4 * Copyright (c) 2003 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 #define _ATFILE_SOURCE
20 #include "qemu/osdep.h"
21 #include "qemu/cutils.h"
22 #include "qemu/path.h"
23 #include "qemu/memfd.h"
24 #include "qemu/queue.h"
25 #include "qemu/plugin.h"
26 #include "tcg/startup.h"
27 #include "target_mman.h"
28 #include "exec/page-protection.h"
35 #include <sys/mount.h>
37 #include <sys/fsuid.h>
38 #include <sys/personality.h>
39 #include <sys/prctl.h>
40 #include <sys/resource.h>
42 #include <linux/capability.h>
44 #include <sys/timex.h>
45 #include <sys/socket.h>
46 #include <linux/sockios.h>
50 #include <sys/times.h>
53 #include <sys/statfs.h>
55 #include <sys/sysinfo.h>
56 #include <sys/signalfd.h>
57 //#include <sys/user.h>
58 #include <netinet/in.h>
59 #include <netinet/ip.h>
60 #include <netinet/tcp.h>
61 #include <netinet/udp.h>
62 #include <linux/wireless.h>
63 #include <linux/icmp.h>
64 #include <linux/icmpv6.h>
65 #include <linux/if_tun.h>
66 #include <linux/in6.h>
67 #include <linux/errqueue.h>
68 #include <linux/random.h>
70 #include <sys/timerfd.h>
73 #include <sys/eventfd.h>
76 #include <sys/epoll.h>
79 #include "qemu/xattr.h"
81 #ifdef CONFIG_SENDFILE
82 #include <sys/sendfile.h>
84 #ifdef HAVE_SYS_KCOV_H
88 #define termios host_termios
89 #define winsize host_winsize
90 #define termio host_termio
91 #define sgttyb host_sgttyb /* same as target */
92 #define tchars host_tchars /* same as target */
93 #define ltchars host_ltchars /* same as target */
95 #include <linux/termios.h>
96 #include <linux/unistd.h>
97 #include <linux/cdrom.h>
98 #include <linux/hdreg.h>
99 #include <linux/soundcard.h>
100 #include <linux/kd.h>
101 #include <linux/mtio.h>
102 #include <linux/fs.h>
103 #include <linux/fd.h>
104 #if defined(CONFIG_FIEMAP)
105 #include <linux/fiemap.h>
107 #include <linux/fb.h>
108 #if defined(CONFIG_USBFS)
109 #include <linux/usbdevice_fs.h>
110 #include <linux/usb/ch9.h>
112 #include <linux/vt.h>
113 #include <linux/dm-ioctl.h>
114 #include <linux/reboot.h>
115 #include <linux/route.h>
116 #include <linux/filter.h>
117 #include <linux/blkpg.h>
118 #include <netpacket/packet.h>
119 #include <linux/netlink.h>
120 #include <linux/if_alg.h>
121 #include <linux/rtc.h>
122 #include <sound/asound.h>
124 #include <linux/btrfs.h>
127 #include <libdrm/drm.h>
128 #include <libdrm/i915_drm.h>
130 #include "linux_loop.h"
134 #include "user-internals.h"
136 #include "signal-common.h"
138 #include "user-mmap.h"
139 #include "user/safe-syscall.h"
140 #include "qemu/guest-random.h"
141 #include "qemu/selfmap.h"
142 #include "user/syscall-trace.h"
143 #include "special-errno.h"
144 #include "qapi/error.h"
145 #include "fd-trans.h"
146 #include "cpu_loop-common.h"
149 #define CLONE_IO 0x80000000 /* Clone io context */
152 /* We can't directly call the host clone syscall, because this will
153 * badly confuse libc (breaking mutexes, for example). So we must
154 * divide clone flags into:
155 * * flag combinations that look like pthread_create()
156 * * flag combinations that look like fork()
157 * * flags we can implement within QEMU itself
158 * * flags we can't support and will return an error for
160 /* For thread creation, all these flags must be present; for
161 * fork, none must be present.
163 #define CLONE_THREAD_FLAGS \
164 (CLONE_VM | CLONE_FS | CLONE_FILES | \
165 CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM)
167 /* These flags are ignored:
168 * CLONE_DETACHED is now ignored by the kernel;
169 * CLONE_IO is just an optimisation hint to the I/O scheduler
171 #define CLONE_IGNORED_FLAGS \
172 (CLONE_DETACHED | CLONE_IO)
175 # define CLONE_PIDFD 0x00001000
178 /* Flags for fork which we can implement within QEMU itself */
179 #define CLONE_OPTIONAL_FORK_FLAGS \
180 (CLONE_SETTLS | CLONE_PARENT_SETTID | CLONE_PIDFD | \
181 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID)
183 /* Flags for thread creation which we can implement within QEMU itself */
184 #define CLONE_OPTIONAL_THREAD_FLAGS \
185 (CLONE_SETTLS | CLONE_PARENT_SETTID | \
186 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT)
188 #define CLONE_INVALID_FORK_FLAGS \
189 (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS))
191 #define CLONE_INVALID_THREAD_FLAGS \
192 (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS | \
193 CLONE_IGNORED_FLAGS))
195 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits
196 * have almost all been allocated. We cannot support any of
197 * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC,
198 * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED.
199 * The checks against the invalid thread masks above will catch these.
200 * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.)
203 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted
204 * once. This exercises the codepaths for restart.
206 //#define DEBUG_ERESTARTSYS
208 //#include <linux/msdos_fs.h>
209 #define VFAT_IOCTL_READDIR_BOTH \
210 _IOC(_IOC_READ, 'r', 1, (sizeof(struct linux_dirent) + 256) * 2)
211 #define VFAT_IOCTL_READDIR_SHORT \
212 _IOC(_IOC_READ, 'r', 2, (sizeof(struct linux_dirent) + 256) * 2)
222 #define _syscall0(type,name) \
223 static type name (void) \
225 return syscall(__NR_##name); \
228 #define _syscall1(type,name,type1,arg1) \
229 static type name (type1 arg1) \
231 return syscall(__NR_##name, arg1); \
234 #define _syscall2(type,name,type1,arg1,type2,arg2) \
235 static type name (type1 arg1,type2 arg2) \
237 return syscall(__NR_##name, arg1, arg2); \
240 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \
241 static type name (type1 arg1,type2 arg2,type3 arg3) \
243 return syscall(__NR_##name, arg1, arg2, arg3); \
246 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \
247 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \
249 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \
252 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
254 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \
256 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
260 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
261 type5,arg5,type6,arg6) \
262 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \
265 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
269 #define __NR_sys_uname __NR_uname
270 #define __NR_sys_getcwd1 __NR_getcwd
271 #define __NR_sys_getdents __NR_getdents
272 #define __NR_sys_getdents64 __NR_getdents64
273 #define __NR_sys_getpriority __NR_getpriority
274 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
275 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo
276 #define __NR_sys_syslog __NR_syslog
277 #if defined(__NR_futex)
278 # define __NR_sys_futex __NR_futex
280 #if defined(__NR_futex_time64)
281 # define __NR_sys_futex_time64 __NR_futex_time64
283 #define __NR_sys_statx __NR_statx
285 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__)
286 #define __NR__llseek __NR_lseek
289 /* Newer kernel ports have llseek() instead of _llseek() */
290 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
291 #define TARGET_NR__llseek TARGET_NR_llseek
294 /* some platforms need to mask more bits than just TARGET_O_NONBLOCK */
295 #ifndef TARGET_O_NONBLOCK_MASK
296 #define TARGET_O_NONBLOCK_MASK TARGET_O_NONBLOCK
299 #define __NR_sys_gettid __NR_gettid
300 _syscall0(int, sys_gettid
)
302 /* For the 64-bit guest on 32-bit host case we must emulate
303 * getdents using getdents64, because otherwise the host
304 * might hand us back more dirent records than we can fit
305 * into the guest buffer after structure format conversion.
306 * Otherwise we emulate getdents with getdents if the host has it.
308 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS
309 #define EMULATE_GETDENTS_WITH_GETDENTS
312 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS)
313 _syscall3(int, sys_getdents
, unsigned int, fd
, struct linux_dirent
*, dirp
, unsigned int, count
);
315 #if (defined(TARGET_NR_getdents) && \
316 !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \
317 (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
318 _syscall3(int, sys_getdents64
, unsigned int, fd
, struct linux_dirent64
*, dirp
, unsigned int, count
);
320 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
321 _syscall5(int, _llseek
, unsigned int, fd
, unsigned long, hi
, unsigned long, lo
,
322 loff_t
*, res
, unsigned int, wh
);
324 _syscall3(int, sys_rt_sigqueueinfo
, pid_t
, pid
, int, sig
, siginfo_t
*, uinfo
)
325 _syscall4(int, sys_rt_tgsigqueueinfo
, pid_t
, pid
, pid_t
, tid
, int, sig
,
327 _syscall3(int,sys_syslog
,int,type
,char*,bufp
,int,len
)
328 #ifdef __NR_exit_group
329 _syscall1(int,exit_group
,int,error_code
)
331 #if defined(__NR_close_range) && defined(TARGET_NR_close_range)
332 #define __NR_sys_close_range __NR_close_range
333 _syscall3(int,sys_close_range
,int,first
,int,last
,int,flags
)
334 #ifndef CLOSE_RANGE_CLOEXEC
335 #define CLOSE_RANGE_CLOEXEC (1U << 2)
338 #if defined(__NR_futex)
339 _syscall6(int,sys_futex
,int *,uaddr
,int,op
,int,val
,
340 const struct timespec
*,timeout
,int *,uaddr2
,int,val3
)
342 #if defined(__NR_futex_time64)
343 _syscall6(int,sys_futex_time64
,int *,uaddr
,int,op
,int,val
,
344 const struct timespec
*,timeout
,int *,uaddr2
,int,val3
)
346 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
347 _syscall2(int, pidfd_open
, pid_t
, pid
, unsigned int, flags
);
349 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal)
350 _syscall4(int, pidfd_send_signal
, int, pidfd
, int, sig
, siginfo_t
*, info
,
351 unsigned int, flags
);
353 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd)
354 _syscall3(int, pidfd_getfd
, int, pidfd
, int, targetfd
, unsigned int, flags
);
356 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
357 _syscall3(int, sys_sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
358 unsigned long *, user_mask_ptr
);
359 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
360 _syscall3(int, sys_sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
361 unsigned long *, user_mask_ptr
);
362 /* sched_attr is not defined in glibc */
365 uint32_t sched_policy
;
366 uint64_t sched_flags
;
368 uint32_t sched_priority
;
369 uint64_t sched_runtime
;
370 uint64_t sched_deadline
;
371 uint64_t sched_period
;
372 uint32_t sched_util_min
;
373 uint32_t sched_util_max
;
375 #define __NR_sys_sched_getattr __NR_sched_getattr
376 _syscall4(int, sys_sched_getattr
, pid_t
, pid
, struct sched_attr
*, attr
,
377 unsigned int, size
, unsigned int, flags
);
378 #define __NR_sys_sched_setattr __NR_sched_setattr
379 _syscall3(int, sys_sched_setattr
, pid_t
, pid
, struct sched_attr
*, attr
,
380 unsigned int, flags
);
381 #define __NR_sys_sched_getscheduler __NR_sched_getscheduler
382 _syscall1(int, sys_sched_getscheduler
, pid_t
, pid
);
383 #define __NR_sys_sched_setscheduler __NR_sched_setscheduler
384 _syscall3(int, sys_sched_setscheduler
, pid_t
, pid
, int, policy
,
385 const struct sched_param
*, param
);
386 #define __NR_sys_sched_getparam __NR_sched_getparam
387 _syscall2(int, sys_sched_getparam
, pid_t
, pid
,
388 struct sched_param
*, param
);
389 #define __NR_sys_sched_setparam __NR_sched_setparam
390 _syscall2(int, sys_sched_setparam
, pid_t
, pid
,
391 const struct sched_param
*, param
);
392 #define __NR_sys_getcpu __NR_getcpu
393 _syscall3(int, sys_getcpu
, unsigned *, cpu
, unsigned *, node
, void *, tcache
);
394 _syscall4(int, reboot
, int, magic1
, int, magic2
, unsigned int, cmd
,
396 _syscall2(int, capget
, struct __user_cap_header_struct
*, header
,
397 struct __user_cap_data_struct
*, data
);
398 _syscall2(int, capset
, struct __user_cap_header_struct
*, header
,
399 struct __user_cap_data_struct
*, data
);
400 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
401 _syscall2(int, ioprio_get
, int, which
, int, who
)
403 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
404 _syscall3(int, ioprio_set
, int, which
, int, who
, int, ioprio
)
406 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
407 _syscall3(int, getrandom
, void *, buf
, size_t, buflen
, unsigned int, flags
)
410 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
411 _syscall5(int, kcmp
, pid_t
, pid1
, pid_t
, pid2
, int, type
,
412 unsigned long, idx1
, unsigned long, idx2
)
416 * It is assumed that struct statx is architecture independent.
418 #if defined(TARGET_NR_statx) && defined(__NR_statx)
419 _syscall5(int, sys_statx
, int, dirfd
, const char *, pathname
, int, flags
,
420 unsigned int, mask
, struct target_statx
*, statxbuf
)
422 #if defined(TARGET_NR_membarrier) && defined(__NR_membarrier)
423 _syscall2(int, membarrier
, int, cmd
, int, flags
)
426 static const bitmask_transtbl fcntl_flags_tbl
[] = {
427 { TARGET_O_ACCMODE
, TARGET_O_WRONLY
, O_ACCMODE
, O_WRONLY
, },
428 { TARGET_O_ACCMODE
, TARGET_O_RDWR
, O_ACCMODE
, O_RDWR
, },
429 { TARGET_O_CREAT
, TARGET_O_CREAT
, O_CREAT
, O_CREAT
, },
430 { TARGET_O_EXCL
, TARGET_O_EXCL
, O_EXCL
, O_EXCL
, },
431 { TARGET_O_NOCTTY
, TARGET_O_NOCTTY
, O_NOCTTY
, O_NOCTTY
, },
432 { TARGET_O_TRUNC
, TARGET_O_TRUNC
, O_TRUNC
, O_TRUNC
, },
433 { TARGET_O_APPEND
, TARGET_O_APPEND
, O_APPEND
, O_APPEND
, },
434 { TARGET_O_NONBLOCK
, TARGET_O_NONBLOCK
, O_NONBLOCK
, O_NONBLOCK
, },
435 { TARGET_O_SYNC
, TARGET_O_DSYNC
, O_SYNC
, O_DSYNC
, },
436 { TARGET_O_SYNC
, TARGET_O_SYNC
, O_SYNC
, O_SYNC
, },
437 { TARGET_FASYNC
, TARGET_FASYNC
, FASYNC
, FASYNC
, },
438 { TARGET_O_DIRECTORY
, TARGET_O_DIRECTORY
, O_DIRECTORY
, O_DIRECTORY
, },
439 { TARGET_O_NOFOLLOW
, TARGET_O_NOFOLLOW
, O_NOFOLLOW
, O_NOFOLLOW
, },
440 #if defined(O_DIRECT)
441 { TARGET_O_DIRECT
, TARGET_O_DIRECT
, O_DIRECT
, O_DIRECT
, },
443 #if defined(O_NOATIME)
444 { TARGET_O_NOATIME
, TARGET_O_NOATIME
, O_NOATIME
, O_NOATIME
},
446 #if defined(O_CLOEXEC)
447 { TARGET_O_CLOEXEC
, TARGET_O_CLOEXEC
, O_CLOEXEC
, O_CLOEXEC
},
450 { TARGET_O_PATH
, TARGET_O_PATH
, O_PATH
, O_PATH
},
452 #if defined(O_TMPFILE)
453 { TARGET_O_TMPFILE
, TARGET_O_TMPFILE
, O_TMPFILE
, O_TMPFILE
},
455 /* Don't terminate the list prematurely on 64-bit host+guest. */
456 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
457 { TARGET_O_LARGEFILE
, TARGET_O_LARGEFILE
, O_LARGEFILE
, O_LARGEFILE
, },
461 _syscall2(int, sys_getcwd1
, char *, buf
, size_t, size
)
463 #if defined(TARGET_NR_utimensat) || defined(TARGET_NR_utimensat_time64)
464 #if defined(__NR_utimensat)
465 #define __NR_sys_utimensat __NR_utimensat
466 _syscall4(int,sys_utimensat
,int,dirfd
,const char *,pathname
,
467 const struct timespec
*,tsp
,int,flags
)
469 static int sys_utimensat(int dirfd
, const char *pathname
,
470 const struct timespec times
[2], int flags
)
476 #endif /* TARGET_NR_utimensat */
478 #ifdef TARGET_NR_renameat2
479 #if defined(__NR_renameat2)
480 #define __NR_sys_renameat2 __NR_renameat2
481 _syscall5(int, sys_renameat2
, int, oldfd
, const char *, old
, int, newfd
,
482 const char *, new, unsigned int, flags
)
484 static int sys_renameat2(int oldfd
, const char *old
,
485 int newfd
, const char *new, int flags
)
488 return renameat(oldfd
, old
, newfd
, new);
494 #endif /* TARGET_NR_renameat2 */
496 #ifdef CONFIG_INOTIFY
497 #include <sys/inotify.h>
499 /* Userspace can usually survive runtime without inotify */
500 #undef TARGET_NR_inotify_init
501 #undef TARGET_NR_inotify_init1
502 #undef TARGET_NR_inotify_add_watch
503 #undef TARGET_NR_inotify_rm_watch
504 #endif /* CONFIG_INOTIFY */
506 #if defined(TARGET_NR_prlimit64)
507 #ifndef __NR_prlimit64
508 # define __NR_prlimit64 -1
510 #define __NR_sys_prlimit64 __NR_prlimit64
511 /* The glibc rlimit structure may not be that used by the underlying syscall */
512 struct host_rlimit64
{
516 _syscall4(int, sys_prlimit64
, pid_t
, pid
, int, resource
,
517 const struct host_rlimit64
*, new_limit
,
518 struct host_rlimit64
*, old_limit
)
522 #if defined(TARGET_NR_timer_create)
523 /* Maximum of 32 active POSIX timers allowed at any one time. */
524 #define GUEST_TIMER_MAX 32
525 static timer_t g_posix_timers
[GUEST_TIMER_MAX
];
526 static int g_posix_timer_allocated
[GUEST_TIMER_MAX
];
528 static inline int next_free_host_timer(void)
531 for (k
= 0; k
< ARRAY_SIZE(g_posix_timer_allocated
); k
++) {
532 if (qatomic_xchg(g_posix_timer_allocated
+ k
, 1) == 0) {
539 static inline void free_host_timer_slot(int id
)
541 qatomic_store_release(g_posix_timer_allocated
+ id
, 0);
545 static inline int host_to_target_errno(int host_errno
)
547 switch (host_errno
) {
548 #define E(X) case X: return TARGET_##X;
549 #include "errnos.c.inc"
556 static inline int target_to_host_errno(int target_errno
)
558 switch (target_errno
) {
559 #define E(X) case TARGET_##X: return X;
560 #include "errnos.c.inc"
567 abi_long
get_errno(abi_long ret
)
570 return -host_to_target_errno(errno
);
575 const char *target_strerror(int err
)
577 if (err
== QEMU_ERESTARTSYS
) {
578 return "To be restarted";
580 if (err
== QEMU_ESIGRETURN
) {
581 return "Successful exit from sigreturn";
584 return strerror(target_to_host_errno(err
));
587 static int check_zeroed_user(abi_long addr
, size_t ksize
, size_t usize
)
591 if (usize
<= ksize
) {
594 for (i
= ksize
; i
< usize
; i
++) {
595 if (get_user_u8(b
, addr
+ i
)) {
596 return -TARGET_EFAULT
;
605 #define safe_syscall0(type, name) \
606 static type safe_##name(void) \
608 return safe_syscall(__NR_##name); \
611 #define safe_syscall1(type, name, type1, arg1) \
612 static type safe_##name(type1 arg1) \
614 return safe_syscall(__NR_##name, arg1); \
617 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \
618 static type safe_##name(type1 arg1, type2 arg2) \
620 return safe_syscall(__NR_##name, arg1, arg2); \
623 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
624 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \
626 return safe_syscall(__NR_##name, arg1, arg2, arg3); \
629 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
631 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
633 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \
636 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
637 type4, arg4, type5, arg5) \
638 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
641 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
644 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
645 type4, arg4, type5, arg5, type6, arg6) \
646 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
647 type5 arg5, type6 arg6) \
649 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
652 safe_syscall3(ssize_t
, read
, int, fd
, void *, buff
, size_t, count
)
653 safe_syscall3(ssize_t
, write
, int, fd
, const void *, buff
, size_t, count
)
654 safe_syscall4(int, openat
, int, dirfd
, const char *, pathname
, \
655 int, flags
, mode_t
, mode
)
656 #if defined(TARGET_NR_wait4) || defined(TARGET_NR_waitpid)
657 safe_syscall4(pid_t
, wait4
, pid_t
, pid
, int *, status
, int, options
, \
658 struct rusage
*, rusage
)
660 safe_syscall5(int, waitid
, idtype_t
, idtype
, id_t
, id
, siginfo_t
*, infop
, \
661 int, options
, struct rusage
*, rusage
)
662 safe_syscall3(int, execve
, const char *, filename
, char **, argv
, char **, envp
)
663 safe_syscall5(int, execveat
, int, dirfd
, const char *, filename
,
664 char **, argv
, char **, envp
, int, flags
)
665 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
666 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
667 safe_syscall6(int, pselect6
, int, nfds
, fd_set
*, readfds
, fd_set
*, writefds
, \
668 fd_set
*, exceptfds
, struct timespec
*, timeout
, void *, sig
)
670 #if defined(TARGET_NR_ppoll) || defined(TARGET_NR_ppoll_time64)
671 safe_syscall5(int, ppoll
, struct pollfd
*, ufds
, unsigned int, nfds
,
672 struct timespec
*, tsp
, const sigset_t
*, sigmask
,
675 safe_syscall6(int, epoll_pwait
, int, epfd
, struct epoll_event
*, events
,
676 int, maxevents
, int, timeout
, const sigset_t
*, sigmask
,
678 #if defined(__NR_futex)
679 safe_syscall6(int,futex
,int *,uaddr
,int,op
,int,val
, \
680 const struct timespec
*,timeout
,int *,uaddr2
,int,val3
)
682 #if defined(__NR_futex_time64)
683 safe_syscall6(int,futex_time64
,int *,uaddr
,int,op
,int,val
, \
684 const struct timespec
*,timeout
,int *,uaddr2
,int,val3
)
686 safe_syscall2(int, rt_sigsuspend
, sigset_t
*, newset
, size_t, sigsetsize
)
687 safe_syscall2(int, kill
, pid_t
, pid
, int, sig
)
688 safe_syscall2(int, tkill
, int, tid
, int, sig
)
689 safe_syscall3(int, tgkill
, int, tgid
, int, pid
, int, sig
)
690 safe_syscall3(ssize_t
, readv
, int, fd
, const struct iovec
*, iov
, int, iovcnt
)
691 safe_syscall3(ssize_t
, writev
, int, fd
, const struct iovec
*, iov
, int, iovcnt
)
692 safe_syscall5(ssize_t
, preadv
, int, fd
, const struct iovec
*, iov
, int, iovcnt
,
693 unsigned long, pos_l
, unsigned long, pos_h
)
694 safe_syscall5(ssize_t
, pwritev
, int, fd
, const struct iovec
*, iov
, int, iovcnt
,
695 unsigned long, pos_l
, unsigned long, pos_h
)
696 safe_syscall3(int, connect
, int, fd
, const struct sockaddr
*, addr
,
698 safe_syscall6(ssize_t
, sendto
, int, fd
, const void *, buf
, size_t, len
,
699 int, flags
, const struct sockaddr
*, addr
, socklen_t
, addrlen
)
700 safe_syscall6(ssize_t
, recvfrom
, int, fd
, void *, buf
, size_t, len
,
701 int, flags
, struct sockaddr
*, addr
, socklen_t
*, addrlen
)
702 safe_syscall3(ssize_t
, sendmsg
, int, fd
, const struct msghdr
*, msg
, int, flags
)
703 safe_syscall3(ssize_t
, recvmsg
, int, fd
, struct msghdr
*, msg
, int, flags
)
704 safe_syscall2(int, flock
, int, fd
, int, operation
)
705 #if defined(TARGET_NR_rt_sigtimedwait) || defined(TARGET_NR_rt_sigtimedwait_time64)
706 safe_syscall4(int, rt_sigtimedwait
, const sigset_t
*, these
, siginfo_t
*, uinfo
,
707 const struct timespec
*, uts
, size_t, sigsetsize
)
709 safe_syscall4(int, accept4
, int, fd
, struct sockaddr
*, addr
, socklen_t
*, len
,
711 #if defined(TARGET_NR_nanosleep)
712 safe_syscall2(int, nanosleep
, const struct timespec
*, req
,
713 struct timespec
*, rem
)
715 #if defined(TARGET_NR_clock_nanosleep) || \
716 defined(TARGET_NR_clock_nanosleep_time64)
717 safe_syscall4(int, clock_nanosleep
, const clockid_t
, clock
, int, flags
,
718 const struct timespec
*, req
, struct timespec
*, rem
)
722 safe_syscall5(int, ipc
, int, call
, long, first
, long, second
, long, third
,
725 safe_syscall6(int, ipc
, int, call
, long, first
, long, second
, long, third
,
726 void *, ptr
, long, fifth
)
730 safe_syscall4(int, msgsnd
, int, msgid
, const void *, msgp
, size_t, sz
,
734 safe_syscall5(int, msgrcv
, int, msgid
, void *, msgp
, size_t, sz
,
735 long, msgtype
, int, flags
)
737 #ifdef __NR_semtimedop
738 safe_syscall4(int, semtimedop
, int, semid
, struct sembuf
*, tsops
,
739 unsigned, nsops
, const struct timespec
*, timeout
)
741 #if defined(TARGET_NR_mq_timedsend) || \
742 defined(TARGET_NR_mq_timedsend_time64)
743 safe_syscall5(int, mq_timedsend
, int, mqdes
, const char *, msg_ptr
,
744 size_t, len
, unsigned, prio
, const struct timespec
*, timeout
)
746 #if defined(TARGET_NR_mq_timedreceive) || \
747 defined(TARGET_NR_mq_timedreceive_time64)
748 safe_syscall5(int, mq_timedreceive
, int, mqdes
, char *, msg_ptr
,
749 size_t, len
, unsigned *, prio
, const struct timespec
*, timeout
)
751 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
752 safe_syscall6(ssize_t
, copy_file_range
, int, infd
, loff_t
*, pinoff
,
753 int, outfd
, loff_t
*, poutoff
, size_t, length
,
757 /* We do ioctl like this rather than via safe_syscall3 to preserve the
758 * "third argument might be integer or pointer or not present" behaviour of
761 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__)
762 /* Similarly for fcntl. Note that callers must always:
763 * pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK
764 * use the flock64 struct rather than unsuffixed flock
765 * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts.
768 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__)
770 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__)
773 static inline int host_to_target_sock_type(int host_type
)
777 switch (host_type
& 0xf /* SOCK_TYPE_MASK */) {
779 target_type
= TARGET_SOCK_DGRAM
;
782 target_type
= TARGET_SOCK_STREAM
;
785 target_type
= host_type
& 0xf /* SOCK_TYPE_MASK */;
789 #if defined(SOCK_CLOEXEC)
790 if (host_type
& SOCK_CLOEXEC
) {
791 target_type
|= TARGET_SOCK_CLOEXEC
;
795 #if defined(SOCK_NONBLOCK)
796 if (host_type
& SOCK_NONBLOCK
) {
797 target_type
|= TARGET_SOCK_NONBLOCK
;
804 static abi_ulong target_brk
, initial_target_brk
;
806 void target_set_brk(abi_ulong new_brk
)
808 target_brk
= TARGET_PAGE_ALIGN(new_brk
);
809 initial_target_brk
= target_brk
;
812 /* do_brk() must return target values and target errnos. */
813 abi_long
do_brk(abi_ulong brk_val
)
815 abi_long mapped_addr
;
819 /* brk pointers are always untagged */
821 /* do not allow to shrink below initial brk value */
822 if (brk_val
< initial_target_brk
) {
826 new_brk
= TARGET_PAGE_ALIGN(brk_val
);
827 old_brk
= TARGET_PAGE_ALIGN(target_brk
);
829 /* new and old target_brk might be on the same page */
830 if (new_brk
== old_brk
) {
831 target_brk
= brk_val
;
835 /* Release heap if necessary */
836 if (new_brk
< old_brk
) {
837 target_munmap(new_brk
, old_brk
- new_brk
);
839 target_brk
= brk_val
;
843 mapped_addr
= target_mmap(old_brk
, new_brk
- old_brk
,
844 PROT_READ
| PROT_WRITE
,
845 MAP_FIXED_NOREPLACE
| MAP_ANON
| MAP_PRIVATE
,
848 if (mapped_addr
== old_brk
) {
849 target_brk
= brk_val
;
853 #if defined(TARGET_ALPHA)
854 /* We (partially) emulate OSF/1 on Alpha, which requires we
855 return a proper errno, not an unchanged brk value. */
856 return -TARGET_ENOMEM
;
858 /* For everything else, return the previous break. */
862 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
863 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
864 static inline abi_long
copy_from_user_fdset(fd_set
*fds
,
865 abi_ulong target_fds_addr
,
869 abi_ulong b
, *target_fds
;
871 nw
= DIV_ROUND_UP(n
, TARGET_ABI_BITS
);
872 if (!(target_fds
= lock_user(VERIFY_READ
,
874 sizeof(abi_ulong
) * nw
,
876 return -TARGET_EFAULT
;
880 for (i
= 0; i
< nw
; i
++) {
881 /* grab the abi_ulong */
882 __get_user(b
, &target_fds
[i
]);
883 for (j
= 0; j
< TARGET_ABI_BITS
; j
++) {
884 /* check the bit inside the abi_ulong */
891 unlock_user(target_fds
, target_fds_addr
, 0);
896 static inline abi_ulong
copy_from_user_fdset_ptr(fd_set
*fds
, fd_set
**fds_ptr
,
897 abi_ulong target_fds_addr
,
900 if (target_fds_addr
) {
901 if (copy_from_user_fdset(fds
, target_fds_addr
, n
))
902 return -TARGET_EFAULT
;
910 static inline abi_long
copy_to_user_fdset(abi_ulong target_fds_addr
,
916 abi_ulong
*target_fds
;
918 nw
= DIV_ROUND_UP(n
, TARGET_ABI_BITS
);
919 if (!(target_fds
= lock_user(VERIFY_WRITE
,
921 sizeof(abi_ulong
) * nw
,
923 return -TARGET_EFAULT
;
926 for (i
= 0; i
< nw
; i
++) {
928 for (j
= 0; j
< TARGET_ABI_BITS
; j
++) {
929 v
|= ((abi_ulong
)(FD_ISSET(k
, fds
) != 0) << j
);
932 __put_user(v
, &target_fds
[i
]);
935 unlock_user(target_fds
, target_fds_addr
, sizeof(abi_ulong
) * nw
);
941 #if defined(__alpha__)
947 static inline abi_long
host_to_target_clock_t(long ticks
)
949 #if HOST_HZ == TARGET_HZ
952 return ((int64_t)ticks
* TARGET_HZ
) / HOST_HZ
;
956 static inline abi_long
host_to_target_rusage(abi_ulong target_addr
,
957 const struct rusage
*rusage
)
959 struct target_rusage
*target_rusage
;
961 if (!lock_user_struct(VERIFY_WRITE
, target_rusage
, target_addr
, 0))
962 return -TARGET_EFAULT
;
963 target_rusage
->ru_utime
.tv_sec
= tswapal(rusage
->ru_utime
.tv_sec
);
964 target_rusage
->ru_utime
.tv_usec
= tswapal(rusage
->ru_utime
.tv_usec
);
965 target_rusage
->ru_stime
.tv_sec
= tswapal(rusage
->ru_stime
.tv_sec
);
966 target_rusage
->ru_stime
.tv_usec
= tswapal(rusage
->ru_stime
.tv_usec
);
967 target_rusage
->ru_maxrss
= tswapal(rusage
->ru_maxrss
);
968 target_rusage
->ru_ixrss
= tswapal(rusage
->ru_ixrss
);
969 target_rusage
->ru_idrss
= tswapal(rusage
->ru_idrss
);
970 target_rusage
->ru_isrss
= tswapal(rusage
->ru_isrss
);
971 target_rusage
->ru_minflt
= tswapal(rusage
->ru_minflt
);
972 target_rusage
->ru_majflt
= tswapal(rusage
->ru_majflt
);
973 target_rusage
->ru_nswap
= tswapal(rusage
->ru_nswap
);
974 target_rusage
->ru_inblock
= tswapal(rusage
->ru_inblock
);
975 target_rusage
->ru_oublock
= tswapal(rusage
->ru_oublock
);
976 target_rusage
->ru_msgsnd
= tswapal(rusage
->ru_msgsnd
);
977 target_rusage
->ru_msgrcv
= tswapal(rusage
->ru_msgrcv
);
978 target_rusage
->ru_nsignals
= tswapal(rusage
->ru_nsignals
);
979 target_rusage
->ru_nvcsw
= tswapal(rusage
->ru_nvcsw
);
980 target_rusage
->ru_nivcsw
= tswapal(rusage
->ru_nivcsw
);
981 unlock_user_struct(target_rusage
, target_addr
, 1);
986 #ifdef TARGET_NR_setrlimit
987 static inline rlim_t
target_to_host_rlim(abi_ulong target_rlim
)
989 abi_ulong target_rlim_swap
;
992 target_rlim_swap
= tswapal(target_rlim
);
993 if (target_rlim_swap
== TARGET_RLIM_INFINITY
)
994 return RLIM_INFINITY
;
996 result
= target_rlim_swap
;
997 if (target_rlim_swap
!= (rlim_t
)result
)
998 return RLIM_INFINITY
;
1004 #if defined(TARGET_NR_getrlimit) || defined(TARGET_NR_ugetrlimit)
1005 static inline abi_ulong
host_to_target_rlim(rlim_t rlim
)
1007 abi_ulong target_rlim_swap
;
1010 if (rlim
== RLIM_INFINITY
|| rlim
!= (abi_long
)rlim
)
1011 target_rlim_swap
= TARGET_RLIM_INFINITY
;
1013 target_rlim_swap
= rlim
;
1014 result
= tswapal(target_rlim_swap
);
1020 static inline int target_to_host_resource(int code
)
1023 case TARGET_RLIMIT_AS
:
1025 case TARGET_RLIMIT_CORE
:
1027 case TARGET_RLIMIT_CPU
:
1029 case TARGET_RLIMIT_DATA
:
1031 case TARGET_RLIMIT_FSIZE
:
1032 return RLIMIT_FSIZE
;
1033 case TARGET_RLIMIT_LOCKS
:
1034 return RLIMIT_LOCKS
;
1035 case TARGET_RLIMIT_MEMLOCK
:
1036 return RLIMIT_MEMLOCK
;
1037 case TARGET_RLIMIT_MSGQUEUE
:
1038 return RLIMIT_MSGQUEUE
;
1039 case TARGET_RLIMIT_NICE
:
1041 case TARGET_RLIMIT_NOFILE
:
1042 return RLIMIT_NOFILE
;
1043 case TARGET_RLIMIT_NPROC
:
1044 return RLIMIT_NPROC
;
1045 case TARGET_RLIMIT_RSS
:
1047 case TARGET_RLIMIT_RTPRIO
:
1048 return RLIMIT_RTPRIO
;
1049 #ifdef RLIMIT_RTTIME
1050 case TARGET_RLIMIT_RTTIME
:
1051 return RLIMIT_RTTIME
;
1053 case TARGET_RLIMIT_SIGPENDING
:
1054 return RLIMIT_SIGPENDING
;
1055 case TARGET_RLIMIT_STACK
:
1056 return RLIMIT_STACK
;
1062 static inline abi_long
copy_from_user_timeval(struct timeval
*tv
,
1063 abi_ulong target_tv_addr
)
1065 struct target_timeval
*target_tv
;
1067 if (!lock_user_struct(VERIFY_READ
, target_tv
, target_tv_addr
, 1)) {
1068 return -TARGET_EFAULT
;
1071 __get_user(tv
->tv_sec
, &target_tv
->tv_sec
);
1072 __get_user(tv
->tv_usec
, &target_tv
->tv_usec
);
1074 unlock_user_struct(target_tv
, target_tv_addr
, 0);
1079 static inline abi_long
copy_to_user_timeval(abi_ulong target_tv_addr
,
1080 const struct timeval
*tv
)
1082 struct target_timeval
*target_tv
;
1084 if (!lock_user_struct(VERIFY_WRITE
, target_tv
, target_tv_addr
, 0)) {
1085 return -TARGET_EFAULT
;
1088 __put_user(tv
->tv_sec
, &target_tv
->tv_sec
);
1089 __put_user(tv
->tv_usec
, &target_tv
->tv_usec
);
1091 unlock_user_struct(target_tv
, target_tv_addr
, 1);
1096 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
1097 static inline abi_long
copy_from_user_timeval64(struct timeval
*tv
,
1098 abi_ulong target_tv_addr
)
1100 struct target__kernel_sock_timeval
*target_tv
;
1102 if (!lock_user_struct(VERIFY_READ
, target_tv
, target_tv_addr
, 1)) {
1103 return -TARGET_EFAULT
;
1106 __get_user(tv
->tv_sec
, &target_tv
->tv_sec
);
1107 __get_user(tv
->tv_usec
, &target_tv
->tv_usec
);
1109 unlock_user_struct(target_tv
, target_tv_addr
, 0);
1115 static inline abi_long
copy_to_user_timeval64(abi_ulong target_tv_addr
,
1116 const struct timeval
*tv
)
1118 struct target__kernel_sock_timeval
*target_tv
;
1120 if (!lock_user_struct(VERIFY_WRITE
, target_tv
, target_tv_addr
, 0)) {
1121 return -TARGET_EFAULT
;
1124 __put_user(tv
->tv_sec
, &target_tv
->tv_sec
);
1125 __put_user(tv
->tv_usec
, &target_tv
->tv_usec
);
1127 unlock_user_struct(target_tv
, target_tv_addr
, 1);
1132 #if defined(TARGET_NR_futex) || \
1133 defined(TARGET_NR_rt_sigtimedwait) || \
1134 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6) || \
1135 defined(TARGET_NR_nanosleep) || defined(TARGET_NR_clock_settime) || \
1136 defined(TARGET_NR_utimensat) || defined(TARGET_NR_mq_timedsend) || \
1137 defined(TARGET_NR_mq_timedreceive) || defined(TARGET_NR_ipc) || \
1138 defined(TARGET_NR_semop) || defined(TARGET_NR_semtimedop) || \
1139 defined(TARGET_NR_timer_settime) || \
1140 (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
1141 static inline abi_long
target_to_host_timespec(struct timespec
*host_ts
,
1142 abi_ulong target_addr
)
1144 struct target_timespec
*target_ts
;
1146 if (!lock_user_struct(VERIFY_READ
, target_ts
, target_addr
, 1)) {
1147 return -TARGET_EFAULT
;
1149 __get_user(host_ts
->tv_sec
, &target_ts
->tv_sec
);
1150 __get_user(host_ts
->tv_nsec
, &target_ts
->tv_nsec
);
1151 unlock_user_struct(target_ts
, target_addr
, 0);
1156 #if defined(TARGET_NR_clock_settime64) || defined(TARGET_NR_futex_time64) || \
1157 defined(TARGET_NR_timer_settime64) || \
1158 defined(TARGET_NR_mq_timedsend_time64) || \
1159 defined(TARGET_NR_mq_timedreceive_time64) || \
1160 (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) || \
1161 defined(TARGET_NR_clock_nanosleep_time64) || \
1162 defined(TARGET_NR_rt_sigtimedwait_time64) || \
1163 defined(TARGET_NR_utimensat) || \
1164 defined(TARGET_NR_utimensat_time64) || \
1165 defined(TARGET_NR_semtimedop_time64) || \
1166 defined(TARGET_NR_pselect6_time64) || defined(TARGET_NR_ppoll_time64)
1167 static inline abi_long
target_to_host_timespec64(struct timespec
*host_ts
,
1168 abi_ulong target_addr
)
1170 struct target__kernel_timespec
*target_ts
;
1172 if (!lock_user_struct(VERIFY_READ
, target_ts
, target_addr
, 1)) {
1173 return -TARGET_EFAULT
;
1175 __get_user(host_ts
->tv_sec
, &target_ts
->tv_sec
);
1176 __get_user(host_ts
->tv_nsec
, &target_ts
->tv_nsec
);
1177 /* in 32bit mode, this drops the padding */
1178 host_ts
->tv_nsec
= (long)(abi_long
)host_ts
->tv_nsec
;
1179 unlock_user_struct(target_ts
, target_addr
, 0);
1184 static inline abi_long
host_to_target_timespec(abi_ulong target_addr
,
1185 struct timespec
*host_ts
)
1187 struct target_timespec
*target_ts
;
1189 if (!lock_user_struct(VERIFY_WRITE
, target_ts
, target_addr
, 0)) {
1190 return -TARGET_EFAULT
;
1192 __put_user(host_ts
->tv_sec
, &target_ts
->tv_sec
);
1193 __put_user(host_ts
->tv_nsec
, &target_ts
->tv_nsec
);
1194 unlock_user_struct(target_ts
, target_addr
, 1);
1198 static inline abi_long
host_to_target_timespec64(abi_ulong target_addr
,
1199 struct timespec
*host_ts
)
1201 struct target__kernel_timespec
*target_ts
;
1203 if (!lock_user_struct(VERIFY_WRITE
, target_ts
, target_addr
, 0)) {
1204 return -TARGET_EFAULT
;
1206 __put_user(host_ts
->tv_sec
, &target_ts
->tv_sec
);
1207 __put_user(host_ts
->tv_nsec
, &target_ts
->tv_nsec
);
1208 unlock_user_struct(target_ts
, target_addr
, 1);
1212 #if defined(TARGET_NR_gettimeofday)
1213 static inline abi_long
copy_to_user_timezone(abi_ulong target_tz_addr
,
1214 struct timezone
*tz
)
1216 struct target_timezone
*target_tz
;
1218 if (!lock_user_struct(VERIFY_WRITE
, target_tz
, target_tz_addr
, 1)) {
1219 return -TARGET_EFAULT
;
1222 __put_user(tz
->tz_minuteswest
, &target_tz
->tz_minuteswest
);
1223 __put_user(tz
->tz_dsttime
, &target_tz
->tz_dsttime
);
1225 unlock_user_struct(target_tz
, target_tz_addr
, 1);
1231 #if defined(TARGET_NR_settimeofday)
1232 static inline abi_long
copy_from_user_timezone(struct timezone
*tz
,
1233 abi_ulong target_tz_addr
)
1235 struct target_timezone
*target_tz
;
1237 if (!lock_user_struct(VERIFY_READ
, target_tz
, target_tz_addr
, 1)) {
1238 return -TARGET_EFAULT
;
1241 __get_user(tz
->tz_minuteswest
, &target_tz
->tz_minuteswest
);
1242 __get_user(tz
->tz_dsttime
, &target_tz
->tz_dsttime
);
1244 unlock_user_struct(target_tz
, target_tz_addr
, 0);
1250 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1253 static inline abi_long
copy_from_user_mq_attr(struct mq_attr
*attr
,
1254 abi_ulong target_mq_attr_addr
)
1256 struct target_mq_attr
*target_mq_attr
;
1258 if (!lock_user_struct(VERIFY_READ
, target_mq_attr
,
1259 target_mq_attr_addr
, 1))
1260 return -TARGET_EFAULT
;
1262 __get_user(attr
->mq_flags
, &target_mq_attr
->mq_flags
);
1263 __get_user(attr
->mq_maxmsg
, &target_mq_attr
->mq_maxmsg
);
1264 __get_user(attr
->mq_msgsize
, &target_mq_attr
->mq_msgsize
);
1265 __get_user(attr
->mq_curmsgs
, &target_mq_attr
->mq_curmsgs
);
1267 unlock_user_struct(target_mq_attr
, target_mq_attr_addr
, 0);
1272 static inline abi_long
copy_to_user_mq_attr(abi_ulong target_mq_attr_addr
,
1273 const struct mq_attr
*attr
)
1275 struct target_mq_attr
*target_mq_attr
;
1277 if (!lock_user_struct(VERIFY_WRITE
, target_mq_attr
,
1278 target_mq_attr_addr
, 0))
1279 return -TARGET_EFAULT
;
1281 __put_user(attr
->mq_flags
, &target_mq_attr
->mq_flags
);
1282 __put_user(attr
->mq_maxmsg
, &target_mq_attr
->mq_maxmsg
);
1283 __put_user(attr
->mq_msgsize
, &target_mq_attr
->mq_msgsize
);
1284 __put_user(attr
->mq_curmsgs
, &target_mq_attr
->mq_curmsgs
);
1286 unlock_user_struct(target_mq_attr
, target_mq_attr_addr
, 1);
1292 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1293 /* do_select() must return target values and target errnos. */
1294 static abi_long
do_select(int n
,
1295 abi_ulong rfd_addr
, abi_ulong wfd_addr
,
1296 abi_ulong efd_addr
, abi_ulong target_tv_addr
)
1298 fd_set rfds
, wfds
, efds
;
1299 fd_set
*rfds_ptr
, *wfds_ptr
, *efds_ptr
;
1301 struct timespec ts
, *ts_ptr
;
1304 ret
= copy_from_user_fdset_ptr(&rfds
, &rfds_ptr
, rfd_addr
, n
);
1308 ret
= copy_from_user_fdset_ptr(&wfds
, &wfds_ptr
, wfd_addr
, n
);
1312 ret
= copy_from_user_fdset_ptr(&efds
, &efds_ptr
, efd_addr
, n
);
1317 if (target_tv_addr
) {
1318 if (copy_from_user_timeval(&tv
, target_tv_addr
))
1319 return -TARGET_EFAULT
;
1320 ts
.tv_sec
= tv
.tv_sec
;
1321 ts
.tv_nsec
= tv
.tv_usec
* 1000;
1327 ret
= get_errno(safe_pselect6(n
, rfds_ptr
, wfds_ptr
, efds_ptr
,
1330 if (!is_error(ret
)) {
1331 if (rfd_addr
&& copy_to_user_fdset(rfd_addr
, &rfds
, n
))
1332 return -TARGET_EFAULT
;
1333 if (wfd_addr
&& copy_to_user_fdset(wfd_addr
, &wfds
, n
))
1334 return -TARGET_EFAULT
;
1335 if (efd_addr
&& copy_to_user_fdset(efd_addr
, &efds
, n
))
1336 return -TARGET_EFAULT
;
1338 if (target_tv_addr
) {
1339 tv
.tv_sec
= ts
.tv_sec
;
1340 tv
.tv_usec
= ts
.tv_nsec
/ 1000;
1341 if (copy_to_user_timeval(target_tv_addr
, &tv
)) {
1342 return -TARGET_EFAULT
;
1350 #if defined(TARGET_WANT_OLD_SYS_SELECT)
1351 static abi_long
do_old_select(abi_ulong arg1
)
1353 struct target_sel_arg_struct
*sel
;
1354 abi_ulong inp
, outp
, exp
, tvp
;
1357 if (!lock_user_struct(VERIFY_READ
, sel
, arg1
, 1)) {
1358 return -TARGET_EFAULT
;
1361 nsel
= tswapal(sel
->n
);
1362 inp
= tswapal(sel
->inp
);
1363 outp
= tswapal(sel
->outp
);
1364 exp
= tswapal(sel
->exp
);
1365 tvp
= tswapal(sel
->tvp
);
1367 unlock_user_struct(sel
, arg1
, 0);
1369 return do_select(nsel
, inp
, outp
, exp
, tvp
);
1374 #if defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
1375 static abi_long
do_pselect6(abi_long arg1
, abi_long arg2
, abi_long arg3
,
1376 abi_long arg4
, abi_long arg5
, abi_long arg6
,
1379 abi_long rfd_addr
, wfd_addr
, efd_addr
, n
, ts_addr
;
1380 fd_set rfds
, wfds
, efds
;
1381 fd_set
*rfds_ptr
, *wfds_ptr
, *efds_ptr
;
1382 struct timespec ts
, *ts_ptr
;
1386 * The 6th arg is actually two args smashed together,
1387 * so we cannot use the C library.
1394 abi_ulong arg_sigset
, arg_sigsize
, *arg7
;
1402 ret
= copy_from_user_fdset_ptr(&rfds
, &rfds_ptr
, rfd_addr
, n
);
1406 ret
= copy_from_user_fdset_ptr(&wfds
, &wfds_ptr
, wfd_addr
, n
);
1410 ret
= copy_from_user_fdset_ptr(&efds
, &efds_ptr
, efd_addr
, n
);
1416 * This takes a timespec, and not a timeval, so we cannot
1417 * use the do_select() helper ...
1421 if (target_to_host_timespec64(&ts
, ts_addr
)) {
1422 return -TARGET_EFAULT
;
1425 if (target_to_host_timespec(&ts
, ts_addr
)) {
1426 return -TARGET_EFAULT
;
1434 /* Extract the two packed args for the sigset */
1437 arg7
= lock_user(VERIFY_READ
, arg6
, sizeof(*arg7
) * 2, 1);
1439 return -TARGET_EFAULT
;
1441 arg_sigset
= tswapal(arg7
[0]);
1442 arg_sigsize
= tswapal(arg7
[1]);
1443 unlock_user(arg7
, arg6
, 0);
1446 ret
= process_sigsuspend_mask(&sig
.set
, arg_sigset
, arg_sigsize
);
1451 sig
.size
= SIGSET_T_SIZE
;
1455 ret
= get_errno(safe_pselect6(n
, rfds_ptr
, wfds_ptr
, efds_ptr
,
1459 finish_sigsuspend_mask(ret
);
1462 if (!is_error(ret
)) {
1463 if (rfd_addr
&& copy_to_user_fdset(rfd_addr
, &rfds
, n
)) {
1464 return -TARGET_EFAULT
;
1466 if (wfd_addr
&& copy_to_user_fdset(wfd_addr
, &wfds
, n
)) {
1467 return -TARGET_EFAULT
;
1469 if (efd_addr
&& copy_to_user_fdset(efd_addr
, &efds
, n
)) {
1470 return -TARGET_EFAULT
;
1473 if (ts_addr
&& host_to_target_timespec64(ts_addr
, &ts
)) {
1474 return -TARGET_EFAULT
;
1477 if (ts_addr
&& host_to_target_timespec(ts_addr
, &ts
)) {
1478 return -TARGET_EFAULT
;
1486 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) || \
1487 defined(TARGET_NR_ppoll_time64)
1488 static abi_long
do_ppoll(abi_long arg1
, abi_long arg2
, abi_long arg3
,
1489 abi_long arg4
, abi_long arg5
, bool ppoll
, bool time64
)
1491 struct target_pollfd
*target_pfd
;
1492 unsigned int nfds
= arg2
;
1500 if (nfds
> (INT_MAX
/ sizeof(struct target_pollfd
))) {
1501 return -TARGET_EINVAL
;
1503 target_pfd
= lock_user(VERIFY_WRITE
, arg1
,
1504 sizeof(struct target_pollfd
) * nfds
, 1);
1506 return -TARGET_EFAULT
;
1509 pfd
= alloca(sizeof(struct pollfd
) * nfds
);
1510 for (i
= 0; i
< nfds
; i
++) {
1511 pfd
[i
].fd
= tswap32(target_pfd
[i
].fd
);
1512 pfd
[i
].events
= tswap16(target_pfd
[i
].events
);
1516 struct timespec _timeout_ts
, *timeout_ts
= &_timeout_ts
;
1517 sigset_t
*set
= NULL
;
1521 if (target_to_host_timespec64(timeout_ts
, arg3
)) {
1522 unlock_user(target_pfd
, arg1
, 0);
1523 return -TARGET_EFAULT
;
1526 if (target_to_host_timespec(timeout_ts
, arg3
)) {
1527 unlock_user(target_pfd
, arg1
, 0);
1528 return -TARGET_EFAULT
;
1536 ret
= process_sigsuspend_mask(&set
, arg4
, arg5
);
1538 unlock_user(target_pfd
, arg1
, 0);
1543 ret
= get_errno(safe_ppoll(pfd
, nfds
, timeout_ts
,
1544 set
, SIGSET_T_SIZE
));
1547 finish_sigsuspend_mask(ret
);
1549 if (!is_error(ret
) && arg3
) {
1551 if (host_to_target_timespec64(arg3
, timeout_ts
)) {
1552 return -TARGET_EFAULT
;
1555 if (host_to_target_timespec(arg3
, timeout_ts
)) {
1556 return -TARGET_EFAULT
;
1561 struct timespec ts
, *pts
;
1564 /* Convert ms to secs, ns */
1565 ts
.tv_sec
= arg3
/ 1000;
1566 ts
.tv_nsec
= (arg3
% 1000) * 1000000LL;
1569 /* -ve poll() timeout means "infinite" */
1572 ret
= get_errno(safe_ppoll(pfd
, nfds
, pts
, NULL
, 0));
1575 if (!is_error(ret
)) {
1576 for (i
= 0; i
< nfds
; i
++) {
1577 target_pfd
[i
].revents
= tswap16(pfd
[i
].revents
);
1580 unlock_user(target_pfd
, arg1
, sizeof(struct target_pollfd
) * nfds
);
1585 static abi_long
do_pipe(CPUArchState
*cpu_env
, abi_ulong pipedes
,
1586 int flags
, int is_pipe2
)
1590 ret
= pipe2(host_pipe
, flags
);
1593 return get_errno(ret
);
1595 /* Several targets have special calling conventions for the original
1596 pipe syscall, but didn't replicate this into the pipe2 syscall. */
1598 #if defined(TARGET_ALPHA)
1599 cpu_env
->ir
[IR_A4
] = host_pipe
[1];
1600 return host_pipe
[0];
1601 #elif defined(TARGET_MIPS)
1602 cpu_env
->active_tc
.gpr
[3] = host_pipe
[1];
1603 return host_pipe
[0];
1604 #elif defined(TARGET_SH4)
1605 cpu_env
->gregs
[1] = host_pipe
[1];
1606 return host_pipe
[0];
1607 #elif defined(TARGET_SPARC)
1608 cpu_env
->regwptr
[1] = host_pipe
[1];
1609 return host_pipe
[0];
1613 if (put_user_s32(host_pipe
[0], pipedes
)
1614 || put_user_s32(host_pipe
[1], pipedes
+ sizeof(abi_int
)))
1615 return -TARGET_EFAULT
;
1616 return get_errno(ret
);
1619 static inline abi_long
target_to_host_sockaddr(int fd
, struct sockaddr
*addr
,
1620 abi_ulong target_addr
,
1623 const socklen_t unix_maxlen
= sizeof (struct sockaddr_un
);
1624 sa_family_t sa_family
;
1625 struct target_sockaddr
*target_saddr
;
1627 if (fd_trans_target_to_host_addr(fd
)) {
1628 return fd_trans_target_to_host_addr(fd
)(addr
, target_addr
, len
);
1631 target_saddr
= lock_user(VERIFY_READ
, target_addr
, len
, 1);
1633 return -TARGET_EFAULT
;
1635 sa_family
= tswap16(target_saddr
->sa_family
);
1637 /* Oops. The caller might send a incomplete sun_path; sun_path
1638 * must be terminated by \0 (see the manual page), but
1639 * unfortunately it is quite common to specify sockaddr_un
1640 * length as "strlen(x->sun_path)" while it should be
1641 * "strlen(...) + 1". We'll fix that here if needed.
1642 * Linux kernel has a similar feature.
1645 if (sa_family
== AF_UNIX
) {
1646 if (len
< unix_maxlen
&& len
> 0) {
1647 char *cp
= (char*)target_saddr
;
1649 if ( cp
[len
-1] && !cp
[len
] )
1652 if (len
> unix_maxlen
)
1656 memcpy(addr
, target_saddr
, len
);
1657 addr
->sa_family
= sa_family
;
1658 if (sa_family
== AF_NETLINK
) {
1659 struct sockaddr_nl
*nladdr
;
1661 nladdr
= (struct sockaddr_nl
*)addr
;
1662 nladdr
->nl_pid
= tswap32(nladdr
->nl_pid
);
1663 nladdr
->nl_groups
= tswap32(nladdr
->nl_groups
);
1664 } else if (sa_family
== AF_PACKET
) {
1665 struct target_sockaddr_ll
*lladdr
;
1667 lladdr
= (struct target_sockaddr_ll
*)addr
;
1668 lladdr
->sll_ifindex
= tswap32(lladdr
->sll_ifindex
);
1669 lladdr
->sll_hatype
= tswap16(lladdr
->sll_hatype
);
1670 } else if (sa_family
== AF_INET6
) {
1671 struct sockaddr_in6
*in6addr
;
1673 in6addr
= (struct sockaddr_in6
*)addr
;
1674 in6addr
->sin6_scope_id
= tswap32(in6addr
->sin6_scope_id
);
1676 unlock_user(target_saddr
, target_addr
, 0);
1681 static inline abi_long
host_to_target_sockaddr(abi_ulong target_addr
,
1682 struct sockaddr
*addr
,
1685 struct target_sockaddr
*target_saddr
;
1692 target_saddr
= lock_user(VERIFY_WRITE
, target_addr
, len
, 0);
1694 return -TARGET_EFAULT
;
1695 memcpy(target_saddr
, addr
, len
);
1696 if (len
>= offsetof(struct target_sockaddr
, sa_family
) +
1697 sizeof(target_saddr
->sa_family
)) {
1698 target_saddr
->sa_family
= tswap16(addr
->sa_family
);
1700 if (addr
->sa_family
== AF_NETLINK
&&
1701 len
>= sizeof(struct target_sockaddr_nl
)) {
1702 struct target_sockaddr_nl
*target_nl
=
1703 (struct target_sockaddr_nl
*)target_saddr
;
1704 target_nl
->nl_pid
= tswap32(target_nl
->nl_pid
);
1705 target_nl
->nl_groups
= tswap32(target_nl
->nl_groups
);
1706 } else if (addr
->sa_family
== AF_PACKET
) {
1707 struct sockaddr_ll
*target_ll
= (struct sockaddr_ll
*)target_saddr
;
1708 target_ll
->sll_ifindex
= tswap32(target_ll
->sll_ifindex
);
1709 target_ll
->sll_hatype
= tswap16(target_ll
->sll_hatype
);
1710 } else if (addr
->sa_family
== AF_INET6
&&
1711 len
>= sizeof(struct target_sockaddr_in6
)) {
1712 struct target_sockaddr_in6
*target_in6
=
1713 (struct target_sockaddr_in6
*)target_saddr
;
1714 target_in6
->sin6_scope_id
= tswap16(target_in6
->sin6_scope_id
);
1716 unlock_user(target_saddr
, target_addr
, len
);
1721 static inline abi_long
target_to_host_cmsg(struct msghdr
*msgh
,
1722 struct target_msghdr
*target_msgh
)
1724 struct cmsghdr
*cmsg
= CMSG_FIRSTHDR(msgh
);
1725 abi_long msg_controllen
;
1726 abi_ulong target_cmsg_addr
;
1727 struct target_cmsghdr
*target_cmsg
, *target_cmsg_start
;
1728 socklen_t space
= 0;
1730 msg_controllen
= tswapal(target_msgh
->msg_controllen
);
1731 if (msg_controllen
< sizeof (struct target_cmsghdr
))
1733 target_cmsg_addr
= tswapal(target_msgh
->msg_control
);
1734 target_cmsg
= lock_user(VERIFY_READ
, target_cmsg_addr
, msg_controllen
, 1);
1735 target_cmsg_start
= target_cmsg
;
1737 return -TARGET_EFAULT
;
1739 while (cmsg
&& target_cmsg
) {
1740 void *data
= CMSG_DATA(cmsg
);
1741 void *target_data
= TARGET_CMSG_DATA(target_cmsg
);
1743 int len
= tswapal(target_cmsg
->cmsg_len
)
1744 - sizeof(struct target_cmsghdr
);
1746 space
+= CMSG_SPACE(len
);
1747 if (space
> msgh
->msg_controllen
) {
1748 space
-= CMSG_SPACE(len
);
1749 /* This is a QEMU bug, since we allocated the payload
1750 * area ourselves (unlike overflow in host-to-target
1751 * conversion, which is just the guest giving us a buffer
1752 * that's too small). It can't happen for the payload types
1753 * we currently support; if it becomes an issue in future
1754 * we would need to improve our allocation strategy to
1755 * something more intelligent than "twice the size of the
1756 * target buffer we're reading from".
