qapi: Start sentences with a capital letter, end them with a period
[qemu/armbru.git] / target / ppc / kvm.c
blob8231feb2d4553e6bcd721d05b55a102f578e687d
1 /*
2 * PowerPC implementation of KVM hooks
4 * Copyright IBM Corp. 2007
5 * Copyright (C) 2011 Freescale Semiconductor, Inc.
7 * Authors:
8 * Jerone Young <jyoung5@us.ibm.com>
9 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
10 * Hollis Blanchard <hollisb@us.ibm.com>
12 * This work is licensed under the terms of the GNU GPL, version 2 or later.
13 * See the COPYING file in the top-level directory.
17 #include "qemu/osdep.h"
18 #include <dirent.h>
19 #include <sys/ioctl.h>
20 #include <sys/vfs.h>
22 #include <linux/kvm.h>
24 #include "qapi/error.h"
25 #include "qemu/error-report.h"
26 #include "cpu.h"
27 #include "cpu-models.h"
28 #include "qemu/timer.h"
29 #include "sysemu/hw_accel.h"
30 #include "kvm_ppc.h"
31 #include "sysemu/cpus.h"
32 #include "sysemu/device_tree.h"
33 #include "mmu-hash64.h"
35 #include "hw/ppc/spapr.h"
36 #include "hw/ppc/spapr_cpu_core.h"
37 #include "hw/hw.h"
38 #include "hw/ppc/ppc.h"
39 #include "migration/qemu-file-types.h"
40 #include "sysemu/watchdog.h"
41 #include "trace.h"
42 #include "exec/gdbstub.h"
43 #include "exec/memattrs.h"
44 #include "exec/ram_addr.h"
45 #include "sysemu/hostmem.h"
46 #include "qemu/cutils.h"
47 #include "qemu/main-loop.h"
48 #include "qemu/mmap-alloc.h"
49 #include "elf.h"
50 #include "sysemu/kvm_int.h"
52 #define PROC_DEVTREE_CPU "/proc/device-tree/cpus/"
54 #define DEBUG_RETURN_GUEST 0
55 #define DEBUG_RETURN_GDB 1
57 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
58 KVM_CAP_LAST_INFO
61 static int cap_interrupt_unset;
62 static int cap_segstate;
63 static int cap_booke_sregs;
64 static int cap_ppc_smt;
65 static int cap_ppc_smt_possible;
66 static int cap_spapr_tce;
67 static int cap_spapr_tce_64;
68 static int cap_spapr_multitce;
69 static int cap_spapr_vfio;
70 static int cap_hior;
71 static int cap_one_reg;
72 static int cap_epr;
73 static int cap_ppc_watchdog;
74 static int cap_papr;
75 static int cap_htab_fd;
76 static int cap_fixup_hcalls;
77 static int cap_htm; /* Hardware transactional memory support */
78 static int cap_mmu_radix;
79 static int cap_mmu_hash_v3;
80 static int cap_xive;
81 static int cap_resize_hpt;
82 static int cap_ppc_pvr_compat;
83 static int cap_ppc_safe_cache;
84 static int cap_ppc_safe_bounds_check;
85 static int cap_ppc_safe_indirect_branch;
86 static int cap_ppc_count_cache_flush_assist;
87 static int cap_ppc_nested_kvm_hv;
88 static int cap_large_decr;
89 static int cap_fwnmi;
90 static int cap_rpt_invalidate;
91 static int cap_ail_mode_3;
93 static uint32_t debug_inst_opcode;
96 * Check whether we are running with KVM-PR (instead of KVM-HV). This
97 * should only be used for fallback tests - generally we should use
98 * explicit capabilities for the features we want, rather than
99 * assuming what is/isn't available depending on the KVM variant.
101 static bool kvmppc_is_pr(KVMState *ks)
103 /* Assume KVM-PR if the GET_PVINFO capability is available */
104 return kvm_vm_check_extension(ks, KVM_CAP_PPC_GET_PVINFO) != 0;
107 static int kvm_ppc_register_host_cpu_type(void);
108 static void kvmppc_get_cpu_characteristics(KVMState *s);
109 static int kvmppc_get_dec_bits(void);
111 int kvm_arch_get_default_type(MachineState *ms)
113 return 0;
116 int kvm_arch_init(MachineState *ms, KVMState *s)
118 cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
119 cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
120 cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
121 cap_ppc_smt_possible = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT_POSSIBLE);
122 cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
123 cap_spapr_tce_64 = kvm_check_extension(s, KVM_CAP_SPAPR_TCE_64);
124 cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE);
125 cap_spapr_vfio = kvm_vm_check_extension(s, KVM_CAP_SPAPR_TCE_VFIO);
126 cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
127 cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
128 cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
129 cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
131 * Note: we don't set cap_papr here, because this capability is
132 * only activated after this by kvmppc_set_papr()
134 cap_htab_fd = kvm_vm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
135 cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);
136 cap_ppc_smt = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT);
137 cap_htm = kvm_vm_check_extension(s, KVM_CAP_PPC_HTM);
138 cap_mmu_radix = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_RADIX);
139 cap_mmu_hash_v3 = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_HASH_V3);
140 cap_xive = kvm_vm_check_extension(s, KVM_CAP_PPC_IRQ_XIVE);
141 cap_resize_hpt = kvm_vm_check_extension(s, KVM_CAP_SPAPR_RESIZE_HPT);
142 kvmppc_get_cpu_characteristics(s);
143 cap_ppc_nested_kvm_hv = kvm_vm_check_extension(s, KVM_CAP_PPC_NESTED_HV);
144 cap_large_decr = kvmppc_get_dec_bits();
145 cap_fwnmi = kvm_vm_check_extension(s, KVM_CAP_PPC_FWNMI);
147 * Note: setting it to false because there is not such capability
148 * in KVM at this moment.
150 * TODO: call kvm_vm_check_extension() with the right capability
151 * after the kernel starts implementing it.
153 cap_ppc_pvr_compat = false;
155 if (!kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL)) {
156 error_report("KVM: Host kernel doesn't have level irq capability");
157 exit(1);
160 cap_rpt_invalidate = kvm_vm_check_extension(s, KVM_CAP_PPC_RPT_INVALIDATE);
161 cap_ail_mode_3 = kvm_vm_check_extension(s, KVM_CAP_PPC_AIL_MODE_3);
162 kvm_ppc_register_host_cpu_type();
164 return 0;
167 int kvm_arch_irqchip_create(KVMState *s)
169 return 0;
172 static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
174 CPUPPCState *cenv = &cpu->env;
175 CPUState *cs = CPU(cpu);
176 struct kvm_sregs sregs;
177 int ret;
179 if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
181 * What we're really trying to say is "if we're on BookE, we
182 * use the native PVR for now". This is the only sane way to
183 * check it though, so we potentially confuse users that they
184 * can run BookE guests on BookS. Let's hope nobody dares
185 * enough :)
187 return 0;
188 } else {
189 if (!cap_segstate) {
190 fprintf(stderr, "kvm error: missing PVR setting capability\n");
191 return -ENOSYS;
195 ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
196 if (ret) {
197 return ret;
200 sregs.pvr = cenv->spr[SPR_PVR];
201 return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
204 /* Set up a shared TLB array with KVM */
205 static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
207 CPUPPCState *env = &cpu->env;
208 CPUState *cs = CPU(cpu);
209 struct kvm_book3e_206_tlb_params params = {};
210 struct kvm_config_tlb cfg = {};
211 unsigned int entries = 0;
212 int ret, i;
214 if (!kvm_enabled() ||
215 !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
216 return 0;
219 assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);
221 for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
222 params.tlb_sizes[i] = booke206_tlb_size(env, i);
223 params.tlb_ways[i] = booke206_tlb_ways(env, i);
224 entries += params.tlb_sizes[i];
227 assert(entries == env->nb_tlb);
228 assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));
230 env->tlb_dirty = true;
232 cfg.array = (uintptr_t)env->tlb.tlbm;
233 cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
234 cfg.params = (uintptr_t)&params;
235 cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;
237 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg);
238 if (ret < 0) {
239 fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
240 __func__, strerror(-ret));
241 return ret;
244 env->kvm_sw_tlb = true;
245 return 0;
249 #if defined(TARGET_PPC64)
250 static void kvm_get_smmu_info(struct kvm_ppc_smmu_info *info, Error **errp)
252 int ret;
254 assert(kvm_state != NULL);
256 if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
257 error_setg(errp, "KVM doesn't expose the MMU features it supports");
258 error_append_hint(errp, "Consider switching to a newer KVM\n");
259 return;
262 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_SMMU_INFO, info);
263 if (ret == 0) {
264 return;
267 error_setg_errno(errp, -ret,
268 "KVM failed to provide the MMU features it supports");
271 static struct ppc_radix_page_info *kvmppc_get_radix_page_info(void)
273 KVMState *s = KVM_STATE(current_accel());
