2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3 * set. Known devices table current as of Jun/2012 and taken from linux.
4 * See drivers/mtd/devices/m25p80.c.
6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8 * Copyright (C) 2012 PetaLogix
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 or
13 * (at your option) a later version of the License.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
25 #include "qemu/units.h"
26 #include "sysemu/block-backend.h"
27 #include "hw/block/block.h"
28 #include "hw/block/flash.h"
29 #include "hw/qdev-properties.h"
30 #include "hw/qdev-properties-system.h"
31 #include "hw/ssi/ssi.h"
32 #include "migration/vmstate.h"
33 #include "qemu/bitops.h"
35 #include "qemu/module.h"
36 #include "qemu/error-report.h"
37 #include "qapi/error.h"
39 #include "qom/object.h"
40 #include "m25p80_sfdp.h"
42 /* 16 MiB max in 3 byte address mode */
43 #define MAX_3BYTES_SIZE 0x1000000
44 #define SPI_NOR_MAX_ID_LEN 6
46 /* Fields for FlashPartInfo->flags */
47 enum spi_flash_option_flags
{
52 HAS_SR_BP3_BIT6
= BIT(4),
55 typedef struct FlashPartInfo
{
56 const char *part_name
;
58 * This array stores the ID bytes.
59 * The first three bytes are the JEDIC ID.
60 * JEDEC ID zero means "no ID" (mostly older chips).
62 uint8_t id
[SPI_NOR_MAX_ID_LEN
];
64 /* there is confusion between manufacturers as to what a sector is. In this
65 * device model, a "sector" is the size that is erased by the ERASE_SECTOR
66 * command (opcode 0xd8).
73 * Big sized spi nor are often stacked devices, thus sometime
74 * replace chip erase with die erase.
75 * This field inform how many die is in the chip.
78 uint8_t (*sfdp_read
)(uint32_t sfdp_addr
);
81 /* adapted from linux */
82 /* Used when the "_ext_id" is two bytes at most */
83 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
84 .part_name = _part_name,\
86 ((_jedec_id) >> 16) & 0xff,\
87 ((_jedec_id) >> 8) & 0xff,\
89 ((_ext_id) >> 8) & 0xff,\
92 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
93 .sector_size = (_sector_size),\
94 .n_sectors = (_n_sectors),\
99 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
100 .part_name = _part_name,\
102 ((_jedec_id) >> 16) & 0xff,\
103 ((_jedec_id) >> 8) & 0xff,\
105 ((_ext_id) >> 16) & 0xff,\
106 ((_ext_id) >> 8) & 0xff,\
110 .sector_size = (_sector_size),\
111 .n_sectors = (_n_sectors),\
116 #define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
118 .part_name = _part_name,\
120 ((_jedec_id) >> 16) & 0xff,\
121 ((_jedec_id) >> 8) & 0xff,\
123 ((_ext_id) >> 8) & 0xff,\
126 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
127 .sector_size = (_sector_size),\
128 .n_sectors = (_n_sectors),\
133 #define JEDEC_NUMONYX 0x20
134 #define JEDEC_WINBOND 0xEF
135 #define JEDEC_SPANSION 0x01
137 /* Numonyx (Micron) Configuration register macros */
138 #define VCFG_DUMMY 0x1
139 #define VCFG_WRAP_SEQUENTIAL 0x2
140 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
141 #define NVCFG_XIP_MODE_MASK (7 << 9)
142 #define VCFG_XIP_MODE_DISABLED (1 << 3)
143 #define CFG_DUMMY_CLK_LEN 4
144 #define NVCFG_DUMMY_CLK_POS 12
145 #define VCFG_DUMMY_CLK_POS 4
146 #define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
147 #define EVCFG_VPP_ACCELERATOR (1 << 3)
148 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
149 #define NVCFG_DUAL_IO_MASK (1 << 2)
150 #define EVCFG_DUAL_IO_DISABLED (1 << 6)
151 #define NVCFG_QUAD_IO_MASK (1 << 3)
152 #define EVCFG_QUAD_IO_DISABLED (1 << 7)
153 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
154 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
156 /* Numonyx (Micron) Flag Status Register macros */
157 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
158 #define FSR_FLASH_READY (1 << 7)
160 /* Spansion configuration registers macros. */
161 #define SPANSION_QUAD_CFG_POS 0
162 #define SPANSION_QUAD_CFG_LEN 1
163 #define SPANSION_DUMMY_CLK_POS 0
164 #define SPANSION_DUMMY_CLK_LEN 4
165 #define SPANSION_ADDR_LEN_POS 7
166 #define SPANSION_ADDR_LEN_LEN 1
169 * Spansion read mode command length in bytes,
170 * the mode is currently not supported.
173 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
174 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
176 static const FlashPartInfo known_devices
[] = {
177 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
178 { INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K
) },
179 { INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K
) },
181 { INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K
) },
182 { INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K
) },
183 { INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K
) },
185 { INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K
) },
186 { INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K
) },
187 { INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K
) },
188 { INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K
) },
190 { INFO("at45db081d", 0x1f2500, 0, 64 << 10, 16, ER_4K
) },
192 /* Atmel EEPROMS - it is assumed, that don't care bit in command
193 * is set to 0. Block protection is not supported.