1758 qemu_log_mask(LOG_UNIMP
,
1759 ("Unsupported ancillary data %d/%d: "
1760 "unhandled msg size\n"),
1761 tswap32(target_cmsg
->cmsg_level
),
1762 tswap32(target_cmsg
->cmsg_type
));
1766 if (tswap32(target_cmsg
->cmsg_level
) == TARGET_SOL_SOCKET
) {
1767 cmsg
->cmsg_level
= SOL_SOCKET
;
1769 cmsg
->cmsg_level
= tswap32(target_cmsg
->cmsg_level
);
1771 cmsg
->cmsg_type
= tswap32(target_cmsg
->cmsg_type
);
1772 cmsg
->cmsg_len
= CMSG_LEN(len
);
1774 if (cmsg
->cmsg_level
== SOL_SOCKET
&& cmsg
->cmsg_type
== SCM_RIGHTS
) {
1775 int *fd
= (int *)data
;
1776 int *target_fd
= (int *)target_data
;
1777 int i
, numfds
= len
/ sizeof(int);
1779 for (i
= 0; i
< numfds
; i
++) {
1780 __get_user(fd
[i
], target_fd
+ i
);
1782 } else if (cmsg
->cmsg_level
== SOL_SOCKET
1783 && cmsg
->cmsg_type
== SCM_CREDENTIALS
) {
1784 struct ucred
*cred
= (struct ucred
*)data
;
1785 struct target_ucred
*target_cred
=
1786 (struct target_ucred
*)target_data
;
1788 __get_user(cred
->pid
, &target_cred
->pid
);
1789 __get_user(cred
->uid
, &target_cred
->uid
);
1790 __get_user(cred
->gid
, &target_cred
->gid
);
1791 } else if (cmsg
->cmsg_level
== SOL_ALG
) {
1792 uint32_t *dst
= (uint32_t *)data
;
1794 memcpy(dst
, target_data
, len
);
1795 /* fix endianness of first 32-bit word */
1796 if (len
>= sizeof(uint32_t)) {
1797 *dst
= tswap32(*dst
);
1800 qemu_log_mask(LOG_UNIMP
, "Unsupported ancillary data: %d/%d\n",
1801 cmsg
->cmsg_level
, cmsg
->cmsg_type
);
1802 memcpy(data
, target_data
, len
);
1805 cmsg
= CMSG_NXTHDR(msgh
, cmsg
);
1806 target_cmsg
= TARGET_CMSG_NXTHDR(target_msgh
, target_cmsg
,
1809 unlock_user(target_cmsg
, target_cmsg_addr
, 0);
1811 msgh
->msg_controllen
= space
;
1815 static inline abi_long
host_to_target_cmsg(struct target_msghdr
*target_msgh
,
1816 struct msghdr
*msgh
)
1818 struct cmsghdr
*cmsg
= CMSG_FIRSTHDR(msgh
);
1819 abi_long msg_controllen
;
1820 abi_ulong target_cmsg_addr
;
1821 struct target_cmsghdr
*target_cmsg
, *target_cmsg_start
;
1822 socklen_t space
= 0;
1824 msg_controllen
= tswapal(target_msgh
->msg_controllen
);
1825 if (msg_controllen
< sizeof (struct target_cmsghdr
))
1827 target_cmsg_addr
= tswapal(target_msgh
->msg_control
);
1828 target_cmsg
= lock_user(VERIFY_WRITE
, target_cmsg_addr
, msg_controllen
, 0);
1829 target_cmsg_start
= target_cmsg
;
1831 return -TARGET_EFAULT
;
1833 while (cmsg
&& target_cmsg
) {
1834 void *data
= CMSG_DATA(cmsg
);
1835 void *target_data
= TARGET_CMSG_DATA(target_cmsg
);
1837 int len
= cmsg
->cmsg_len
- sizeof(struct cmsghdr
);
1838 int tgt_len
, tgt_space
;
1840 /* We never copy a half-header but may copy half-data;
1841 * this is Linux's behaviour in put_cmsg(). Note that
1842 * truncation here is a guest problem (which we report
1843 * to the guest via the CTRUNC bit), unlike truncation
1844 * in target_to_host_cmsg, which is a QEMU bug.
1846 if (msg_controllen
< sizeof(struct target_cmsghdr
)) {
1847 target_msgh
->msg_flags
|= tswap32(MSG_CTRUNC
);
1851 if (cmsg
->cmsg_level
== SOL_SOCKET
) {
1852 target_cmsg
->cmsg_level
= tswap32(TARGET_SOL_SOCKET
);
1854 target_cmsg
->cmsg_level
= tswap32(cmsg
->cmsg_level
);
1856 target_cmsg
->cmsg_type
= tswap32(cmsg
->cmsg_type
);
1858 /* Payload types which need a different size of payload on
1859 * the target must adjust tgt_len here.
1862 switch (cmsg
->cmsg_level
) {
1864 switch (cmsg
->cmsg_type
) {
1866 tgt_len
= sizeof(struct target_timeval
);
1876 if (msg_controllen
< TARGET_CMSG_LEN(tgt_len
)) {
1877 target_msgh
->msg_flags
|= tswap32(MSG_CTRUNC
);
1878 tgt_len
= msg_controllen
- sizeof(struct target_cmsghdr
);
1881 /* We must now copy-and-convert len bytes of payload
1882 * into tgt_len bytes of destination space. Bear in mind
1883 * that in both source and destination we may be dealing
1884 * with a truncated value!
1886 switch (cmsg
->cmsg_level
) {
1888 switch (cmsg
->cmsg_type
) {
1891 int *fd
= (int *)data
;
1892 int *target_fd
= (int *)target_data
;
1893 int i
, numfds
= tgt_len
/ sizeof(int);
1895 for (i
= 0; i
< numfds
; i
++) {
1896 __put_user(fd
[i
], target_fd
+ i
);
1902 struct timeval
*tv
= (struct timeval
*)data
;
1903 struct target_timeval
*target_tv
=
1904 (struct target_timeval
*)target_data
;
1906 if (len
!= sizeof(struct timeval
) ||
1907 tgt_len
!= sizeof(struct target_timeval
)) {
1911 /* copy struct timeval to target */
1912 __put_user(tv
->tv_sec
, &target_tv
->tv_sec
);
1913 __put_user(tv
->tv_usec
, &target_tv
->tv_usec
);
1916 case SCM_CREDENTIALS
:
1918 struct ucred
*cred
= (struct ucred
*)data
;
1919 struct target_ucred
*target_cred
=
1920 (struct target_ucred
*)target_data
;
1922 __put_user(cred
->pid
, &target_cred
->pid
);
1923 __put_user(cred
->uid
, &target_cred
->uid
);
1924 __put_user(cred
->gid
, &target_cred
->gid
);
1933 switch (cmsg
->cmsg_type
) {
1936 uint32_t *v
= (uint32_t *)data
;
1937 uint32_t *t_int
= (uint32_t *)target_data
;
1939 if (len
!= sizeof(uint32_t) ||
1940 tgt_len
!= sizeof(uint32_t)) {
1943 __put_user(*v
, t_int
);
1949 struct sock_extended_err ee
;
1950 struct sockaddr_in offender
;
1952 struct errhdr_t
*errh
= (struct errhdr_t
*)data
;
1953 struct errhdr_t
*target_errh
=
1954 (struct errhdr_t
*)target_data
;
1956 if (len
!= sizeof(struct errhdr_t
) ||
1957 tgt_len
!= sizeof(struct errhdr_t
)) {
1960 __put_user(errh
->ee
.ee_errno
, &target_errh
->ee
.ee_errno
);
1961 __put_user(errh
->ee
.ee_origin
, &target_errh
->ee
.ee_origin
);
1962 __put_user(errh
->ee
.ee_type
, &target_errh
->ee
.ee_type
);
1963 __put_user(errh
->ee
.ee_code
, &target_errh
->ee
.ee_code
);
1964 __put_user(errh
->ee
.ee_pad
, &target_errh
->ee
.ee_pad
);
1965 __put_user(errh
->ee
.ee_info
, &target_errh
->ee
.ee_info
);
1966 __put_user(errh
->ee
.ee_data
, &target_errh
->ee
.ee_data
);
1967 host_to_target_sockaddr((unsigned long) &target_errh
->offender
,
1968 (void *) &errh
->offender
, sizeof(errh
->offender
));
1977 switch (cmsg
->cmsg_type
) {
1980 uint32_t *v
= (uint32_t *)data
;
1981 uint32_t *t_int
= (uint32_t *)target_data
;
1983 if (len
!= sizeof(uint32_t) ||
1984 tgt_len
!= sizeof(uint32_t)) {
1987 __put_user(*v
, t_int
);
1993 struct sock_extended_err ee
;
1994 struct sockaddr_in6 offender
;
1996 struct errhdr6_t
*errh
= (struct errhdr6_t
*)data
;
1997 struct errhdr6_t
*target_errh
=
1998 (struct errhdr6_t
*)target_data
;
2000 if (len
!= sizeof(struct errhdr6_t
) ||
2001 tgt_len
!= sizeof(struct errhdr6_t
)) {
2004 __put_user(errh
->ee
.ee_errno
, &target_errh
->ee
.ee_errno
);
2005 __put_user(errh
->ee
.ee_origin
, &target_errh
->ee
.ee_origin
);
2006 __put_user(errh
->ee
.ee_type
, &target_errh
->ee
.ee_type
);
2007 __put_user(errh
->ee
.ee_code
, &target_errh
->ee
.ee_code
);
2008 __put_user(errh
->ee
.ee_pad
, &target_errh
->ee
.ee_pad
);
2009 __put_user(errh
->ee
.ee_info
, &target_errh
->ee
.ee_info
);
2010 __put_user(errh
->ee
.ee_data
, &target_errh
->ee
.ee_data
);
2011 host_to_target_sockaddr((unsigned long) &target_errh
->offender
,
2012 (void *) &errh
->offender
, sizeof(errh
->offender
));
2022 qemu_log_mask(LOG_UNIMP
, "Unsupported ancillary data: %d/%d\n",
2023 cmsg
->cmsg_level
, cmsg
->cmsg_type
);
2024 memcpy(target_data
, data
, MIN(len
, tgt_len
));
2025 if (tgt_len
> len
) {
2026 memset(target_data
+ len
, 0, tgt_len
- len
);
2030 target_cmsg
->cmsg_len
= tswapal(TARGET_CMSG_LEN(tgt_len
));
2031 tgt_space
= TARGET_CMSG_SPACE(tgt_len
);
2032 if (msg_controllen
< tgt_space
) {
2033 tgt_space
= msg_controllen
;
2035 msg_controllen
-= tgt_space
;
2037 cmsg
= CMSG_NXTHDR(msgh
, cmsg
);
2038 target_cmsg
= TARGET_CMSG_NXTHDR(target_msgh
, target_cmsg
,
2041 unlock_user(target_cmsg
, target_cmsg_addr
, space
);
2043 target_msgh
->msg_controllen
= tswapal(space
);
2047 /* do_setsockopt() Must return target values and target errnos. */
2048 static abi_long
do_setsockopt(int sockfd
, int level
, int optname
,
2049 abi_ulong optval_addr
, socklen_t optlen
)
2057 /* TCP and UDP options all take an 'int' value. */
2058 if (optlen
< sizeof(uint32_t))
2059 return -TARGET_EINVAL
;
2061 if (get_user_u32(val
, optval_addr
))
2062 return -TARGET_EFAULT
;
2063 ret
= get_errno(setsockopt(sockfd
, level
, optname
, &val
, sizeof(val
)));
2070 case IP_ROUTER_ALERT
:
2074 case IP_MTU_DISCOVER
:
2081 case IP_MULTICAST_TTL
:
2082 case IP_MULTICAST_LOOP
:
2084 if (optlen
>= sizeof(uint32_t)) {
2085 if (get_user_u32(val
, optval_addr
))
2086 return -TARGET_EFAULT
;
2087 } else if (optlen
>= 1) {
2088 if (get_user_u8(val
, optval_addr
))
2089 return -TARGET_EFAULT
;
2091 ret
= get_errno(setsockopt(sockfd
, level
, optname
, &val
, sizeof(val
)));
2093 case IP_ADD_MEMBERSHIP
:
2094 case IP_DROP_MEMBERSHIP
:
2096 struct ip_mreqn ip_mreq
;
2097 struct target_ip_mreqn
*target_smreqn
;
2099 QEMU_BUILD_BUG_ON(sizeof(struct ip_mreq
) !=
2100 sizeof(struct target_ip_mreq
));
2102 if (optlen
< sizeof (struct target_ip_mreq
) ||
2103 optlen
> sizeof (struct target_ip_mreqn
)) {
2104 return -TARGET_EINVAL
;
2107 target_smreqn
= lock_user(VERIFY_READ
, optval_addr
, optlen
, 1);
2108 if (!target_smreqn
) {
2109 return -TARGET_EFAULT
;
2111 ip_mreq
.imr_multiaddr
.s_addr
= target_smreqn
->imr_multiaddr
.s_addr
;
2112 ip_mreq
.imr_address
.s_addr
= target_smreqn
->imr_address
.s_addr
;
2113 if (optlen
== sizeof(struct target_ip_mreqn
)) {
2114 ip_mreq
.imr_ifindex
= tswapal(target_smreqn
->imr_ifindex
);
2115 optlen
= sizeof(struct ip_mreqn
);
2117 unlock_user(target_smreqn
, optval_addr
, 0);
2119 ret
= get_errno(setsockopt(sockfd
, level
, optname
, &ip_mreq
, optlen
));
2122 case IP_BLOCK_SOURCE
:
2123 case IP_UNBLOCK_SOURCE
:
2124 case IP_ADD_SOURCE_MEMBERSHIP
:
2125 case IP_DROP_SOURCE_MEMBERSHIP
:
2127 struct ip_mreq_source
*ip_mreq_source
;
2129 if (optlen
!= sizeof (struct target_ip_mreq_source
))
2130 return -TARGET_EINVAL
;
2132 ip_mreq_source
= lock_user(VERIFY_READ
, optval_addr
, optlen
, 1);
2133 if (!ip_mreq_source
) {
2134 return -TARGET_EFAULT
;
2136 ret
= get_errno(setsockopt(sockfd
, level
, optname
, ip_mreq_source
, optlen
));
2137 unlock_user (ip_mreq_source
, optval_addr
, 0);
2146 case IPV6_MTU_DISCOVER
:
2149 case IPV6_RECVPKTINFO
:
2150 case IPV6_UNICAST_HOPS
:
2151 case IPV6_MULTICAST_HOPS
:
2152 case IPV6_MULTICAST_LOOP
:
2154 case IPV6_RECVHOPLIMIT
:
2155 case IPV6_2292HOPLIMIT
:
2158 case IPV6_2292PKTINFO
:
2159 case IPV6_RECVTCLASS
:
2160 case IPV6_RECVRTHDR
:
2161 case IPV6_2292RTHDR
:
2162 case IPV6_RECVHOPOPTS
:
2163 case IPV6_2292HOPOPTS
:
2164 case IPV6_RECVDSTOPTS
:
2165 case IPV6_2292DSTOPTS
:
2167 case IPV6_ADDR_PREFERENCES
:
2168 #ifdef IPV6_RECVPATHMTU
2169 case IPV6_RECVPATHMTU
:
2171 #ifdef IPV6_TRANSPARENT
2172 case IPV6_TRANSPARENT
:
2174 #ifdef IPV6_FREEBIND
2177 #ifdef IPV6_RECVORIGDSTADDR
2178 case IPV6_RECVORIGDSTADDR
:
2181 if (optlen
< sizeof(uint32_t)) {
2182 return -TARGET_EINVAL
;
2184 if (get_user_u32(val
, optval_addr
)) {
2185 return -TARGET_EFAULT
;
2187 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
2188 &val
, sizeof(val
)));
2192 struct in6_pktinfo pki
;
2194 if (optlen
< sizeof(pki
)) {
2195 return -TARGET_EINVAL
;
2198 if (copy_from_user(&pki
, optval_addr
, sizeof(pki
))) {
2199 return -TARGET_EFAULT
;
2202 pki
.ipi6_ifindex
= tswap32(pki
.ipi6_ifindex
);
2204 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
2205 &pki
, sizeof(pki
)));
2208 case IPV6_ADD_MEMBERSHIP
:
2209 case IPV6_DROP_MEMBERSHIP
:
2211 struct ipv6_mreq ipv6mreq
;
2213 if (optlen
< sizeof(ipv6mreq
)) {
2214 return -TARGET_EINVAL
;
2217 if (copy_from_user(&ipv6mreq
, optval_addr
, sizeof(ipv6mreq
))) {
2218 return -TARGET_EFAULT
;
2221 ipv6mreq
.ipv6mr_interface
= tswap32(ipv6mreq
.ipv6mr_interface
);
2223 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
2224 &ipv6mreq
, sizeof(ipv6mreq
)));
2235 struct icmp6_filter icmp6f
;
2237 if (optlen
> sizeof(icmp6f
)) {
2238 optlen
= sizeof(icmp6f
);
2241 if (copy_from_user(&icmp6f
, optval_addr
, optlen
)) {
2242 return -TARGET_EFAULT
;
2245 for (val
= 0; val
< 8; val
++) {
2246 icmp6f
.data
[val
] = tswap32(icmp6f
.data
[val
]);
2249 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
2261 /* those take an u32 value */
2262 if (optlen
< sizeof(uint32_t)) {
2263 return -TARGET_EINVAL
;
2266 if (get_user_u32(val
, optval_addr
)) {
2267 return -TARGET_EFAULT
;
2269 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
2270 &val
, sizeof(val
)));
2277 #if defined(SOL_ALG) && defined(ALG_SET_KEY) && defined(ALG_SET_AEAD_AUTHSIZE)
2282 char *alg_key
= lock_user(VERIFY_READ
, optval_addr
, optlen
, 1);
2284 return -TARGET_EFAULT
;
2286 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
2288 unlock_user(alg_key
, optval_addr
, optlen
);
2291 case ALG_SET_AEAD_AUTHSIZE
:
2293 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
2302 case TARGET_SOL_SOCKET
:
2304 case TARGET_SO_RCVTIMEO
:
2305 case TARGET_SO_SNDTIMEO
:
2309 if (optlen
!= sizeof(struct target_timeval
)) {
2310 return -TARGET_EINVAL
;
2313 if (copy_from_user_timeval(&tv
, optval_addr
)) {
2314 return -TARGET_EFAULT
;
2317 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
,
2318 optname
== TARGET_SO_RCVTIMEO
?
2319 SO_RCVTIMEO
: SO_SNDTIMEO
,
2323 case TARGET_SO_ATTACH_FILTER
:
2325 struct target_sock_fprog
*tfprog
;
2326 struct target_sock_filter
*tfilter
;
2327 struct sock_fprog fprog
;
2328 struct sock_filter
*filter
;
2331 if (optlen
!= sizeof(*tfprog
)) {
2332 return -TARGET_EINVAL
;
2334 if (!lock_user_struct(VERIFY_READ
, tfprog
, optval_addr
, 0)) {
2335 return -TARGET_EFAULT
;
2337 if (!lock_user_struct(VERIFY_READ
, tfilter
,
2338 tswapal(tfprog
->filter
), 0)) {
2339 unlock_user_struct(tfprog
, optval_addr
, 1);
2340 return -TARGET_EFAULT
;
2343 fprog
.len
= tswap16(tfprog
->len
);
2344 filter
= g_try_new(struct sock_filter
, fprog
.len
);
2345 if (filter
== NULL
) {
2346 unlock_user_struct(tfilter
, tfprog
->filter
, 1);
2347 unlock_user_struct(tfprog
, optval_addr
, 1);
2348 return -TARGET_ENOMEM
;
2350 for (i
= 0; i
< fprog
.len
; i
++) {
2351 filter
[i
].code
= tswap16(tfilter
[i
].code
);
2352 filter
[i
].jt
= tfilter
[i
].jt
;
2353 filter
[i
].jf
= tfilter
[i
].jf
;
2354 filter
[i
].k
= tswap32(tfilter
[i
].k
);
2356 fprog
.filter
= filter
;
2358 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
,
2359 SO_ATTACH_FILTER
, &fprog
, sizeof(fprog
)));
2362 unlock_user_struct(tfilter
, tfprog
->filter
, 1);
2363 unlock_user_struct(tfprog
, optval_addr
, 1);
2366 case TARGET_SO_BINDTODEVICE
:
2368 char *dev_ifname
, *addr_ifname
;
2370 if (optlen
> IFNAMSIZ
- 1) {
2371 optlen
= IFNAMSIZ
- 1;
2373 dev_ifname
= lock_user(VERIFY_READ
, optval_addr
, optlen
, 1);
2375 return -TARGET_EFAULT
;
2377 optname
= SO_BINDTODEVICE
;
2378 addr_ifname
= alloca(IFNAMSIZ
);
2379 memcpy(addr_ifname
, dev_ifname
, optlen
);
2380 addr_ifname
[optlen
] = 0;
2381 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
, optname
,
2382 addr_ifname
, optlen
));
2383 unlock_user (dev_ifname
, optval_addr
, 0);
2386 case TARGET_SO_LINGER
:
2389 struct target_linger
*tlg
;
2391 if (optlen
!= sizeof(struct target_linger
)) {
2392 return -TARGET_EINVAL
;
2394 if (!lock_user_struct(VERIFY_READ
, tlg
, optval_addr
, 1)) {
2395 return -TARGET_EFAULT
;
2397 __get_user(lg
.l_onoff
, &tlg
->l_onoff
);
2398 __get_user(lg
.l_linger
, &tlg
->l_linger
);
2399 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
, SO_LINGER
,
2401 unlock_user_struct(tlg
, optval_addr
, 0);
2404 /* Options with 'int' argument. */
2405 case TARGET_SO_DEBUG
:
2408 case TARGET_SO_REUSEADDR
:
2409 optname
= SO_REUSEADDR
;
2412 case TARGET_SO_REUSEPORT
:
2413 optname
= SO_REUSEPORT
;
2416 case TARGET_SO_TYPE
:
2419 case TARGET_SO_ERROR
:
2422 case TARGET_SO_DONTROUTE
:
2423 optname
= SO_DONTROUTE
;
2425 case TARGET_SO_BROADCAST
:
2426 optname
= SO_BROADCAST
;
2428 case TARGET_SO_SNDBUF
:
2429 optname
= SO_SNDBUF
;
2431 case TARGET_SO_SNDBUFFORCE
:
2432 optname
= SO_SNDBUFFORCE
;
2434 case TARGET_SO_RCVBUF
:
2435 optname
= SO_RCVBUF
;
2437 case TARGET_SO_RCVBUFFORCE
:
2438 optname
= SO_RCVBUFFORCE
;
2440 case TARGET_SO_KEEPALIVE
:
2441 optname
= SO_KEEPALIVE
;
2443 case TARGET_SO_OOBINLINE
:
2444 optname
= SO_OOBINLINE
;
2446 case TARGET_SO_NO_CHECK
:
2447 optname
= SO_NO_CHECK
;
2449 case TARGET_SO_PRIORITY
:
2450 optname
= SO_PRIORITY
;
2453 case TARGET_SO_BSDCOMPAT
:
2454 optname
= SO_BSDCOMPAT
;
2457 case TARGET_SO_PASSCRED
:
2458 optname
= SO_PASSCRED
;
2460 case TARGET_SO_PASSSEC
:
2461 optname
= SO_PASSSEC
;
2463 case TARGET_SO_TIMESTAMP
:
2464 optname
= SO_TIMESTAMP
;
2466 case TARGET_SO_RCVLOWAT
:
2467 optname
= SO_RCVLOWAT
;
2472 if (optlen
< sizeof(uint32_t))
2473 return -TARGET_EINVAL
;
2475 if (get_user_u32(val
, optval_addr
))
2476 return -TARGET_EFAULT
;
2477 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
, optname
, &val
, sizeof(val
)));
2482 case NETLINK_PKTINFO
:
2483 case NETLINK_ADD_MEMBERSHIP
:
2484 case NETLINK_DROP_MEMBERSHIP
:
2485 case NETLINK_BROADCAST_ERROR
:
2486 case NETLINK_NO_ENOBUFS
:
2487 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2488 case NETLINK_LISTEN_ALL_NSID
:
2489 case NETLINK_CAP_ACK
:
2490 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2491 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2492 case NETLINK_EXT_ACK
:
2493 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2494 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2495 case NETLINK_GET_STRICT_CHK
:
2496 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2502 if (optlen
< sizeof(uint32_t)) {
2503 return -TARGET_EINVAL
;
2505 if (get_user_u32(val
, optval_addr
)) {
2506 return -TARGET_EFAULT
;
2508 ret
= get_errno(setsockopt(sockfd
, SOL_NETLINK
, optname
, &val
,
2511 #endif /* SOL_NETLINK */
2514 qemu_log_mask(LOG_UNIMP
, "Unsupported setsockopt level=%d optname=%d\n",
2516 ret
= -TARGET_ENOPROTOOPT
;
2521 /* do_getsockopt() Must return target values and target errnos. */
2522 static abi_long
do_getsockopt(int sockfd
, int level
, int optname
,
2523 abi_ulong optval_addr
, abi_ulong optlen
)
2530 case TARGET_SOL_SOCKET
:
2533 /* These don't just return a single integer */
2534 case TARGET_SO_PEERNAME
:
2536 case TARGET_SO_RCVTIMEO
: {
2540 optname
= SO_RCVTIMEO
;
2543 if (get_user_u32(len
, optlen
)) {
2544 return -TARGET_EFAULT
;
2547 return -TARGET_EINVAL
;
2551 ret
= get_errno(getsockopt(sockfd
, level
, optname
,
2556 if (len
> sizeof(struct target_timeval
)) {
2557 len
= sizeof(struct target_timeval
);
2559 if (copy_to_user_timeval(optval_addr
, &tv
)) {
2560 return -TARGET_EFAULT
;
2562 if (put_user_u32(len
, optlen
)) {
2563 return -TARGET_EFAULT
;
2567 case TARGET_SO_SNDTIMEO
:
2568 optname
= SO_SNDTIMEO
;
2570 case TARGET_SO_PEERCRED
: {
2573 struct target_ucred
*tcr
;
2575 if (get_user_u32(len
, optlen
)) {
2576 return -TARGET_EFAULT
;
2579 return -TARGET_EINVAL
;
2583 ret
= get_errno(getsockopt(sockfd
, level
, SO_PEERCRED
,
2591 if (!lock_user_struct(VERIFY_WRITE
, tcr
, optval_addr
, 0)) {
2592 return -TARGET_EFAULT
;
2594 __put_user(cr
.pid
, &tcr
->pid
);
2595 __put_user(cr
.uid
, &tcr
->uid
);
2596 __put_user(cr
.gid
, &tcr
->gid
);
2597 unlock_user_struct(tcr
, optval_addr
, 1);
2598 if (put_user_u32(len
, optlen
)) {
2599 return -TARGET_EFAULT
;
2603 case TARGET_SO_PEERSEC
: {
2606 if (get_user_u32(len
, optlen
)) {
2607 return -TARGET_EFAULT
;
2610 return -TARGET_EINVAL
;
2612 name
= lock_user(VERIFY_WRITE
, optval_addr
, len
, 0);
2614 return -TARGET_EFAULT
;
2617 ret
= get_errno(getsockopt(sockfd
, level
, SO_PEERSEC
,
2619 if (put_user_u32(lv
, optlen
)) {
2620 ret
= -TARGET_EFAULT
;
2622 unlock_user(name
, optval_addr
, lv
);
2625 case TARGET_SO_LINGER
:
2629 struct target_linger
*tlg
;
2631 if (get_user_u32(len
, optlen
)) {
2632 return -TARGET_EFAULT
;
2635 return -TARGET_EINVAL
;
2639 ret
= get_errno(getsockopt(sockfd
, level
, SO_LINGER
,
2647 if (!lock_user_struct(VERIFY_WRITE
, tlg
, optval_addr
, 0)) {
2648 return -TARGET_EFAULT
;
2650 __put_user(lg
.l_onoff
, &tlg
->l_onoff
);
2651 __put_user(lg
.l_linger
, &tlg
->l_linger
);
2652 unlock_user_struct(tlg
, optval_addr
, 1);
2653 if (put_user_u32(len
, optlen
)) {
2654 return -TARGET_EFAULT
;
2658 /* Options with 'int' argument. */
2659 case TARGET_SO_DEBUG
:
2662 case TARGET_SO_REUSEADDR
:
2663 optname
= SO_REUSEADDR
;
2666 case TARGET_SO_REUSEPORT
:
2667 optname
= SO_REUSEPORT
;
2670 case TARGET_SO_TYPE
:
2673 case TARGET_SO_ERROR
:
2676 case TARGET_SO_DONTROUTE
:
2677 optname
= SO_DONTROUTE
;
2679 case TARGET_SO_BROADCAST
:
2680 optname
= SO_BROADCAST
;
2682 case TARGET_SO_SNDBUF
:
2683 optname
= SO_SNDBUF
;
2685 case TARGET_SO_RCVBUF
:
2686 optname
= SO_RCVBUF
;
2688 case TARGET_SO_KEEPALIVE
:
2689 optname
= SO_KEEPALIVE
;
2691 case TARGET_SO_OOBINLINE
:
2692 optname
= SO_OOBINLINE
;
2694 case TARGET_SO_NO_CHECK
:
2695 optname
= SO_NO_CHECK
;
2697 case TARGET_SO_PRIORITY
:
2698 optname
= SO_PRIORITY
;
2701 case TARGET_SO_BSDCOMPAT
:
2702 optname
= SO_BSDCOMPAT
;
2705 case TARGET_SO_PASSCRED
:
2706 optname
= SO_PASSCRED
;
2708 case TARGET_SO_TIMESTAMP
:
2709 optname
= SO_TIMESTAMP
;
2711 case TARGET_SO_RCVLOWAT
:
2712 optname
= SO_RCVLOWAT
;
2714 case TARGET_SO_ACCEPTCONN
:
2715 optname
= SO_ACCEPTCONN
;
2717 case TARGET_SO_PROTOCOL
:
2718 optname
= SO_PROTOCOL
;
2720 case TARGET_SO_DOMAIN
:
2721 optname
= SO_DOMAIN
;
2729 /* TCP and UDP options all take an 'int' value. */
2731 if (get_user_u32(len
, optlen
))
2732 return -TARGET_EFAULT
;
2734 return -TARGET_EINVAL
;
2736 ret
= get_errno(getsockopt(sockfd
, level
, optname
, &val
, &lv
));
2741 val
= host_to_target_sock_type(val
);
2744 val
= host_to_target_errno(val
);
2750 if (put_user_u32(val
, optval_addr
))
2751 return -TARGET_EFAULT
;
2753 if (put_user_u8(val
, optval_addr
))
2754 return -TARGET_EFAULT
;
2756 if (put_user_u32(len
, optlen
))
2757 return -TARGET_EFAULT
;
2764 case IP_ROUTER_ALERT
:
2768 case IP_MTU_DISCOVER
:
2774 case IP_MULTICAST_TTL
:
2775 case IP_MULTICAST_LOOP
:
2776 if (get_user_u32(len
, optlen
))
2777 return -TARGET_EFAULT
;
2779 return -TARGET_EINVAL
;
2781 ret
= get_errno(getsockopt(sockfd
, level
, optname
, &val
, &lv
));
2784 if (len
< sizeof(int) && len
> 0 && val
>= 0 && val
< 255) {
2786 if (put_user_u32(len
, optlen
)
2787 || put_user_u8(val
, optval_addr
))
2788 return -TARGET_EFAULT
;
2790 if (len
> sizeof(int))
2792 if (put_user_u32(len
, optlen
)
2793 || put_user_u32(val
, optval_addr
))
2794 return -TARGET_EFAULT
;
2798 ret
= -TARGET_ENOPROTOOPT
;
2804 case IPV6_MTU_DISCOVER
:
2807 case IPV6_RECVPKTINFO
:
2808 case IPV6_UNICAST_HOPS
:
2809 case IPV6_MULTICAST_HOPS
:
2810 case IPV6_MULTICAST_LOOP
:
2812 case IPV6_RECVHOPLIMIT
:
2813 case IPV6_2292HOPLIMIT
:
2816 case IPV6_2292PKTINFO
:
2817 case IPV6_RECVTCLASS
:
2818 case IPV6_RECVRTHDR
:
2819 case IPV6_2292RTHDR
:
2820 case IPV6_RECVHOPOPTS
:
2821 case IPV6_2292HOPOPTS
:
2822 case IPV6_RECVDSTOPTS
:
2823 case IPV6_2292DSTOPTS
:
2825 case IPV6_ADDR_PREFERENCES
:
2826 #ifdef IPV6_RECVPATHMTU
2827 case IPV6_RECVPATHMTU
:
2829 #ifdef IPV6_TRANSPARENT
2830 case IPV6_TRANSPARENT
:
2832 #ifdef IPV6_FREEBIND
2835 #ifdef IPV6_RECVORIGDSTADDR
2836 case IPV6_RECVORIGDSTADDR
:
2838 if (get_user_u32(len
, optlen
))
2839 return -TARGET_EFAULT
;
2841 return -TARGET_EINVAL
;
2843 ret
= get_errno(getsockopt(sockfd
, level
, optname
, &val
, &lv
));
2846 if (len
< sizeof(int) && len
> 0 && val
>= 0 && val
< 255) {
2848 if (put_user_u32(len
, optlen
)
2849 || put_user_u8(val
, optval_addr
))
2850 return -TARGET_EFAULT
;
2852 if (len
> sizeof(int))
2854 if (put_user_u32(len
, optlen
)
2855 || put_user_u32(val
, optval_addr
))
2856 return -TARGET_EFAULT
;
2860 ret
= -TARGET_ENOPROTOOPT
;
2867 case NETLINK_PKTINFO
:
2868 case NETLINK_BROADCAST_ERROR
:
2869 case NETLINK_NO_ENOBUFS
:
2870 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2871 case NETLINK_LISTEN_ALL_NSID
:
2872 case NETLINK_CAP_ACK
:
2873 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2874 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2875 case NETLINK_EXT_ACK
:
2876 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2877 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2878 case NETLINK_GET_STRICT_CHK
:
2879 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2880 if (get_user_u32(len
, optlen
)) {
2881 return -TARGET_EFAULT
;
2883 if (len
!= sizeof(val
)) {
2884 return -TARGET_EINVAL
;
2887 ret
= get_errno(getsockopt(sockfd
, level
, optname
, &val
, &lv
));
2891 if (put_user_u32(lv
, optlen
)
2892 || put_user_u32(val
, optval_addr
)) {
2893 return -TARGET_EFAULT
;
2896 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2897 case NETLINK_LIST_MEMBERSHIPS
:
2901 if (get_user_u32(len
, optlen
)) {
2902 return -TARGET_EFAULT
;
2905 return -TARGET_EINVAL
;
2907 results
= lock_user(VERIFY_WRITE
, optval_addr
, len
, 1);
2908 if (!results
&& len
> 0) {
2909 return -TARGET_EFAULT
;
2912 ret
= get_errno(getsockopt(sockfd
, level
, optname
, results
, &lv
));
2914 unlock_user(results
, optval_addr
, 0);
2917 /* swap host endianness to target endianness. */
2918 for (i
= 0; i
< (len
/ sizeof(uint32_t)); i
++) {
2919 results
[i
] = tswap32(results
[i
]);
2921 if (put_user_u32(lv
, optlen
)) {
2922 return -TARGET_EFAULT
;
2924 unlock_user(results
, optval_addr
, 0);
2927 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2932 #endif /* SOL_NETLINK */
2935 qemu_log_mask(LOG_UNIMP
,
2936 "getsockopt level=%d optname=%d not yet supported\n",
2938 ret
= -TARGET_EOPNOTSUPP
;
2944 /* Convert target low/high pair representing file offset into the host
2945 * low/high pair. This function doesn't handle offsets bigger than 64 bits
2946 * as the kernel doesn't handle them either.
2948 static void target_to_host_low_high(abi_ulong tlow
,
2950 unsigned long *hlow
,
2951 unsigned long *hhigh
)
2953 uint64_t off
= tlow
|
2954 ((unsigned long long)thigh
<< TARGET_LONG_BITS
/ 2) <<
2955 TARGET_LONG_BITS
/ 2;
2958 *hhigh
= (off
>> HOST_LONG_BITS
/ 2) >> HOST_LONG_BITS
/ 2;
2961 static struct iovec
*lock_iovec(int type
, abi_ulong target_addr
,
2962 abi_ulong count
, int copy
)
2964 struct target_iovec
*target_vec
;
2966 abi_ulong total_len
, max_len
;
2969 bool bad_address
= false;
2975 if (count
> IOV_MAX
) {
2980 vec
= g_try_new0(struct iovec
, count
);
2986 target_vec
= lock_user(VERIFY_READ
, target_addr
,
2987 count
* sizeof(struct target_iovec
), 1);
2988 if (target_vec
== NULL
) {
2993 /* ??? If host page size > target page size, this will result in a
2994 value larger than what we can actually support. */
2995 max_len
= 0x7fffffff & TARGET_PAGE_MASK
;
2998 for (i
= 0; i
< count
; i
++) {
2999 abi_ulong base
= tswapal(target_vec
[i
].iov_base
);
3000 abi_long len
= tswapal(target_vec
[i
].iov_len
);
3005 } else if (len
== 0) {
3006 /* Zero length pointer is ignored. */
3007 vec
[i
].iov_base
= 0;
3009 vec
[i
].iov_base
= lock_user(type
, base
, len
, copy
);
3010 /* If the first buffer pointer is bad, this is a fault. But
3011 * subsequent bad buffers will result in a partial write; this
3012 * is realized by filling the vector with null pointers and
3014 if (!vec
[i
].iov_base
) {
3025 if (len
> max_len
- total_len
) {
3026 len
= max_len
- total_len
;
3029 vec
[i
].iov_len
= len
;
3033 unlock_user(target_vec
, target_addr
, 0);
3038 if (tswapal(target_vec
[i
].iov_len
) > 0) {
3039 unlock_user(vec
[i
].iov_base
, tswapal(target_vec
[i
].iov_base
), 0);
3042 unlock_user(target_vec
, target_addr
, 0);
3049 static void unlock_iovec(struct iovec
*vec
, abi_ulong target_addr
,
3050 abi_ulong count
, int copy
)
3052 struct target_iovec
*target_vec
;
3055 target_vec
= lock_user(VERIFY_READ
, target_addr
,
3056 count
* sizeof(struct target_iovec
), 1);
3058 for (i
= 0; i
< count
; i
++) {
3059 abi_ulong base
= tswapal(target_vec
[i
].iov_base
);
3060 abi_long len
= tswapal(target_vec
[i
].iov_len
);
3064 unlock_user(vec
[i
].iov_base
, base
, copy
? vec
[i
].iov_len
: 0);
3066 unlock_user(target_vec
, target_addr
, 0);
3072 static inline int target_to_host_sock_type(int *type
)
3075 int target_type
= *type
;
3077 switch (target_type
& TARGET_SOCK_TYPE_MASK
) {
3078 case TARGET_SOCK_DGRAM
:
3079 host_type
= SOCK_DGRAM
;
3081 case TARGET_SOCK_STREAM
:
3082 host_type
= SOCK_STREAM
;
3085 host_type
= target_type
& TARGET_SOCK_TYPE_MASK
;
3088 if (target_type
& TARGET_SOCK_CLOEXEC
) {
3089 #if defined(SOCK_CLOEXEC)
3090 host_type
|= SOCK_CLOEXEC
;
3092 return -TARGET_EINVAL
;
3095 if (target_type
& TARGET_SOCK_NONBLOCK
) {
3096 #if defined(SOCK_NONBLOCK)
3097 host_type
|= SOCK_NONBLOCK
;
3098 #elif !defined(O_NONBLOCK)
3099 return -TARGET_EINVAL
;
3106 /* Try to emulate socket type flags after socket creation. */
3107 static int sock_flags_fixup(int fd
, int target_type
)
3109 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
3110 if (target_type
& TARGET_SOCK_NONBLOCK
) {
3111 int flags
= fcntl(fd
, F_GETFL
);
3112 if (fcntl(fd
, F_SETFL
, O_NONBLOCK
| flags
) == -1) {
3114 return -TARGET_EINVAL
;
3121 /* do_socket() Must return target values and target errnos. */
3122 static abi_long
do_socket(int domain
, int type
, int protocol
)
3124 int target_type
= type
;
3127 ret
= target_to_host_sock_type(&type
);
3132 if (domain
== PF_NETLINK
&& !(
3133 #ifdef CONFIG_RTNETLINK
3134 protocol
== NETLINK_ROUTE
||
3136 protocol
== NETLINK_KOBJECT_UEVENT
||
3137 protocol
== NETLINK_AUDIT
)) {
3138 return -TARGET_EPROTONOSUPPORT
;
3141 if (domain
== AF_PACKET
||
3142 (domain
== AF_INET
&& type
== SOCK_PACKET
)) {
3143 protocol
= tswap16(protocol
);
3146 ret
= get_errno(socket(domain
, type
, protocol
));
3148 ret
= sock_flags_fixup(ret
, target_type
);
3149 if (type
== SOCK_PACKET
) {
3150 /* Manage an obsolete case :
3151 * if socket type is SOCK_PACKET, bind by name
3153 fd_trans_register(ret
, &target_packet_trans
);
3154 } else if (domain
== PF_NETLINK
) {
3156 #ifdef CONFIG_RTNETLINK
3158 fd_trans_register(ret
, &target_netlink_route_trans
);
3161 case NETLINK_KOBJECT_UEVENT
:
3162 /* nothing to do: messages are strings */
3165 fd_trans_register(ret
, &target_netlink_audit_trans
);
3168 g_assert_not_reached();
3175 /* do_bind() Must return target values and target errnos. */
3176 static abi_long
do_bind(int sockfd
, abi_ulong target_addr
,
3182 if ((int)addrlen
< 0) {
3183 return -TARGET_EINVAL
;
3186 addr
= alloca(addrlen
+1);
3188 ret
= target_to_host_sockaddr(sockfd
, addr
, target_addr
, addrlen
);
3192 return get_errno(bind(sockfd
, addr
, addrlen
));
3195 /* do_connect() Must return target values and target errnos. */
3196 static abi_long
do_connect(int sockfd
, abi_ulong target_addr
,
3202 if ((int)addrlen
< 0) {
3203 return -TARGET_EINVAL
;
3206 addr
= alloca(addrlen
+1);
3208 ret
= target_to_host_sockaddr(sockfd
, addr
, target_addr
, addrlen
);
3212 return get_errno(safe_connect(sockfd
, addr
, addrlen
));
3215 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
3216 static abi_long
do_sendrecvmsg_locked(int fd
, struct target_msghdr
*msgp
,
3217 int flags
, int send
)
3223 abi_ulong target_vec
;
3225 if (msgp
->msg_name
) {
3226 msg
.msg_namelen
= tswap32(msgp
->msg_namelen
);
3227 msg
.msg_name
= alloca(msg
.msg_namelen
+1);
3228 ret
= target_to_host_sockaddr(fd
, msg
.msg_name
,
3229 tswapal(msgp
->msg_name
),
3231 if (ret
== -TARGET_EFAULT
) {
3232 /* For connected sockets msg_name and msg_namelen must
3233 * be ignored, so returning EFAULT immediately is wrong.
3234 * Instead, pass a bad msg_name to the host kernel, and
3235 * let it decide whether to return EFAULT or not.
3237 msg
.msg_name
= (void *)-1;
3242 msg
.msg_name
= NULL
;
3243 msg
.msg_namelen
= 0;
3245 msg
.msg_controllen
= 2 * tswapal(msgp
->msg_controllen
);
3246 msg
.msg_control
= alloca(msg
.msg_controllen
);
3247 memset(msg
.msg_control
, 0, msg
.msg_controllen
);
3249 msg
.msg_flags
= tswap32(msgp
->msg_flags
);
3251 count
= tswapal(msgp
->msg_iovlen
);
3252 target_vec
= tswapal(msgp
->msg_iov
);
3254 if (count
> IOV_MAX
) {
3255 /* sendrcvmsg returns a different errno for this condition than
3256 * readv/writev, so we must catch it here before lock_iovec() does.
3258 ret
= -TARGET_EMSGSIZE
;
3262 vec
= lock_iovec(send
? VERIFY_READ
: VERIFY_WRITE
,
3263 target_vec
, count
, send
);
3265 ret
= -host_to_target_errno(errno
);
3266 /* allow sending packet without any iov, e.g. with MSG_MORE flag */
3271 msg
.msg_iovlen
= count
;
3275 if (fd_trans_target_to_host_data(fd
)) {
3278 host_msg
= g_malloc(msg
.msg_iov
->iov_len
);
3279 memcpy(host_msg
, msg
.msg_iov
->iov_base
, msg
.msg_iov
->iov_len
);
3280 ret
= fd_trans_target_to_host_data(fd
)(host_msg
,
3281 msg
.msg_iov
->iov_len
);
3283 msg
.msg_iov
->iov_base
= host_msg
;
3284 ret
= get_errno(safe_sendmsg(fd
, &msg
, flags
));
3288 ret
= target_to_host_cmsg(&msg
, msgp
);
3290 ret
= get_errno(safe_sendmsg(fd
, &msg
, flags
));
3294 ret
= get_errno(safe_recvmsg(fd
, &msg
, flags
));
3295 if (!is_error(ret
)) {
3297 if (fd_trans_host_to_target_data(fd
)) {
3298 ret
= fd_trans_host_to_target_data(fd
)(msg
.msg_iov
->iov_base
,
3299 MIN(msg
.msg_iov
->iov_len
, len
));
3301 if (!is_error(ret
)) {
3302 ret
= host_to_target_cmsg(msgp
, &msg
);
3304 if (!is_error(ret
)) {
3305 msgp
->msg_namelen
= tswap32(msg
.msg_namelen
);
3306 msgp
->msg_flags
= tswap32(msg
.msg_flags
);
3307 if (msg
.msg_name
!= NULL
&& msg
.msg_name
!= (void *)-1) {
3308 ret
= host_to_target_sockaddr(tswapal(msgp
->msg_name
),
3309 msg
.msg_name
, msg
.msg_namelen
);
3322 unlock_iovec(vec
, target_vec
, count
, !send
);
3328 static abi_long
do_sendrecvmsg(int fd
, abi_ulong target_msg
,
3329 int flags
, int send
)
3332 struct target_msghdr
*msgp
;
3334 if (!lock_user_struct(send
? VERIFY_READ
: VERIFY_WRITE
,
3338 return -TARGET_EFAULT
;
3340 ret
= do_sendrecvmsg_locked(fd
, msgp
, flags
, send
);
3341 unlock_user_struct(msgp
, target_msg
, send
? 0 : 1);
3345 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
3346 * so it might not have this *mmsg-specific flag either.
3348 #ifndef MSG_WAITFORONE
3349 #define MSG_WAITFORONE 0x10000
3352 static abi_long
do_sendrecvmmsg(int fd
, abi_ulong target_msgvec
,
3353 unsigned int vlen
, unsigned int flags
,
3356 struct target_mmsghdr
*mmsgp
;
3360 if (vlen
> UIO_MAXIOV
) {
3364 mmsgp
= lock_user(VERIFY_WRITE
, target_msgvec
, sizeof(*mmsgp
) * vlen
, 1);
3366 return -TARGET_EFAULT
;
3369 for (i
= 0; i
< vlen
; i
++) {
3370 ret
= do_sendrecvmsg_locked(fd
, &mmsgp
[i
].msg_hdr
, flags
, send
);
3371 if (is_error(ret
)) {
3374 mmsgp
[i
].msg_len
= tswap32(ret
);
3375 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
3376 if (flags
& MSG_WAITFORONE
) {
3377 flags
|= MSG_DONTWAIT
;
3381 unlock_user(mmsgp
, target_msgvec
, sizeof(*mmsgp
) * i
);
3383 /* Return number of datagrams sent if we sent any at all;
3384 * otherwise return the error.
