &sge
.lkey
, NULL
, chunk
,
2155 chunk_start
, chunk_end
)) {
2156 error_setg(errp
, "cannot get lkey");
2160 reg_result
= (RDMARegisterResult
*)
2161 rdma
->wr_data
[reg_result_idx
].control_curr
;
2163 network_to_result(reg_result
);
2165 trace_qemu_rdma_write_one_recvregres(block
->remote_keys
[chunk
],
2166 reg_result
->rkey
, chunk
);
2168 block
->remote_keys
[chunk
] = reg_result
->rkey
;
2169 block
->remote_host_addr
= reg_result
->host_addr
;
2171 /* already registered before */
2172 if (qemu_rdma_register_and_get_keys(rdma
, block
, sge
.addr
,
2173 &sge
.lkey
, NULL
, chunk
,
2174 chunk_start
, chunk_end
)) {
2175 error_setg(errp
, "cannot get lkey!");
2180 send_wr
.wr
.rdma
.rkey
= block
->remote_keys
[chunk
];
2182 send_wr
.wr
.rdma
.rkey
= block
->remote_rkey
;
2184 if (qemu_rdma_register_and_get_keys(rdma
, block
, sge
.addr
,
2185 &sge
.lkey
, NULL
, chunk
,
2186 chunk_start
, chunk_end
)) {
2187 error_setg(errp
, "cannot get lkey!");
2193 * Encode the ram block index and chunk within this wrid.
2194 * We will use this information at the time of completion
2195 * to figure out which bitmap to check against and then which
2196 * chunk in the bitmap to look for.
2198 send_wr
.wr_id
= qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE
,
2199 current_index
, chunk
);
2201 send_wr
.opcode
= IBV_WR_RDMA_WRITE
;
2202 send_wr
.send_flags
= IBV_SEND_SIGNALED
;
2203 send_wr
.sg_list
= &sge
;
2204 send_wr
.num_sge
= 1;
2205 send_wr
.wr
.rdma
.remote_addr
= block
->remote_host_addr
+
2206 (current_addr
- block
->offset
);
2208 trace_qemu_rdma_write_one_post(chunk
, sge
.addr
, send_wr
.wr
.rdma
.remote_addr
,
2212 * ibv_post_send() does not return negative error numbers,
2213 * per the specification they are positive - no idea why.
2215 ret
= ibv_post_send(rdma
->qp
, &send_wr
, &bad_wr
);
2217 if (ret
== ENOMEM
) {
2218 trace_qemu_rdma_write_one_queue_full();
2219 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
2221 error_setg(errp
, "rdma migration: failed to make "
2222 "room in full send queue!");
2228 } else if (ret
> 0) {
2229 error_setg_errno(errp
, ret
,
2230 "rdma migration: post rdma write failed");
2234 set_bit(chunk
, block
->transit_bitmap
);
2235 stat64_add(&mig_stats
.normal_pages
, sge
.length
/ qemu_target_page_size());
2237 * We are adding to transferred the amount of data written, but no
2238 * overhead at all. I will asume that RDMA is magicaly and don't
2239 * need to transfer (at least) the addresses where it wants to
2240 * write the pages. Here it looks like it should be something
2242 * sizeof(send_wr) + sge.length
2243 * but this being RDMA, who knows.
2245 stat64_add(&mig_stats
.rdma_bytes
, sge
.length
);
2246 ram_transferred_add(sge
.length
);
2247 rdma
->total_writes
++;
2253 * Push out any unwritten RDMA operations.
2255 * We support sending out multiple chunks at the same time.
2256 * Not all of them need to get signaled in the completion queue.
2258 static int qemu_rdma_write_flush(RDMAContext
*rdma
, Error
**errp
)
2262 if (!rdma
->current_length
) {
2266 ret
= qemu_rdma_write_one(rdma
, rdma
->current_index
, rdma
->current_addr
,
2267 rdma
->current_length
, errp
);
2275 trace_qemu_rdma_write_flush(rdma
->nb_sent
);
2278 rdma
->current_length
= 0;
2279 rdma
->current_addr
= 0;
2284 static inline bool qemu_rdma_buffer_mergeable(RDMAContext
*rdma
,
2285 uint64_t offset
, uint64_t len
)
2287 RDMALocalBlock
*block
;
2291 if (rdma
->current_index
< 0) {
2295 if (rdma
->current_chunk
< 0) {
2299 block
= &(rdma
->local_ram_blocks
.block
[rdma
->current_index
]);
2300 host_addr
= block
->local_host_addr
+ (offset
- block
->offset
);
2301 chunk_end
= ram_chunk_end(block
, rdma
->current_chunk
);
2303 if (rdma
->current_length
== 0) {
2308 * Only merge into chunk sequentially.
2310 if (offset
!= (rdma
->current_addr
+ rdma
->current_length
)) {
2314 if (offset
< block
->offset
) {
2318 if ((offset
+ len
) > (block
->offset
+ block
->length
)) {
2322 if ((host_addr
+ len
) > chunk_end
) {
2330 * We're not actually writing here, but doing three things:
2332 * 1. Identify the chunk the buffer belongs to.
2333 * 2. If the chunk is full or the buffer doesn't belong to the current
2334 * chunk, then start a new chunk and flush() the old chunk.
2335 * 3. To keep the hardware busy, we also group chunks into batches
2336 * and only require that a batch gets acknowledged in the completion
2337 * queue instead of each individual chunk.