195 { INFO("at25128a-nonjedec", 0x0, 0, 1, 131072, EEPROM
) },
196 { INFO("at25256a-nonjedec", 0x0, 0, 1, 262144, EEPROM
) },
199 { INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K
) },
200 { INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) },
201 { INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) },
202 { INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) },
203 { INFO("en25q64", 0x1c3017, 0, 64 << 10, 128, ER_4K
) },
206 { INFO("gd25q32", 0xc84016, 0, 64 << 10, 64, ER_4K
) },
207 { INFO("gd25q64", 0xc84017, 0, 64 << 10, 128, ER_4K
) },
209 /* Intel/Numonyx -- xxxs33b */
210 { INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) },
211 { INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) },
212 { INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) },
213 { INFO("n25q064", 0x20ba17, 0, 64 << 10, 128, 0) },
216 { INFO("is25lq040b", 0x9d4013, 0, 64 << 10, 8, ER_4K
) },
217 { INFO("is25lp080d", 0x9d6014, 0, 64 << 10, 16, ER_4K
) },
218 { INFO("is25lp016d", 0x9d6015, 0, 64 << 10, 32, ER_4K
) },
219 { INFO("is25lp032", 0x9d6016, 0, 64 << 10, 64, ER_4K
) },
220 { INFO("is25lp064", 0x9d6017, 0, 64 << 10, 128, ER_4K
) },
221 { INFO("is25lp128", 0x9d6018, 0, 64 << 10, 256, ER_4K
) },
222 { INFO("is25lp256", 0x9d6019, 0, 64 << 10, 512, ER_4K
) },
223 { INFO("is25wp032", 0x9d7016, 0, 64 << 10, 64, ER_4K
) },
224 { INFO("is25wp064", 0x9d7017, 0, 64 << 10, 128, ER_4K
) },
225 { INFO("is25wp128", 0x9d7018, 0, 64 << 10, 256, ER_4K
) },
226 { INFO("is25wp256", 0x9d7019, 0, 64 << 10, 512, ER_4K
),
227 .sfdp_read
= m25p80_sfdp_is25wp256
},
230 { INFO("mx25l2005a", 0xc22012, 0, 64 << 10, 4, ER_4K
) },
231 { INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K
) },
232 { INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) },
233 { INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K
) },
234 { INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) },
235 { INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) },
236 { INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) },
237 { INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) },
238 { INFO6("mx25l25635e", 0xc22019, 0xc22019, 64 << 10, 512,
239 ER_4K
| ER_32K
), .sfdp_read
= m25p80_sfdp_mx25l25635e
},
240 { INFO6("mx25l25635f", 0xc22019, 0xc22019, 64 << 10, 512,
241 ER_4K
| ER_32K
), .sfdp_read
= m25p80_sfdp_mx25l25635f
},
242 { INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) },
243 { INFO("mx66l51235f", 0xc2201a, 0, 64 << 10, 1024, ER_4K
| ER_32K
) },
244 { INFO("mx66u51235f", 0xc2253a, 0, 64 << 10, 1024, ER_4K
| ER_32K
) },
245 { INFO("mx66u1g45g", 0xc2253b, 0, 64 << 10, 2048, ER_4K
| ER_32K
) },
246 { INFO("mx66l1g45g", 0xc2201b, 0, 64 << 10, 2048, ER_4K
| ER_32K
),
247 .sfdp_read
= m25p80_sfdp_mx66l1g45g
},
250 { INFO("n25q032a11", 0x20bb16, 0, 64 << 10, 64, ER_4K
) },
251 { INFO("n25q032a13", 0x20ba16, 0, 64 << 10, 64, ER_4K
) },
252 { INFO("n25q064a11", 0x20bb17, 0, 64 << 10, 128, ER_4K
) },
253 { INFO("n25q064a13", 0x20ba17, 0, 64 << 10, 128, ER_4K
) },
254 { INFO("n25q128a11", 0x20bb18, 0, 64 << 10, 256, ER_4K
) },
255 { INFO("n25q128a13", 0x20ba18, 0, 64 << 10, 256, ER_4K
) },
256 { INFO("n25q256a11", 0x20bb19, 0, 64 << 10, 512, ER_4K
) },
257 { INFO("n25q256a13", 0x20ba19, 0, 64 << 10, 512, ER_4K
),
258 .sfdp_read
= m25p80_sfdp_n25q256a
},
259 { INFO("n25q512a11", 0x20bb20, 0, 64 << 10, 1024, ER_4K
) },
260 { INFO("n25q512a13", 0x20ba20, 0, 64 << 10, 1024, ER_4K
) },
261 { INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) },
262 { INFO("n25q256a", 0x20ba19, 0, 64 << 10, 512,
263 ER_4K
| HAS_SR_BP3_BIT6
| HAS_SR_TB
),
264 .sfdp_read
= m25p80_sfdp_n25q256a
},
265 { INFO("n25q512a", 0x20ba20, 0, 64 << 10, 1024, ER_4K
) },
266 { INFO("n25q512ax3", 0x20ba20, 0x1000, 64 << 10, 1024, ER_4K
) },
267 { INFO("mt25ql512ab", 0x20ba20, 0x1044, 64 << 10, 1024, ER_4K
| ER_32K
) },
268 { INFO_STACKED("mt35xu01g", 0x2c5b1b, 0x104100, 128 << 10, 1024,
269 ER_4K
| ER_32K
, 2) },
270 { INFO_STACKED("n25q00", 0x20ba21, 0x1000, 64 << 10, 2048, ER_4K
, 4) },
271 { INFO_STACKED("n25q00a", 0x20bb21, 0x1000, 64 << 10, 2048, ER_4K
, 4) },
272 { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K
, 2) },
273 { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K
, 2) },
274 { INFO_STACKED("mt25ql02g", 0x20ba22, 0x1040, 64 << 10, 4096, ER_4K
| ER_32K
, 2) },
275 { INFO_STACKED("mt25qu02g", 0x20bb22, 0x1040, 64 << 10, 4096, ER_4K
| ER_32K
, 2) },
277 /* Spansion -- single (large) sector size only, at least
278 * for the chips listed here (without boot sectors).
280 { INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K
) },
281 { INFO("s25sl064p", 0x010216, 0x4d00, 64 << 10, 128, ER_4K
) },
282 { INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) },
283 { INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) },
284 { INFO6("s25fl512s", 0x010220, 0x4d0080, 256 << 10, 256, 0) },
285 { INFO6("s70fl01gs", 0x010221, 0x4d0080, 256 << 10, 512, 0) },
286 { INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) },
287 { INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) },
288 { INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) },
289 { INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) },
290 { INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) },
291 { INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) },
292 { INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) },
293 { INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) },
294 { INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) },
295 { INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K
| ER_32K
) },
296 { INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K
| ER_32K
) },
298 /* Spansion -- boot sectors support */
299 { INFO6("s25fs512s", 0x010220, 0x4d0081, 256 << 10, 256, 0) },
300 { INFO6("s70fs01gs", 0x010221, 0x4d0081, 256 << 10, 512, 0) },
302 /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
303 { INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K
) },
304 { INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K
) },
305 { INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K
) },
306 { INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K