3392 /* do_accept4() Must return target values and target errnos. */
3393 static abi_long
do_accept4(int fd
, abi_ulong target_addr
,
3394 abi_ulong target_addrlen_addr
, int flags
)
3396 socklen_t addrlen
, ret_addrlen
;
3401 if (flags
& ~(TARGET_SOCK_CLOEXEC
| TARGET_SOCK_NONBLOCK
)) {
3402 return -TARGET_EINVAL
;
3406 if (flags
& TARGET_SOCK_NONBLOCK
) {
3407 host_flags
|= SOCK_NONBLOCK
;
3409 if (flags
& TARGET_SOCK_CLOEXEC
) {
3410 host_flags
|= SOCK_CLOEXEC
;
3413 if (target_addr
== 0) {
3414 return get_errno(safe_accept4(fd
, NULL
, NULL
, host_flags
));
3417 /* linux returns EFAULT if addrlen pointer is invalid */
3418 if (get_user_u32(addrlen
, target_addrlen_addr
))
3419 return -TARGET_EFAULT
;
3421 if ((int)addrlen
< 0) {
3422 return -TARGET_EINVAL
;
3425 if (!access_ok(thread_cpu
, VERIFY_WRITE
, target_addr
, addrlen
)) {
3426 return -TARGET_EFAULT
;
3429 addr
= alloca(addrlen
);
3431 ret_addrlen
= addrlen
;
3432 ret
= get_errno(safe_accept4(fd
, addr
, &ret_addrlen
, host_flags
));
3433 if (!is_error(ret
)) {
3434 host_to_target_sockaddr(target_addr
, addr
, MIN(addrlen
, ret_addrlen
));
3435 if (put_user_u32(ret_addrlen
, target_addrlen_addr
)) {
3436 ret
= -TARGET_EFAULT
;
3442 /* do_getpeername() Must return target values and target errnos. */
3443 static abi_long
do_getpeername(int fd
, abi_ulong target_addr
,
3444 abi_ulong target_addrlen_addr
)
3446 socklen_t addrlen
, ret_addrlen
;
3450 if (get_user_u32(addrlen
, target_addrlen_addr
))
3451 return -TARGET_EFAULT
;
3453 if ((int)addrlen
< 0) {
3454 return -TARGET_EINVAL
;
3457 if (!access_ok(thread_cpu
, VERIFY_WRITE
, target_addr
, addrlen
)) {
3458 return -TARGET_EFAULT
;
3461 addr
= alloca(addrlen
);
3463 ret_addrlen
= addrlen
;
3464 ret
= get_errno(getpeername(fd
, addr
, &ret_addrlen
));
3465 if (!is_error(ret
)) {
3466 host_to_target_sockaddr(target_addr
, addr
, MIN(addrlen
, ret_addrlen
));
3467 if (put_user_u32(ret_addrlen
, target_addrlen_addr
)) {
3468 ret
= -TARGET_EFAULT
;
3474 /* do_getsockname() Must return target values and target errnos. */
3475 static abi_long
do_getsockname(int fd
, abi_ulong target_addr
,
3476 abi_ulong target_addrlen_addr
)
3478 socklen_t addrlen
, ret_addrlen
;
3482 if (get_user_u32(addrlen
, target_addrlen_addr
))
3483 return -TARGET_EFAULT
;
3485 if ((int)addrlen
< 0) {
3486 return -TARGET_EINVAL
;
3489 if (!access_ok(thread_cpu
, VERIFY_WRITE
, target_addr
, addrlen
)) {
3490 return -TARGET_EFAULT
;
3493 addr
= alloca(addrlen
);
3495 ret_addrlen
= addrlen
;
3496 ret
= get_errno(getsockname(fd
, addr
, &ret_addrlen
));
3497 if (!is_error(ret
)) {
3498 host_to_target_sockaddr(target_addr
, addr
, MIN(addrlen
, ret_addrlen
));
3499 if (put_user_u32(ret_addrlen
, target_addrlen_addr
)) {
3500 ret
= -TARGET_EFAULT
;
3506 /* do_socketpair() Must return target values and target errnos. */
3507 static abi_long
do_socketpair(int domain
, int type
, int protocol
,
3508 abi_ulong target_tab_addr
)
3513 target_to_host_sock_type(&type
);
3515 ret
= get_errno(socketpair(domain
, type
, protocol
, tab
));
3516 if (!is_error(ret
)) {
3517 if (put_user_s32(tab
[0], target_tab_addr
)
3518 || put_user_s32(tab
[1], target_tab_addr
+ sizeof(tab
[0])))
3519 ret
= -TARGET_EFAULT
;
3524 /* do_sendto() Must return target values and target errnos. */
3525 static abi_long
do_sendto(int fd
, abi_ulong msg
, size_t len
, int flags
,
3526 abi_ulong target_addr
, socklen_t addrlen
)
3530 void *copy_msg
= NULL
;
3533 if ((int)addrlen
< 0) {
3534 return -TARGET_EINVAL
;
3537 host_msg
= lock_user(VERIFY_READ
, msg
, len
, 1);
3539 return -TARGET_EFAULT
;
3540 if (fd_trans_target_to_host_data(fd
)) {
3541 copy_msg
= host_msg
;
3542 host_msg
= g_malloc(len
);
3543 memcpy(host_msg
, copy_msg
, len
);
3544 ret
= fd_trans_target_to_host_data(fd
)(host_msg
, len
);
3550 addr
= alloca(addrlen
+1);
3551 ret
= target_to_host_sockaddr(fd
, addr
, target_addr
, addrlen
);
3555 ret
= get_errno(safe_sendto(fd
, host_msg
, len
, flags
, addr
, addrlen
));
3557 ret
= get_errno(safe_sendto(fd
, host_msg
, len
, flags
, NULL
, 0));
3562 host_msg
= copy_msg
;
3564 unlock_user(host_msg
, msg
, 0);
3568 /* do_recvfrom() Must return target values and target errnos. */
3569 static abi_long
do_recvfrom(int fd
, abi_ulong msg
, size_t len
, int flags
,
3570 abi_ulong target_addr
,
3571 abi_ulong target_addrlen
)
3573 socklen_t addrlen
, ret_addrlen
;
3581 host_msg
= lock_user(VERIFY_WRITE
, msg
, len
, 0);
3583 return -TARGET_EFAULT
;
3587 if (get_user_u32(addrlen
, target_addrlen
)) {
3588 ret
= -TARGET_EFAULT
;
3591 if ((int)addrlen
< 0) {
3592 ret
= -TARGET_EINVAL
;
3595 addr
= alloca(addrlen
);
3596 ret_addrlen
= addrlen
;
3597 ret
= get_errno(safe_recvfrom(fd
, host_msg
, len
, flags
,
3598 addr
, &ret_addrlen
));
3600 addr
= NULL
; /* To keep compiler quiet. */
3601 addrlen
= 0; /* To keep compiler quiet. */
3602 ret
= get_errno(safe_recvfrom(fd
, host_msg
, len
, flags
, NULL
, 0));
3604 if (!is_error(ret
)) {
3605 if (fd_trans_host_to_target_data(fd
)) {
3607 trans
= fd_trans_host_to_target_data(fd
)(host_msg
, MIN(ret
, len
));
3608 if (is_error(trans
)) {
3614 host_to_target_sockaddr(target_addr
, addr
,
3615 MIN(addrlen
, ret_addrlen
));
3616 if (put_user_u32(ret_addrlen
, target_addrlen
)) {
3617 ret
= -TARGET_EFAULT
;
3621 unlock_user(host_msg
, msg
, len
);
3624 unlock_user(host_msg
, msg
, 0);
3629 #ifdef TARGET_NR_socketcall
3630 /* do_socketcall() must return target values and target errnos. */
3631 static abi_long
do_socketcall(int num
, abi_ulong vptr
)
3633 static const unsigned nargs
[] = { /* number of arguments per operation */
3634 [TARGET_SYS_SOCKET
] = 3, /* domain, type, protocol */
3635 [TARGET_SYS_BIND
] = 3, /* fd, addr, addrlen */
3636 [TARGET_SYS_CONNECT
] = 3, /* fd, addr, addrlen */
3637 [TARGET_SYS_LISTEN
] = 2, /* fd, backlog */
3638 [TARGET_SYS_ACCEPT
] = 3, /* fd, addr, addrlen */
3639 [TARGET_SYS_GETSOCKNAME
] = 3, /* fd, addr, addrlen */
3640 [TARGET_SYS_GETPEERNAME
] = 3, /* fd, addr, addrlen */
3641 [TARGET_SYS_SOCKETPAIR
] = 4, /* domain, type, protocol, tab */
3642 [TARGET_SYS_SEND
] = 4, /* fd, msg, len, flags */
3643 [TARGET_SYS_RECV
] = 4, /* fd, msg, len, flags */
3644 [TARGET_SYS_SENDTO
] = 6, /* fd, msg, len, flags, addr, addrlen */
3645 [TARGET_SYS_RECVFROM
] = 6, /* fd, msg, len, flags, addr, addrlen */
3646 [TARGET_SYS_SHUTDOWN
] = 2, /* fd, how */
3647 [TARGET_SYS_SETSOCKOPT
] = 5, /* fd, level, optname, optval, optlen */
3648 [TARGET_SYS_GETSOCKOPT
] = 5, /* fd, level, optname, optval, optlen */
3649 [TARGET_SYS_SENDMSG
] = 3, /* fd, msg, flags */
3650 [TARGET_SYS_RECVMSG
] = 3, /* fd, msg, flags */
3651 [TARGET_SYS_ACCEPT4
] = 4, /* fd, addr, addrlen, flags */
3652 [TARGET_SYS_RECVMMSG
] = 4, /* fd, msgvec, vlen, flags */
3653 [TARGET_SYS_SENDMMSG
] = 4, /* fd, msgvec, vlen, flags */
3655 abi_long a
[6]; /* max 6 args */
3658 /* check the range of the first argument num */
3659 /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */
3660 if (num
< 1 || num
> TARGET_SYS_SENDMMSG
) {
3661 return -TARGET_EINVAL
;
3663 /* ensure we have space for args */
3664 if (nargs
[num
] > ARRAY_SIZE(a
)) {
3665 return -TARGET_EINVAL
;
3667 /* collect the arguments in a[] according to nargs[] */
3668 for (i
= 0; i
< nargs
[num
]; ++i
) {
3669 if (get_user_ual(a
[i
], vptr
+ i
* sizeof(abi_long
)) != 0) {
3670 return -TARGET_EFAULT
;
3673 /* now when we have the args, invoke the appropriate underlying function */
3675 case TARGET_SYS_SOCKET
: /* domain, type, protocol */
3676 return do_socket(a
[0], a
[1], a
[2]);
3677 case TARGET_SYS_BIND
: /* sockfd, addr, addrlen */
3678 return do_bind(a
[0], a
[1], a
[2]);
3679 case TARGET_SYS_CONNECT
: /* sockfd, addr, addrlen */
3680 return do_connect(a
[0], a
[1], a
[2]);
3681 case TARGET_SYS_LISTEN
: /* sockfd, backlog */
3682 return get_errno(listen(a
[0], a
[1]));
3683 case TARGET_SYS_ACCEPT
: /* sockfd, addr, addrlen */
3684 return do_accept4(a
[0], a
[1], a
[2], 0);
3685 case TARGET_SYS_GETSOCKNAME
: /* sockfd, addr, addrlen */
3686 return do_getsockname(a
[0], a
[1], a
[2]);
3687 case TARGET_SYS_GETPEERNAME
: /* sockfd, addr, addrlen */
3688 return do_getpeername(a
[0], a
[1], a
[2]);
3689 case TARGET_SYS_SOCKETPAIR
: /* domain, type, protocol, tab */
3690 return do_socketpair(a
[0], a
[1], a
[2], a
[3]);
3691 case TARGET_SYS_SEND
: /* sockfd, msg, len, flags */
3692 return do_sendto(a
[0], a
[1], a
[2], a
[3], 0, 0);
3693 case TARGET_SYS_RECV
: /* sockfd, msg, len, flags */
3694 return do_recvfrom(a
[0], a
[1], a
[2], a
[3], 0, 0);
3695 case TARGET_SYS_SENDTO
: /* sockfd, msg, len, flags, addr, addrlen */
3696 return do_sendto(a
[0], a
[1], a
[2], a
[3], a
[4], a
[5]);
3697 case TARGET_SYS_RECVFROM
: /* sockfd, msg, len, flags, addr, addrlen */
3698 return do_recvfrom(a
[0], a
[1], a
[2], a
[3], a
[4], a
[5]);
3699 case TARGET_SYS_SHUTDOWN
: /* sockfd, how */
3700 return get_errno(shutdown(a
[0], a
[1]));
3701 case TARGET_SYS_SETSOCKOPT
: /* sockfd, level, optname, optval, optlen */
3702 return do_setsockopt(a
[0], a
[1], a
[2], a
[3], a
[4]);
3703 case TARGET_SYS_GETSOCKOPT
: /* sockfd, level, optname, optval, optlen */
3704 return do_getsockopt(a
[0], a
[1], a
[2], a
[3], a
[4]);
3705 case TARGET_SYS_SENDMSG
: /* sockfd, msg, flags */
3706 return do_sendrecvmsg(a
[0], a
[1], a
[2], 1);
3707 case TARGET_SYS_RECVMSG
: /* sockfd, msg, flags */
3708 return do_sendrecvmsg(a
[0], a
[1], a
[2], 0);
3709 case TARGET_SYS_ACCEPT4
: /* sockfd, addr, addrlen, flags */
3710 return do_accept4(a
[0], a
[1], a
[2], a
[3]);
3711 case TARGET_SYS_RECVMMSG
: /* sockfd, msgvec, vlen, flags */
3712 return do_sendrecvmmsg(a
[0], a
[1], a
[2], a
[3], 0);
3713 case TARGET_SYS_SENDMMSG
: /* sockfd, msgvec, vlen, flags */
3714 return do_sendrecvmmsg(a
[0], a
[1], a
[2], a
[3], 1);
3716 qemu_log_mask(LOG_UNIMP
, "Unsupported socketcall: %d\n", num
);
3717 return -TARGET_EINVAL
;
3722 #ifndef TARGET_SEMID64_DS
3723 /* asm-generic version of this struct */
3724 struct target_semid64_ds
3726 struct target_ipc_perm sem_perm
;
3727 abi_ulong sem_otime
;
3728 #if TARGET_ABI_BITS == 32
3729 abi_ulong __unused1
;
3731 abi_ulong sem_ctime
;
3732 #if TARGET_ABI_BITS == 32
3733 abi_ulong __unused2
;
3735 abi_ulong sem_nsems
;
3736 abi_ulong __unused3
;
3737 abi_ulong __unused4
;
3741 static inline abi_long
target_to_host_ipc_perm(struct ipc_perm
*host_ip
,
3742 abi_ulong target_addr
)
3744 struct target_ipc_perm
*target_ip
;
3745 struct target_semid64_ds
*target_sd
;
3747 if (!lock_user_struct(VERIFY_READ
, target_sd
, target_addr
, 1))
3748 return -TARGET_EFAULT
;
3749 target_ip
= &(target_sd
->sem_perm
);
3750 host_ip
->__key
= tswap32(target_ip
->__key
);
3751 host_ip
->uid
= tswap32(target_ip
->uid
);
3752 host_ip
->gid
= tswap32(target_ip
->gid
);
3753 host_ip
->cuid
= tswap32(target_ip
->cuid
);
3754 host_ip
->cgid
= tswap32(target_ip
->cgid
);
3755 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3756 host_ip
->mode
= tswap32(target_ip
->mode
);
3758 host_ip
->mode
= tswap16(target_ip
->mode
);
3760 #if defined(TARGET_PPC)
3761 host_ip
->__seq
= tswap32(target_ip
->__seq
);
3763 host_ip
->__seq
= tswap16(target_ip
->__seq
);
3765 unlock_user_struct(target_sd
, target_addr
, 0);
3769 static inline abi_long
host_to_target_ipc_perm(abi_ulong target_addr
,
3770 struct ipc_perm
*host_ip
)
3772 struct target_ipc_perm
*target_ip
;
3773 struct target_semid64_ds
*target_sd
;
3775 if (!lock_user_struct(VERIFY_WRITE
, target_sd
, target_addr
, 0))
3776 return -TARGET_EFAULT
;
3777 target_ip
= &(target_sd
->sem_perm
);
3778 target_ip
->__key
= tswap32(host_ip
->__key
);
3779 target_ip
->uid
= tswap32(host_ip
->uid
);
3780 target_ip
->gid
= tswap32(host_ip
->gid
);
3781 target_ip
->cuid
= tswap32(host_ip
->cuid
);
3782 target_ip
->cgid
= tswap32(host_ip
->cgid
);
3783 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3784 target_ip
->mode
= tswap32(host_ip
->mode
);
3786 target_ip
->mode
= tswap16(host_ip
->mode
);
3788 #if defined(TARGET_PPC)
3789 target_ip
->__seq
= tswap32(host_ip
->__seq
);
3791 target_ip
->__seq
= tswap16(host_ip
->__seq
);
3793 unlock_user_struct(target_sd
, target_addr
, 1);
3797 static inline abi_long
target_to_host_semid_ds(struct semid_ds
*host_sd
,
3798 abi_ulong target_addr
)
3800 struct target_semid64_ds
*target_sd
;
3802 if (!lock_user_struct(VERIFY_READ
, target_sd
, target_addr
, 1))
3803 return -TARGET_EFAULT
;
3804 if (target_to_host_ipc_perm(&(host_sd
->sem_perm
),target_addr
))
3805 return -TARGET_EFAULT
;
3806 host_sd
->sem_nsems
= tswapal(target_sd
->sem_nsems
);
3807 host_sd
->sem_otime
= tswapal(target_sd
->sem_otime
);
3808 host_sd
->sem_ctime
= tswapal(target_sd
->sem_ctime
);
3809 unlock_user_struct(target_sd
, target_addr
, 0);
3813 static inline abi_long
host_to_target_semid_ds(abi_ulong target_addr
,
3814 struct semid_ds
*host_sd
)
3816 struct target_semid64_ds
*target_sd
;
3818 if (!lock_user_struct(VERIFY_WRITE
, target_sd
, target_addr
, 0))
3819 return -TARGET_EFAULT
;
3820 if (host_to_target_ipc_perm(target_addr
,&(host_sd
->sem_perm
)))
3821 return -TARGET_EFAULT
;
3822 target_sd
->sem_nsems
= tswapal(host_sd
->sem_nsems
);
3823 target_sd
->sem_otime
= tswapal(host_sd
->sem_otime
);
3824 target_sd
->sem_ctime
= tswapal(host_sd
->sem_ctime
);
3825 unlock_user_struct(target_sd
, target_addr
, 1);
3829 struct target_seminfo
{
3842 static inline abi_long
host_to_target_seminfo(abi_ulong target_addr
,
3843 struct seminfo
*host_seminfo
)
3845 struct target_seminfo
*target_seminfo
;
3846 if (!lock_user_struct(VERIFY_WRITE
, target_seminfo
, target_addr
, 0))
3847 return -TARGET_EFAULT
;
3848 __put_user(host_seminfo
->semmap
, &target_seminfo
->semmap
);
3849 __put_user(host_seminfo
->semmni
, &target_seminfo
->semmni
);
3850 __put_user(host_seminfo
->semmns
, &target_seminfo
->semmns
);
3851 __put_user(host_seminfo
->semmnu
, &target_seminfo
->semmnu
);
3852 __put_user(host_seminfo
->semmsl
, &target_seminfo
->semmsl
);
3853 __put_user(host_seminfo
->semopm
, &target_seminfo
->semopm
);
3854 __put_user(host_seminfo
->semume
, &target_seminfo
->semume
);
3855 __put_user(host_seminfo
->semusz
, &target_seminfo
->semusz
);
3856 __put_user(host_seminfo
->semvmx
, &target_seminfo
->semvmx
);
3857 __put_user(host_seminfo
->semaem
, &target_seminfo
->semaem
);
3858 unlock_user_struct(target_seminfo
, target_addr
, 1);
3864 struct semid_ds
*buf
;
3865 unsigned short *array
;
3866 struct seminfo
*__buf
;
3869 union target_semun
{
3876 static inline abi_long
target_to_host_semarray(int semid
, unsigned short **host_array
,
3877 abi_ulong target_addr
)
3880 unsigned short *array
;
3882 struct semid_ds semid_ds
;
3885 semun
.buf
= &semid_ds
;
3887 ret
= semctl(semid
, 0, IPC_STAT
, semun
);
3889 return get_errno(ret
);
3891 nsems
= semid_ds
.sem_nsems
;
3893 *host_array
= g_try_new(unsigned short, nsems
);
3895 return -TARGET_ENOMEM
;
3897 array
= lock_user(VERIFY_READ
, target_addr
,
3898 nsems
*sizeof(unsigned short), 1);
3900 g_free(*host_array
);
3901 return -TARGET_EFAULT
;
3904 for(i
=0; i
<nsems
; i
++) {
3905 __get_user((*host_array
)[i
], &array
[i
]);
3907 unlock_user(array
, target_addr
, 0);
3912 static inline abi_long
host_to_target_semarray(int semid
, abi_ulong target_addr
,
3913 unsigned short **host_array
)
3916 unsigned short *array
;
3918 struct semid_ds semid_ds
;
3921 semun
.buf
= &semid_ds
;
3923 ret
= semctl(semid
, 0, IPC_STAT
, semun
);
3925 return get_errno(ret
);
3927 nsems
= semid_ds
.sem_nsems
;
3929 array
= lock_user(VERIFY_WRITE
, target_addr
,
3930 nsems
*sizeof(unsigned short), 0);
3932 return -TARGET_EFAULT
;
3934 for(i
=0; i
<nsems
; i
++) {
3935 __put_user((*host_array
)[i
], &array
[i
]);
3937 g_free(*host_array
);
3938 unlock_user(array
, target_addr
, 1);
3943 static inline abi_long
do_semctl(int semid
, int semnum
, int cmd
,
3944 abi_ulong target_arg
)
3946 union target_semun target_su
= { .buf
= target_arg
};
3948 struct semid_ds dsarg
;
3949 unsigned short *array
= NULL
;
3950 struct seminfo seminfo
;
3951 abi_long ret
= -TARGET_EINVAL
;
3958 /* In 64 bit cross-endian situations, we will erroneously pick up
3959 * the wrong half of the union for the "val" element. To rectify
3960 * this, the entire 8-byte structure is byteswapped, followed by
3961 * a swap of the 4 byte val field. In other cases, the data is
3962 * already in proper host byte order. */
3963 if (sizeof(target_su
.val
) != (sizeof(target_su
.buf
))) {
3964 target_su
.buf
= tswapal(target_su
.buf
);
3965 arg
.val
= tswap32(target_su
.val
);
3967 arg
.val
= target_su
.val
;
3969 ret
= get_errno(semctl(semid
, semnum
, cmd
, arg
));
3973 err
= target_to_host_semarray(semid
, &array
, target_su
.array
);
3977 ret
= get_errno(semctl(semid
, semnum
, cmd
, arg
));
3978 err
= host_to_target_semarray(semid
, target_su
.array
, &array
);
3985 err
= target_to_host_semid_ds(&dsarg
, target_su
.buf
);
3989 ret
= get_errno(semctl(semid
, semnum
, cmd
, arg
));
3990 err
= host_to_target_semid_ds(target_su
.buf
, &dsarg
);
3996 arg
.__buf
= &seminfo
;
3997 ret
= get_errno(semctl(semid
, semnum
, cmd
, arg
));
3998 err
= host_to_target_seminfo(target_su
.__buf
, &seminfo
);
4006 ret
= get_errno(semctl(semid
, semnum
, cmd
, NULL
));
4013 struct target_sembuf
{
4014 unsigned short sem_num
;
4019 static inline abi_long
target_to_host_sembuf(struct sembuf
*host_sembuf
,
4020 abi_ulong target_addr
,
4023 struct target_sembuf
*target_sembuf
;
4026 target_sembuf
= lock_user(VERIFY_READ
, target_addr
,
4027 nsops
*sizeof(struct target_sembuf
), 1);
4029 return -TARGET_EFAULT
;
4031 for(i
=0; i
<nsops
; i
++) {
4032 __get_user(host_sembuf
[i
].sem_num
, &target_sembuf
[i
].sem_num
);
4033 __get_user(host_sembuf
[i
].sem_op
, &target_sembuf
[i
].sem_op
);
4034 __get_user(host_sembuf
[i
].sem_flg
, &target_sembuf
[i
].sem_flg
);
4037 unlock_user(target_sembuf
, target_addr
, 0);
4042 #if defined(TARGET_NR_ipc) || defined(TARGET_NR_semop) || \
4043 defined(TARGET_NR_semtimedop) || defined(TARGET_NR_semtimedop_time64)
4046 * This macro is required to handle the s390 variants, which passes the
4047 * arguments in a different order than default.
4050 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4051 (__nsops), (__timeout), (__sops)
4053 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4054 (__nsops), 0, (__sops), (__timeout)
4057 static inline abi_long
do_semtimedop(int semid
,
4060 abi_long timeout
, bool time64
)
4062 struct sembuf
*sops
;
4063 struct timespec ts
, *pts
= NULL
;
4069 if (target_to_host_timespec64(pts
, timeout
)) {
4070 return -TARGET_EFAULT
;
4073 if (target_to_host_timespec(pts
, timeout
)) {
4074 return -TARGET_EFAULT
;
4079 if (nsops
> TARGET_SEMOPM
) {
4080 return -TARGET_E2BIG
;
4083 sops
= g_new(struct sembuf
, nsops
);
4085 if (target_to_host_sembuf(sops
, ptr
, nsops
)) {
4087 return -TARGET_EFAULT
;
4090 ret
= -TARGET_ENOSYS
;
4091 #ifdef __NR_semtimedop
4092 ret
= get_errno(safe_semtimedop(semid
, sops
, nsops
, pts
));
4095 if (ret
== -TARGET_ENOSYS
) {
4096 ret
= get_errno(safe_ipc(IPCOP_semtimedop
, semid
,
4097 SEMTIMEDOP_IPC_ARGS(nsops
, sops
, (long)pts
)));
4105 struct target_msqid_ds
4107 struct target_ipc_perm msg_perm
;
4108 abi_ulong msg_stime
;
4109 #if TARGET_ABI_BITS == 32
4110 abi_ulong __unused1
;
4112 abi_ulong msg_rtime
;
4113 #if TARGET_ABI_BITS == 32
4114 abi_ulong __unused2
;
4116 abi_ulong msg_ctime
;
4117 #if TARGET_ABI_BITS == 32
4118 abi_ulong __unused3
;
4120 abi_ulong __msg_cbytes
;
4122 abi_ulong msg_qbytes
;
4123 abi_ulong msg_lspid
;
4124 abi_ulong msg_lrpid
;
4125 abi_ulong __unused4
;
4126 abi_ulong __unused5
;
4129 static inline abi_long
target_to_host_msqid_ds(struct msqid_ds
*host_md
,
4130 abi_ulong target_addr
)
4132 struct target_msqid_ds
*target_md
;
4134 if (!lock_user_struct(VERIFY_READ
, target_md
, target_addr
, 1))
4135 return -TARGET_EFAULT
;
4136 if (target_to_host_ipc_perm(&(host_md
->msg_perm
),target_addr
))
4137 return -TARGET_EFAULT
;
4138 host_md
->msg_stime
= tswapal(target_md
->msg_stime
);
4139 host_md
->msg_rtime
= tswapal(target_md
->msg_rtime
);
4140 host_md
->msg_ctime
= tswapal(target_md
->msg_ctime
);
4141 host_md
->__msg_cbytes
= tswapal(target_md
->__msg_cbytes
);
4142 host_md
->msg_qnum
= tswapal(target_md
->msg_qnum
);
4143 host_md
->msg_qbytes
= tswapal(target_md
->msg_qbytes
);
4144 host_md
->msg_lspid
= tswapal(target_md
->msg_lspid
);
4145 host_md
->msg_lrpid
= tswapal(target_md
->msg_lrpid
);
4146 unlock_user_struct(target_md
, target_addr
, 0);
4150 static inline abi_long
host_to_target_msqid_ds(abi_ulong target_addr
,
4151 struct msqid_ds
*host_md
)
4153 struct target_msqid_ds
*target_md
;
4155 if (!lock_user_struct(VERIFY_WRITE
, target_md
, target_addr
, 0))
4156 return -TARGET_EFAULT
;
4157 if (host_to_target_ipc_perm(target_addr
,&(host_md
->msg_perm
)))
4158 return -TARGET_EFAULT
;
4159 target_md
->msg_stime
= tswapal(host_md
->msg_stime
);
4160 target_md
->msg_rtime
= tswapal(host_md
->msg_rtime
);
4161 target_md
->msg_ctime
= tswapal(host_md
->msg_ctime
);
4162 target_md
->__msg_cbytes
= tswapal(host_md
->__msg_cbytes
);
4163 target_md
->msg_qnum
= tswapal(host_md
->msg_qnum
);
4164 target_md
->msg_qbytes
= tswapal(host_md
->msg_qbytes
);
4165 target_md
->msg_lspid
= tswapal(host_md
->msg_lspid
);
4166 target_md
->msg_lrpid
= tswapal(host_md
->msg_lrpid
);
4167 unlock_user_struct(target_md
, target_addr
, 1);
4171 struct target_msginfo
{
4179 unsigned short int msgseg
;
4182 static inline abi_long
host_to_target_msginfo(abi_ulong target_addr
,
4183 struct msginfo
*host_msginfo
)
4185 struct target_msginfo
*target_msginfo
;
4186 if (!lock_user_struct(VERIFY_WRITE
, target_msginfo
, target_addr
, 0))
4187 return -TARGET_EFAULT
;
4188 __put_user(host_msginfo
->msgpool
, &target_msginfo
->msgpool
);
4189 __put_user(host_msginfo
->msgmap
, &target_msginfo
->msgmap
);
4190 __put_user(host_msginfo
->msgmax
, &target_msginfo
->msgmax
);
4191 __put_user(host_msginfo
->msgmnb
, &target_msginfo
->msgmnb
);
4192 __put_user(host_msginfo
->msgmni
, &target_msginfo
->msgmni
);
4193 __put_user(host_msginfo
->msgssz
, &target_msginfo
->msgssz
);
4194 __put_user(host_msginfo
->msgtql
, &target_msginfo
->msgtql
);
4195 __put_user(host_msginfo
->msgseg
, &target_msginfo
->msgseg
);
4196 unlock_user_struct(target_msginfo
, target_addr
, 1);
4200 static inline abi_long
do_msgctl(int msgid
, int cmd
, abi_long ptr
)
4202 struct msqid_ds dsarg
;
4203 struct msginfo msginfo
;
4204 abi_long ret
= -TARGET_EINVAL
;
4212 if (target_to_host_msqid_ds(&dsarg
,ptr
))
4213 return -TARGET_EFAULT
;
4214 ret
= get_errno(msgctl(msgid
, cmd
, &dsarg
));
4215 if (host_to_target_msqid_ds(ptr
,&dsarg
))
4216 return -TARGET_EFAULT
;
4219 ret
= get_errno(msgctl(msgid
, cmd
, NULL
));
4223 ret
= get_errno(msgctl(msgid
, cmd
, (struct msqid_ds
*)&msginfo
));
4224 if (host_to_target_msginfo(ptr
, &msginfo
))
4225 return -TARGET_EFAULT
;
4232 struct target_msgbuf
{
4237 static inline abi_long
do_msgsnd(int msqid
, abi_long msgp
,
4238 ssize_t msgsz
, int msgflg
)
4240 struct target_msgbuf
*target_mb
;
4241 struct msgbuf
*host_mb
;
4245 return -TARGET_EINVAL
;
4248 if (!lock_user_struct(VERIFY_READ
, target_mb
, msgp
, 0))
4249 return -TARGET_EFAULT
;
4250 host_mb
= g_try_malloc(msgsz
+ sizeof(long));
4252 unlock_user_struct(target_mb
, msgp
, 0);
4253 return -TARGET_ENOMEM
;
4255 host_mb
->mtype
= (abi_long
) tswapal(target_mb
->mtype
);
4256 memcpy(host_mb
->mtext
, target_mb
->mtext
, msgsz
);
4257 ret
= -TARGET_ENOSYS
;
4259 ret
= get_errno(safe_msgsnd(msqid
, host_mb
, msgsz
, msgflg
));
4262 if (ret
== -TARGET_ENOSYS
) {
4264 ret
= get_errno(safe_ipc(IPCOP_msgsnd
, msqid
, msgsz
, msgflg
,
4267 ret
= get_errno(safe_ipc(IPCOP_msgsnd
, msqid
, msgsz
, msgflg
,
4273 unlock_user_struct(target_mb
, msgp
, 0);
4279 #if defined(__sparc__)
4280 /* SPARC for msgrcv it does not use the kludge on final 2 arguments. */
4281 #define MSGRCV_ARGS(__msgp, __msgtyp) __msgp, __msgtyp
4282 #elif defined(__s390x__)
4283 /* The s390 sys_ipc variant has only five parameters. */
4284 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4285 ((long int[]){(long int)__msgp, __msgtyp})
4287 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4288 ((long int[]){(long int)__msgp, __msgtyp}), 0
4292 static inline abi_long
do_msgrcv(int msqid
, abi_long msgp
,
4293 ssize_t msgsz
, abi_long msgtyp
,
4296 struct target_msgbuf
*target_mb
;
4298 struct msgbuf
*host_mb
;
4302 return -TARGET_EINVAL
;
4305 if (!lock_user_struct(VERIFY_WRITE
, target_mb
, msgp
, 0))
4306 return -TARGET_EFAULT
;
4308 host_mb
= g_try_malloc(msgsz
+ sizeof(long));
4310 ret
= -TARGET_ENOMEM
;
4313 ret
= -TARGET_ENOSYS
;
4315 ret
= get_errno(safe_msgrcv(msqid
, host_mb
, msgsz
, msgtyp
, msgflg
));
4318 if (ret
== -TARGET_ENOSYS
) {
4319 ret
= get_errno(safe_ipc(IPCOP_CALL(1, IPCOP_msgrcv
), msqid
, msgsz
,
4320 msgflg
, MSGRCV_ARGS(host_mb
, msgtyp
)));
4325 abi_ulong target_mtext_addr
= msgp
+ sizeof(abi_ulong
);
4326 target_mtext
= lock_user(VERIFY_WRITE
, target_mtext_addr
, ret
, 0);
4327 if (!target_mtext
) {
4328 ret
= -TARGET_EFAULT
;
4331 memcpy(target_mb
->mtext
, host_mb
->mtext
, ret
);
4332 unlock_user(target_mtext
, target_mtext_addr
, ret
);
4335 target_mb
->mtype
= tswapal(host_mb
->mtype
);
4339 unlock_user_struct(target_mb
, msgp
, 1);
4344 static inline abi_long
target_to_host_shmid_ds(struct shmid_ds
*host_sd
,
4345 abi_ulong target_addr
)
4347 struct target_shmid_ds
*target_sd
;
4349 if (!lock_user_struct(VERIFY_READ
, target_sd
, target_addr
, 1))
4350 return -TARGET_EFAULT
;
4351 if (target_to_host_ipc_perm(&(host_sd
->shm_perm
), target_addr
))
4352 return -TARGET_EFAULT
;
4353 __get_user(host_sd
->shm_segsz
, &target_sd
->shm_segsz
);
4354 __get_user(host_sd
->shm_atime
, &target_sd
->shm_atime
);
4355 __get_user(host_sd
->shm_dtime
, &target_sd
->shm_dtime
);
4356 __get_user(host_sd
->shm_ctime
, &target_sd
->shm_ctime
);
4357 __get_user(host_sd
->shm_cpid
, &target_sd
->shm_cpid
);
4358 __get_user(host_sd
->shm_lpid
, &target_sd
->shm_lpid
);
4359 __get_user(host_sd
->shm_nattch
, &target_sd
->shm_nattch
);
4360 unlock_user_struct(target_sd
, target_addr
, 0);
4364 static inline abi_long
host_to_target_shmid_ds(abi_ulong target_addr
,
4365 struct shmid_ds
*host_sd
)
4367 struct target_shmid_ds
*target_sd
;
4369 if (!lock_user_struct(VERIFY_WRITE
, target_sd
, target_addr
, 0))
4370 return -TARGET_EFAULT
;
4371 if (host_to_target_ipc_perm(target_addr
, &(host_sd
->shm_perm
)))
4372 return -TARGET_EFAULT
;
4373 __put_user(host_sd
->shm_segsz
, &target_sd
->shm_segsz
);
4374 __put_user(host_sd
->shm_atime
, &target_sd
->shm_atime
);
4375 __put_user(host_sd
->shm_dtime
, &target_sd
->shm_dtime
);
4376 __put_user(host_sd
->shm_ctime
, &target_sd
->shm_ctime
);
4377 __put_user(host_sd
->shm_cpid
, &target_sd
->shm_cpid
);
4378 __put_user(host_sd
->shm_lpid
, &target_sd
->shm_lpid
);
4379 __put_user(host_sd
->shm_nattch
, &target_sd
->shm_nattch
);
4380 unlock_user_struct(target_sd
, target_addr
, 1);
4384 struct target_shminfo
{
4392 static inline abi_long
host_to_target_shminfo(abi_ulong target_addr
,
4393 struct shminfo
*host_shminfo
)
4395 struct target_shminfo
*target_shminfo
;
4396 if (!lock_user_struct(VERIFY_WRITE
, target_shminfo
, target_addr
, 0))
4397 return -TARGET_EFAULT
;
4398 __put_user(host_shminfo
->shmmax
, &target_shminfo
->shmmax
);
4399 __put_user(host_shminfo
->shmmin
, &target_shminfo
->shmmin
);
4400 __put_user(host_shminfo
->shmmni
, &target_shminfo
->shmmni
);
4401 __put_user(host_shminfo
->shmseg
, &target_shminfo
->shmseg
);
4402 __put_user(host_shminfo
->shmall
, &target_shminfo
->shmall
);
4403 unlock_user_struct(target_shminfo
, target_addr
, 1);
4407 struct target_shm_info
{
4412 abi_ulong swap_attempts
;
4413 abi_ulong swap_successes
;
4416 static inline abi_long
host_to_target_shm_info(abi_ulong target_addr
,
4417 struct shm_info
*host_shm_info
)
4419 struct target_shm_info
*target_shm_info
;
4420 if (!lock_user_struct(VERIFY_WRITE
, target_shm_info
, target_addr
, 0))
4421 return -TARGET_EFAULT
;
4422 __put_user(host_shm_info
->used_ids
, &target_shm_info
->used_ids
);
4423 __put_user(host_shm_info
->shm_tot
, &target_shm_info
->shm_tot
);
4424 __put_user(host_shm_info
->shm_rss
, &target_shm_info
->shm_rss
);
4425 __put_user(host_shm_info
->shm_swp
, &target_shm_info
->shm_swp
);
4426 __put_user(host_shm_info
->swap_attempts
, &target_shm_info
->swap_attempts
);
4427 __put_user(host_shm_info
->swap_successes
, &target_shm_info
->swap_successes
);
4428 unlock_user_struct(target_shm_info
, target_addr
, 1);
4432 static inline abi_long
do_shmctl(int shmid
, int cmd
, abi_long buf
)
4434 struct shmid_ds dsarg
;
4435 struct shminfo shminfo
;
4436 struct shm_info shm_info
;
4437 abi_long ret
= -TARGET_EINVAL
;
4445 if (target_to_host_shmid_ds(&dsarg
, buf
))
4446 return -TARGET_EFAULT
;
4447 ret
= get_errno(shmctl(shmid
, cmd
, &dsarg
));
4448 if (host_to_target_shmid_ds(buf
, &dsarg
))
4449 return -TARGET_EFAULT
;
4452 ret
= get_errno(shmctl(shmid
, cmd
, (struct shmid_ds
*)&shminfo
));
4453 if (host_to_target_shminfo(buf
, &shminfo
))
4454 return -TARGET_EFAULT
;
4457 ret
= get_errno(shmctl(shmid
, cmd
, (struct shmid_ds
*)&shm_info
));
4458 if (host_to_target_shm_info(buf
, &shm_info
))
4459 return -TARGET_EFAULT
;
4464 ret
= get_errno(shmctl(shmid
, cmd
, NULL
));
4471 #ifdef TARGET_NR_ipc
4472 /* ??? This only works with linear mappings. */
4473 /* do_ipc() must return target values and target errnos. */
4474 static abi_long
do_ipc(CPUArchState
*cpu_env
,
4475 unsigned int call
, abi_long first
,
4476 abi_long second
, abi_long third
,
4477 abi_long ptr
, abi_long fifth
)
4482 version
= call
>> 16;
4487 ret
= do_semtimedop(first
, ptr
, second
, 0, false);
4489 case IPCOP_semtimedop
:
4491 * The s390 sys_ipc variant has only five parameters instead of six
4492 * (as for default variant) and the only difference is the handling of
4493 * SEMTIMEDOP where on s390 the third parameter is used as a pointer
4494 * to a struct timespec where the generic variant uses fifth parameter.
4496 #if defined(TARGET_S390X)
4497 ret
= do_semtimedop(first
, ptr
, second
, third
, TARGET_ABI_BITS
== 64);
4499 ret
= do_semtimedop(first
, ptr
, second
, fifth
, TARGET_ABI_BITS
== 64);
4504 ret
= get_errno(semget(first
, second
, third
));
4507 case IPCOP_semctl
: {
4508 /* The semun argument to semctl is passed by value, so dereference the
4511 get_user_ual(atptr
, ptr
);
4512 ret
= do_semctl(first
, second
, third
, atptr
);
4517 ret
= get_errno(msgget(first
, second
));
4521 ret
= do_msgsnd(first
, ptr
, second
, third
);
4525 ret
= do_msgctl(first
, second
, ptr
);
4532 struct target_ipc_kludge
{
4537 if (!lock_user_struct(VERIFY_READ
, tmp
, ptr
, 1)) {
4538 ret
= -TARGET_EFAULT
;
4542 ret
= do_msgrcv(first
, tswapal(tmp
->msgp
), second
, tswapal(tmp
->msgtyp
), third
);
4544 unlock_user_struct(tmp
, ptr
, 0);
4548 ret
= do_msgrcv(first
, ptr
, second
, fifth
, third
);
4557 raddr
= target_shmat(cpu_env
, first
, ptr
, second
);
4558 if (is_error(raddr
))
4559 return get_errno(raddr
);
4560 if (put_user_ual(raddr
, third
))
4561 return -TARGET_EFAULT
;
4565 ret
= -TARGET_EINVAL
;
4570 ret
= target_shmdt(ptr
);
4574 /* IPC_* flag values are the same on all linux platforms */
4575 ret
= get_errno(shmget(first
, second
, third
));
4578 /* IPC_* and SHM_* command values are the same on all linux platforms */
4580 ret
= do_shmctl(first
, second
, ptr
);
4583 qemu_log_mask(LOG_UNIMP
, "Unsupported ipc call: %d (version %d)\n",
4585 ret
= -TARGET_ENOSYS
;
4592 /* kernel structure types definitions */
4594 #define STRUCT(name, ...) STRUCT_ ## name,
4595 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
4597 #include "syscall_types.h"
4601 #undef STRUCT_SPECIAL
4603 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL };
4604 #define STRUCT_SPECIAL(name)
4605 #include "syscall_types.h"
4607 #undef STRUCT_SPECIAL
4609 #define MAX_STRUCT_SIZE 4096
4611 #ifdef CONFIG_FIEMAP
4612 /* So fiemap access checks don't overflow on 32 bit systems.
4613 * This is very slightly smaller than the limit imposed by
4614 * the underlying kernel.
4616 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \
4617 / sizeof(struct fiemap_extent))
4619 static abi_long
do_ioctl_fs_ioc_fiemap(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
4620 int fd
, int cmd
, abi_long arg
)
4622 /* The parameter for this ioctl is a struct fiemap followed
4623 * by an array of struct fiemap_extent whose size is set
4624 * in fiemap->fm_extent_count. The array is filled in by the
4627 int target_size_in
, target_size_out
;
4629 const argtype
*arg_type
= ie
->arg_type
;
4630 const argtype extent_arg_type
[] = { MK_STRUCT(STRUCT_fiemap_extent
) };
4633 int i
, extent_size
= thunk_type_size(extent_arg_type
, 0);
4637 assert(arg_type
[0] == TYPE_PTR
);
4638 assert(ie
->access
== IOC_RW
);
4640 target_size_in
= thunk_type_size(arg_type
, 0);
4641 argptr
= lock_user(VERIFY_READ
, arg
, target_size_in
, 1);
4643 return -TARGET_EFAULT
;
4645 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
4646 unlock_user(argptr
, arg
, 0);
4647 fm
= (struct fiemap
*)buf_temp
;
4648 if (fm
->fm_extent_count
> FIEMAP_MAX_EXTENTS
) {
4649 return -TARGET_EINVAL
;
4652 outbufsz
= sizeof (*fm
) +
4653 (sizeof(struct fiemap_extent
) * fm
->fm_extent_count
);
4655 if (outbufsz
> MAX_STRUCT_SIZE
) {
4656 /* We can't fit all the extents into the fixed size buffer.
4657 * Allocate one that is large enough and use it instead.
4659 fm
= g_try_malloc(outbufsz
);
4661 return -TARGET_ENOMEM
;
4663 memcpy(fm
, buf_temp
, sizeof(struct fiemap
));
4666 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, fm
));
4667 if (!is_error(ret
)) {
4668 target_size_out
= target_size_in
;
4669 /* An extent_count of 0 means we were only counting the extents
4670 * so there are no structs to copy
4672 if (fm
->fm_extent_count
!= 0) {
4673 target_size_out
+= fm
->fm_mapped_extents
* extent_size
;
4675 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size_out
, 0);
4677 ret
= -TARGET_EFAULT
;
4679 /* Convert the struct fiemap */
4680 thunk_convert(argptr
, fm
, arg_type
, THUNK_TARGET
);
4681 if (fm
->fm_extent_count
!= 0) {
4682 p
= argptr
+ target_size_in
;
4683 /* ...and then all the struct fiemap_extents */
4684 for (i
= 0; i
< fm
->fm_mapped_extents
; i
++) {
4685 thunk_convert(p
, &fm
->fm_extents
[i
], extent_arg_type
,
4690 unlock_user(argptr
, arg
, target_size_out
);
4700 static abi_long
do_ioctl_ifconf(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
4701 int fd
, int cmd
, abi_long arg
)
4703 const argtype
*arg_type
= ie
->arg_type
;
4707 struct ifconf
*host_ifconf
;
4709 const argtype ifreq_arg_type
[] = { MK_STRUCT(STRUCT_sockaddr_ifreq
) };
4710 const argtype ifreq_max_type
[] = { MK_STRUCT(STRUCT_ifmap_ifreq
) };
4711 int target_ifreq_size
;
4716 abi_long target_ifc_buf
;
4720 assert(arg_type
[0] == TYPE_PTR
);
4721 assert(ie
->access
== IOC_RW
);
4724 target_size
= thunk_type_size(arg_type
, 0);
4726 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
4728 return -TARGET_EFAULT
;
4729 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
4730 unlock_user(argptr
, arg
, 0);
4732 host_ifconf
= (struct ifconf
*)(unsigned long)buf_temp
;
4733 target_ifc_buf
= (abi_long
)(unsigned long)host_ifconf
->ifc_buf
;
4734 target_ifreq_size
= thunk_type_size(ifreq_max_type
, 0);
4736 if (target_ifc_buf
!= 0) {
4737 target_ifc_len
= host_ifconf
->ifc_len
;
4738 nb_ifreq
= target_ifc_len
/ target_ifreq_size
;
4739 host_ifc_len
= nb_ifreq
* sizeof(struct ifreq
);
4741 outbufsz
= sizeof(*host_ifconf
) + host_ifc_len
;
4742 if (outbufsz
> MAX_STRUCT_SIZE
) {
4744 * We can't fit all the extents into the fixed size buffer.
4745 * Allocate one that is large enough and use it instead.
4747 host_ifconf
= g_try_malloc(outbufsz
);
4749 return -TARGET_ENOMEM
;
4751 memcpy(host_ifconf
, buf_temp
, sizeof(*host_ifconf
));
4754 host_ifc_buf
= (char *)host_ifconf
+ sizeof(*host_ifconf
);
4756 host_ifconf
->ifc_len
= host_ifc_len
;
4758 host_ifc_buf
= NULL
;
4760 host_ifconf
->ifc_buf
= host_ifc_buf
;
4762 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, host_ifconf
));
4763 if (!is_error(ret
)) {
4764 /* convert host ifc_len to target ifc_len */
4766 nb_ifreq
= host_ifconf
->ifc_len
/ sizeof(struct ifreq
);
4767 target_ifc_len
= nb_ifreq
* target_ifreq_size
;
4768 host_ifconf
->ifc_len
= target_ifc_len
;
4770 /* restore target ifc_buf */
4772 host_ifconf
->ifc_buf
= (char *)(unsigned long)target_ifc_buf
;
4774 /* copy struct ifconf to target user */
4776 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
4778 return -TARGET_EFAULT
;
4779 thunk_convert(argptr
, host_ifconf
, arg_type
, THUNK_TARGET
);
4780 unlock_user(argptr
, arg
, target_size
);
4782 if (target_ifc_buf
!= 0) {
4783 /* copy ifreq[] to target user */
4784 argptr
= lock_user(VERIFY_WRITE
, target_ifc_buf
, target_ifc_len
, 0);
4785 for (i
= 0; i
< nb_ifreq
; i
++) {
4786 thunk_convert(argptr
+ i
* target_ifreq_size
,
4787 host_ifc_buf
+ i
* sizeof(struct ifreq
),
4788 ifreq_arg_type
, THUNK_TARGET
);
4790 unlock_user(argptr
, target_ifc_buf
, target_ifc_len
);
4795 g_free(host_ifconf
);
4801 #if defined(CONFIG_USBFS)
4802 #if HOST_LONG_BITS > 64
4803 #error USBDEVFS thunks do not support >64 bit hosts yet.
4806 uint64_t target_urb_adr
;
4807 uint64_t target_buf_adr
;
4808 char *target_buf_ptr
;
4809 struct usbdevfs_urb host_urb
;
4812 static GHashTable
*usbdevfs_urb_hashtable(void)
4814 static GHashTable
*urb_hashtable
;
4816 if (!urb_hashtable
) {
4817 urb_hashtable
= g_hash_table_new(g_int64_hash
, g_int64_equal
);
4819 return urb_hashtable
;
4822 static void urb_hashtable_insert(struct live_urb
*urb
)
4824 GHashTable
*urb_hashtable
= usbdevfs_urb_hashtable();
4825 g_hash_table_insert(urb_hashtable
, urb
, urb
);
4828 static struct live_urb
*urb_hashtable_lookup(uint64_t target_urb_adr
)
4830 GHashTable
*urb_hashtable
= usbdevfs_urb_hashtable();
4831 return g_hash_table_lookup(urb_hashtable
, &target_urb_adr
);
4834 static void urb_hashtable_remove(struct live_urb
*urb
)
4836 GHashTable
*urb_hashtable
= usbdevfs_urb_hashtable();
4837 g_hash_table_remove(urb_hashtable
, urb
);
4841 do_ioctl_usbdevfs_reapurb(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
4842 int fd
, int cmd
, abi_long arg
)
4844 const argtype usbfsurb_arg_type
[] = { MK_STRUCT(STRUCT_usbdevfs_urb
) };
4845 const argtype ptrvoid_arg_type
[] = { TYPE_PTRVOID
, 0, 0 };
4846 struct live_urb
*lurb
;
4850 uintptr_t target_urb_adr
;
4853 target_size
= thunk_type_size(usbfsurb_arg_type
, THUNK_TARGET
);
4855 memset(buf_temp
, 0, sizeof(uint64_t));
4856 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, buf_temp
));
4857 if (is_error(ret
)) {
4861 memcpy(&hurb
, buf_temp
, sizeof(uint64_t));
4862 lurb
= (void *)((uintptr_t)hurb
- offsetof(struct live_urb
, host_urb
));
4863 if (!lurb
->target_urb_adr
) {
4864 return -TARGET_EFAULT
;
4866 urb_hashtable_remove(lurb
);
4867 unlock_user(lurb
->target_buf_ptr
, lurb
->target_buf_adr
,
4868 lurb
->host_urb
.buffer_length
);
4869 lurb
->target_buf_ptr
= NULL
;
4871 /* restore the guest buffer pointer */
4872 lurb
->host_urb
.buffer
= (void *)(uintptr_t)lurb
->target_buf_adr
;
4874 /* update the guest urb struct */
4875 argptr
= lock_user(VERIFY_WRITE
, lurb
->target_urb_adr
, target_size
, 0);
4878 return -TARGET_EFAULT
;
4880 thunk_convert(argptr
, &lurb
->host_urb
, usbfsurb_arg_type
, THUNK_TARGET
);
4881 unlock_user(argptr
, lurb
->target_urb_adr
, target_size
);
4883 target_size
= thunk_type_size(ptrvoid_arg_type
, THUNK_TARGET
);
4884 /* write back the urb handle */
4885 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
4888 return -TARGET_EFAULT
;
4891 /* GHashTable uses 64-bit keys but thunk_convert expects uintptr_t */
4892 target_urb_adr
= lurb
->target_urb_adr
;
4893 thunk_convert(argptr
, &target_urb_adr
, ptrvoid_arg_type
, THUNK_TARGET
);
4894 unlock_user(argptr
, arg
, target_size
);
4901 do_ioctl_usbdevfs_discardurb(const IOCTLEntry
*ie
,
4902 uint8_t *buf_temp
__attribute__((unused
)),
4903 int fd
, int cmd
, abi_long arg
)
4905 struct live_urb
*lurb
;
4907 /* map target address back to host URB with metadata. */
4908 lurb
= urb_hashtable_lookup(arg
);
4910 return -TARGET_EFAULT
;
4912 return get_errno(safe_ioctl(fd
, ie
->host_cmd
, &lurb
->host_urb
));
4916 do_ioctl_usbdevfs_submiturb(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
4917 int fd
, int cmd
, abi_long arg
)
4919 const argtype
*arg_type
= ie
->arg_type
;
4924 struct live_urb
*lurb
;
4927 * each submitted URB needs to map to a unique ID for the
4928 * kernel, and that unique ID needs to be a pointer to
4929 * host memory. hence, we need to malloc for each URB.
4930 * isochronous transfers have a variable length struct.