2339 static int qemu_rdma_write(RDMAContext
*rdma
,
2340 uint64_t block_offset
, uint64_t offset
,
2341 uint64_t len
, Error
**errp
)
2343 uint64_t current_addr
= block_offset
+ offset
;
2344 uint64_t index
= rdma
->current_index
;
2345 uint64_t chunk
= rdma
->current_chunk
;
2348 /* If we cannot merge it, we flush the current buffer first. */
2349 if (!qemu_rdma_buffer_mergeable(rdma
, current_addr
, len
)) {
2350 ret
= qemu_rdma_write_flush(rdma
, errp
);
2354 rdma
->current_length
= 0;
2355 rdma
->current_addr
= current_addr
;
2357 qemu_rdma_search_ram_block(rdma
, block_offset
,
2358 offset
, len
, &index
, &chunk
);
2359 rdma
->current_index
= index
;
2360 rdma
->current_chunk
= chunk
;
2364 rdma
->current_length
+= len
;
2366 /* flush it if buffer is too large */
2367 if (rdma
->current_length
>= RDMA_MERGE_MAX
) {
2368 return qemu_rdma_write_flush(rdma
, errp
);
2374 static void qemu_rdma_cleanup(RDMAContext
*rdma
)
2379 if (rdma
->cm_id
&& rdma
->connected
) {
2380 if ((rdma
->errored
||
2381 migrate_get_current()->state
== MIGRATION_STATUS_CANCELLING
) &&
2382 !rdma
->received_error
) {
2383 RDMAControlHeader head
= { .len
= 0,
2384 .type
= RDMA_CONTROL_ERROR
,
2387 error_report("Early error. Sending error.");
2388 if (qemu_rdma_post_send_control(rdma
, NULL
, &head
, &err
) < 0) {
2389 error_report_err(err
);
2393 rdma_disconnect(rdma
->cm_id
);
2394 trace_qemu_rdma_cleanup_disconnect();
2395 rdma
->connected
= false;
2398 if (rdma
->channel
) {
2399 qemu_set_fd_handler(rdma
->channel
->fd
, NULL
, NULL
, NULL
);
2401 g_free(rdma
->dest_blocks
);
2402 rdma
->dest_blocks
= NULL
;
2404 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2405 if (rdma
->wr_data
[idx
].control_mr
) {
2406 rdma
->total_registrations
--;
2407 ibv_dereg_mr(rdma
->wr_data
[idx
].control_mr
);
2409 rdma
->wr_data
[idx
].control_mr
= NULL
;
2412 if (rdma
->local_ram_blocks
.block
) {
2413 while (rdma
->local_ram_blocks
.nb_blocks
) {
2414 rdma_delete_block(rdma
, &rdma
->local_ram_blocks
.block
[0]);
2419 rdma_destroy_qp(rdma
->cm_id
);
2422 if (rdma
->recv_cq
) {
2423 ibv_destroy_cq(rdma
->recv_cq
);
2424 rdma
->recv_cq
= NULL
;
2426 if (rdma
->send_cq
) {
2427 ibv_destroy_cq(rdma
->send_cq
);
2428 rdma
->send_cq
= NULL
;
2430 if (rdma
->recv_comp_channel
) {
2431 ibv_destroy_comp_channel(rdma
->recv_comp_channel
);
2432 rdma
->recv_comp_channel
= NULL
;
2434 if (rdma
->send_comp_channel
) {
2435 ibv_destroy_comp_channel(rdma
->send_comp_channel
);
2436 rdma
->send_comp_channel
= NULL
;
2439 ibv_dealloc_pd(rdma
->pd
);
2443 rdma_destroy_id(rdma
->cm_id
);
2447 /* the destination side, listen_id and channel is shared */
2448 if (rdma
->listen_id
) {
2449 if (!rdma
->is_return_path
) {
2450 rdma_destroy_id(rdma
->listen_id
);
2452 rdma
->listen_id
= NULL
;
2454 if (rdma
->channel
) {
2455 if (!rdma
->is_return_path
) {
2456 rdma_destroy_event_channel(rdma
->channel
);
2458 rdma
->channel
= NULL
;
2462 if (rdma
->channel
) {
2463 rdma_destroy_event_channel(rdma
->channel
);
2464 rdma
->channel
= NULL
;
2467 g_free(rdma
->host_port
);
2469 rdma
->host_port
= NULL
;
2473 static int qemu_rdma_source_init(RDMAContext
*rdma
, bool pin_all
, Error
**errp
)
2478 * Will be validated against destination's actual capabilities
2479 * after the connect() completes.
2481 rdma
->pin_all
= pin_all
;
2483 ret
= qemu_rdma_resolve_host(rdma
, errp
);
2485 goto err_rdma_source_init
;
2488 ret
= qemu_rdma_alloc_pd_cq(rdma
, errp
);
2490 goto err_rdma_source_init
;
2493 ret
= qemu_rdma_alloc_qp(rdma
);
2495 error_setg(errp
, "RDMA ERROR: rdma migration: error allocating qp!");
2496 goto err_rdma_source_init
;
2499 qemu_rdma_init_ram_blocks(rdma
);
2501 /* Build the hash that maps from offset to RAMBlock */
2502 rdma
->blockmap
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
2503 for (idx
= 0; idx
< rdma
->local_ram_blocks
.nb_blocks
; idx
++) {
2504 g_hash_table_insert(rdma
->blockmap
,
2505 (void *)(uintptr_t)rdma
->local_ram_blocks
.block
[idx
].offset
,
2506 &rdma
->local_ram_blocks
.block
[idx
]);
2509 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2510 ret
= qemu_rdma_reg_control(rdma
, idx
);
2513 "RDMA ERROR: rdma migration: error registering %d control!",
2515 goto err_rdma_source_init
;
2521 err_rdma_source_init
:
2522 qemu_rdma_cleanup(rdma
);
2526 static int qemu_get_cm_event_timeout(RDMAContext
*rdma
,
2527 struct rdma_cm_event
**cm_event
,
2528 long msec
, Error
**errp
)
2531 struct pollfd poll_fd
= {
2532 .fd
= rdma
->channel
->fd
,
2538 ret
= poll(&poll_fd
, 1, msec
);
2539 } while (ret
< 0 && errno
== EINTR
);
2542 error_setg(errp
, "RDMA ERROR: poll cm event timeout");
2544 } else if (ret
< 0) {
2545 error_setg(errp
, "RDMA ERROR: failed to poll cm event, errno=%i",
2548 } else if (poll_fd
.revents
& POLLIN
) {
2549 if (rdma_get_cm_event(rdma
->channel
, cm_event
) < 0) {
2550 error_setg(errp
, "RDMA ERROR: failed to get cm event");
2555 error_setg(errp
, "RDMA ERROR: no POLLIN event, revent=%x",
2561 static int qemu_rdma_connect(RDMAContext
*rdma
, bool return_path
,
2564 RDMACapabilities cap
= {
2565 .version
= RDMA_CONTROL_VERSION_CURRENT
,
2568 struct rdma_conn_param conn_param
= { .initiator_depth
= 2,
2570 .private_data
= &cap
,
2571 .private_data_len
= sizeof(cap
),
2573 struct rdma_cm_event
*cm_event
;
2577 * Only negotiate the capability with destination if the user
2578 * on the source first requested the capability.
2580 if (rdma
->pin_all
) {
2581 trace_qemu_rdma_connect_pin_all_requested();
2582 cap
.flags
|= RDMA_CAPABILITY_PIN_ALL
;
2585 caps_to_network(&cap
);
2587 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
, errp
);
2589 goto err_rdma_source_connect
;
2592 ret
= rdma_connect(rdma
->cm_id
, &conn_param
);
2594 error_setg_errno(errp
, errno
,
2595 "RDMA ERROR: connecting to destination!");
2596 goto err_rdma_source_connect
;
2600 ret
= qemu_get_cm_event_timeout(rdma
, &cm_event
, 5000, errp
);
2602 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
2604 error_setg_errno(errp
, errno
,
2605 "RDMA ERROR: failed to get cm event");
2609 goto err_rdma_source_connect
;
2612 if (cm_event
->event
!= RDMA_CM_EVENT_ESTABLISHED
) {
2613 error_setg(errp
, "RDMA ERROR: connecting to destination!");
2614 rdma_ack_cm_event(cm_event
);
2615 goto err_rdma_source_connect
;
2617 rdma
->connected
= true;
2619 memcpy(&cap
, cm_event
->param
.conn
.private_data
, sizeof(cap
));
2620 network_to_caps(&cap
);
2623 * Verify that the *requested* capabilities are supported by the destination
2624 * and disable them otherwise.