) },
307 { INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K
) },
308 { INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K
) },
309 { INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K
) },
310 { INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K
) },
311 { INFO("sst25wf080", 0xbf2505, 0, 64 << 10, 16, ER_4K
) },
313 /* ST Microelectronics -- newer production may have feature updates */
314 { INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) },
315 { INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) },
316 { INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) },
317 { INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) },
318 { INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) },
319 { INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) },
320 { INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) },
321 { INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) },
322 { INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) },
323 { INFO("n25q032", 0x20ba16, 0, 64 << 10, 64, 0) },
325 { INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) },
326 { INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) },
327 { INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) },
329 { INFO("m25pe20", 0x208012, 0, 64 << 10, 4, 0) },
330 { INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) },
331 { INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K
) },
333 { INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K
) },
334 { INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K
) },
335 { INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K
) },
336 { INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) },
338 /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
339 { INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K
) },
340 { INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K
) },
341 { INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K
) },
342 { INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K
) },
343 { INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K
) },
344 { INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K
) },
345 { INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K
) },
346 { INFO("w25q32dw", 0xef6016, 0, 64 << 10, 64, ER_4K
) },
347 { INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K
) },
348 { INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K
) },
349 { INFO("w25q80", 0xef5014, 0, 64 << 10, 16, ER_4K
) },
350 { INFO("w25q80bl", 0xef4014, 0, 64 << 10, 16, ER_4K
) },
351 { INFO("w25q256", 0xef4019, 0, 64 << 10, 512, ER_4K
),
352 .sfdp_read
= m25p80_sfdp_w25q256
},
353 { INFO("w25q512jv", 0xef4020, 0, 64 << 10, 1024, ER_4K
),
354 .sfdp_read
= m25p80_sfdp_w25q512jv
},
355 { INFO("w25q01jvq", 0xef4021, 0, 64 << 10, 2048, ER_4K
),
356 .sfdp_read
= m25p80_sfdp_w25q01jvq
},
368 BULK_ERASE_60
= 0x60,
402 ERASE4_SECTOR
= 0xdc,
404 EN_4BYTE_ADDR
= 0xB7,
405 EX_4BYTE_ADDR
= 0xE9,
407 EXTEND_ADDR_READ
= 0xC8,
408 EXTEND_ADDR_WRITE
= 0xC5,
414 * Micron: 0x35 - enable QPI
415 * Spansion: 0x35 - read control register
436 STATE_COLLECTING_DATA
,
437 STATE_COLLECTING_VAR_LEN_DATA
,
458 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16
461 SSIPeripheral parent_obj
;
470 uint8_t data
[M25P80_INTERNAL_DATA_BUFFER_SZ
];
474 uint8_t needed_bytes
;
475 uint8_t cmd_in_progress
;
477 uint32_t nonvolatile_cfg
;
478 /* Configuration register for Macronix */
479 uint32_t volatile_cfg
;
480 uint32_t enh_volatile_cfg
;
481 /* Spansion cfg registers. */
482 uint8_t spansion_cr1nv
;
483 uint8_t spansion_cr2nv
;
484 uint8_t spansion_cr3nv
;
485 uint8_t spansion_cr4nv
;
486 uint8_t spansion_cr1v
;
487 uint8_t spansion_cr2v
;
488 uint8_t spansion_cr3v
;
489 uint8_t spansion_cr4v
;
492 bool four_bytes_address_mode
;
501 bool status_register_write_disabled
;
506 const FlashPartInfo
*pi
;
511 SSIPeripheralClass parent_class
;
515 #define TYPE_M25P80 "m25p80-generic"
516 OBJECT_DECLARE_TYPE(Flash
, M25P80Class
, M25P80
)
518 static inline Manufacturer
get_man(Flash
*s
)
520 switch (s
->pi
->id
[0]) {
538 static void blk_sync_complete(void *opaque
, int ret
)
540 QEMUIOVector
*iov
= opaque
;
542 qemu_iovec_destroy(iov
);
545 /* do nothing. Masters do not directly interact with the backing store,
546 * only the working copy so no mutexing required.
550 static void flash_sync_page(Flash
*s
, int page
)
554 if (!s
->blk
|| !blk_is_writable(s
->blk
)) {
558 iov
= g_new(QEMUIOVector
, 1);
559 qemu_iovec_init(iov
, 1);
560 qemu_iovec_add(iov
, s
->storage
+ page
* s
->pi
->page_size
,
562 blk_aio_pwritev(s
->blk
, page
* s
->pi
->page_size
, iov
, 0,
563 blk_sync_complete
, iov
);
566 static inline void flash_sync_area(Flash
*s
, int64_t off
, int64_t len
)
570 if (!s
->blk
|| !blk_is_writable(s
->blk
)) {
574 assert(!(len
% BDRV_SECTOR_SIZE
));
575 iov
= g_new(QEMUIOVector
, 1);
576 qemu_iovec_init(iov
, 1);
577 qemu_iovec_add(iov
, s
->storage
+ off
, len
);
578 blk_aio_pwritev(s
->blk
, off
, iov
, 0, blk_sync_complete
, iov
);
581 static void flash_erase(Flash
*s
, int offset
, FlashCMD cmd
)
584 uint8_t capa_to_assert
= 0;
590 capa_to_assert
= ER_4K
;
595 capa_to_assert
= ER_32K
;
599 len
= s
->pi
->sector_size
;
605 if (s
->pi
->die_cnt
) {
606 len
= s
->size
/ s
->pi
->die_cnt
;
607 offset
= offset
& (~(len
- 1));
609 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: die erase is not supported"
618 trace_m25p80_flash_erase(s
, offset
, len
);
620 if ((s
->pi
->flags
& capa_to_assert
) != capa_to_assert
) {
621 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: %d erase size not supported by"
625 if (!s
->write_enable
) {
626 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: erase with write protect!\n");
629 memset(s
->storage
+ offset
, 0xff, len
);
630 flash_sync_area(s
, offset
, len
);
633 static inline void flash_sync_dirty(Flash
*s
, int64_t newpage
)
635 if (s
->dirty_page
>= 0 && s
->dirty_page
!= newpage
) {
636 flash_sync_page(s
, s
->dirty_page
);
637 s
->dirty_page
= newpage
;
642 void flash_write8(Flash
*s
, uint32_t addr
, uint8_t data
)
644 uint32_t page
= addr
/ s
->pi