274 struct ppc_radix_page_info *radix_page_info;
275 struct kvm_ppc_rmmu_info rmmu_info = { };
276 int i;
278 if (!kvm_check_extension(s, KVM_CAP_PPC_MMU_RADIX)) {
279 return NULL;
281 if (kvm_vm_ioctl(s, KVM_PPC_GET_RMMU_INFO, &rmmu_info)) {
282 return NULL;
284 radix_page_info = g_malloc0(sizeof(*radix_page_info));
285 radix_page_info->count = 0;
286 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
287 if (rmmu_info.ap_encodings[i]) {
288 radix_page_info->entries[i] = rmmu_info.ap_encodings[i];
289 radix_page_info->count++;
292 return radix_page_info;
295 target_ulong kvmppc_configure_v3_mmu(PowerPCCPU *cpu,
296 bool radix, bool gtse,
297 uint64_t proc_tbl)
299 CPUState *cs = CPU(cpu);
300 int ret;
301 uint64_t flags = 0;
302 struct kvm_ppc_mmuv3_cfg cfg = {
303 .process_table = proc_tbl,
306 if (radix) {
307 flags |= KVM_PPC_MMUV3_RADIX;
309 if (gtse) {
310 flags |= KVM_PPC_MMUV3_GTSE;
312 cfg.flags = flags;
313 ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_CONFIGURE_V3_MMU, &cfg);
314 switch (ret) {
315 case 0:
316 return H_SUCCESS;
317 case -EINVAL:
318 return H_PARAMETER;
319 case -ENODEV:
320 return H_NOT_AVAILABLE;
321 default:
322 return H_HARDWARE;
326 bool kvmppc_hpt_needs_host_contiguous_pages(void)
328 static struct kvm_ppc_smmu_info smmu_info;
330 if (!kvm_enabled()) {
331 return false;
334 kvm_get_smmu_info(&smmu_info, &error_fatal);
335 return !!(smmu_info.flags & KVM_PPC_PAGE_SIZES_REAL);
338 void kvm_check_mmu(PowerPCCPU *cpu, Error **errp)
340 struct kvm_ppc_smmu_info smmu_info;
341 int iq, ik, jq, jk;
342 Error *local_err = NULL;
344 /* For now, we only have anything to check on hash64 MMUs */
345 if (!cpu->hash64_opts || !kvm_enabled()) {
346 return;
349 kvm_get_smmu_info(&smmu_info, &local_err);
350 if (local_err) {
351 error_propagate(errp, local_err);
352 return;
355 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)
356 && !(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
357 error_setg(errp,
358 "KVM does not support 1TiB segments which guest expects");
359 return;
362 if (smmu_info.slb_size < cpu->hash64_opts->slb_size) {
363 error_setg(errp, "KVM only supports %u SLB entries, but guest needs %u",
364 smmu_info.slb_size, cpu->hash64_opts->slb_size);
365 return;
369 * Verify that every pagesize supported by the cpu model is
370 * supported by KVM with the same encodings
372 for (iq = 0; iq < ARRAY_SIZE(cpu->hash64_opts->sps); iq++) {
373 PPCHash64SegmentPageSizes *qsps = &cpu->hash64_opts->sps[iq];
374 struct kvm_ppc_one_seg_page_size *ksps;
376 for (ik = 0; ik < ARRAY_SIZE(smmu_info.sps); ik++) {
377 if (qsps->page_shift == smmu_info.sps[ik].page_shift) {
378 break;
381 if (ik >= ARRAY_SIZE(smmu_info.sps)) {
382 error_setg(errp, "KVM doesn't support for base page shift %u",
383 qsps->page_shift);
384 return;
387 ksps = &smmu_info.sps[ik];
388 if (ksps->slb_enc != qsps->slb_enc) {
389 error_setg(errp,
390 "KVM uses SLB encoding 0x%x for page shift %u, but guest expects 0x%x",
391 ksps->slb_enc, ksps->page_shift, qsps->slb_enc);
392 return;
395 for (jq = 0; jq < ARRAY_SIZE(qsps->enc); jq++) {
396 for (jk = 0; jk < ARRAY_SIZE(ksps->enc); jk++) {
397 if (qsps->enc[jq].page_shift == ksps->enc[jk].page_shift) {
398 break;
402 if (jk >= ARRAY_SIZE(ksps->enc)) {
403 error_setg(errp, "KVM doesn't support page shift %u/%u",
404 qsps->enc[jq].page_shift, qsps->page_shift);
405 return;
407 if (qsps->enc[jq].pte_enc != ksps->enc[jk].pte_enc) {
408 error_setg(errp,
409 "KVM uses PTE encoding 0x%x for page shift %u/%u, but guest expects 0x%x",
410 ksps->enc[jk].pte_enc, qsps->enc[jq].page_shift,
411 qsps->page_shift, qsps->enc[jq].pte_enc);
412 return;
417 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
419 * Mostly what guest pagesizes we can use are related to the
420 * host pages used to map guest RAM, which is handled in the
421 * platform code. Cache-Inhibited largepages (64k) however are
422 * used for I/O, so if they're mapped to the host at all it
423 * will be a normal mapping, not a special hugepage one used
424 * for RAM.
426 if (qemu_real_host_page_size() < 0x10000) {
427 error_setg(errp,
428 "KVM can't supply 64kiB CI pages, which guest expects");
432 #endif /* !defined (TARGET_PPC64) */
434 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
436 return POWERPC_CPU(cpu)->vcpu_id;
440 * e500 supports 2 h/w breakpoint and 2 watchpoint. book3s supports
441 * only 1 watchpoint, so array size of 4 is sufficient for now.
443 #define MAX_HW_BKPTS 4
445 static struct HWBreakpoint {
446 target_ulong addr;
447 int type;
448 } hw_debug_points[MAX_HW_BKPTS];
450 static CPUWatchpoint hw_watchpoint;
452 /* Default there is no breakpoint and watchpoint supported */
453 static int max_hw_breakpoint;
454 static int max_hw_watchpoint;
455 static int nb_hw_breakpoint;
456 static int nb_hw_watchpoint;
458 static void kvmppc_hw_debug_points_init(CPUPPCState *cenv)
460 if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
461 max_hw_breakpoint = 2;
462 max_hw_watchpoint = 2;
465 if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) {
466 fprintf(stderr, "Error initializing h/w breakpoints\n");
467 return;
471 int kvm_arch_init_vcpu(CPUState *cs)
473 PowerPCCPU *cpu = POWERPC_CPU(cs);
474 CPUPPCState *cenv = &cpu->env;
475 int ret;
477 /* Synchronize sregs with kvm */
478 ret = kvm_arch_sync_sregs(cpu);
479 if (ret) {
480 if (ret == -EINVAL) {
481 error_report("Register sync failed... If you're using kvm-hv.ko,"
482 " only \"-cpu host\" is possible");
484 return ret;
487 switch (cenv->mmu_model) {
488 case POWERPC_MMU_BOOKE206:
489 /* This target supports access to KVM's guest TLB */
490 ret = kvm_booke206_tlb_init(cpu);
491 break;
492 case POWERPC_MMU_2_07:
493 if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) {
495 * KVM-HV has transactional memory on POWER8 also without
496 * the KVM_CAP_PPC_HTM extension, so enable it here
497 * instead as long as it's available to userspace on the
498 * host.
500 if (qemu_getauxval(AT_HWCAP2) & PPC_FEATURE2_HAS_HTM) {
501 cap_htm = true;
504 break;
505 default:
506 break;
509 kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode);
510 kvmppc_hw_debug_points_init(cenv);
512 return ret;
515 int kvm_arch_destroy_vcpu(CPUState *cs)
517 return 0;
520 static void kvm_sw_tlb_put(PowerPCCPU *cpu)
522 CPUPPCState *env = &cpu->env;
523 CPUState *cs = CPU(cpu);
524 struct kvm_dirty_tlb dirty_tlb;
525 unsigned char *bitmap;
526 int ret;
528 if (!env->kvm_sw_tlb) {
529 return;
532 bitmap = g_malloc((env->nb_tlb + 7) / 8);
533 memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);
535 dirty_tlb.bitmap = (uintptr_t)bitmap;
536 dirty_tlb.num_dirty = env->nb_tlb;
538 ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
539 if (ret) {
540 fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
541 __func__, strerror(-ret));
544 g_free(bitmap);
547 static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
549 CPUPPCState *env = cpu_env(cs);
550 /* Init 'val' to avoid "uninitialised value" Valgrind warnings */
551 union {
552 uint32_t u32;
553 uint64_t u64;
554 } val = { };
555 struct kvm_one_reg reg = {
556 .id = id,
557 .addr = (uintptr_t) &val,
559 int ret;
561 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
562 if (ret != 0) {
563 trace_kvm_failed_spr_get(spr, strerror(errno));
564 } else {
565 switch (id & KVM_REG_SIZE_MASK) {
566 case KVM_REG_SIZE_U32:
567 env->spr[spr] = val.u32;
568 break;
570 case KVM_REG_SIZE_U64:
571 env->spr[spr] = val.u64;
572 break;
574 default:
575 /* Don't handle this size yet */
576 abort();
581 static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
583 CPUPPCState *env = cpu_env(cs);
584 union {
585 uint32_t u32;
586 uint64_t u64;
587 } val;
588 struct kvm_one_reg reg = {
589 .id = id,
590 .addr = (uintptr_t) &val,
592 int ret;
594 switch (id & KVM_REG_SIZE_MASK) {
595 case KVM_REG_SIZE_U32:
596 val.u32 = env->spr[spr];
597 break;
599 case KVM_REG_SIZE_U64:
600 val.u64 = env->spr[spr];
601 break;
603 default:
604 /* Don't handle this size yet */
605 abort();
608 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
609 if (ret != 0) {
610 trace_kvm_failed_spr_set(spr, strerror(errno));
614 static int kvm_put_fp(CPUState *cs)
616 CPUPPCState *env = cpu_env(cs);
617 struct kvm_one_reg reg;
618 int i;
619 int ret;
621 if (env->insns_flags & PPC_FLOAT) {
622 uint64_t fpscr = env->fpscr;
623 bool vsx = !!(env->insns_flags2 & PPC2_VSX);
625 reg.id = KVM_REG_PPC_FPSCR;
626 reg.addr = (uintptr_t)&fpscr;