2626 if (rdma
->pin_all
&& !(cap
.flags
& RDMA_CAPABILITY_PIN_ALL
)) {
2627 warn_report("RDMA: Server cannot support pinning all memory. "
2628 "Will register memory dynamically.");
2629 rdma
->pin_all
= false;
2632 trace_qemu_rdma_connect_pin_all_outcome(rdma
->pin_all
);
2634 rdma_ack_cm_event(cm_event
);
2636 rdma
->control_ready_expected
= 1;
2640 err_rdma_source_connect
:
2641 qemu_rdma_cleanup(rdma
);
2645 static int qemu_rdma_dest_init(RDMAContext
*rdma
, Error
**errp
)
2649 struct rdma_cm_id
*listen_id
;
2650 char ip
[40] = "unknown";
2651 struct rdma_addrinfo
*res
, *e
;
2655 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2656 rdma
->wr_data
[idx
].control_len
= 0;
2657 rdma
->wr_data
[idx
].control_curr
= NULL
;
2660 if (!rdma
->host
|| !rdma
->host
[0]) {
2661 error_setg(errp
, "RDMA ERROR: RDMA host is not set!");
2662 rdma
->errored
= true;
2665 /* create CM channel */
2666 rdma
->channel
= rdma_create_event_channel();
2667 if (!rdma
->channel
) {
2668 error_setg(errp
, "RDMA ERROR: could not create rdma event channel");
2669 rdma
->errored
= true;
2674 ret
= rdma_create_id(rdma
->channel
, &listen_id
, NULL
, RDMA_PS_TCP
);
2676 error_setg(errp
, "RDMA ERROR: could not create cm_id!");
2677 goto err_dest_init_create_listen_id
;
2680 snprintf(port_str
, 16, "%d", rdma
->port
);
2681 port_str
[15] = '\0';
2683 ret
= rdma_getaddrinfo(rdma
->host
, port_str
, NULL
, &res
);
2685 error_setg(errp
, "RDMA ERROR: could not rdma_getaddrinfo address %s",
2687 goto err_dest_init_bind_addr
;
2690 ret
= rdma_set_option(listen_id
, RDMA_OPTION_ID
, RDMA_OPTION_ID_REUSEADDR
,
2691 &reuse
, sizeof reuse
);
2693 error_setg(errp
, "RDMA ERROR: Error: could not set REUSEADDR option");
2694 goto err_dest_init_bind_addr
;
2697 /* Try all addresses, saving the first error in @err */
2698 for (e
= res
; e
!= NULL
; e
= e
->ai_next
) {
2699 Error
**local_errp
= err
? NULL
: &err
;
2701 inet_ntop(e
->ai_family
,
2702 &((struct sockaddr_in
*) e
->ai_dst_addr
)->sin_addr
, ip
, sizeof ip
);
2703 trace_qemu_rdma_dest_init_trying(rdma
->host
, ip
);
2704 ret
= rdma_bind_addr(listen_id
, e
->ai_dst_addr
);
2708 if (e
->ai_family
== AF_INET6
) {
2709 ret
= qemu_rdma_broken_ipv6_kernel(listen_id
->verbs
,
2719 rdma_freeaddrinfo(res
);
2722 error_propagate(errp
, err
);
2724 error_setg(errp
, "RDMA ERROR: Error: could not rdma_bind_addr!");
2726 goto err_dest_init_bind_addr
;
2729 rdma
->listen_id
= listen_id
;
2730 qemu_rdma_dump_gid("dest_init", listen_id
);
2733 err_dest_init_bind_addr
:
2734 rdma_destroy_id(listen_id
);
2735 err_dest_init_create_listen_id
:
2736 rdma_destroy_event_channel(rdma
->channel
);
2737 rdma
->channel
= NULL
;
2738 rdma
->errored
= true;
2743 static void qemu_rdma_return_path_dest_init(RDMAContext
*rdma_return_path
,
2748 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2749 rdma_return_path
->wr_data
[idx
].control_len
= 0;
2750 rdma_return_path
->wr_data
[idx
].control_curr
= NULL
;
2753 /*the CM channel and CM id is shared*/
2754 rdma_return_path
->channel
= rdma
->channel
;
2755 rdma_return_path
->listen_id
= rdma
->listen_id
;
2757 rdma
->return_path
= rdma_return_path
;
2758 rdma_return_path
->return_path
= rdma
;
2759 rdma_return_path
->is_return_path
= true;
2762 static RDMAContext
*qemu_rdma_data_init(const char *host_port
, Error
**errp
)
2764 RDMAContext
*rdma
= NULL
;
2765 InetSocketAddress
*addr
;
2767 rdma
= g_new0(RDMAContext
, 1);
2768 rdma
->current_index
= -1;
2769 rdma
->current_chunk
= -1;
2771 addr
= g_new(InetSocketAddress
, 1);
2772 if (!inet_parse(addr
, host_port
, NULL
)) {
2773 rdma
->port
= atoi(addr
->port
);
2774 rdma
->host
= g_strdup(addr
->host
);
2775 rdma
->host_port
= g_strdup(host_port
);
2777 error_setg(errp
, "RDMA ERROR: bad RDMA migration address '%s'",
2783 qapi_free_InetSocketAddress(addr
);
2788 * QEMUFile interface to the control channel.
2789 * SEND messages for control only.
2790 * VM's ram is handled with regular RDMA messages.
2792 static ssize_t
qio_channel_rdma_writev(QIOChannel
*ioc
,
2793 const struct iovec
*iov
,
2800 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2806 RCU_READ_LOCK_GUARD();
2807 rdma
= qatomic_rcu_read(&rioc
->rdmaout
);
2810 error_setg(errp
, "RDMA control channel output is not set");
2814 if (rdma
->errored
) {
2816 "RDMA is in an error state waiting migration to abort!");
2821 * Push out any writes that
2822 * we're queued up for VM's ram.
2824 ret
= qemu_rdma_write_flush(rdma
, errp
);
2826 rdma
->errored
= true;
2830 for (i
= 0; i
< niov
; i
++) {
2831 size_t remaining
= iov
[i
].iov_len
;
2832 uint8_t * data
= (void *)iov
[i
].iov_base
;
2834 RDMAControlHeader head
= {};
2836 len
= MIN(remaining
, RDMA_SEND_INCREMENT
);
2840 head
.type
= RDMA_CONTROL_QEMU_FILE
;
2842 ret
= qemu_rdma_exchange_send(rdma
, &head
,
2843 data
, NULL
, NULL
, NULL
, errp
);
2846 rdma
->errored
= true;
2858 static size_t qemu_rdma_fill(RDMAContext
*rdma
, uint8_t *buf
,
2859 size_t size
, int idx
)
2863 if (rdma
->wr_data
[idx
].control_len
) {
2864 trace_qemu_rdma_fill(rdma
->wr_data
[idx
].control_len
, size
);
2866 len
= MIN(size
, rdma
->wr_data
[idx
].control_len
);
2867 memcpy(buf
, rdma
->wr_data
[idx
].control_curr
, len
);
2868 rdma
->wr_data
[idx
].control_curr
+= len
;
2869 rdma
->wr_data
[idx
].control_len
-= len
;
2876 * QEMUFile interface to the control channel.
2877 * RDMA links don't use bytestreams, so we have to
2878 * return bytes to QEMUFile opportunistically.
2880 static ssize_t
qio_channel_rdma_readv(QIOChannel
*ioc
,
2881 const struct iovec
*iov
,
2888 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2890 RDMAControlHeader head
;
2895 RCU_READ_LOCK_GUARD();
2896 rdma
= qatomic_rcu_read(&rioc
->rdmain
);
2899 error_setg(errp
, "RDMA control channel input is not set");
2903 if (rdma
->errored
) {
2905 "RDMA is in an error state waiting migration to abort!");
2909 for (i
= 0; i
< niov
; i
++) {
2910 size_t want
= iov
[i
].iov_len
;
2911 uint8_t *data
= (void *)iov
[i
].iov_base
;
2914 * First, we hold on to the last SEND message we
2915 * were given and dish out the bytes until we run
2918 len
= qemu_rdma_fill(rdma
, data
, want
, 0);
2921 /* Got what we needed, so go to next iovec */
2926 /* If we got any data so far, then don't wait
2927 * for more, just return what we have */
2933 /* We've got nothing at all, so lets wait for
2936 ret
= qemu_rdma_exchange_recv(rdma
, &head
, RDMA_CONTROL_QEMU_FILE
,
2940 rdma
->errored
= true;
2945 * SEND was received with new bytes, now try again.