4933 target_size
= thunk_type_size(arg_type
, THUNK_TARGET
);
4935 /* construct host copy of urb and metadata */
4936 lurb
= g_try_new0(struct live_urb
, 1);
4938 return -TARGET_ENOMEM
;
4941 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
4944 return -TARGET_EFAULT
;
4946 thunk_convert(&lurb
->host_urb
, argptr
, arg_type
, THUNK_HOST
);
4947 unlock_user(argptr
, arg
, 0);
4949 lurb
->target_urb_adr
= arg
;
4950 lurb
->target_buf_adr
= (uintptr_t)lurb
->host_urb
.buffer
;
4952 /* buffer space used depends on endpoint type so lock the entire buffer */
4953 /* control type urbs should check the buffer contents for true direction */
4954 rw_dir
= lurb
->host_urb
.endpoint
& USB_DIR_IN
? VERIFY_WRITE
: VERIFY_READ
;
4955 lurb
->target_buf_ptr
= lock_user(rw_dir
, lurb
->target_buf_adr
,
4956 lurb
->host_urb
.buffer_length
, 1);
4957 if (lurb
->target_buf_ptr
== NULL
) {
4959 return -TARGET_EFAULT
;
4962 /* update buffer pointer in host copy */
4963 lurb
->host_urb
.buffer
= lurb
->target_buf_ptr
;
4965 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, &lurb
->host_urb
));
4966 if (is_error(ret
)) {
4967 unlock_user(lurb
->target_buf_ptr
, lurb
->target_buf_adr
, 0);
4970 urb_hashtable_insert(lurb
);
4975 #endif /* CONFIG_USBFS */
4977 static abi_long
do_ioctl_dm(const IOCTLEntry
*ie
, uint8_t *buf_temp
, int fd
,
4978 int cmd
, abi_long arg
)
4981 struct dm_ioctl
*host_dm
;
4982 abi_long guest_data
;
4983 uint32_t guest_data_size
;
4985 const argtype
*arg_type
= ie
->arg_type
;
4987 void *big_buf
= NULL
;
4991 target_size
= thunk_type_size(arg_type
, 0);
4992 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
4994 ret
= -TARGET_EFAULT
;
4997 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
4998 unlock_user(argptr
, arg
, 0);
5000 /* buf_temp is too small, so fetch things into a bigger buffer */
5001 big_buf
= g_malloc0(((struct dm_ioctl
*)buf_temp
)->data_size
* 2);
5002 memcpy(big_buf
, buf_temp
, target_size
);
5006 guest_data
= arg
+ host_dm
->data_start
;
5007 if ((guest_data
- arg
) < 0) {
5008 ret
= -TARGET_EINVAL
;
5011 guest_data_size
= host_dm
->data_size
- host_dm
->data_start
;
5012 host_data
= (char*)host_dm
+ host_dm
->data_start
;
5014 argptr
= lock_user(VERIFY_READ
, guest_data
, guest_data_size
, 1);
5016 ret
= -TARGET_EFAULT
;
5020 switch (ie
->host_cmd
) {
5022 case DM_LIST_DEVICES
:
5025 case DM_DEV_SUSPEND
:
5028 case DM_TABLE_STATUS
:
5029 case DM_TABLE_CLEAR
:
5031 case DM_LIST_VERSIONS
:
5035 case DM_DEV_SET_GEOMETRY
:
5036 /* data contains only strings */
5037 memcpy(host_data
, argptr
, guest_data_size
);
5040 memcpy(host_data
, argptr
, guest_data_size
);
5041 *(uint64_t*)host_data
= tswap64(*(uint64_t*)argptr
);
5045 void *gspec
= argptr
;
5046 void *cur_data
= host_data
;
5047 const argtype dm_arg_type
[] = { MK_STRUCT(STRUCT_dm_target_spec
) };
5048 int spec_size
= thunk_type_size(dm_arg_type
, 0);
5051 for (i
= 0; i
< host_dm
->target_count
; i
++) {
5052 struct dm_target_spec
*spec
= cur_data
;
5056 thunk_convert(spec
, gspec
, dm_arg_type
, THUNK_HOST
);
5057 slen
= strlen((char*)gspec
+ spec_size
) + 1;
5059 spec
->next
= sizeof(*spec
) + slen
;
5060 strcpy((char*)&spec
[1], gspec
+ spec_size
);
5062 cur_data
+= spec
->next
;
5067 ret
= -TARGET_EINVAL
;
5068 unlock_user(argptr
, guest_data
, 0);
5071 unlock_user(argptr
, guest_data
, 0);
5073 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, buf_temp
));
5074 if (!is_error(ret
)) {
5075 guest_data
= arg
+ host_dm
->data_start
;
5076 guest_data_size
= host_dm
->data_size
- host_dm
->data_start
;
5077 argptr
= lock_user(VERIFY_WRITE
, guest_data
, guest_data_size
, 0);
5078 switch (ie
->host_cmd
) {
5083 case DM_DEV_SUSPEND
:
5086 case DM_TABLE_CLEAR
:
5088 case DM_DEV_SET_GEOMETRY
:
5089 /* no return data */
5091 case DM_LIST_DEVICES
:
5093 struct dm_name_list
*nl
= (void*)host_dm
+ host_dm
->data_start
;
5094 uint32_t remaining_data
= guest_data_size
;
5095 void *cur_data
= argptr
;
5096 const argtype dm_arg_type
[] = { MK_STRUCT(STRUCT_dm_name_list
) };
5097 int nl_size
= 12; /* can't use thunk_size due to alignment */
5100 uint32_t next
= nl
->next
;
5102 nl
->next
= nl_size
+ (strlen(nl
->name
) + 1);
5104 if (remaining_data
< nl
->next
) {
5105 host_dm
->flags
|= DM_BUFFER_FULL_FLAG
;
5108 thunk_convert(cur_data
, nl
, dm_arg_type
, THUNK_TARGET
);
5109 strcpy(cur_data
+ nl_size
, nl
->name
);
5110 cur_data
+= nl
->next
;
5111 remaining_data
-= nl
->next
;
5115 nl
= (void*)nl
+ next
;
5120 case DM_TABLE_STATUS
:
5122 struct dm_target_spec
*spec
= (void*)host_dm
+ host_dm
->data_start
;
5123 void *cur_data
= argptr
;
5124 const argtype dm_arg_type
[] = { MK_STRUCT(STRUCT_dm_target_spec
) };
5125 int spec_size
= thunk_type_size(dm_arg_type
, 0);
5128 for (i
= 0; i
< host_dm
->target_count
; i
++) {
5129 uint32_t next
= spec
->next
;
5130 int slen
= strlen((char*)&spec
[1]) + 1;
5131 spec
->next
= (cur_data
- argptr
) + spec_size
+ slen
;
5132 if (guest_data_size
< spec
->next
) {
5133 host_dm
->flags
|= DM_BUFFER_FULL_FLAG
;
5136 thunk_convert(cur_data
, spec
, dm_arg_type
, THUNK_TARGET
);
5137 strcpy(cur_data
+ spec_size
, (char*)&spec
[1]);
5138 cur_data
= argptr
+ spec
->next
;
5139 spec
= (void*)host_dm
+ host_dm
->data_start
+ next
;
5145 void *hdata
= (void*)host_dm
+ host_dm
->data_start
;
5146 int count
= *(uint32_t*)hdata
;
5147 uint64_t *hdev
= hdata
+ 8;
5148 uint64_t *gdev
= argptr
+ 8;
5151 *(uint32_t*)argptr
= tswap32(count
);
5152 for (i
= 0; i
< count
; i
++) {
5153 *gdev
= tswap64(*hdev
);
5159 case DM_LIST_VERSIONS
:
5161 struct dm_target_versions
*vers
= (void*)host_dm
+ host_dm
->data_start
;
5162 uint32_t remaining_data
= guest_data_size
;
5163 void *cur_data
= argptr
;
5164 const argtype dm_arg_type
[] = { MK_STRUCT(STRUCT_dm_target_versions
) };
5165 int vers_size
= thunk_type_size(dm_arg_type
, 0);
5168 uint32_t next
= vers
->next
;
5170 vers
->next
= vers_size
+ (strlen(vers
->name
) + 1);
5172 if (remaining_data
< vers
->next
) {
5173 host_dm
->flags
|= DM_BUFFER_FULL_FLAG
;
5176 thunk_convert(cur_data
, vers
, dm_arg_type
, THUNK_TARGET
);
5177 strcpy(cur_data
+ vers_size
, vers
->name
);
5178 cur_data
+= vers
->next
;
5179 remaining_data
-= vers
->next
;
5183 vers
= (void*)vers
+ next
;
5188 unlock_user(argptr
, guest_data
, 0);
5189 ret
= -TARGET_EINVAL
;
5192 unlock_user(argptr
, guest_data
, guest_data_size
);
5194 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
5196 ret
= -TARGET_EFAULT
;
5199 thunk_convert(argptr
, buf_temp
, arg_type
, THUNK_TARGET
);
5200 unlock_user(argptr
, arg
, target_size
);
5207 static abi_long
do_ioctl_blkpg(const IOCTLEntry
*ie
, uint8_t *buf_temp
, int fd
,
5208 int cmd
, abi_long arg
)
5212 const argtype
*arg_type
= ie
->arg_type
;
5213 const argtype part_arg_type
[] = { MK_STRUCT(STRUCT_blkpg_partition
) };
5216 struct blkpg_ioctl_arg
*host_blkpg
= (void*)buf_temp
;
5217 struct blkpg_partition host_part
;
5219 /* Read and convert blkpg */
5221 target_size
= thunk_type_size(arg_type
, 0);
5222 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
5224 ret
= -TARGET_EFAULT
;
5227 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
5228 unlock_user(argptr
, arg
, 0);
5230 switch (host_blkpg
->op
) {
5231 case BLKPG_ADD_PARTITION
:
5232 case BLKPG_DEL_PARTITION
:
5233 /* payload is struct blkpg_partition */
5236 /* Unknown opcode */
5237 ret
= -TARGET_EINVAL
;
5241 /* Read and convert blkpg->data */
5242 arg
= (abi_long
)(uintptr_t)host_blkpg
->data
;
5243 target_size
= thunk_type_size(part_arg_type
, 0);
5244 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
5246 ret
= -TARGET_EFAULT
;
5249 thunk_convert(&host_part
, argptr
, part_arg_type
, THUNK_HOST
);
5250 unlock_user(argptr
, arg
, 0);
5252 /* Swizzle the data pointer to our local copy and call! */
5253 host_blkpg
->data
= &host_part
;
5254 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, host_blkpg
));
5260 static abi_long
do_ioctl_rt(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5261 int fd
, int cmd
, abi_long arg
)
5263 const argtype
*arg_type
= ie
->arg_type
;
5264 const StructEntry
*se
;
5265 const argtype
*field_types
;
5266 const int *dst_offsets
, *src_offsets
;
5269 abi_ulong
*target_rt_dev_ptr
= NULL
;
5270 unsigned long *host_rt_dev_ptr
= NULL
;
5274 assert(ie
->access
== IOC_W
);
5275 assert(*arg_type
== TYPE_PTR
);
5277 assert(*arg_type
== TYPE_STRUCT
);
5278 target_size
= thunk_type_size(arg_type
, 0);
5279 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
5281 return -TARGET_EFAULT
;
5284 assert(*arg_type
== (int)STRUCT_rtentry
);
5285 se
= struct_entries
+ *arg_type
++;
5286 assert(se
->convert
[0] == NULL
);
5287 /* convert struct here to be able to catch rt_dev string */
5288 field_types
= se
->field_types
;
5289 dst_offsets
= se
->field_offsets
[THUNK_HOST
];
5290 src_offsets
= se
->field_offsets
[THUNK_TARGET
];
5291 for (i
= 0; i
< se
->nb_fields
; i
++) {
5292 if (dst_offsets
[i
] == offsetof(struct rtentry
, rt_dev
)) {
5293 assert(*field_types
== TYPE_PTRVOID
);
5294 target_rt_dev_ptr
= argptr
+ src_offsets
[i
];
5295 host_rt_dev_ptr
= (unsigned long *)(buf_temp
+ dst_offsets
[i
]);
5296 if (*target_rt_dev_ptr
!= 0) {
5297 *host_rt_dev_ptr
= (unsigned long)lock_user_string(
5298 tswapal(*target_rt_dev_ptr
));
5299 if (!*host_rt_dev_ptr
) {
5300 unlock_user(argptr
, arg
, 0);
5301 return -TARGET_EFAULT
;
5304 *host_rt_dev_ptr
= 0;
5309 field_types
= thunk_convert(buf_temp
+ dst_offsets
[i
],
5310 argptr
+ src_offsets
[i
],
5311 field_types
, THUNK_HOST
);
5313 unlock_user(argptr
, arg
, 0);
5315 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, buf_temp
));
5317 assert(host_rt_dev_ptr
!= NULL
);
5318 assert(target_rt_dev_ptr
!= NULL
);
5319 if (*host_rt_dev_ptr
!= 0) {
5320 unlock_user((void *)*host_rt_dev_ptr
,
5321 *target_rt_dev_ptr
, 0);
5326 static abi_long
do_ioctl_kdsigaccept(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5327 int fd
, int cmd
, abi_long arg
)
5329 int sig
= target_to_host_signal(arg
);
5330 return get_errno(safe_ioctl(fd
, ie
->host_cmd
, sig
));
5333 static abi_long
do_ioctl_SIOCGSTAMP(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5334 int fd
, int cmd
, abi_long arg
)
5339 ret
= get_errno(safe_ioctl(fd
, SIOCGSTAMP
, &tv
));
5340 if (is_error(ret
)) {
5344 if (cmd
== (int)TARGET_SIOCGSTAMP_OLD
) {
5345 if (copy_to_user_timeval(arg
, &tv
)) {
5346 return -TARGET_EFAULT
;
5349 if (copy_to_user_timeval64(arg
, &tv
)) {
5350 return -TARGET_EFAULT
;
5357 static abi_long
do_ioctl_SIOCGSTAMPNS(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5358 int fd
, int cmd
, abi_long arg
)
5363 ret
= get_errno(safe_ioctl(fd
, SIOCGSTAMPNS
, &ts
));
5364 if (is_error(ret
)) {
5368 if (cmd
== (int)TARGET_SIOCGSTAMPNS_OLD
) {
5369 if (host_to_target_timespec(arg
, &ts
)) {
5370 return -TARGET_EFAULT
;
5373 if (host_to_target_timespec64(arg
, &ts
)) {
5374 return -TARGET_EFAULT
;
5382 static abi_long
do_ioctl_tiocgptpeer(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5383 int fd
, int cmd
, abi_long arg
)
5385 int flags
= target_to_host_bitmask(arg
, fcntl_flags_tbl
);
5386 return get_errno(safe_ioctl(fd
, ie
->host_cmd
, flags
));
5392 static void unlock_drm_version(struct drm_version
*host_ver
,
5393 struct target_drm_version
*target_ver
,
5396 unlock_user(host_ver
->name
, target_ver
->name
,
5397 copy
? host_ver
->name_len
: 0);
5398 unlock_user(host_ver
->date
, target_ver
->date
,
5399 copy
? host_ver
->date_len
: 0);
5400 unlock_user(host_ver
->desc
, target_ver
->desc
,
5401 copy
? host_ver
->desc_len
: 0);
5404 static inline abi_long
target_to_host_drmversion(struct drm_version
*host_ver
,
5405 struct target_drm_version
*target_ver
)
5407 memset(host_ver
, 0, sizeof(*host_ver
));
5409 __get_user(host_ver
->name_len
, &target_ver
->name_len
);
5410 if (host_ver
->name_len
) {
5411 host_ver
->name
= lock_user(VERIFY_WRITE
, target_ver
->name
,
5412 target_ver
->name_len
, 0);
5413 if (!host_ver
->name
) {
5418 __get_user(host_ver
->date_len
, &target_ver
->date_len
);
5419 if (host_ver
->date_len
) {
5420 host_ver
->date
= lock_user(VERIFY_WRITE
, target_ver
->date
,
5421 target_ver
->date_len
, 0);
5422 if (!host_ver
->date
) {
5427 __get_user(host_ver
->desc_len
, &target_ver
->desc_len
);
5428 if (host_ver
->desc_len
) {
5429 host_ver
->desc
= lock_user(VERIFY_WRITE
, target_ver
->desc
,
5430 target_ver
->desc_len
, 0);
5431 if (!host_ver
->desc
) {
5438 unlock_drm_version(host_ver
, target_ver
, false);
5442 static inline void host_to_target_drmversion(
5443 struct target_drm_version
*target_ver
,
5444 struct drm_version
*host_ver
)
5446 __put_user(host_ver
->version_major
, &target_ver
->version_major
);
5447 __put_user(host_ver
->version_minor
, &target_ver
->version_minor
);
5448 __put_user(host_ver
->version_patchlevel
, &target_ver
->version_patchlevel
);
5449 __put_user(host_ver
->name_len
, &target_ver
->name_len
);
5450 __put_user(host_ver
->date_len
, &target_ver
->date_len
);
5451 __put_user(host_ver
->desc_len
, &target_ver
->desc_len
);
5452 unlock_drm_version(host_ver
, target_ver
, true);
5455 static abi_long
do_ioctl_drm(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5456 int fd
, int cmd
, abi_long arg
)
5458 struct drm_version
*ver
;
5459 struct target_drm_version
*target_ver
;
5462 switch (ie
->host_cmd
) {
5463 case DRM_IOCTL_VERSION
:
5464 if (!lock_user_struct(VERIFY_WRITE
, target_ver
, arg
, 0)) {
5465 return -TARGET_EFAULT
;
5467 ver
= (struct drm_version
*)buf_temp
;
5468 ret
= target_to_host_drmversion(ver
, target_ver
);
5469 if (!is_error(ret
)) {
5470 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, ver
));
5471 if (is_error(ret
)) {
5472 unlock_drm_version(ver
, target_ver
, false);
5474 host_to_target_drmversion(target_ver
, ver
);
5477 unlock_user_struct(target_ver
, arg
, 0);
5480 return -TARGET_ENOSYS
;
5483 static abi_long
do_ioctl_drm_i915_getparam(const IOCTLEntry
*ie
,
5484 struct drm_i915_getparam
*gparam
,
5485 int fd
, abi_long arg
)
5489 struct target_drm_i915_getparam
*target_gparam
;
5491 if (!lock_user_struct(VERIFY_READ
, target_gparam
, arg
, 0)) {
5492 return -TARGET_EFAULT
;
5495 __get_user(gparam
->param
, &target_gparam
->param
);
5496 gparam
->value
= &value
;
5497 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, gparam
));
5498 put_user_s32(value
, target_gparam
->value
);
5500 unlock_user_struct(target_gparam
, arg
, 0);
5504 static abi_long
do_ioctl_drm_i915(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5505 int fd
, int cmd
, abi_long arg
)
5507 switch (ie
->host_cmd
) {
5508 case DRM_IOCTL_I915_GETPARAM
:
5509 return do_ioctl_drm_i915_getparam(ie
,
5510 (struct drm_i915_getparam
*)buf_temp
,
5513 return -TARGET_ENOSYS
;
5519 static abi_long
do_ioctl_TUNSETTXFILTER(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5520 int fd
, int cmd
, abi_long arg
)
5522 struct tun_filter
*filter
= (struct tun_filter
*)buf_temp
;
5523 struct tun_filter
*target_filter
;
5526 assert(ie
->access
== IOC_W
);
5528 target_filter
= lock_user(VERIFY_READ
, arg
, sizeof(*target_filter
), 1);
5529 if (!target_filter
) {
5530 return -TARGET_EFAULT
;
5532 filter
->flags
= tswap16(target_filter
->flags
);
5533 filter
->count
= tswap16(target_filter
->count
);
5534 unlock_user(target_filter
, arg
, 0);
5536 if (filter
->count
) {
5537 if (offsetof(struct tun_filter
, addr
) + filter
->count
* ETH_ALEN
>
5539 return -TARGET_EFAULT
;
5542 target_addr
= lock_user(VERIFY_READ
,
5543 arg
+ offsetof(struct tun_filter
, addr
),
5544 filter
->count
* ETH_ALEN
, 1);
5546 return -TARGET_EFAULT
;
5548 memcpy(filter
->addr
, target_addr
, filter
->count
* ETH_ALEN
);
5549 unlock_user(target_addr
, arg
+ offsetof(struct tun_filter
, addr
), 0);
5552 return get_errno(safe_ioctl(fd
, ie
->host_cmd
, filter
));
5555 IOCTLEntry ioctl_entries
[] = {
5556 #define IOCTL(cmd, access, ...) \
5557 { TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } },
5558 #define IOCTL_SPECIAL(cmd, access, dofn, ...) \
5559 { TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } },
5560 #define IOCTL_IGNORE(cmd) \
5561 { TARGET_ ## cmd, 0, #cmd },
5566 /* ??? Implement proper locking for ioctls. */
5567 /* do_ioctl() Must return target values and target errnos. */
5568 static abi_long
do_ioctl(int fd
, int cmd
, abi_long arg
)
5570 const IOCTLEntry
*ie
;
5571 const argtype
*arg_type
;
5573 uint8_t buf_temp
[MAX_STRUCT_SIZE
];
5579 if (ie
->target_cmd
== 0) {
5581 LOG_UNIMP
, "Unsupported ioctl: cmd=0x%04lx\n", (long)cmd
);
5582 return -TARGET_ENOTTY
;
5584 if (ie
->target_cmd
== cmd
)
5588 arg_type
= ie
->arg_type
;
5590 return ie
->do_ioctl(ie
, buf_temp
, fd
, cmd
, arg
);
5591 } else if (!ie
->host_cmd
) {
5592 /* Some architectures define BSD ioctls in their headers
5593 that are not implemented in Linux. */
5594 return -TARGET_ENOTTY
;
5597 switch(arg_type
[0]) {
5600 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
));
5606 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, arg
));
5610 target_size
= thunk_type_size(arg_type
, 0);
5611 switch(ie
->access
) {
5613 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, buf_temp
));
5614 if (!is_error(ret
)) {
5615 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
5617 return -TARGET_EFAULT
;
5618 thunk_convert(argptr
, buf_temp
, arg_type
, THUNK_TARGET
);
5619 unlock_user(argptr
, arg
, target_size
);
5623 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
5625 return -TARGET_EFAULT
;
5626 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
5627 unlock_user(argptr
, arg
, 0);
5628 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, buf_temp
));
5632 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
5634 return -TARGET_EFAULT
;
5635 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
5636 unlock_user(argptr
, arg
, 0);
5637 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, buf_temp
));
5638 if (!is_error(ret
)) {
5639 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
5641 return -TARGET_EFAULT
;
5642 thunk_convert(argptr
, buf_temp
, arg_type
, THUNK_TARGET
);
5643 unlock_user(argptr
, arg
, target_size
);
5649 qemu_log_mask(LOG_UNIMP
,
5650 "Unsupported ioctl type: cmd=0x%04lx type=%d\n",
5651 (long)cmd
, arg_type
[0]);
5652 ret
= -TARGET_ENOTTY
;
5658 static const bitmask_transtbl iflag_tbl
[] = {
5659 { TARGET_IGNBRK
, TARGET_IGNBRK
, IGNBRK
, IGNBRK
},
5660 { TARGET_BRKINT
, TARGET_BRKINT
, BRKINT
, BRKINT
},
5661 { TARGET_IGNPAR
, TARGET_IGNPAR
, IGNPAR
, IGNPAR
},
5662 { TARGET_PARMRK
, TARGET_PARMRK
, PARMRK
, PARMRK
},
5663 { TARGET_INPCK
, TARGET_INPCK
, INPCK
, INPCK
},
5664 { TARGET_ISTRIP
, TARGET_ISTRIP
, ISTRIP
, ISTRIP
},
5665 { TARGET_INLCR
, TARGET_INLCR
, INLCR
, INLCR
},
5666 { TARGET_IGNCR
, TARGET_IGNCR
, IGNCR
, IGNCR
},
5667 { TARGET_ICRNL
, TARGET_ICRNL
, ICRNL
, ICRNL
},
5668 { TARGET_IUCLC
, TARGET_IUCLC
, IUCLC
, IUCLC
},
5669 { TARGET_IXON
, TARGET_IXON
, IXON
, IXON
},
5670 { TARGET_IXANY
, TARGET_IXANY
, IXANY
, IXANY
},
5671 { TARGET_IXOFF
, TARGET_IXOFF
, IXOFF
, IXOFF
},
5672 { TARGET_IMAXBEL
, TARGET_IMAXBEL
, IMAXBEL
, IMAXBEL
},
5673 { TARGET_IUTF8
, TARGET_IUTF8
, IUTF8
, IUTF8
},
5676 static const bitmask_transtbl oflag_tbl
[] = {
5677 { TARGET_OPOST
, TARGET_OPOST
, OPOST
, OPOST
},
5678 { TARGET_OLCUC
, TARGET_OLCUC
, OLCUC
, OLCUC
},
5679 { TARGET_ONLCR
, TARGET_ONLCR
, ONLCR
, ONLCR
},
5680 { TARGET_OCRNL
, TARGET_OCRNL
, OCRNL
, OCRNL
},
5681 { TARGET_ONOCR
, TARGET_ONOCR
, ONOCR
, ONOCR
},
5682 { TARGET_ONLRET
, TARGET_ONLRET
, ONLRET
, ONLRET
},
5683 { TARGET_OFILL
, TARGET_OFILL
, OFILL
, OFILL
},
5684 { TARGET_OFDEL
, TARGET_OFDEL
, OFDEL
, OFDEL
},
5685 { TARGET_NLDLY
, TARGET_NL0
, NLDLY
, NL0
},
5686 { TARGET_NLDLY
, TARGET_NL1
, NLDLY
, NL1
},
5687 { TARGET_CRDLY
, TARGET_CR0
, CRDLY
, CR0
},
5688 { TARGET_CRDLY
, TARGET_CR1
, CRDLY
, CR1
},
5689 { TARGET_CRDLY
, TARGET_CR2
, CRDLY
, CR2
},
5690 { TARGET_CRDLY
, TARGET_CR3
, CRDLY
, CR3
},
5691 { TARGET_TABDLY
, TARGET_TAB0
, TABDLY
, TAB0
},
5692 { TARGET_TABDLY
, TARGET_TAB1
, TABDLY
, TAB1
},
5693 { TARGET_TABDLY
, TARGET_TAB2
, TABDLY
, TAB2
},
5694 { TARGET_TABDLY
, TARGET_TAB3
, TABDLY
, TAB3
},
5695 { TARGET_BSDLY
, TARGET_BS0
, BSDLY
, BS0
},
5696 { TARGET_BSDLY
, TARGET_BS1
, BSDLY
, BS1
},
5697 { TARGET_VTDLY
, TARGET_VT0
, VTDLY
, VT0
},
5698 { TARGET_VTDLY
, TARGET_VT1
, VTDLY
, VT1
},
5699 { TARGET_FFDLY
, TARGET_FF0
, FFDLY
, FF0
},
5700 { TARGET_FFDLY
, TARGET_FF1
, FFDLY
, FF1
},
5703 static const bitmask_transtbl cflag_tbl
[] = {
5704 { TARGET_CBAUD
, TARGET_B0
, CBAUD
, B0
},
5705 { TARGET_CBAUD
, TARGET_B50
, CBAUD
, B50
},
5706 { TARGET_CBAUD
, TARGET_B75
, CBAUD
, B75
},
5707 { TARGET_CBAUD
, TARGET_B110
, CBAUD
, B110
},
5708 { TARGET_CBAUD
, TARGET_B134
, CBAUD
, B134
},
5709 { TARGET_CBAUD
, TARGET_B150
, CBAUD
, B150
},
5710 { TARGET_CBAUD
, TARGET_B200
, CBAUD
, B200
},
5711 { TARGET_CBAUD
, TARGET_B300
, CBAUD
, B300
},
5712 { TARGET_CBAUD
, TARGET_B600
, CBAUD
, B600
},
5713 { TARGET_CBAUD
, TARGET_B1200
, CBAUD
, B1200
},
5714 { TARGET_CBAUD
, TARGET_B1800
, CBAUD
, B1800
},
5715 { TARGET_CBAUD
, TARGET_B2400
, CBAUD
, B2400
},
5716 { TARGET_CBAUD
, TARGET_B4800
, CBAUD
, B4800
},
5717 { TARGET_CBAUD
, TARGET_B9600
, CBAUD
, B9600
},
5718 { TARGET_CBAUD
, TARGET_B19200
, CBAUD
, B19200
},
5719 { TARGET_CBAUD
, TARGET_B38400
, CBAUD
, B38400
},
5720 { TARGET_CBAUD
, TARGET_B57600
, CBAUD
, B57600
},
5721 { TARGET_CBAUD
, TARGET_B115200
, CBAUD
, B115200
},
5722 { TARGET_CBAUD
, TARGET_B230400
, CBAUD
, B230400
},
5723 { TARGET_CBAUD
, TARGET_B460800
, CBAUD
, B460800
},
5724 { TARGET_CSIZE
, TARGET_CS5
, CSIZE
, CS5
},
5725 { TARGET_CSIZE
, TARGET_CS6
, CSIZE
, CS6
},
5726 { TARGET_CSIZE
, TARGET_CS7
, CSIZE
, CS7
},
5727 { TARGET_CSIZE
, TARGET_CS8
, CSIZE
, CS8
},
5728 { TARGET_CSTOPB
, TARGET_CSTOPB
, CSTOPB
, CSTOPB
},
5729 { TARGET_CREAD
, TARGET_CREAD
, CREAD
, CREAD
},
5730 { TARGET_PARENB
, TARGET_PARENB
, PARENB
, PARENB
},
5731 { TARGET_PARODD
, TARGET_PARODD
, PARODD
, PARODD
},
5732 { TARGET_HUPCL
, TARGET_HUPCL
, HUPCL
, HUPCL
},
5733 { TARGET_CLOCAL
, TARGET_CLOCAL
, CLOCAL
, CLOCAL
},
5734 { TARGET_CRTSCTS
, TARGET_CRTSCTS
, CRTSCTS
, CRTSCTS
},
5737 static const bitmask_transtbl lflag_tbl
[] = {
5738 { TARGET_ISIG
, TARGET_ISIG
, ISIG
, ISIG
},
5739 { TARGET_ICANON
, TARGET_ICANON
, ICANON
, ICANON
},
5740 { TARGET_XCASE
, TARGET_XCASE
, XCASE
, XCASE
},
5741 { TARGET_ECHO
, TARGET_ECHO
, ECHO
, ECHO
},
5742 { TARGET_ECHOE
, TARGET_ECHOE
, ECHOE
, ECHOE
},
5743 { TARGET_ECHOK
, TARGET_ECHOK
, ECHOK
, ECHOK
},
5744 { TARGET_ECHONL
, TARGET_ECHONL
, ECHONL
, ECHONL
},
5745 { TARGET_NOFLSH
, TARGET_NOFLSH
, NOFLSH
, NOFLSH
},
5746 { TARGET_TOSTOP
, TARGET_TOSTOP
, TOSTOP
, TOSTOP
},
5747 { TARGET_ECHOCTL
, TARGET_ECHOCTL
, ECHOCTL
, ECHOCTL
},
5748 { TARGET_ECHOPRT
, TARGET_ECHOPRT
, ECHOPRT
, ECHOPRT
},
5749 { TARGET_ECHOKE
, TARGET_ECHOKE
, ECHOKE
, ECHOKE
},
5750 { TARGET_FLUSHO
, TARGET_FLUSHO
, FLUSHO
, FLUSHO
},
5751 { TARGET_PENDIN
, TARGET_PENDIN
, PENDIN
, PENDIN
},
5752 { TARGET_IEXTEN
, TARGET_IEXTEN
, IEXTEN
, IEXTEN
},
5753 { TARGET_EXTPROC
, TARGET_EXTPROC
, EXTPROC
, EXTPROC
},
5756 static void target_to_host_termios (void *dst
, const void *src
)
5758 struct host_termios
*host
= dst
;
5759 const struct target_termios
*target
= src
;
5762 target_to_host_bitmask(tswap32(target
->c_iflag
), iflag_tbl
);
5764 target_to_host_bitmask(tswap32(target
->c_oflag
), oflag_tbl
);
5766 target_to_host_bitmask(tswap32(target
->c_cflag
), cflag_tbl
);
5768 target_to_host_bitmask(tswap32(target
->c_lflag
), lflag_tbl
);
5769 host
->c_line
= target
->c_line
;
5771 memset(host
->c_cc
, 0, sizeof(host
->c_cc
));
5772 host
->c_cc
[VINTR
] = target
->c_cc
[TARGET_VINTR
];
5773 host
->c_cc
[VQUIT
] = target
->c_cc
[TARGET_VQUIT
];
5774 host
->c_cc
[VERASE
] = target
->c_cc
[TARGET_VERASE
];
5775 host
->c_cc
[VKILL
] = target
->c_cc
[TARGET_VKILL
];
5776 host
->c_cc
[VEOF
] = target
->c_cc
[TARGET_VEOF
];
5777 host
->c_cc
[VTIME
] = target
->c_cc
[TARGET_VTIME
];
5778 host
->c_cc
[VMIN
] = target
->c_cc
[TARGET_VMIN
];
5779 host
->c_cc
[VSWTC
] = target
->c_cc
[TARGET_VSWTC
];
5780 host
->c_cc
[VSTART
] = target
->c_cc
[TARGET_VSTART
];
5781 host
->c_cc
[VSTOP
] = target
->c_cc
[TARGET_VSTOP
];
5782 host
->c_cc
[VSUSP
] = target
->c_cc
[TARGET_VSUSP
];
5783 host
->c_cc
[VEOL
] = target
->c_cc
[TARGET_VEOL
];
5784 host
->c_cc
[VREPRINT
] = target
->c_cc
[TARGET_VREPRINT
];
5785 host
->c_cc
[VDISCARD
] = target
->c_cc
[TARGET_VDISCARD
];
5786 host
->c_cc
[VWERASE
] = target
->c_cc
[TARGET_VWERASE
];
5787 host
->c_cc
[VLNEXT
] = target
->c_cc
[TARGET_VLNEXT
];
5788 host
->c_cc
[VEOL2
] = target
->c_cc
[TARGET_VEOL2
];
5791 static void host_to_target_termios (void *dst
, const void *src
)
5793 struct target_termios
*target
= dst
;
5794 const struct host_termios
*host
= src
;
5797 tswap32(host_to_target_bitmask(host
->c_iflag
, iflag_tbl
));
5799 tswap32(host_to_target_bitmask(host
->c_oflag
, oflag_tbl
));
5801 tswap32(host_to_target_bitmask(host
->c_cflag
, cflag_tbl
));
5803 tswap32(host_to_target_bitmask(host
->c_lflag
, lflag_tbl
));
5804 target
->c_line
= host
->c_line
;
5806 memset(target
->c_cc
, 0, sizeof(target
->c_cc
));
5807 target
->c_cc
[TARGET_VINTR
] = host
->c_cc
[VINTR
];
5808 target
->c_cc
[TARGET_VQUIT
] = host
->c_cc
[VQUIT
];
5809 target
->c_cc
[TARGET_VERASE
] = host
->c_cc
[VERASE
];
5810 target
->c_cc
[TARGET_VKILL
] = host
->c_cc
[VKILL
];
5811 target
->c_cc
[TARGET_VEOF
] = host
->c_cc
[VEOF
];
5812 target
->c_cc
[TARGET_VTIME
] = host
->c_cc
[VTIME
];
5813 target
->c_cc
[TARGET_VMIN
] = host
->c_cc
[VMIN
];
5814 target
->c_cc
[TARGET_VSWTC
] = host
->c_cc
[VSWTC
];
5815 target
->c_cc
[TARGET_VSTART
] = host
->c_cc
[VSTART
];
5816 target
->c_cc
[TARGET_VSTOP
] = host
->c_cc
[VSTOP
];
5817 target
->c_cc
[TARGET_VSUSP
] = host
->c_cc
[VSUSP
];
5818 target
->c_cc
[TARGET_VEOL
] = host
->c_cc
[VEOL
];
5819 target
->c_cc
[TARGET_VREPRINT
] = host
->c_cc
[VREPRINT
];
5820 target
->c_cc
[TARGET_VDISCARD
] = host
->c_cc
[VDISCARD
];
5821 target
->c_cc
[TARGET_VWERASE
] = host
->c_cc
[VWERASE
];
5822 target
->c_cc
[TARGET_VLNEXT
] = host
->c_cc
[VLNEXT
];
5823 target
->c_cc
[TARGET_VEOL2
] = host
->c_cc
[VEOL2
];
5826 static const StructEntry struct_termios_def
= {
5827 .convert
= { host_to_target_termios
, target_to_host_termios
},
5828 .size
= { sizeof(struct target_termios
), sizeof(struct host_termios
) },
5829 .align
= { __alignof__(struct target_termios
), __alignof__(struct host_termios
) },
5830 .print
= print_termios
,
5833 /* If the host does not provide these bits, they may be safely discarded. */
5837 #ifndef MAP_UNINITIALIZED
5838 #define MAP_UNINITIALIZED 0
5841 static const bitmask_transtbl mmap_flags_tbl
[] = {
5842 { TARGET_MAP_FIXED
, TARGET_MAP_FIXED
, MAP_FIXED
, MAP_FIXED
},
5843 { TARGET_MAP_ANONYMOUS
, TARGET_MAP_ANONYMOUS
,
5844 MAP_ANONYMOUS
, MAP_ANONYMOUS
},
5845 { TARGET_MAP_GROWSDOWN
, TARGET_MAP_GROWSDOWN
,
5846 MAP_GROWSDOWN
, MAP_GROWSDOWN
},
5847 { TARGET_MAP_DENYWRITE
, TARGET_MAP_DENYWRITE
,
5848 MAP_DENYWRITE
, MAP_DENYWRITE
},
5849 { TARGET_MAP_EXECUTABLE
, TARGET_MAP_EXECUTABLE
,
5850 MAP_EXECUTABLE
, MAP_EXECUTABLE
},
5851 { TARGET_MAP_LOCKED
, TARGET_MAP_LOCKED
, MAP_LOCKED
, MAP_LOCKED
},
5852 { TARGET_MAP_NORESERVE
, TARGET_MAP_NORESERVE
,
5853 MAP_NORESERVE
, MAP_NORESERVE
},
5854 { TARGET_MAP_HUGETLB
, TARGET_MAP_HUGETLB
, MAP_HUGETLB
, MAP_HUGETLB
},
5855 /* MAP_STACK had been ignored by the kernel for quite some time.
5856 Recognize it for the target insofar as we do not want to pass
5857 it through to the host. */
5858 { TARGET_MAP_STACK
, TARGET_MAP_STACK
, 0, 0 },
5859 { TARGET_MAP_NONBLOCK
, TARGET_MAP_NONBLOCK
, MAP_NONBLOCK
, MAP_NONBLOCK
},
5860 { TARGET_MAP_POPULATE
, TARGET_MAP_POPULATE
, MAP_POPULATE
, MAP_POPULATE
},
5861 { TARGET_MAP_FIXED_NOREPLACE
, TARGET_MAP_FIXED_NOREPLACE
,
5862 MAP_FIXED_NOREPLACE
, MAP_FIXED_NOREPLACE
},
5863 { TARGET_MAP_UNINITIALIZED
, TARGET_MAP_UNINITIALIZED
,
5864 MAP_UNINITIALIZED
, MAP_UNINITIALIZED
},
5868 * Arrange for legacy / undefined architecture specific flags to be
5869 * ignored by mmap handling code.
5871 #ifndef TARGET_MAP_32BIT
5872 #define TARGET_MAP_32BIT 0
5874 #ifndef TARGET_MAP_HUGE_2MB
5875 #define TARGET_MAP_HUGE_2MB 0
5877 #ifndef TARGET_MAP_HUGE_1GB
5878 #define TARGET_MAP_HUGE_1GB 0
5881 static abi_long
do_mmap(abi_ulong addr
, abi_ulong len
, int prot
,
5882 int target_flags
, int fd
, off_t offset
)
5885 * The historical set of flags that all mmap types implicitly support.
5888 TARGET_LEGACY_MAP_MASK
= TARGET_MAP_SHARED
5889 | TARGET_MAP_PRIVATE
5891 | TARGET_MAP_ANONYMOUS
5892 | TARGET_MAP_DENYWRITE
5893 | TARGET_MAP_EXECUTABLE
5894 | TARGET_MAP_UNINITIALIZED
5895 | TARGET_MAP_GROWSDOWN
5897 | TARGET_MAP_NORESERVE
5898 | TARGET_MAP_POPULATE
5899 | TARGET_MAP_NONBLOCK
5901 | TARGET_MAP_HUGETLB
5903 | TARGET_MAP_HUGE_2MB
5904 | TARGET_MAP_HUGE_1GB
5908 switch (target_flags
& TARGET_MAP_TYPE
) {
5909 case TARGET_MAP_PRIVATE
:
5910 host_flags
= MAP_PRIVATE
;
5912 case TARGET_MAP_SHARED
:
5913 host_flags
= MAP_SHARED
;
5915 case TARGET_MAP_SHARED_VALIDATE
:
5917 * MAP_SYNC is only supported for MAP_SHARED_VALIDATE, and is
5918 * therefore omitted from mmap_flags_tbl and TARGET_LEGACY_MAP_MASK.
5920 if (target_flags
& ~(TARGET_LEGACY_MAP_MASK
| TARGET_MAP_SYNC
)) {
5921 return -TARGET_EOPNOTSUPP
;
5923 host_flags
= MAP_SHARED_VALIDATE
;
5924 if (target_flags
& TARGET_MAP_SYNC
) {
5925 host_flags
|= MAP_SYNC
;
5929 return -TARGET_EINVAL
;
5931 host_flags
|= target_to_host_bitmask(target_flags
, mmap_flags_tbl
);
5933 return get_errno(target_mmap(addr
, len
, prot
, host_flags
, fd
, offset
));
5937 * NOTE: TARGET_ABI32 is defined for TARGET_I386 (but not for TARGET_X86_64)
5938 * TARGET_I386 is defined if TARGET_X86_64 is defined
5940 #if defined(TARGET_I386)
5942 /* NOTE: there is really one LDT for all the threads */
5943 static uint8_t *ldt_table
;
5945 static abi_long
read_ldt(abi_ulong ptr
, unsigned long bytecount
)
5952 size
= TARGET_LDT_ENTRIES
* TARGET_LDT_ENTRY_SIZE
;
5953 if (size
> bytecount
)
5955 p
= lock_user(VERIFY_WRITE
, ptr
, size
, 0);
5957 return -TARGET_EFAULT
;
5958 /* ??? Should this by byteswapped? */
5959 memcpy(p
, ldt_table
, size
);
5960 unlock_user(p
, ptr
, size
);
5964 /* XXX: add locking support */
5965 static abi_long
write_ldt(CPUX86State
*env
,
5966 abi_ulong ptr
, unsigned long bytecount
, int oldmode
)
5968 struct target_modify_ldt_ldt_s ldt_info
;
5969 struct target_modify_ldt_ldt_s
*target_ldt_info
;
5970 int seg_32bit
, contents
, read_exec_only
, limit_in_pages
;
5971 int seg_not_present
, useable
, lm
;
5972 uint32_t *lp
, entry_1
, entry_2
;
5974 if (bytecount
!= sizeof(ldt_info
))
5975 return -TARGET_EINVAL
;
5976 if (!lock_user_struct(VERIFY_READ
, target_ldt_info
, ptr
, 1))
5977 return -TARGET_EFAULT
;
5978 ldt_info
.entry_number
= tswap32(target_ldt_info
->entry_number
);
5979 ldt_info
.base_addr
= tswapal(target_ldt_info
->base_addr
);
5980 ldt_info
.limit
= tswap32(target_ldt_info
->limit
);
5981 ldt_info
.flags
= tswap32(target_ldt_info
->flags
);
5982 unlock_user_struct(target_ldt_info
, ptr
, 0);
5984 if (ldt_info
.entry_number
>= TARGET_LDT_ENTRIES
)
5985 return -TARGET_EINVAL
;
5986 seg_32bit
= ldt_info
.flags
& 1;
5987 contents
= (ldt_info
.flags
>> 1) & 3;
5988 read_exec_only
= (ldt_info
.flags
>> 3) & 1;
5989 limit_in_pages
= (ldt_info
.flags
>> 4) & 1;
5990 seg_not_present
= (ldt_info
.flags
>> 5) & 1;
5991 useable
= (ldt_info
.flags
>> 6) & 1;
5995 lm
= (ldt_info
.flags
>> 7) & 1;
5997 if (contents
== 3) {
5999 return -TARGET_EINVAL
;
6000 if (seg_not_present
== 0)
6001 return -TARGET_EINVAL
;
6003 /* allocate the LDT */
6005 env
->ldt
.base
= target_mmap(0,
6006 TARGET_LDT_ENTRIES
* TARGET_LDT_ENTRY_SIZE
,
6007 PROT_READ
|PROT_WRITE
,
6008 MAP_ANONYMOUS
|MAP_PRIVATE
, -1, 0);
6009 if (env
->ldt
.base
== -1)
6010 return -TARGET_ENOMEM
;
6011 memset(g2h_untagged(env
->ldt
.base
), 0,
6012 TARGET_LDT_ENTRIES
* TARGET_LDT_ENTRY_SIZE
);
6013 env
->ldt
.limit
= 0xffff;
6014 ldt_table
= g2h_untagged(env
->ldt
.base
);
6017 /* NOTE: same code as Linux kernel */
6018 /* Allow LDTs to be cleared by the user. */
6019 if (ldt_info
.base_addr
== 0 && ldt_info
.limit
== 0) {
6022 read_exec_only
== 1 &&
6024 limit_in_pages
== 0 &&
6025 seg_not_present
== 1 &&
6033 entry_1
= ((ldt_info
.base_addr
& 0x0000ffff) << 16) |
6034 (ldt_info
.limit
& 0x0ffff);
6035 entry_2
= (ldt_info
.base_addr
& 0xff000000) |
6036 ((ldt_info
.base_addr
& 0x00ff0000) >> 16) |
6037 (ldt_info
.limit
& 0xf0000) |
6038 ((read_exec_only
^ 1) << 9) |
6040 ((seg_not_present
^ 1) << 15) |
6042 (limit_in_pages
<< 23) |
6046 entry_2
|= (useable
<< 20);
6048 /* Install the new entry ... */
6050 lp
= (uint32_t *)(ldt_table
+ (ldt_info
.entry_number
<< 3));
6051 lp
[0] = tswap32(entry_1
);
6052 lp
[1] = tswap32(entry_2
);
6056 /* specific and weird i386 syscalls */
6057 static abi_long
do_modify_ldt(CPUX86State
*env
, int func
, abi_ulong ptr
,
6058 unsigned long bytecount
)
6064 ret
= read_ldt(ptr
, bytecount
);
6067 ret
= write_ldt(env
, ptr
, bytecount
, 1);
6070 ret
= write_ldt(env
, ptr
, bytecount
, 0);
6073 ret
= -TARGET_ENOSYS
;
6079 #if defined(TARGET_ABI32)
6080 abi_long
do_set_thread_area(CPUX86State
*env
, abi_ulong ptr
)
6082 uint64_t *gdt_table
= g2h_untagged(env
->gdt
.base
);
6083 struct target_modify_ldt_ldt_s ldt_info
;
6084 struct target_modify_ldt_ldt_s
*target_ldt_info
;
6085 int seg_32bit
, contents
, read_exec_only
, limit_in_pages
;
6086 int seg_not_present
, useable
, lm
;
6087 uint32_t *lp
, entry_1
, entry_2
;
6090 lock_user_struct(VERIFY_WRITE
, target_ldt_info
, ptr
, 1);
6091 if (!target_ldt_info
)
6092 return -TARGET_EFAULT
;
6093 ldt_info
.entry_number
= tswap32(target_ldt_info
->entry_number
);
6094 ldt_info
.base_addr
= tswapal(target_ldt_info
->base_addr
);
6095 ldt_info
.limit
= tswap32(target_ldt_info
->limit
);
6096 ldt_info
.flags
= tswap32(target_ldt_info
->flags
);
6097 if (ldt_info
.entry_number
== -1) {
6098 for (i
=TARGET_GDT_ENTRY_TLS_MIN
; i
<=TARGET_GDT_ENTRY_TLS_MAX
; i
++) {
6099 if (gdt_table
[i
] == 0) {
6100 ldt_info
.entry_number
= i
;
6101 target_ldt_info
->entry_number
= tswap32(i
);
6106 unlock_user_struct(target_ldt_info
, ptr
, 1);
6108 if (ldt_info
.entry_number
< TARGET_GDT_ENTRY_TLS_MIN
||
6109 ldt_info
.entry_number
> TARGET_GDT_ENTRY_TLS_MAX
)
6110 return -TARGET_EINVAL
;
6111 seg_32bit
= ldt_info
.flags
& 1;
6112 contents
= (ldt_info
.flags
>> 1) & 3;
6113 read_exec_only
= (ldt_info
.flags
>> 3) & 1;
6114 limit_in_pages
= (ldt_info
.flags
>> 4) & 1;
6115 seg_not_present
= (ldt_info
.flags
>> 5) & 1;
6116 useable
= (ldt_info
.flags
>> 6) & 1;
6120 lm
= (ldt_info
.flags
>> 7) & 1;
6123 if (contents
== 3) {
6124 if (seg_not_present
== 0)
6125 return -TARGET_EINVAL
;
6128 /* NOTE: same code as Linux kernel */
6129 /* Allow LDTs to be cleared by the user. */
6130 if (ldt_info
.base_addr
== 0 && ldt_info
.limit
== 0) {
6131 if ((contents
== 0 &&
6132 read_exec_only
== 1 &&
6134 limit_in_pages
== 0 &&
6135 seg_not_present
== 1 &&
6143 entry_1
= ((ldt_info
.base_addr
& 0x0000ffff) << 16) |
6144 (ldt_info
.limit
& 0x0ffff);
6145 entry_2
= (ldt_info
.base_addr
& 0xff000000) |
6146 ((ldt_info
.base_addr
& 0x00ff0000) >> 16) |
6147 (ldt_info
.limit
& 0xf0000) |
6148 ((read_exec_only
^ 1) << 9) |
6150 ((seg_not_present
^ 1) << 15) |
6152 (limit_in_pages
<< 23) |
6157 /* Install the new entry ... */
6159 lp
= (uint32_t *)(gdt_table
+ ldt_info
.entry_number
);
6160 lp
[0] = tswap32(entry_1
);
6161 lp
[1] = tswap32(entry_2
);
6165 static abi_long
do_get_thread_area(CPUX86State
*env
, abi_ulong ptr
)
6167 struct target_modify_ldt_ldt_s
*target_ldt_info
;
6168 uint64_t *gdt_table
= g2h_untagged(env
->gdt
.base
);
6169 uint32_t base_addr
, limit
, flags
;
6170 int seg_32bit
, contents
, read_exec_only
, limit_in_pages
, idx
;
6171 int seg_not_present
, useable
, lm
;
6172 uint32_t *lp
, entry_1
, entry_2
;
6174 lock_user_struct(VERIFY_WRITE
, target_ldt_info
, ptr
, 1);
6175 if (!target_ldt_info
)
6176 return -TARGET_EFAULT
;
6177 idx
= tswap32(target_ldt_info
->entry_number
);
6178 if (idx
< TARGET_GDT_ENTRY_TLS_MIN
||
6179 idx
> TARGET_GDT_ENTRY_TLS_MAX
) {
6180 unlock_user_struct(target_ldt_info
, ptr
, 1);
6181 return -TARGET_EINVAL
;
6183 lp
= (uint32_t *)(gdt_table
+ idx
);
6184 entry_1
= tswap32(lp
[0]);
6185 entry_2
= tswap32(lp
[1]);
6187 read_exec_only
= ((entry_2
>> 9) & 1) ^ 1;
6188 contents
= (entry_2
>> 10) & 3;
6189 seg_not_present
= ((entry_2
>> 15) & 1) ^ 1;
6190 seg_32bit
= (entry_2
>> 22) & 1;
6191 limit_in_pages
= (entry_2
>> 23) & 1;
6192 useable
= (entry_2
>> 20) & 1;
6196 lm
= (entry_2
>> 21) & 1;
6198 flags
= (seg_32bit
<< 0) | (contents
<< 1) |
6199 (read_exec_only
<< 3) | (limit_in_pages
<< 4) |
6200 (seg_not_present
<< 5) | (useable
<< 6) | (lm
<< 7);
6201 limit
= (entry_1
& 0xffff) | (entry_2
& 0xf0000);
6202 base_addr
= (entry_1
>> 16) |
6203 (entry_2
& 0xff000000) |
6204 ((entry_2
& 0xff) << 16);
6205 target_ldt_info
->base_addr
= tswapal(base_addr
);
6206 target_ldt_info
->limit
= tswap32(limit
);
6207 target_ldt_info
->flags
= tswap32(flags
);
6208 unlock_user_struct(target_ldt_info
, ptr
, 1);
6212 abi_long
do_arch_prctl(CPUX86State
*env
, int code
, abi_ulong addr
)
6214 return -TARGET_ENOSYS
;
6217 abi_long
do_arch_prctl(CPUX86State
*env
, int code
, abi_ulong addr
)
6224 case TARGET_ARCH_SET_GS
:
6225 case TARGET_ARCH_SET_FS
:
6226 if (code
== TARGET_ARCH_SET_GS
)
6230 cpu_x86_load_seg(env
, idx
, 0);
6231 env
->segs
[idx
].base
= addr
;
6233 case TARGET_ARCH_GET_GS
:
6234 case TARGET_ARCH_GET_FS
:
6235 if (code
== TARGET_ARCH_GET_GS
)
6239 val
= env
->segs
[idx
].base
;
6240 if (put_user(val
, addr
, abi_ulong
))
6241 ret
= -TARGET_EFAULT
;
6244 ret
= -TARGET_EINVAL
;
6249 #endif /* defined(TARGET_ABI32 */
6250 #endif /* defined(TARGET_I386) */
6253 * These constants are generic. Supply any that are missing from the host.
6256 # define PR_SET_NAME 15
6257 # define PR_GET_NAME 16
6259 #ifndef PR_SET_FP_MODE
6260 # define PR_SET_FP_MODE 45
6261 # define PR_GET_FP_MODE 46
6262 # define PR_FP_MODE_FR (1 << 0)
6263 # define PR_FP_MODE_FRE (1 << 1)
6265 #ifndef PR_SVE_SET_VL
6266 # define PR_SVE_SET_VL 50
6267 # define PR_SVE_GET_VL 51
6268 # define PR_SVE_VL_LEN_MASK 0xffff
6269 # define PR_SVE_VL_INHERIT (1 << 17)
6271 #ifndef PR_PAC_RESET_KEYS
6272 # define PR_PAC_RESET_KEYS 54
6273 # define PR_PAC_APIAKEY (1 << 0)
6274 # define PR_PAC_APIBKEY (1 << 1)
6275 # define PR_PAC_APDAKEY (1 << 2)
6276 # define PR_PAC_APDBKEY (1 << 3)
6277 # define PR_PAC_APGAKEY (1 << 4)
6279 #ifndef PR_SET_TAGGED_ADDR_CTRL
6280 # define PR_SET_TAGGED_ADDR_CTRL 55
6281 # define PR_GET_TAGGED_ADDR_CTRL 56
6282 # define PR_TAGGED_ADDR_ENABLE (1UL << 0)
6284 #ifndef PR_MTE_TCF_SHIFT
6285 # define PR_MTE_TCF_SHIFT 1
6286 # define PR_MTE_TCF_NONE (0UL << PR_MTE_TCF_SHIFT)
6287 # define PR_MTE_TCF_SYNC (1UL << PR_MTE_TCF_SHIFT)
6288 # define PR_MTE_TCF_ASYNC (2UL << PR_MTE_TCF_SHIFT)
6289 # define PR_MTE_TCF_MASK (3UL << PR_MTE_TCF_SHIFT)
6290 # define PR_MTE_TAG_SHIFT 3
6291 # define PR_MTE_TAG_MASK (0xffffUL << PR_MTE_TAG_SHIFT)
6293 #ifndef PR_SET_IO_FLUSHER
6294 # define PR_SET_IO_FLUSHER 57
6295 # define PR_GET_IO_FLUSHER 58
6297 #ifndef PR_SET_SYSCALL_USER_DISPATCH
6298 # define PR_SET_SYSCALL_USER_DISPATCH 59
6300 #ifndef PR_SME_SET_VL
6301 # define PR_SME_SET_VL 63
6302 # define PR_SME_GET_VL 64
6303 # define PR_SME_VL_LEN_MASK 0xffff
6304 # define PR_SME_VL_INHERIT (1 << 17)
6307 #include "target_prctl.h"
6309 static abi_long
do_prctl_inval0(CPUArchState
*env
)
6311 return -TARGET_EINVAL
;
6314 static abi_long
do_prctl_inval1(CPUArchState
*env
, abi_long arg2
)
6316 return -TARGET_EINVAL
;
6319 #ifndef do_prctl_get_fp_mode
6320 #define do_prctl_get_fp_mode do_prctl_inval0
6322 #ifndef do_prctl_set_fp_mode
6323 #define do_prctl_set_fp_mode do_prctl_inval1
6325 #ifndef do_prctl_sve_get_vl
6326 #define do_prctl_sve_get_vl do_prctl_inval0
6328 #ifndef do_prctl_sve_set_vl
6329 #define do_prctl_sve_set_vl do_prctl_inval1
6331 #ifndef do_prctl_reset_keys
6332 #define do_prctl_reset_keys do_prctl_inval1
6334 #ifndef do_prctl_set_tagged_addr_ctrl
6335 #define do_prctl_set_tagged_addr_ctrl do_prctl_inval1
6337 #ifndef do_prctl_get_tagged_addr_ctrl
6338 #define do_prctl_get_tagged_addr_ctrl do_prctl_inval0
6340 #ifndef do_prctl_get_unalign
6341 #define do_prctl_get_unalign do_prctl_inval1
6343 #ifndef do_prctl_set_unalign
6344 #define do_prctl_set_unalign do_prctl_inval1
6346 #ifndef do_prctl_sme_get_vl
6347 #define do_prctl_sme_get_vl do_prctl_inval0
6349 #ifndef do_prctl_sme_set_vl
6350 #define do_prctl_sme_set_vl do_prctl_inval1
6353 static abi_long
do_prctl(CPUArchState
*env
, abi_long option
, abi_long arg2
,
6354 abi_long arg3
, abi_long arg4
, abi_long arg5
)
6359 case PR_GET_PDEATHSIG
:
6362 ret
= get_errno(prctl(PR_GET_PDEATHSIG
, &deathsig
,
6364 if (!is_error(ret
) &&
6365 put_user_s32(host_to_target_signal(deathsig
), arg2
)) {
6366 return -TARGET_EFAULT
;
6370 case PR_SET_PDEATHSIG
:
6371 return get_errno(prctl(PR_SET_PDEATHSIG
, target_to_host_signal(arg2
),
6375 void *name
= lock_user(VERIFY_WRITE
, arg2
, 16, 1);
6377 return -TARGET_EFAULT
;
6379 ret
= get_errno(prctl(PR_GET_NAME
, (uintptr_t)name
,
6381 unlock_user(name
, arg2
, 16);
6386 void *name
= lock_user(VERIFY_READ
, arg2
, 16, 1);
6388 return -TARGET_EFAULT
;
6390 ret
= get_errno(prctl(PR_SET_NAME
, (uintptr_t)name
,
6392 unlock_user(name
, arg2
, 0);
6395 case PR_GET_FP_MODE
:
6396 return do_prctl_get_fp_mode(env
);
6397 case PR_SET_FP_MODE
:
6398 return do_prctl_set_fp_mode(env
, arg2
);
6400 return do_prctl_sve_get_vl(env
);
6402 return do_prctl_sve_set_vl(env
, arg2
);
6404 return do_prctl_sme_get_vl(env
);
6406 return do_prctl_sme_set_vl(env
, arg2
);
6407 case PR_PAC_RESET_KEYS
:
6408 if (arg3
|| arg4
|| arg5
) {
6409 return -TARGET_EINVAL
;
6411 return do_prctl_reset_keys(env
, arg2
);
6412 case PR_SET_TAGGED_ADDR_CTRL
:
6413 if (arg3
|| arg4
|| arg5
) {
6414 return -TARGET_EINVAL
;
6416 return do_prctl_set_tagged_addr_ctrl(env
, arg2
);
6417 case PR_GET_TAGGED_ADDR_CTRL
:
6418 if (arg2
|| arg3
|| arg4
|| arg5
) {
6419 return -TARGET_EINVAL
;
6421 return do_prctl_get_tagged_addr_ctrl(env
);
6423 case PR_GET_UNALIGN
:
6424 return do_prctl_get_unalign(env
, arg2
);
6425 case PR_SET_UNALIGN
:
6426 return do_prctl_set_unalign(env
, arg2
);
6428 case PR_CAP_AMBIENT
:
6429 case PR_CAPBSET_READ
:
6430 case PR_CAPBSET_DROP
:
6431 case PR_GET_DUMPABLE
:
6432 case PR_SET_DUMPABLE
:
6433 case PR_GET_KEEPCAPS
:
6434 case PR_SET_KEEPCAPS
:
6435 case PR_GET_SECUREBITS
:
6436 case PR_SET_SECUREBITS
:
6439 case PR_GET_TIMERSLACK
:
6440 case PR_SET_TIMERSLACK
:
6442 case PR_MCE_KILL_GET
:
6443 case PR_GET_NO_NEW_PRIVS
:
6444 case PR_SET_NO_NEW_PRIVS
:
6445 case PR_GET_IO_FLUSHER
:
6446 case PR_SET_IO_FLUSHER
:
6447 case PR_SET_CHILD_SUBREAPER
:
6448 case PR_GET_SPECULATION_CTRL
:
6449 case PR_SET_SPECULATION_CTRL
:
6450 /* Some prctl options have no pointer arguments and we can pass on. */
6451 return get_errno(prctl(option
, arg2
, arg3
, arg4
, arg5
));
6453 case PR_GET_CHILD_SUBREAPER
:
6456 ret
= get_errno(prctl(PR_GET_CHILD_SUBREAPER
, &val
,
6458 if (!is_error(ret
) && put_user_s32(val
, arg2
)) {
6459 return -TARGET_EFAULT
;
6464 case PR_GET_TID_ADDRESS
:
6466 TaskState
*ts
= get_task_state(env_cpu(env
));
6467 return put_user_ual(ts
->child_tidptr
, arg2
);
6472 /* Was used for SPE on PowerPC. */
6473 return -TARGET_EINVAL
;
6480 case PR_GET_SECCOMP
:
6481 case PR_SET_SECCOMP
:
6482 case PR_SET_SYSCALL_USER_DISPATCH
:
6483 case PR_GET_THP_DISABLE
:
6484 case PR_SET_THP_DISABLE
:
6487 /* Disable to prevent the target disabling stuff we need. */
6488 return -TARGET_EINVAL
;
6491 qemu_log_mask(LOG_UNIMP
, "Unsupported prctl: " TARGET_ABI_FMT_ld
"\n",
6493 return -TARGET_EINVAL
;
6497 #define NEW_STACK_SIZE 0x40000
6500 static pthread_mutex_t clone_lock
= PTHREAD_MUTEX_INITIALIZER
;
6503 pthread_mutex_t mutex
;
6504 pthread_cond_t cond
;
6507 abi_ulong child_tidptr
;
6508 abi_ulong parent_tidptr
;
6512 static void *clone_func(void *arg
)
6514 new_thread_info
*info
= arg
;
6519 rcu_register_thread();
6520 tcg_register_thread();
6524 ts
= get_task_state(cpu
);
6525 info
->tid
= sys_gettid();
6527 if (info
->child_tidptr
)
6528 put_user_u32(info
->tid
, info
->child_tidptr
);
6529 if (info
->parent_tidptr
)
6530 put_user_u32(info
->tid
, info
->parent_tidptr
);
6531 qemu_guest_random_seed_thread_part2(cpu
->random_seed
);
6532 /* Enable signals. */
6533 sigprocmask(SIG_SETMASK
, &info
->sigmask
, NULL
);
6534 /* Signal to the parent that we're ready. */
6535 pthread_mutex_lock(&info
->mutex
);
6536 pthread_cond_broadcast(&info
->cond
);
6537 pthread_mutex_unlock(&info
->mutex
);
6538 /* Wait until the parent has finished initializing the tls state. */
6539 pthread_mutex_lock(&clone_lock
);
6540 pthread_mutex_unlock(&clone_lock
);
6546 /* do_fork() Must return host values and target errnos (unlike most
6547 do_*() functions). */
6548 static int do_fork(CPUArchState
*env
, unsigned int flags
, abi_ulong newsp
,
6549 abi_ulong parent_tidptr
, target_ulong newtls
,
6550 abi_ulong child_tidptr
)
6552 CPUState
*cpu
= env_cpu(env
);
6556 CPUArchState
*new_env
;
6559 flags
&= ~CLONE_IGNORED_FLAGS
;
6561 /* Emulate vfork() with fork() */
6562 if (flags
& CLONE_VFORK
)
6563 flags
&= ~(CLONE_VFORK
| CLONE_VM
);
6565 if (flags
& CLONE_VM
) {
6566 TaskState
*parent_ts
= get_task_state(cpu
);
6567 new_thread_info info
;
6568 pthread_attr_t attr
;
6570 if (((flags
& CLONE_THREAD_FLAGS
) != CLONE_THREAD_FLAGS
) ||
6571 (flags
& CLONE_INVALID_THREAD_FLAGS
)) {
6572 return -TARGET_EINVAL
;
6575 ts
= g_new0(TaskState
, 1);
6576 init_task_state(ts
);
6578 /* Grab a mutex so that thread setup appears atomic. */
6579 pthread_mutex_lock(&clone_lock
);
6582 * If this is our first additional thread, we need to ensure we
6583 * generate code for parallel execution and flush old translations.
6584 * Do this now so that the copy gets CF_PARALLEL too.
6586 if (!tcg_cflags_has(cpu
, CF_PARALLEL
)) {
6587 tcg_cflags_set(cpu
, CF_PARALLEL
);
6591 /* we create a new CPU instance. */
6592 new_env
= cpu_copy(env
);
6593 /* Init regs that differ from the parent. */
6594 cpu_clone_regs_child(new_env
, newsp
, flags
);
6595 cpu_clone_regs_parent(env
, flags
);
6596 new_cpu
= env_cpu(new_env
);
6597 new_cpu
->opaque
= ts
;
6598 ts
->bprm
= parent_ts
->bprm
;
6599 ts
->info
= parent_ts
->info
;
6600 ts
->signal_mask
= parent_ts
->signal_mask
;
6602 if (flags
& CLONE_CHILD_CLEARTID
) {
6603 ts
->child_tidptr
= child_tidptr
;
6606 if (flags
& CLONE_SETTLS
) {
6607 cpu_set_tls (new_env
, newtls
);
6610 memset(&info
, 0, sizeof(info
));
6611 pthread_mutex_init(&info
.mutex
, NULL
);
6612 pthread_mutex_lock(&info
.mutex
);
6613 pthread_cond_init(&info
.cond
, NULL
);
6615 if (flags
& CLONE_CHILD_SETTID
) {
6616 info
.child_tidptr
= child_tidptr
;
6618 if (flags
& CLONE_PARENT_SETTID
) {
6619 info
.parent_tidptr
= parent_tidptr
;
6622 ret
= pthread_attr_init(&attr
);
6623 ret
= pthread_attr_setstacksize(&attr
, NEW_STACK_SIZE
);
6624 ret
= pthread_attr_setdetachstate(&attr
, PTHREAD_CREATE_DETACHED
);
6625 /* It is not safe to deliver signals until the child has finished
6626 initializing, so temporarily block all signals. */
6627 sigfillset(&sigmask
);
6628 sigprocmask(SIG_BLOCK
, &sigmask
, &info
.sigmask
);
6629 cpu
->random_seed
= qemu_guest_random_seed_thread_part1();
6631 ret
= pthread_create(&info
.thread
, &attr
, clone_func
, &info
);
6632 /* TODO: Free new CPU state if thread creation failed. */
6634 sigprocmask(SIG_SETMASK
, &info
.sigmask
, NULL
);
6635 pthread_attr_destroy(&attr
);
6637 /* Wait for the child to initialize. */
6638 pthread_cond_wait(&info
.cond
, &info
.mutex
);
6643 pthread_mutex_unlock(&info
.mutex
);
6644 pthread_cond_destroy(&info
.cond
);
6645 pthread_mutex_destroy(&info
.mutex
);
6646 pthread_mutex_unlock(&clone_lock
);
6648 /* if no CLONE_VM, we consider it is a fork */
6649 if (flags
& CLONE_INVALID_FORK_FLAGS
) {
6650 return -TARGET_EINVAL
;
6653 /* We can't support custom termination signals */
6654 if ((flags
& CSIGNAL
) != TARGET_SIGCHLD
) {
6655 return -TARGET_EINVAL
;
6658 #if !defined(__NR_pidfd_open) || !defined(TARGET_NR_pidfd_open)
6659 if (flags
& CLONE_PIDFD
) {
6660 return -TARGET_EINVAL
;
6664 /* Can not allow CLONE_PIDFD with CLONE_PARENT_SETTID */
6665 if ((flags
& CLONE_PIDFD
) && (flags
& CLONE_PARENT_SETTID
)) {
6666 return -TARGET_EINVAL
;
6669 if (block_signals()) {
6670 return -QEMU_ERESTARTSYS
;
6676 /* Child Process. */
6677 cpu_clone_regs_child(env
, newsp
, flags
);
6679 /* There is a race condition here. The parent process could
6680 theoretically read the TID in the child process before the child
6681 tid is set. This would require using either ptrace
6682 (not implemented) or having *_tidptr to point at a shared memory
6683 mapping. We can't repeat the spinlock hack used above because
6684 the child process gets its own copy of the lock. */
6685 if (flags
& CLONE_CHILD_SETTID
)
6686 put_user_u32(sys_gettid(), child_tidptr
);
6687 if (flags
& CLONE_PARENT_SETTID
)
6688 put_user_u32(sys_gettid(), parent_tidptr
);
6689 ts
= get_task_state(cpu
);
6690 if (flags
& CLONE_SETTLS
)
6691 cpu_set_tls (env
, newtls
);
6692 if (flags
& CLONE_CHILD_CLEARTID
)
6693 ts
->child_tidptr
= child_tidptr
;
6695 cpu_clone_regs_parent(env
, flags
);
6696 if (flags
& CLONE_PIDFD
) {
6698 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
6699 int pid_child
= ret
;
6700 pid_fd
= pidfd_open(pid_child
, 0);
6702 fcntl(pid_fd
, F_SETFD
, fcntl(pid_fd
, F_GETFL
)
6708 put_user_u32(pid_fd
, parent_tidptr
);
6712 g_assert(!cpu_in_exclusive_context(cpu
));
6717 /* warning : doesn't handle linux specific flags... */
6718 static int target_to_host_fcntl_cmd(int cmd
)
6723 case TARGET_F_DUPFD
:
6724 case TARGET_F_GETFD
:
6725 case TARGET_F_SETFD
:
6726 case TARGET_F_GETFL
:
6727 case TARGET_F_SETFL
:
6728 case TARGET_F_OFD_GETLK
:
6729 case TARGET_F_OFD_SETLK
:
6730 case TARGET_F_OFD_SETLKW
:
6733 case TARGET_F_GETLK
:
6736 case TARGET_F_SETLK
:
6739 case TARGET_F_SETLKW
:
6742 case TARGET_F_GETOWN
:
6745 case TARGET_F_SETOWN
:
6748 case TARGET_F_GETSIG
:
6751 case TARGET_F_SETSIG
:
6754 #if TARGET_ABI_BITS == 32
6755 case TARGET_F_GETLK64
:
6758 case TARGET_F_SETLK64
:
6761 case TARGET_F_SETLKW64
:
6765 case TARGET_F_SETLEASE
:
6768 case TARGET_F_GETLEASE
:
6771 #ifdef F_DUPFD_CLOEXEC
6772 case TARGET_F_DUPFD_CLOEXEC
:
6773 ret
= F_DUPFD_CLOEXEC
;
6776 case TARGET_F_NOTIFY
:
6780 case TARGET_F_GETOWN_EX
:
6785 case TARGET_F_SETOWN_EX
:
6790 case TARGET_F_SETPIPE_SZ
:
6793 case TARGET_F_GETPIPE_SZ
:
6798 case TARGET_F_ADD_SEALS
:
6801 case TARGET_F_GET_SEALS
:
6806 ret
= -TARGET_EINVAL
;
6810 #if defined(__powerpc64__)
6811 /* On PPC64, glibc headers has the F_*LK* defined to 12, 13 and 14 and
6812 * is not supported by kernel. The glibc fcntl call actually adjusts
6813 * them to 5, 6 and 7 before making the syscall(). Since we make the
6814 * syscall directly, adjust to what is supported by the kernel.