627 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
628 if (ret < 0) {
629 trace_kvm_failed_fpscr_set(strerror(errno));
630 return ret;
633 for (i = 0; i < 32; i++) {
634 uint64_t vsr[2];
635 uint64_t *fpr = cpu_fpr_ptr(env, i);
636 uint64_t *vsrl = cpu_vsrl_ptr(env, i);
638 #if HOST_BIG_ENDIAN
639 vsr[0] = float64_val(*fpr);
640 vsr[1] = *vsrl;
641 #else
642 vsr[0] = *vsrl;
643 vsr[1] = float64_val(*fpr);
644 #endif
645 reg.addr = (uintptr_t) &vsr;
646 reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
648 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
649 if (ret < 0) {
650 trace_kvm_failed_fp_set(vsx ? "VSR" : "FPR", i,
651 strerror(errno));
652 return ret;
657 if (env->insns_flags & PPC_ALTIVEC) {
658 reg.id = KVM_REG_PPC_VSCR;
659 reg.addr = (uintptr_t)&env->vscr;
660 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
661 if (ret < 0) {
662 trace_kvm_failed_vscr_set(strerror(errno));
663 return ret;
666 for (i = 0; i < 32; i++) {
667 reg.id = KVM_REG_PPC_VR(i);
668 reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
669 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
670 if (ret < 0) {
671 trace_kvm_failed_vr_set(i, strerror(errno));
672 return ret;
677 return 0;
680 static int kvm_get_fp(CPUState *cs)
682 CPUPPCState *env = cpu_env(cs);
683 struct kvm_one_reg reg;
684 int i;
685 int ret;
687 if (env->insns_flags & PPC_FLOAT) {
688 uint64_t fpscr;
689 bool vsx = !!(env->insns_flags2 & PPC2_VSX);
691 reg.id = KVM_REG_PPC_FPSCR;
692 reg.addr = (uintptr_t)&fpscr;
693 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
694 if (ret < 0) {
695 trace_kvm_failed_fpscr_get(strerror(errno));
696 return ret;
697 } else {
698 env->fpscr = fpscr;
701 for (i = 0; i < 32; i++) {
702 uint64_t vsr[2];
703 uint64_t *fpr = cpu_fpr_ptr(env, i);
704 uint64_t *vsrl = cpu_vsrl_ptr(env, i);
706 reg.addr = (uintptr_t) &vsr;
707 reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
709 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
710 if (ret < 0) {
711 trace_kvm_failed_fp_get(vsx ? "VSR" : "FPR", i,
712 strerror(errno));
713 return ret;
714 } else {
715 #if HOST_BIG_ENDIAN
716 *fpr = vsr[0];
717 if (vsx) {
718 *vsrl = vsr[1];
720 #else
721 *fpr = vsr[1];
722 if (vsx) {
723 *vsrl = vsr[0];
725 #endif
730 if (env->insns_flags & PPC_ALTIVEC) {
731 reg.id = KVM_REG_PPC_VSCR;
732 reg.addr = (uintptr_t)&env->vscr;
733 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
734 if (ret < 0) {
735 trace_kvm_failed_vscr_get(strerror(errno));
736 return ret;
739 for (i = 0; i < 32; i++) {
740 reg.id = KVM_REG_PPC_VR(i);
741 reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
742 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
743 if (ret < 0) {
744 trace_kvm_failed_vr_get(i, strerror(errno));
745 return ret;
750 return 0;
753 #if defined(TARGET_PPC64)
754 static int kvm_get_vpa(CPUState *cs)
756 PowerPCCPU *cpu = POWERPC_CPU(cs);
757 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
758 struct kvm_one_reg reg;
759 int ret;
761 reg.id = KVM_REG_PPC_VPA_ADDR;
762 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
763 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
764 if (ret < 0) {
765 trace_kvm_failed_vpa_addr_get(strerror(errno));
766 return ret;
769 assert((uintptr_t)&spapr_cpu->slb_shadow_size
770 == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
771 reg.id = KVM_REG_PPC_VPA_SLB;
772 reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
773 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
774 if (ret < 0) {
775 trace_kvm_failed_slb_get(strerror(errno));
776 return ret;
779 assert((uintptr_t)&spapr_cpu->dtl_size
780 == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
781 reg.id = KVM_REG_PPC_VPA_DTL;
782 reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
783 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
784 if (ret < 0) {
785 trace_kvm_failed_dtl_get(strerror(errno));
786 return ret;
789 return 0;
792 static int kvm_put_vpa(CPUState *cs)
794 PowerPCCPU *cpu = POWERPC_CPU(cs);
795 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
796 struct kvm_one_reg reg;
797 int ret;
800 * SLB shadow or DTL can't be registered unless a master VPA is
801 * registered. That means when restoring state, if a VPA *is*
802 * registered, we need to set that up first. If not, we need to
803 * deregister the others before deregistering the master VPA
805 assert(spapr_cpu->vpa_addr
806 || !(spapr_cpu->slb_shadow_addr || spapr_cpu->dtl_addr));
808 if (spapr_cpu->vpa_addr) {
809 reg.id = KVM_REG_PPC_VPA_ADDR;
810 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
811 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
812 if (ret < 0) {
813 trace_kvm_failed_vpa_addr_set(strerror(errno));
814 return ret;
818 assert((uintptr_t)&spapr_cpu->slb_shadow_size
819 == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
820 reg.id = KVM_REG_PPC_VPA_SLB;
821 reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
822 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
823 if (ret < 0) {
824 trace_kvm_failed_slb_set(strerror(errno));
825 return ret;
828 assert((uintptr_t)&spapr_cpu->dtl_size
829 == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
830 reg.id = KVM_REG_PPC_VPA_DTL;
831 reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
832 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
833 if (ret < 0) {
834 trace_kvm_failed_dtl_set(strerror(errno));
835 return ret;
838 if (!spapr_cpu->vpa_addr) {
839 reg.id = KVM_REG_PPC_VPA_ADDR;
840 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
841 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
842 if (ret < 0) {
843 trace_kvm_failed_null_vpa_addr_set(strerror(errno));
844 return ret;
848 return 0;
850 #endif /* TARGET_PPC64 */
852 int kvmppc_put_books_sregs(PowerPCCPU *cpu)
854 CPUPPCState *env = &cpu->env;
855 struct kvm_sregs sregs = { };
856 int i;
858 sregs.pvr = env->spr[SPR_PVR];
860 if (cpu->vhyp) {
861 PPCVirtualHypervisorClass *vhc =
862 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
863 sregs.u.s.sdr1 = vhc->encode_hpt_for_kvm_pr(cpu->vhyp);
864 } else {
865 sregs.u.s.sdr1 = env->spr[SPR_SDR1];
868 /* Sync SLB */
869 #ifdef TARGET_PPC64
870 for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
871 sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
872 if (env->slb[i].esid & SLB_ESID_V) {
873 sregs.u.s.ppc64.slb[i].slbe |= i;
875 sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
877 #endif
879 /* Sync SRs */
880 for (i = 0; i < 16; i++) {
881 sregs.u.s.ppc32.sr[i] = env->sr[i];
884 /* Sync BATs */
885 for (i = 0; i < 8; i++) {
886 /* Beware. We have to swap upper and lower bits here */
887 sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
888 | env->DBAT[1][i];
889 sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
890 | env->IBAT[1][i];
893 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
896 int kvm_arch_put_registers(CPUState *cs, int level)
898 PowerPCCPU *cpu = POWERPC_CPU(cs);
899 CPUPPCState *env = &cpu->env;
900 struct kvm_regs regs;
901 int ret;
902 int i;
904 ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
905 if (ret < 0) {
906 return ret;
909 regs.ctr = env->ctr;
910 regs.lr = env->lr;
911 regs.xer = cpu_read_xer(env);
912 regs.msr = env->msr;
913 regs.pc = env->nip;
915 regs.srr0 = env->spr[SPR_SRR0];
916 regs.srr1 = env->spr[SPR_SRR1];
918 regs.sprg0 = env->spr[SPR_SPRG0];
919 regs.sprg1 = env->spr[SPR_SPRG1];
920 regs.sprg2 = env->spr[SPR_SPRG2];
921 regs.sprg3 = env->spr[SPR_SPRG3];
922 regs.sprg4 = env->spr[SPR_SPRG4];
923 regs.sprg5 = env->spr[SPR_SPRG5];
924 regs.sprg6 = env->spr[SPR_SPRG6];
925 regs.sprg7 = env->spr[SPR_SPRG7];
927 regs.pid = env->spr[SPR_BOOKE_PID];
929 for (i = 0; i < 32; i++) {
930 regs.gpr[i] = env->gpr[i];
933 regs.cr = ppc_get_cr(env);
935 ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
936 if (ret < 0) {
937 return ret;
940 kvm_put_fp(cs);
942 if (env->tlb_dirty) {
943 kvm_sw_tlb_put(cpu);
944 env->tlb_dirty = false;
947 if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
948 ret = kvmppc_put_books_sregs(cpu);
949 if (ret < 0) {
950 return ret;
954 if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
955 kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
958 if (cap_one_reg) {
960 * We deliberately ignore errors here, for kernels which have
961 * the ONE_REG calls, but don't support the specific
962 * registers, there's a reasonable chance things will still
963 * work, at least until we try to migrate.