->page_size
;
645 uint8_t prev
= s
->storage
[s
->cur_addr
];
646 uint32_t block_protect_value
= (s
->block_protect3
<< 3) |
647 (s
->block_protect2
<< 2) |
648 (s
->block_protect1
<< 1) |
649 (s
->block_protect0
<< 0);
651 if (!s
->write_enable
) {
652 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: write with write protect!\n");
656 if (block_protect_value
> 0) {
657 uint32_t num_protected_sectors
= 1 << (block_protect_value
- 1);
658 uint32_t sector
= addr
/ s
->pi
->sector_size
;
660 /* top_bottom_bit == 0 means TOP */
661 if (!s
->top_bottom_bit
) {
662 if (s
->pi
->n_sectors
<= sector
+ num_protected_sectors
) {
663 qemu_log_mask(LOG_GUEST_ERROR
,
664 "M25P80: write with write protect!\n");
668 if (sector
< num_protected_sectors
) {
669 qemu_log_mask(LOG_GUEST_ERROR
,
670 "M25P80: write with write protect!\n");
676 if ((prev
^ data
) & data
) {
677 trace_m25p80_programming_zero_to_one(s
, addr
, prev
, data
);
680 if (s
->pi
->flags
& EEPROM
) {
681 s
->storage
[s
->cur_addr
] = data
;
683 s
->storage
[s
->cur_addr
] &= data
;
686 flash_sync_dirty(s
, page
);
687 s
->dirty_page
= page
;
690 static inline int get_addr_length(Flash
*s
)
692 /* check if eeprom is in use */
693 if (s
->pi
->flags
== EEPROM
) {
697 switch (s
->cmd_in_progress
) {
714 return s
->four_bytes_address_mode
? 4 : 3;
718 static void complete_collecting_data(Flash
*s
)
722 n
= get_addr_length(s
);
723 s
->cur_addr
= (n
== 3 ? s
->ear
: 0);
724 for (i
= 0; i
< n
; ++i
) {
726 s
->cur_addr
|= s
->data
[i
];
729 s
->cur_addr
&= s
->size
- 1;
731 s
->state
= STATE_IDLE
;
733 trace_m25p80_complete_collecting(s
, s
->cmd_in_progress
, n
, s
->ear
,
736 switch (s
->cmd_in_progress
) {
743 s
->state
= STATE_PAGE_PROGRAM
;
746 /* AAI programming starts from the even address */
747 s
->cur_addr
&= ~BIT(0);
748 s
->state
= STATE_PAGE_PROGRAM
;
762 s
->state
= STATE_READ
;
771 flash_erase(s
, s
->cur_addr
, s
->cmd_in_progress
);
774 s
->status_register_write_disabled
= extract32(s
->data
[0], 7, 1);
775 s
->block_protect0
= extract32(s
->data
[0], 2, 1);
776 s
->block_protect1
= extract32(s
->data
[0], 3, 1);
777 s
->block_protect2
= extract32(s
->data
[0], 4, 1);
778 if (s
->pi
->flags
& HAS_SR_TB
) {
779 s
->top_bottom_bit
= extract32(s
->data
[0], 5, 1);
781 if (s
->pi
->flags
& HAS_SR_BP3_BIT6
) {
782 s
->block_protect3
= extract32(s
->data
[0], 6, 1);
785 switch (get_man(s
)) {
787 s
->quad_enable
= !!(s
->data
[1] & 0x02);
790 s
->quad_enable
= extract32(s
->data
[0], 6, 1);
793 s
->quad_enable
= extract32(s
->data
[0], 6, 1);
795 s
->volatile_cfg
= s
->data
[1];
796 s
->four_bytes_address_mode
= extract32(s
->data
[1], 5, 1);
802 if (s
->write_enable
) {
803 s
->write_enable
= false;
807 case EXTEND_ADDR_WRITE
:
811 s
->nonvolatile_cfg
= s
->data
[0] | (s
->data
[1] << 8);
814 s
->volatile_cfg
= s
->data
[0];
817 s
->enh_volatile_cfg
= s
->data
[0];
821 if (get_man(s
) == MAN_SST
) {
822 if (s
->cur_addr
<= 1) {
824 s
->data
[0] = s
->pi
->id
[2];
825 s
->data
[1] = s
->pi
->id
[0];
827 s
->data
[0] = s
->pi
->id
[0];
828 s
->data
[1] = s
->pi
->id
[2];
832 s
->data_read_loop
= true;
833 s
->state
= STATE_READING_DATA
;
835 qemu_log_mask(LOG_GUEST_ERROR
,
836 "M25P80: Invalid read id address\n");
839 qemu_log_mask(LOG_GUEST_ERROR
,
840 "M25P80: Read id (command 0x90/0xAB) is not supported"
846 s
->state
= STATE_READING_SFDP
;
854 static void reset_memory(Flash
*s
)
856 s
->cmd_in_progress
= NOP
;
859 s
->four_bytes_address_mode
= false;
863 s
->state
= STATE_IDLE
;
864 s
->write_enable
= false;
865 s
->reset_enable
= false;
866 s
->quad_enable
= false;
867 s
->aai_enable
= false;
869 switch (get_man(s
)) {
872 s
->volatile_cfg
|= VCFG_DUMMY
;
873 s
->volatile_cfg
|= VCFG_WRAP_SEQUENTIAL
;
874 if ((s
->nonvolatile_cfg
& NVCFG_XIP_MODE_MASK
)
875 == NVCFG_XIP_MODE_DISABLED
) {
876 s
->volatile_cfg
|= VCFG_XIP_MODE_DISABLED
;
878 s
->volatile_cfg
|= deposit32(s
->volatile_cfg
,
881 extract32(s
->nonvolatile_cfg
,
886 s
->enh_volatile_cfg
= 0;
887 s
->enh_volatile_cfg
|= EVCFG_OUT_DRIVER_STRENGTH_DEF
;
888 s
->enh_volatile_cfg
|= EVCFG_VPP_ACCELERATOR
;
889 s
->enh_volatile_cfg
|= EVCFG_RESET_HOLD_ENABLED
;
890 if (s
->nonvolatile_cfg
& NVCFG_DUAL_IO_MASK
) {
891 s
->enh_volatile_cfg
|= EVCFG_DUAL_IO_DISABLED
;
893 if (s
->nonvolatile_cfg
& NVCFG_QUAD_IO_MASK
) {
894 s
->enh_volatile_cfg
|= EVCFG_QUAD_IO_DISABLED
;
896 if (!(s
->nonvolatile_cfg
& NVCFG_4BYTE_ADDR_MASK
)) {
897 s
->four_bytes_address_mode
= true;
899 if (!(s
->nonvolatile_cfg
& NVCFG_LOWER_SEGMENT_MASK
)) {
900 s
->ear
= s
->size
/ MAX_3BYTES_SIZE
- 1;
904 s
->volatile_cfg
= 0x7;
907 s
->spansion_cr1v
= s
->spansion_cr1nv
;
908 s
->spansion_cr2v
= s
->spansion_cr2nv
;
909 s
->spansion_cr3v
= s
->spansion_cr3nv
;
910 s
->spansion_cr4v
= s
->spansion_cr4nv
;
911 s
->quad_enable
= extract32(s
->spansion_cr1v
,
912 SPANSION_QUAD_CFG_POS
,
913 SPANSION_QUAD_CFG_LEN
915 s
->four_bytes_address_mode
= extract32(s
->spansion_cr2v
,
916 SPANSION_ADDR_LEN_POS
,
917 SPANSION_ADDR_LEN_LEN
924 trace_m25p80_reset_done(s
);
927 static uint8_t numonyx_mode(Flash
*s
)
929 if (!(s
->enh_volatile_cfg
& EVCFG_QUAD_IO_DISABLED
)) {
931 } else if (!(s
->enh_volatile_cfg
& EVCFG_DUAL_IO_DISABLED
)) {
938 static uint8_t numonyx_extract_cfg_num_dummies(Flash
*s
)
942 assert(get_man(s
) == MAN_NUMONYX
);
944 mode
= numonyx_mode(s
);
945 num_dummies
= extract32(s
->volatile_cfg
, 4, 4);
947 if (num_dummies
== 0x0 || num_dummies
== 0xf) {
948 switch (s
->cmd_in_progress
) {
954 num_dummies
= (mode
== MODE_QIO
) ? 10 : 8;
962 static void decode_fast_read_cmd(Flash
*s
)
964 s
->needed_bytes
= get_addr_length(s
);
965 switch (get_man(s
)) {
966 /* Dummy cycles - modeled with bytes writes instead of bits */
968 s
->needed_bytes
+= 1;
971 s
->needed_bytes
+= 8;
974 s
->needed_bytes
+= numonyx_extract_cfg_num_dummies(s
);
977 if (extract32(s
->volatile_cfg
, 6, 2) == 1) {
978 s
->needed_bytes
+= 6;
980 s
->needed_bytes
+= 8;
984 s
->needed_bytes
+= extract32(s
->spansion_cr2v
,
985 SPANSION_DUMMY_CLK_POS
,
986 SPANSION_DUMMY_CLK_LEN
991 * The Fast Read instruction code is followed by address bytes and
992 * dummy cycles, transmitted via the SI line.