6816 if (ret
>= F_GETLK64
&& ret
<= F_SETLKW64
) {
6817 ret
-= F_GETLK64
- 5;
6824 #define FLOCK_TRANSTBL \
6826 TRANSTBL_CONVERT(F_RDLCK); \
6827 TRANSTBL_CONVERT(F_WRLCK); \
6828 TRANSTBL_CONVERT(F_UNLCK); \
6831 static int target_to_host_flock(int type
)
6833 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a
6835 #undef TRANSTBL_CONVERT
6836 return -TARGET_EINVAL
;
6839 static int host_to_target_flock(int type
)
6841 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a
6843 #undef TRANSTBL_CONVERT
6844 /* if we don't know how to convert the value coming
6845 * from the host we copy to the target field as-is
6850 static inline abi_long
copy_from_user_flock(struct flock64
*fl
,
6851 abi_ulong target_flock_addr
)
6853 struct target_flock
*target_fl
;
6856 if (!lock_user_struct(VERIFY_READ
, target_fl
, target_flock_addr
, 1)) {
6857 return -TARGET_EFAULT
;
6860 __get_user(l_type
, &target_fl
->l_type
);
6861 l_type
= target_to_host_flock(l_type
);
6865 fl
->l_type
= l_type
;
6866 __get_user(fl
->l_whence
, &target_fl
->l_whence
);
6867 __get_user(fl
->l_start
, &target_fl
->l_start
);
6868 __get_user(fl
->l_len
, &target_fl
->l_len
);
6869 __get_user(fl
->l_pid
, &target_fl
->l_pid
);
6870 unlock_user_struct(target_fl
, target_flock_addr
, 0);
6874 static inline abi_long
copy_to_user_flock(abi_ulong target_flock_addr
,
6875 const struct flock64
*fl
)
6877 struct target_flock
*target_fl
;
6880 if (!lock_user_struct(VERIFY_WRITE
, target_fl
, target_flock_addr
, 0)) {
6881 return -TARGET_EFAULT
;
6884 l_type
= host_to_target_flock(fl
->l_type
);
6885 __put_user(l_type
, &target_fl
->l_type
);
6886 __put_user(fl
->l_whence
, &target_fl
->l_whence
);
6887 __put_user(fl
->l_start
, &target_fl
->l_start
);
6888 __put_user(fl
->l_len
, &target_fl
->l_len
);
6889 __put_user(fl
->l_pid
, &target_fl
->l_pid
);
6890 unlock_user_struct(target_fl
, target_flock_addr
, 1);
6894 typedef abi_long
from_flock64_fn(struct flock64
*fl
, abi_ulong target_addr
);
6895 typedef abi_long
to_flock64_fn(abi_ulong target_addr
, const struct flock64
*fl
);
6897 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32
6898 struct target_oabi_flock64
{
6906 static inline abi_long
copy_from_user_oabi_flock64(struct flock64
*fl
,
6907 abi_ulong target_flock_addr
)
6909 struct target_oabi_flock64
*target_fl
;
6912 if (!lock_user_struct(VERIFY_READ
, target_fl
, target_flock_addr
, 1)) {
6913 return -TARGET_EFAULT
;
6916 __get_user(l_type
, &target_fl
->l_type
);
6917 l_type
= target_to_host_flock(l_type
);
6921 fl
->l_type
= l_type
;
6922 __get_user(fl
->l_whence
, &target_fl
->l_whence
);
6923 __get_user(fl
->l_start
, &target_fl
->l_start
);
6924 __get_user(fl
->l_len
, &target_fl
->l_len
);
6925 __get_user(fl
->l_pid
, &target_fl
->l_pid
);
6926 unlock_user_struct(target_fl
, target_flock_addr
, 0);
6930 static inline abi_long
copy_to_user_oabi_flock64(abi_ulong target_flock_addr
,
6931 const struct flock64
*fl
)
6933 struct target_oabi_flock64
*target_fl
;
6936 if (!lock_user_struct(VERIFY_WRITE
, target_fl
, target_flock_addr
, 0)) {
6937 return -TARGET_EFAULT
;
6940 l_type
= host_to_target_flock(fl
->l_type
);
6941 __put_user(l_type
, &target_fl
->l_type
);
6942 __put_user(fl
->l_whence
, &target_fl
->l_whence
);
6943 __put_user(fl
->l_start
, &target_fl
->l_start
);
6944 __put_user(fl
->l_len
, &target_fl
->l_len
);
6945 __put_user(fl
->l_pid
, &target_fl
->l_pid
);
6946 unlock_user_struct(target_fl
, target_flock_addr
, 1);
6951 static inline abi_long
copy_from_user_flock64(struct flock64
*fl
,
6952 abi_ulong target_flock_addr
)
6954 struct target_flock64
*target_fl
;
6957 if (!lock_user_struct(VERIFY_READ
, target_fl
, target_flock_addr
, 1)) {
6958 return -TARGET_EFAULT
;
6961 __get_user(l_type
, &target_fl
->l_type
);
6962 l_type
= target_to_host_flock(l_type
);
6966 fl
->l_type
= l_type
;
6967 __get_user(fl
->l_whence
, &target_fl
->l_whence
);
6968 __get_user(fl
->l_start
, &target_fl
->l_start
);
6969 __get_user(fl
->l_len
, &target_fl
->l_len
);
6970 __get_user(fl
->l_pid
, &target_fl
->l_pid
);
6971 unlock_user_struct(target_fl
, target_flock_addr
, 0);
6975 static inline abi_long
copy_to_user_flock64(abi_ulong target_flock_addr
,
6976 const struct flock64
*fl
)
6978 struct target_flock64
*target_fl
;
6981 if (!lock_user_struct(VERIFY_WRITE
, target_fl
, target_flock_addr
, 0)) {
6982 return -TARGET_EFAULT
;
6985 l_type
= host_to_target_flock(fl
->l_type
);
6986 __put_user(l_type
, &target_fl
->l_type
);
6987 __put_user(fl
->l_whence
, &target_fl
->l_whence
);
6988 __put_user(fl
->l_start
, &target_fl
->l_start
);
6989 __put_user(fl
->l_len
, &target_fl
->l_len
);
6990 __put_user(fl
->l_pid
, &target_fl
->l_pid
);
6991 unlock_user_struct(target_fl
, target_flock_addr
, 1);
6995 static abi_long
do_fcntl(int fd
, int cmd
, abi_ulong arg
)
6997 struct flock64 fl64
;
6999 struct f_owner_ex fox
;
7000 struct target_f_owner_ex
*target_fox
;
7003 int host_cmd
= target_to_host_fcntl_cmd(cmd
);
7005 if (host_cmd
== -TARGET_EINVAL
)
7009 case TARGET_F_GETLK
:
7010 ret
= copy_from_user_flock(&fl64
, arg
);
7014 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fl64
));
7016 ret
= copy_to_user_flock(arg
, &fl64
);
7020 case TARGET_F_SETLK
:
7021 case TARGET_F_SETLKW
:
7022 ret
= copy_from_user_flock(&fl64
, arg
);
7026 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fl64
));
7029 case TARGET_F_GETLK64
:
7030 case TARGET_F_OFD_GETLK
:
7031 ret
= copy_from_user_flock64(&fl64
, arg
);
7035 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fl64
));
7037 ret
= copy_to_user_flock64(arg
, &fl64
);
7040 case TARGET_F_SETLK64
:
7041 case TARGET_F_SETLKW64
:
7042 case TARGET_F_OFD_SETLK
:
7043 case TARGET_F_OFD_SETLKW
:
7044 ret
= copy_from_user_flock64(&fl64
, arg
);
7048 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fl64
));
7051 case TARGET_F_GETFL
:
7052 ret
= get_errno(safe_fcntl(fd
, host_cmd
, arg
));
7054 ret
= host_to_target_bitmask(ret
, fcntl_flags_tbl
);
7055 /* tell 32-bit guests it uses largefile on 64-bit hosts: */
7056 if (O_LARGEFILE
== 0 && HOST_LONG_BITS
== 64) {
7057 ret
|= TARGET_O_LARGEFILE
;
7062 case TARGET_F_SETFL
:
7063 ret
= get_errno(safe_fcntl(fd
, host_cmd
,
7064 target_to_host_bitmask(arg
,
7069 case TARGET_F_GETOWN_EX
:
7070 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fox
));
7072 if (!lock_user_struct(VERIFY_WRITE
, target_fox
, arg
, 0))
7073 return -TARGET_EFAULT
;
7074 target_fox
->type
= tswap32(fox
.type
);
7075 target_fox
->pid
= tswap32(fox
.pid
);
7076 unlock_user_struct(target_fox
, arg
, 1);
7082 case TARGET_F_SETOWN_EX
:
7083 if (!lock_user_struct(VERIFY_READ
, target_fox
, arg
, 1))
7084 return -TARGET_EFAULT
;
7085 fox
.type
= tswap32(target_fox
->type
);
7086 fox
.pid
= tswap32(target_fox
->pid
);
7087 unlock_user_struct(target_fox
, arg
, 0);
7088 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fox
));
7092 case TARGET_F_SETSIG
:
7093 ret
= get_errno(safe_fcntl(fd
, host_cmd
, target_to_host_signal(arg
)));
7096 case TARGET_F_GETSIG
:
7097 ret
= host_to_target_signal(get_errno(safe_fcntl(fd
, host_cmd
, arg
)));
7100 case TARGET_F_SETOWN
:
7101 case TARGET_F_GETOWN
:
7102 case TARGET_F_SETLEASE
:
7103 case TARGET_F_GETLEASE
:
7104 case TARGET_F_SETPIPE_SZ
:
7105 case TARGET_F_GETPIPE_SZ
:
7106 case TARGET_F_ADD_SEALS
:
7107 case TARGET_F_GET_SEALS
:
7108 ret
= get_errno(safe_fcntl(fd
, host_cmd
, arg
));
7112 ret
= get_errno(safe_fcntl(fd
, cmd
, arg
));
7120 static inline int high2lowuid(int uid
)
7128 static inline int high2lowgid(int gid
)
7136 static inline int low2highuid(int uid
)
7138 if ((int16_t)uid
== -1)
7144 static inline int low2highgid(int gid
)
7146 if ((int16_t)gid
== -1)
7151 static inline int tswapid(int id
)
7156 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
7158 #else /* !USE_UID16 */
7159 static inline int high2lowuid(int uid
)
7163 static inline int high2lowgid(int gid
)
7167 static inline int low2highuid(int uid
)
7171 static inline int low2highgid(int gid
)
7175 static inline int tswapid(int id
)
7180 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
7182 #endif /* USE_UID16 */
7184 /* We must do direct syscalls for setting UID/GID, because we want to
7185 * implement the Linux system call semantics of "change only for this thread",
7186 * not the libc/POSIX semantics of "change for all threads in process".
7187 * (See http://ewontfix.com/17/ for more details.)
7188 * We use the 32-bit version of the syscalls if present; if it is not
7189 * then either the host architecture supports 32-bit UIDs natively with
7190 * the standard syscall, or the 16-bit UID is the best we can do.
7192 #ifdef __NR_setuid32
7193 #define __NR_sys_setuid __NR_setuid32
7195 #define __NR_sys_setuid __NR_setuid
7197 #ifdef __NR_setgid32
7198 #define __NR_sys_setgid __NR_setgid32
7200 #define __NR_sys_setgid __NR_setgid
7202 #ifdef __NR_setresuid32
7203 #define __NR_sys_setresuid __NR_setresuid32
7205 #define __NR_sys_setresuid __NR_setresuid
7207 #ifdef __NR_setresgid32
7208 #define __NR_sys_setresgid __NR_setresgid32
7210 #define __NR_sys_setresgid __NR_setresgid
7213 _syscall1(int, sys_setuid
, uid_t
, uid
)
7214 _syscall1(int, sys_setgid
, gid_t
, gid
)
7215 _syscall3(int, sys_setresuid
, uid_t
, ruid
, uid_t
, euid
, uid_t
, suid
)
7216 _syscall3(int, sys_setresgid
, gid_t
, rgid
, gid_t
, egid
, gid_t
, sgid
)
7218 void syscall_init(void)
7221 const argtype
*arg_type
;
7224 thunk_init(STRUCT_MAX
);
7226 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
7227 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
7228 #include "syscall_types.h"
7230 #undef STRUCT_SPECIAL
7232 /* we patch the ioctl size if necessary. We rely on the fact that
7233 no ioctl has all the bits at '1' in the size field */
7235 while (ie
->target_cmd
!= 0) {
7236 if (((ie
->target_cmd
>> TARGET_IOC_SIZESHIFT
) & TARGET_IOC_SIZEMASK
) ==
7237 TARGET_IOC_SIZEMASK
) {
7238 arg_type
= ie
->arg_type
;
7239 if (arg_type
[0] != TYPE_PTR
) {
7240 fprintf(stderr
, "cannot patch size for ioctl 0x%x\n",
7245 size
= thunk_type_size(arg_type
, 0);
7246 ie
->target_cmd
= (ie
->target_cmd
&
7247 ~(TARGET_IOC_SIZEMASK
<< TARGET_IOC_SIZESHIFT
)) |
7248 (size
<< TARGET_IOC_SIZESHIFT
);
7251 /* automatic consistency check if same arch */
7252 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
7253 (defined(__x86_64__) && defined(TARGET_X86_64))
7254 if (unlikely(ie
->target_cmd
!= ie
->host_cmd
)) {
7255 fprintf(stderr
, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
7256 ie
->name
, ie
->target_cmd
, ie
->host_cmd
);
7263 #ifdef TARGET_NR_truncate64
7264 static inline abi_long
target_truncate64(CPUArchState
*cpu_env
, const char *arg1
,
7269 if (regpairs_aligned(cpu_env
, TARGET_NR_truncate64
)) {
7273 return get_errno(truncate64(arg1
, target_offset64(arg2
, arg3
)));
7277 #ifdef TARGET_NR_ftruncate64
7278 static inline abi_long
target_ftruncate64(CPUArchState
*cpu_env
, abi_long arg1
,
7283 if (regpairs_aligned(cpu_env
, TARGET_NR_ftruncate64
)) {
7287 return get_errno(ftruncate64(arg1
, target_offset64(arg2
, arg3
)));
7291 #if defined(TARGET_NR_timer_settime) || \
7292 (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
7293 static inline abi_long
target_to_host_itimerspec(struct itimerspec
*host_its
,
7294 abi_ulong target_addr
)
7296 if (target_to_host_timespec(&host_its
->it_interval
, target_addr
+
7297 offsetof(struct target_itimerspec
,
7299 target_to_host_timespec(&host_its
->it_value
, target_addr
+
7300 offsetof(struct target_itimerspec
,
7302 return -TARGET_EFAULT
;
7309 #if defined(TARGET_NR_timer_settime64) || \
7310 (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD))
7311 static inline abi_long
target_to_host_itimerspec64(struct itimerspec
*host_its
,
7312 abi_ulong target_addr
)
7314 if (target_to_host_timespec64(&host_its
->it_interval
, target_addr
+
7315 offsetof(struct target__kernel_itimerspec
,
7317 target_to_host_timespec64(&host_its
->it_value
, target_addr
+
7318 offsetof(struct target__kernel_itimerspec
,
7320 return -TARGET_EFAULT
;
7327 #if ((defined(TARGET_NR_timerfd_gettime) || \
7328 defined(TARGET_NR_timerfd_settime)) && defined(CONFIG_TIMERFD)) || \
7329 defined(TARGET_NR_timer_gettime) || defined(TARGET_NR_timer_settime)
7330 static inline abi_long
host_to_target_itimerspec(abi_ulong target_addr
,
7331 struct itimerspec
*host_its
)
7333 if (host_to_target_timespec(target_addr
+ offsetof(struct target_itimerspec
,
7335 &host_its
->it_interval
) ||
7336 host_to_target_timespec(target_addr
+ offsetof(struct target_itimerspec
,
7338 &host_its
->it_value
)) {
7339 return -TARGET_EFAULT
;
7345 #if ((defined(TARGET_NR_timerfd_gettime64) || \
7346 defined(TARGET_NR_timerfd_settime64)) && defined(CONFIG_TIMERFD)) || \
7347 defined(TARGET_NR_timer_gettime64) || defined(TARGET_NR_timer_settime64)
7348 static inline abi_long
host_to_target_itimerspec64(abi_ulong target_addr
,
7349 struct itimerspec
*host_its
)
7351 if (host_to_target_timespec64(target_addr
+
7352 offsetof(struct target__kernel_itimerspec
,
7354 &host_its
->it_interval
) ||
7355 host_to_target_timespec64(target_addr
+
7356 offsetof(struct target__kernel_itimerspec
,
7358 &host_its
->it_value
)) {
7359 return -TARGET_EFAULT
;
7365 #if defined(TARGET_NR_adjtimex) || \
7366 (defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME))
7367 static inline abi_long
target_to_host_timex(struct timex
*host_tx
,
7368 abi_long target_addr
)
7370 struct target_timex
*target_tx
;
7372 if (!lock_user_struct(VERIFY_READ
, target_tx
, target_addr
, 1)) {
7373 return -TARGET_EFAULT
;
7376 __get_user(host_tx
->modes
, &target_tx
->modes
);
7377 __get_user(host_tx
->offset
, &target_tx
->offset
);
7378 __get_user(host_tx
->freq
, &target_tx
->freq
);
7379 __get_user(host_tx
->maxerror
, &target_tx
->maxerror
);
7380 __get_user(host_tx
->esterror
, &target_tx
->esterror
);
7381 __get_user(host_tx
->status
, &target_tx
->status
);
7382 __get_user(host_tx
->constant
, &target_tx
->constant
);
7383 __get_user(host_tx
->precision
, &target_tx
->precision
);
7384 __get_user(host_tx
->tolerance
, &target_tx
->tolerance
);
7385 __get_user(host_tx
->time
.tv_sec
, &target_tx
->time
.tv_sec
);
7386 __get_user(host_tx
->time
.tv_usec
, &target_tx
->time
.tv_usec
);
7387 __get_user(host_tx
->tick
, &target_tx
->tick
);
7388 __get_user(host_tx
->ppsfreq
, &target_tx
->ppsfreq
);
7389 __get_user(host_tx
->jitter
, &target_tx
->jitter
);
7390 __get_user(host_tx
->shift
, &target_tx
->shift
);
7391 __get_user(host_tx
->stabil
, &target_tx
->stabil
);
7392 __get_user(host_tx
->jitcnt
, &target_tx
->jitcnt
);
7393 __get_user(host_tx
->calcnt
, &target_tx
->calcnt
);
7394 __get_user(host_tx
->errcnt
, &target_tx
->errcnt
);
7395 __get_user(host_tx
->stbcnt
, &target_tx
->stbcnt
);
7396 __get_user(host_tx
->tai
, &target_tx
->tai
);
7398 unlock_user_struct(target_tx
, target_addr
, 0);
7402 static inline abi_long
host_to_target_timex(abi_long target_addr
,
7403 struct timex
*host_tx
)
7405 struct target_timex
*target_tx
;
7407 if (!lock_user_struct(VERIFY_WRITE
, target_tx
, target_addr
, 0)) {
7408 return -TARGET_EFAULT
;
7411 __put_user(host_tx
->modes
, &target_tx
->modes
);
7412 __put_user(host_tx
->offset
, &target_tx
->offset
);
7413 __put_user(host_tx
->freq
, &target_tx
->freq
);
7414 __put_user(host_tx
->maxerror
, &target_tx
->maxerror
);
7415 __put_user(host_tx
->esterror
, &target_tx
->esterror
);
7416 __put_user(host_tx
->status
, &target_tx
->status
);
7417 __put_user(host_tx
->constant
, &target_tx
->constant
);
7418 __put_user(host_tx
->precision
, &target_tx
->precision
);
7419 __put_user(host_tx
->tolerance
, &target_tx
->tolerance
);
7420 __put_user(host_tx
->time
.tv_sec
, &target_tx
->time
.tv_sec
);
7421 __put_user(host_tx
->time
.tv_usec
, &target_tx
->time
.tv_usec
);
7422 __put_user(host_tx
->tick
, &target_tx
->tick
);
7423 __put_user(host_tx
->ppsfreq
, &target_tx
->ppsfreq
);
7424 __put_user(host_tx
->jitter
, &target_tx
->jitter
);
7425 __put_user(host_tx
->shift
, &target_tx
->shift
);
7426 __put_user(host_tx
->stabil
, &target_tx
->stabil
);
7427 __put_user(host_tx
->jitcnt
, &target_tx
->jitcnt
);
7428 __put_user(host_tx
->calcnt
, &target_tx
->calcnt
);
7429 __put_user(host_tx
->errcnt
, &target_tx
->errcnt
);
7430 __put_user(host_tx
->stbcnt
, &target_tx
->stbcnt
);
7431 __put_user(host_tx
->tai
, &target_tx
->tai
);
7433 unlock_user_struct(target_tx
, target_addr
, 1);
7439 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
7440 static inline abi_long
target_to_host_timex64(struct timex
*host_tx
,
7441 abi_long target_addr
)
7443 struct target__kernel_timex
*target_tx
;
7445 if (copy_from_user_timeval64(&host_tx
->time
, target_addr
+
7446 offsetof(struct target__kernel_timex
,
7448 return -TARGET_EFAULT
;
7451 if (!lock_user_struct(VERIFY_READ
, target_tx
, target_addr
, 1)) {
7452 return -TARGET_EFAULT
;
7455 __get_user(host_tx
->modes
, &target_tx
->modes
);
7456 __get_user(host_tx
->offset
, &target_tx
->offset
);
7457 __get_user(host_tx
->freq
, &target_tx
->freq
);
7458 __get_user(host_tx
->maxerror
, &target_tx
->maxerror
);
7459 __get_user(host_tx
->esterror
, &target_tx
->esterror
);
7460 __get_user(host_tx
->status
, &target_tx
->status
);
7461 __get_user(host_tx
->constant
, &target_tx
->constant
);
7462 __get_user(host_tx
->precision
, &target_tx
->precision
);
7463 __get_user(host_tx
->tolerance
, &target_tx
->tolerance
);
7464 __get_user(host_tx
->tick
, &target_tx
->tick
);
7465 __get_user(host_tx
->ppsfreq
, &target_tx
->ppsfreq
);
7466 __get_user(host_tx
->jitter
, &target_tx
->jitter
);
7467 __get_user(host_tx
->shift
, &target_tx
->shift
);
7468 __get_user(host_tx
->stabil
, &target_tx
->stabil
);
7469 __get_user(host_tx
->jitcnt
, &target_tx
->jitcnt
);
7470 __get_user(host_tx
->calcnt
, &target_tx
->calcnt
);
7471 __get_user(host_tx
->errcnt
, &target_tx
->errcnt
);
7472 __get_user(host_tx
->stbcnt
, &target_tx
->stbcnt
);
7473 __get_user(host_tx
->tai
, &target_tx
->tai
);
7475 unlock_user_struct(target_tx
, target_addr
, 0);
7479 static inline abi_long
host_to_target_timex64(abi_long target_addr
,
7480 struct timex
*host_tx
)
7482 struct target__kernel_timex
*target_tx
;
7484 if (copy_to_user_timeval64(target_addr
+
7485 offsetof(struct target__kernel_timex
, time
),
7487 return -TARGET_EFAULT
;
7490 if (!lock_user_struct(VERIFY_WRITE
, target_tx
, target_addr
, 0)) {
7491 return -TARGET_EFAULT
;
7494 __put_user(host_tx
->modes
, &target_tx
->modes
);
7495 __put_user(host_tx
->offset
, &target_tx
->offset
);
7496 __put_user(host_tx
->freq
, &target_tx
->freq
);
7497 __put_user(host_tx
->maxerror
, &target_tx
->maxerror
);
7498 __put_user(host_tx
->esterror
, &target_tx
->esterror
);
7499 __put_user(host_tx
->status
, &target_tx
->status
);
7500 __put_user(host_tx
->constant
, &target_tx
->constant
);
7501 __put_user(host_tx
->precision
, &target_tx
->precision
);
7502 __put_user(host_tx
->tolerance
, &target_tx
->tolerance
);
7503 __put_user(host_tx
->tick
, &target_tx
->tick
);
7504 __put_user(host_tx
->ppsfreq
, &target_tx
->ppsfreq
);
7505 __put_user(host_tx
->jitter
, &target_tx
->jitter
);
7506 __put_user(host_tx
->shift
, &target_tx
->shift
);
7507 __put_user(host_tx
->stabil
, &target_tx
->stabil
);
7508 __put_user(host_tx
->jitcnt
, &target_tx
->jitcnt
);
7509 __put_user(host_tx
->calcnt
, &target_tx
->calcnt
);
7510 __put_user(host_tx
->errcnt
, &target_tx
->errcnt
);
7511 __put_user(host_tx
->stbcnt
, &target_tx
->stbcnt
);
7512 __put_user(host_tx
->tai
, &target_tx
->tai
);
7514 unlock_user_struct(target_tx
, target_addr
, 1);
7519 #ifndef HAVE_SIGEV_NOTIFY_THREAD_ID
7520 #define sigev_notify_thread_id _sigev_un._tid
7523 static inline abi_long
target_to_host_sigevent(struct sigevent
*host_sevp
,
7524 abi_ulong target_addr
)
7526 struct target_sigevent
*target_sevp
;
7528 if (!lock_user_struct(VERIFY_READ
, target_sevp
, target_addr
, 1)) {
7529 return -TARGET_EFAULT
;
7532 /* This union is awkward on 64 bit systems because it has a 32 bit
7533 * integer and a pointer in it; we follow the conversion approach
7534 * used for handling sigval types in signal.c so the guest should get
7535 * the correct value back even if we did a 64 bit byteswap and it's
7536 * using the 32 bit integer.
7538 host_sevp
->sigev_value
.sival_ptr
=
7539 (void *)(uintptr_t)tswapal(target_sevp
->sigev_value
.sival_ptr
);
7540 host_sevp
->sigev_signo
=
7541 target_to_host_signal(tswap32(target_sevp
->sigev_signo
));
7542 host_sevp
->sigev_notify
= tswap32(target_sevp
->sigev_notify
);
7543 host_sevp
->sigev_notify_thread_id
= tswap32(target_sevp
->_sigev_un
._tid
);
7545 unlock_user_struct(target_sevp
, target_addr
, 1);
7549 #if defined(TARGET_NR_mlockall)
7550 static inline int target_to_host_mlockall_arg(int arg
)
7554 if (arg
& TARGET_MCL_CURRENT
) {
7555 result
|= MCL_CURRENT
;
7557 if (arg
& TARGET_MCL_FUTURE
) {
7558 result
|= MCL_FUTURE
;
7561 if (arg
& TARGET_MCL_ONFAULT
) {
7562 result
|= MCL_ONFAULT
;
7570 static inline int target_to_host_msync_arg(abi_long arg
)
7572 return ((arg
& TARGET_MS_ASYNC
) ? MS_ASYNC
: 0) |
7573 ((arg
& TARGET_MS_INVALIDATE
) ? MS_INVALIDATE
: 0) |
7574 ((arg
& TARGET_MS_SYNC
) ? MS_SYNC
: 0) |
7575 (arg
& ~(TARGET_MS_ASYNC
| TARGET_MS_INVALIDATE
| TARGET_MS_SYNC
));
7578 #if (defined(TARGET_NR_stat64) || defined(TARGET_NR_lstat64) || \
7579 defined(TARGET_NR_fstat64) || defined(TARGET_NR_fstatat64) || \
7580 defined(TARGET_NR_newfstatat))
7581 static inline abi_long
host_to_target_stat64(CPUArchState
*cpu_env
,
7582 abi_ulong target_addr
,
7583 struct stat
*host_st
)
7585 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
7586 if (cpu_env
->eabi
) {
7587 struct target_eabi_stat64
*target_st
;
7589 if (!lock_user_struct(VERIFY_WRITE
, target_st
, target_addr
, 0))
7590 return -TARGET_EFAULT
;
7591 memset(target_st
, 0, sizeof(struct target_eabi_stat64
));
7592 __put_user(host_st
->st_dev
, &target_st
->st_dev
);
7593 __put_user(host_st
->st_ino
, &target_st
->st_ino
);
7594 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7595 __put_user(host_st
->st_ino
, &target_st
->__st_ino
);
7597 __put_user(host_st
->st_mode
, &target_st
->st_mode
);
7598 __put_user(host_st
->st_nlink
, &target_st
->st_nlink
);
7599 __put_user(host_st
->st_uid
, &target_st
->st_uid
);
7600 __put_user(host_st
->st_gid
, &target_st
->st_gid
);
7601 __put_user(host_st
->st_rdev
, &target_st
->st_rdev
);
7602 __put_user(host_st
->st_size
, &target_st
->st_size
);
7603 __put_user(host_st
->st_blksize
, &target_st
->st_blksize
);
7604 __put_user(host_st
->st_blocks
, &target_st
->st_blocks
);
7605 __put_user(host_st
->st_atime
, &target_st
->target_st_atime
);
7606 __put_user(host_st
->st_mtime
, &target_st
->target_st_mtime
);
7607 __put_user(host_st
->st_ctime
, &target_st
->target_st_ctime
);
7608 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7609 __put_user(host_st
->st_atim
.tv_nsec
, &target_st
->target_st_atime_nsec
);
7610 __put_user(host_st
->st_mtim
.tv_nsec
, &target_st
->target_st_mtime_nsec
);
7611 __put_user(host_st
->st_ctim
.tv_nsec
, &target_st
->target_st_ctime_nsec
);
7613 unlock_user_struct(target_st
, target_addr
, 1);
7617 #if defined(TARGET_HAS_STRUCT_STAT64)
7618 struct target_stat64
*target_st
;
7620 struct target_stat
*target_st
;
7623 if (!lock_user_struct(VERIFY_WRITE
, target_st
, target_addr
, 0))
7624 return -TARGET_EFAULT
;
7625 memset(target_st
, 0, sizeof(*target_st
));
7626 __put_user(host_st
->st_dev
, &target_st
->st_dev
);
7627 __put_user(host_st
->st_ino
, &target_st
->st_ino
);
7628 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7629 __put_user(host_st
->st_ino
, &target_st
->__st_ino
);
7631 __put_user(host_st
->st_mode
, &target_st
->st_mode
);
7632 __put_user(host_st
->st_nlink
, &target_st
->st_nlink
);
7633 __put_user(host_st
->st_uid
, &target_st
->st_uid
);
7634 __put_user(host_st
->st_gid
, &target_st
->st_gid
);
7635 __put_user(host_st
->st_rdev
, &target_st
->st_rdev
);
7636 /* XXX: better use of kernel struct */
7637 __put_user(host_st
->st_size
, &target_st
->st_size
);
7638 __put_user(host_st
->st_blksize
, &target_st
->st_blksize
);
7639 __put_user(host_st
->st_blocks
, &target_st
->st_blocks
);
7640 __put_user(host_st
->st_atime
, &target_st
->target_st_atime
);
7641 __put_user(host_st
->st_mtime
, &target_st
->target_st_mtime
);
7642 __put_user(host_st
->st_ctime
, &target_st
->target_st_ctime
);
7643 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7644 __put_user(host_st
->st_atim
.tv_nsec
, &target_st
->target_st_atime_nsec
);
7645 __put_user(host_st
->st_mtim
.tv_nsec
, &target_st
->target_st_mtime_nsec
);
7646 __put_user(host_st
->st_ctim
.tv_nsec
, &target_st
->target_st_ctime_nsec
);
7648 unlock_user_struct(target_st
, target_addr
, 1);
7655 #if defined(TARGET_NR_statx) && defined(__NR_statx)
7656 static inline abi_long
host_to_target_statx(struct target_statx
*host_stx
,
7657 abi_ulong target_addr
)
7659 struct target_statx
*target_stx
;
7661 if (!lock_user_struct(VERIFY_WRITE
, target_stx
, target_addr
, 0)) {
7662 return -TARGET_EFAULT
;
7664 memset(target_stx
, 0, sizeof(*target_stx
));
7666 __put_user(host_stx
->stx_mask
, &target_stx
->stx_mask
);
7667 __put_user(host_stx
->stx_blksize
, &target_stx
->stx_blksize
);
7668 __put_user(host_stx
->stx_attributes
, &target_stx
->stx_attributes
);
7669 __put_user(host_stx
->stx_nlink
, &target_stx
->stx_nlink
);
7670 __put_user(host_stx
->stx_uid
, &target_stx
->stx_uid
);
7671 __put_user(host_stx
->stx_gid
, &target_stx
->stx_gid
);
7672 __put_user(host_stx
->stx_mode
, &target_stx
->stx_mode
);
7673 __put_user(host_stx
->stx_ino
, &target_stx
->stx_ino
);
7674 __put_user(host_stx
->stx_size
, &target_stx
->stx_size
);
7675 __put_user(host_stx
->stx_blocks
, &target_stx
->stx_blocks
);
7676 __put_user(host_stx
->stx_attributes_mask
, &target_stx
->stx_attributes_mask
);
7677 __put_user(host_stx
->stx_atime
.tv_sec
, &target_stx
->stx_atime
.tv_sec
);
7678 __put_user(host_stx
->stx_atime
.tv_nsec
, &target_stx
->stx_atime
.tv_nsec
);
7679 __put_user(host_stx
->stx_btime
.tv_sec
, &target_stx
->stx_btime
.tv_sec
);
7680 __put_user(host_stx
->stx_btime
.tv_nsec
, &target_stx
->stx_btime
.tv_nsec
);
7681 __put_user(host_stx
->stx_ctime
.tv_sec
, &target_stx
->stx_ctime
.tv_sec
);
7682 __put_user(host_stx
->stx_ctime
.tv_nsec
, &target_stx
->stx_ctime
.tv_nsec
);
7683 __put_user(host_stx
->stx_mtime
.tv_sec
, &target_stx
->stx_mtime
.tv_sec
);
7684 __put_user(host_stx
->stx_mtime
.tv_nsec
, &target_stx
->stx_mtime
.tv_nsec
);
7685 __put_user(host_stx
->stx_rdev_major
, &target_stx
->stx_rdev_major
);
7686 __put_user(host_stx
->stx_rdev_minor
, &target_stx
->stx_rdev_minor
);
7687 __put_user(host_stx
->stx_dev_major
, &target_stx
->stx_dev_major
);
7688 __put_user(host_stx
->stx_dev_minor
, &target_stx
->stx_dev_minor
);
7690 unlock_user_struct(target_stx
, target_addr
, 1);
7696 static int do_sys_futex(int *uaddr
, int op
, int val
,
7697 const struct timespec
*timeout
, int *uaddr2
,
7700 #if HOST_LONG_BITS == 64
7701 #if defined(__NR_futex)
7702 /* always a 64-bit time_t, it doesn't define _time64 version */
7703 return sys_futex(uaddr
, op
, val
, timeout
, uaddr2
, val3
);
7706 #else /* HOST_LONG_BITS == 64 */
7707 #if defined(__NR_futex_time64)
7708 if (sizeof(timeout
->tv_sec
) == 8) {
7709 /* _time64 function on 32bit arch */
7710 return sys_futex_time64(uaddr
, op
, val
, timeout
, uaddr2
, val3
);
7713 #if defined(__NR_futex)
7714 /* old function on 32bit arch */
7715 return sys_futex(uaddr
, op
, val
, timeout
, uaddr2
, val3
);
7717 #endif /* HOST_LONG_BITS == 64 */
7718 g_assert_not_reached();
7721 static int do_safe_futex(int *uaddr
, int op
, int val
,
7722 const struct timespec
*timeout
, int *uaddr2
,
7725 #if HOST_LONG_BITS == 64
7726 #if defined(__NR_futex)
7727 /* always a 64-bit time_t, it doesn't define _time64 version */
7728 return get_errno(safe_futex(uaddr
, op
, val
, timeout
, uaddr2
, val3
));
7730 #else /* HOST_LONG_BITS == 64 */
7731 #if defined(__NR_futex_time64)
7732 if (sizeof(timeout
->tv_sec
) == 8) {
7733 /* _time64 function on 32bit arch */
7734 return get_errno(safe_futex_time64(uaddr
, op
, val
, timeout
, uaddr2
,
7738 #if defined(__NR_futex)
7739 /* old function on 32bit arch */
7740 return get_errno(safe_futex(uaddr
, op
, val
, timeout
, uaddr2
, val3
));
7742 #endif /* HOST_LONG_BITS == 64 */
7743 return -TARGET_ENOSYS
;
7746 /* ??? Using host futex calls even when target atomic operations
7747 are not really atomic probably breaks things. However implementing
7748 futexes locally would make futexes shared between multiple processes
7749 tricky. However they're probably useless because guest atomic
7750 operations won't work either. */
7751 #if defined(TARGET_NR_futex) || defined(TARGET_NR_futex_time64)
7752 static int do_futex(CPUState
*cpu
, bool time64
, target_ulong uaddr
,
7753 int op
, int val
, target_ulong timeout
,
7754 target_ulong uaddr2
, int val3
)
7756 struct timespec ts
, *pts
= NULL
;
7757 void *haddr2
= NULL
;
7760 /* We assume FUTEX_* constants are the same on both host and target. */
7761 #ifdef FUTEX_CMD_MASK
7762 base_op
= op
& FUTEX_CMD_MASK
;
7768 case FUTEX_WAIT_BITSET
:
7771 case FUTEX_WAIT_REQUEUE_PI
:
7773 haddr2
= g2h(cpu
, uaddr2
);
7776 case FUTEX_LOCK_PI2
:
7779 case FUTEX_WAKE_BITSET
:
7780 case FUTEX_TRYLOCK_PI
:
7781 case FUTEX_UNLOCK_PI
:
7785 val
= target_to_host_signal(val
);
7788 case FUTEX_CMP_REQUEUE
:
7789 case FUTEX_CMP_REQUEUE_PI
:
7790 val3
= tswap32(val3
);
7795 * For these, the 4th argument is not TIMEOUT, but VAL2.
7796 * But the prototype of do_safe_futex takes a pointer, so
7797 * insert casts to satisfy the compiler. We do not need
7798 * to tswap VAL2 since it's not compared to guest memory.
7800 pts
= (struct timespec
*)(uintptr_t)timeout
;
7802 haddr2
= g2h(cpu
, uaddr2
);
7805 return -TARGET_ENOSYS
;
7810 ? target_to_host_timespec64(pts
, timeout
)
7811 : target_to_host_timespec(pts
, timeout
)) {
7812 return -TARGET_EFAULT
;
7815 return do_safe_futex(g2h(cpu
, uaddr
), op
, val
, pts
, haddr2
, val3
);
7819 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7820 static abi_long
do_name_to_handle_at(abi_long dirfd
, abi_long pathname
,
7821 abi_long handle
, abi_long mount_id
,
7824 struct file_handle
*target_fh
;
7825 struct file_handle
*fh
;
7829 unsigned int size
, total_size
;
7831 if (get_user_s32(size
, handle
)) {
7832 return -TARGET_EFAULT
;
7835 name
= lock_user_string(pathname
);
7837 return -TARGET_EFAULT
;
7840 total_size
= sizeof(struct file_handle
) + size
;
7841 target_fh
= lock_user(VERIFY_WRITE
, handle
, total_size
, 0);
7843 unlock_user(name
, pathname
, 0);
7844 return -TARGET_EFAULT
;
7847 fh
= g_malloc0(total_size
);
7848 fh
->handle_bytes
= size
;
7850 ret
= get_errno(name_to_handle_at(dirfd
, path(name
), fh
, &mid
, flags
));
7851 unlock_user(name
, pathname
, 0);
7853 /* man name_to_handle_at(2):
7854 * Other than the use of the handle_bytes field, the caller should treat
7855 * the file_handle structure as an opaque data type
7858 memcpy(target_fh
, fh
, total_size
);
7859 target_fh
->handle_bytes
= tswap32(fh
->handle_bytes
);
7860 target_fh
->handle_type
= tswap32(fh
->handle_type
);
7862 unlock_user(target_fh
, handle
, total_size
);
7864 if (put_user_s32(mid
, mount_id
)) {
7865 return -TARGET_EFAULT
;
7873 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7874 static abi_long
do_open_by_handle_at(abi_long mount_fd
, abi_long handle
,
7877 struct file_handle
*target_fh
;
7878 struct file_handle
*fh
;
7879 unsigned int size
, total_size
;
7882 if (get_user_s32(size
, handle
)) {
7883 return -TARGET_EFAULT
;
7886 total_size
= sizeof(struct file_handle
) + size
;
7887 target_fh
= lock_user(VERIFY_READ
, handle
, total_size
, 1);
7889 return -TARGET_EFAULT
;
7892 fh
= g_memdup(target_fh
, total_size
);
7893 fh
->handle_bytes
= size
;
7894 fh
->handle_type
= tswap32(target_fh
->handle_type
);
7896 ret
= get_errno(open_by_handle_at(mount_fd
, fh
,
7897 target_to_host_bitmask(flags
, fcntl_flags_tbl
)));
7901 unlock_user(target_fh
, handle
, total_size
);
7907 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4)
7909 static abi_long
do_signalfd4(int fd
, abi_long mask
, int flags
)
7912 target_sigset_t
*target_mask
;
7916 if (flags
& ~(TARGET_O_NONBLOCK_MASK
| TARGET_O_CLOEXEC
)) {
7917 return -TARGET_EINVAL
;
7919 if (!lock_user_struct(VERIFY_READ
, target_mask
, mask
, 1)) {
7920 return -TARGET_EFAULT
;
7923 target_to_host_sigset(&host_mask
, target_mask
);
7925 host_flags
= target_to_host_bitmask(flags
, fcntl_flags_tbl
);
7927 ret
= get_errno(signalfd(fd
, &host_mask
, host_flags
));
7929 fd_trans_register(ret
, &target_signalfd_trans
);
7932 unlock_user_struct(target_mask
, mask
, 0);
7938 /* Map host to target signal numbers for the wait family of syscalls.
7939 Assume all other status bits are the same. */
7940 int host_to_target_waitstatus(int status
)
7942 if (WIFSIGNALED(status
)) {
7943 return host_to_target_signal(WTERMSIG(status
)) | (status
& ~0x7f);
7945 if (WIFSTOPPED(status
)) {
7946 return (host_to_target_signal(WSTOPSIG(status
)) << 8)
7952 static int open_self_cmdline(CPUArchState
*cpu_env
, int fd
)
7954 CPUState
*cpu
= env_cpu(cpu_env
);
7955 struct linux_binprm
*bprm
= get_task_state(cpu
)->bprm
;
7958 for (i
= 0; i
< bprm
->argc
; i
++) {
7959 size_t len
= strlen(bprm
->argv
[i
]) + 1;
7961 if (write(fd
, bprm
->argv
[i
], len
) != len
) {
7969 struct open_self_maps_data
{
7971 IntervalTreeRoot
*host_maps
;
7977 * Subroutine to output one line of /proc/self/maps,
7978 * or one region of /proc/self/smaps.
7982 # define test_stack(S, E, L) (E == L)
7984 # define test_stack(S, E, L) (S == L)
7987 static void open_self_maps_4(const struct open_self_maps_data
*d
,
7988 const MapInfo
*mi
, abi_ptr start
,
7989 abi_ptr end
, unsigned flags
)
7991 const struct image_info
*info
= d
->ts
->info
;
7992 const char *path
= mi
->path
;
7997 if (test_stack(start
, end
, info
->stack_limit
)) {
7999 } else if (start
== info
->brk
) {
8001 } else if (start
== info
->vdso
) {
8003 #ifdef TARGET_X86_64
8004 } else if (start
== TARGET_VSYSCALL_PAGE
) {
8005 path
= "[vsyscall]";
8009 /* Except null device (MAP_ANON), adjust offset for this fragment. */
8010 offset
= mi
->offset
;
8012 uintptr_t hstart
= (uintptr_t)g2h_untagged(start
);
8013 offset
+= hstart
- mi
->itree
.start
;
8016 count
= dprintf(fd
, TARGET_ABI_FMT_ptr
"-" TARGET_ABI_FMT_ptr
8017 " %c%c%c%c %08" PRIx64
" %02x:%02x %"PRId64
,
8019 (flags
& PAGE_READ
) ? 'r' : '-',
8020 (flags
& PAGE_WRITE_ORG
) ? 'w' : '-',
8021 (flags
& PAGE_EXEC
) ? 'x' : '-',
8022 mi
->is_priv
? 'p' : 's',
8023 offset
, major(mi
->dev
), minor(mi
->dev
),
8024 (uint64_t)mi
->inode
);
8026 dprintf(fd
, "%*s%s\n", 73 - count
, "", path
);
8032 unsigned long size
= end
- start
;
8033 unsigned long page_size_kb
= TARGET_PAGE_SIZE
>> 10;
8034 unsigned long size_kb
= size
>> 10;
8036 dprintf(fd
, "Size: %lu kB\n"
8037 "KernelPageSize: %lu kB\n"
8038 "MMUPageSize: %lu kB\n"
8042 "Shared_Clean: 0 kB\n"
8043 "Shared_Dirty: 0 kB\n"
8044 "Private_Clean: 0 kB\n"
8045 "Private_Dirty: 0 kB\n"
8046 "Referenced: 0 kB\n"
8047 "Anonymous: %lu kB\n"
8049 "AnonHugePages: 0 kB\n"
8050 "ShmemPmdMapped: 0 kB\n"
8051 "FilePmdMapped: 0 kB\n"
8052 "Shared_Hugetlb: 0 kB\n"
8053 "Private_Hugetlb: 0 kB\n"
8058 "VmFlags:%s%s%s%s%s%s%s%s\n",
8059 size_kb
, page_size_kb
, page_size_kb
,
8060 (flags
& PAGE_ANON
? size_kb
: 0),
8061 (flags
& PAGE_READ
) ? " rd" : "",
8062 (flags
& PAGE_WRITE_ORG
) ? " wr" : "",
8063 (flags
& PAGE_EXEC
) ? " ex" : "",
8064 mi
->is_priv
? "" : " sh",
8065 (flags
& PAGE_READ
) ? " mr" : "",
8066 (flags
& PAGE_WRITE_ORG
) ? " mw" : "",
8067 (flags
& PAGE_EXEC
) ? " me" : "",
8068 mi
->is_priv
? "" : " ms");
8073 * Callback for walk_memory_regions, when read_self_maps() fails.
8074 * Proceed without the benefit of host /proc/self/maps cross-check.
8076 static int open_self_maps_3(void *opaque
, target_ulong guest_start
,
8077 target_ulong guest_end
, unsigned long flags
)
8079 static const MapInfo mi
= { .is_priv
= true };
8081 open_self_maps_4(opaque
, &mi
, guest_start
, guest_end
, flags
);
8086 * Callback for walk_memory_regions, when read_self_maps() succeeds.
8088 static int open_self_maps_2(void *opaque
, target_ulong guest_start
,
8089 target_ulong guest_end
, unsigned long flags
)
8091 const struct open_self_maps_data
*d
= opaque
;
8092 uintptr_t host_start
= (uintptr_t)g2h_untagged(guest_start
);
8093 uintptr_t host_last
= (uintptr_t)g2h_untagged(guest_end
- 1);
8095 #ifdef TARGET_X86_64
8097 * Because of the extremely high position of the page within the guest
8098 * virtual address space, this is not backed by host memory at all.
8099 * Therefore the loop below would fail. This is the only instance
8100 * of not having host backing memory.
8102 if (guest_start
== TARGET_VSYSCALL_PAGE
) {
8103 return open_self_maps_3(opaque
, guest_start
, guest_end
, flags
);
8108 IntervalTreeNode
*n
=
8109 interval_tree_iter_first(d
->host_maps
, host_start
, host_start
);
8110 MapInfo
*mi
= container_of(n
, MapInfo
, itree
);
8111 uintptr_t this_hlast
= MIN(host_last
, n
->last
);
8112 target_ulong this_gend
= h2g(this_hlast
) + 1;
8114 open_self_maps_4(d
, mi
, guest_start
, this_gend
, flags
);
8116 if (this_hlast
== host_last
) {
8119 host_start
= this_hlast
+ 1;
8120 guest_start
= h2g(host_start
);
8124 static int open_self_maps_1(CPUArchState
*env
, int fd
, bool smaps
)
8126 struct open_self_maps_data d
= {
8127 .ts
= get_task_state(env_cpu(env
)),
8128 .host_maps
= read_self_maps(),
8134 walk_memory_regions(&d
, open_self_maps_2
);
8135 free_self_maps(d
.host_maps
);
8137 walk_memory_regions(&d
, open_self_maps_3
);
8142 static int open_self_maps(CPUArchState
*cpu_env
, int fd
)
8144 return open_self_maps_1(cpu_env
, fd
, false);
8147 static int open_self_smaps(CPUArchState
*cpu_env
, int fd
)
8149 return open_self_maps_1(cpu_env
, fd
, true);
8152 static int open_self_stat(CPUArchState
*cpu_env
, int fd
)
8154 CPUState
*cpu
= env_cpu(cpu_env
);
8155 TaskState
*ts
= get_task_state(cpu
);
8156 g_autoptr(GString
) buf
= g_string_new(NULL
);
8159 for (i
= 0; i
< 44; i
++) {
8162 g_string_printf(buf
, FMT_pid
" ", getpid());
8163 } else if (i
== 1) {
8165 gchar
*bin
= g_strrstr(ts
->bprm
->argv
[0], "/");
8166 bin
= bin
? bin
+ 1 : ts
->bprm
->argv
[0];
8167 g_string_printf(buf
, "(%.15s) ", bin
);
8168 } else if (i
== 2) {
8170 g_string_assign(buf
, "R "); /* we are running right now */
8171 } else if (i
== 3) {
8173 g_string_printf(buf
, FMT_pid
" ", getppid());
8174 } else if (i
== 21) {
8176 g_string_printf(buf
, "%" PRIu64
" ", ts
->start_boottime
);
8177 } else if (i
== 27) {
8179 g_string_printf(buf
, TARGET_ABI_FMT_ld
" ", ts
->info
->start_stack
);
8181 /* for the rest, there is MasterCard */
8182 g_string_printf(buf
, "0%c", i
== 43 ? '\n' : ' ');
8185 if (write(fd
, buf
->str
, buf
->len
) != buf
->len
) {
8193 static int open_self_auxv(CPUArchState
*cpu_env
, int fd
)
8195 CPUState
*cpu
= env_cpu(cpu_env
);
8196 TaskState
*ts
= get_task_state(cpu
);
8197 abi_ulong auxv
= ts
->info
->saved_auxv
;
8198 abi_ulong len
= ts
->info
->auxv_len
;
8202 * Auxiliary vector is stored in target process stack.
8203 * read in whole auxv vector and copy it to file
8205 ptr
= lock_user(VERIFY_READ
, auxv
, len
, 0);
8209 r
= write(fd
, ptr
, len
);
8216 lseek(fd
, 0, SEEK_SET
);
8217 unlock_user(ptr
, auxv
, len
);
8223 static int is_proc_myself(const char *filename
, const char *entry
)
8225 if (!strncmp(filename
, "/proc/", strlen("/proc/"))) {
8226 filename
+= strlen("/proc/");
8227 if (!strncmp(filename
, "self/", strlen("self/"))) {
8228 filename
+= strlen("self/");
8229 } else if (*filename
>= '1' && *filename
<= '9') {
8231 snprintf(myself
, sizeof(myself
), "%d/", getpid());
8232 if (!strncmp(filename
, myself
, strlen(myself
))) {
8233 filename
+= strlen(myself
);
8240 if (!strcmp(filename
, entry
)) {
8247 static void excp_dump_file(FILE *logfile
, CPUArchState
*env
,
8248 const char *fmt
, int code
)
8251 CPUState
*cs
= env_cpu(env
);
8253 fprintf(logfile
, fmt
, code
);
8254 fprintf(logfile
, "Failing executable: %s\n", exec_path
);
8255 cpu_dump_state(cs
, logfile
, 0);
8256 open_self_maps(env
, fileno(logfile
));
8260 void target_exception_dump(CPUArchState
*env
, const char *fmt
, int code
)
8262 /* dump to console */
8263 excp_dump_file(stderr
, env
, fmt
, code
);
8265 /* dump to log file */
8266 if (qemu_log_separate()) {
8267 FILE *logfile
= qemu_log_trylock();
8269 excp_dump_file(logfile
, env
, fmt
, code
);
8270 qemu_log_unlock(logfile
);
8274 #include "target_proc.h"
8276 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN || \
8277 defined(HAVE_ARCH_PROC_CPUINFO) || \
8278 defined(HAVE_ARCH_PROC_HARDWARE)
8279 static int is_proc(const char *filename
, const char *entry
)
8281 return strcmp(filename
, entry
) == 0;
8285 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
8286 static int open_net_route(CPUArchState
*cpu_env
, int fd
)
8293 fp
= fopen("/proc/net/route", "r");
8300 read
= getline(&line
, &len
, fp
);
8301 dprintf(fd
, "%s", line
);
8305 while ((read
= getline(&line
, &len
, fp
)) != -1) {
8307 uint32_t dest
, gw
, mask
;
8308 unsigned int flags
, refcnt
, use
, metric
, mtu
, window
, irtt
;
8311 fields
= sscanf(line
,
8312 "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8313 iface
, &dest
, &gw
, &flags
, &refcnt
, &use
, &metric
,
8314 &mask
, &mtu
, &window
, &irtt
);
8318 dprintf(fd
, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8319 iface
, tswap32(dest
), tswap32(gw
), flags
, refcnt
, use
,
8320 metric
, tswap32(mask
), mtu
, window
, irtt
);
8330 int do_guest_openat(CPUArchState
*cpu_env
, int dirfd
, const char *fname
,
8331 int flags
, mode_t mode
, bool safe
)
8333 g_autofree
char *proc_name
= NULL
;
8334 const char *pathname
;
8336 const char *filename
;
8337 int (*fill
)(CPUArchState
*cpu_env
, int fd
);
8338 int (*cmp
)(const char *s1
, const char *s2
);
8340 const struct fake_open
*fake_open
;
8341 static const struct fake_open fakes
[] = {
8342 { "maps", open_self_maps
, is_proc_myself
},
8343 { "smaps", open_self_smaps
, is_proc_myself
},
8344 { "stat", open_self_stat
, is_proc_myself
},
8345 { "auxv", open_self_auxv
, is_proc_myself
},
8346 { "cmdline", open_self_cmdline
, is_proc_myself
},
8347 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
8348 { "/proc/net/route", open_net_route
, is_proc
},
8350 #if defined(HAVE_ARCH_PROC_CPUINFO)
8351 { "/proc/cpuinfo", open_cpuinfo
, is_proc
},
8353 #if defined(HAVE_ARCH_PROC_HARDWARE)
8354 { "/proc/hardware", open_hardware
, is_proc
},
8356 { NULL
, NULL
, NULL
}
8359 /* if this is a file from /proc/ filesystem, expand full name */
8360 proc_name
= realpath(fname
, NULL
);
8361 if (proc_name
&& strncmp(proc_name
, "/proc/", 6) == 0) {
8362 pathname
= proc_name
;
8367 if (is_proc_myself(pathname
, "exe")) {
8369 return safe_openat(dirfd
, exec_path
, flags
, mode
);
8371 return openat(dirfd
, exec_path
, flags
, mode
);
8375 for (fake_open
= fakes
; fake_open
->filename
; fake_open
++) {
8376 if (fake_open
->cmp(pathname
, fake_open
->filename
)) {
8381 if (fake_open
->filename
) {
8383 char filename
[PATH_MAX
];
8386 fd
= memfd_create("qemu-open", 0);
8388 if (errno
!= ENOSYS
) {
8391 /* create temporary file to map stat to */
8392 tmpdir
= getenv("TMPDIR");
8395 snprintf(filename
, sizeof(filename
), "%s/qemu-open.XXXXXX", tmpdir
);
8396 fd
= mkstemp(filename
);
8403 if ((r
= fake_open
->fill(cpu_env
, fd
))) {
8409 lseek(fd
, 0, SEEK_SET
);
8415 return safe_openat(dirfd
, path(pathname
), flags
, mode
);
8417 return openat(dirfd
, path(pathname
), flags
, mode
);
8421 ssize_t
do_guest_readlink(const char *pathname
, char *buf
, size_t bufsiz
)
8425 if (!pathname
|| !buf
) {
8431 /* Short circuit this for the magic exe check. */
8436 if (is_proc_myself((const char *)pathname
, "exe")) {
8438 * Don't worry about sign mismatch as earlier mapping
8439 * logic would have thrown a bad address error.
8441 ret
= MIN(strlen(exec_path
), bufsiz
);
8442 /* We cannot NUL terminate the string. */
8443 memcpy(buf
, exec_path
, ret
);
8445 ret
= readlink(path(pathname
), buf
, bufsiz
);
8451 static int do_execv(CPUArchState
*cpu_env
, int dirfd
,
8452 abi_long pathname
, abi_long guest_argp
,
8453 abi_long guest_envp
, int flags
, bool is_execveat
)
8456 char **argp
, **envp
;
8465 for (gp
= guest_argp
; gp
; gp
+= sizeof(abi_ulong
)) {
8466 if (get_user_ual(addr
, gp
)) {
8467 return -TARGET_EFAULT
;
8475 for (gp
= guest_envp
; gp
; gp
+= sizeof(abi_ulong
)) {
8476 if (get_user_ual(addr
, gp
)) {
8477 return -TARGET_EFAULT
;
8485 argp
= g_new0(char *, argc
+ 1);
8486 envp
= g_new0(char *, envc
+ 1);
8488 for (gp
= guest_argp
, q
= argp
; gp
; gp
+= sizeof(abi_ulong
), q
++) {
8489 if (get_user_ual(addr
, gp
)) {
8495 *q
= lock_user_string(addr
);
8502 for (gp
= guest_envp
, q
= envp
; gp
; gp
+= sizeof(abi_ulong
), q
++) {
8503 if (get_user_ual(addr
, gp
)) {
8509 *q
= lock_user_string(addr
);
8517 * Although execve() is not an interruptible syscall it is
8518 * a special case where we must use the safe_syscall wrapper:
8519 * if we allow a signal to happen before we make the host
8520 * syscall then we will 'lose' it, because at the point of
8521 * execve the process leaves QEMU's control. So we use the
8522 * safe syscall wrapper to ensure that we either take the
8523 * signal as a guest signal, or else it does not happen
8524 * before the execve completes and makes it the other
8525 * program's problem.
