qapi: Start sentences with a capital letter, end them with a period
[qemu/armbru.git] / hw / intc / arm_gic_common.c
blob94c173cb071aa44df684c26cabc78984bf8104fc
1 /*
2 * ARM GIC support - common bits of emulated and KVM kernel model
4 * Copyright (c) 2012 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "qemu/module.h"
24 #include "qemu/error-report.h"
25 #include "gic_internal.h"
26 #include "hw/arm/linux-boot-if.h"
27 #include "hw/qdev-properties.h"
28 #include "migration/vmstate.h"
29 #include "sysemu/kvm.h"
31 static int gic_pre_save(void *opaque)
33 GICState *s = (GICState *)opaque;
34 ARMGICCommonClass *c = ARM_GIC_COMMON_GET_CLASS(s);
36 if (c->pre_save) {
37 c->pre_save(s);
40 return 0;
43 static int gic_post_load(void *opaque, int version_id)
45 GICState *s = (GICState *)opaque;
46 ARMGICCommonClass *c = ARM_GIC_COMMON_GET_CLASS(s);
48 if (c->post_load) {
49 c->post_load(s);
51 return 0;
54 static bool gic_virt_state_needed(void *opaque)
56 GICState *s = (GICState *)opaque;
58 return s->virt_extn;
61 static const VMStateDescription vmstate_gic_irq_state = {
62 .name = "arm_gic_irq_state",
63 .version_id = 1,
64 .minimum_version_id = 1,
65 .fields = (const VMStateField[]) {
66 VMSTATE_UINT8(enabled, gic_irq_state),
67 VMSTATE_UINT8(pending, gic_irq_state),
68 VMSTATE_UINT8(active, gic_irq_state),
69 VMSTATE_UINT8(level, gic_irq_state),
70 VMSTATE_BOOL(model, gic_irq_state),
71 VMSTATE_BOOL(edge_trigger, gic_irq_state),
72 VMSTATE_UINT8(group, gic_irq_state),
73 VMSTATE_END_OF_LIST()
77 static const VMStateDescription vmstate_gic_virt_state = {
78 .name = "arm_gic_virt_state",
79 .version_id = 1,
80 .minimum_version_id = 1,
81 .needed = gic_virt_state_needed,
82 .fields = (const VMStateField[]) {
83 /* Virtual interface */
84 VMSTATE_UINT32_ARRAY(h_hcr, GICState, GIC_NCPU),
85 VMSTATE_UINT32_ARRAY(h_misr, GICState, GIC_NCPU),
86 VMSTATE_UINT32_2DARRAY(h_lr, GICState, GIC_MAX_LR, GIC_NCPU),
87 VMSTATE_UINT32_ARRAY(h_apr, GICState, GIC_NCPU),
89 /* Virtual CPU interfaces */
90 VMSTATE_UINT32_SUB_ARRAY(cpu_ctlr, GICState, GIC_NCPU, GIC_NCPU),
91 VMSTATE_UINT16_SUB_ARRAY(priority_mask, GICState, GIC_NCPU, GIC_NCPU),
92 VMSTATE_UINT16_SUB_ARRAY(running_priority, GICState, GIC_NCPU, GIC_NCPU),
93 VMSTATE_UINT16_SUB_ARRAY(current_pending, GICState, GIC_NCPU, GIC_NCPU),
94 VMSTATE_UINT8_SUB_ARRAY(bpr, GICState, GIC_NCPU, GIC_NCPU),
95 VMSTATE_UINT8_SUB_ARRAY(abpr, GICState, GIC_NCPU, GIC_NCPU),
97 VMSTATE_END_OF_LIST()