994 * The number of dummy cycles is configurable but this is currently
995 * unmodeled, hence the default value 8 is used.
997 * QPI (Quad Peripheral Interface) mode has different default value
998 * of dummy cycles, but this is unsupported at the time being.
1000 s
->needed_bytes
+= 1;
1007 s
->state
= STATE_COLLECTING_DATA
;
1010 static void decode_dio_read_cmd(Flash
*s
)
1012 s
->needed_bytes
= get_addr_length(s
);
1013 /* Dummy cycles modeled with bytes writes instead of bits */
1014 switch (get_man(s
)) {
1016 s
->needed_bytes
+= WINBOND_CONTINUOUS_READ_MODE_CMD_LEN
;
1019 s
->needed_bytes
+= SPANSION_CONTINUOUS_READ_MODE_CMD_LEN
;
1020 s
->needed_bytes
+= extract32(s
->spansion_cr2v
,
1021 SPANSION_DUMMY_CLK_POS
,
1022 SPANSION_DUMMY_CLK_LEN
1026 s
->needed_bytes
+= numonyx_extract_cfg_num_dummies(s
);
1029 switch (extract32(s
->volatile_cfg
, 6, 2)) {
1031 s
->needed_bytes
+= 6;
1034 s
->needed_bytes
+= 8;
1037 s
->needed_bytes
+= 4;
1043 * The Fast Read Dual I/O instruction code is followed by address bytes
1044 * and dummy cycles, transmitted via the IO1 and IO0 line.
1046 * The number of dummy cycles is configurable but this is currently
1047 * unmodeled, hence the default value 4 is used.
1049 s
->needed_bytes
+= 1;
1056 s
->state
= STATE_COLLECTING_DATA
;
1059 static void decode_qio_read_cmd(Flash
*s
)
1061 s
->needed_bytes
= get_addr_length(s
);
1062 /* Dummy cycles modeled with bytes writes instead of bits */
1063 switch (get_man(s
)) {
1065 s
->needed_bytes
+= WINBOND_CONTINUOUS_READ_MODE_CMD_LEN
;
1066 s
->needed_bytes
+= 4;
1069 s
->needed_bytes
+= SPANSION_CONTINUOUS_READ_MODE_CMD_LEN
;
1070 s
->needed_bytes
+= extract32(s
->spansion_cr2v
,
1071 SPANSION_DUMMY_CLK_POS
,
1072 SPANSION_DUMMY_CLK_LEN
1076 s
->needed_bytes
+= numonyx_extract_cfg_num_dummies(s
);
1079 switch (extract32(s
->volatile_cfg
, 6, 2)) {
1081 s
->needed_bytes
+= 4;
1084 s
->needed_bytes
+= 8;
1087 s
->needed_bytes
+= 6;
1093 * The Fast Read Quad I/O instruction code is followed by address bytes
1094 * and dummy cycles, transmitted via the IO3, IO2, IO1 and IO0 line.
1096 * The number of dummy cycles is configurable but this is currently
1097 * unmodeled, hence the default value 6 is used.
1099 * QPI (Quad Peripheral Interface) mode has different default value
1100 * of dummy cycles, but this is unsupported at the time being.
1102 s
->needed_bytes
+= 3;
1109 s
->state
= STATE_COLLECTING_DATA
;
1112 static bool is_valid_aai_cmd(uint32_t cmd
)
1114 return cmd
== AAI_WP
|| cmd
== WRDI
|| cmd
== RDSR
;
1117 static void decode_new_cmd(Flash
*s
, uint32_t value
)
1121 s
->cmd_in_progress
= value
;
1122 trace_m25p80_command_decoded(s
, value
);
1124 if (value
!= RESET_MEMORY
) {
1125 s
->reset_enable
= false;
1128 if (get_man(s
) == MAN_SST
&& s
->aai_enable
&& !is_valid_aai_cmd(value
)) {
1129 qemu_log_mask(LOG_GUEST_ERROR
,
1130 "M25P80: Invalid cmd within AAI programming sequence");
1146 s
->needed_bytes
= get_addr_length(s
);
1149 s
->state
= STATE_COLLECTING_DATA
;
1153 if (get_man(s
) != MAN_NUMONYX
|| numonyx_mode(s
) == MODE_STD
) {
1154 s
->needed_bytes
= get_addr_length(s
);
1157 s
->state
= STATE_COLLECTING_DATA
;
1159 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Cannot execute cmd %x in "
1160 "DIO or QIO mode\n", s
->cmd_in_progress
);
1164 if (get_man(s
) != MAN_NUMONYX
|| numonyx_mode(s
) != MODE_QIO
) {
1165 s
->needed_bytes
= get_addr_length(s
);
1168 s
->state
= STATE_COLLECTING_DATA
;
1170 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Cannot execute cmd %x in "
1171 "QIO mode\n", s
->cmd_in_progress
);
1177 if (get_man(s
) != MAN_NUMONYX
|| numonyx_mode(s
) != MODE_DIO
) {
1178 s
->needed_bytes
= get_addr_length(s
);
1181 s
->state
= STATE_COLLECTING_DATA
;
1183 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Cannot execute cmd %x in "
1184 "DIO mode\n", s
->cmd_in_progress
);
1190 decode_fast_read_cmd(s
);
1194 if (get_man(s
) != MAN_NUMONYX
|| numonyx_mode(s
) != MODE_QIO
) {
1195 decode_fast_read_cmd(s
);
1197 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Cannot execute cmd %x in "
1198 "QIO mode\n", s
->cmd_in_progress
);
1203 if (get_man(s
) != MAN_NUMONYX
|| numonyx_mode(s
) != MODE_DIO
) {
1204 decode_fast_read_cmd(s
);
1206 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Cannot execute cmd %x in "
1207 "DIO mode\n", s
->cmd_in_progress
);
1213 if (get_man(s
) != MAN_NUMONYX
|| numonyx_mode(s
) != MODE_QIO
) {
1214 decode_dio_read_cmd(s
);
1216 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Cannot execute cmd %x in "
1217 "QIO mode\n", s
->cmd_in_progress
);
1223 if (get_man(s
) != MAN_NUMONYX
|| numonyx_mode(s
) != MODE_DIO
) {
1224 decode_qio_read_cmd(s
);
1226 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Cannot execute cmd %x in "
1227 "DIO mode\n", s
->cmd_in_progress
);
1233 * If WP# is low and status_register_write_disabled is high,
1234 * status register writes are disabled.