965 for (i = 0; i < 1024; i++) {
966 uint64_t id = env->spr_cb[i].one_reg_id;
968 if (id != 0) {
969 kvm_put_one_spr(cs, id, i);
973 #ifdef TARGET_PPC64
974 if (FIELD_EX64(env->msr, MSR, TS)) {
975 for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
976 kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
978 for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
979 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
981 kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
982 kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
983 kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
984 kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
985 kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
986 kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
987 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
988 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
989 kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
990 kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
993 if (cap_papr) {
994 if (kvm_put_vpa(cs) < 0) {
995 trace_kvm_failed_put_vpa();
999 kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1001 if (level > KVM_PUT_RUNTIME_STATE) {
1002 kvm_put_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
1004 #endif /* TARGET_PPC64 */
1007 return ret;
1010 static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor)
1012 env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR];
1015 static int kvmppc_get_booke_sregs(PowerPCCPU *cpu)
1017 CPUPPCState *env = &cpu->env;
1018 struct kvm_sregs sregs;
1019 int ret;
1021 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1022 if (ret < 0) {
1023 return ret;
1026 if (sregs.u.e.features & KVM_SREGS_E_BASE) {
1027 env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
1028 env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
1029 env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
1030 env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
1031 env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
1032 env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
1033 env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
1034 env->spr[SPR_DECR] = sregs.u.e.dec;
1035 env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
1036 env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
1037 env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
1040 if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
1041 env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
1042 env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
1043 env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
1044 env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
1045 env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
1048 if (sregs.u.e.features & KVM_SREGS_E_64) {
1049 env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
1052 if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
1053 env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
1056 if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
1057 env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
1058 kvm_sync_excp(env, POWERPC_EXCP_CRITICAL, SPR_BOOKE_IVOR0);
1059 env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
1060 kvm_sync_excp(env, POWERPC_EXCP_MCHECK, SPR_BOOKE_IVOR1);
1061 env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
1062 kvm_sync_excp(env, POWERPC_EXCP_DSI, SPR_BOOKE_IVOR2);
1063 env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
1064 kvm_sync_excp(env, POWERPC_EXCP_ISI, SPR_BOOKE_IVOR3);
1065 env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
1066 kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL, SPR_BOOKE_IVOR4);
1067 env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
1068 kvm_sync_excp(env, POWERPC_EXCP_ALIGN, SPR_BOOKE_IVOR5);
1069 env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
1070 kvm_sync_excp(env, POWERPC_EXCP_PROGRAM, SPR_BOOKE_IVOR6);
1071 env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
1072 kvm_sync_excp(env, POWERPC_EXCP_FPU, SPR_BOOKE_IVOR7);
1073 env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
1074 kvm_sync_excp(env, POWERPC_EXCP_SYSCALL, SPR_BOOKE_IVOR8);
1075 env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
1076 kvm_sync_excp(env, POWERPC_EXCP_APU, SPR_BOOKE_IVOR9);
1077 env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
1078 kvm_sync_excp(env, POWERPC_EXCP_DECR, SPR_BOOKE_IVOR10);
1079 env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
1080 kvm_sync_excp(env, POWERPC_EXCP_FIT, SPR_BOOKE_IVOR11);
1081 env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
1082 kvm_sync_excp(env, POWERPC_EXCP_WDT, SPR_BOOKE_IVOR12);
1083 env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
1084 kvm_sync_excp(env, POWERPC_EXCP_DTLB, SPR_BOOKE_IVOR13);
1085 env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
1086 kvm_sync_excp(env, POWERPC_EXCP_ITLB, SPR_BOOKE_IVOR14);
1087 env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
1088 kvm_sync_excp(env, POWERPC_EXCP_DEBUG, SPR_BOOKE_IVOR15);
1090 if (sregs.u.e.features & KVM_SREGS_E_SPE) {
1091 env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
1092 kvm_sync_excp(env, POWERPC_EXCP_SPEU, SPR_BOOKE_IVOR32);
1093 env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
1094 kvm_sync_excp(env, POWERPC_EXCP_EFPDI, SPR_BOOKE_IVOR33);
1095 env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
1096 kvm_sync_excp(env, POWERPC_EXCP_EFPRI, SPR_BOOKE_IVOR34);
1099 if (sregs.u.e.features & KVM_SREGS_E_PM) {
1100 env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
1101 kvm_sync_excp(env, POWERPC_EXCP_EPERFM, SPR_BOOKE_IVOR35);
1104 if (sregs.u.e.features & KVM_SREGS_E_PC) {
1105 env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
1106 kvm_sync_excp(env, POWERPC_EXCP_DOORI, SPR_BOOKE_IVOR36);
1107 env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
1108 kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37);
1112 if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
1113 env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
1114 env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
1115 env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
1116 env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
1117 env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
1118 env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
1119 env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
1120 env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
1121 env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
1122 env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
1125 if (sregs.u.e.features & KVM_SREGS_EXP) {
1126 env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
1129 if (sregs.u.e.features & KVM_SREGS_E_PD) {
1130 env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
1131 env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
1134 if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
1135 env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
1136 env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
1137 env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
1139 if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
1140 env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
1141 env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
1145 return 0;
1148 static int kvmppc_get_books_sregs(PowerPCCPU *cpu)
1150 CPUPPCState *env = &cpu->env;
1151 struct kvm_sregs sregs;
1152 int ret;
1153 int i;
1155 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1156 if (ret < 0) {
1157 return ret;
1160 if (!cpu->vhyp) {
1161 ppc_store_sdr1(env, sregs.u.s.sdr1);
1164 /* Sync SLB */
1165 #ifdef TARGET_PPC64
1167 * The packed SLB array we get from KVM_GET_SREGS only contains
1168 * information about valid entries. So we flush our internal copy
1169 * to get rid of stale ones, then put all valid SLB entries back
1170 * in.
1172 memset(env->slb, 0, sizeof(env->slb));
1173 for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
1174 target_ulong rb = sregs.u.s.ppc64.slb[i].slbe;
1175 target_ulong rs = sregs.u.s.ppc64.slb[i].slbv;
1177 * Only restore valid entries
1179 if (rb & SLB_ESID_V) {
1180 ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs);
1183 #endif
1185 /* Sync SRs */
1186 for (i = 0; i < 16; i++) {
1187 env->sr[i] = sregs.u.s.ppc32.sr[i];
1190 /* Sync BATs */
1191 for (i = 0; i < 8; i++) {
1192 env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
1193 env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
1194 env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
1195 env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
1198 return 0;
1201 int kvm_arch_get_registers(CPUState *cs)
1203 PowerPCCPU *cpu = POWERPC_CPU(cs);
1204 CPUPPCState *env = &cpu->env;
1205 struct kvm_regs regs;
1206 int i, ret;
1208 ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
1209 if (ret < 0) {
1210 return ret;
1213 ppc_set_cr(env, regs.cr);
1214 env->ctr = regs.ctr;
1215 env->lr = regs.lr;
1216 cpu_write_xer(env, regs.xer);
1217 env->msr = regs.msr;
1218 env->nip = regs.pc;
1220 env->spr[SPR_SRR0] = regs.srr0;
1221 env->spr[SPR_SRR1] = regs.srr1;
1223 env->spr[SPR_SPRG0] = regs.sprg0;
1224 env->spr[SPR_SPRG1] = regs.sprg1;
1225 env->spr[SPR_SPRG2] = regs.sprg2;
1226 env->spr[SPR_SPRG3] = regs.sprg3;
1227 env->spr[SPR_SPRG4] = regs.sprg4;
1228 env->spr[SPR_SPRG5] = regs.sprg5;
1229 env->spr[SPR_SPRG6] = regs.sprg6;
1230 env->spr[SPR_SPRG7] = regs.sprg7;
1232 env->spr[SPR_BOOKE_PID] = regs.pid;
1234 for (i = 0; i < 32; i++) {
1235 env->gpr[i] = regs.gpr[i];
1238 kvm_get_fp(cs);
1240 if (cap_booke_sregs) {
1241 ret = kvmppc_get_booke_sregs(cpu);
1242 if (ret < 0) {
1243 return ret;
1247 if (cap_segstate) {
1248 ret = kvmppc_get_books_sregs(cpu);
1249 if (ret < 0) {
1250 return ret;
1254 if (cap_hior) {
1255 kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
1258 if (cap_one_reg) {
1260 * We deliberately ignore errors here, for kernels which have
1261 * the ONE_REG calls, but don't support the specific
1262 * registers, there's a reasonable chance things will still
1263 * work, at least until we try to migrate.
1265 for (i = 0; i < 1024; i++) {
1266 uint64_t id = env->spr_cb[i].one_reg_id;
1268 if (id != 0) {
1269 kvm_get_one_spr(cs, id, i);
1273 #ifdef TARGET_PPC64
1274 if (FIELD_EX64(env->msr, MSR, TS)) {
1275 for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
1276 kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
1278 for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
1279 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
1281 kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
1282 kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
1283 kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
1284 kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
1285 kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
1286 kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
1287 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
1288 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
1289 kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
1290 kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