2947 len
= qemu_rdma_fill(rdma
, data
, want
, 0);
2951 /* Still didn't get enough, so lets just return */
2954 return QIO_CHANNEL_ERR_BLOCK
;
2964 * Block until all the outstanding chunks have been delivered by the hardware.
2966 static int qemu_rdma_drain_cq(RDMAContext
*rdma
)
2971 if (qemu_rdma_write_flush(rdma
, &err
) < 0) {
2972 error_report_err(err
);
2976 while (rdma
->nb_sent
) {
2977 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
2979 error_report("rdma migration: complete polling error!");
2984 qemu_rdma_unregister_waiting(rdma
);
2990 static int qio_channel_rdma_set_blocking(QIOChannel
*ioc
,
2994 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2995 /* XXX we should make readv/writev actually honour this :-) */
2996 rioc
->blocking
= blocking
;
3001 typedef struct QIOChannelRDMASource QIOChannelRDMASource
;
3002 struct QIOChannelRDMASource
{
3004 QIOChannelRDMA
*rioc
;
3005 GIOCondition condition
;
3009 qio_channel_rdma_source_prepare(GSource
*source
,
3012 QIOChannelRDMASource
*rsource
= (QIOChannelRDMASource
*)source
;
3014 GIOCondition cond
= 0;
3017 RCU_READ_LOCK_GUARD();
3018 if (rsource
->condition
== G_IO_IN
) {
3019 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmain
);
3021 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmaout
);
3025 error_report("RDMAContext is NULL when prepare Gsource");
3029 if (rdma
->wr_data
[0].control_len
) {
3034 return cond
& rsource
->condition
;
3038 qio_channel_rdma_source_check(GSource
*source
)
3040 QIOChannelRDMASource
*rsource
= (QIOChannelRDMASource
*)source
;
3042 GIOCondition cond
= 0;
3044 RCU_READ_LOCK_GUARD();
3045 if (rsource
->condition
== G_IO_IN
) {
3046 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmain
);
3048 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmaout
);
3052 error_report("RDMAContext is NULL when check Gsource");
3056 if (rdma
->wr_data
[0].control_len
) {
3061 return cond
& rsource
->condition
;
3065 qio_channel_rdma_source_dispatch(GSource
*source
,
3066 GSourceFunc callback
,
3069 QIOChannelFunc func
= (QIOChannelFunc
)callback
;
3070 QIOChannelRDMASource
*rsource
= (QIOChannelRDMASource
*)source
;
3072 GIOCondition cond
= 0;
3074 RCU_READ_LOCK_GUARD();
3075 if (rsource
->condition
== G_IO_IN
) {
3076 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmain
);
3078 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmaout
);
3082 error_report("RDMAContext is NULL when dispatch Gsource");
3086 if (rdma
->wr_data
[0].control_len
) {
3091 return (*func
)(QIO_CHANNEL(rsource
->rioc
),
3092 (cond
& rsource
->condition
),
3097 qio_channel_rdma_source_finalize(GSource
*source
)
3099 QIOChannelRDMASource
*ssource
= (QIOChannelRDMASource
*)source
;
3101 object_unref(OBJECT(ssource
->rioc
));
3104 static GSourceFuncs qio_channel_rdma_source_funcs
= {
3105 qio_channel_rdma_source_prepare
,
3106 qio_channel_rdma_source_check
,
3107 qio_channel_rdma_source_dispatch
,
3108 qio_channel_rdma_source_finalize
3111 static GSource
*qio_channel_rdma_create_watch(QIOChannel
*ioc
,
3112 GIOCondition condition
)
3114 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
3115 QIOChannelRDMASource
*ssource
;
3118 source
= g_source_new(&qio_channel_rdma_source_funcs
,
3119 sizeof(QIOChannelRDMASource
));
3120 ssource
= (QIOChannelRDMASource
*)source
;
3122 ssource
->rioc
= rioc
;
3123 object_ref(OBJECT(rioc
));
3125 ssource
->condition
= condition
;
3130 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel
*ioc
,
3131 AioContext
*read_ctx
,
3133 AioContext
*write_ctx
,
3134 IOHandler
*io_write
,
3137 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
3139 aio_set_fd_handler(read_ctx
, rioc
->rdmain
->recv_comp_channel
->fd
,
3140 io_read
, io_write
, NULL
, NULL
, opaque
);
3141 aio_set_fd_handler(read_ctx
, rioc
->rdmain
->send_comp_channel
->fd
,
3142 io_read
, io_write
, NULL
, NULL
, opaque
);
3144 aio_set_fd_handler(write_ctx
, rioc
->rdmaout
->recv_comp_channel
->fd
,
3145 io_read
, io_write
, NULL
, NULL
, opaque
);
3146 aio_set_fd_handler(write_ctx
, rioc
->rdmaout
->send_comp_channel
->fd
,
3147 io_read
, io_write
, NULL
, NULL
, opaque
);
3151 struct rdma_close_rcu
{
3152 struct rcu_head rcu
;
3153 RDMAContext
*rdmain
;
3154 RDMAContext
*rdmaout
;
3157 /* callback from qio_channel_rdma_close via call_rcu */
3158 static void qio_channel_rdma_close_rcu(struct rdma_close_rcu
*rcu
)
3161 qemu_rdma_cleanup(rcu
->rdmain
);
3165 qemu_rdma_cleanup(rcu
->rdmaout
);
3168 g_free(rcu
->rdmain
);
3169 g_free(rcu
->rdmaout
);
3173 static int qio_channel_rdma_close(QIOChannel
*ioc
,
3176 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
3177 RDMAContext
*rdmain
, *rdmaout
;
3178 struct rdma_close_rcu
*rcu
= g_new(struct rdma_close_rcu
, 1);
3180 trace_qemu_rdma_close();
3182 rdmain
= rioc
->rdmain
;
3184 qatomic_rcu_set(&rioc
->rdmain
, NULL
);
3187 rdmaout
= rioc
->rdmaout
;
3189 qatomic_rcu_set(&rioc
->rdmaout
, NULL
);
3192 rcu
->rdmain
= rdmain
;
3193 rcu
->rdmaout
= rdmaout
;
3194 call_rcu(rcu
, qio_channel_rdma_close_rcu
, rcu
);
3200 qio_channel_rdma_shutdown(QIOChannel
*ioc
,
3201 QIOChannelShutdown how
,
3204 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
3205 RDMAContext
*rdmain
, *rdmaout
;
3207 RCU_READ_LOCK_GUARD();
3209 rdmain
= qatomic_rcu_read(&rioc
->rdmain
);
3210 rdmaout
= qatomic_rcu_read(&rioc
->rdmain
);
3213 case QIO_CHANNEL_SHUTDOWN_READ
:
3215 rdmain
->errored
= true;
3218 case QIO_CHANNEL_SHUTDOWN_WRITE
:
3220 rdmaout
->errored
= true;
3223 case QIO_CHANNEL_SHUTDOWN_BOTH
:
3226 rdmain
->errored
= true;
3229 rdmaout
->errored
= true;
3240 * This means that 'block_offset' is a full virtual address that does not
3241 * belong to a RAMBlock of the virtual machine and instead
3242 * represents a private malloc'd memory area that the caller wishes to
3246 * Offset is an offset to be added to block_offset and used
3247 * to also lookup the corresponding RAMBlock.
3249 * @size : Number of bytes to transfer
3251 * @pages_sent : User-specificed pointer to indicate how many pages were
3252 * sent. Usually, this will not be more than a few bytes of
3253 * the protocol because most transfers are sent asynchronously.