8527 p
= lock_user_string(pathname
);
8532 const char *exe
= p
;
8533 if (is_proc_myself(p
, "exe")) {
8537 ? safe_execveat(dirfd
, exe
, argp
, envp
, flags
)
8538 : safe_execve(exe
, argp
, envp
);
8539 ret
= get_errno(ret
);
8541 unlock_user(p
, pathname
, 0);
8546 ret
= -TARGET_EFAULT
;
8549 for (gp
= guest_argp
, q
= argp
; *q
; gp
+= sizeof(abi_ulong
), q
++) {
8550 if (get_user_ual(addr
, gp
) || !addr
) {
8553 unlock_user(*q
, addr
, 0);
8555 for (gp
= guest_envp
, q
= envp
; *q
; gp
+= sizeof(abi_ulong
), q
++) {
8556 if (get_user_ual(addr
, gp
) || !addr
) {
8559 unlock_user(*q
, addr
, 0);
8567 #define TIMER_MAGIC 0x0caf0000
8568 #define TIMER_MAGIC_MASK 0xffff0000
8570 /* Convert QEMU provided timer ID back to internal 16bit index format */
8571 static target_timer_t
get_timer_id(abi_long arg
)
8573 target_timer_t timerid
= arg
;
8575 if ((timerid
& TIMER_MAGIC_MASK
) != TIMER_MAGIC
) {
8576 return -TARGET_EINVAL
;
8581 if (timerid
>= ARRAY_SIZE(g_posix_timers
)) {
8582 return -TARGET_EINVAL
;
8588 static int target_to_host_cpu_mask(unsigned long *host_mask
,
8590 abi_ulong target_addr
,
8593 unsigned target_bits
= sizeof(abi_ulong
) * 8;
8594 unsigned host_bits
= sizeof(*host_mask
) * 8;
8595 abi_ulong
*target_mask
;
8598 assert(host_size
>= target_size
);
8600 target_mask
= lock_user(VERIFY_READ
, target_addr
, target_size
, 1);
8602 return -TARGET_EFAULT
;
8604 memset(host_mask
, 0, host_size
);
8606 for (i
= 0 ; i
< target_size
/ sizeof(abi_ulong
); i
++) {
8607 unsigned bit
= i
* target_bits
;
8610 __get_user(val
, &target_mask
[i
]);
8611 for (j
= 0; j
< target_bits
; j
++, bit
++) {
8612 if (val
& (1UL << j
)) {
8613 host_mask
[bit
/ host_bits
] |= 1UL << (bit
% host_bits
);
8618 unlock_user(target_mask
, target_addr
, 0);
8622 static int host_to_target_cpu_mask(const unsigned long *host_mask
,
8624 abi_ulong target_addr
,
8627 unsigned target_bits
= sizeof(abi_ulong
) * 8;
8628 unsigned host_bits
= sizeof(*host_mask
) * 8;
8629 abi_ulong
*target_mask
;
8632 assert(host_size
>= target_size
);
8634 target_mask
= lock_user(VERIFY_WRITE
, target_addr
, target_size
, 0);
8636 return -TARGET_EFAULT
;
8639 for (i
= 0 ; i
< target_size
/ sizeof(abi_ulong
); i
++) {
8640 unsigned bit
= i
* target_bits
;
8643 for (j
= 0; j
< target_bits
; j
++, bit
++) {
8644 if (host_mask
[bit
/ host_bits
] & (1UL << (bit
% host_bits
))) {
8648 __put_user(val
, &target_mask
[i
]);
8651 unlock_user(target_mask
, target_addr
, target_size
);
8655 #ifdef TARGET_NR_getdents
8656 static int do_getdents(abi_long dirfd
, abi_long arg2
, abi_long count
)
8658 g_autofree
void *hdirp
= NULL
;
8660 int hlen
, hoff
, toff
;
8661 int hreclen
, treclen
;
8662 off64_t prev_diroff
= 0;
8664 hdirp
= g_try_malloc(count
);
8666 return -TARGET_ENOMEM
;
8669 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8670 hlen
= sys_getdents(dirfd
, hdirp
, count
);
8672 hlen
= sys_getdents64(dirfd
, hdirp
, count
);
8675 hlen
= get_errno(hlen
);
8676 if (is_error(hlen
)) {
8680 tdirp
= lock_user(VERIFY_WRITE
, arg2
, count
, 0);
8682 return -TARGET_EFAULT
;
8685 for (hoff
= toff
= 0; hoff
< hlen
; hoff
+= hreclen
, toff
+= treclen
) {
8686 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8687 struct linux_dirent
*hde
= hdirp
+ hoff
;
8689 struct linux_dirent64
*hde
= hdirp
+ hoff
;
8691 struct target_dirent
*tde
= tdirp
+ toff
;
8695 namelen
= strlen(hde
->d_name
);
8696 hreclen
= hde
->d_reclen
;
8697 treclen
= offsetof(struct target_dirent
, d_name
) + namelen
+ 2;
8698 treclen
= QEMU_ALIGN_UP(treclen
, __alignof(struct target_dirent
));
8700 if (toff
+ treclen
> count
) {
8702 * If the host struct is smaller than the target struct, or
8703 * requires less alignment and thus packs into less space,
8704 * then the host can return more entries than we can pass
8708 toff
= -TARGET_EINVAL
; /* result buffer is too small */
8712 * Return what we have, resetting the file pointer to the
8713 * location of the first record not returned.
8715 lseek64(dirfd
, prev_diroff
, SEEK_SET
);
8719 prev_diroff
= hde
->d_off
;
8720 tde
->d_ino
= tswapal(hde
->d_ino
);
8721 tde
->d_off
= tswapal(hde
->d_off
);
8722 tde
->d_reclen
= tswap16(treclen
);
8723 memcpy(tde
->d_name
, hde
->d_name
, namelen
+ 1);
8726 * The getdents type is in what was formerly a padding byte at the
8727 * end of the structure.
8729 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8730 type
= *((uint8_t *)hde
+ hreclen
- 1);
8734 *((uint8_t *)tde
+ treclen
- 1) = type
;
8737 unlock_user(tdirp
, arg2
, toff
);
8740 #endif /* TARGET_NR_getdents */
8742 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
8743 static int do_getdents64(abi_long dirfd
, abi_long arg2
, abi_long count
)
8745 g_autofree
void *hdirp
= NULL
;
8747 int hlen
, hoff
, toff
;
8748 int hreclen
, treclen
;
8749 off64_t prev_diroff
= 0;
8751 hdirp
= g_try_malloc(count
);
8753 return -TARGET_ENOMEM
;
8756 hlen
= get_errno(sys_getdents64(dirfd
, hdirp
, count
));
8757 if (is_error(hlen
)) {
8761 tdirp
= lock_user(VERIFY_WRITE
, arg2
, count
, 0);
8763 return -TARGET_EFAULT
;
8766 for (hoff
= toff
= 0; hoff
< hlen
; hoff
+= hreclen
, toff
+= treclen
) {
8767 struct linux_dirent64
*hde
= hdirp
+ hoff
;
8768 struct target_dirent64
*tde
= tdirp
+ toff
;
8771 namelen
= strlen(hde
->d_name
) + 1;
8772 hreclen
= hde
->d_reclen
;
8773 treclen
= offsetof(struct target_dirent64
, d_name
) + namelen
;
8774 treclen
= QEMU_ALIGN_UP(treclen
, __alignof(struct target_dirent64
));
8776 if (toff
+ treclen
> count
) {
8778 * If the host struct is smaller than the target struct, or
8779 * requires less alignment and thus packs into less space,
8780 * then the host can return more entries than we can pass
8784 toff
= -TARGET_EINVAL
; /* result buffer is too small */
8788 * Return what we have, resetting the file pointer to the
8789 * location of the first record not returned.
8791 lseek64(dirfd
, prev_diroff
, SEEK_SET
);
8795 prev_diroff
= hde
->d_off
;
8796 tde
->d_ino
= tswap64(hde
->d_ino
);
8797 tde
->d_off
= tswap64(hde
->d_off
);
8798 tde
->d_reclen
= tswap16(treclen
);
8799 tde
->d_type
= hde
->d_type
;
8800 memcpy(tde
->d_name
, hde
->d_name
, namelen
);
8803 unlock_user(tdirp
, arg2
, toff
);
8806 #endif /* TARGET_NR_getdents64 */
8808 #if defined(TARGET_NR_riscv_hwprobe)
8810 #define RISCV_HWPROBE_KEY_MVENDORID 0
8811 #define RISCV_HWPROBE_KEY_MARCHID 1
8812 #define RISCV_HWPROBE_KEY_MIMPID 2
8814 #define RISCV_HWPROBE_KEY_BASE_BEHAVIOR 3
8815 #define RISCV_HWPROBE_BASE_BEHAVIOR_IMA (1 << 0)
8817 #define RISCV_HWPROBE_KEY_IMA_EXT_0 4
8818 #define RISCV_HWPROBE_IMA_FD (1 << 0)
8819 #define RISCV_HWPROBE_IMA_C (1 << 1)
8820 #define RISCV_HWPROBE_IMA_V (1 << 2)
8821 #define RISCV_HWPROBE_EXT_ZBA (1 << 3)
8822 #define RISCV_HWPROBE_EXT_ZBB (1 << 4)
8823 #define RISCV_HWPROBE_EXT_ZBS (1 << 5)
8824 #define RISCV_HWPROBE_EXT_ZICBOZ (1 << 6)
8825 #define RISCV_HWPROBE_EXT_ZBC (1 << 7)
8826 #define RISCV_HWPROBE_EXT_ZBKB (1 << 8)
8827 #define RISCV_HWPROBE_EXT_ZBKC (1 << 9)
8828 #define RISCV_HWPROBE_EXT_ZBKX (1 << 10)
8829 #define RISCV_HWPROBE_EXT_ZKND (1 << 11)
8830 #define RISCV_HWPROBE_EXT_ZKNE (1 << 12)
8831 #define RISCV_HWPROBE_EXT_ZKNH (1 << 13)
8832 #define RISCV_HWPROBE_EXT_ZKSED (1 << 14)
8833 #define RISCV_HWPROBE_EXT_ZKSH (1 << 15)
8834 #define RISCV_HWPROBE_EXT_ZKT (1 << 16)
8835 #define RISCV_HWPROBE_EXT_ZVBB (1 << 17)
8836 #define RISCV_HWPROBE_EXT_ZVBC (1 << 18)
8837 #define RISCV_HWPROBE_EXT_ZVKB (1 << 19)
8838 #define RISCV_HWPROBE_EXT_ZVKG (1 << 20)
8839 #define RISCV_HWPROBE_EXT_ZVKNED (1 << 21)
8840 #define RISCV_HWPROBE_EXT_ZVKNHA (1 << 22)
8841 #define RISCV_HWPROBE_EXT_ZVKNHB (1 << 23)
8842 #define RISCV_HWPROBE_EXT_ZVKSED (1 << 24)
8843 #define RISCV_HWPROBE_EXT_ZVKSH (1 << 25)
8844 #define RISCV_HWPROBE_EXT_ZVKT (1 << 26)
8845 #define RISCV_HWPROBE_EXT_ZFH (1 << 27)
8846 #define RISCV_HWPROBE_EXT_ZFHMIN (1 << 28)
8847 #define RISCV_HWPROBE_EXT_ZIHINTNTL (1 << 29)
8848 #define RISCV_HWPROBE_EXT_ZVFH (1 << 30)
8849 #define RISCV_HWPROBE_EXT_ZVFHMIN (1 << 31)
8850 #define RISCV_HWPROBE_EXT_ZFA (1ULL << 32)
8851 #define RISCV_HWPROBE_EXT_ZTSO (1ULL << 33)
8852 #define RISCV_HWPROBE_EXT_ZACAS (1ULL << 34)
8853 #define RISCV_HWPROBE_EXT_ZICOND (1ULL << 35)
8855 #define RISCV_HWPROBE_KEY_CPUPERF_0 5
8856 #define RISCV_HWPROBE_MISALIGNED_UNKNOWN (0 << 0)
8857 #define RISCV_HWPROBE_MISALIGNED_EMULATED (1 << 0)
8858 #define RISCV_HWPROBE_MISALIGNED_SLOW (2 << 0)
8859 #define RISCV_HWPROBE_MISALIGNED_FAST (3 << 0)
8860 #define RISCV_HWPROBE_MISALIGNED_UNSUPPORTED (4 << 0)
8861 #define RISCV_HWPROBE_MISALIGNED_MASK (7 << 0)
8863 #define RISCV_HWPROBE_KEY_ZICBOZ_BLOCK_SIZE 6
8865 struct riscv_hwprobe
{
8870 static void risc_hwprobe_fill_pairs(CPURISCVState
*env
,
8871 struct riscv_hwprobe
*pair
,
8874 const RISCVCPUConfig
*cfg
= riscv_cpu_cfg(env
);
8876 for (; pair_count
> 0; pair_count
--, pair
++) {
8879 __put_user(0, &pair
->value
);
8880 __get_user(key
, &pair
->key
);
8882 case RISCV_HWPROBE_KEY_MVENDORID
:
8883 __put_user(cfg
->mvendorid
, &pair
->value
);
8885 case RISCV_HWPROBE_KEY_MARCHID
:
8886 __put_user(cfg
->marchid
, &pair
->value
);
8888 case RISCV_HWPROBE_KEY_MIMPID
:
8889 __put_user(cfg
->mimpid
, &pair
->value
);
8891 case RISCV_HWPROBE_KEY_BASE_BEHAVIOR
:
8892 value
= riscv_has_ext(env
, RVI
) &&
8893 riscv_has_ext(env
, RVM
) &&
8894 riscv_has_ext(env
, RVA
) ?
8895 RISCV_HWPROBE_BASE_BEHAVIOR_IMA
: 0;
8896 __put_user(value
, &pair
->value
);
8898 case RISCV_HWPROBE_KEY_IMA_EXT_0
:
8899 value
= riscv_has_ext(env
, RVF
) &&
8900 riscv_has_ext(env
, RVD
) ?
8901 RISCV_HWPROBE_IMA_FD
: 0;
8902 value
|= riscv_has_ext(env
, RVC
) ?
8903 RISCV_HWPROBE_IMA_C
: 0;
8904 value
|= riscv_has_ext(env
, RVV
) ?
8905 RISCV_HWPROBE_IMA_V
: 0;
8906 value
|= cfg
->ext_zba
?
8907 RISCV_HWPROBE_EXT_ZBA
: 0;
8908 value
|= cfg
->ext_zbb
?
8909 RISCV_HWPROBE_EXT_ZBB
: 0;
8910 value
|= cfg
->ext_zbs
?
8911 RISCV_HWPROBE_EXT_ZBS
: 0;
8912 value
|= cfg
->ext_zicboz
?
8913 RISCV_HWPROBE_EXT_ZICBOZ
: 0;
8914 value
|= cfg
->ext_zbc
?
8915 RISCV_HWPROBE_EXT_ZBC
: 0;
8916 value
|= cfg
->ext_zbkb
?
8917 RISCV_HWPROBE_EXT_ZBKB
: 0;
8918 value
|= cfg
->ext_zbkc
?
8919 RISCV_HWPROBE_EXT_ZBKC
: 0;
8920 value
|= cfg
->ext_zbkx
?
8921 RISCV_HWPROBE_EXT_ZBKX
: 0;
8922 value
|= cfg
->ext_zknd
?
8923 RISCV_HWPROBE_EXT_ZKND
: 0;
8924 value
|= cfg
->ext_zkne
?
8925 RISCV_HWPROBE_EXT_ZKNE
: 0;
8926 value
|= cfg
->ext_zknh
?
8927 RISCV_HWPROBE_EXT_ZKNH
: 0;
8928 value
|= cfg
->ext_zksed
?
8929 RISCV_HWPROBE_EXT_ZKSED
: 0;
8930 value
|= cfg
->ext_zksh
?
8931 RISCV_HWPROBE_EXT_ZKSH
: 0;
8932 value
|= cfg
->ext_zkt
?
8933 RISCV_HWPROBE_EXT_ZKT
: 0;
8934 value
|= cfg
->ext_zvbb
?
8935 RISCV_HWPROBE_EXT_ZVBB
: 0;
8936 value
|= cfg
->ext_zvbc
?
8937 RISCV_HWPROBE_EXT_ZVBC
: 0;
8938 value
|= cfg
->ext_zvkb
?
8939 RISCV_HWPROBE_EXT_ZVKB
: 0;
8940 value
|= cfg
->ext_zvkg
?
8941 RISCV_HWPROBE_EXT_ZVKG
: 0;
8942 value
|= cfg
->ext_zvkned
?
8943 RISCV_HWPROBE_EXT_ZVKNED
: 0;
8944 value
|= cfg
->ext_zvknha
?
8945 RISCV_HWPROBE_EXT_ZVKNHA
: 0;
8946 value
|= cfg
->ext_zvknhb
?
8947 RISCV_HWPROBE_EXT_ZVKNHB
: 0;
8948 value
|= cfg
->ext_zvksed
?
8949 RISCV_HWPROBE_EXT_ZVKSED
: 0;
8950 value
|= cfg
->ext_zvksh
?
8951 RISCV_HWPROBE_EXT_ZVKSH
: 0;
8952 value
|= cfg
->ext_zvkt
?
8953 RISCV_HWPROBE_EXT_ZVKT
: 0;
8954 value
|= cfg
->ext_zfh
?
8955 RISCV_HWPROBE_EXT_ZFH
: 0;
8956 value
|= cfg
->ext_zfhmin
?
8957 RISCV_HWPROBE_EXT_ZFHMIN
: 0;
8958 value
|= cfg
->ext_zihintntl
?
8959 RISCV_HWPROBE_EXT_ZIHINTNTL
: 0;
8960 value
|= cfg
->ext_zvfh
?
8961 RISCV_HWPROBE_EXT_ZVFH
: 0;
8962 value
|= cfg
->ext_zvfhmin
?
8963 RISCV_HWPROBE_EXT_ZVFHMIN
: 0;
8964 value
|= cfg
->ext_zfa
?
8965 RISCV_HWPROBE_EXT_ZFA
: 0;
8966 value
|= cfg
->ext_ztso
?
8967 RISCV_HWPROBE_EXT_ZTSO
: 0;
8968 value
|= cfg
->ext_zacas
?
8969 RISCV_HWPROBE_EXT_ZACAS
: 0;
8970 value
|= cfg
->ext_zicond
?
8971 RISCV_HWPROBE_EXT_ZICOND
: 0;
8972 __put_user(value
, &pair
->value
);
8974 case RISCV_HWPROBE_KEY_CPUPERF_0
:
8975 __put_user(RISCV_HWPROBE_MISALIGNED_FAST
, &pair
->value
);
8977 case RISCV_HWPROBE_KEY_ZICBOZ_BLOCK_SIZE
:
8978 value
= cfg
->ext_zicboz
? cfg
->cboz_blocksize
: 0;
8979 __put_user(value
, &pair
->value
);
8982 __put_user(-1, &pair
->key
);
8988 static int cpu_set_valid(abi_long arg3
, abi_long arg4
)
8991 size_t host_mask_size
, target_mask_size
;
8992 unsigned long *host_mask
;
8995 * cpu_set_t represent CPU masks as bit masks of type unsigned long *.
8996 * arg3 contains the cpu count.
8998 tmp
= (8 * sizeof(abi_ulong
));
8999 target_mask_size
= ((arg3
+ tmp
- 1) / tmp
) * sizeof(abi_ulong
);
9000 host_mask_size
= (target_mask_size
+ (sizeof(*host_mask
) - 1)) &
9001 ~(sizeof(*host_mask
) - 1);
9003 host_mask
= alloca(host_mask_size
);
9005 ret
= target_to_host_cpu_mask(host_mask
, host_mask_size
,
9006 arg4
, target_mask_size
);
9011 for (i
= 0 ; i
< host_mask_size
/ sizeof(*host_mask
); i
++) {
9012 if (host_mask
[i
] != 0) {
9016 return -TARGET_EINVAL
;
9019 static abi_long
do_riscv_hwprobe(CPUArchState
*cpu_env
, abi_long arg1
,
9020 abi_long arg2
, abi_long arg3
,
9021 abi_long arg4
, abi_long arg5
)
9024 struct riscv_hwprobe
*host_pairs
;
9026 /* flags must be 0 */
9028 return -TARGET_EINVAL
;
9033 ret
= cpu_set_valid(arg3
, arg4
);
9037 } else if (arg4
!= 0) {
9038 return -TARGET_EINVAL
;
9046 host_pairs
= lock_user(VERIFY_WRITE
, arg1
,
9047 sizeof(*host_pairs
) * (size_t)arg2
, 0);
9048 if (host_pairs
== NULL
) {
9049 return -TARGET_EFAULT
;
9051 risc_hwprobe_fill_pairs(cpu_env
, host_pairs
, arg2
);
9052 unlock_user(host_pairs
, arg1
, sizeof(*host_pairs
) * (size_t)arg2
);
9055 #endif /* TARGET_NR_riscv_hwprobe */
9057 #if defined(TARGET_NR_pivot_root) && defined(__NR_pivot_root)
9058 _syscall2(int, pivot_root
, const char *, new_root
, const char *, put_old
)
9061 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree)
9062 #define __NR_sys_open_tree __NR_open_tree
9063 _syscall3(int, sys_open_tree
, int, __dfd
, const char *, __filename
,
9064 unsigned int, __flags
)
9067 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount)
9068 #define __NR_sys_move_mount __NR_move_mount
9069 _syscall5(int, sys_move_mount
, int, __from_dfd
, const char *, __from_pathname
,
9070 int, __to_dfd
, const char *, __to_pathname
, unsigned int, flag
)
9073 /* This is an internal helper for do_syscall so that it is easier
9074 * to have a single return point, so that actions, such as logging
9075 * of syscall results, can be performed.
9076 * All errnos that do_syscall() returns must be -TARGET_<errcode>.
9078 static abi_long
do_syscall1(CPUArchState
*cpu_env
, int num
, abi_long arg1
,
9079 abi_long arg2
, abi_long arg3
, abi_long arg4
,
9080 abi_long arg5
, abi_long arg6
, abi_long arg7
,
9083 CPUState
*cpu
= env_cpu(cpu_env
);
9085 #if defined(TARGET_NR_stat) || defined(TARGET_NR_stat64) \
9086 || defined(TARGET_NR_lstat) || defined(TARGET_NR_lstat64) \
9087 || defined(TARGET_NR_fstat) || defined(TARGET_NR_fstat64) \
9088 || defined(TARGET_NR_statx)
9091 #if defined(TARGET_NR_statfs) || defined(TARGET_NR_statfs64) \
9092 || defined(TARGET_NR_fstatfs)
9098 case TARGET_NR_exit
:
9099 /* In old applications this may be used to implement _exit(2).
9100 However in threaded applications it is used for thread termination,
9101 and _exit_group is used for application termination.
9102 Do thread termination if we have more then one thread. */
9104 if (block_signals()) {
9105 return -QEMU_ERESTARTSYS
;
9108 pthread_mutex_lock(&clone_lock
);
9110 if (CPU_NEXT(first_cpu
)) {
9111 TaskState
*ts
= get_task_state(cpu
);
9113 if (ts
->child_tidptr
) {
9114 put_user_u32(0, ts
->child_tidptr
);
9115 do_sys_futex(g2h(cpu
, ts
->child_tidptr
),
9116 FUTEX_WAKE
, INT_MAX
, NULL
, NULL
, 0);
9119 object_unparent(OBJECT(cpu
));
9120 object_unref(OBJECT(cpu
));
9122 * At this point the CPU should be unrealized and removed
9123 * from cpu lists. We can clean-up the rest of the thread
9124 * data without the lock held.
9127 pthread_mutex_unlock(&clone_lock
);
9131 rcu_unregister_thread();
9135 pthread_mutex_unlock(&clone_lock
);
9136 preexit_cleanup(cpu_env
, arg1
);
9138 return 0; /* avoid warning */
9139 case TARGET_NR_read
:
9140 if (arg2
== 0 && arg3
== 0) {
9141 return get_errno(safe_read(arg1
, 0, 0));
9143 if (!(p
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0)))
9144 return -TARGET_EFAULT
;
9145 ret
= get_errno(safe_read(arg1
, p
, arg3
));
9147 fd_trans_host_to_target_data(arg1
)) {
9148 ret
= fd_trans_host_to_target_data(arg1
)(p
, ret
);
9150 unlock_user(p
, arg2
, ret
);
9153 case TARGET_NR_write
:
9154 if (arg2
== 0 && arg3
== 0) {
9155 return get_errno(safe_write(arg1
, 0, 0));
9157 if (!(p
= lock_user(VERIFY_READ
, arg2
, arg3
, 1)))
9158 return -TARGET_EFAULT
;
9159 if (fd_trans_target_to_host_data(arg1
)) {
9160 void *copy
= g_malloc(arg3
);
9161 memcpy(copy
, p
, arg3
);
9162 ret
= fd_trans_target_to_host_data(arg1
)(copy
, arg3
);
9164 ret
= get_errno(safe_write(arg1
, copy
, ret
));
9168 ret
= get_errno(safe_write(arg1
, p
, arg3
));
9170 unlock_user(p
, arg2
, 0);
9173 #ifdef TARGET_NR_open
9174 case TARGET_NR_open
:
9175 if (!(p
= lock_user_string(arg1
)))
9176 return -TARGET_EFAULT
;
9177 ret
= get_errno(do_guest_openat(cpu_env
, AT_FDCWD
, p
,
9178 target_to_host_bitmask(arg2
, fcntl_flags_tbl
),
9180 fd_trans_unregister(ret
);
9181 unlock_user(p
, arg1
, 0);
9184 case TARGET_NR_openat
:
9185 if (!(p
= lock_user_string(arg2
)))
9186 return -TARGET_EFAULT
;
9187 ret
= get_errno(do_guest_openat(cpu_env
, arg1
, p
,
9188 target_to_host_bitmask(arg3
, fcntl_flags_tbl
),
9190 fd_trans_unregister(ret
);
9191 unlock_user(p
, arg2
, 0);
9193 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
9194 case TARGET_NR_name_to_handle_at
:
9195 ret
= do_name_to_handle_at(arg1
, arg2
, arg3
, arg4
, arg5
);
9198 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
9199 case TARGET_NR_open_by_handle_at
:
9200 ret
= do_open_by_handle_at(arg1
, arg2
, arg3
);
9201 fd_trans_unregister(ret
);
9204 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
9205 case TARGET_NR_pidfd_open
:
9206 return get_errno(pidfd_open(arg1
, arg2
));
9208 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal)
9209 case TARGET_NR_pidfd_send_signal
:
9211 siginfo_t uinfo
, *puinfo
;
9214 p
= lock_user(VERIFY_READ
, arg3
, sizeof(target_siginfo_t
), 1);
9216 return -TARGET_EFAULT
;
9218 target_to_host_siginfo(&uinfo
, p
);
9219 unlock_user(p
, arg3
, 0);
9224 ret
= get_errno(pidfd_send_signal(arg1
, target_to_host_signal(arg2
),
9229 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd)
9230 case TARGET_NR_pidfd_getfd
:
9231 return get_errno(pidfd_getfd(arg1
, arg2
, arg3
));
9233 case TARGET_NR_close
:
9234 fd_trans_unregister(arg1
);
9235 return get_errno(close(arg1
));
9236 #if defined(__NR_close_range) && defined(TARGET_NR_close_range)
9237 case TARGET_NR_close_range
:
9238 ret
= get_errno(sys_close_range(arg1
, arg2
, arg3
));
9239 if (ret
== 0 && !(arg3
& CLOSE_RANGE_CLOEXEC
)) {
9241 maxfd
= MIN(arg2
, target_fd_max
);
9242 for (fd
= arg1
; fd
< maxfd
; fd
++) {
9243 fd_trans_unregister(fd
);
9250 return do_brk(arg1
);
9251 #ifdef TARGET_NR_fork
9252 case TARGET_NR_fork
:
9253 return get_errno(do_fork(cpu_env
, TARGET_SIGCHLD
, 0, 0, 0, 0));
9255 #ifdef TARGET_NR_waitpid
9256 case TARGET_NR_waitpid
:
9259 ret
= get_errno(safe_wait4(arg1
, &status
, arg3
, 0));
9260 if (!is_error(ret
) && arg2
&& ret
9261 && put_user_s32(host_to_target_waitstatus(status
), arg2
))
9262 return -TARGET_EFAULT
;
9266 #ifdef TARGET_NR_waitid
9267 case TARGET_NR_waitid
:
9272 ret
= get_errno(safe_waitid(arg1
, arg2
, (arg3
? &info
: NULL
),
9273 arg4
, (arg5
? &ru
: NULL
)));
9274 if (!is_error(ret
)) {
9276 p
= lock_user(VERIFY_WRITE
, arg3
,
9277 sizeof(target_siginfo_t
), 0);
9279 return -TARGET_EFAULT
;
9281 host_to_target_siginfo(p
, &info
);
9282 unlock_user(p
, arg3
, sizeof(target_siginfo_t
));
9284 if (arg5
&& host_to_target_rusage(arg5
, &ru
)) {
9285 return -TARGET_EFAULT
;
9291 #ifdef TARGET_NR_creat /* not on alpha */
9292 case TARGET_NR_creat
:
9293 if (!(p
= lock_user_string(arg1
)))
9294 return -TARGET_EFAULT
;
9295 ret
= get_errno(creat(p
, arg2
));
9296 fd_trans_unregister(ret
);
9297 unlock_user(p
, arg1
, 0);
9300 #ifdef TARGET_NR_link
9301 case TARGET_NR_link
:
9304 p
= lock_user_string(arg1
);
9305 p2
= lock_user_string(arg2
);
9307 ret
= -TARGET_EFAULT
;
9309 ret
= get_errno(link(p
, p2
));
9310 unlock_user(p2
, arg2
, 0);
9311 unlock_user(p
, arg1
, 0);
9315 #if defined(TARGET_NR_linkat)
9316 case TARGET_NR_linkat
:
9320 return -TARGET_EFAULT
;
9321 p
= lock_user_string(arg2
);
9322 p2
= lock_user_string(arg4
);
9324 ret
= -TARGET_EFAULT
;
9326 ret
= get_errno(linkat(arg1
, p
, arg3
, p2
, arg5
));
9327 unlock_user(p
, arg2
, 0);
9328 unlock_user(p2
, arg4
, 0);
9332 #ifdef TARGET_NR_unlink
9333 case TARGET_NR_unlink
:
9334 if (!(p
= lock_user_string(arg1
)))
9335 return -TARGET_EFAULT
;
9336 ret
= get_errno(unlink(p
));
9337 unlock_user(p
, arg1
, 0);
9340 #if defined(TARGET_NR_unlinkat)
9341 case TARGET_NR_unlinkat
:
9342 if (!(p
= lock_user_string(arg2
)))
9343 return -TARGET_EFAULT
;
9344 ret
= get_errno(unlinkat(arg1
, p
, arg3
));
9345 unlock_user(p
, arg2
, 0);
9348 case TARGET_NR_execveat
:
9349 return do_execv(cpu_env
, arg1
, arg2
, arg3
, arg4
, arg5
, true);
9350 case TARGET_NR_execve
:
9351 return do_execv(cpu_env
, AT_FDCWD
, arg1
, arg2
, arg3
, 0, false);
9352 case TARGET_NR_chdir
:
9353 if (!(p
= lock_user_string(arg1
)))
9354 return -TARGET_EFAULT
;
9355 ret
= get_errno(chdir(p
));
9356 unlock_user(p
, arg1
, 0);
9358 #ifdef TARGET_NR_time
9359 case TARGET_NR_time
:
9362 ret
= get_errno(time(&host_time
));
9365 && put_user_sal(host_time
, arg1
))
9366 return -TARGET_EFAULT
;
9370 #ifdef TARGET_NR_mknod
9371 case TARGET_NR_mknod
:
9372 if (!(p
= lock_user_string(arg1
)))
9373 return -TARGET_EFAULT
;
9374 ret
= get_errno(mknod(p
, arg2
, arg3
));
9375 unlock_user(p
, arg1
, 0);
9378 #if defined(TARGET_NR_mknodat)
9379 case TARGET_NR_mknodat
:
9380 if (!(p
= lock_user_string(arg2
)))
9381 return -TARGET_EFAULT
;
9382 ret
= get_errno(mknodat(arg1
, p
, arg3
, arg4
));
9383 unlock_user(p
, arg2
, 0);
9386 #ifdef TARGET_NR_chmod
9387 case TARGET_NR_chmod
:
9388 if (!(p
= lock_user_string(arg1
)))
9389 return -TARGET_EFAULT
;
9390 ret
= get_errno(chmod(p
, arg2
));
9391 unlock_user(p
, arg1
, 0);
9394 #ifdef TARGET_NR_lseek
9395 case TARGET_NR_lseek
:
9396 return get_errno(lseek(arg1
, arg2
, arg3
));
9398 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
9399 /* Alpha specific */
9400 case TARGET_NR_getxpid
:
9401 cpu_env
->ir
[IR_A4
] = getppid();
9402 return get_errno(getpid());
9404 #ifdef TARGET_NR_getpid
9405 case TARGET_NR_getpid
:
9406 return get_errno(getpid());
9408 case TARGET_NR_mount
:
9410 /* need to look at the data field */
9414 p
= lock_user_string(arg1
);
9416 return -TARGET_EFAULT
;
9422 p2
= lock_user_string(arg2
);
9425 unlock_user(p
, arg1
, 0);
9427 return -TARGET_EFAULT
;
9431 p3
= lock_user_string(arg3
);
9434 unlock_user(p
, arg1
, 0);
9436 unlock_user(p2
, arg2
, 0);
9437 return -TARGET_EFAULT
;
9443 /* FIXME - arg5 should be locked, but it isn't clear how to
9444 * do that since it's not guaranteed to be a NULL-terminated
9448 ret
= mount(p
, p2
, p3
, (unsigned long)arg4
, NULL
);
9450 ret
= mount(p
, p2
, p3
, (unsigned long)arg4
, g2h(cpu
, arg5
));
9452 ret
= get_errno(ret
);
9455 unlock_user(p
, arg1
, 0);
9457 unlock_user(p2
, arg2
, 0);
9459 unlock_user(p3
, arg3
, 0);
9463 #if defined(TARGET_NR_umount) || defined(TARGET_NR_oldumount)
9464 #if defined(TARGET_NR_umount)
9465 case TARGET_NR_umount
:
9467 #if defined(TARGET_NR_oldumount)
9468 case TARGET_NR_oldumount
:
9470 if (!(p
= lock_user_string(arg1
)))
9471 return -TARGET_EFAULT
;
9472 ret
= get_errno(umount(p
));
9473 unlock_user(p
, arg1
, 0);
9476 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount)
9477 case TARGET_NR_move_mount
:
9481 if (!arg2
|| !arg4
) {
9482 return -TARGET_EFAULT
;
9485 p2
= lock_user_string(arg2
);
9487 return -TARGET_EFAULT
;
9490 p4
= lock_user_string(arg4
);
9492 unlock_user(p2
, arg2
, 0);
9493 return -TARGET_EFAULT
;
9495 ret
= get_errno(sys_move_mount(arg1
, p2
, arg3
, p4
, arg5
));
9497 unlock_user(p2
, arg2
, 0);
9498 unlock_user(p4
, arg4
, 0);
9503 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree)
9504 case TARGET_NR_open_tree
:
9510 return -TARGET_EFAULT
;
9513 p2
= lock_user_string(arg2
);
9515 return -TARGET_EFAULT
;
9518 host_flags
= arg3
& ~TARGET_O_CLOEXEC
;
9519 if (arg3
& TARGET_O_CLOEXEC
) {
9520 host_flags
|= O_CLOEXEC
;
9523 ret
= get_errno(sys_open_tree(arg1
, p2
, host_flags
));
9525 unlock_user(p2
, arg2
, 0);
9530 #ifdef TARGET_NR_stime /* not on alpha */
9531 case TARGET_NR_stime
:
9535 if (get_user_sal(ts
.tv_sec
, arg1
)) {
9536 return -TARGET_EFAULT
;
9538 return get_errno(clock_settime(CLOCK_REALTIME
, &ts
));
9541 #ifdef TARGET_NR_alarm /* not on alpha */
9542 case TARGET_NR_alarm
:
9545 #ifdef TARGET_NR_pause /* not on alpha */
9546 case TARGET_NR_pause
:
9547 if (!block_signals()) {
9548 sigsuspend(&get_task_state(cpu
)->signal_mask
);
9550 return -TARGET_EINTR
;
9552 #ifdef TARGET_NR_utime
9553 case TARGET_NR_utime
:
9555 struct utimbuf tbuf
, *host_tbuf
;
9556 struct target_utimbuf
*target_tbuf
;
9558 if (!lock_user_struct(VERIFY_READ
, target_tbuf
, arg2
, 1))
9559 return -TARGET_EFAULT
;
9560 tbuf
.actime
= tswapal(target_tbuf
->actime
);
9561 tbuf
.modtime
= tswapal(target_tbuf
->modtime
);
9562 unlock_user_struct(target_tbuf
, arg2
, 0);
9567 if (!(p
= lock_user_string(arg1
)))
9568 return -TARGET_EFAULT
;
9569 ret
= get_errno(utime(p
, host_tbuf
));
9570 unlock_user(p
, arg1
, 0);
9574 #ifdef TARGET_NR_utimes
9575 case TARGET_NR_utimes
:
9577 struct timeval
*tvp
, tv
[2];
9579 if (copy_from_user_timeval(&tv
[0], arg2
)
9580 || copy_from_user_timeval(&tv
[1],
9581 arg2
+ sizeof(struct target_timeval
)))
9582 return -TARGET_EFAULT
;
9587 if (!(p
= lock_user_string(arg1
)))
9588 return -TARGET_EFAULT
;
9589 ret
= get_errno(utimes(p
, tvp
));
9590 unlock_user(p
, arg1
, 0);
9594 #if defined(TARGET_NR_futimesat)
9595 case TARGET_NR_futimesat
:
9597 struct timeval
*tvp
, tv
[2];
9599 if (copy_from_user_timeval(&tv
[0], arg3
)
9600 || copy_from_user_timeval(&tv
[1],
9601 arg3
+ sizeof(struct target_timeval
)))
9602 return -TARGET_EFAULT
;
9607 if (!(p
= lock_user_string(arg2
))) {
9608 return -TARGET_EFAULT
;
9610 ret
= get_errno(futimesat(arg1
, path(p
), tvp
));
9611 unlock_user(p
, arg2
, 0);
9615 #ifdef TARGET_NR_access
9616 case TARGET_NR_access
:
9617 if (!(p
= lock_user_string(arg1
))) {
9618 return -TARGET_EFAULT
;
9620 ret
= get_errno(access(path(p
), arg2
));
9621 unlock_user(p
, arg1
, 0);
9624 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
9625 case TARGET_NR_faccessat
:
9626 if (!(p
= lock_user_string(arg2
))) {
9627 return -TARGET_EFAULT
;
9629 ret
= get_errno(faccessat(arg1
, p
, arg3
, 0));
9630 unlock_user(p
, arg2
, 0);
9633 #if defined(TARGET_NR_faccessat2)
9634 case TARGET_NR_faccessat2
:
9635 if (!(p
= lock_user_string(arg2
))) {
9636 return -TARGET_EFAULT
;
9638 ret
= get_errno(faccessat(arg1
, p
, arg3
, arg4
));
9639 unlock_user(p
, arg2
, 0);
9642 #ifdef TARGET_NR_nice /* not on alpha */
9643 case TARGET_NR_nice
:
9644 return get_errno(nice(arg1
));
9646 case TARGET_NR_sync
:
9649 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS)
9650 case TARGET_NR_syncfs
:
9651 return get_errno(syncfs(arg1
));
9653 case TARGET_NR_kill
:
9654 return get_errno(safe_kill(arg1
, target_to_host_signal(arg2
)));
9655 #ifdef TARGET_NR_rename
9656 case TARGET_NR_rename
:
9659 p
= lock_user_string(arg1
);
9660 p2
= lock_user_string(arg2
);
9662 ret
= -TARGET_EFAULT
;
9664 ret
= get_errno(rename(p
, p2
));
9665 unlock_user(p2
, arg2
, 0);
9666 unlock_user(p
, arg1
, 0);
9670 #if defined(TARGET_NR_renameat)
9671 case TARGET_NR_renameat
:
9674 p
= lock_user_string(arg2
);
9675 p2
= lock_user_string(arg4
);
9677 ret
= -TARGET_EFAULT
;
9679 ret
= get_errno(renameat(arg1
, p
, arg3
, p2
));
9680 unlock_user(p2
, arg4
, 0);
9681 unlock_user(p
, arg2
, 0);
9685 #if defined(TARGET_NR_renameat2)
9686 case TARGET_NR_renameat2
:
9689 p
= lock_user_string(arg2
);
9690 p2
= lock_user_string(arg4
);
9692 ret
= -TARGET_EFAULT
;
9694 ret
= get_errno(sys_renameat2(arg1
, p
, arg3
, p2
, arg5
));
9696 unlock_user(p2
, arg4
, 0);
9697 unlock_user(p
, arg2
, 0);
9701 #ifdef TARGET_NR_mkdir
9702 case TARGET_NR_mkdir
:
9703 if (!(p
= lock_user_string(arg1
)))
9704 return -TARGET_EFAULT
;
9705 ret
= get_errno(mkdir(p
, arg2
));
9706 unlock_user(p
, arg1
, 0);
9709 #if defined(TARGET_NR_mkdirat)
9710 case TARGET_NR_mkdirat
:
9711 if (!(p
= lock_user_string(arg2
)))
9712 return -TARGET_EFAULT
;
9713 ret
= get_errno(mkdirat(arg1
, p
, arg3
));
9714 unlock_user(p
, arg2
, 0);
9717 #ifdef TARGET_NR_rmdir
9718 case TARGET_NR_rmdir
:
9719 if (!(p
= lock_user_string(arg1
)))
9720 return -TARGET_EFAULT
;
9721 ret
= get_errno(rmdir(p
));
9722 unlock_user(p
, arg1
, 0);
9726 ret
= get_errno(dup(arg1
));
9728 fd_trans_dup(arg1
, ret
);
9731 #ifdef TARGET_NR_pipe
9732 case TARGET_NR_pipe
:
9733 return do_pipe(cpu_env
, arg1
, 0, 0);
9735 #ifdef TARGET_NR_pipe2
9736 case TARGET_NR_pipe2
:
9737 return do_pipe(cpu_env
, arg1
,
9738 target_to_host_bitmask(arg2
, fcntl_flags_tbl
), 1);
9740 case TARGET_NR_times
:
9742 struct target_tms
*tmsp
;
9744 ret
= get_errno(times(&tms
));
9746 tmsp
= lock_user(VERIFY_WRITE
, arg1
, sizeof(struct target_tms
), 0);
9748 return -TARGET_EFAULT
;
9749 tmsp
->tms_utime
= tswapal(host_to_target_clock_t(tms
.tms_utime
));
9750 tmsp
->tms_stime
= tswapal(host_to_target_clock_t(tms
.tms_stime
));
9751 tmsp
->tms_cutime
= tswapal(host_to_target_clock_t(tms
.tms_cutime
));
9752 tmsp
->tms_cstime
= tswapal(host_to_target_clock_t(tms
.tms_cstime
));
9755 ret
= host_to_target_clock_t(ret
);
9758 case TARGET_NR_acct
:
9760 ret
= get_errno(acct(NULL
));
9762 if (!(p
= lock_user_string(arg1
))) {
9763 return -TARGET_EFAULT
;
9765 ret
= get_errno(acct(path(p
)));
9766 unlock_user(p
, arg1
, 0);
9769 #ifdef TARGET_NR_umount2
9770 case TARGET_NR_umount2
:
9771 if (!(p
= lock_user_string(arg1
)))
9772 return -TARGET_EFAULT
;
9773 ret
= get_errno(umount2(p
, arg2
));
9774 unlock_user(p
, arg1
, 0);
9777 case TARGET_NR_ioctl
:
9778 return do_ioctl(arg1
, arg2
, arg3
);
9779 #ifdef TARGET_NR_fcntl
9780 case TARGET_NR_fcntl
:
9781 return do_fcntl(arg1
, arg2
, arg3
);
9783 case TARGET_NR_setpgid
:
9784 return get_errno(setpgid(arg1
, arg2
));
9785 case TARGET_NR_umask
:
9786 return get_errno(umask(arg1
));
9787 case TARGET_NR_chroot
:
9788 if (!(p
= lock_user_string(arg1
)))
9789 return -TARGET_EFAULT
;
9790 ret
= get_errno(chroot(p
));
9791 unlock_user(p
, arg1
, 0);
9793 #ifdef TARGET_NR_dup2
9794 case TARGET_NR_dup2
:
9795 ret
= get_errno(dup2(arg1
, arg2
));
9797 fd_trans_dup(arg1
, arg2
);
9801 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
9802 case TARGET_NR_dup3
:
9806 if ((arg3
& ~TARGET_O_CLOEXEC
) != 0) {
9809 host_flags
= target_to_host_bitmask(arg3
, fcntl_flags_tbl
);
9810 ret
= get_errno(dup3(arg1
, arg2
, host_flags
));
9812 fd_trans_dup(arg1
, arg2
);
9817 #ifdef TARGET_NR_getppid /* not on alpha */
9818 case TARGET_NR_getppid
:
9819 return get_errno(getppid());
9821 #ifdef TARGET_NR_getpgrp
9822 case TARGET_NR_getpgrp
:
9823 return get_errno(getpgrp());
9825 case TARGET_NR_setsid
:
9826 return get_errno(setsid());
9827 #ifdef TARGET_NR_sigaction
9828 case TARGET_NR_sigaction
:
9830 #if defined(TARGET_MIPS)
9831 struct target_sigaction act
, oact
, *pact
, *old_act
;
9834 if (!lock_user_struct(VERIFY_READ
, old_act
, arg2
, 1))
9835 return -TARGET_EFAULT
;
9836 act
._sa_handler
= old_act
->_sa_handler
;
9837 target_siginitset(&act
.sa_mask
, old_act
->sa_mask
.sig
[0]);
9838 act
.sa_flags
= old_act
->sa_flags
;
9839 unlock_user_struct(old_act
, arg2
, 0);
9845 ret
= get_errno(do_sigaction(arg1
, pact
, &oact
, 0));
9847 if (!is_error(ret
) && arg3
) {
9848 if (!lock_user_struct(VERIFY_WRITE
, old_act
, arg3
, 0))
9849 return -TARGET_EFAULT
;
9850 old_act
->_sa_handler
= oact
._sa_handler
;
9851 old_act
->sa_flags
= oact
.sa_flags
;
9852 old_act
->sa_mask
.sig
[0] = oact
.sa_mask
.sig
[0];
9853 old_act
->sa_mask
.sig
[1] = 0;
9854 old_act
->sa_mask
.sig
[2] = 0;
9855 old_act
->sa_mask
.sig
[3] = 0;
9856 unlock_user_struct(old_act
, arg3
, 1);
9859 struct target_old_sigaction
*old_act
;
9860 struct target_sigaction act
, oact
, *pact
;
9862 if (!lock_user_struct(VERIFY_READ
, old_act
, arg2
, 1))
9863 return -TARGET_EFAULT
;
9864 act
._sa_handler
= old_act
->_sa_handler
;
9865 target_siginitset(&act
.sa_mask
, old_act
->sa_mask
);
9866 act
.sa_flags
= old_act
->sa_flags
;
9867 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9868 act
.sa_restorer
= old_act
->sa_restorer
;
9870 unlock_user_struct(old_act
, arg2
, 0);
9875 ret
= get_errno(do_sigaction(arg1
, pact
, &oact
, 0));
9876 if (!is_error(ret
) && arg3
) {
9877 if (!lock_user_struct(VERIFY_WRITE
, old_act
, arg3
, 0))
9878 return -TARGET_EFAULT
;
9879 old_act
->_sa_handler
= oact
._sa_handler
;
9880 old_act
->sa_mask
= oact
.sa_mask
.sig
[0];
9881 old_act
->sa_flags
= oact
.sa_flags
;
9882 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9883 old_act
->sa_restorer
= oact
.sa_restorer
;
9885 unlock_user_struct(old_act
, arg3
, 1);
9891 case TARGET_NR_rt_sigaction
:
9894 * For Alpha and SPARC this is a 5 argument syscall, with
9895 * a 'restorer' parameter which must be copied into the
9896 * sa_restorer field of the sigaction struct.
9897 * For Alpha that 'restorer' is arg5; for SPARC it is arg4,
9898 * and arg5 is the sigsetsize.
9900 #if defined(TARGET_ALPHA)
9901 target_ulong sigsetsize
= arg4
;
9902 target_ulong restorer
= arg5
;
9903 #elif defined(TARGET_SPARC)
9904 target_ulong restorer
= arg4
;
9905 target_ulong sigsetsize
= arg5
;
9907 target_ulong sigsetsize
= arg4
;
9908 target_ulong restorer
= 0;
9910 struct target_sigaction
*act
= NULL
;
9911 struct target_sigaction
*oact
= NULL
;
9913 if (sigsetsize
!= sizeof(target_sigset_t
)) {
9914 return -TARGET_EINVAL
;
9916 if (arg2
&& !lock_user_struct(VERIFY_READ
, act
, arg2
, 1)) {
9917 return -TARGET_EFAULT
;
9919 if (arg3
&& !lock_user_struct(VERIFY_WRITE
, oact
, arg3
, 0)) {
9920 ret
= -TARGET_EFAULT
;
9922 ret
= get_errno(do_sigaction(arg1
, act
, oact
, restorer
));
9924 unlock_user_struct(oact
, arg3
, 1);
9928 unlock_user_struct(act
, arg2
, 0);
9932 #ifdef TARGET_NR_sgetmask /* not on alpha */
9933 case TARGET_NR_sgetmask
:
9936 abi_ulong target_set
;
9937 ret
= do_sigprocmask(0, NULL
, &cur_set
);
9939 host_to_target_old_sigset(&target_set
, &cur_set
);
9945 #ifdef TARGET_NR_ssetmask /* not on alpha */
9946 case TARGET_NR_ssetmask
:
9949 abi_ulong target_set
= arg1
;
9950 target_to_host_old_sigset(&set
, &target_set
);
9951 ret
= do_sigprocmask(SIG_SETMASK
, &set
, &oset
);
9953 host_to_target_old_sigset(&target_set
, &oset
);
9959 #ifdef TARGET_NR_sigprocmask
9960 case TARGET_NR_sigprocmask
:
9962 #if defined(TARGET_ALPHA)
9963 sigset_t set
, oldset
;
9968 case TARGET_SIG_BLOCK
:
9971 case TARGET_SIG_UNBLOCK
:
9974 case TARGET_SIG_SETMASK
:
9978 return -TARGET_EINVAL
;
9981 target_to_host_old_sigset(&set
, &mask
);
9983 ret
= do_sigprocmask(how
, &set
, &oldset
);
9984 if (!is_error(ret
)) {
9985 host_to_target_old_sigset(&mask
, &oldset
);
9987 cpu_env
->ir
[IR_V0
] = 0; /* force no error */
9990 sigset_t set
, oldset
, *set_ptr
;
9994 p
= lock_user(VERIFY_READ
, arg2
, sizeof(target_sigset_t
), 1);
9996 return -TARGET_EFAULT
;
9998 target_to_host_old_sigset(&set
, p
);
9999 unlock_user(p
, arg2
, 0);
10002 case TARGET_SIG_BLOCK
:
10005 case TARGET_SIG_UNBLOCK
:
10008 case TARGET_SIG_SETMASK
:
10012 return -TARGET_EINVAL
;
10018 ret
= do_sigprocmask(how
, set_ptr
, &oldset
);
10019 if (!is_error(ret
) && arg3
) {
10020 if (!(p
= lock_user(VERIFY_WRITE
, arg3
, sizeof(target_sigset_t
), 0)))
10021 return -TARGET_EFAULT
;
10022 host_to_target_old_sigset(p
, &oldset
);
10023 unlock_user(p
, arg3
, sizeof(target_sigset_t
));
10029 case TARGET_NR_rt_sigprocmask
:
10032 sigset_t set
, oldset
, *set_ptr
;
10034 if (arg4
!= sizeof(target_sigset_t
)) {
10035 return -TARGET_EINVAL
;
10039 p
= lock_user(VERIFY_READ
, arg2
, sizeof(target_sigset_t
), 1);
10041 return -TARGET_EFAULT
;
10043 target_to_host_sigset(&set
, p
);
10044 unlock_user(p
, arg2
, 0);
10047 case TARGET_SIG_BLOCK
:
10050 case TARGET_SIG_UNBLOCK
:
10053 case TARGET_SIG_SETMASK
:
10057 return -TARGET_EINVAL
;
10063 ret
= do_sigprocmask(how
, set_ptr
, &oldset
);
10064 if (!is_error(ret
) && arg3
) {
10065 if (!(p
= lock_user(VERIFY_WRITE
, arg3
, sizeof(target_sigset_t
), 0)))
10066 return -TARGET_EFAULT
;
10067 host_to_target_sigset(p
, &oldset
);
10068 unlock_user(p
, arg3
, sizeof(target_sigset_t
));
10072 #ifdef TARGET_NR_sigpending
10073 case TARGET_NR_sigpending
:
10076 ret
= get_errno(sigpending(&set
));
10077 if (!is_error(ret
)) {
10078 if (!(p
= lock_user(VERIFY_WRITE
, arg1
, sizeof(target_sigset_t
), 0)))
10079 return -TARGET_EFAULT
;
10080 host_to_target_old_sigset(p
, &set
);
10081 unlock_user(p
, arg1
, sizeof(target_sigset_t
));
10086 case TARGET_NR_rt_sigpending
:
10090 /* Yes, this check is >, not != like most. We follow the kernel's
10091 * logic and it does it like this because it implements
10092 * NR_sigpending through the same code path, and in that case
10093 * the old_sigset_t is smaller in size.
10095 if (arg2
> sizeof(target_sigset_t
)) {
10096 return -TARGET_EINVAL
;
10099 ret
= get_errno(sigpending(&set
));
10100 if (!is_error(ret
)) {
10101 if (!(p
= lock_user(VERIFY_WRITE
, arg1
, sizeof(target_sigset_t
), 0)))
10102 return -TARGET_EFAULT
;
10103 host_to_target_sigset(p
, &set
);
10104 unlock_user(p
, arg1
, sizeof(target_sigset_t
));
10108 #ifdef TARGET_NR_sigsuspend
10109 case TARGET_NR_sigsuspend
:
10113 #if defined(TARGET_ALPHA)
10114 TaskState
*ts
= get_task_state(cpu
);
10115 /* target_to_host_old_sigset will bswap back */
10116 abi_ulong mask
= tswapal(arg1
);
10117 set
= &ts
->sigsuspend_mask
;
10118 target_to_host_old_sigset(set
, &mask
);
10120 ret
= process_sigsuspend_mask(&set
, arg1
, sizeof(target_sigset_t
));
10125 ret
= get_errno(safe_rt_sigsuspend(set
, SIGSET_T_SIZE
));
10126 finish_sigsuspend_mask(ret
);
10130 case TARGET_NR_rt_sigsuspend
:
10134 ret
= process_sigsuspend_mask(&set
, arg1
, arg2
);
10138 ret
= get_errno(safe_rt_sigsuspend(set
, SIGSET_T_SIZE
));
10139 finish_sigsuspend_mask(ret
);
10142 #ifdef TARGET_NR_rt_sigtimedwait
10143 case TARGET_NR_rt_sigtimedwait
:
10146 struct timespec uts
, *puts
;
10149 if (arg4
!= sizeof(target_sigset_t
)) {
10150 return -TARGET_EINVAL
;
10153 if (!(p
= lock_user(VERIFY_READ
, arg1
, sizeof(target_sigset_t
), 1)))
10154 return -TARGET_EFAULT
;
10155 target_to_host_sigset(&set
, p
);
10156 unlock_user(p
, arg1
, 0);
10159 if (target_to_host_timespec(puts
, arg3
)) {
10160 return -TARGET_EFAULT
;
10165 ret
= get_errno(safe_rt_sigtimedwait(&set
, &uinfo
, puts
,
10167 if (!is_error(ret
)) {
10169 p
= lock_user(VERIFY_WRITE
, arg2
, sizeof(target_siginfo_t
),
10172 return -TARGET_EFAULT
;
10174 host_to_target_siginfo(p
, &uinfo
);
10175 unlock_user(p
, arg2
, sizeof(target_siginfo_t
));
10177 ret
= host_to_target_signal(ret
);
10182 #ifdef TARGET_NR_rt_sigtimedwait_time64
10183 case TARGET_NR_rt_sigtimedwait_time64
:
10186 struct timespec uts
, *puts
;
10189 if (arg4
!= sizeof(target_sigset_t
)) {
10190 return -TARGET_EINVAL
;
10193 p
= lock_user(VERIFY_READ
, arg1
, sizeof(target_sigset_t
), 1);
10195 return -TARGET_EFAULT
;
10197 target_to_host_sigset(&set
, p
);
10198 unlock_user(p
, arg1
, 0);
10201 if (target_to_host_timespec64(puts
, arg3
)) {
10202 return -TARGET_EFAULT
;
10207 ret
= get_errno(safe_rt_sigtimedwait(&set
, &uinfo
, puts
,
10209 if (!is_error(ret
)) {
10211 p
= lock_user(VERIFY_WRITE
, arg2
,
10212 sizeof(target_siginfo_t
), 0);
10214 return -TARGET_EFAULT
;
10216 host_to_target_siginfo(p
, &uinfo
);
10217 unlock_user(p
, arg2
, sizeof(target_siginfo_t
));
10219 ret
= host_to_target_signal(ret
);
10224 case TARGET_NR_rt_sigqueueinfo
:
10228 p
= lock_user(VERIFY_READ
, arg3
, sizeof(target_siginfo_t
), 1);
10230 return -TARGET_EFAULT
;
10232 target_to_host_siginfo(&uinfo
, p
);
10233 unlock_user(p
, arg3
, 0);
10234 ret
= get_errno(sys_rt_sigqueueinfo(arg1
, target_to_host_signal(arg2
), &uinfo
));
10237 case TARGET_NR_rt_tgsigqueueinfo
:
10241 p
= lock_user(VERIFY_READ
, arg4
, sizeof(target_siginfo_t
), 1);
10243 return -TARGET_EFAULT
;
10245 target_to_host_siginfo(&uinfo
, p
);
10246 unlock_user(p
, arg4
, 0);
10247 ret
= get_errno(sys_rt_tgsigqueueinfo(arg1
, arg2
, target_to_host_signal(arg3
), &uinfo
));
10250 #ifdef TARGET_NR_sigreturn
10251 case TARGET_NR_sigreturn
:
10252 if (block_signals()) {
10253 return -QEMU_ERESTARTSYS
;
10255 return do_sigreturn(cpu_env
);
10257 case TARGET_NR_rt_sigreturn
:
10258 if (block_signals()) {
10259 return -QEMU_ERESTARTSYS
;
10261 return do_rt_sigreturn(cpu_env
);
10262 case TARGET_NR_sethostname
:
10263 if (!(p
= lock_user_string(arg1
)))
10264 return -TARGET_EFAULT
;
10265 ret
= get_errno(sethostname(p
, arg2
));
10266 unlock_user(p
, arg1
, 0);
10268 #ifdef TARGET_NR_setrlimit
10269 case TARGET_NR_setrlimit
:
10271 int resource
= target_to_host_resource(arg1
);
10272 struct target_rlimit
*target_rlim
;
10273 struct rlimit rlim
;
10274 if (!lock_user_struct(VERIFY_READ
, target_rlim
, arg2
, 1))
10275 return -TARGET_EFAULT
;
10276 rlim
.rlim_cur
= target_to_host_rlim(target_rlim
->rlim_cur
);
10277 rlim
.rlim_max
= target_to_host_rlim(target_rlim
->rlim_max
);
10278 unlock_user_struct(target_rlim
, arg2
, 0);
10280 * If we just passed through resource limit settings for memory then
10281 * they would also apply to QEMU's own allocations, and QEMU will
10282 * crash or hang or die if its allocations fail. Ideally we would
10283 * track the guest allocations in QEMU and apply the limits ourselves.
10284 * For now, just tell the guest the call succeeded but don't actually
10287 if (resource
!= RLIMIT_AS
&&
10288 resource
!= RLIMIT_DATA
&&
10289 resource
!= RLIMIT_STACK
) {
10290 return get_errno(setrlimit(resource
, &rlim
));
10296 #ifdef TARGET_NR_getrlimit
10297 case TARGET_NR_getrlimit
:
10299 int resource
= target_to_host_resource(arg1
);
10300 struct target_rlimit
*target_rlim
;
10301 struct rlimit rlim
;
10303 ret
= get_errno(getrlimit(resource
, &rlim
));
10304 if (!is_error(ret
)) {
10305 if (!lock_user_struct(VERIFY_WRITE
, target_rlim
, arg2
, 0))
10306 return -TARGET_EFAULT
;
10307 target_rlim
->rlim_cur
= host_to_target_rlim(rlim
.rlim_cur
);
10308 target_rlim
->rlim_max
= host_to_target_rlim(rlim
.rlim_max
);
10309 unlock_user_struct(target_rlim
, arg2
, 1);
10314 case TARGET_NR_getrusage
:
10316 struct rusage rusage
;
10317 ret
= get_errno(getrusage(arg1
, &rusage
));
10318 if (!is_error(ret
)) {
10319 ret
= host_to_target_rusage(arg2
, &rusage
);
10323 #if defined(TARGET_NR_gettimeofday)
10324 case TARGET_NR_gettimeofday
:
10327 struct timezone tz
;
10329 ret
= get_errno(gettimeofday(&tv
, &tz
));
10330 if (!is_error(ret
)) {
10331 if (arg1
&& copy_to_user_timeval(arg1
, &tv
)) {
10332 return -TARGET_EFAULT
;
10334 if (arg2
&& copy_to_user_timezone(arg2
, &tz
)) {
10335 return -TARGET_EFAULT
;
10341 #if defined(TARGET_NR_settimeofday)
10342 case TARGET_NR_settimeofday
:
10344 struct timeval tv
, *ptv
= NULL
;
10345 struct timezone tz
, *ptz
= NULL
;
10348 if (copy_from_user_timeval(&tv
, arg1
)) {
10349 return -TARGET_EFAULT
;
10355 if (copy_from_user_timezone(&tz
, arg2
)) {
10356 return -TARGET_EFAULT
;
10361 return get_errno(settimeofday(ptv
, ptz
));
10364 #if defined(TARGET_NR_select)
10365 case TARGET_NR_select
:
10366 #if defined(TARGET_WANT_NI_OLD_SELECT)
10367 /* some architectures used to have old_select here
10368 * but now ENOSYS it.