1293 if (cap_papr) {
1294 if (kvm_get_vpa(cs) < 0) {
1295 trace_kvm_failed_get_vpa();
1299 kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1300 kvm_get_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
1301 #endif
1304 return 0;
1307 int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
1309 unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
1311 if (irq != PPC_INTERRUPT_EXT) {
1312 return 0;
1315 if (!cap_interrupt_unset) {
1316 return 0;
1319 kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
1321 return 0;
1324 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1326 return;
1329 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1331 return MEMTXATTRS_UNSPECIFIED;
1334 int kvm_arch_process_async_events(CPUState *cs)
1336 return cs->halted;
1339 static int kvmppc_handle_halt(PowerPCCPU *cpu)
1341 CPUState *cs = CPU(cpu);
1342 CPUPPCState *env = &cpu->env;
1344 if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) &&
1345 FIELD_EX64(env->msr, MSR, EE)) {
1346 cs->halted = 1;
1347 cs->exception_index = EXCP_HLT;
1350 return 0;
1353 /* map dcr access to existing qemu dcr emulation */
1354 static int kvmppc_handle_dcr_read(CPUPPCState *env,
1355 uint32_t dcrn, uint32_t *data)
1357 if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) {
1358 fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
1361 return 0;
1364 static int kvmppc_handle_dcr_write(CPUPPCState *env,
1365 uint32_t dcrn, uint32_t data)
1367 if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) {
1368 fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
1371 return 0;
1374 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1376 /* Mixed endian case is not handled */
1377 uint32_t sc = debug_inst_opcode;
1379 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1380 sizeof(sc), 0) ||
1381 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) {
1382 return -EINVAL;
1385 return 0;
1388 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1390 uint32_t sc;
1392 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) ||
1393 sc != debug_inst_opcode ||
1394 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1395 sizeof(sc), 1)) {
1396 return -EINVAL;
1399 return 0;
1402 static int find_hw_breakpoint(target_ulong addr, int type)
1404 int n;
1406 assert((nb_hw_breakpoint + nb_hw_watchpoint)
1407 <= ARRAY_SIZE(hw_debug_points));
1409 for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1410 if (hw_debug_points[n].addr == addr &&
1411 hw_debug_points[n].type == type) {
1412 return n;
1416 return -1;
1419 static int find_hw_watchpoint(target_ulong addr, int *flag)
1421 int n;
1423 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS);
1424 if (n >= 0) {
1425 *flag = BP_MEM_ACCESS;
1426 return n;
1429 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE);
1430 if (n >= 0) {
1431 *flag = BP_MEM_WRITE;
1432 return n;
1435 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ);
1436 if (n >= 0) {
1437 *flag = BP_MEM_READ;
1438 return n;
1441 return -1;
1444 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
1446 const unsigned breakpoint_index = nb_hw_breakpoint + nb_hw_watchpoint;
1447 if (breakpoint_index >= ARRAY_SIZE(hw_debug_points)) {
1448 return -ENOBUFS;
1451 hw_debug_points[breakpoint_index].addr = addr;
1452 hw_debug_points[breakpoint_index].type = type;
1454 switch (type) {
1455 case GDB_BREAKPOINT_HW:
1456 if (nb_hw_breakpoint >= max_hw_breakpoint) {
1457 return -ENOBUFS;
1460 if (find_hw_breakpoint(addr, type) >= 0) {
1461 return -EEXIST;
1464 nb_hw_breakpoint++;
1465 break;
1467 case GDB_WATCHPOINT_WRITE:
1468 case GDB_WATCHPOINT_READ:
1469 case GDB_WATCHPOINT_ACCESS:
1470 if (nb_hw_watchpoint >= max_hw_watchpoint) {
1471 return -ENOBUFS;
1474 if (find_hw_breakpoint(addr, type) >= 0) {
1475 return -EEXIST;
1478 nb_hw_watchpoint++;
1479 break;
1481 default:
1482 return -ENOSYS;
1485 return 0;
1488 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
1490 int n;
1492 n = find_hw_breakpoint(addr, type);
1493 if (n < 0) {
1494 return -ENOENT;
1497 switch (type) {
1498 case GDB_BREAKPOINT_HW:
1499 nb_hw_breakpoint--;
1500 break;
1502 case GDB_WATCHPOINT_WRITE:
1503 case GDB_WATCHPOINT_READ:
1504 case GDB_WATCHPOINT_ACCESS:
1505 nb_hw_watchpoint--;
1506 break;
1508 default:
1509 return -ENOSYS;
1511 hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint];
1513 return 0;
1516 void kvm_arch_remove_all_hw_breakpoints(void)
1518 nb_hw_breakpoint = nb_hw_watchpoint = 0;
1521 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1523 int n;
1525 /* Software Breakpoint updates */
1526 if (kvm_sw_breakpoints_active(cs)) {
1527 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1530 assert((nb_hw_breakpoint + nb_hw_watchpoint)
1531 <= ARRAY_SIZE(hw_debug_points));
1532 assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp));
1534 if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1535 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1536 memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp));
1537 for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1538 switch (hw_debug_points[n].type) {
1539 case GDB_BREAKPOINT_HW:
1540 dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT;
1541 break;
1542 case GDB_WATCHPOINT_WRITE:
1543 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE;
1544 break;
1545 case GDB_WATCHPOINT_READ:
1546 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ;
1547 break;
1548 case GDB_WATCHPOINT_ACCESS:
1549 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE |
1550 KVMPPC_DEBUG_WATCH_READ;
1551 break;
1552 default:
1553 cpu_abort(cs, "Unsupported breakpoint type\n");
1555 dbg->arch.bp[n].addr = hw_debug_points[n].addr;
1560 static int kvm_handle_hw_breakpoint(CPUState *cs,
1561 struct kvm_debug_exit_arch *arch_info)
1563 int handle = DEBUG_RETURN_GUEST;
1564 int n;
1565 int flag = 0;
1567 if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1568 if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) {
1569 n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW);
1570 if (n >= 0) {
1571 handle = DEBUG_RETURN_GDB;
1573 } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ |
1574 KVMPPC_DEBUG_WATCH_WRITE)) {
1575 n = find_hw_watchpoint(arch_info->address, &flag);
1576 if (n >= 0) {
1577 handle = DEBUG_RETURN_GDB;
1578 cs->watchpoint_hit = &hw_watchpoint;
1579 hw_watchpoint.vaddr = hw_debug_points[n].addr;
1580 hw_watchpoint.flags = flag;
1584 return handle;
1587 static int kvm_handle_singlestep(void)
1589 return DEBUG_RETURN_GDB;
1592 static int kvm_handle_sw_breakpoint(void)
1594 return DEBUG_RETURN_GDB;
1597 static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run)
1599 CPUState *cs = CPU(cpu);
1600 CPUPPCState *env = &cpu->env;
1601 struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1603 if (cs->singlestep_enabled) {
1604 return kvm_handle_singlestep();
1607 if (arch_info->status) {
1608 return kvm_handle_hw_breakpoint(cs, arch_info);
1611 if (kvm_find_sw_breakpoint(cs, arch_info->address)) {
1612 return kvm_handle_sw_breakpoint();
1616 * QEMU is not able to handle debug exception, so inject
1617 * program exception to guest;
1618 * Yes program exception NOT debug exception !!
1619 * When QEMU is using debug resources then debug exception must
1620 * be always set. To achieve this we set MSR_DE and also set
1621 * MSRP_DEP so guest cannot change MSR_DE.
1622 * When emulating debug resource for guest we want guest
1623 * to control MSR_DE (enable/disable debug interrupt on need).
1624 * Supporting both configurations are NOT possible.
1625 * So the result is that we cannot share debug resources
1626 * between QEMU and Guest on BOOKE architecture.
1627 * In the current design QEMU gets the priority over guest,
1628 * this means that if QEMU is using debug resources then guest
1629 * cannot use them;
1630 * For software breakpoint QEMU uses a privileged instruction;
1631 * So there cannot be any reason that we are here for guest
1632 * set debug exception, only possibility is guest executed a
1633 * privileged / illegal instruction and that's why we are
1634 * injecting a program interrupt.
1636 cpu_synchronize_state(cs);
1638 * env->nip is PC, so increment this by 4 to use
1639 * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4.
1641 env->nip += 4;
1642 cs->exception_index = POWERPC_EXCP_PROGRAM;
1643 env->error_code = POWERPC_EXCP_INVAL;
1644 ppc_cpu_do_interrupt(cs);
1646 return DEBUG_RETURN_GUEST;
1649 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1651 PowerPCCPU *cpu = POWERPC_CPU(cs);
1652 CPUPPCState *env = &cpu->env;
1653 int ret;
1655 bql_lock();
1657 switch (run->exit_reason) {
1658 case KVM_EXIT_DCR:
1659 if (run->dcr.is_write) {
1660 trace_kvm_handle_dcr_write();
1661 ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
1662 } else {
1663 trace_kvm_handle_dcr_read();
1664 ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
1666 break;
1667 case KVM_EXIT_HLT:
1668 trace_kvm_handle_halt();
1669 ret = kvmppc_handle_halt(cpu);
1670 break;
1671 #if defined(TARGET_PPC64)
1672 case KVM_EXIT_PAPR_HCALL:
1673 trace_kvm_handle_papr_hcall(run->papr_hcall.nr);
1674 run->papr_hcall.ret = spapr_hypercall(cpu,
1675 run->papr_hcall.nr,
1676 run->papr_hcall.args);
1677 ret = 0;
1678 break;
1679 #endif
1680 case KVM_EXIT_EPR:
1681 trace_kvm_handle_epr();
1682 run->epr.epr = ldl_phys(cs->as, env->mpic_iack);
1683 ret = 0;
1684 break;
1685 case KVM_EXIT_WATCHDOG:
1686 trace_kvm_handle_watchdog_expiry();
1687 watchdog_perform_action();
1688 ret = 0;
1689 break;
1691 case KVM_EXIT_DEBUG:
1692 trace_kvm_handle_debug_exception();
1693 if (kvm_handle_debug(cpu, run)) {
1694 ret = EXCP_DEBUG;
1695 break;
1697 /* re-enter, this exception was guest-internal */
1698 ret = 0;
1699 break;
1701 #if defined(TARGET_PPC64)
1702 case KVM_EXIT_NMI:
1703 trace_kvm_handle_nmi_exception();
1704 ret = kvm_handle_nmi(cpu, run);
1705 break;
1706 #endif
1708 default:
1709 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1710 ret = -1;
1711 break;
1714 bql_unlock();
1715 return ret;
1718 int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1720 CPUState *cs = CPU(cpu);
1721 uint32_t bits = tsr_bits;
1722 struct kvm_one_reg reg = {
1723 .id = KVM_REG_PPC_OR_TSR,
1724 .addr = (uintptr_t) &bits,
1727 if (!kvm_enabled()) {
1728 return 0;
1731 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1734 int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1737 CPUState *cs = CPU(cpu);
1738 uint32_t bits = tsr_bits;
1739 struct kvm_one_reg reg = {
1740 .id = KVM_REG_PPC_CLEAR_TSR,
1741 .addr = (uintptr_t) &bits,
1744 if (!kvm_enabled()) {
1745 return 0;
1748 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1751 int kvmppc_set_tcr(PowerPCCPU *cpu)
1753 CPUState *cs = CPU(cpu);
1754 CPUPPCState *env = &cpu->env;
1755 uint32_t tcr = env->spr[SPR_BOOKE_TCR];
1757 struct kvm_one_reg reg = {
1758 .id = KVM_REG_PPC_TCR,
1759 .addr = (uintptr_t) &tcr,
1762 if (!kvm_enabled()) {
1763 return 0;
1766 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1769 int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
1771 CPUState *cs = CPU(cpu);
1772 int ret;
1774 if (!kvm_enabled()) {
1775 return -1;
1778 if (!cap_ppc_watchdog) {