3255 static int qemu_rdma_save_page(QEMUFile
*f
, ram_addr_t block_offset
,
3256 ram_addr_t offset
, size_t size
)
3258 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(qemu_file_get_ioc(f
));
3263 if (migration_in_postcopy()) {
3264 return RAM_SAVE_CONTROL_NOT_SUPP
;
3267 RCU_READ_LOCK_GUARD();
3268 rdma
= qatomic_rcu_read(&rioc
->rdmaout
);
3274 if (rdma_errored(rdma
)) {
3281 * Add this page to the current 'chunk'. If the chunk
3282 * is full, or the page doesn't belong to the current chunk,
3283 * an actual RDMA write will occur and a new chunk will be formed.
3285 ret
= qemu_rdma_write(rdma
, block_offset
, offset
, size
, &err
);
3287 error_report_err(err
);
3292 * Drain the Completion Queue if possible, but do not block,
3295 * If nothing to poll, the end of the iteration will do this
3296 * again to make sure we don't overflow the request queue.
3299 uint64_t wr_id
, wr_id_in
;
3300 ret
= qemu_rdma_poll(rdma
, rdma
->recv_cq
, &wr_id_in
, NULL
);
3303 error_report("rdma migration: polling error");
3307 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
3309 if (wr_id
== RDMA_WRID_NONE
) {
3315 uint64_t wr_id
, wr_id_in
;
3316 ret
= qemu_rdma_poll(rdma
, rdma
->send_cq
, &wr_id_in
, NULL
);
3319 error_report("rdma migration: polling error");
3323 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
3325 if (wr_id
== RDMA_WRID_NONE
) {
3330 return RAM_SAVE_CONTROL_DELAYED
;
3333 rdma
->errored
= true;
3337 static void rdma_accept_incoming_migration(void *opaque
);
3339 static void rdma_cm_poll_handler(void *opaque
)
3341 RDMAContext
*rdma
= opaque
;
3343 struct rdma_cm_event
*cm_event
;
3344 MigrationIncomingState
*mis
= migration_incoming_get_current();
3346 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
3348 error_report("get_cm_event failed %d", errno
);
3352 if (cm_event
->event
== RDMA_CM_EVENT_DISCONNECTED
||
3353 cm_event
->event
== RDMA_CM_EVENT_DEVICE_REMOVAL
) {
3354 if (!rdma
->errored
&&
3355 migration_incoming_get_current()->state
!=
3356 MIGRATION_STATUS_COMPLETED
) {
3357 error_report("receive cm event, cm event is %d", cm_event
->event
);
3358 rdma
->errored
= true;
3359 if (rdma
->return_path
) {
3360 rdma
->return_path
->errored
= true;
3363 rdma_ack_cm_event(cm_event
);
3364 if (mis
->loadvm_co
) {
3365 qemu_coroutine_enter(mis
->loadvm_co
);
3369 rdma_ack_cm_event(cm_event
);
3372 static int qemu_rdma_accept(RDMAContext
*rdma
)
3375 RDMACapabilities cap
;
3376 struct rdma_conn_param conn_param
= {
3377 .responder_resources
= 2,
3378 .private_data
= &cap
,
3379 .private_data_len
= sizeof(cap
),
3381 RDMAContext
*rdma_return_path
= NULL
;
3382 struct rdma_cm_event
*cm_event
;
3383 struct ibv_context
*verbs
;
3387 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
3389 goto err_rdma_dest_wait
;
3392 if (cm_event
->event
!= RDMA_CM_EVENT_CONNECT_REQUEST
) {
3393 rdma_ack_cm_event(cm_event
);
3394 goto err_rdma_dest_wait
;
3398 * initialize the RDMAContext for return path for postcopy after first
3399 * connection request reached.
3401 if ((migrate_postcopy() || migrate_return_path())
3402 && !rdma
->is_return_path
) {
3403 rdma_return_path
= qemu_rdma_data_init(rdma
->host_port
, NULL
);
3404 if (rdma_return_path
== NULL
) {
3405 rdma_ack_cm_event(cm_event
);
3406 goto err_rdma_dest_wait
;
3409 qemu_rdma_return_path_dest_init(rdma_return_path
, rdma
);
3412 memcpy(&cap
, cm_event
->param
.conn
.private_data
, sizeof(cap
));
3414 network_to_caps(&cap
);
3416 if (cap
.version
< 1 || cap
.version
> RDMA_CONTROL_VERSION_CURRENT
) {
3417 error_report("Unknown source RDMA version: %d, bailing...",
3419 rdma_ack_cm_event(cm_event
);
3420 goto err_rdma_dest_wait
;
3424 * Respond with only the capabilities this version of QEMU knows about.
3426 cap
.flags
&= known_capabilities
;
3429 * Enable the ones that we do know about.
3430 * Add other checks here as new ones are introduced.
3432 if (cap
.flags
& RDMA_CAPABILITY_PIN_ALL
) {
3433 rdma
->pin_all
= true;
3436 rdma
->cm_id
= cm_event
->id
;
3437 verbs
= cm_event
->id
->verbs
;
3439 rdma_ack_cm_event(cm_event
);
3441 trace_qemu_rdma_accept_pin_state(rdma
->pin_all
);
3443 caps_to_network(&cap
);
3445 trace_qemu_rdma_accept_pin_verbsc(verbs
);
3448 rdma
->verbs
= verbs
;
3449 } else if (rdma
->verbs
!= verbs
) {
3450 error_report("ibv context not matching %p, %p!", rdma
->verbs
,
3452 goto err_rdma_dest_wait
;
3455 qemu_rdma_dump_id("dest_init", verbs
);
3457 ret
= qemu_rdma_alloc_pd_cq(rdma
, &err
);
3459 error_report_err(err
);
3460 goto err_rdma_dest_wait
;
3463 ret
= qemu_rdma_alloc_qp(rdma
);
3465 error_report("rdma migration: error allocating qp!");
3466 goto err_rdma_dest_wait
;
3469 qemu_rdma_init_ram_blocks(rdma
);
3471 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
3472 ret
= qemu_rdma_reg_control(rdma
, idx
);
3474 error_report("rdma: error registering %d control", idx
);
3475 goto err_rdma_dest_wait
;
3479 /* Accept the second connection request for return path */
3480 if ((migrate_postcopy() || migrate_return_path())
3481 && !rdma
->is_return_path
) {
3482 qemu_set_fd_handler(rdma
->channel
->fd
, rdma_accept_incoming_migration
,
3484 (void *)(intptr_t)rdma
->return_path
);
3486 qemu_set_fd_handler(rdma
->channel
->fd
, rdma_cm_poll_handler
,
3490 ret
= rdma_accept(rdma
->cm_id
, &conn_param
);
3492 error_report("rdma_accept failed");
3493 goto err_rdma_dest_wait
;
3496 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
3498 error_report("rdma_accept get_cm_event failed");
3499 goto err_rdma_dest_wait
;
3502 if (cm_event
->event
!= RDMA_CM_EVENT_ESTABLISHED
) {
3503 error_report("rdma_accept not event established");
3504 rdma_ack_cm_event(cm_event
);
3505 goto err_rdma_dest_wait
;
3508 rdma_ack_cm_event(cm_event
);
3509 rdma
->connected
= true;
3511 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
, &err
);
3513 error_report_err(err
);
3514 goto err_rdma_dest_wait
;
3517 qemu_rdma_dump_gid("dest_connect", rdma
->cm_id
);
3522 rdma
->errored
= true;
3523 qemu_rdma_cleanup(rdma
);
3524 g_free(rdma_return_path
);
3528 static int dest_ram_sort_func(const void *a
, const void *b
)
3530 unsigned int a_index
= ((const RDMALocalBlock
*)a
)->src_index
;
3531 unsigned int b_index
= ((const RDMALocalBlock
*)b
)->src_index
;
3533 return (a_index
< b_index
) ? -1 : (a_index
!= b_index
);
3537 * During each iteration of the migration, we listen for instructions
3538 * by the source VM to perform dynamic page registrations before they
3539 * can perform RDMA operations.