10370 ret
= -TARGET_ENOSYS
;
10371 #elif defined(TARGET_WANT_OLD_SYS_SELECT)
10372 ret
= do_old_select(arg1
);
10374 ret
= do_select(arg1
, arg2
, arg3
, arg4
, arg5
);
10378 #ifdef TARGET_NR_pselect6
10379 case TARGET_NR_pselect6
:
10380 return do_pselect6(arg1
, arg2
, arg3
, arg4
, arg5
, arg6
, false);
10382 #ifdef TARGET_NR_pselect6_time64
10383 case TARGET_NR_pselect6_time64
:
10384 return do_pselect6(arg1
, arg2
, arg3
, arg4
, arg5
, arg6
, true);
10386 #ifdef TARGET_NR_symlink
10387 case TARGET_NR_symlink
:
10390 p
= lock_user_string(arg1
);
10391 p2
= lock_user_string(arg2
);
10393 ret
= -TARGET_EFAULT
;
10395 ret
= get_errno(symlink(p
, p2
));
10396 unlock_user(p2
, arg2
, 0);
10397 unlock_user(p
, arg1
, 0);
10401 #if defined(TARGET_NR_symlinkat)
10402 case TARGET_NR_symlinkat
:
10405 p
= lock_user_string(arg1
);
10406 p2
= lock_user_string(arg3
);
10408 ret
= -TARGET_EFAULT
;
10410 ret
= get_errno(symlinkat(p
, arg2
, p2
));
10411 unlock_user(p2
, arg3
, 0);
10412 unlock_user(p
, arg1
, 0);
10416 #ifdef TARGET_NR_readlink
10417 case TARGET_NR_readlink
:
10420 p
= lock_user_string(arg1
);
10421 p2
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
10422 ret
= get_errno(do_guest_readlink(p
, p2
, arg3
));
10423 unlock_user(p2
, arg2
, ret
);
10424 unlock_user(p
, arg1
, 0);
10428 #if defined(TARGET_NR_readlinkat)
10429 case TARGET_NR_readlinkat
:
10432 p
= lock_user_string(arg2
);
10433 p2
= lock_user(VERIFY_WRITE
, arg3
, arg4
, 0);
10435 ret
= -TARGET_EFAULT
;
10436 } else if (!arg4
) {
10437 /* Short circuit this for the magic exe check. */
10438 ret
= -TARGET_EINVAL
;
10439 } else if (is_proc_myself((const char *)p
, "exe")) {
10441 * Don't worry about sign mismatch as earlier mapping
10442 * logic would have thrown a bad address error.
10444 ret
= MIN(strlen(exec_path
), arg4
);
10445 /* We cannot NUL terminate the string. */
10446 memcpy(p2
, exec_path
, ret
);
10448 ret
= get_errno(readlinkat(arg1
, path(p
), p2
, arg4
));
10450 unlock_user(p2
, arg3
, ret
);
10451 unlock_user(p
, arg2
, 0);
10455 #ifdef TARGET_NR_swapon
10456 case TARGET_NR_swapon
:
10457 if (!(p
= lock_user_string(arg1
)))
10458 return -TARGET_EFAULT
;
10459 ret
= get_errno(swapon(p
, arg2
));
10460 unlock_user(p
, arg1
, 0);
10463 case TARGET_NR_reboot
:
10464 if (arg3
== LINUX_REBOOT_CMD_RESTART2
) {
10465 /* arg4 must be ignored in all other cases */
10466 p
= lock_user_string(arg4
);
10468 return -TARGET_EFAULT
;
10470 ret
= get_errno(reboot(arg1
, arg2
, arg3
, p
));
10471 unlock_user(p
, arg4
, 0);
10473 ret
= get_errno(reboot(arg1
, arg2
, arg3
, NULL
));
10476 #ifdef TARGET_NR_mmap
10477 case TARGET_NR_mmap
:
10478 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
10479 (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
10480 defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
10481 || defined(TARGET_S390X)
10484 abi_ulong v1
, v2
, v3
, v4
, v5
, v6
;
10485 if (!(v
= lock_user(VERIFY_READ
, arg1
, 6 * sizeof(abi_ulong
), 1)))
10486 return -TARGET_EFAULT
;
10487 v1
= tswapal(v
[0]);
10488 v2
= tswapal(v
[1]);
10489 v3
= tswapal(v
[2]);
10490 v4
= tswapal(v
[3]);
10491 v5
= tswapal(v
[4]);
10492 v6
= tswapal(v
[5]);
10493 unlock_user(v
, arg1
, 0);
10494 return do_mmap(v1
, v2
, v3
, v4
, v5
, v6
);
10497 /* mmap pointers are always untagged */
10498 return do_mmap(arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
10501 #ifdef TARGET_NR_mmap2
10502 case TARGET_NR_mmap2
:
10504 #define MMAP_SHIFT 12
10506 return do_mmap(arg1
, arg2
, arg3
, arg4
, arg5
,
10507 (off_t
)(abi_ulong
)arg6
<< MMAP_SHIFT
);
10509 case TARGET_NR_munmap
:
10510 arg1
= cpu_untagged_addr(cpu
, arg1
);
10511 return get_errno(target_munmap(arg1
, arg2
));
10512 case TARGET_NR_mprotect
:
10513 arg1
= cpu_untagged_addr(cpu
, arg1
);
10515 TaskState
*ts
= get_task_state(cpu
);
10516 /* Special hack to detect libc making the stack executable. */
10517 if ((arg3
& PROT_GROWSDOWN
)
10518 && arg1
>= ts
->info
->stack_limit
10519 && arg1
<= ts
->info
->start_stack
) {
10520 arg3
&= ~PROT_GROWSDOWN
;
10521 arg2
= arg2
+ arg1
- ts
->info
->stack_limit
;
10522 arg1
= ts
->info
->stack_limit
;
10525 return get_errno(target_mprotect(arg1
, arg2
, arg3
));
10526 #ifdef TARGET_NR_mremap
10527 case TARGET_NR_mremap
:
10528 arg1
= cpu_untagged_addr(cpu
, arg1
);
10529 /* mremap new_addr (arg5) is always untagged */
10530 return get_errno(target_mremap(arg1
, arg2
, arg3
, arg4
, arg5
));
10532 /* ??? msync/mlock/munlock are broken for softmmu. */
10533 #ifdef TARGET_NR_msync
10534 case TARGET_NR_msync
:
10535 return get_errno(msync(g2h(cpu
, arg1
), arg2
,
10536 target_to_host_msync_arg(arg3
)));
10538 #ifdef TARGET_NR_mlock
10539 case TARGET_NR_mlock
:
10540 return get_errno(mlock(g2h(cpu
, arg1
), arg2
));
10542 #ifdef TARGET_NR_munlock
10543 case TARGET_NR_munlock
:
10544 return get_errno(munlock(g2h(cpu
, arg1
), arg2
));
10546 #ifdef TARGET_NR_mlockall
10547 case TARGET_NR_mlockall
:
10548 return get_errno(mlockall(target_to_host_mlockall_arg(arg1
)));
10550 #ifdef TARGET_NR_munlockall
10551 case TARGET_NR_munlockall
:
10552 return get_errno(munlockall());
10554 #ifdef TARGET_NR_truncate
10555 case TARGET_NR_truncate
:
10556 if (!(p
= lock_user_string(arg1
)))
10557 return -TARGET_EFAULT
;
10558 ret
= get_errno(truncate(p
, arg2
));
10559 unlock_user(p
, arg1
, 0);
10562 #ifdef TARGET_NR_ftruncate
10563 case TARGET_NR_ftruncate
:
10564 return get_errno(ftruncate(arg1
, arg2
));
10566 case TARGET_NR_fchmod
:
10567 return get_errno(fchmod(arg1
, arg2
));
10568 #if defined(TARGET_NR_fchmodat)
10569 case TARGET_NR_fchmodat
:
10570 if (!(p
= lock_user_string(arg2
)))
10571 return -TARGET_EFAULT
;
10572 ret
= get_errno(fchmodat(arg1
, p
, arg3
, 0));
10573 unlock_user(p
, arg2
, 0);
10576 case TARGET_NR_getpriority
:
10577 /* Note that negative values are valid for getpriority, so we must
10578 differentiate based on errno settings. */
10580 ret
= getpriority(arg1
, arg2
);
10581 if (ret
== -1 && errno
!= 0) {
10582 return -host_to_target_errno(errno
);
10584 #ifdef TARGET_ALPHA
10585 /* Return value is the unbiased priority. Signal no error. */
10586 cpu_env
->ir
[IR_V0
] = 0;
10588 /* Return value is a biased priority to avoid negative numbers. */
10592 case TARGET_NR_setpriority
:
10593 return get_errno(setpriority(arg1
, arg2
, arg3
));
10594 #ifdef TARGET_NR_statfs
10595 case TARGET_NR_statfs
:
10596 if (!(p
= lock_user_string(arg1
))) {
10597 return -TARGET_EFAULT
;
10599 ret
= get_errno(statfs(path(p
), &stfs
));
10600 unlock_user(p
, arg1
, 0);
10602 if (!is_error(ret
)) {
10603 struct target_statfs
*target_stfs
;
10605 if (!lock_user_struct(VERIFY_WRITE
, target_stfs
, arg2
, 0))
10606 return -TARGET_EFAULT
;
10607 __put_user(stfs
.f_type
, &target_stfs
->f_type
);
10608 __put_user(stfs
.f_bsize
, &target_stfs
->f_bsize
);
10609 __put_user(stfs
.f_blocks
, &target_stfs
->f_blocks
);
10610 __put_user(stfs
.f_bfree
, &target_stfs
->f_bfree
);
10611 __put_user(stfs
.f_bavail
, &target_stfs
->f_bavail
);
10612 __put_user(stfs
.f_files
, &target_stfs
->f_files
);
10613 __put_user(stfs
.f_ffree
, &target_stfs
->f_ffree
);
10614 __put_user(stfs
.f_fsid
.__val
[0], &target_stfs
->f_fsid
.val
[0]);
10615 __put_user(stfs
.f_fsid
.__val
[1], &target_stfs
->f_fsid
.val
[1]);
10616 __put_user(stfs
.f_namelen
, &target_stfs
->f_namelen
);
10617 __put_user(stfs
.f_frsize
, &target_stfs
->f_frsize
);
10618 #ifdef _STATFS_F_FLAGS
10619 __put_user(stfs
.f_flags
, &target_stfs
->f_flags
);
10621 __put_user(0, &target_stfs
->f_flags
);
10623 memset(target_stfs
->f_spare
, 0, sizeof(target_stfs
->f_spare
));
10624 unlock_user_struct(target_stfs
, arg2
, 1);
10628 #ifdef TARGET_NR_fstatfs
10629 case TARGET_NR_fstatfs
:
10630 ret
= get_errno(fstatfs(arg1
, &stfs
));
10631 goto convert_statfs
;
10633 #ifdef TARGET_NR_statfs64
10634 case TARGET_NR_statfs64
:
10635 if (!(p
= lock_user_string(arg1
))) {
10636 return -TARGET_EFAULT
;
10638 ret
= get_errno(statfs(path(p
), &stfs
));
10639 unlock_user(p
, arg1
, 0);
10641 if (!is_error(ret
)) {
10642 struct target_statfs64
*target_stfs
;
10644 if (!lock_user_struct(VERIFY_WRITE
, target_stfs
, arg3
, 0))
10645 return -TARGET_EFAULT
;
10646 __put_user(stfs
.f_type
, &target_stfs
->f_type
);
10647 __put_user(stfs
.f_bsize
, &target_stfs
->f_bsize
);
10648 __put_user(stfs
.f_blocks
, &target_stfs
->f_blocks
);
10649 __put_user(stfs
.f_bfree
, &target_stfs
->f_bfree
);
10650 __put_user(stfs
.f_bavail
, &target_stfs
->f_bavail
);
10651 __put_user(stfs
.f_files
, &target_stfs
->f_files
);
10652 __put_user(stfs
.f_ffree
, &target_stfs
->f_ffree
);
10653 __put_user(stfs
.f_fsid
.__val
[0], &target_stfs
->f_fsid
.val
[0]);
10654 __put_user(stfs
.f_fsid
.__val
[1], &target_stfs
->f_fsid
.val
[1]);
10655 __put_user(stfs
.f_namelen
, &target_stfs
->f_namelen
);
10656 __put_user(stfs
.f_frsize
, &target_stfs
->f_frsize
);
10657 #ifdef _STATFS_F_FLAGS
10658 __put_user(stfs
.f_flags
, &target_stfs
->f_flags
);
10660 __put_user(0, &target_stfs
->f_flags
);
10662 memset(target_stfs
->f_spare
, 0, sizeof(target_stfs
->f_spare
));
10663 unlock_user_struct(target_stfs
, arg3
, 1);
10666 case TARGET_NR_fstatfs64
:
10667 ret
= get_errno(fstatfs(arg1
, &stfs
));
10668 goto convert_statfs64
;
10670 #ifdef TARGET_NR_socketcall
10671 case TARGET_NR_socketcall
:
10672 return do_socketcall(arg1
, arg2
);
10674 #ifdef TARGET_NR_accept
10675 case TARGET_NR_accept
:
10676 return do_accept4(arg1
, arg2
, arg3
, 0);
10678 #ifdef TARGET_NR_accept4
10679 case TARGET_NR_accept4
:
10680 return do_accept4(arg1
, arg2
, arg3
, arg4
);
10682 #ifdef TARGET_NR_bind
10683 case TARGET_NR_bind
:
10684 return do_bind(arg1
, arg2
, arg3
);
10686 #ifdef TARGET_NR_connect
10687 case TARGET_NR_connect
:
10688 return do_connect(arg1
, arg2
, arg3
);
10690 #ifdef TARGET_NR_getpeername
10691 case TARGET_NR_getpeername
:
10692 return do_getpeername(arg1
, arg2
, arg3
);
10694 #ifdef TARGET_NR_getsockname
10695 case TARGET_NR_getsockname
:
10696 return do_getsockname(arg1
, arg2
, arg3
);
10698 #ifdef TARGET_NR_getsockopt
10699 case TARGET_NR_getsockopt
:
10700 return do_getsockopt(arg1
, arg2
, arg3
, arg4
, arg5
);
10702 #ifdef TARGET_NR_listen
10703 case TARGET_NR_listen
:
10704 return get_errno(listen(arg1
, arg2
));
10706 #ifdef TARGET_NR_recv
10707 case TARGET_NR_recv
:
10708 return do_recvfrom(arg1
, arg2
, arg3
, arg4
, 0, 0);
10710 #ifdef TARGET_NR_recvfrom
10711 case TARGET_NR_recvfrom
:
10712 return do_recvfrom(arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
10714 #ifdef TARGET_NR_recvmsg
10715 case TARGET_NR_recvmsg
:
10716 return do_sendrecvmsg(arg1
, arg2
, arg3
, 0);
10718 #ifdef TARGET_NR_send
10719 case TARGET_NR_send
:
10720 return do_sendto(arg1
, arg2
, arg3
, arg4
, 0, 0);
10722 #ifdef TARGET_NR_sendmsg
10723 case TARGET_NR_sendmsg
:
10724 return do_sendrecvmsg(arg1
, arg2
, arg3
, 1);
10726 #ifdef TARGET_NR_sendmmsg
10727 case TARGET_NR_sendmmsg
:
10728 return do_sendrecvmmsg(arg1
, arg2
, arg3
, arg4
, 1);
10730 #ifdef TARGET_NR_recvmmsg
10731 case TARGET_NR_recvmmsg
:
10732 return do_sendrecvmmsg(arg1
, arg2
, arg3
, arg4
, 0);
10734 #ifdef TARGET_NR_sendto
10735 case TARGET_NR_sendto
:
10736 return do_sendto(arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
10738 #ifdef TARGET_NR_shutdown
10739 case TARGET_NR_shutdown
:
10740 return get_errno(shutdown(arg1
, arg2
));
10742 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
10743 case TARGET_NR_getrandom
:
10744 p
= lock_user(VERIFY_WRITE
, arg1
, arg2
, 0);
10746 return -TARGET_EFAULT
;
10748 ret
= get_errno(getrandom(p
, arg2
, arg3
));
10749 unlock_user(p
, arg1
, ret
);
10752 #ifdef TARGET_NR_socket
10753 case TARGET_NR_socket
:
10754 return do_socket(arg1
, arg2
, arg3
);
10756 #ifdef TARGET_NR_socketpair
10757 case TARGET_NR_socketpair
:
10758 return do_socketpair(arg1
, arg2
, arg3
, arg4
);
10760 #ifdef TARGET_NR_setsockopt
10761 case TARGET_NR_setsockopt
:
10762 return do_setsockopt(arg1
, arg2
, arg3
, arg4
, (socklen_t
) arg5
);
10764 #if defined(TARGET_NR_syslog)
10765 case TARGET_NR_syslog
:
10770 case TARGET_SYSLOG_ACTION_CLOSE
: /* Close log */
10771 case TARGET_SYSLOG_ACTION_OPEN
: /* Open log */
10772 case TARGET_SYSLOG_ACTION_CLEAR
: /* Clear ring buffer */
10773 case TARGET_SYSLOG_ACTION_CONSOLE_OFF
: /* Disable logging */
10774 case TARGET_SYSLOG_ACTION_CONSOLE_ON
: /* Enable logging */
10775 case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL
: /* Set messages level */
10776 case TARGET_SYSLOG_ACTION_SIZE_UNREAD
: /* Number of chars */
10777 case TARGET_SYSLOG_ACTION_SIZE_BUFFER
: /* Size of the buffer */
10778 return get_errno(sys_syslog((int)arg1
, NULL
, (int)arg3
));
10779 case TARGET_SYSLOG_ACTION_READ
: /* Read from log */
10780 case TARGET_SYSLOG_ACTION_READ_CLEAR
: /* Read/clear msgs */
10781 case TARGET_SYSLOG_ACTION_READ_ALL
: /* Read last messages */
10784 return -TARGET_EINVAL
;
10789 p
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
10791 return -TARGET_EFAULT
;
10793 ret
= get_errno(sys_syslog((int)arg1
, p
, (int)arg3
));
10794 unlock_user(p
, arg2
, arg3
);
10798 return -TARGET_EINVAL
;
10803 case TARGET_NR_setitimer
:
10805 struct itimerval value
, ovalue
, *pvalue
;
10809 if (copy_from_user_timeval(&pvalue
->it_interval
, arg2
)
10810 || copy_from_user_timeval(&pvalue
->it_value
,
10811 arg2
+ sizeof(struct target_timeval
)))
10812 return -TARGET_EFAULT
;
10816 ret
= get_errno(setitimer(arg1
, pvalue
, &ovalue
));
10817 if (!is_error(ret
) && arg3
) {
10818 if (copy_to_user_timeval(arg3
,
10819 &ovalue
.it_interval
)
10820 || copy_to_user_timeval(arg3
+ sizeof(struct target_timeval
),
10822 return -TARGET_EFAULT
;
10826 case TARGET_NR_getitimer
:
10828 struct itimerval value
;
10830 ret
= get_errno(getitimer(arg1
, &value
));
10831 if (!is_error(ret
) && arg2
) {
10832 if (copy_to_user_timeval(arg2
,
10833 &value
.it_interval
)
10834 || copy_to_user_timeval(arg2
+ sizeof(struct target_timeval
),
10836 return -TARGET_EFAULT
;
10840 #ifdef TARGET_NR_stat
10841 case TARGET_NR_stat
:
10842 if (!(p
= lock_user_string(arg1
))) {
10843 return -TARGET_EFAULT
;
10845 ret
= get_errno(stat(path(p
), &st
));
10846 unlock_user(p
, arg1
, 0);
10849 #ifdef TARGET_NR_lstat
10850 case TARGET_NR_lstat
:
10851 if (!(p
= lock_user_string(arg1
))) {
10852 return -TARGET_EFAULT
;
10854 ret
= get_errno(lstat(path(p
), &st
));
10855 unlock_user(p
, arg1
, 0);
10858 #ifdef TARGET_NR_fstat
10859 case TARGET_NR_fstat
:
10861 ret
= get_errno(fstat(arg1
, &st
));
10862 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat)
10865 if (!is_error(ret
)) {
10866 struct target_stat
*target_st
;
10868 if (!lock_user_struct(VERIFY_WRITE
, target_st
, arg2
, 0))
10869 return -TARGET_EFAULT
;
10870 memset(target_st
, 0, sizeof(*target_st
));
10871 __put_user(st
.st_dev
, &target_st
->st_dev
);
10872 __put_user(st
.st_ino
, &target_st
->st_ino
);
10873 __put_user(st
.st_mode
, &target_st
->st_mode
);
10874 __put_user(st
.st_uid
, &target_st
->st_uid
);
10875 __put_user(st
.st_gid
, &target_st
->st_gid
);
10876 __put_user(st
.st_nlink
, &target_st
->st_nlink
);
10877 __put_user(st
.st_rdev
, &target_st
->st_rdev
);
10878 __put_user(st
.st_size
, &target_st
->st_size
);
10879 __put_user(st
.st_blksize
, &target_st
->st_blksize
);
10880 __put_user(st
.st_blocks
, &target_st
->st_blocks
);
10881 __put_user(st
.st_atime
, &target_st
->target_st_atime
);
10882 __put_user(st
.st_mtime
, &target_st
->target_st_mtime
);
10883 __put_user(st
.st_ctime
, &target_st
->target_st_ctime
);
10884 #if defined(HAVE_STRUCT_STAT_ST_ATIM) && defined(TARGET_STAT_HAVE_NSEC)
10885 __put_user(st
.st_atim
.tv_nsec
,
10886 &target_st
->target_st_atime_nsec
);
10887 __put_user(st
.st_mtim
.tv_nsec
,
10888 &target_st
->target_st_mtime_nsec
);
10889 __put_user(st
.st_ctim
.tv_nsec
,
10890 &target_st
->target_st_ctime_nsec
);
10892 unlock_user_struct(target_st
, arg2
, 1);
10897 case TARGET_NR_vhangup
:
10898 return get_errno(vhangup());
10899 #ifdef TARGET_NR_syscall
10900 case TARGET_NR_syscall
:
10901 return do_syscall(cpu_env
, arg1
& 0xffff, arg2
, arg3
, arg4
, arg5
,
10902 arg6
, arg7
, arg8
, 0);
10904 #if defined(TARGET_NR_wait4)
10905 case TARGET_NR_wait4
:
10908 abi_long status_ptr
= arg2
;
10909 struct rusage rusage
, *rusage_ptr
;
10910 abi_ulong target_rusage
= arg4
;
10911 abi_long rusage_err
;
10913 rusage_ptr
= &rusage
;
10916 ret
= get_errno(safe_wait4(arg1
, &status
, arg3
, rusage_ptr
));
10917 if (!is_error(ret
)) {
10918 if (status_ptr
&& ret
) {
10919 status
= host_to_target_waitstatus(status
);
10920 if (put_user_s32(status
, status_ptr
))
10921 return -TARGET_EFAULT
;
10923 if (target_rusage
) {
10924 rusage_err
= host_to_target_rusage(target_rusage
, &rusage
);
10933 #ifdef TARGET_NR_swapoff
10934 case TARGET_NR_swapoff
:
10935 if (!(p
= lock_user_string(arg1
)))
10936 return -TARGET_EFAULT
;
10937 ret
= get_errno(swapoff(p
));
10938 unlock_user(p
, arg1
, 0);
10941 case TARGET_NR_sysinfo
:
10943 struct target_sysinfo
*target_value
;
10944 struct sysinfo value
;
10945 ret
= get_errno(sysinfo(&value
));
10946 if (!is_error(ret
) && arg1
)
10948 if (!lock_user_struct(VERIFY_WRITE
, target_value
, arg1
, 0))
10949 return -TARGET_EFAULT
;
10950 __put_user(value
.uptime
, &target_value
->uptime
);
10951 __put_user(value
.loads
[0], &target_value
->loads
[0]);
10952 __put_user(value
.loads
[1], &target_value
->loads
[1]);
10953 __put_user(value
.loads
[2], &target_value
->loads
[2]);
10954 __put_user(value
.totalram
, &target_value
->totalram
);
10955 __put_user(value
.freeram
, &target_value
->freeram
);
10956 __put_user(value
.sharedram
, &target_value
->sharedram
);
10957 __put_user(value
.bufferram
, &target_value
->bufferram
);
10958 __put_user(value
.totalswap
, &target_value
->totalswap
);
10959 __put_user(value
.freeswap
, &target_value
->freeswap
);
10960 __put_user(value
.procs
, &target_value
->procs
);
10961 __put_user(value
.totalhigh
, &target_value
->totalhigh
);
10962 __put_user(value
.freehigh
, &target_value
->freehigh
);
10963 __put_user(value
.mem_unit
, &target_value
->mem_unit
);
10964 unlock_user_struct(target_value
, arg1
, 1);
10968 #ifdef TARGET_NR_ipc
10969 case TARGET_NR_ipc
:
10970 return do_ipc(cpu_env
, arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
10972 #ifdef TARGET_NR_semget
10973 case TARGET_NR_semget
:
10974 return get_errno(semget(arg1
, arg2
, arg3
));
10976 #ifdef TARGET_NR_semop
10977 case TARGET_NR_semop
:
10978 return do_semtimedop(arg1
, arg2
, arg3
, 0, false);
10980 #ifdef TARGET_NR_semtimedop
10981 case TARGET_NR_semtimedop
:
10982 return do_semtimedop(arg1
, arg2
, arg3
, arg4
, false);
10984 #ifdef TARGET_NR_semtimedop_time64
10985 case TARGET_NR_semtimedop_time64
:
10986 return do_semtimedop(arg1
, arg2
, arg3
, arg4
, true);
10988 #ifdef TARGET_NR_semctl
10989 case TARGET_NR_semctl
:
10990 return do_semctl(arg1
, arg2
, arg3
, arg4
);
10992 #ifdef TARGET_NR_msgctl
10993 case TARGET_NR_msgctl
:
10994 return do_msgctl(arg1
, arg2
, arg3
);
10996 #ifdef TARGET_NR_msgget
10997 case TARGET_NR_msgget
:
10998 return get_errno(msgget(arg1
, arg2
));
11000 #ifdef TARGET_NR_msgrcv
11001 case TARGET_NR_msgrcv
:
11002 return do_msgrcv(arg1
, arg2
, arg3
, arg4
, arg5
);
11004 #ifdef TARGET_NR_msgsnd
11005 case TARGET_NR_msgsnd
:
11006 return do_msgsnd(arg1
, arg2
, arg3
, arg4
);
11008 #ifdef TARGET_NR_shmget
11009 case TARGET_NR_shmget
:
11010 return get_errno(shmget(arg1
, arg2
, arg3
));
11012 #ifdef TARGET_NR_shmctl
11013 case TARGET_NR_shmctl
:
11014 return do_shmctl(arg1
, arg2
, arg3
);
11016 #ifdef TARGET_NR_shmat
11017 case TARGET_NR_shmat
:
11018 return target_shmat(cpu_env
, arg1
, arg2
, arg3
);
11020 #ifdef TARGET_NR_shmdt
11021 case TARGET_NR_shmdt
:
11022 return target_shmdt(arg1
);
11024 case TARGET_NR_fsync
:
11025 return get_errno(fsync(arg1
));
11026 case TARGET_NR_clone
:
11027 /* Linux manages to have three different orderings for its
11028 * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
11029 * match the kernel's CONFIG_CLONE_* settings.
11030 * Microblaze is further special in that it uses a sixth
11031 * implicit argument to clone for the TLS pointer.
11033 #if defined(TARGET_MICROBLAZE)
11034 ret
= get_errno(do_fork(cpu_env
, arg1
, arg2
, arg4
, arg6
, arg5
));
11035 #elif defined(TARGET_CLONE_BACKWARDS)
11036 ret
= get_errno(do_fork(cpu_env
, arg1
, arg2
, arg3
, arg4
, arg5
));
11037 #elif defined(TARGET_CLONE_BACKWARDS2)
11038 ret
= get_errno(do_fork(cpu_env
, arg2
, arg1
, arg3
, arg5
, arg4
));
11040 ret
= get_errno(do_fork(cpu_env
, arg1
, arg2
, arg3
, arg5
, arg4
));
11043 #ifdef __NR_exit_group
11044 /* new thread calls */
11045 case TARGET_NR_exit_group
:
11046 preexit_cleanup(cpu_env
, arg1
);
11047 return get_errno(exit_group(arg1
));
11049 case TARGET_NR_setdomainname
:
11050 if (!(p
= lock_user_string(arg1
)))
11051 return -TARGET_EFAULT
;
11052 ret
= get_errno(setdomainname(p
, arg2
));
11053 unlock_user(p
, arg1
, 0);
11055 case TARGET_NR_uname
:
11056 /* no need to transcode because we use the linux syscall */
11058 struct new_utsname
* buf
;
11060 if (!lock_user_struct(VERIFY_WRITE
, buf
, arg1
, 0))
11061 return -TARGET_EFAULT
;
11062 ret
= get_errno(sys_uname(buf
));
11063 if (!is_error(ret
)) {
11064 /* Overwrite the native machine name with whatever is being
11066 g_strlcpy(buf
->machine
, cpu_to_uname_machine(cpu_env
),
11067 sizeof(buf
->machine
));
11068 /* Allow the user to override the reported release. */
11069 if (qemu_uname_release
&& *qemu_uname_release
) {
11070 g_strlcpy(buf
->release
, qemu_uname_release
,
11071 sizeof(buf
->release
));
11074 unlock_user_struct(buf
, arg1
, 1);
11078 case TARGET_NR_modify_ldt
:
11079 return do_modify_ldt(cpu_env
, arg1
, arg2
, arg3
);
11080 #if !defined(TARGET_X86_64)
11081 case TARGET_NR_vm86
:
11082 return do_vm86(cpu_env
, arg1
, arg2
);
11085 #if defined(TARGET_NR_adjtimex)
11086 case TARGET_NR_adjtimex
:
11088 struct timex host_buf
;
11090 if (target_to_host_timex(&host_buf
, arg1
) != 0) {
11091 return -TARGET_EFAULT
;
11093 ret
= get_errno(adjtimex(&host_buf
));
11094 if (!is_error(ret
)) {
11095 if (host_to_target_timex(arg1
, &host_buf
) != 0) {
11096 return -TARGET_EFAULT
;
11102 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)
11103 case TARGET_NR_clock_adjtime
:
11107 if (target_to_host_timex(&htx
, arg2
) != 0) {
11108 return -TARGET_EFAULT
;
11110 ret
= get_errno(clock_adjtime(arg1
, &htx
));
11111 if (!is_error(ret
) && host_to_target_timex(arg2
, &htx
)) {
11112 return -TARGET_EFAULT
;
11117 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
11118 case TARGET_NR_clock_adjtime64
:
11122 if (target_to_host_timex64(&htx
, arg2
) != 0) {
11123 return -TARGET_EFAULT
;
11125 ret
= get_errno(clock_adjtime(arg1
, &htx
));
11126 if (!is_error(ret
) && host_to_target_timex64(arg2
, &htx
)) {
11127 return -TARGET_EFAULT
;
11132 case TARGET_NR_getpgid
:
11133 return get_errno(getpgid(arg1
));
11134 case TARGET_NR_fchdir
:
11135 return get_errno(fchdir(arg1
));
11136 case TARGET_NR_personality
:
11137 return get_errno(personality(arg1
));
11138 #ifdef TARGET_NR__llseek /* Not on alpha */
11139 case TARGET_NR__llseek
:
11142 #if !defined(__NR_llseek)
11143 res
= lseek(arg1
, ((uint64_t)arg2
<< 32) | (abi_ulong
)arg3
, arg5
);
11145 ret
= get_errno(res
);
11150 ret
= get_errno(_llseek(arg1
, arg2
, arg3
, &res
, arg5
));
11152 if ((ret
== 0) && put_user_s64(res
, arg4
)) {
11153 return -TARGET_EFAULT
;
11158 #ifdef TARGET_NR_getdents
11159 case TARGET_NR_getdents
:
11160 return do_getdents(arg1
, arg2
, arg3
);
11161 #endif /* TARGET_NR_getdents */
11162 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
11163 case TARGET_NR_getdents64
:
11164 return do_getdents64(arg1
, arg2
, arg3
);
11165 #endif /* TARGET_NR_getdents64 */
11166 #if defined(TARGET_NR__newselect)
11167 case TARGET_NR__newselect
:
11168 return do_select(arg1
, arg2
, arg3
, arg4
, arg5
);
11170 #ifdef TARGET_NR_poll
11171 case TARGET_NR_poll
:
11172 return do_ppoll(arg1
, arg2
, arg3
, arg4
, arg5
, false, false);
11174 #ifdef TARGET_NR_ppoll
11175 case TARGET_NR_ppoll
:
11176 return do_ppoll(arg1
, arg2
, arg3
, arg4
, arg5
, true, false);
11178 #ifdef TARGET_NR_ppoll_time64
11179 case TARGET_NR_ppoll_time64
:
11180 return do_ppoll(arg1
, arg2
, arg3
, arg4
, arg5
, true, true);
11182 case TARGET_NR_flock
:
11183 /* NOTE: the flock constant seems to be the same for every
11185 return get_errno(safe_flock(arg1
, arg2
));
11186 case TARGET_NR_readv
:
11188 struct iovec
*vec
= lock_iovec(VERIFY_WRITE
, arg2
, arg3
, 0);
11190 ret
= get_errno(safe_readv(arg1
, vec
, arg3
));
11191 unlock_iovec(vec
, arg2
, arg3
, 1);
11193 ret
= -host_to_target_errno(errno
);
11197 case TARGET_NR_writev
:
11199 struct iovec
*vec
= lock_iovec(VERIFY_READ
, arg2
, arg3
, 1);
11201 ret
= get_errno(safe_writev(arg1
, vec
, arg3
));
11202 unlock_iovec(vec
, arg2
, arg3
, 0);
11204 ret
= -host_to_target_errno(errno
);
11208 #if defined(TARGET_NR_preadv)
11209 case TARGET_NR_preadv
:
11211 struct iovec
*vec
= lock_iovec(VERIFY_WRITE
, arg2
, arg3
, 0);
11213 unsigned long low
, high
;
11215 target_to_host_low_high(arg4
, arg5
, &low
, &high
);
11216 ret
= get_errno(safe_preadv(arg1
, vec
, arg3
, low
, high
));
11217 unlock_iovec(vec
, arg2
, arg3
, 1);
11219 ret
= -host_to_target_errno(errno
);
11224 #if defined(TARGET_NR_pwritev)
11225 case TARGET_NR_pwritev
:
11227 struct iovec
*vec
= lock_iovec(VERIFY_READ
, arg2
, arg3
, 1);
11229 unsigned long low
, high
;
11231 target_to_host_low_high(arg4
, arg5
, &low
, &high
);
11232 ret
= get_errno(safe_pwritev(arg1
, vec
, arg3
, low
, high
));
11233 unlock_iovec(vec
, arg2
, arg3
, 0);
11235 ret
= -host_to_target_errno(errno
);
11240 case TARGET_NR_getsid
:
11241 return get_errno(getsid(arg1
));
11242 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
11243 case TARGET_NR_fdatasync
:
11244 return get_errno(fdatasync(arg1
));
11246 case TARGET_NR_sched_getaffinity
:
11248 unsigned int mask_size
;
11249 unsigned long *mask
;
11252 * sched_getaffinity needs multiples of ulong, so need to take
11253 * care of mismatches between target ulong and host ulong sizes.
11255 if (arg2
& (sizeof(abi_ulong
) - 1)) {
11256 return -TARGET_EINVAL
;
11258 mask_size
= (arg2
+ (sizeof(*mask
) - 1)) & ~(sizeof(*mask
) - 1);
11260 mask
= alloca(mask_size
);
11261 memset(mask
, 0, mask_size
);
11262 ret
= get_errno(sys_sched_getaffinity(arg1
, mask_size
, mask
));
11264 if (!is_error(ret
)) {
11266 /* More data returned than the caller's buffer will fit.
11267 * This only happens if sizeof(abi_long) < sizeof(long)
11268 * and the caller passed us a buffer holding an odd number
11269 * of abi_longs. If the host kernel is actually using the
11270 * extra 4 bytes then fail EINVAL; otherwise we can just
11271 * ignore them and only copy the interesting part.
11273 int numcpus
= sysconf(_SC_NPROCESSORS_CONF
);
11274 if (numcpus
> arg2
* 8) {
11275 return -TARGET_EINVAL
;
11280 if (host_to_target_cpu_mask(mask
, mask_size
, arg3
, ret
)) {
11281 return -TARGET_EFAULT
;
11286 case TARGET_NR_sched_setaffinity
:
11288 unsigned int mask_size
;
11289 unsigned long *mask
;
11292 * sched_setaffinity needs multiples of ulong, so need to take
11293 * care of mismatches between target ulong and host ulong sizes.
11295 if (arg2
& (sizeof(abi_ulong
) - 1)) {
11296 return -TARGET_EINVAL
;
11298 mask_size
= (arg2
+ (sizeof(*mask
) - 1)) & ~(sizeof(*mask
) - 1);
11299 mask
= alloca(mask_size
);
11301 ret
= target_to_host_cpu_mask(mask
, mask_size
, arg3
, arg2
);
11306 return get_errno(sys_sched_setaffinity(arg1
, mask_size
, mask
));
11308 case TARGET_NR_getcpu
:
11310 unsigned cpuid
, node
;
11311 ret
= get_errno(sys_getcpu(arg1
? &cpuid
: NULL
,
11312 arg2
? &node
: NULL
,
11314 if (is_error(ret
)) {
11317 if (arg1
&& put_user_u32(cpuid
, arg1
)) {
11318 return -TARGET_EFAULT
;
11320 if (arg2
&& put_user_u32(node
, arg2
)) {
11321 return -TARGET_EFAULT
;
11325 case TARGET_NR_sched_setparam
:
11327 struct target_sched_param
*target_schp
;
11328 struct sched_param schp
;
11331 return -TARGET_EINVAL
;
11333 if (!lock_user_struct(VERIFY_READ
, target_schp
, arg2
, 1)) {
11334 return -TARGET_EFAULT
;
11336 schp
.sched_priority
= tswap32(target_schp
->sched_priority
);
11337 unlock_user_struct(target_schp
, arg2
, 0);
11338 return get_errno(sys_sched_setparam(arg1
, &schp
));
11340 case TARGET_NR_sched_getparam
:
11342 struct target_sched_param
*target_schp
;
11343 struct sched_param schp
;
11346 return -TARGET_EINVAL
;
11348 ret
= get_errno(sys_sched_getparam(arg1
, &schp
));
11349 if (!is_error(ret
)) {
11350 if (!lock_user_struct(VERIFY_WRITE
, target_schp
, arg2
, 0)) {
11351 return -TARGET_EFAULT
;
11353 target_schp
->sched_priority
= tswap32(schp
.sched_priority
);
11354 unlock_user_struct(target_schp
, arg2
, 1);
11358 case TARGET_NR_sched_setscheduler
:
11360 struct target_sched_param
*target_schp
;
11361 struct sched_param schp
;
11363 return -TARGET_EINVAL
;
11365 if (!lock_user_struct(VERIFY_READ
, target_schp
, arg3
, 1)) {
11366 return -TARGET_EFAULT
;
11368 schp
.sched_priority
= tswap32(target_schp
->sched_priority
);
11369 unlock_user_struct(target_schp
, arg3
, 0);
11370 return get_errno(sys_sched_setscheduler(arg1
, arg2
, &schp
));
11372 case TARGET_NR_sched_getscheduler
:
11373 return get_errno(sys_sched_getscheduler(arg1
));
11374 case TARGET_NR_sched_getattr
:
11376 struct target_sched_attr
*target_scha
;
11377 struct sched_attr scha
;
11379 return -TARGET_EINVAL
;
11381 if (arg3
> sizeof(scha
)) {
11382 arg3
= sizeof(scha
);
11384 ret
= get_errno(sys_sched_getattr(arg1
, &scha
, arg3
, arg4
));
11385 if (!is_error(ret
)) {
11386 target_scha
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
11387 if (!target_scha
) {
11388 return -TARGET_EFAULT
;
11390 target_scha
->size
= tswap32(scha
.size
);
11391 target_scha
->sched_policy
= tswap32(scha
.sched_policy
);
11392 target_scha
->sched_flags
= tswap64(scha
.sched_flags
);
11393 target_scha
->sched_nice
= tswap32(scha
.sched_nice
);
11394 target_scha
->sched_priority
= tswap32(scha
.sched_priority
);
11395 target_scha
->sched_runtime
= tswap64(scha
.sched_runtime
);
11396 target_scha
->sched_deadline
= tswap64(scha
.sched_deadline
);
11397 target_scha
->sched_period
= tswap64(scha
.sched_period
);
11398 if (scha
.size
> offsetof(struct sched_attr
, sched_util_min
)) {
11399 target_scha
->sched_util_min
= tswap32(scha
.sched_util_min
);
11400 target_scha
->sched_util_max
= tswap32(scha
.sched_util_max
);
11402 unlock_user(target_scha
, arg2
, arg3
);
11406 case TARGET_NR_sched_setattr
:
11408 struct target_sched_attr
*target_scha
;
11409 struct sched_attr scha
;
11413 return -TARGET_EINVAL
;
11415 if (get_user_u32(size
, arg2
)) {
11416 return -TARGET_EFAULT
;
11419 size
= offsetof(struct target_sched_attr
, sched_util_min
);
11421 if (size
< offsetof(struct target_sched_attr
, sched_util_min
)) {
11422 if (put_user_u32(sizeof(struct target_sched_attr
), arg2
)) {
11423 return -TARGET_EFAULT
;
11425 return -TARGET_E2BIG
;
11428 zeroed
= check_zeroed_user(arg2
, sizeof(struct target_sched_attr
), size
);
11431 } else if (zeroed
== 0) {
11432 if (put_user_u32(sizeof(struct target_sched_attr
), arg2
)) {
11433 return -TARGET_EFAULT
;
11435 return -TARGET_E2BIG
;
11437 if (size
> sizeof(struct target_sched_attr
)) {
11438 size
= sizeof(struct target_sched_attr
);
11441 target_scha
= lock_user(VERIFY_READ
, arg2
, size
, 1);
11442 if (!target_scha
) {
11443 return -TARGET_EFAULT
;
11446 scha
.sched_policy
= tswap32(target_scha
->sched_policy
);
11447 scha
.sched_flags
= tswap64(target_scha
->sched_flags
);
11448 scha
.sched_nice
= tswap32(target_scha
->sched_nice
);
11449 scha
.sched_priority
= tswap32(target_scha
->sched_priority
);
11450 scha
.sched_runtime
= tswap64(target_scha
->sched_runtime
);
11451 scha
.sched_deadline
= tswap64(target_scha
->sched_deadline
);
11452 scha
.sched_period
= tswap64(target_scha
->sched_period
);
11453 if (size
> offsetof(struct target_sched_attr
, sched_util_min
)) {
11454 scha
.sched_util_min
= tswap32(target_scha
->sched_util_min
);
11455 scha
.sched_util_max
= tswap32(target_scha
->sched_util_max
);
11457 unlock_user(target_scha
, arg2
, 0);
11458 return get_errno(sys_sched_setattr(arg1
, &scha
, arg3
));
11460 case TARGET_NR_sched_yield
:
11461 return get_errno(sched_yield());
11462 case TARGET_NR_sched_get_priority_max
:
11463 return get_errno(sched_get_priority_max(arg1
));
11464 case TARGET_NR_sched_get_priority_min
:
11465 return get_errno(sched_get_priority_min(arg1
));
11466 #ifdef TARGET_NR_sched_rr_get_interval
11467 case TARGET_NR_sched_rr_get_interval
:
11469 struct timespec ts
;
11470 ret
= get_errno(sched_rr_get_interval(arg1
, &ts
));
11471 if (!is_error(ret
)) {
11472 ret
= host_to_target_timespec(arg2
, &ts
);
11477 #ifdef TARGET_NR_sched_rr_get_interval_time64
11478 case TARGET_NR_sched_rr_get_interval_time64
:
11480 struct timespec ts
;
11481 ret
= get_errno(sched_rr_get_interval(arg1
, &ts
));
11482 if (!is_error(ret
)) {
11483 ret
= host_to_target_timespec64(arg2
, &ts
);
11488 #if defined(TARGET_NR_nanosleep)
11489 case TARGET_NR_nanosleep
:
11491 struct timespec req
, rem
;
11492 target_to_host_timespec(&req
, arg1
);
11493 ret
= get_errno(safe_nanosleep(&req
, &rem
));
11494 if (is_error(ret
) && arg2
) {
11495 host_to_target_timespec(arg2
, &rem
);
11500 case TARGET_NR_prctl
:
11501 return do_prctl(cpu_env
, arg1
, arg2
, arg3
, arg4
, arg5
);
11503 #ifdef TARGET_NR_arch_prctl
11504 case TARGET_NR_arch_prctl
:
11505 return do_arch_prctl(cpu_env
, arg1
, arg2
);
11507 #ifdef TARGET_NR_pread64
11508 case TARGET_NR_pread64
:
11509 if (regpairs_aligned(cpu_env
, num
)) {
11513 if (arg2
== 0 && arg3
== 0) {
11514 /* Special-case NULL buffer and zero length, which should succeed */
11517 p
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
11519 return -TARGET_EFAULT
;
11522 ret
= get_errno(pread64(arg1
, p
, arg3
, target_offset64(arg4
, arg5
)));
11523 unlock_user(p
, arg2
, ret
);
11525 case TARGET_NR_pwrite64
:
11526 if (regpairs_aligned(cpu_env
, num
)) {
11530 if (arg2
== 0 && arg3
== 0) {
11531 /* Special-case NULL buffer and zero length, which should succeed */
11534 p
= lock_user(VERIFY_READ
, arg2
, arg3
, 1);
11536 return -TARGET_EFAULT
;
11539 ret
= get_errno(pwrite64(arg1
, p
, arg3
, target_offset64(arg4
, arg5
)));
11540 unlock_user(p
, arg2
, 0);
11543 case TARGET_NR_getcwd
:
11544 if (!(p
= lock_user(VERIFY_WRITE
, arg1
, arg2
, 0)))
11545 return -TARGET_EFAULT
;
11546 ret
= get_errno(sys_getcwd1(p
, arg2
));
11547 unlock_user(p
, arg1
, ret
);
11549 case TARGET_NR_capget
:
11550 case TARGET_NR_capset
:
11552 struct target_user_cap_header
*target_header
;
11553 struct target_user_cap_data
*target_data
= NULL
;
11554 struct __user_cap_header_struct header
;
11555 struct __user_cap_data_struct data
[2];
11556 struct __user_cap_data_struct
*dataptr
= NULL
;
11557 int i
, target_datalen
;
11558 int data_items
= 1;
11560 if (!lock_user_struct(VERIFY_WRITE
, target_header
, arg1
, 1)) {
11561 return -TARGET_EFAULT
;
11563 header
.version
= tswap32(target_header
->version
);
11564 header
.pid
= tswap32(target_header
->pid
);
11566 if (header
.version
!= _LINUX_CAPABILITY_VERSION
) {
11567 /* Version 2 and up takes pointer to two user_data structs */
11571 target_datalen
= sizeof(*target_data
) * data_items
;
11574 if (num
== TARGET_NR_capget
) {
11575 target_data
= lock_user(VERIFY_WRITE
, arg2
, target_datalen
, 0);
11577 target_data
= lock_user(VERIFY_READ
, arg2
, target_datalen
, 1);
11579 if (!target_data
) {
11580 unlock_user_struct(target_header
, arg1
, 0);
11581 return -TARGET_EFAULT
;
11584 if (num
== TARGET_NR_capset
) {
11585 for (i
= 0; i
< data_items
; i
++) {
11586 data
[i
].effective
= tswap32(target_data
[i
].effective
);
11587 data
[i
].permitted
= tswap32(target_data
[i
].permitted
);
11588 data
[i
].inheritable
= tswap32(target_data
[i
].inheritable
);
11595 if (num
== TARGET_NR_capget
) {
11596 ret
= get_errno(capget(&header
, dataptr
));
11598 ret
= get_errno(capset(&header
, dataptr
));
11601 /* The kernel always updates version for both capget and capset */
11602 target_header
->version
= tswap32(header
.version
);
11603 unlock_user_struct(target_header
, arg1
, 1);
11606 if (num
== TARGET_NR_capget
) {
11607 for (i
= 0; i
< data_items
; i
++) {
11608 target_data
[i
].effective
= tswap32(data
[i
].effective
);
11609 target_data
[i
].permitted
= tswap32(data
[i
].permitted
);
11610 target_data
[i
].inheritable
= tswap32(data
[i
].inheritable
);
11612 unlock_user(target_data
, arg2
, target_datalen
);
11614 unlock_user(target_data
, arg2
, 0);
11619 case TARGET_NR_sigaltstack
:
11620 return do_sigaltstack(arg1
, arg2
, cpu_env
);
11622 #ifdef CONFIG_SENDFILE
11623 #ifdef TARGET_NR_sendfile
11624 case TARGET_NR_sendfile
:
11626 off_t
*offp
= NULL
;
11629 ret
= get_user_sal(off
, arg3
);
11630 if (is_error(ret
)) {
11635 ret
= get_errno(sendfile(arg1
, arg2
, offp
, arg4
));
11636 if (!is_error(ret
) && arg3
) {
11637 abi_long ret2
= put_user_sal(off
, arg3
);
11638 if (is_error(ret2
)) {
11645 #ifdef TARGET_NR_sendfile64
11646 case TARGET_NR_sendfile64
:
11648 off_t
*offp
= NULL
;
11651 ret
= get_user_s64(off
, arg3
);
11652 if (is_error(ret
)) {
11657 ret
= get_errno(sendfile(arg1
, arg2
, offp
, arg4
));
11658 if (!is_error(ret
) && arg3
) {
11659 abi_long ret2
= put_user_s64(off
, arg3
);
11660 if (is_error(ret2
)) {
11668 #ifdef TARGET_NR_vfork
11669 case TARGET_NR_vfork
:
11670 return get_errno(do_fork(cpu_env
,
11671 CLONE_VFORK
| CLONE_VM
| TARGET_SIGCHLD
,
11674 #ifdef TARGET_NR_ugetrlimit
11675 case TARGET_NR_ugetrlimit
:
11677 struct rlimit rlim
;
11678 int resource
= target_to_host_resource(arg1
);
11679 ret
= get_errno(getrlimit(resource
, &rlim
));
11680 if (!is_error(ret
)) {
11681 struct target_rlimit
*target_rlim
;
11682 if (!lock_user_struct(VERIFY_WRITE
, target_rlim
, arg2
, 0))
11683 return -TARGET_EFAULT
;
11684 target_rlim
->rlim_cur
= host_to_target_rlim(rlim
.rlim_cur
);
11685 target_rlim
->rlim_max
= host_to_target_rlim(rlim
.rlim_max
);
11686 unlock_user_struct(target_rlim
, arg2
, 1);
11691 #ifdef TARGET_NR_truncate64
11692 case TARGET_NR_truncate64
:
11693 if (!(p
= lock_user_string(arg1
)))
11694 return -TARGET_EFAULT
;
11695 ret
= target_truncate64(cpu_env
, p
, arg2
, arg3
, arg4
);
11696 unlock_user(p
, arg1
, 0);
11699 #ifdef TARGET_NR_ftruncate64
11700 case TARGET_NR_ftruncate64
:
11701 return target_ftruncate64(cpu_env
, arg1
, arg2
, arg3
, arg4
);
11703 #ifdef TARGET_NR_stat64
11704 case TARGET_NR_stat64
:
11705 if (!(p
= lock_user_string(arg1
))) {
11706 return -TARGET_EFAULT
;
11708 ret
= get_errno(stat(path(p
), &st
));
11709 unlock_user(p
, arg1
, 0);
11710 if (!is_error(ret
))
11711 ret
= host_to_target_stat64(cpu_env
, arg2
, &st
);
11714 #ifdef TARGET_NR_lstat64
11715 case TARGET_NR_lstat64
:
11716 if (!(p
= lock_user_string(arg1
))) {
11717 return -TARGET_EFAULT
;
11719 ret
= get_errno(lstat(path(p
), &st
));
11720 unlock_user(p
, arg1
, 0);
11721 if (!is_error(ret
))
11722 ret
= host_to_target_stat64(cpu_env
, arg2
, &st
);
11725 #ifdef TARGET_NR_fstat64
11726 case TARGET_NR_fstat64
:
11727 ret
= get_errno(fstat(arg1
, &st
));
11728 if (!is_error(ret
))
11729 ret
= host_to_target_stat64(cpu_env
, arg2
, &st
);
11732 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
11733 #ifdef TARGET_NR_fstatat64
11734 case TARGET_NR_fstatat64
:
11736 #ifdef TARGET_NR_newfstatat
11737 case TARGET_NR_newfstatat
:
11739 if (!(p
= lock_user_string(arg2
))) {
11740 return -TARGET_EFAULT
;
11742 ret
= get_errno(fstatat(arg1
, path(p
), &st
, arg4
));
11743 unlock_user(p
, arg2
, 0);
11744 if (!is_error(ret
))
11745 ret
= host_to_target_stat64(cpu_env
, arg3
, &st
);
11748 #if defined(TARGET_NR_statx)
11749 case TARGET_NR_statx
:
11751 struct target_statx
*target_stx
;
11755 p
= lock_user_string(arg2
);
11757 return -TARGET_EFAULT
;
11759 #if defined(__NR_statx)
11762 * It is assumed that struct statx is architecture independent.
11764 struct target_statx host_stx
;
11767 ret
= get_errno(sys_statx(dirfd
, p
, flags
, mask
, &host_stx
));
11768 if (!is_error(ret
)) {
11769 if (host_to_target_statx(&host_stx
, arg5
) != 0) {
11770 unlock_user(p
, arg2
, 0);
11771 return -TARGET_EFAULT
;
11775 if (ret
!= -TARGET_ENOSYS
) {
11776 unlock_user(p
, arg2
, 0);
11781 ret
= get_errno(fstatat(dirfd
, path(p
), &st
, flags
));
11782 unlock_user(p
, arg2
, 0);
11784 if (!is_error(ret
)) {
11785 if (!lock_user_struct(VERIFY_WRITE
, target_stx
, arg5
, 0)) {
11786 return -TARGET_EFAULT
;
11788 memset(target_stx
, 0, sizeof(*target_stx
));
11789 __put_user(major(st
.st_dev
), &target_stx
->stx_dev_major
);
11790 __put_user(minor(st
.st_dev
), &target_stx
->stx_dev_minor
);
11791 __put_user(st
.st_ino
, &target_stx
->stx_ino
);
11792 __put_user(st
.st_mode
, &target_stx
->stx_mode
);
11793 __put_user(st
.st_uid
, &target_stx
->stx_uid
);
11794 __put_user(st
.st_gid
, &target_stx
->stx_gid
);
11795 __put_user(st
.st_nlink
, &target_stx
->stx_nlink
);
11796 __put_user(major(st
.st_rdev
), &target_stx
->stx_rdev_major
);
11797 __put_user(minor(st
.st_rdev
), &target_stx
->stx_rdev_minor
);
11798 __put_user(st
.st_size
, &target_stx
->stx_size
);
11799 __put_user(st
.st_blksize
, &target_stx
->stx_blksize
);
11800 __put_user(st
.st_blocks
, &target_stx
->stx_blocks
);
11801 __put_user(st
.st_atime
, &target_stx
->stx_atime
.tv_sec
);
11802 __put_user(st
.st_mtime
, &target_stx
->stx_mtime
.tv_sec
);
11803 __put_user(st
.st_ctime
, &target_stx
->stx_ctime
.tv_sec
);
11804 unlock_user_struct(target_stx
, arg5
, 1);
11809 #ifdef TARGET_NR_lchown
11810 case TARGET_NR_lchown
:
11811 if (!(p
= lock_user_string(arg1
)))
11812 return -TARGET_EFAULT
;
11813 ret
= get_errno(lchown(p
, low2highuid(arg2
), low2highgid(arg3
)));
11814 unlock_user(p
, arg1
, 0);
11817 #ifdef TARGET_NR_getuid
11818 case TARGET_NR_getuid
:
11819 return get_errno(high2lowuid(getuid()));
11821 #ifdef TARGET_NR_getgid
11822 case TARGET_NR_getgid
:
11823 return get_errno(high2lowgid(getgid()));
11825 #ifdef TARGET_NR_geteuid
11826 case TARGET_NR_geteuid
:
11827 return get_errno(high2lowuid(geteuid()));
11829 #ifdef TARGET_NR_getegid
11830 case TARGET_NR_getegid
:
11831 return get_errno(high2lowgid(getegid()));
11833 case TARGET_NR_setreuid
:
11834 return get_errno(setreuid(low2highuid(arg1
), low2highuid(arg2
)));
11835 case TARGET_NR_setregid
:
11836 return get_errno(setregid(low2highgid(arg1
), low2highgid(arg2
)));
11837 case TARGET_NR_getgroups
:
11838 { /* the same code as for TARGET_NR_getgroups32 */
11839 int gidsetsize
= arg1
;
11840 target_id
*target_grouplist
;
11841 g_autofree gid_t
*grouplist
= NULL
;
11844 if (gidsetsize
> NGROUPS_MAX
|| gidsetsize
< 0) {
11845 return -TARGET_EINVAL
;
11847 if (gidsetsize
> 0) {
11848 grouplist
= g_try_new(gid_t
, gidsetsize
);
11850 return -TARGET_ENOMEM
;
11853 ret
= get_errno(getgroups(gidsetsize
, grouplist
));
11854 if (!is_error(ret
) && gidsetsize
> 0) {
11855 target_grouplist
= lock_user(VERIFY_WRITE
, arg2
,
11856 gidsetsize
* sizeof(target_id
), 0);
11857 if (!target_grouplist
) {
11858 return -TARGET_EFAULT
;
11860 for (i
= 0; i
< ret
; i
++) {
11861 target_grouplist
[i
] = tswapid(high2lowgid(grouplist
[i
]));
11863 unlock_user(target_grouplist
, arg2
,
11864 gidsetsize
* sizeof(target_id
));
11868 case TARGET_NR_setgroups
:
11869 { /* the same code as for TARGET_NR_setgroups32 */
11870 int gidsetsize
= arg1
;
11871 target_id
*target_grouplist
;
11872 g_autofree gid_t
*grouplist
= NULL
;
11875 if (gidsetsize
> NGROUPS_MAX
|| gidsetsize
< 0) {
11876 return -TARGET_EINVAL
;
11878 if (gidsetsize
> 0) {
11879 grouplist
= g_try_new(gid_t
, gidsetsize
);
11881 return -TARGET_ENOMEM
;
11883 target_grouplist
= lock_user(VERIFY_READ
, arg2
,
11884 gidsetsize
* sizeof(target_id
), 1);
11885 if (!target_grouplist
) {
11886 return -TARGET_EFAULT
;
11888 for (i
= 0; i
< gidsetsize
; i
++) {
11889 grouplist
[i
] = low2highgid(tswapid(target_grouplist
[i
]));
11891 unlock_user(target_grouplist
, arg2
,
11892 gidsetsize
* sizeof(target_id
));
11894 return get_errno(setgroups(gidsetsize
, grouplist
));
11896 case TARGET_NR_fchown
:
11897 return get_errno(fchown(arg1
, low2highuid(arg2
), low2highgid(arg3
)));
11898 #if defined(TARGET_NR_fchownat)
11899 case TARGET_NR_fchownat
:
11900 if (!(p
= lock_user_string(arg2
)))
11901 return -TARGET_EFAULT
;
11902 ret
= get_errno(fchownat(arg1
, p
, low2highuid(arg3
),
11903 low2highgid(arg4
), arg5
));
11904 unlock_user(p
, arg2
, 0);
11907 #ifdef TARGET_NR_setresuid
11908 case TARGET_NR_setresuid
:
11909 return get_errno(sys_setresuid(low2highuid(arg1
),
11911 low2highuid(arg3
)));
11913 #ifdef TARGET_NR_getresuid
11914 case TARGET_NR_getresuid
:
11916 uid_t ruid
, euid
, suid
;
11917 ret
= get_errno(getresuid(&ruid
, &euid
, &suid
));
11918 if (!is_error(ret
)) {
11919 if (put_user_id(high2lowuid(ruid
), arg1
)
11920 || put_user_id(high2lowuid(euid
), arg2
)
11921 || put_user_id(high2lowuid(suid
), arg3
))
11922 return -TARGET_EFAULT
;
11927 #ifdef TARGET_NR_getresgid
11928 case TARGET_NR_setresgid
:
11929 return get_errno(sys_setresgid(low2highgid(arg1
),
11931 low2highgid(arg3
)));
11933 #ifdef TARGET_NR_getresgid
11934 case TARGET_NR_getresgid
:
11936 gid_t rgid
, egid
, sgid
;
11937 ret
= get_errno(getresgid(&rgid
, &egid
, &sgid
));
11938 if (!is_error(ret
)) {
11939 if (put_user_id(high2lowgid(rgid
), arg1
)
11940 || put_user_id(high2lowgid(egid
), arg2
)
11941 || put_user_id(high2lowgid(sgid
), arg3
))
11942 return -TARGET_EFAULT
;
11947 #ifdef TARGET_NR_chown
11948 case TARGET_NR_chown
:
11949 if (!(p
= lock_user_string(arg1
)))
11950 return -TARGET_EFAULT
;
11951 ret
= get_errno(chown(p
, low2highuid(arg2
), low2highgid(arg3
)));
11952 unlock_user(p
, arg1
, 0);
11955 case TARGET_NR_setuid
:
11956 return get_errno(sys_setuid(low2highuid(arg1
)));
11957 case TARGET_NR_setgid
:
11958 return get_errno(sys_setgid(low2highgid(arg1
)));
11959 case TARGET_NR_setfsuid
:
11960 return get_errno(setfsuid(arg1
));
11961 case TARGET_NR_setfsgid
:
11962 return get_errno(setfsgid(arg1
));
11964 #ifdef TARGET_NR_lchown32
11965 case TARGET_NR_lchown32
:
11966 if (!(p
= lock_user_string(arg1
)))
11967 return -TARGET_EFAULT
;
11968 ret
= get_errno(lchown(p
, arg2
, arg3
));
11969 unlock_user(p
, arg1
, 0);
11972 #ifdef TARGET_NR_getuid32
11973 case TARGET_NR_getuid32
:
11974 return get_errno(getuid());
11977 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
11978 /* Alpha specific */
11979 case TARGET_NR_getxuid
:
11983 cpu_env
->ir
[IR_A4
]=euid
;
11985 return get_errno(getuid());
11987 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
11988 /* Alpha specific */
11989 case TARGET_NR_getxgid
:
11993 cpu_env
->ir
[IR_A4
]=egid
;
11995 return get_errno(getgid());
11997 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
11998 /* Alpha specific */
11999 case TARGET_NR_osf_getsysinfo
:
12000 ret
= -TARGET_EOPNOTSUPP
;
12002 case TARGET_GSI_IEEE_FP_CONTROL
:
12004 uint64_t fpcr
= cpu_alpha_load_fpcr(cpu_env
);
12005 uint64_t swcr
= cpu_env
->swcr
;
12007 swcr
&= ~SWCR_STATUS_MASK
;
12008 swcr
|= (fpcr
>> 35) & SWCR_STATUS_MASK
;
12010 if (put_user_u64 (swcr
, arg2
))
12011 return -TARGET_EFAULT
;
12016 /* case GSI_IEEE_STATE_AT_SIGNAL:
12017 -- Not implemented in linux kernel.