1779 printf("warning: KVM does not support watchdog");
1780 return -1;
1783 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0);
1784 if (ret < 0) {
1785 fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
1786 __func__, strerror(-ret));
1787 return ret;
1790 return ret;
1793 static int read_cpuinfo(const char *field, char *value, int len)
1795 FILE *f;
1796 int ret = -1;
1797 int field_len = strlen(field);
1798 char line[512];
1800 f = fopen("/proc/cpuinfo", "r");
1801 if (!f) {
1802 return -1;
1805 do {
1806 if (!fgets(line, sizeof(line), f)) {
1807 break;
1809 if (!strncmp(line, field, field_len)) {
1810 pstrcpy(value, len, line);
1811 ret = 0;
1812 break;
1814 } while (*line);
1816 fclose(f);
1818 return ret;
1821 static uint32_t kvmppc_get_tbfreq_procfs(void)
1823 char line[512];
1824 char *ns;
1825 uint32_t tbfreq_fallback = NANOSECONDS_PER_SECOND;
1826 uint32_t tbfreq_procfs;
1828 if (read_cpuinfo("timebase", line, sizeof(line))) {
1829 return tbfreq_fallback;
1832 ns = strchr(line, ':');
1833 if (!ns) {
1834 return tbfreq_fallback;
1837 tbfreq_procfs = atoi(++ns);
1839 /* 0 is certainly not acceptable by the guest, return fallback value */
1840 return tbfreq_procfs ? tbfreq_procfs : tbfreq_fallback;
1843 uint32_t kvmppc_get_tbfreq(void)
1845 static uint32_t cached_tbfreq;
1847 if (!cached_tbfreq) {
1848 cached_tbfreq = kvmppc_get_tbfreq_procfs();
1851 return cached_tbfreq;
1854 bool kvmppc_get_host_serial(char **value)
1856 return g_file_get_contents("/proc/device-tree/system-id", value, NULL,
1857 NULL);
1860 bool kvmppc_get_host_model(char **value)
1862 return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL);
1865 /* Try to find a device tree node for a CPU with clock-frequency property */
1866 static int kvmppc_find_cpu_dt(char *buf, int buf_len)
1868 struct dirent *dirp;
1869 DIR *dp;
1871 dp = opendir(PROC_DEVTREE_CPU);
1872 if (!dp) {
1873 printf("Can't open directory " PROC_DEVTREE_CPU "\n");
1874 return -1;
1877 buf[0] = '\0';
1878 while ((dirp = readdir(dp)) != NULL) {
1879 FILE *f;
1881 /* Don't accidentally read from the current and parent directories */
1882 if (strcmp(dirp->d_name, ".") == 0 || strcmp(dirp->d_name, "..") == 0) {
1883 continue;
1886 snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
1887 dirp->d_name);
1888 f = fopen(buf, "r");
1889 if (f) {
1890 snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
1891 fclose(f);
1892 break;
1894 buf[0] = '\0';
1896 closedir(dp);
1897 if (buf[0] == '\0') {
1898 printf("Unknown host!\n");
1899 return -1;
1902 return 0;
1905 static uint64_t kvmppc_read_int_dt(const char *filename)
1907 union {
1908 uint32_t v32;
1909 uint64_t v64;
1910 } u;
1911 FILE *f;
1912 int len;
1914 f = fopen(filename, "rb");
1915 if (!f) {
1916 return -1;
1919 len = fread(&u, 1, sizeof(u), f);
1920 fclose(f);
1921 switch (len) {
1922 case 4:
1923 /* property is a 32-bit quantity */
1924 return be32_to_cpu(u.v32);
1925 case 8:
1926 return be64_to_cpu(u.v64);
1929 return 0;
1933 * Read a CPU node property from the host device tree that's a single
1934 * integer (32-bit or 64-bit). Returns 0 if anything goes wrong
1935 * (can't find or open the property, or doesn't understand the format)
1937 static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
1939 char buf[PATH_MAX], *tmp;
1940 uint64_t val;
1942 if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
1943 return -1;
1946 tmp = g_strdup_printf("%s/%s", buf, propname);
1947 val = kvmppc_read_int_dt(tmp);
1948 g_free(tmp);
1950 return val;
1953 uint64_t kvmppc_get_clockfreq(void)
1955 return kvmppc_read_int_cpu_dt("clock-frequency");
1958 static int kvmppc_get_dec_bits(void)
1960 int nr_bits = kvmppc_read_int_cpu_dt("ibm,dec-bits");
1962 if (nr_bits > 0) {
1963 return nr_bits;
1965 return 0;
1968 static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
1970 CPUState *cs = env_cpu(env);
1972 if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
1973 !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
1974 return 0;
1977 return 1;
1980 int kvmppc_get_hasidle(CPUPPCState *env)
1982 struct kvm_ppc_pvinfo pvinfo;
1984 if (!kvmppc_get_pvinfo(env, &pvinfo) &&
1985 (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
1986 return 1;
1989 return 0;
1992 int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
1994 uint32_t *hc = (uint32_t *)buf;
1995 struct kvm_ppc_pvinfo pvinfo;
1997 if (!kvmppc_get_pvinfo(env, &pvinfo)) {
1998 memcpy(buf, pvinfo.hcall, buf_len);
1999 return 0;
2003 * Fallback to always fail hypercalls regardless of endianness:
2005 * tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian)
2006 * li r3, -1
2007 * b .+8 (becomes nop in wrong endian)
2008 * bswap32(li r3, -1)
2011 hc[0] = cpu_to_be32(0x08000048);
2012 hc[1] = cpu_to_be32(0x3860ffff);
2013 hc[2] = cpu_to_be32(0x48000008);
2014 hc[3] = cpu_to_be32(bswap32(0x3860ffff));
2016 return 1;
2019 static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall)
2021 return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1);
2024 void kvmppc_enable_logical_ci_hcalls(void)
2027 * FIXME: it would be nice if we could detect the cases where
2028 * we're using a device which requires the in kernel
2029 * implementation of these hcalls, but the kernel lacks them and
2030 * produce a warning.
2032 kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD);
2033 kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE);
2036 void kvmppc_enable_set_mode_hcall(void)
2038 kvmppc_enable_hcall(kvm_state, H_SET_MODE);
2041 void kvmppc_enable_clear_ref_mod_hcalls(void)
2043 kvmppc_enable_hcall(kvm_state, H_CLEAR_REF);
2044 kvmppc_enable_hcall(kvm_state, H_CLEAR_MOD);
2047 void kvmppc_enable_h_page_init(void)
2049 kvmppc_enable_hcall(kvm_state, H_PAGE_INIT);
2052 void kvmppc_enable_h_rpt_invalidate(void)
2054 kvmppc_enable_hcall(kvm_state, H_RPT_INVALIDATE);
2057 void kvmppc_set_papr(PowerPCCPU *cpu)
2059 CPUState *cs = CPU(cpu);
2060 int ret;
2062 if (!kvm_enabled()) {
2063 return;
2066 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0);
2067 if (ret) {
2068 error_report("This vCPU type or KVM version does not support PAPR");
2069 exit(1);
2073 * Update the capability flag so we sync the right information
2074 * with kvm
2076 cap_papr = 1;
2079 int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr)
2081 return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &compat_pvr);
2084 void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
2086 CPUState *cs = CPU(cpu);
2087 int ret;
2089 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy);
2090 if (ret && mpic_proxy) {
2091 error_report("This KVM version does not support EPR");
2092 exit(1);
2096 bool kvmppc_get_fwnmi(void)
2098 return cap_fwnmi;
2101 int kvmppc_set_fwnmi(PowerPCCPU *cpu)
2103 CPUState *cs = CPU(cpu);
2105 return kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_FWNMI, 0);
2108 int kvmppc_smt_threads(void)
2110 return cap_ppc_smt ? cap_ppc_smt : 1;
2113 int kvmppc_set_smt_threads(int smt)
2115 int ret;
2117 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_SMT, 0, smt, 0);
2118 if (!ret) {
2119 cap_ppc_smt = smt;
2121 return ret;
2124 void kvmppc_error_append_smt_possible_hint(Error *const *errp)
2126 int i;
2127 GString *g;
2128 char *s;
2130 assert(kvm_enabled());
2131 if (cap_ppc_smt_possible) {
2132 g = g_string_new("Available VSMT modes:");
2133 for (i = 63; i >= 0; i--) {
2134 if ((1UL << i) & cap_ppc_smt_possible) {
2135 g_string_append_printf(g, " %lu", (1UL << i));
2138 s = g_string_free(g, false);
2139 error_append_hint(errp, "%s.\n", s);
2140 g_free(s);
2141 } else {
2142 error_append_hint(errp,
2143 "This KVM seems to be too old to support VSMT.\n");
2148 #ifdef TARGET_PPC64
2149 uint64_t kvmppc_vrma_limit(unsigned int hash_shift)
2151 struct kvm_ppc_smmu_info info;
2152 long rampagesize, best_page_shift;
2153 int i;
2156 * Find the largest hardware supported page size that's less than
2157 * or equal to the (logical) backing page size of guest RAM
2159 kvm_get_smmu_info(&info, &error_fatal);
2160 rampagesize = qemu_minrampagesize();
2161 best_page_shift = 0;
2163 for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
2164 struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];
2166 if (!sps->page_shift) {
2167 continue;
2170 if ((sps->page_shift > best_page_shift)
2171 && ((1UL << sps->page_shift) <= rampagesize)) {
2172 best_page_shift = sps->page_shift;
2176 return 1ULL << (best_page_shift + hash_shift - 7);
2178 #endif
2180 bool kvmppc_spapr_use_multitce(void)
2182 return cap_spapr_multitce;
2185 int kvmppc_spapr_enable_inkernel_multitce(void)
2187 int ret;
2189 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2190 H_PUT_TCE_INDIRECT, 1);
2191 if (!ret) {
2192 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2193 H_STUFF_TCE, 1);
2196 return ret;
2199 void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t page_shift,
2200 uint64_t bus_offset, uint32_t nb_table,
2201 int *pfd, bool need_vfio)
2203 long len;
2204 int fd;
2205 void *table;
2208 * Must set fd to -1 so we don't try to munmap when called for
2209 * destroying the table, which the upper layers -will- do
2211 *pfd = -1;
2212 if (!cap_spapr_tce || (need_vfio && !cap_spapr_vfio)) {
2213 return NULL;
2216 if (cap_spapr_tce_64) {
2217 struct kvm_create_spapr_tce_64 args = {
2218 .liobn = liobn,
2219 .page_shift = page_shift,
2220 .offset = bus_offset >> page_shift,
2221 .size = nb_table,
2222 .flags = 0
2224 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE_64, &args);
2225 if (fd < 0) {
2226 fprintf(stderr,
2227 "KVM: Failed to create TCE64 table for liobn 0x%x\n",
2228 liobn);
2229 return NULL;
2231 } else if (cap_spapr_tce) {
2232 uint64_t window_size = (uint64_t) nb_table << page_shift;
2233 struct kvm_create_spapr_tce args = {
2234 .liobn = liobn,
2235 .window_size = window_size,
2237 if ((window_size != args.window_size) || bus_offset) {
2238 return NULL;
2240 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
2241 if (fd < 0) {
2242 fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
2243 liobn);
2244 return NULL;
2246 } else {
2247 return NULL;
2250 len = nb_table * sizeof(uint64_t);
2251 /* FIXME: round this up to page size */
2253 table = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
2254 if (table == MAP_FAILED) {
2255 fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
2256 liobn);
2257 close(fd);
2258 return NULL;
2261 *pfd = fd;
2262 return table;
2265 int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table)
2267 long len;
2269 if (fd < 0) {
2270 return -1;
2273 len = nb_table * sizeof(uint64_t);
2274 if ((munmap(table, len) < 0) ||
2275 (close(fd) < 0)) {
2276 fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
2277 strerror(errno));
2278 /* Leak the table */
2281 return 0;
2284 int kvmppc_reset_htab(int shift_hint)
2286 uint32_t shift = shift_hint;
2288 if (!kvm_enabled()) {
2289 /* Full emulation, tell caller to allocate htab itself */
2290 return 0;
2292 if (kvm_vm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
2293 int ret;
2294 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
2295 if (ret == -ENOTTY) {
2297 * At least some versions of PR KVM advertise the
2298 * capability, but don't implement the ioctl(). Oops.