3541 * We respond with the 'rkey'.
3543 * Keep doing this until the source tells us to stop.
3545 static int qemu_rdma_registration_handle(QEMUFile
*f
)
3547 RDMAControlHeader reg_resp
= { .len
= sizeof(RDMARegisterResult
),
3548 .type
= RDMA_CONTROL_REGISTER_RESULT
,
3551 RDMAControlHeader unreg_resp
= { .len
= 0,
3552 .type
= RDMA_CONTROL_UNREGISTER_FINISHED
,
3555 RDMAControlHeader blocks
= { .type
= RDMA_CONTROL_RAM_BLOCKS_RESULT
,
3557 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(qemu_file_get_ioc(f
));
3560 RDMALocalBlocks
*local
;
3561 RDMAControlHeader head
;
3562 RDMARegister
*reg
, *registers
;
3564 RDMARegisterResult
*reg_result
;
3565 static RDMARegisterResult results
[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE
];
3566 RDMALocalBlock
*block
;
3573 RCU_READ_LOCK_GUARD();
3574 rdma
= qatomic_rcu_read(&rioc
->rdmain
);
3580 if (rdma_errored(rdma
)) {
3584 local
= &rdma
->local_ram_blocks
;
3586 trace_qemu_rdma_registration_handle_wait();
3588 ret
= qemu_rdma_exchange_recv(rdma
, &head
, RDMA_CONTROL_NONE
, &err
);
3591 error_report_err(err
);
3595 if (head
.repeat
> RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE
) {
3596 error_report("rdma: Too many requests in this message (%d)."
3597 "Bailing.", head
.repeat
);
3601 switch (head
.type
) {
3602 case RDMA_CONTROL_COMPRESS
:
3603 comp
= (RDMACompress
*) rdma
->wr_data
[idx
].control_curr
;
3604 network_to_compress(comp
);
3606 trace_qemu_rdma_registration_handle_compress(comp
->length
,
3609 if (comp
->block_idx
>= rdma
->local_ram_blocks
.nb_blocks
) {
3610 error_report("rdma: 'compress' bad block index %u (vs %d)",
3611 (unsigned int)comp
->block_idx
,
3612 rdma
->local_ram_blocks
.nb_blocks
);
3615 block
= &(rdma
->local_ram_blocks
.block
[comp
->block_idx
]);
3617 host_addr
= block
->local_host_addr
+
3618 (comp
->offset
- block
->offset
);
3620 ram_handle_compressed(host_addr
, comp
->value
, comp
->length
);
3623 case RDMA_CONTROL_REGISTER_FINISHED
:
3624 trace_qemu_rdma_registration_handle_finished();
3627 case RDMA_CONTROL_RAM_BLOCKS_REQUEST
:
3628 trace_qemu_rdma_registration_handle_ram_blocks();
3630 /* Sort our local RAM Block list so it's the same as the source,
3631 * we can do this since we've filled in a src_index in the list
3632 * as we received the RAMBlock list earlier.
3634 qsort(rdma
->local_ram_blocks
.block
,
3635 rdma
->local_ram_blocks
.nb_blocks
,
3636 sizeof(RDMALocalBlock
), dest_ram_sort_func
);
3637 for (i
= 0; i
< local
->nb_blocks
; i
++) {
3638 local
->block
[i
].index
= i
;
3641 if (rdma
->pin_all
) {
3642 ret
= qemu_rdma_reg_whole_ram_blocks(rdma
, &err
);
3644 error_report_err(err
);
3650 * Dest uses this to prepare to transmit the RAMBlock descriptions
3651 * to the source VM after connection setup.
3652 * Both sides use the "remote" structure to communicate and update
3653 * their "local" descriptions with what was sent.
3655 for (i
= 0; i
< local
->nb_blocks
; i
++) {
3656 rdma
->dest_blocks
[i
].remote_host_addr
=
3657 (uintptr_t)(local
->block
[i
].local_host_addr
);
3659 if (rdma
->pin_all
) {
3660 rdma
->dest_blocks
[i
].remote_rkey
= local
->block
[i
].mr
->rkey
;
3663 rdma
->dest_blocks
[i
].offset
= local
->block
[i
].offset
;
3664 rdma
->dest_blocks
[i
].length
= local
->block
[i
].length
;
3666 dest_block_to_network(&rdma
->dest_blocks
[i
]);
3667 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3668 local
->block
[i
].block_name
,
3669 local
->block
[i
].offset
,
3670 local
->block
[i
].length
,
3671 local
->block
[i
].local_host_addr
,
3672 local
->block
[i
].src_index
);
3675 blocks
.len
= rdma
->local_ram_blocks
.nb_blocks
3676 * sizeof(RDMADestBlock
);
3679 ret
= qemu_rdma_post_send_control(rdma
,
3680 (uint8_t *) rdma
->dest_blocks
, &blocks
,
3684 error_report_err(err
);
3689 case RDMA_CONTROL_REGISTER_REQUEST
:
3690 trace_qemu_rdma_registration_handle_register(head
.repeat
);
3692 reg_resp
.repeat
= head
.repeat
;
3693 registers
= (RDMARegister
*) rdma
->wr_data
[idx
].control_curr
;
3695 for (count
= 0; count
< head
.repeat
; count
++) {
3697 uint8_t *chunk_start
, *chunk_end
;
3699 reg
= ®isters
[count
];
3700 network_to_register(reg
);
3702 reg_result
= &results
[count
];
3704 trace_qemu_rdma_registration_handle_register_loop(count
,
3705 reg
->current_index
, reg
->key
.current_addr
, reg
->chunks
);
3707 if (reg
->current_index
>= rdma
->local_ram_blocks
.nb_blocks
) {
3708 error_report("rdma: 'register' bad block index %u (vs %d)",
3709 (unsigned int)reg
->current_index
,
3710 rdma
->local_ram_blocks
.nb_blocks
);
3713 block
= &(rdma
->local_ram_blocks
.block
[reg
->current_index
]);
3714 if (block
->is_ram_block
) {
3715 if (block
->offset
> reg
->key
.current_addr
) {
3716 error_report("rdma: bad register address for block %s"
3717 " offset: %" PRIx64
" current_addr: %" PRIx64
,
3718 block
->block_name
, block
->offset
,
3719 reg
->key
.current_addr
);
3722 host_addr
= (block
->local_host_addr
+
3723 (reg
->key
.current_addr
- block
->offset
));
3724 chunk
= ram_chunk_index(block
->local_host_addr
,
3725 (uint8_t *) host_addr
);
3727 chunk
= reg
->key
.chunk
;
3728 host_addr
= block
->local_host_addr
+
3729 (reg
->key
.chunk
* (1UL << RDMA_REG_CHUNK_SHIFT
));
3730 /* Check for particularly bad chunk value */
3731 if (host_addr
< (void *)block
->local_host_addr
) {
3732 error_report("rdma: bad chunk for block %s"
3734 block
->block_name
, reg
->key
.chunk
);
3738 chunk_start