101 static const VMStateDescription vmstate_gic = {
102 .name = "arm_gic",
103 .version_id = 12,
104 .minimum_version_id = 12,
105 .pre_save = gic_pre_save,
106 .post_load = gic_post_load,
107 .fields = (const VMStateField[]) {
108 VMSTATE_UINT32(ctlr, GICState),
109 VMSTATE_UINT32_SUB_ARRAY(cpu_ctlr, GICState, 0, GIC_NCPU),
110 VMSTATE_STRUCT_ARRAY(irq_state, GICState, GIC_MAXIRQ, 1,
111 vmstate_gic_irq_state, gic_irq_state),
112 VMSTATE_UINT8_ARRAY(irq_target, GICState, GIC_MAXIRQ),
113 VMSTATE_UINT8_2DARRAY(priority1, GICState, GIC_INTERNAL, GIC_NCPU),
114 VMSTATE_UINT8_ARRAY(priority2, GICState, GIC_MAXIRQ - GIC_INTERNAL),
115 VMSTATE_UINT8_2DARRAY(sgi_pending, GICState, GIC_NR_SGIS, GIC_NCPU),
116 VMSTATE_UINT16_SUB_ARRAY(priority_mask, GICState, 0, GIC_NCPU),
117 VMSTATE_UINT16_SUB_ARRAY(running_priority, GICState, 0, GIC_NCPU),
118 VMSTATE_UINT16_SUB_ARRAY(current_pending, GICState, 0, GIC_NCPU),
119 VMSTATE_UINT8_SUB_ARRAY(bpr, GICState, 0, GIC_NCPU),
120 VMSTATE_UINT8_SUB_ARRAY(abpr, GICState, 0, GIC_NCPU),
121 VMSTATE_UINT32_2DARRAY(apr, GICState, GIC_NR_APRS, GIC_NCPU),
122 VMSTATE_UINT32_2DARRAY(nsapr, GICState, GIC_NR_APRS, GIC_NCPU),
123 VMSTATE_END_OF_LIST()
125 .subsections = (const VMStateDescription * const []) {
126 &vmstate_gic_virt_state,
127 NULL
131 void gic_init_irqs_and_mmio(GICState *s, qemu_irq_handler handler,
132 const MemoryRegionOps *ops,
133 const MemoryRegionOps *virt_ops)
135 SysBusDevice *sbd = SYS_BUS_DEVICE(s);
136 int i = s->num_irq - GIC_INTERNAL;
138 /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU.
139 * GPIO array layout is thus:
140 * [0..N-1] SPIs
141 * [N..N+31] PPIs for CPU 0
142 * [N+32..N+63] PPIs for CPU 1
143 * ...
145 i += (GIC_INTERNAL * s->num_cpu);
146 qdev_init_gpio_in(DEVICE(s), handler, i);
148 for (i = 0; i < s->num_cpu; i++) {
149 sysbus_init_irq(sbd, &s->parent_irq[i]);
151 for (i = 0; i < s->num_cpu; i++) {
152 sysbus_init_irq(sbd, &s->parent_fiq[i]);
154 for (i = 0; i < s->num_cpu; i++) {
155 sysbus_init_irq(sbd, &s->parent_virq[i]);
157 for (i = 0; i < s->num_cpu; i++) {
158 sysbus_init_irq(sbd, &s->parent_vfiq[i]);
160 if (s->virt_extn) {
161 for (i = 0; i < s->num_cpu; i++) {
162 sysbus_init_irq(sbd, &s->maintenance_irq[i]);
166 /* Distributor */
167 memory_region_init_io(&s->iomem, OBJECT(s), ops, s, "gic_dist", 0x1000);
168 sysbus_init_mmio(sbd, &s->iomem);
170 /* This is the main CPU interface "for this core". It is always
171 * present because it is required by both software emulation and KVM.