2299 * Return 0 so that we allocate the htab in qemu, as is
2300 * correct for PR.
2302 return 0;
2303 } else if (ret < 0) {
2304 return ret;
2306 return shift;
2310 * We have a kernel that predates the htab reset calls. For PR
2311 * KVM, we need to allocate the htab ourselves, for an HV KVM of
2312 * this era, it has allocated a 16MB fixed size hash table
2313 * already.
2315 if (kvmppc_is_pr(kvm_state)) {
2316 /* PR - tell caller to allocate htab */
2317 return 0;
2318 } else {
2319 /* HV - assume 16MB kernel allocated htab */
2320 return 24;
2324 static inline uint32_t mfpvr(void)
2326 uint32_t pvr;
2328 asm ("mfpvr %0"
2329 : "=r"(pvr));
2330 return pvr;
2333 static void alter_insns(uint64_t *word, uint64_t flags, bool on)
2335 if (on) {
2336 *word |= flags;
2337 } else {
2338 *word &= ~flags;
2342 static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data)
2344 PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
2345 uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
2346 uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");
2348 /* Now fix up the class with information we can query from the host */
2349 pcc->pvr = mfpvr();
2351 alter_insns(&pcc->insns_flags, PPC_ALTIVEC,
2352 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_ALTIVEC);
2353 alter_insns(&pcc->insns_flags2, PPC2_VSX,
2354 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_VSX);
2355 alter_insns(&pcc->insns_flags2, PPC2_DFP,
2356 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_DFP);
2358 if (dcache_size != -1) {
2359 pcc->l1_dcache_size = dcache_size;
2362 if (icache_size != -1) {
2363 pcc->l1_icache_size = icache_size;
2366 #if defined(TARGET_PPC64)
2367 pcc->radix_page_info = kvmppc_get_radix_page_info();
2368 #endif /* defined(TARGET_PPC64) */
2371 bool kvmppc_has_cap_epr(void)
2373 return cap_epr;
2376 bool kvmppc_has_cap_fixup_hcalls(void)
2378 return cap_fixup_hcalls;
2381 bool kvmppc_has_cap_htm(void)
2383 return cap_htm;
2386 bool kvmppc_has_cap_mmu_radix(void)
2388 return cap_mmu_radix;
2391 bool kvmppc_has_cap_mmu_hash_v3(void)
2393 return cap_mmu_hash_v3;
2396 static bool kvmppc_power8_host(void)
2398 bool ret = false;
2399 #ifdef TARGET_PPC64
2401 uint32_t base_pvr = CPU_POWERPC_POWER_SERVER_MASK & mfpvr();
2402 ret = (base_pvr == CPU_POWERPC_POWER8E_BASE) ||
2403 (base_pvr == CPU_POWERPC_POWER8NVL_BASE) ||
2404 (base_pvr == CPU_POWERPC_POWER8_BASE);
2406 #endif /* TARGET_PPC64 */
2407 return ret;
2410 static int parse_cap_ppc_safe_cache(struct kvm_ppc_cpu_char c)
2412 bool l1d_thread_priv_req = !kvmppc_power8_host();
2414 if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_L1D_FLUSH_PR) {
2415 return 2;
2416 } else if ((!l1d_thread_priv_req ||
2417 c.character & c.character_mask & H_CPU_CHAR_L1D_THREAD_PRIV) &&
2418 (c.character & c.character_mask
2419 & (H_CPU_CHAR_L1D_FLUSH_ORI30 | H_CPU_CHAR_L1D_FLUSH_TRIG2))) {
2420 return 1;
2423 return 0;
2426 static int parse_cap_ppc_safe_bounds_check(struct kvm_ppc_cpu_char c)
2428 if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_BNDS_CHK_SPEC_BAR) {
2429 return 2;
2430 } else if (c.character & c.character_mask & H_CPU_CHAR_SPEC_BAR_ORI31) {
2431 return 1;
2434 return 0;
2437 static int parse_cap_ppc_safe_indirect_branch(struct kvm_ppc_cpu_char c)
2439 if ((~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) &&
2440 (~c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) &&
2441 (~c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED)) {
2442 return SPAPR_CAP_FIXED_NA;
2443 } else if (c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) {
2444 return SPAPR_CAP_WORKAROUND;
2445 } else if (c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) {
2446 return SPAPR_CAP_FIXED_CCD;
2447 } else if (c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED) {
2448 return SPAPR_CAP_FIXED_IBS;
2451 return 0;
2454 static int parse_cap_ppc_count_cache_flush_assist(struct kvm_ppc_cpu_char c)
2456 if (c.character & c.character_mask & H_CPU_CHAR_BCCTR_FLUSH_ASSIST) {
2457 return 1;
2459 return 0;
2462 bool kvmppc_has_cap_xive(void)
2464 return cap_xive;
2467 static void kvmppc_get_cpu_characteristics(KVMState *s)
2469 struct kvm_ppc_cpu_char c;
2470 int ret;
2472 /* Assume broken */
2473 cap_ppc_safe_cache = 0;
2474 cap_ppc_safe_bounds_check = 0;
2475 cap_ppc_safe_indirect_branch = 0;
2477 ret = kvm_vm_check_extension(s, KVM_CAP_PPC_GET_CPU_CHAR);
2478 if (!ret) {
2479 return;
2481 ret = kvm_vm_ioctl(s, KVM_PPC_GET_CPU_CHAR, &c);
2482 if (ret < 0) {
2483 return;
2486 cap_ppc_safe_cache = parse_cap_ppc_safe_cache(c);
2487 cap_ppc_safe_bounds_check = parse_cap_ppc_safe_bounds_check(c);
2488 cap_ppc_safe_indirect_branch = parse_cap_ppc_safe_indirect_branch(c);
2489 cap_ppc_count_cache_flush_assist =
2490 parse_cap_ppc_count_cache_flush_assist(c);
2493 int kvmppc_get_cap_safe_cache(void)
2495 return cap_ppc_safe_cache;
2498 int kvmppc_get_cap_safe_bounds_check(void)
2500 return cap_ppc_safe_bounds_check;
2503 int kvmppc_get_cap_safe_indirect_branch(void)
2505 return cap_ppc_safe_indirect_branch;
2508 int kvmppc_get_cap_count_cache_flush_assist(void)
2510 return cap_ppc_count_cache_flush_assist;
2513 bool kvmppc_has_cap_nested_kvm_hv(void)
2515 return !!cap_ppc_nested_kvm_hv;
2518 int kvmppc_set_cap_nested_kvm_hv(int enable)
2520 return kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_NESTED_HV, 0, enable);
2523 bool kvmppc_has_cap_spapr_vfio(void)
2525 return cap_spapr_vfio;
2528 int kvmppc_get_cap_large_decr(void)
2530 return cap_large_decr;
2533 int kvmppc_enable_cap_large_decr(PowerPCCPU *cpu, int enable)
2535 CPUState *cs = CPU(cpu);
2536 uint64_t lpcr = 0;
2538 kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2539 /* Do we need to modify the LPCR? */
2540 if (!!(lpcr & LPCR_LD) != !!enable) {
2541 if (enable) {
2542 lpcr |= LPCR_LD;
2543 } else {
2544 lpcr &= ~LPCR_LD;
2546 kvm_set_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2547 kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2549 if (!!(lpcr & LPCR_LD) != !!enable) {
2550 return -1;
2554 return 0;
2557 int kvmppc_has_cap_rpt_invalidate(void)
2559 return cap_rpt_invalidate;
2562 bool kvmppc_supports_ail_3(void)
2564 return cap_ail_mode_3;
2567 PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void)
2569 uint32_t host_pvr = mfpvr();
2570 PowerPCCPUClass *pvr_pcc;
2572 pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
2573 if (pvr_pcc == NULL) {
2574 pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr);
2577 return pvr_pcc;
2580 static void pseries_machine_class_fixup(ObjectClass *oc, void *opaque)
2582 MachineClass *mc = MACHINE_CLASS(oc);
2584 mc->default_cpu_type = TYPE_HOST_POWERPC_CPU;
2587 static int kvm_ppc_register_host_cpu_type(void)
2589 TypeInfo type_info = {
2590 .name = TYPE_HOST_POWERPC_CPU,
2591 .class_init = kvmppc_host_cpu_class_init,
2593 PowerPCCPUClass *pvr_pcc;
2594 ObjectClass *oc;
2595 DeviceClass *dc;
2596 int i;
2598 pvr_pcc = kvm_ppc_get_host_cpu_class();
2599 if (pvr_pcc == NULL) {
2600 return -1;
2602 type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
2603 type_register(&type_info);
2604 /* override TCG default cpu type with 'host' cpu model */
2605 object_class_foreach(pseries_machine_class_fixup, TYPE_SPAPR_MACHINE,
2606 false, NULL);
2608 oc = object_class_by_name(type_info.name);
2609 g_assert(oc);
2612 * Update generic CPU family class alias (e.g. on a POWER8NVL host,
2613 * we want "POWER8" to be a "family" alias that points to the current
2614 * host CPU type, too)
2616 dc = DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc));
2617 for (i = 0; ppc_cpu_aliases[i].alias != NULL; i++) {
2618 if (strcasecmp(ppc_cpu_aliases[i].alias, dc->desc) == 0) {
2619 char *suffix;
2621 ppc_cpu_aliases[i].model = g_strdup(object_class_get_name(oc));
2622 suffix = strstr(ppc_cpu_aliases[i].model, POWERPC_CPU_TYPE_SUFFIX);
2623 if (suffix) {
2624 *suffix = 0;