= ram_chunk_start(block
, chunk
);
3739 chunk_end
= ram_chunk_end(block
, chunk
+ reg
->chunks
);
3740 /* avoid "-Waddress-of-packed-member" warning */
3741 uint32_t tmp_rkey
= 0;
3742 if (qemu_rdma_register_and_get_keys(rdma
, block
,
3743 (uintptr_t)host_addr
, NULL
, &tmp_rkey
,
3744 chunk
, chunk_start
, chunk_end
)) {
3745 error_report("cannot get rkey");
3748 reg_result
->rkey
= tmp_rkey
;
3750 reg_result
->host_addr
= (uintptr_t)block
->local_host_addr
;
3752 trace_qemu_rdma_registration_handle_register_rkey(
3755 result_to_network(reg_result
);
3758 ret
= qemu_rdma_post_send_control(rdma
,
3759 (uint8_t *) results
, ®_resp
, &err
);
3762 error_report_err(err
);
3766 case RDMA_CONTROL_UNREGISTER_REQUEST
:
3767 trace_qemu_rdma_registration_handle_unregister(head
.repeat
);
3768 unreg_resp
.repeat
= head
.repeat
;
3769 registers
= (RDMARegister
*) rdma
->wr_data
[idx
].control_curr
;
3771 for (count
= 0; count
< head
.repeat
; count
++) {
3772 reg
= ®isters
[count
];
3773 network_to_register(reg
);
3775 trace_qemu_rdma_registration_handle_unregister_loop(count
,
3776 reg
->current_index
, reg
->key
.chunk
);
3778 block
= &(rdma
->local_ram_blocks
.block
[reg
->current_index
]);
3780 ret
= ibv_dereg_mr(block
->pmr
[reg
->key
.chunk
]);
3781 block
->pmr
[reg
->key
.chunk
] = NULL
;
3784 perror("rdma unregistration chunk failed");
3788 rdma
->total_registrations
--;
3790 trace_qemu_rdma_registration_handle_unregister_success(
3794 ret
= qemu_rdma_post_send_control(rdma
, NULL
, &unreg_resp
, &err
);
3797 error_report_err(err
);
3801 case RDMA_CONTROL_REGISTER_RESULT
:
3802 error_report("Invalid RESULT message at dest.");
3805 error_report("Unknown control message %s", control_desc(head
.type
));
3811 rdma
->errored
= true;
3816 * Called via a ram_control_load_hook during the initial RAM load section which
3817 * lists the RAMBlocks by name. This lets us know the order of the RAMBlocks
3819 * We've already built our local RAMBlock list, but not yet sent the list to
3823 rdma_block_notification_handle(QEMUFile
*f
, const char *name
)
3826 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(qemu_file_get_ioc(f
));
3830 RCU_READ_LOCK_GUARD();
3831 rdma
= qatomic_rcu_read(&rioc
->rdmain
);
3837 /* Find the matching RAMBlock in our local list */
3838 for (curr
= 0; curr
< rdma
->local_ram_blocks
.nb_blocks
; curr
++) {
3839 if (!strcmp(rdma
->local_ram_blocks
.block
[curr
].block_name
, name
)) {
3846 error_report("RAMBlock '%s' not found on destination", name
);
3850 rdma
->local_ram_blocks
.block
[curr
].src_index
= rdma
->next_src_index
;
3851 trace_rdma_block_notification_handle(name
, rdma
->next_src_index
);
3852 rdma
->next_src_index
++;
3857 static int rdma_load_hook(QEMUFile
*f
, uint64_t flags
, void *data
)
3860 case RAM_CONTROL_BLOCK_REG
:
3861 return rdma_block_notification_handle(f
, data
);
3863 case RAM_CONTROL_HOOK
:
3864 return qemu_rdma_registration_handle(f
);
3867 /* Shouldn't be called with any other values */
3872 static int qemu_rdma_registration_start(QEMUFile
*f
,
3873 uint64_t flags
, void *data
)
3875 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(qemu_file_get_ioc(f
));
3878 if (migration_in_postcopy()) {
3882 RCU_READ_LOCK_GUARD();
3883 rdma
= qatomic_rcu_read(&rioc
->rdmaout
);
3888 if (rdma_errored(rdma
)) {
3892 trace_qemu_rdma_registration_start(flags
);
3893 qemu_put_be64(f
, RAM_SAVE_FLAG_HOOK
);
3900 * Inform dest that dynamic registrations are done for now.
3901 * First, flush writes, if any.
3903 static int qemu_rdma_registration_stop(QEMUFile
*f
,
3904 uint64_t flags
, void *data
)
3906 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(qemu_file_get_ioc(f
));
3909 RDMAControlHeader head
= { .len
= 0, .repeat
= 1 };
3912 if (migration_in_postcopy()) {
3916 RCU_READ_LOCK_GUARD();
3917 rdma
= qatomic_rcu_read(&rioc
->rdmaout
);
3922 if (rdma_errored(rdma
)) {
3927 ret
= qemu_rdma_drain_cq(rdma
);
3933 if (flags
== RAM_CONTROL_SETUP
) {
3934 RDMAControlHeader resp
= {.type
= RDMA_CONTROL_RAM_BLOCKS_RESULT
};
3935 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
3936 int reg_result_idx
, i
, nb_dest_blocks
;
3938 head
.type
= RDMA_CONTROL_RAM_BLOCKS_REQUEST
;
3939 trace_qemu_rdma_registration_stop_ram();
3942 * Make sure that we parallelize the pinning on both sides.
3943 * For very large guests, doing this serially takes a really
3944 * long time, so we have to 'interleave' the pinning locally
3945 * with the control messages by performing the pinning on this
3946 * side before we receive the control response from the other
3947 * side that the pinning has completed.
3949 ret
= qemu_rdma_exchange_send(rdma
, &head
, NULL
, &resp
,
3950 ®_result_idx
, rdma
->pin_all
?
3951 qemu_rdma_reg_whole_ram_blocks
: NULL
,
3954 error_report_err(err
);
3958 nb_dest_blocks
= resp
.len
/ sizeof(RDMADestBlock
);
3961 * The protocol uses two different sets of rkeys (mutually exclusive):
3962 * 1. One key to represent the virtual address of the entire ram block.
3963 * (dynamic chunk registration disabled - pin everything with one rkey.)
3964 * 2. One to represent individual chunks within a ram block.
3965 * (dynamic chunk registration enabled - pin individual chunks.)
3967 * Once the capability is successfully negotiated, the destination transmits
3968 * the keys to use (or sends them later) including the virtual addresses
3969 * and then propagates the remote ram block descriptions to his local copy.