12019 -- Retrieves current unaligned access state; not much used.
12020 case GSI_PROC_TYPE:
12021 -- Retrieves implver information; surely not used.
12022 case GSI_GET_HWRPB:
12023 -- Grabs a copy of the HWRPB; surely not used.
12028 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
12029 /* Alpha specific */
12030 case TARGET_NR_osf_setsysinfo
:
12031 ret
= -TARGET_EOPNOTSUPP
;
12033 case TARGET_SSI_IEEE_FP_CONTROL
:
12035 uint64_t swcr
, fpcr
;
12037 if (get_user_u64 (swcr
, arg2
)) {
12038 return -TARGET_EFAULT
;
12042 * The kernel calls swcr_update_status to update the
12043 * status bits from the fpcr at every point that it
12044 * could be queried. Therefore, we store the status
12045 * bits only in FPCR.
12047 cpu_env
->swcr
= swcr
& (SWCR_TRAP_ENABLE_MASK
| SWCR_MAP_MASK
);
12049 fpcr
= cpu_alpha_load_fpcr(cpu_env
);
12050 fpcr
&= ((uint64_t)FPCR_DYN_MASK
<< 32);
12051 fpcr
|= alpha_ieee_swcr_to_fpcr(swcr
);
12052 cpu_alpha_store_fpcr(cpu_env
, fpcr
);
12057 case TARGET_SSI_IEEE_RAISE_EXCEPTION
:
12059 uint64_t exc
, fpcr
, fex
;
12061 if (get_user_u64(exc
, arg2
)) {
12062 return -TARGET_EFAULT
;
12064 exc
&= SWCR_STATUS_MASK
;
12065 fpcr
= cpu_alpha_load_fpcr(cpu_env
);
12067 /* Old exceptions are not signaled. */
12068 fex
= alpha_ieee_fpcr_to_swcr(fpcr
);
12070 fex
>>= SWCR_STATUS_TO_EXCSUM_SHIFT
;
12071 fex
&= (cpu_env
)->swcr
;
12073 /* Update the hardware fpcr. */
12074 fpcr
|= alpha_ieee_swcr_to_fpcr(exc
);
12075 cpu_alpha_store_fpcr(cpu_env
, fpcr
);
12078 int si_code
= TARGET_FPE_FLTUNK
;
12079 target_siginfo_t info
;
12081 if (fex
& SWCR_TRAP_ENABLE_DNO
) {
12082 si_code
= TARGET_FPE_FLTUND
;
12084 if (fex
& SWCR_TRAP_ENABLE_INE
) {
12085 si_code
= TARGET_FPE_FLTRES
;
12087 if (fex
& SWCR_TRAP_ENABLE_UNF
) {
12088 si_code
= TARGET_FPE_FLTUND
;
12090 if (fex
& SWCR_TRAP_ENABLE_OVF
) {
12091 si_code
= TARGET_FPE_FLTOVF
;
12093 if (fex
& SWCR_TRAP_ENABLE_DZE
) {
12094 si_code
= TARGET_FPE_FLTDIV
;
12096 if (fex
& SWCR_TRAP_ENABLE_INV
) {
12097 si_code
= TARGET_FPE_FLTINV
;
12100 info
.si_signo
= SIGFPE
;
12102 info
.si_code
= si_code
;
12103 info
._sifields
._sigfault
._addr
= (cpu_env
)->pc
;
12104 queue_signal(cpu_env
, info
.si_signo
,
12105 QEMU_SI_FAULT
, &info
);
12111 /* case SSI_NVPAIRS:
12112 -- Used with SSIN_UACPROC to enable unaligned accesses.
12113 case SSI_IEEE_STATE_AT_SIGNAL:
12114 case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
12115 -- Not implemented in linux kernel
12120 #ifdef TARGET_NR_osf_sigprocmask
12121 /* Alpha specific. */
12122 case TARGET_NR_osf_sigprocmask
:
12126 sigset_t set
, oldset
;
12129 case TARGET_SIG_BLOCK
:
12132 case TARGET_SIG_UNBLOCK
:
12135 case TARGET_SIG_SETMASK
:
12139 return -TARGET_EINVAL
;
12142 target_to_host_old_sigset(&set
, &mask
);
12143 ret
= do_sigprocmask(how
, &set
, &oldset
);
12145 host_to_target_old_sigset(&mask
, &oldset
);
12152 #ifdef TARGET_NR_getgid32
12153 case TARGET_NR_getgid32
:
12154 return get_errno(getgid());
12156 #ifdef TARGET_NR_geteuid32
12157 case TARGET_NR_geteuid32
:
12158 return get_errno(geteuid());
12160 #ifdef TARGET_NR_getegid32
12161 case TARGET_NR_getegid32
:
12162 return get_errno(getegid());
12164 #ifdef TARGET_NR_setreuid32
12165 case TARGET_NR_setreuid32
:
12166 return get_errno(setreuid(arg1
, arg2
));
12168 #ifdef TARGET_NR_setregid32
12169 case TARGET_NR_setregid32
:
12170 return get_errno(setregid(arg1
, arg2
));
12172 #ifdef TARGET_NR_getgroups32
12173 case TARGET_NR_getgroups32
:
12174 { /* the same code as for TARGET_NR_getgroups */
12175 int gidsetsize
= arg1
;
12176 uint32_t *target_grouplist
;
12177 g_autofree gid_t
*grouplist
= NULL
;
12180 if (gidsetsize
> NGROUPS_MAX
|| gidsetsize
< 0) {
12181 return -TARGET_EINVAL
;
12183 if (gidsetsize
> 0) {
12184 grouplist
= g_try_new(gid_t
, gidsetsize
);
12186 return -TARGET_ENOMEM
;
12189 ret
= get_errno(getgroups(gidsetsize
, grouplist
));
12190 if (!is_error(ret
) && gidsetsize
> 0) {
12191 target_grouplist
= lock_user(VERIFY_WRITE
, arg2
,
12192 gidsetsize
* 4, 0);
12193 if (!target_grouplist
) {
12194 return -TARGET_EFAULT
;
12196 for (i
= 0; i
< ret
; i
++) {
12197 target_grouplist
[i
] = tswap32(grouplist
[i
]);
12199 unlock_user(target_grouplist
, arg2
, gidsetsize
* 4);
12204 #ifdef TARGET_NR_setgroups32
12205 case TARGET_NR_setgroups32
:
12206 { /* the same code as for TARGET_NR_setgroups */
12207 int gidsetsize
= arg1
;
12208 uint32_t *target_grouplist
;
12209 g_autofree gid_t
*grouplist
= NULL
;
12212 if (gidsetsize
> NGROUPS_MAX
|| gidsetsize
< 0) {
12213 return -TARGET_EINVAL
;
12215 if (gidsetsize
> 0) {
12216 grouplist
= g_try_new(gid_t
, gidsetsize
);
12218 return -TARGET_ENOMEM
;
12220 target_grouplist
= lock_user(VERIFY_READ
, arg2
,
12221 gidsetsize
* 4, 1);
12222 if (!target_grouplist
) {
12223 return -TARGET_EFAULT
;
12225 for (i
= 0; i
< gidsetsize
; i
++) {
12226 grouplist
[i
] = tswap32(target_grouplist
[i
]);
12228 unlock_user(target_grouplist
, arg2
, 0);
12230 return get_errno(setgroups(gidsetsize
, grouplist
));
12233 #ifdef TARGET_NR_fchown32
12234 case TARGET_NR_fchown32
:
12235 return get_errno(fchown(arg1
, arg2
, arg3
));
12237 #ifdef TARGET_NR_setresuid32
12238 case TARGET_NR_setresuid32
:
12239 return get_errno(sys_setresuid(arg1
, arg2
, arg3
));
12241 #ifdef TARGET_NR_getresuid32
12242 case TARGET_NR_getresuid32
:
12244 uid_t ruid
, euid
, suid
;
12245 ret
= get_errno(getresuid(&ruid
, &euid
, &suid
));
12246 if (!is_error(ret
)) {
12247 if (put_user_u32(ruid
, arg1
)
12248 || put_user_u32(euid
, arg2
)
12249 || put_user_u32(suid
, arg3
))
12250 return -TARGET_EFAULT
;
12255 #ifdef TARGET_NR_setresgid32
12256 case TARGET_NR_setresgid32
:
12257 return get_errno(sys_setresgid(arg1
, arg2
, arg3
));
12259 #ifdef TARGET_NR_getresgid32
12260 case TARGET_NR_getresgid32
:
12262 gid_t rgid
, egid
, sgid
;
12263 ret
= get_errno(getresgid(&rgid
, &egid
, &sgid
));
12264 if (!is_error(ret
)) {
12265 if (put_user_u32(rgid
, arg1
)
12266 || put_user_u32(egid
, arg2
)
12267 || put_user_u32(sgid
, arg3
))
12268 return -TARGET_EFAULT
;
12273 #ifdef TARGET_NR_chown32
12274 case TARGET_NR_chown32
:
12275 if (!(p
= lock_user_string(arg1
)))
12276 return -TARGET_EFAULT
;
12277 ret
= get_errno(chown(p
, arg2
, arg3
));
12278 unlock_user(p
, arg1
, 0);
12281 #ifdef TARGET_NR_setuid32
12282 case TARGET_NR_setuid32
:
12283 return get_errno(sys_setuid(arg1
));
12285 #ifdef TARGET_NR_setgid32
12286 case TARGET_NR_setgid32
:
12287 return get_errno(sys_setgid(arg1
));
12289 #ifdef TARGET_NR_setfsuid32
12290 case TARGET_NR_setfsuid32
:
12291 return get_errno(setfsuid(arg1
));
12293 #ifdef TARGET_NR_setfsgid32
12294 case TARGET_NR_setfsgid32
:
12295 return get_errno(setfsgid(arg1
));
12297 #ifdef TARGET_NR_mincore
12298 case TARGET_NR_mincore
:
12300 void *a
= lock_user(VERIFY_NONE
, arg1
, arg2
, 0);
12302 return -TARGET_ENOMEM
;
12304 p
= lock_user_string(arg3
);
12306 ret
= -TARGET_EFAULT
;
12308 ret
= get_errno(mincore(a
, arg2
, p
));
12309 unlock_user(p
, arg3
, ret
);
12311 unlock_user(a
, arg1
, 0);
12315 #ifdef TARGET_NR_arm_fadvise64_64
12316 case TARGET_NR_arm_fadvise64_64
:
12317 /* arm_fadvise64_64 looks like fadvise64_64 but
12318 * with different argument order: fd, advice, offset, len
12319 * rather than the usual fd, offset, len, advice.
12320 * Note that offset and len are both 64-bit so appear as
12321 * pairs of 32-bit registers.
12323 ret
= posix_fadvise(arg1
, target_offset64(arg3
, arg4
),
12324 target_offset64(arg5
, arg6
), arg2
);
12325 return -host_to_target_errno(ret
);
12328 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
12330 #ifdef TARGET_NR_fadvise64_64
12331 case TARGET_NR_fadvise64_64
:
12332 #if defined(TARGET_PPC) || defined(TARGET_XTENSA)
12333 /* 6 args: fd, advice, offset (high, low), len (high, low) */
12341 /* 6 args: fd, offset (high, low), len (high, low), advice */
12342 if (regpairs_aligned(cpu_env
, num
)) {
12343 /* offset is in (3,4), len in (5,6) and advice in 7 */
12351 ret
= posix_fadvise(arg1
, target_offset64(arg2
, arg3
),
12352 target_offset64(arg4
, arg5
), arg6
);
12353 return -host_to_target_errno(ret
);
12356 #ifdef TARGET_NR_fadvise64
12357 case TARGET_NR_fadvise64
:
12358 /* 5 args: fd, offset (high, low), len, advice */
12359 if (regpairs_aligned(cpu_env
, num
)) {
12360 /* offset is in (3,4), len in 5 and advice in 6 */
12366 ret
= posix_fadvise(arg1
, target_offset64(arg2
, arg3
), arg4
, arg5
);
12367 return -host_to_target_errno(ret
);
12370 #else /* not a 32-bit ABI */
12371 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64)
12372 #ifdef TARGET_NR_fadvise64_64
12373 case TARGET_NR_fadvise64_64
:
12375 #ifdef TARGET_NR_fadvise64
12376 case TARGET_NR_fadvise64
:
12378 #ifdef TARGET_S390X
12380 case 4: arg4
= POSIX_FADV_NOREUSE
+ 1; break; /* make sure it's an invalid value */
12381 case 5: arg4
= POSIX_FADV_NOREUSE
+ 2; break; /* ditto */
12382 case 6: arg4
= POSIX_FADV_DONTNEED
; break;
12383 case 7: arg4
= POSIX_FADV_NOREUSE
; break;
12387 return -host_to_target_errno(posix_fadvise(arg1
, arg2
, arg3
, arg4
));
12389 #endif /* end of 64-bit ABI fadvise handling */
12391 #ifdef TARGET_NR_madvise
12392 case TARGET_NR_madvise
:
12393 return target_madvise(arg1
, arg2
, arg3
);
12395 #ifdef TARGET_NR_fcntl64
12396 case TARGET_NR_fcntl64
:
12400 from_flock64_fn
*copyfrom
= copy_from_user_flock64
;
12401 to_flock64_fn
*copyto
= copy_to_user_flock64
;
12404 if (!cpu_env
->eabi
) {
12405 copyfrom
= copy_from_user_oabi_flock64
;
12406 copyto
= copy_to_user_oabi_flock64
;
12410 cmd
= target_to_host_fcntl_cmd(arg2
);
12411 if (cmd
== -TARGET_EINVAL
) {
12416 case TARGET_F_GETLK64
:
12417 ret
= copyfrom(&fl
, arg3
);
12421 ret
= get_errno(safe_fcntl(arg1
, cmd
, &fl
));
12423 ret
= copyto(arg3
, &fl
);
12427 case TARGET_F_SETLK64
:
12428 case TARGET_F_SETLKW64
:
12429 ret
= copyfrom(&fl
, arg3
);
12433 ret
= get_errno(safe_fcntl(arg1
, cmd
, &fl
));
12436 ret
= do_fcntl(arg1
, arg2
, arg3
);
12442 #ifdef TARGET_NR_cacheflush
12443 case TARGET_NR_cacheflush
:
12444 /* self-modifying code is handled automatically, so nothing needed */
12447 #ifdef TARGET_NR_getpagesize
12448 case TARGET_NR_getpagesize
:
12449 return TARGET_PAGE_SIZE
;
12451 case TARGET_NR_gettid
:
12452 return get_errno(sys_gettid());
12453 #ifdef TARGET_NR_readahead
12454 case TARGET_NR_readahead
:
12455 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
12456 if (regpairs_aligned(cpu_env
, num
)) {
12461 ret
= get_errno(readahead(arg1
, target_offset64(arg2
, arg3
) , arg4
));
12463 ret
= get_errno(readahead(arg1
, arg2
, arg3
));
12468 #ifdef TARGET_NR_setxattr
12469 case TARGET_NR_listxattr
:
12470 case TARGET_NR_llistxattr
:
12474 b
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
12476 return -TARGET_EFAULT
;
12479 p
= lock_user_string(arg1
);
12481 if (num
== TARGET_NR_listxattr
) {
12482 ret
= get_errno(listxattr(p
, b
, arg3
));
12484 ret
= get_errno(llistxattr(p
, b
, arg3
));
12487 ret
= -TARGET_EFAULT
;
12489 unlock_user(p
, arg1
, 0);
12490 unlock_user(b
, arg2
, arg3
);
12493 case TARGET_NR_flistxattr
:
12497 b
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
12499 return -TARGET_EFAULT
;
12502 ret
= get_errno(flistxattr(arg1
, b
, arg3
));
12503 unlock_user(b
, arg2
, arg3
);
12506 case TARGET_NR_setxattr
:
12507 case TARGET_NR_lsetxattr
:
12511 v
= lock_user(VERIFY_READ
, arg3
, arg4
, 1);
12513 return -TARGET_EFAULT
;
12516 p
= lock_user_string(arg1
);
12517 n
= lock_user_string(arg2
);
12519 if (num
== TARGET_NR_setxattr
) {
12520 ret
= get_errno(setxattr(p
, n
, v
, arg4
, arg5
));
12522 ret
= get_errno(lsetxattr(p
, n
, v
, arg4
, arg5
));
12525 ret
= -TARGET_EFAULT
;
12527 unlock_user(p
, arg1
, 0);
12528 unlock_user(n
, arg2
, 0);
12529 unlock_user(v
, arg3
, 0);
12532 case TARGET_NR_fsetxattr
:
12536 v
= lock_user(VERIFY_READ
, arg3
, arg4
, 1);
12538 return -TARGET_EFAULT
;
12541 n
= lock_user_string(arg2
);
12543 ret
= get_errno(fsetxattr(arg1
, n
, v
, arg4
, arg5
));
12545 ret
= -TARGET_EFAULT
;
12547 unlock_user(n
, arg2
, 0);
12548 unlock_user(v
, arg3
, 0);
12551 case TARGET_NR_getxattr
:
12552 case TARGET_NR_lgetxattr
:
12556 v
= lock_user(VERIFY_WRITE
, arg3
, arg4
, 0);
12558 return -TARGET_EFAULT
;
12561 p
= lock_user_string(arg1
);
12562 n
= lock_user_string(arg2
);
12564 if (num
== TARGET_NR_getxattr
) {
12565 ret
= get_errno(getxattr(p
, n
, v
, arg4
));
12567 ret
= get_errno(lgetxattr(p
, n
, v
, arg4
));
12570 ret
= -TARGET_EFAULT
;
12572 unlock_user(p
, arg1
, 0);
12573 unlock_user(n
, arg2
, 0);
12574 unlock_user(v
, arg3
, arg4
);
12577 case TARGET_NR_fgetxattr
:
12581 v
= lock_user(VERIFY_WRITE
, arg3
, arg4
, 0);
12583 return -TARGET_EFAULT
;
12586 n
= lock_user_string(arg2
);
12588 ret
= get_errno(fgetxattr(arg1
, n
, v
, arg4
));
12590 ret
= -TARGET_EFAULT
;
12592 unlock_user(n
, arg2
, 0);
12593 unlock_user(v
, arg3
, arg4
);
12596 case TARGET_NR_removexattr
:
12597 case TARGET_NR_lremovexattr
:
12600 p
= lock_user_string(arg1
);
12601 n
= lock_user_string(arg2
);
12603 if (num
== TARGET_NR_removexattr
) {
12604 ret
= get_errno(removexattr(p
, n
));
12606 ret
= get_errno(lremovexattr(p
, n
));
12609 ret
= -TARGET_EFAULT
;
12611 unlock_user(p
, arg1
, 0);
12612 unlock_user(n
, arg2
, 0);
12615 case TARGET_NR_fremovexattr
:
12618 n
= lock_user_string(arg2
);
12620 ret
= get_errno(fremovexattr(arg1
, n
));
12622 ret
= -TARGET_EFAULT
;
12624 unlock_user(n
, arg2
, 0);
12628 #endif /* CONFIG_ATTR */
12629 #ifdef TARGET_NR_set_thread_area
12630 case TARGET_NR_set_thread_area
:
12631 #if defined(TARGET_MIPS)
12632 cpu_env
->active_tc
.CP0_UserLocal
= arg1
;
12634 #elif defined(TARGET_CRIS)
12636 ret
= -TARGET_EINVAL
;
12638 cpu_env
->pregs
[PR_PID
] = arg1
;
12642 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
12643 return do_set_thread_area(cpu_env
, arg1
);
12644 #elif defined(TARGET_M68K)
12646 TaskState
*ts
= get_task_state(cpu
);
12647 ts
->tp_value
= arg1
;
12651 return -TARGET_ENOSYS
;
12654 #ifdef TARGET_NR_get_thread_area
12655 case TARGET_NR_get_thread_area
:
12656 #if defined(TARGET_I386) && defined(TARGET_ABI32)
12657 return do_get_thread_area(cpu_env
, arg1
);
12658 #elif defined(TARGET_M68K)
12660 TaskState
*ts
= get_task_state(cpu
);
12661 return ts
->tp_value
;
12664 return -TARGET_ENOSYS
;
12667 #ifdef TARGET_NR_getdomainname
12668 case TARGET_NR_getdomainname
:
12669 return -TARGET_ENOSYS
;
12672 #ifdef TARGET_NR_clock_settime
12673 case TARGET_NR_clock_settime
:
12675 struct timespec ts
;
12677 ret
= target_to_host_timespec(&ts
, arg2
);
12678 if (!is_error(ret
)) {
12679 ret
= get_errno(clock_settime(arg1
, &ts
));
12684 #ifdef TARGET_NR_clock_settime64
12685 case TARGET_NR_clock_settime64
:
12687 struct timespec ts
;
12689 ret
= target_to_host_timespec64(&ts
, arg2
);
12690 if (!is_error(ret
)) {
12691 ret
= get_errno(clock_settime(arg1
, &ts
));
12696 #ifdef TARGET_NR_clock_gettime
12697 case TARGET_NR_clock_gettime
:
12699 struct timespec ts
;
12700 ret
= get_errno(clock_gettime(arg1
, &ts
));
12701 if (!is_error(ret
)) {
12702 ret
= host_to_target_timespec(arg2
, &ts
);
12707 #ifdef TARGET_NR_clock_gettime64
12708 case TARGET_NR_clock_gettime64
:
12710 struct timespec ts
;
12711 ret
= get_errno(clock_gettime(arg1
, &ts
));
12712 if (!is_error(ret
)) {
12713 ret
= host_to_target_timespec64(arg2
, &ts
);
12718 #ifdef TARGET_NR_clock_getres
12719 case TARGET_NR_clock_getres
:
12721 struct timespec ts
;
12722 ret
= get_errno(clock_getres(arg1
, &ts
));
12723 if (!is_error(ret
)) {
12724 host_to_target_timespec(arg2
, &ts
);
12729 #ifdef TARGET_NR_clock_getres_time64
12730 case TARGET_NR_clock_getres_time64
:
12732 struct timespec ts
;
12733 ret
= get_errno(clock_getres(arg1
, &ts
));
12734 if (!is_error(ret
)) {
12735 host_to_target_timespec64(arg2
, &ts
);
12740 #ifdef TARGET_NR_clock_nanosleep
12741 case TARGET_NR_clock_nanosleep
:
12743 struct timespec ts
;
12744 if (target_to_host_timespec(&ts
, arg3
)) {
12745 return -TARGET_EFAULT
;
12747 ret
= get_errno(safe_clock_nanosleep(arg1
, arg2
,
12748 &ts
, arg4
? &ts
: NULL
));
12750 * if the call is interrupted by a signal handler, it fails
12751 * with error -TARGET_EINTR and if arg4 is not NULL and arg2 is not
12752 * TIMER_ABSTIME, it returns the remaining unslept time in arg4.
12754 if (ret
== -TARGET_EINTR
&& arg4
&& arg2
!= TIMER_ABSTIME
&&
12755 host_to_target_timespec(arg4
, &ts
)) {
12756 return -TARGET_EFAULT
;
12762 #ifdef TARGET_NR_clock_nanosleep_time64
12763 case TARGET_NR_clock_nanosleep_time64
:
12765 struct timespec ts
;
12767 if (target_to_host_timespec64(&ts
, arg3
)) {
12768 return -TARGET_EFAULT
;
12771 ret
= get_errno(safe_clock_nanosleep(arg1
, arg2
,
12772 &ts
, arg4
? &ts
: NULL
));
12774 if (ret
== -TARGET_EINTR
&& arg4
&& arg2
!= TIMER_ABSTIME
&&
12775 host_to_target_timespec64(arg4
, &ts
)) {
12776 return -TARGET_EFAULT
;
12782 #if defined(TARGET_NR_set_tid_address)
12783 case TARGET_NR_set_tid_address
:
12785 TaskState
*ts
= get_task_state(cpu
);
12786 ts
->child_tidptr
= arg1
;
12787 /* do not call host set_tid_address() syscall, instead return tid() */
12788 return get_errno(sys_gettid());
12792 case TARGET_NR_tkill
:
12793 return get_errno(safe_tkill((int)arg1
, target_to_host_signal(arg2
)));
12795 case TARGET_NR_tgkill
:
12796 return get_errno(safe_tgkill((int)arg1
, (int)arg2
,
12797 target_to_host_signal(arg3
)));
12799 #ifdef TARGET_NR_set_robust_list
12800 case TARGET_NR_set_robust_list
:
12801 case TARGET_NR_get_robust_list
:
12802 /* The ABI for supporting robust futexes has userspace pass
12803 * the kernel a pointer to a linked list which is updated by
12804 * userspace after the syscall; the list is walked by the kernel
12805 * when the thread exits. Since the linked list in QEMU guest
12806 * memory isn't a valid linked list for the host and we have
12807 * no way to reliably intercept the thread-death event, we can't
12808 * support these. Silently return ENOSYS so that guest userspace
12809 * falls back to a non-robust futex implementation (which should
12810 * be OK except in the corner case of the guest crashing while
12811 * holding a mutex that is shared with another process via
12814 return -TARGET_ENOSYS
;
12817 #if defined(TARGET_NR_utimensat)
12818 case TARGET_NR_utimensat
:
12820 struct timespec
*tsp
, ts
[2];
12824 if (target_to_host_timespec(ts
, arg3
)) {
12825 return -TARGET_EFAULT
;
12827 if (target_to_host_timespec(ts
+ 1, arg3
+
12828 sizeof(struct target_timespec
))) {
12829 return -TARGET_EFAULT
;
12834 ret
= get_errno(sys_utimensat(arg1
, NULL
, tsp
, arg4
));
12836 if (!(p
= lock_user_string(arg2
))) {
12837 return -TARGET_EFAULT
;
12839 ret
= get_errno(sys_utimensat(arg1
, path(p
), tsp
, arg4
));
12840 unlock_user(p
, arg2
, 0);
12845 #ifdef TARGET_NR_utimensat_time64
12846 case TARGET_NR_utimensat_time64
:
12848 struct timespec
*tsp
, ts
[2];
12852 if (target_to_host_timespec64(ts
, arg3
)) {
12853 return -TARGET_EFAULT
;
12855 if (target_to_host_timespec64(ts
+ 1, arg3
+
12856 sizeof(struct target__kernel_timespec
))) {
12857 return -TARGET_EFAULT
;
12862 ret
= get_errno(sys_utimensat(arg1
, NULL
, tsp
, arg4
));
12864 p
= lock_user_string(arg2
);
12866 return -TARGET_EFAULT
;
12868 ret
= get_errno(sys_utimensat(arg1
, path(p
), tsp
, arg4
));
12869 unlock_user(p
, arg2
, 0);
12874 #ifdef TARGET_NR_futex
12875 case TARGET_NR_futex
:
12876 return do_futex(cpu
, false, arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
12878 #ifdef TARGET_NR_futex_time64
12879 case TARGET_NR_futex_time64
:
12880 return do_futex(cpu
, true, arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
12882 #ifdef CONFIG_INOTIFY
12883 #if defined(TARGET_NR_inotify_init)
12884 case TARGET_NR_inotify_init
:
12885 ret
= get_errno(inotify_init());
12887 fd_trans_register(ret
, &target_inotify_trans
);
12891 #if defined(TARGET_NR_inotify_init1) && defined(CONFIG_INOTIFY1)
12892 case TARGET_NR_inotify_init1
:
12893 ret
= get_errno(inotify_init1(target_to_host_bitmask(arg1
,
12894 fcntl_flags_tbl
)));
12896 fd_trans_register(ret
, &target_inotify_trans
);
12900 #if defined(TARGET_NR_inotify_add_watch)
12901 case TARGET_NR_inotify_add_watch
:
12902 p
= lock_user_string(arg2
);
12903 ret
= get_errno(inotify_add_watch(arg1
, path(p
), arg3
));
12904 unlock_user(p
, arg2
, 0);
12907 #if defined(TARGET_NR_inotify_rm_watch)
12908 case TARGET_NR_inotify_rm_watch
:
12909 return get_errno(inotify_rm_watch(arg1
, arg2
));
12913 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
12914 case TARGET_NR_mq_open
:
12916 struct mq_attr posix_mq_attr
;
12917 struct mq_attr
*pposix_mq_attr
;
12920 host_flags
= target_to_host_bitmask(arg2
, fcntl_flags_tbl
);
12921 pposix_mq_attr
= NULL
;
12923 if (copy_from_user_mq_attr(&posix_mq_attr
, arg4
) != 0) {
12924 return -TARGET_EFAULT
;
12926 pposix_mq_attr
= &posix_mq_attr
;
12928 p
= lock_user_string(arg1
- 1);
12930 return -TARGET_EFAULT
;
12932 ret
= get_errno(mq_open(p
, host_flags
, arg3
, pposix_mq_attr
));
12933 unlock_user (p
, arg1
, 0);
12937 case TARGET_NR_mq_unlink
:
12938 p
= lock_user_string(arg1
- 1);
12940 return -TARGET_EFAULT
;
12942 ret
= get_errno(mq_unlink(p
));
12943 unlock_user (p
, arg1
, 0);
12946 #ifdef TARGET_NR_mq_timedsend
12947 case TARGET_NR_mq_timedsend
:
12949 struct timespec ts
;
12951 p
= lock_user (VERIFY_READ
, arg2
, arg3
, 1);
12953 if (target_to_host_timespec(&ts
, arg5
)) {
12954 return -TARGET_EFAULT
;
12956 ret
= get_errno(safe_mq_timedsend(arg1
, p
, arg3
, arg4
, &ts
));
12957 if (!is_error(ret
) && host_to_target_timespec(arg5
, &ts
)) {
12958 return -TARGET_EFAULT
;
12961 ret
= get_errno(safe_mq_timedsend(arg1
, p
, arg3
, arg4
, NULL
));
12963 unlock_user (p
, arg2
, arg3
);
12967 #ifdef TARGET_NR_mq_timedsend_time64
12968 case TARGET_NR_mq_timedsend_time64
:
12970 struct timespec ts
;
12972 p
= lock_user(VERIFY_READ
, arg2
, arg3
, 1);
12974 if (target_to_host_timespec64(&ts
, arg5
)) {
12975 return -TARGET_EFAULT
;
12977 ret
= get_errno(safe_mq_timedsend(arg1
, p
, arg3
, arg4
, &ts
));
12978 if (!is_error(ret
) && host_to_target_timespec64(arg5
, &ts
)) {
12979 return -TARGET_EFAULT
;
12982 ret
= get_errno(safe_mq_timedsend(arg1
, p
, arg3
, arg4
, NULL
));
12984 unlock_user(p
, arg2
, arg3
);
12989 #ifdef TARGET_NR_mq_timedreceive
12990 case TARGET_NR_mq_timedreceive
:
12992 struct timespec ts
;
12995 p
= lock_user (VERIFY_READ
, arg2
, arg3
, 1);
12997 if (target_to_host_timespec(&ts
, arg5
)) {
12998 return -TARGET_EFAULT
;
13000 ret
= get_errno(safe_mq_timedreceive(arg1
, p
, arg3
,
13002 if (!is_error(ret
) && host_to_target_timespec(arg5
, &ts
)) {
13003 return -TARGET_EFAULT
;
13006 ret
= get_errno(safe_mq_timedreceive(arg1
, p
, arg3
,
13009 unlock_user (p
, arg2
, arg3
);
13011 put_user_u32(prio
, arg4
);
13015 #ifdef TARGET_NR_mq_timedreceive_time64
13016 case TARGET_NR_mq_timedreceive_time64
:
13018 struct timespec ts
;
13021 p
= lock_user(VERIFY_READ
, arg2
, arg3
, 1);
13023 if (target_to_host_timespec64(&ts
, arg5
)) {
13024 return -TARGET_EFAULT
;
13026 ret
= get_errno(safe_mq_timedreceive(arg1
, p
, arg3
,
13028 if (!is_error(ret
) && host_to_target_timespec64(arg5
, &ts
)) {
13029 return -TARGET_EFAULT
;
13032 ret
= get_errno(safe_mq_timedreceive(arg1
, p
, arg3
,
13035 unlock_user(p
, arg2
, arg3
);
13037 put_user_u32(prio
, arg4
);
13043 /* Not implemented for now... */
13044 /* case TARGET_NR_mq_notify: */
13047 case TARGET_NR_mq_getsetattr
:
13049 struct mq_attr posix_mq_attr_in
, posix_mq_attr_out
;
13052 copy_from_user_mq_attr(&posix_mq_attr_in
, arg2
);
13053 ret
= get_errno(mq_setattr(arg1
, &posix_mq_attr_in
,
13054 &posix_mq_attr_out
));
13055 } else if (arg3
!= 0) {
13056 ret
= get_errno(mq_getattr(arg1
, &posix_mq_attr_out
));
13058 if (ret
== 0 && arg3
!= 0) {
13059 copy_to_user_mq_attr(arg3
, &posix_mq_attr_out
);
13065 #ifdef CONFIG_SPLICE
13066 #ifdef TARGET_NR_tee
13067 case TARGET_NR_tee
:
13069 ret
= get_errno(tee(arg1
,arg2
,arg3
,arg4
));
13073 #ifdef TARGET_NR_splice
13074 case TARGET_NR_splice
:
13076 loff_t loff_in
, loff_out
;
13077 loff_t
*ploff_in
= NULL
, *ploff_out
= NULL
;
13079 if (get_user_u64(loff_in
, arg2
)) {
13080 return -TARGET_EFAULT
;
13082 ploff_in
= &loff_in
;
13085 if (get_user_u64(loff_out
, arg4
)) {
13086 return -TARGET_EFAULT
;
13088 ploff_out
= &loff_out
;
13090 ret
= get_errno(splice(arg1
, ploff_in
, arg3
, ploff_out
, arg5
, arg6
));
13092 if (put_user_u64(loff_in
, arg2
)) {
13093 return -TARGET_EFAULT
;
13097 if (put_user_u64(loff_out
, arg4
)) {
13098 return -TARGET_EFAULT
;
13104 #ifdef TARGET_NR_vmsplice
13105 case TARGET_NR_vmsplice
:
13107 struct iovec
*vec
= lock_iovec(VERIFY_READ
, arg2
, arg3
, 1);
13109 ret
= get_errno(vmsplice(arg1
, vec
, arg3
, arg4
));
13110 unlock_iovec(vec
, arg2
, arg3
, 0);
13112 ret
= -host_to_target_errno(errno
);
13117 #endif /* CONFIG_SPLICE */
13118 #ifdef CONFIG_EVENTFD
13119 #if defined(TARGET_NR_eventfd)
13120 case TARGET_NR_eventfd
:
13121 ret
= get_errno(eventfd(arg1
, 0));
13123 fd_trans_register(ret
, &target_eventfd_trans
);
13127 #if defined(TARGET_NR_eventfd2)
13128 case TARGET_NR_eventfd2
:
13130 int host_flags
= arg2
& (~(TARGET_O_NONBLOCK_MASK
| TARGET_O_CLOEXEC
));
13131 if (arg2
& TARGET_O_NONBLOCK
) {
13132 host_flags
|= O_NONBLOCK
;
13134 if (arg2
& TARGET_O_CLOEXEC
) {
13135 host_flags
|= O_CLOEXEC
;
13137 ret
= get_errno(eventfd(arg1
, host_flags
));
13139 fd_trans_register(ret
, &target_eventfd_trans
);
13144 #endif /* CONFIG_EVENTFD */
13145 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
13146 case TARGET_NR_fallocate
:
13147 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13148 ret
= get_errno(fallocate(arg1
, arg2
, target_offset64(arg3
, arg4
),
13149 target_offset64(arg5
, arg6
)));
13151 ret
= get_errno(fallocate(arg1
, arg2
, arg3
, arg4
));
13155 #if defined(CONFIG_SYNC_FILE_RANGE)
13156 #if defined(TARGET_NR_sync_file_range)
13157 case TARGET_NR_sync_file_range
:
13158 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13159 #if defined(TARGET_MIPS)
13160 ret
= get_errno(sync_file_range(arg1
, target_offset64(arg3
, arg4
),
13161 target_offset64(arg5
, arg6
), arg7
));
13163 ret
= get_errno(sync_file_range(arg1
, target_offset64(arg2
, arg3
),
13164 target_offset64(arg4
, arg5
), arg6
));
13165 #endif /* !TARGET_MIPS */
13167 ret
= get_errno(sync_file_range(arg1
, arg2
, arg3
, arg4
));
13171 #if defined(TARGET_NR_sync_file_range2) || \
13172 defined(TARGET_NR_arm_sync_file_range)
13173 #if defined(TARGET_NR_sync_file_range2)
13174 case TARGET_NR_sync_file_range2
:
13176 #if defined(TARGET_NR_arm_sync_file_range)
13177 case TARGET_NR_arm_sync_file_range
:
13179 /* This is like sync_file_range but the arguments are reordered */
13180 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13181 ret
= get_errno(sync_file_range(arg1
, target_offset64(arg3
, arg4
),
13182 target_offset64(arg5
, arg6
), arg2
));
13184 ret
= get_errno(sync_file_range(arg1
, arg3
, arg4
, arg2
));
13189 #if defined(TARGET_NR_signalfd4)
13190 case TARGET_NR_signalfd4
:
13191 return do_signalfd4(arg1
, arg2
, arg4
);
13193 #if defined(TARGET_NR_signalfd)
13194 case TARGET_NR_signalfd
:
13195 return do_signalfd4(arg1
, arg2
, 0);
13197 #if defined(CONFIG_EPOLL)
13198 #if defined(TARGET_NR_epoll_create)
13199 case TARGET_NR_epoll_create
:
13200 return get_errno(epoll_create(arg1
));
13202 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
13203 case TARGET_NR_epoll_create1
:
13204 return get_errno(epoll_create1(target_to_host_bitmask(arg1
, fcntl_flags_tbl
)));
13206 #if defined(TARGET_NR_epoll_ctl)
13207 case TARGET_NR_epoll_ctl
:
13209 struct epoll_event ep
;
13210 struct epoll_event
*epp
= 0;
13212 if (arg2
!= EPOLL_CTL_DEL
) {
13213 struct target_epoll_event
*target_ep
;
13214 if (!lock_user_struct(VERIFY_READ
, target_ep
, arg4
, 1)) {
13215 return -TARGET_EFAULT
;
13217 ep
.events
= tswap32(target_ep
->events
);
13219 * The epoll_data_t union is just opaque data to the kernel,
13220 * so we transfer all 64 bits across and need not worry what
13221 * actual data type it is.
13223 ep
.data
.u64
= tswap64(target_ep
->data
.u64
);
13224 unlock_user_struct(target_ep
, arg4
, 0);
13227 * before kernel 2.6.9, EPOLL_CTL_DEL operation required a
13228 * non-null pointer, even though this argument is ignored.
13233 return get_errno(epoll_ctl(arg1
, arg2
, arg3
, epp
));
13237 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait)
13238 #if defined(TARGET_NR_epoll_wait)
13239 case TARGET_NR_epoll_wait
:
13241 #if defined(TARGET_NR_epoll_pwait)
13242 case TARGET_NR_epoll_pwait
:
13245 struct target_epoll_event
*target_ep
;
13246 struct epoll_event
*ep
;
13248 int maxevents
= arg3
;
13249 int timeout
= arg4
;
13251 if (maxevents
<= 0 || maxevents
> TARGET_EP_MAX_EVENTS
) {
13252 return -TARGET_EINVAL
;
13255 target_ep
= lock_user(VERIFY_WRITE
, arg2
,
13256 maxevents
* sizeof(struct target_epoll_event
), 1);
13258 return -TARGET_EFAULT
;
13261 ep
= g_try_new(struct epoll_event
, maxevents
);
13263 unlock_user(target_ep
, arg2
, 0);
13264 return -TARGET_ENOMEM
;
13268 #if defined(TARGET_NR_epoll_pwait)
13269 case TARGET_NR_epoll_pwait
:
13271 sigset_t
*set
= NULL
;
13274 ret
= process_sigsuspend_mask(&set
, arg5
, arg6
);
13280 ret
= get_errno(safe_epoll_pwait(epfd
, ep
, maxevents
, timeout
,
13281 set
, SIGSET_T_SIZE
));
13284 finish_sigsuspend_mask(ret
);
13289 #if defined(TARGET_NR_epoll_wait)
13290 case TARGET_NR_epoll_wait
:
13291 ret
= get_errno(safe_epoll_pwait(epfd
, ep
, maxevents
, timeout
,
13296 ret
= -TARGET_ENOSYS
;
13298 if (!is_error(ret
)) {
13300 for (i
= 0; i
< ret
; i
++) {
13301 target_ep
[i
].events
= tswap32(ep
[i
].events
);
13302 target_ep
[i
].data
.u64
= tswap64(ep
[i
].data
.u64
);
13304 unlock_user(target_ep
, arg2
,
13305 ret
* sizeof(struct target_epoll_event
));
13307 unlock_user(target_ep
, arg2
, 0);
13314 #ifdef TARGET_NR_prlimit64
13315 case TARGET_NR_prlimit64
:
13317 /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
13318 struct target_rlimit64
*target_rnew
, *target_rold
;
13319 struct host_rlimit64 rnew
, rold
, *rnewp
= 0;
13320 int resource
= target_to_host_resource(arg2
);
13322 if (arg3
&& (resource
!= RLIMIT_AS
&&
13323 resource
!= RLIMIT_DATA
&&
13324 resource
!= RLIMIT_STACK
)) {
13325 if (!lock_user_struct(VERIFY_READ
, target_rnew
, arg3
, 1)) {
13326 return -TARGET_EFAULT
;
13328 __get_user(rnew
.rlim_cur
, &target_rnew
->rlim_cur
);
13329 __get_user(rnew
.rlim_max
, &target_rnew
->rlim_max
);
13330 unlock_user_struct(target_rnew
, arg3
, 0);
13334 ret
= get_errno(sys_prlimit64(arg1
, resource
, rnewp
, arg4
? &rold
: 0));
13335 if (!is_error(ret
) && arg4
) {
13336 if (!lock_user_struct(VERIFY_WRITE
, target_rold
, arg4
, 1)) {
13337 return -TARGET_EFAULT
;
13339 __put_user(rold
.rlim_cur
, &target_rold
->rlim_cur
);
13340 __put_user(rold
.rlim_max
, &target_rold
->rlim_max
);
13341 unlock_user_struct(target_rold
, arg4
, 1);
13346 #ifdef TARGET_NR_gethostname
13347 case TARGET_NR_gethostname
:
13349 char *name
= lock_user(VERIFY_WRITE
, arg1
, arg2
, 0);
13351 ret
= get_errno(gethostname(name
, arg2
));
13352 unlock_user(name
, arg1
, arg2
);
13354 ret
= -TARGET_EFAULT
;
13359 #ifdef TARGET_NR_atomic_cmpxchg_32
13360 case TARGET_NR_atomic_cmpxchg_32
:
13362 /* should use start_exclusive from main.c */
13363 abi_ulong mem_value
;
13364 if (get_user_u32(mem_value
, arg6
)) {
13365 target_siginfo_t info
;
13366 info
.si_signo
= SIGSEGV
;
13368 info
.si_code
= TARGET_SEGV_MAPERR
;
13369 info
._sifields
._sigfault
._addr
= arg6
;
13370 queue_signal(cpu_env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
13374 if (mem_value
== arg2
)
13375 put_user_u32(arg1
, arg6
);
13379 #ifdef TARGET_NR_atomic_barrier
13380 case TARGET_NR_atomic_barrier
:
13381 /* Like the kernel implementation and the
13382 qemu arm barrier, no-op this? */
13386 #ifdef TARGET_NR_timer_create
13387 case TARGET_NR_timer_create
:
13389 /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
13391 struct sigevent host_sevp
= { {0}, }, *phost_sevp
= NULL
;
13394 int timer_index
= next_free_host_timer();
13396 if (timer_index
< 0) {
13397 ret
= -TARGET_EAGAIN
;
13399 timer_t
*phtimer
= g_posix_timers
+ timer_index
;
13402 phost_sevp
= &host_sevp
;
13403 ret
= target_to_host_sigevent(phost_sevp
, arg2
);
13405 free_host_timer_slot(timer_index
);
13410 ret
= get_errno(timer_create(clkid
, phost_sevp
, phtimer
));
13412 free_host_timer_slot(timer_index
);
13414 if (put_user(TIMER_MAGIC
| timer_index
, arg3
, target_timer_t
)) {
13415 timer_delete(*phtimer
);
13416 free_host_timer_slot(timer_index
);
13417 return -TARGET_EFAULT
;
13425 #ifdef TARGET_NR_timer_settime
13426 case TARGET_NR_timer_settime
:
13428 /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
13429 * struct itimerspec * old_value */
13430 target_timer_t timerid
= get_timer_id(arg1
);
13434 } else if (arg3
== 0) {
13435 ret
= -TARGET_EINVAL
;
13437 timer_t htimer
= g_posix_timers
[timerid
];
13438 struct itimerspec hspec_new
= {{0},}, hspec_old
= {{0},};
13440 if (target_to_host_itimerspec(&hspec_new
, arg3
)) {
13441 return -TARGET_EFAULT
;
13444 timer_settime(htimer
, arg2
, &hspec_new
, &hspec_old
));
13445 if (arg4
&& host_to_target_itimerspec(arg4
, &hspec_old
)) {
13446 return -TARGET_EFAULT
;
13453 #ifdef TARGET_NR_timer_settime64
13454 case TARGET_NR_timer_settime64
:
13456 target_timer_t timerid
= get_timer_id(arg1
);
13460 } else if (arg3
== 0) {
13461 ret
= -TARGET_EINVAL
;
13463 timer_t htimer
= g_posix_timers
[timerid
];
13464 struct itimerspec hspec_new
= {{0},}, hspec_old
= {{0},};
13466 if (target_to_host_itimerspec64(&hspec_new
, arg3
)) {
13467 return -TARGET_EFAULT
;
13470 timer_settime(htimer
, arg2
, &hspec_new
, &hspec_old
));
13471 if (arg4
&& host_to_target_itimerspec64(arg4
, &hspec_old
)) {
13472 return -TARGET_EFAULT
;
13479 #ifdef TARGET_NR_timer_gettime
13480 case TARGET_NR_timer_gettime
:
13482 /* args: timer_t timerid, struct itimerspec *curr_value */
13483 target_timer_t timerid
= get_timer_id(arg1
);
13487 } else if (!arg2
) {
13488 ret
= -TARGET_EFAULT
;
13490 timer_t htimer
= g_posix_timers
[timerid
];
13491 struct itimerspec hspec
;
13492 ret
= get_errno(timer_gettime(htimer
, &hspec
));
13494 if (host_to_target_itimerspec(arg2
, &hspec
)) {
13495 ret
= -TARGET_EFAULT
;
13502 #ifdef TARGET_NR_timer_gettime64
13503 case TARGET_NR_timer_gettime64
:
13505 /* args: timer_t timerid, struct itimerspec64 *curr_value */
13506 target_timer_t timerid
= get_timer_id(arg1
);
13510 } else if (!arg2
) {
13511 ret
= -TARGET_EFAULT
;
13513 timer_t htimer
= g_posix_timers
[timerid
];
13514 struct itimerspec hspec
;
13515 ret
= get_errno(timer_gettime(htimer
, &hspec
));
13517 if (host_to_target_itimerspec64(arg2
, &hspec
)) {
13518 ret
= -TARGET_EFAULT
;
13525 #ifdef TARGET_NR_timer_getoverrun
13526 case TARGET_NR_timer_getoverrun
:
13528 /* args: timer_t timerid */
13529 target_timer_t timerid
= get_timer_id(arg1
);
13534 timer_t htimer
= g_posix_timers
[timerid
];
13535 ret
= get_errno(timer_getoverrun(htimer
));
13541 #ifdef TARGET_NR_timer_delete
13542 case TARGET_NR_timer_delete
:
13544 /* args: timer_t timerid */
13545 target_timer_t timerid
= get_timer_id(arg1
);
13550 timer_t htimer
= g_posix_timers
[timerid
];
13551 ret
= get_errno(timer_delete(htimer
));
13552 free_host_timer_slot(timerid
);
13558 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
13559 case TARGET_NR_timerfd_create
:
13560 ret
= get_errno(timerfd_create(arg1
,
13561 target_to_host_bitmask(arg2
, fcntl_flags_tbl
)));
13563 fd_trans_register(ret
, &target_timerfd_trans
);
13568 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
13569 case TARGET_NR_timerfd_gettime
:
13571 struct itimerspec its_curr
;
13573 ret
= get_errno(timerfd_gettime(arg1
, &its_curr
));
13575 if (arg2
&& host_to_target_itimerspec(arg2
, &its_curr
)) {
13576 return -TARGET_EFAULT
;
13582 #if defined(TARGET_NR_timerfd_gettime64) && defined(CONFIG_TIMERFD)
13583 case TARGET_NR_timerfd_gettime64
:
13585 struct itimerspec its_curr
;
13587 ret
= get_errno(timerfd_gettime(arg1
, &its_curr
));
13589 if (arg2
&& host_to_target_itimerspec64(arg2
, &its_curr
)) {
13590 return -TARGET_EFAULT
;
13596 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
13597 case TARGET_NR_timerfd_settime
:
13599 struct itimerspec its_new
, its_old
, *p_new
;
13602 if (target_to_host_itimerspec(&its_new
, arg3
)) {
13603 return -TARGET_EFAULT
;
13610 ret
= get_errno(timerfd_settime(arg1
, arg2
, p_new
, &its_old
));
13612 if (arg4
&& host_to_target_itimerspec(arg4
, &its_old
)) {
13613 return -TARGET_EFAULT
;
13619 #if defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)
13620 case TARGET_NR_timerfd_settime64
:
13622 struct itimerspec its_new
, its_old
, *p_new
;
13625 if (target_to_host_itimerspec64(&its_new
, arg3
)) {
13626 return -TARGET_EFAULT
;
13633 ret
= get_errno(timerfd_settime(arg1
, arg2
, p_new
, &its_old
));
13635 if (arg4
&& host_to_target_itimerspec64(arg4
, &its_old
)) {
13636 return -TARGET_EFAULT
;
13642 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
13643 case TARGET_NR_ioprio_get
:
13644 return get_errno(ioprio_get(arg1
, arg2
));
13647 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
13648 case TARGET_NR_ioprio_set
:
13649 return get_errno(ioprio_set(arg1
, arg2
, arg3
));
13652 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
13653 case TARGET_NR_setns
:
13654 return get_errno(setns(arg1
, arg2
));
13656 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
13657 case TARGET_NR_unshare
:
13658 return get_errno(unshare(arg1
));
13660 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
13661 case TARGET_NR_kcmp
:
13662 return get_errno(kcmp(arg1
, arg2
, arg3
, arg4
, arg5
));
13664 #ifdef TARGET_NR_swapcontext
13665 case TARGET_NR_swapcontext
:
13666 /* PowerPC specific. */
13667 return do_swapcontext(cpu_env
, arg1
, arg2
, arg3
);
13669 #ifdef TARGET_NR_memfd_create
13670 case TARGET_NR_memfd_create
:
13671 p
= lock_user_string(arg1
);
13673 return -TARGET_EFAULT
;
13675 ret
= get_errno(memfd_create(p
, arg2
));
13676 fd_trans_unregister(ret
);
13677 unlock_user(p
, arg1
, 0);
13680 #if defined TARGET_NR_membarrier && defined __NR_membarrier
13681 case TARGET_NR_membarrier
:
13682 return get_errno(membarrier(arg1
, arg2
));
13685 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
13686 case TARGET_NR_copy_file_range
:
13688 loff_t inoff
, outoff
;
13689 loff_t
*pinoff
= NULL
, *poutoff
= NULL
;
13692 if (get_user_u64(inoff
, arg2
)) {
13693 return -TARGET_EFAULT
;
13698 if (get_user_u64(outoff
, arg4
)) {
13699 return -TARGET_EFAULT
;
13703 /* Do not sign-extend the count parameter. */
13704 ret
= get_errno(safe_copy_file_range(arg1
, pinoff
, arg3
, poutoff
,
13705 (abi_ulong
)arg5
, arg6
));
13706 if (!is_error(ret
) && ret
> 0) {
13708 if (put_user_u64(inoff
, arg2
)) {
13709 return -TARGET_EFAULT
;
13713 if (put_user_u64(outoff
, arg4
)) {
13714 return -TARGET_EFAULT
;
13722 #if defined(TARGET_NR_pivot_root)
13723 case TARGET_NR_pivot_root
:
13726 p
= lock_user_string(arg1
); /* new_root */
13727 p2
= lock_user_string(arg2
); /* put_old */
13729 ret
= -TARGET_EFAULT
;
13731 ret
= get_errno(pivot_root(p
, p2
));
13733 unlock_user(p2
, arg2
, 0);
13734 unlock_user(p
, arg1
, 0);
13739 #if defined(TARGET_NR_riscv_hwprobe)
13740 case TARGET_NR_riscv_hwprobe
:
13741 return do_riscv_hwprobe(cpu_env
, arg1
, arg2
, arg3
, arg4
, arg5
);
13745 qemu_log_mask(LOG_UNIMP
, "Unsupported syscall: %d\n", num
);
13746 return -TARGET_ENOSYS
;
13751 abi_long
do_syscall(CPUArchState
*cpu_env
, int num
, abi_long arg1
,
13752 abi_long arg2
, abi_long arg3
, abi_long arg4
,
13753 abi_long arg5
, abi_long arg6
, abi_long arg7
,
13756 CPUState
*cpu
= env_cpu(cpu_env
);
13759 #ifdef DEBUG_ERESTARTSYS
13760 /* Debug-only code for exercising the syscall-restart code paths
13761 * in the per-architecture cpu main loops: restart every syscall
13762 * the guest makes once before letting it through.
13768 return -QEMU_ERESTARTSYS
;
13773 record_syscall_start(cpu
, num
, arg1
,
13774 arg2
, arg3
, arg4
, arg5
, arg6
, arg7
, arg8
);
13776 if (unlikely(qemu_loglevel_mask(LOG_STRACE
))) {
13777 print_syscall(cpu_env
, num
, arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
13780 ret
= do_syscall1(cpu_env
, num
, arg1
, arg2
, arg3
, arg4
,
13781 arg5
, arg6
, arg7
, arg8
);
13783 if (unlikely(qemu_loglevel_mask(LOG_STRACE
))) {
13784 print_syscall_ret(cpu_env
, num
, ret
, arg1
, arg2
,
13785 arg3
, arg4
, arg5
, arg6
);
13788 record_syscall_return(cpu
, num
, ret
);