1235 * This is also called "hardware protected mode" (HPM). All other
1236 * combinations of the two states are called "software protected mode"
1237 * (SPM), and status register writes are permitted.
1239 if ((s
->wp_level
== 0 && s
->status_register_write_disabled
)
1240 || !s
->write_enable
) {
1241 qemu_log_mask(LOG_GUEST_ERROR
,
1242 "M25P80: Status register write is disabled!\n");
1246 switch (get_man(s
)) {
1248 s
->needed_bytes
= 2;
1249 s
->state
= STATE_COLLECTING_DATA
;
1252 s
->needed_bytes
= 2;
1253 s
->state
= STATE_COLLECTING_VAR_LEN_DATA
;
1256 s
->needed_bytes
= 1;
1257 s
->state
= STATE_COLLECTING_DATA
;
1263 s
->write_enable
= false;
1264 if (get_man(s
) == MAN_SST
) {
1265 s
->aai_enable
= false;
1269 s
->write_enable
= true;
1273 s
->data
[0] = (!!s
->write_enable
) << 1;
1274 s
->data
[0] |= (!!s
->status_register_write_disabled
) << 7;
1275 s
->data
[0] |= (!!s
->block_protect0
) << 2;
1276 s
->data
[0] |= (!!s
->block_protect1
) << 3;
1277 s
->data
[0] |= (!!s
->block_protect2
) << 4;
1278 if (s
->pi
->flags
& HAS_SR_TB
) {
1279 s
->data
[0] |= (!!s
->top_bottom_bit
) << 5;
1281 if (s
->pi
->flags
& HAS_SR_BP3_BIT6
) {
1282 s
->data
[0] |= (!!s
->block_protect3
) << 6;
1285 if (get_man(s
) == MAN_MACRONIX
|| get_man(s
) == MAN_ISSI
) {
1286 s
->data
[0] |= (!!s
->quad_enable
) << 6;
1288 if (get_man(s
) == MAN_SST
) {
1289 s
->data
[0] |= (!!s
->aai_enable
) << 6;
1294 s
->data_read_loop
= true;
1295 s
->state
= STATE_READING_DATA
;
1299 s
->data
[0] = FSR_FLASH_READY
;
1300 if (s
->four_bytes_address_mode
) {
1301 s
->data
[0] |= FSR_4BYTE_ADDR_MODE_ENABLED
;
1305 s
->data_read_loop
= true;
1306 s
->state
= STATE_READING_DATA
;
1310 if (get_man(s
) != MAN_NUMONYX
|| numonyx_mode(s
) == MODE_STD
) {
1311 trace_m25p80_populated_jedec(s
);
1312 for (i
= 0; i
< s
->pi
->id_len
; i
++) {
1313 s
->data
[i
] = s
->pi
->id
[i
];
1315 for (; i
< SPI_NOR_MAX_ID_LEN
; i
++) {
1319 s
->len
= SPI_NOR_MAX_ID_LEN
;
1321 s
->state
= STATE_READING_DATA
;
1323 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Cannot execute JEDEC read "
1324 "in DIO or QIO mode\n");
1329 s
->data
[0] = s
->volatile_cfg
& 0xFF;
1330 s
->data
[0] |= (!!s
->four_bytes_address_mode
) << 5;
1333 s
->state
= STATE_READING_DATA
;
1338 if (s
->write_enable
) {
1339 trace_m25p80_chip_erase(s
);
1340 flash_erase(s
, 0, BULK_ERASE
);
1342 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: chip erase with write "
1349 s
->four_bytes_address_mode
= true;
1352 s
->four_bytes_address_mode
= false;
1355 case EXTEND_ADDR_READ
:
1356 s
->data
[0] = s
->ear
;
1359 s
->state
= STATE_READING_DATA
;
1362 case EXTEND_ADDR_WRITE
:
1363 if (s
->write_enable
) {
1364 s
->needed_bytes
= 1;
1367 s
->state
= STATE_COLLECTING_DATA
;
1371 s
->data
[0] = s
->nonvolatile_cfg
& 0xFF;
1372 s
->data
[1] = (s
->nonvolatile_cfg
>> 8) & 0xFF;
1375 s
->state
= STATE_READING_DATA
;
1378 if (s
->write_enable
&& get_man(s
) == MAN_NUMONYX
) {
1379 s
->needed_bytes
= 2;
1382 s
->state
= STATE_COLLECTING_DATA
;
1386 s
->data
[0] = s
->volatile_cfg
& 0xFF;
1389 s
->state
= STATE_READING_DATA
;
1392 if (s
->write_enable
) {
1393 s
->needed_bytes
= 1;
1396 s
->state
= STATE_COLLECTING_DATA
;
1400 s
->data
[0] = s
->enh_volatile_cfg
& 0xFF;
1403 s
->state
= STATE_READING_DATA
;
1406 if (s
->write_enable
) {
1407 s
->needed_bytes
= 1;
1410 s
->state
= STATE_COLLECTING_DATA
;
1414 s
->reset_enable
= true;
1417 if (s
->reset_enable
) {
1422 switch (get_man(s
)) {
1424 s
->data
[0] = (!!s
->quad_enable
) << 1;
1427 s
->state
= STATE_READING_DATA
;
1430 s
->quad_enable
= true;
1437 s
->quad_enable
= false;
1440 if (get_man(s
) == MAN_SST
) {
1441 if (s
->write_enable
) {
1442 if (s
->aai_enable
) {
1443 s
->state
= STATE_PAGE_PROGRAM
;
1445 s
->aai_enable
= true;
1446 s
->needed_bytes
= get_addr_length(s
);
1447 s
->state
= STATE_COLLECTING_DATA
;
1450 qemu_log_mask(LOG_GUEST_ERROR
,
1451 "M25P80: AAI_WP with write protect\n");
1454 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Unknown cmd %x\n", value
);
1458 if (s
->pi
->sfdp_read
) {
1459 s
->needed_bytes
= get_addr_length(s
) + 1; /* SFDP addr + dummy */
1462 s
->state
= STATE_COLLECTING_DATA
;
1470 s
->state
= STATE_READING_DATA
;
1471 s
->data_read_loop
= true;
1473 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Unknown cmd %x\n", value
);
1478 static int m25p80_cs(SSIPeripheral
*ss
, bool select
)
1480 Flash
*s
= M25P80(ss
);
1483 if (s
->state
== STATE_COLLECTING_VAR_LEN_DATA
) {
1484 complete_collecting_data(s
);
1488 s
->state
= STATE_IDLE
;
1489 flash_sync_dirty(s
, -1);
1490 s
->data_read_loop
= false;
1493 trace_m25p80_select(s
, select
? "de" : "");
1498 static uint32_t m25p80_transfer8(SSIPeripheral
*ss
, uint32_t tx
)
1500 Flash
*s
= M25P80(ss
);
1503 trace_m25p80_transfer(s
, s
->state
, s
->len
, s
->needed_bytes
, s
->pos
,
1504 s
->cur_addr
, (uint8_t)tx
);
1508 case STATE_PAGE_PROGRAM
:
1509 trace_m25p80_page_program(s
, s
->cur_addr
, (uint8_t)tx
);
1510 flash_write8(s
, s
->cur_addr
, (uint8_t)tx
);
1511 s
->cur_addr
= (s
->cur_addr
+ 1) & (s
->size
- 1);
1513 if (get_man(s
) == MAN_SST
&& s
->aai_enable
&& s
->cur_addr
== 0) {
1515 * There is no wrap mode during AAI programming once the highest
1516 * unprotected memory address is reached. The Write-Enable-Latch
1517 * bit is automatically reset, and AAI programming mode aborts.