3972 if (local
->nb_blocks
!= nb_dest_blocks
) {
3973 fprintf(stderr
, "ram blocks mismatch (Number of blocks %d vs %d) "
3974 "Your QEMU command line parameters are probably "
3975 "not identical on both the source and destination.",
3976 local
->nb_blocks
, nb_dest_blocks
);
3977 rdma
->errored
= true;
3981 qemu_rdma_move_header(rdma
, reg_result_idx
, &resp
);
3982 memcpy(rdma
->dest_blocks
,
3983 rdma
->wr_data
[reg_result_idx
].control_curr
, resp
.len
);
3984 for (i
= 0; i
< nb_dest_blocks
; i
++) {
3985 network_to_dest_block(&rdma
->dest_blocks
[i
]);
3987 /* We require that the blocks are in the same order */
3988 if (rdma
->dest_blocks
[i
].length
!= local
->block
[i
].length
) {
3989 fprintf(stderr
, "Block %s/%d has a different length %" PRIu64
3990 "vs %" PRIu64
, local
->block
[i
].block_name
, i
,
3991 local
->block
[i
].length
,
3992 rdma
->dest_blocks
[i
].length
);
3993 rdma
->errored
= true;
3996 local
->block
[i
].remote_host_addr
=
3997 rdma
->dest_blocks
[i
].remote_host_addr
;
3998 local
->block
[i
].remote_rkey
= rdma
->dest_blocks
[i
].remote_rkey
;
4002 trace_qemu_rdma_registration_stop(flags
);
4004 head
.type
= RDMA_CONTROL_REGISTER_FINISHED
;
4005 ret
= qemu_rdma_exchange_send(rdma
, &head
, NULL
, NULL
, NULL
, NULL
, &err
);
4008 error_report_err(err
);
4014 rdma
->errored
= true;
4018 static const QEMUFileHooks rdma_read_hooks
= {
4019 .hook_ram_load
= rdma_load_hook
,
4022 static const QEMUFileHooks rdma_write_hooks
= {
4023 .before_ram_iterate
= qemu_rdma_registration_start
,
4024 .after_ram_iterate
= qemu_rdma_registration_stop
,
4025 .save_page
= qemu_rdma_save_page
,
4029 static void qio_channel_rdma_finalize(Object
*obj
)
4031 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(obj
);
4033 qemu_rdma_cleanup(rioc
->rdmain
);
4034 g_free(rioc
->rdmain
);
4035 rioc
->rdmain
= NULL
;
4037 if (rioc
->rdmaout
) {
4038 qemu_rdma_cleanup(rioc
->rdmaout
);
4039 g_free(rioc
->rdmaout
);
4040 rioc
->rdmaout
= NULL
;
4044 static void qio_channel_rdma_class_init(ObjectClass
*klass
,
4045 void *class_data G_GNUC_UNUSED
)
4047 QIOChannelClass
*ioc_klass
= QIO_CHANNEL_CLASS(klass
);
4049 ioc_klass
->io_writev
= qio_channel_rdma_writev
;
4050 ioc_klass
->io_readv
= qio_channel_rdma_readv
;
4051 ioc_klass
->io_set_blocking
= qio_channel_rdma_set_blocking
;
4052 ioc_klass
->io_close
= qio_channel_rdma_close
;
4053 ioc_klass
->io_create_watch
= qio_channel_rdma_create_watch
;
4054 ioc_klass
->io_set_aio_fd_handler
= qio_channel_rdma_set_aio_fd_handler
;
4055 ioc_klass
->io_shutdown
= qio_channel_rdma_shutdown
;
4058 static const TypeInfo qio_channel_rdma_info
= {
4059 .parent
= TYPE_QIO_CHANNEL
,
4060 .name
= TYPE_QIO_CHANNEL_RDMA
,
4061 .instance_size
= sizeof(QIOChannelRDMA
),
4062 .instance_finalize
= qio_channel_rdma_finalize
,
4063 .class_init
= qio_channel_rdma_class_init
,
4066 static void qio_channel_rdma_register_types(void)
4068 type_register_static(&qio_channel_rdma_info
);
4071 type_init(qio_channel_rdma_register_types
);
4073 static QEMUFile
*rdma_new_input(RDMAContext
*rdma
)
4075 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA
));
4077 rioc
->file
= qemu_file_new_input(QIO_CHANNEL(rioc
));
4078 rioc
->rdmain
= rdma
;
4079 rioc
->rdmaout
= rdma
->return_path
;
4080 qemu_file_set_hooks(rioc
->file
, &rdma_read_hooks
);
4085 static QEMUFile
*rdma_new_output(RDMAContext
*rdma
)
4087 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA
));
4089 rioc
->file
= qemu_file_new_output(QIO_CHANNEL(rioc
));
4090 rioc
->rdmaout
= rdma
;
4091 rioc
->rdmain
= rdma
->return_path
;
4092 qemu_file_set_hooks(rioc
->file
, &rdma_write_hooks
);
4097 static void rdma_accept_incoming_migration(void *opaque
)
4099 RDMAContext
*rdma
= opaque
;
4102 Error
*local_err
= NULL
;
4104 trace_qemu_rdma_accept_incoming_migration();
4105 ret
= qemu_rdma_accept(rdma
);
4108 fprintf(stderr
, "RDMA ERROR: Migration initialization failed\n");
4112 trace_qemu_rdma_accept_incoming_migration_accepted();
4114 if (rdma
->is_return_path
) {
4118 f
= rdma_new_input(rdma
);
4120 fprintf(stderr
, "RDMA ERROR: could not open RDMA for input\n");
4121 qemu_rdma_cleanup(rdma
);
4125 rdma
->migration_started_on_destination
= 1;
4126 migration_fd_process_incoming(f
, &local_err
);
4128 error_reportf_err(local_err
, "RDMA ERROR:");
4132 void rdma_start_incoming_migration(const char *host_port
, Error
**errp
)
4137 trace_rdma_start_incoming_migration();
4139 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4140 if (ram_block_discard_is_required()) {
4141 error_setg(errp
, "RDMA: cannot disable RAM discard");
4145 rdma
= qemu_rdma_data_init(host_port
, errp
);
4150 ret
= qemu_rdma_dest_init(rdma
, errp
);
4155 trace_rdma_start_incoming_migration_after_dest_init();
4157 ret
= rdma_listen(rdma
->listen_id
, 5);
4160 error_setg(errp
, "RDMA ERROR: listening on socket!");
4164 trace_rdma_start_incoming_migration_after_rdma_listen();
4166 qemu_set_fd_handler(rdma
->channel
->fd
, rdma_accept_incoming_migration
,
4167 NULL
, (void *)(intptr_t)rdma
);
4171 qemu_rdma_cleanup(rdma
);
4175 g_free(rdma
->host_port
);
4180 void rdma_start_outgoing_migration(void *opaque
,
4181 const char *host_port
, Error
**errp
)
4183 MigrationState
*s
= opaque
;
4184 RDMAContext
*rdma_return_path
= NULL
;
4188 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4189 if (ram_block_discard_is_required()) {
4190 error_setg(errp
, "RDMA: cannot disable RAM discard");
4194 rdma
= qemu_rdma_data_init(host_port
, errp
);
4199 ret
= qemu_rdma_source_init(rdma
, migrate_rdma_pin_all(), errp
);
4205 trace_rdma_start_outgoing_migration_after_rdma_source_init();
4206 ret
= qemu_rdma_connect(rdma
, false, errp
);
4212 /* RDMA postcopy need a separate queue pair for return path */
4213 if (migrate_postcopy() || migrate_return_path()) {
4214 rdma_return_path
= qemu_rdma_data_init(host_port
, errp
);
4216 if (rdma_return_path
== NULL
) {
4217 goto return_path_err
;
4220 ret
= qemu_rdma_source_init(rdma_return_path
,
4221 migrate_rdma_pin_all(), errp
);
4224 goto return_path_err
;
4227 ret
= qemu_rdma_connect(rdma_return_path
, true, errp
);
4230 goto return_path_err
;
4233 rdma
->return_path
= rdma_return_path
;
4234 rdma_return_path
->return_path
= rdma
;
4235 rdma_return_path
->is_return_path
= true;
4238 trace_rdma_start_outgoing_migration_after_rdma_connect();
4240 s
->to_dst_file
= rdma_new_output(rdma
);
4241 migrate_fd_connect(s
, NULL
);
4244 qemu_rdma_cleanup(rdma
);
4247 g_free(rdma_return_path
);