173 memory_region_init_io(&s->cpuiomem[0], OBJECT(s), ops ? &ops[1] : NULL,
174 s, "gic_cpu", s->revision == 2 ? 0x2000 : 0x100);
175 sysbus_init_mmio(sbd, &s->cpuiomem[0]);
177 if (s->virt_extn) {
178 memory_region_init_io(&s->vifaceiomem[0], OBJECT(s), virt_ops,
179 s, "gic_viface", 0x1000);
180 sysbus_init_mmio(sbd, &s->vifaceiomem[0]);
182 memory_region_init_io(&s->vcpuiomem, OBJECT(s),
183 virt_ops ? &virt_ops[1] : NULL,
184 s, "gic_vcpu", 0x2000);
185 sysbus_init_mmio(sbd, &s->vcpuiomem);
189 static void arm_gic_common_realize(DeviceState *dev, Error **errp)
191 GICState *s = ARM_GIC_COMMON(dev);
192 int num_irq = s->num_irq;
194 if (s->num_cpu > GIC_NCPU) {
195 error_setg(errp, "requested %u CPUs exceeds GIC maximum %d",
196 s->num_cpu, GIC_NCPU);
197 return;
199 if (s->num_irq > GIC_MAXIRQ) {
200 error_setg(errp,
201 "requested %u interrupt lines exceeds GIC maximum %d",
202 num_irq, GIC_MAXIRQ);
203 return;
205 /* ITLinesNumber is represented as (N / 32) - 1 (see
206 * gic_dist_readb) so this is an implementation imposed
207 * restriction, not an architectural one:
209 if (s->num_irq < 32 || (s->num_irq % 32)) {
210 error_setg(errp,
211 "%d interrupt lines unsupported: not divisible by 32",
212 num_irq);
213 return;
216 if (s->security_extn &&
217 (s->revision == REV_11MPCORE)) {
218 error_setg(errp, "this GIC revision does not implement "
219 "the security extensions");
220 return;
223 if (s->virt_extn) {
224 if (s->revision != 2) {
225 error_setg(errp, "GIC virtualization extensions are only "
226 "supported by revision 2");
227 return;
230 /* For now, set the number of implemented LRs to 4, as found in most
231 * real GICv2. This could be promoted as a QOM property if we need to
232 * emulate a variant with another num_lrs.
234 s->num_lrs = 4;
238 static inline void arm_gic_common_reset_irq_state(GICState *s, int cidx,
239 int resetprio)
241 int i, j;
243 for (i = cidx; i < cidx + s->num_cpu; i++) {
244 if (s->revision == REV_11MPCORE) {
245 s->priority_mask[i] = 0xf0;
246 } else {
247 s->priority_mask[i] = resetprio;
249 s->current_pending[i] = 1023;
250 s->running_priority[i] = 0x100;
251 s->cpu_ctlr[i] = 0;
252 s->bpr[i] = gic_is_vcpu(i) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
253 s->abpr[i] = gic_is_vcpu(i) ? GIC_VIRT_MIN_ABPR : GIC_MIN_ABPR;
255 if (!gic_is_vcpu(i)) {
256 for (j = 0; j < GIC_INTERNAL; j++) {
257 s->priority1[j][i] = resetprio;
259 for (j = 0; j < GIC_NR_SGIS; j++) {
260 s->sgi_pending[j][i] = 0;
266 static void arm_gic_common_reset_hold(Object *obj)
268 GICState *s = ARM_GIC_COMMON(obj);
269 int i, j;
270 int resetprio;
272 /* If we're resetting a TZ-aware GIC as if secure firmware
273 * had set it up ready to start a kernel in non-secure,
274 * we need to set interrupt priorities to a "zero for the
275 * NS view" value. This is particularly critical for the
276 * priority_mask[] values, because if they are zero then NS
277 * code cannot ever rewrite the priority to anything else.
279 if (s->security_extn && s->irq_reset_nonsecure) {
280 resetprio = 0x80;
281 } else {
282 resetprio = 0;
285 memset(s->irq_state, 0, GIC_MAXIRQ * sizeof(gic_irq_state));
286 arm_gic_common_reset_irq_state(s, 0, resetprio);
288 if (s->virt_extn) {
289 /* vCPU states are stored at indexes GIC_NCPU .. GIC_NCPU+num_cpu.
290 * The exposed vCPU interface does not have security extensions.