1519 s
->write_enable
= false;
1520 s
->aai_enable
= false;
1526 r
= s
->storage
[s
->cur_addr
];
1527 trace_m25p80_read_byte(s
, s
->cur_addr
, (uint8_t)r
);
1528 s
->cur_addr
= (s
->cur_addr
+ 1) & (s
->size
- 1);
1531 case STATE_COLLECTING_DATA
:
1532 case STATE_COLLECTING_VAR_LEN_DATA
:
1534 if (s
->len
>= M25P80_INTERNAL_DATA_BUFFER_SZ
) {
1535 qemu_log_mask(LOG_GUEST_ERROR
,
1536 "M25P80: Write overrun internal data buffer. "
1537 "SPI controller (QEMU emulator or guest driver) "
1538 "is misbehaving\n");
1539 s
->len
= s
->pos
= 0;
1540 s
->state
= STATE_IDLE
;
1544 s
->data
[s
->len
] = (uint8_t)tx
;
1547 if (s
->len
== s
->needed_bytes
) {
1548 complete_collecting_data(s
);
1552 case STATE_READING_DATA
:
1554 if (s
->pos
>= M25P80_INTERNAL_DATA_BUFFER_SZ
) {
1555 qemu_log_mask(LOG_GUEST_ERROR
,
1556 "M25P80: Read overrun internal data buffer. "
1557 "SPI controller (QEMU emulator or guest driver) "
1558 "is misbehaving\n");
1559 s
->len
= s
->pos
= 0;
1560 s
->state
= STATE_IDLE
;
1564 r
= s
->data
[s
->pos
];
1565 trace_m25p80_read_data(s
, s
->pos
, (uint8_t)r
);
1567 if (s
->pos
== s
->len
) {
1569 if (!s
->data_read_loop
) {
1570 s
->state
= STATE_IDLE
;
1574 case STATE_READING_SFDP
:
1575 assert(s
->pi
->sfdp_read
);
1576 r
= s
->pi
->sfdp_read(s
->cur_addr
);
1577 trace_m25p80_read_sfdp(s
, s
->cur_addr
, (uint8_t)r
);
1578 s
->cur_addr
= (s
->cur_addr
+ 1) & (M25P80_SFDP_MAX_SIZE
- 1);
1583 decode_new_cmd(s
, (uint8_t)tx
);
1590 static void m25p80_write_protect_pin_irq_handler(void *opaque
, int n
, int level
)
1592 Flash
*s
= M25P80(opaque
);
1593 /* WP# is just a single pin. */
1595 s
->wp_level
= !!level
;
1598 static void m25p80_realize(SSIPeripheral
*ss
, Error
**errp
)
1600 Flash
*s
= M25P80(ss
);
1601 M25P80Class
*mc
= M25P80_GET_CLASS(s
);
1606 s
->size
= s
->pi
->sector_size
* s
->pi
->n_sectors
;
1610 uint64_t perm
= BLK_PERM_CONSISTENT_READ
|
1611 (blk_supports_write_perm(s
->blk
) ? BLK_PERM_WRITE
: 0);
1612 ret
= blk_set_perm(s
->blk
, perm
, BLK_PERM_ALL
, errp
);
1617 trace_m25p80_binding(s
);
1618 s
->storage
= blk_blockalign(s
->blk
, s
->size
);
1620 if (!blk_check_size_and_read_all(s
->blk
, s
->storage
, s
->size
, errp
)) {
1624 trace_m25p80_binding_no_bdrv(s
);
1625 s
->storage
= blk_blockalign(NULL
, s
->size
);
1626 memset(s
->storage
, 0xFF, s
->size
);
1629 qdev_init_gpio_in_named(DEVICE(s
),
1630 m25p80_write_protect_pin_irq_handler
, "WP#", 1);
1633 static void m25p80_reset(DeviceState
*d
)
1635 Flash
*s
= M25P80(d
);
1638 s
->status_register_write_disabled
= false;
1639 s
->block_protect0
= false;
1640 s
->block_protect1
= false;
1641 s
->block_protect2
= false;
1642 s
->block_protect3
= false;
1643 s
->top_bottom_bit
= false;
1648 static int m25p80_pre_save(void *opaque
)
1650 flash_sync_dirty((Flash
*)opaque
, -1);
1655 static Property m25p80_properties
[] = {
1656 /* This is default value for Micron flash */
1657 DEFINE_PROP_BOOL("write-enable", Flash
, write_enable
, false),
1658 DEFINE_PROP_UINT32("nonvolatile-cfg", Flash
, nonvolatile_cfg
, 0x8FFF),
1659 DEFINE_PROP_UINT8("spansion-cr1nv", Flash
, spansion_cr1nv
, 0x0),
1660 DEFINE_PROP_UINT8("spansion-cr2nv", Flash
, spansion_cr2nv
, 0x8),
1661 DEFINE_PROP_UINT8("spansion-cr3nv", Flash
, spansion_cr3nv
, 0x2),
1662 DEFINE_PROP_UINT8("spansion-cr4nv", Flash
, spansion_cr4nv
, 0x10),
1663 DEFINE_PROP_DRIVE("drive", Flash
, blk
),
1664 DEFINE_PROP_END_OF_LIST(),
1667 static int m25p80_pre_load(void *opaque
)
1669 Flash
*s
= (Flash
*)opaque
;
1671 s
->data_read_loop
= false;
1675 static bool m25p80_data_read_loop_needed(void *opaque
)
1677 Flash
*s
= (Flash
*)opaque
;
1679 return s
->data_read_loop
;
1682 static const VMStateDescription vmstate_m25p80_data_read_loop
= {
1683 .name
= "m25p80/data_read_loop",
1685 .minimum_version_id
= 1,
1686 .needed
= m25p80_data_read_loop_needed
,
1687 .fields
= (VMStateField
[]) {
1688 VMSTATE_BOOL(data_read_loop
, Flash
),
1689 VMSTATE_END_OF_LIST()