2626 break;
2630 return 0;
2633 int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function)
2635 struct kvm_rtas_token_args args = {
2636 .token = token,
2639 if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) {
2640 return -ENOENT;
2643 strncpy(args.name, function, sizeof(args.name) - 1);
2645 return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args);
2648 int kvmppc_get_htab_fd(bool write, uint64_t index, Error **errp)
2650 struct kvm_get_htab_fd s = {
2651 .flags = write ? KVM_GET_HTAB_WRITE : 0,
2652 .start_index = index,
2654 int ret;
2656 if (!cap_htab_fd) {
2657 error_setg(errp, "KVM version doesn't support %s the HPT",
2658 write ? "writing" : "reading");
2659 return -ENOTSUP;
2662 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
2663 if (ret < 0) {
2664 error_setg(errp, "Unable to open fd for %s HPT %s KVM: %s",
2665 write ? "writing" : "reading", write ? "to" : "from",
2666 strerror(errno));
2667 return -errno;
2670 return ret;
2673 int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
2675 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2676 g_autofree uint8_t *buf = g_malloc(bufsize);
2677 ssize_t rc;
2679 do {
2680 rc = read(fd, buf, bufsize);
2681 if (rc < 0) {
2682 fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
2683 strerror(errno));
2684 return rc;
2685 } else if (rc) {
2686 uint8_t *buffer = buf;
2687 ssize_t n = rc;
2688 while (n) {
2689 struct kvm_get_htab_header *head =
2690 (struct kvm_get_htab_header *) buffer;
2691 size_t chunksize = sizeof(*head) +
2692 HASH_PTE_SIZE_64 * head->n_valid;
2694 qemu_put_be32(f, head->index);
2695 qemu_put_be16(f, head->n_valid);
2696 qemu_put_be16(f, head->n_invalid);
2697 qemu_put_buffer(f, (void *)(head + 1),
2698 HASH_PTE_SIZE_64 * head->n_valid);
2700 buffer += chunksize;
2701 n -= chunksize;
2704 } while ((rc != 0)
2705 && ((max_ns < 0) ||
2706 ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
2708 return (rc == 0) ? 1 : 0;
2711 int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
2712 uint16_t n_valid, uint16_t n_invalid, Error **errp)
2714 struct kvm_get_htab_header *buf;
2715 size_t chunksize = sizeof(*buf) + n_valid * HASH_PTE_SIZE_64;
2716 ssize_t rc;
2718 buf = alloca(chunksize);
2719 buf->index = index;
2720 buf->n_valid = n_valid;
2721 buf->n_invalid = n_invalid;
2723 qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64 * n_valid);
2725 rc = write(fd, buf, chunksize);
2726 if (rc < 0) {
2727 error_setg_errno(errp, errno, "Error writing the KVM hash table");
2728 return -errno;
2730 if (rc != chunksize) {
2731 /* We should never get a short write on a single chunk */
2732 error_setg(errp, "Short write while restoring the KVM hash table");
2733 return -ENOSPC;
2735 return 0;
2738 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
2740 return true;
2743 void kvm_arch_init_irq_routing(KVMState *s)
2747 void kvmppc_read_hptes(ppc_hash_pte64_t *hptes, hwaddr ptex, int n)
2749 int fd, rc;
2750 int i;
2752 fd = kvmppc_get_htab_fd(false, ptex, &error_abort);
2754 i = 0;
2755 while (i < n) {
2756 struct kvm_get_htab_header *hdr;
2757 int m = n < HPTES_PER_GROUP ? n : HPTES_PER_GROUP;
2758 char buf[sizeof(*hdr) + HPTES_PER_GROUP * HASH_PTE_SIZE_64];
2760 rc = read(fd, buf, sizeof(*hdr) + m * HASH_PTE_SIZE_64);
2761 if (rc < 0) {
2762 hw_error("kvmppc_read_hptes: Unable to read HPTEs");
2765 hdr = (struct kvm_get_htab_header *)buf;
2766 while ((i < n) && ((char *)hdr < (buf + rc))) {
2767 int invalid = hdr->n_invalid, valid = hdr->n_valid;
2769 if (hdr->index != (ptex + i)) {
2770 hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32
2771 " != (%"HWADDR_PRIu" + %d", hdr->index, ptex, i);
2774 if (n - i < valid) {
2775 valid = n - i;
2777 memcpy(hptes + i, hdr + 1, HASH_PTE_SIZE_64 * valid);
2778 i += valid;
2780 if ((n - i) < invalid) {
2781 invalid = n - i;
2783 memset(hptes + i, 0, invalid * HASH_PTE_SIZE_64);
2784 i += invalid;
2786 hdr = (struct kvm_get_htab_header *)
2787 ((char *)(hdr + 1) + HASH_PTE_SIZE_64 * hdr->n_valid);
2791 close(fd);
2794 void kvmppc_write_hpte(hwaddr ptex, uint64_t pte0, uint64_t pte1)
2796 int fd, rc;
2797 struct {
2798 struct kvm_get_htab_header hdr;
2799 uint64_t pte0;
2800 uint64_t pte1;
2801 } buf;
2803 fd = kvmppc_get_htab_fd(true, 0 /* Ignored */, &error_abort);
2805 buf.hdr.n_valid = 1;
2806 buf.hdr.n_invalid = 0;
2807 buf.hdr.index = ptex;
2808 buf.pte0 = cpu_to_be64(pte0);
2809 buf.pte1 = cpu_to_be64(pte1);
2811 rc = write(fd, &buf, sizeof(buf));
2812 if (rc != sizeof(buf)) {
2813 hw_error("kvmppc_write_hpte: Unable to update KVM HPT");
2815 close(fd);
2818 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2819 uint64_t address, uint32_t data, PCIDevice *dev)
2821 return 0;
2824 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2825 int vector, PCIDevice *dev)
2827 return 0;
2830 int kvm_arch_release_virq_post(int virq)
2832 return 0;
2835 int kvm_arch_msi_data_to_gsi(uint32_t data)
2837 return data & 0xffff;
2840 #if defined(TARGET_PPC64)
2841 int kvm_handle_nmi(PowerPCCPU *cpu, struct kvm_run *run)
2843 uint16_t flags = run->flags & KVM_RUN_PPC_NMI_DISP_MASK;
2845 cpu_synchronize_state(CPU(cpu));
2847 spapr_mce_req_event(cpu, flags == KVM_RUN_PPC_NMI_DISP_FULLY_RECOV);
2849 return 0;
2851 #endif
2853 int kvmppc_enable_hwrng(void)
2855 if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_PPC_HWRNG)) {
2856 return -1;
2859 return kvmppc_enable_hcall(kvm_state, H_RANDOM);
2862 void kvmppc_check_papr_resize_hpt(Error **errp)
2864 if (!kvm_enabled()) {
2865 return; /* No KVM, we're good */
2868 if (cap_resize_hpt) {
2869 return; /* Kernel has explicit support, we're good */
2872 /* Otherwise fallback on looking for PR KVM */
2873 if (kvmppc_is_pr(kvm_state)) {
2874 return;
2877 error_setg(errp,
2878 "Hash page table resizing not available with this KVM version");
2881 int kvmppc_resize_hpt_prepare(PowerPCCPU *cpu, target_ulong flags, int shift)
2883 CPUState *cs = CPU(cpu);
2884 struct kvm_ppc_resize_hpt rhpt = {
2885 .flags = flags,
2886 .shift = shift,
2889 if (!cap_resize_hpt) {
2890 return -ENOSYS;
2893 return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_PREPARE, &rhpt);
2896 int kvmppc_resize_hpt_commit(PowerPCCPU *cpu, target_ulong flags, int shift)
2898 CPUState *cs = CPU(cpu);
2899 struct kvm_ppc_resize_hpt rhpt = {
2900 .flags = flags,
2901 .shift = shift,
2904 if (!cap_resize_hpt) {
2905 return -ENOSYS;
2908 return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_COMMIT, &rhpt);
2912 * This is a helper function to detect a post migration scenario
2913 * in which a guest, running as KVM-HV, freezes in cpu_post_load because
2914 * the guest kernel can't handle a PVR value other than the actual host
2915 * PVR in KVM_SET_SREGS, even if pvr_match() returns true.
2917 * If we don't have cap_ppc_pvr_compat and we're not running in PR
2918 * (so, we're HV), return true. The workaround itself is done in
2919 * cpu_post_load.
2921 * The order here is important: we'll only check for KVM PR as a
2922 * fallback if the guest kernel can't handle the situation itself.
2923 * We need to avoid as much as possible querying the running KVM type
2924 * in QEMU level.
2926 bool kvmppc_pvr_workaround_required(PowerPCCPU *cpu)
2928 CPUState *cs = CPU(cpu);
2930 if (!kvm_enabled()) {
2931 return false;
2934 if (cap_ppc_pvr_compat) {
2935 return false;
2938 return !kvmppc_is_pr(cs->kvm_state);
2941 void kvmppc_set_reg_ppc_online(PowerPCCPU *cpu, unsigned int online)
2943 CPUState *cs = CPU(cpu);
2945 if (kvm_enabled()) {
2946 kvm_set_one_reg(cs, KVM_REG_PPC_ONLINE, &online);
2950 void kvmppc_set_reg_tb_offset(PowerPCCPU *cpu, int64_t tb_offset)
2952 CPUState *cs = CPU(cpu);
2954 if (kvm_enabled()) {
2955 kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &tb_offset);
2959 bool kvm_arch_cpu_check_are_resettable(void)
2961 return true;
2964 void kvm_arch_accel_class_init(ObjectClass *oc)