292 arm_gic_common_reset_irq_state(s, GIC_NCPU, 0);
295 for (i = 0; i < GIC_NR_SGIS; i++) {
296 GIC_DIST_SET_ENABLED(i, ALL_CPU_MASK);
297 GIC_DIST_SET_EDGE_TRIGGER(i);
300 for (i = 0; i < ARRAY_SIZE(s->priority2); i++) {
301 s->priority2[i] = resetprio;
304 for (i = 0; i < GIC_MAXIRQ; i++) {
305 /* For uniprocessor GICs all interrupts always target the sole CPU */
306 if (s->num_cpu == 1) {
307 s->irq_target[i] = 1;
308 } else {
309 s->irq_target[i] = 0;
312 if (s->security_extn && s->irq_reset_nonsecure) {
313 for (i = 0; i < GIC_MAXIRQ; i++) {
314 GIC_DIST_SET_GROUP(i, ALL_CPU_MASK);
318 if (s->virt_extn) {
319 for (i = 0; i < s->num_lrs; i++) {
320 for (j = 0; j < s->num_cpu; j++) {
321 s->h_lr[i][j] = 0;
325 for (i = 0; i < s->num_cpu; i++) {
326 s->h_hcr[i] = 0;
327 s->h_misr[i] = 0;
331 s->ctlr = 0;
334 static void arm_gic_common_linux_init(ARMLinuxBootIf *obj,
335 bool secure_boot)
337 GICState *s = ARM_GIC_COMMON(obj);
339 if (s->security_extn && !secure_boot) {
340 /* We're directly booting a kernel into NonSecure. If this GIC
341 * implements the security extensions then we must configure it
342 * to have all the interrupts be NonSecure (this is a job that
343 * is done by the Secure boot firmware in real hardware, and in
344 * this mode QEMU is acting as a minimalist firmware-and-bootloader
345 * equivalent).
347 s->irq_reset_nonsecure = true;
351 static Property arm_gic_common_properties[] = {
352 DEFINE_PROP_UINT32("num-cpu", GICState, num_cpu, 1),
353 DEFINE_PROP_UINT32("num-irq", GICState, num_irq, 32),
354 /* Revision can be 1 or 2 for GIC architecture specification
355 * versions 1 or 2, or 0 to indicate the legacy 11MPCore GIC.
357 DEFINE_PROP_UINT32("revision", GICState, revision, 1),
358 /* True if the GIC should implement the security extensions */
359 DEFINE_PROP_BOOL("has-security-extensions", GICState, security_extn, 0),
360 /* True if the GIC should implement the virtualization extensions */
361 DEFINE_PROP_BOOL("has-virtualization-extensions", GICState, virt_extn, 0),
362 DEFINE_PROP_UINT32("num-priority-bits", GICState, n_prio_bits, 8),
363 DEFINE_PROP_END_OF_LIST(),
366 static void arm_gic_common_class_init(ObjectClass *klass, void *data)
368 DeviceClass *dc = DEVICE_CLASS(klass);
369 ResettableClass *rc = RESETTABLE_CLASS(klass);
370 ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_CLASS(klass);
372 rc->phases.hold = arm_gic_common_reset_hold;
373 dc->realize = arm_gic_common_realize;
374 device_class_set_props(dc, arm_gic_common_properties);
375 dc->vmsd = &vmstate_gic;
376 albifc->arm_linux_init = arm_gic_common_linux_init;
379 static const TypeInfo arm_gic_common_type = {
380 .name = TYPE_ARM_GIC_COMMON,
381 .parent = TYPE_SYS_BUS_DEVICE,
382 .instance_size = sizeof(GICState),
383 .class_size = sizeof(ARMGICCommonClass),
384 .class_init = arm_gic_common_class_init,
385 .abstract = true,
386 .interfaces = (InterfaceInfo []) {
387 { TYPE_ARM_LINUX_BOOT_IF },
388 { },
392 static void register_types(void)
394 type_register_static(&arm_gic_common_type);
397 type_init(register_types)
399 const char *gic_class_name(void)
401 return kvm_irqchip_in_kernel() ? "kvm-arm-gic" : "arm_gic";