1693 static bool m25p80_aai_enable_needed(void *opaque
)
1695 Flash
*s
= (Flash
*)opaque
;
1697 return s
->aai_enable
;
1700 static const VMStateDescription vmstate_m25p80_aai_enable
= {
1701 .name
= "m25p80/aai_enable",
1703 .minimum_version_id
= 1,
1704 .needed
= m25p80_aai_enable_needed
,
1705 .fields
= (VMStateField
[]) {
1706 VMSTATE_BOOL(aai_enable
, Flash
),
1707 VMSTATE_END_OF_LIST()
1711 static bool m25p80_wp_level_srwd_needed(void *opaque
)
1713 Flash
*s
= (Flash
*)opaque
;
1715 return !s
->wp_level
|| s
->status_register_write_disabled
;
1718 static const VMStateDescription vmstate_m25p80_write_protect
= {
1719 .name
= "m25p80/write_protect",
1721 .minimum_version_id
= 1,
1722 .needed
= m25p80_wp_level_srwd_needed
,
1723 .fields
= (VMStateField
[]) {
1724 VMSTATE_BOOL(wp_level
, Flash
),
1725 VMSTATE_BOOL(status_register_write_disabled
, Flash
),
1726 VMSTATE_END_OF_LIST()
1730 static bool m25p80_block_protect_needed(void *opaque
)
1732 Flash
*s
= (Flash
*)opaque
;
1734 return s
->block_protect0
||
1735 s
->block_protect1
||
1736 s
->block_protect2
||
1737 s
->block_protect3
||
1741 static const VMStateDescription vmstate_m25p80_block_protect
= {
1742 .name
= "m25p80/block_protect",
1744 .minimum_version_id
= 1,
1745 .needed
= m25p80_block_protect_needed
,
1746 .fields
= (VMStateField
[]) {
1747 VMSTATE_BOOL(block_protect0
, Flash
),
1748 VMSTATE_BOOL(block_protect1
, Flash
),
1749 VMSTATE_BOOL(block_protect2
, Flash
),
1750 VMSTATE_BOOL(block_protect3
, Flash
),
1751 VMSTATE_BOOL(top_bottom_bit
, Flash
),
1752 VMSTATE_END_OF_LIST()
1756 static const VMStateDescription vmstate_m25p80
= {
1759 .minimum_version_id
= 0,
1760 .pre_save
= m25p80_pre_save
,
1761 .pre_load
= m25p80_pre_load
,
1762 .fields
= (VMStateField
[]) {
1763 VMSTATE_UINT8(state
, Flash
),
1764 VMSTATE_UINT8_ARRAY(data
, Flash
, M25P80_INTERNAL_DATA_BUFFER_SZ
),
1765 VMSTATE_UINT32(len
, Flash
),
1766 VMSTATE_UINT32(pos
, Flash
),
1767 VMSTATE_UINT8(needed_bytes
, Flash
),
1768 VMSTATE_UINT8(cmd_in_progress
, Flash
),
1769 VMSTATE_UINT32(cur_addr
, Flash
),
1770 VMSTATE_BOOL(write_enable
, Flash
),
1771 VMSTATE_BOOL(reset_enable
, Flash
),
1772 VMSTATE_UINT8(ear
, Flash
),
1773 VMSTATE_BOOL(four_bytes_address_mode
, Flash
),
1774 VMSTATE_UINT32(nonvolatile_cfg
, Flash
),
1775 VMSTATE_UINT32(volatile_cfg
, Flash
),
1776 VMSTATE_UINT32(enh_volatile_cfg
, Flash
),
1777 VMSTATE_BOOL(quad_enable
, Flash
),
1778 VMSTATE_UINT8(spansion_cr1nv
, Flash
),
1779 VMSTATE_UINT8(spansion_cr2nv
, Flash
),
1780 VMSTATE_UINT8(spansion_cr3nv
, Flash
),
1781 VMSTATE_UINT8(spansion_cr4nv
, Flash
),
1782 VMSTATE_END_OF_LIST()
1784 .subsections
= (const VMStateDescription
* []) {
1785 &vmstate_m25p80_data_read_loop
,
1786 &vmstate_m25p80_aai_enable
,
1787 &vmstate_m25p80_write_protect
,
1788 &vmstate_m25p80_block_protect
,
1793 static void m25p80_class_init(ObjectClass
*klass
, void *data
)
1795 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1796 SSIPeripheralClass
*k
= SSI_PERIPHERAL_CLASS(klass
);
1797 M25P80Class
*mc
= M25P80_CLASS(klass
);
1799 k
->realize
= m25p80_realize
;
1800 k
->transfer
= m25p80_transfer8
;
1801 k
->set_cs
= m25p80_cs
;
1802 k
->cs_polarity
= SSI_CS_LOW
;
1803 dc
->vmsd
= &vmstate_m25p80
;
1804 device_class_set_props(dc
, m25p80_properties
);
1805 dc
->reset
= m25p80_reset
;
1809 static const TypeInfo m25p80_info
= {
1810 .name
= TYPE_M25P80
,
1811 .parent
= TYPE_SSI_PERIPHERAL
,
1812 .instance_size
= sizeof(Flash
),
1813 .class_size
= sizeof(M25P80Class
),
1817 static void m25p80_register_types(void)
1821 type_register_static(&m25p80_info
);
1822 for (i
= 0; i
< ARRAY_SIZE(known_devices
); ++i
) {
1824 .name
= known_devices
[i
].part_name
,
1825 .parent
= TYPE_M25P80
,
1826 .class_init
= m25p80_class_init
,
1827 .class_data
= (void *)&known_devices
[i
],
1833 type_init(m25p80_register_types
)
1835 BlockBackend
*m25p80_get_blk(DeviceState
*dev
)
1837 return M25P80(dev
)->blk
;