hw/adc/zynq-xadc: Use qemu_irq typedef
[qemu/armbru.git] / target / riscv / cpu_helper.c
blobe1aa4f2097c14fd95784395f5111d212378d05d5
1 /*
2 * RISC-V CPU helpers for qemu.
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 * Copyright (c) 2017-2018 SiFive, Inc.
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "tcg/tcg-op.h"
26 #include "trace.h"
27 #include "semihosting/common-semi.h"
29 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
31 #ifdef CONFIG_USER_ONLY
32 return 0;
33 #else
34 return env->priv;
35 #endif
38 void cpu_get_tb_cpu_state(CPURISCVState *env, target_ulong *pc,
39 target_ulong *cs_base, uint32_t *pflags)
41 CPUState *cs = env_cpu(env);
42 RISCVCPU *cpu = RISCV_CPU(cs);
44 uint32_t flags = 0;
46 *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc;
47 *cs_base = 0;
49 if (riscv_has_ext(env, RVV) || cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) {
51 * If env->vl equals to VLMAX, we can use generic vector operation
52 * expanders (GVEC) to accerlate the vector operations.
53 * However, as LMUL could be a fractional number. The maximum
54 * vector size can be operated might be less than 8 bytes,
55 * which is not supported by GVEC. So we set vl_eq_vlmax flag to true
56 * only when maxsz >= 8 bytes.
58 uint32_t vlmax = vext_get_vlmax(env_archcpu(env), env->vtype);
59 uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW);
60 uint32_t maxsz = vlmax << sew;
61 bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) &&
62 (maxsz >= 8);
63 flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill);
64 flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew);
65 flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
66 FIELD_EX64(env->vtype, VTYPE, VLMUL));
67 flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
68 } else {
69 flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
72 #ifdef CONFIG_USER_ONLY
73 flags |= TB_FLAGS_MSTATUS_FS;
74 flags |= TB_FLAGS_MSTATUS_VS;
75 #else
76 flags |= cpu_mmu_index(env, 0);
77 if (riscv_cpu_fp_enabled(env)) {
78 flags |= env->mstatus & MSTATUS_FS;
81 if (riscv_cpu_vector_enabled(env)) {
82 flags |= env->mstatus & MSTATUS_VS;
85 if (riscv_has_ext(env, RVH)) {
86 if (env->priv == PRV_M ||
87 (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) ||
88 (env->priv == PRV_U && !riscv_cpu_virt_enabled(env) &&
89 get_field(env->hstatus, HSTATUS_HU))) {
90 flags = FIELD_DP32(flags, TB_FLAGS, HLSX, 1);
93 flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_FS,
94 get_field(env->mstatus_hs, MSTATUS_FS));
96 flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_VS,
97 get_field(env->mstatus_hs, MSTATUS_VS));
99 #endif
101 flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl);
102 if (env->cur_pmmask < (env->xl == MXL_RV32 ? UINT32_MAX : UINT64_MAX)) {
103 flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1);
105 if (env->cur_pmbase != 0) {
106 flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1);
109 *pflags = flags;
112 void riscv_cpu_update_mask(CPURISCVState *env)
114 target_ulong mask = -1, base = 0;
116 * TODO: Current RVJ spec does not specify
117 * how the extension interacts with XLEN.
119 #ifndef CONFIG_USER_ONLY
120 if (riscv_has_ext(env, RVJ)) {
121 switch (env->priv) {
122 case PRV_M:
123 if (env->mmte & M_PM_ENABLE) {
124 mask = env->mpmmask;
125 base = env->mpmbase;
127 break;
128 case PRV_S:
129 if (env->mmte & S_PM_ENABLE) {
130 mask = env->spmmask;
131 base = env->spmbase;
133 break;
134 case PRV_U:
135 if (env->mmte & U_PM_ENABLE) {
136 mask = env->upmmask;
137 base = env->upmbase;
139 break;
140 default:
141 g_assert_not_reached();
144 #endif
145 if (env->xl == MXL_RV32) {
146 env->cur_pmmask = mask & UINT32_MAX;
147 env->cur_pmbase = base & UINT32_MAX;
148 } else {
149 env->cur_pmmask = mask;
150 env->cur_pmbase = base;
154 #ifndef CONFIG_USER_ONLY
157 * The HS-mode is allowed to configure priority only for the
158 * following VS-mode local interrupts:
160 * 0 (Reserved interrupt, reads as zero)
161 * 1 Supervisor software interrupt
162 * 4 (Reserved interrupt, reads as zero)
163 * 5 Supervisor timer interrupt
164 * 8 (Reserved interrupt, reads as zero)
165 * 13 (Reserved interrupt)
166 * 14 "
167 * 15 "
168 * 16 "
169 * 18 Debug/trace interrupt
170 * 20 (Reserved interrupt)
171 * 22 "
172 * 24 "
173 * 26 "
174 * 28 "
175 * 30 (Reserved for standard reporting of bus or system errors)
178 static const int hviprio_index2irq[] = {
179 0, 1, 4, 5, 8, 13, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30 };
180 static const int hviprio_index2rdzero[] = {
181 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
183 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero)
185 if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) {
186 return -EINVAL;
189 if (out_irq) {
190 *out_irq = hviprio_index2irq[index];
193 if (out_rdzero) {
194 *out_rdzero = hviprio_index2rdzero[index];
197 return 0;
201 * Default priorities of local interrupts are defined in the
202 * RISC-V Advanced Interrupt Architecture specification.
204 * ----------------------------------------------------------------
205 * Default |
206 * Priority | Major Interrupt Numbers
207 * ----------------------------------------------------------------
208 * Highest | 63 (3f), 62 (3e), 31 (1f), 30 (1e), 61 (3d), 60 (3c),
209 * | 59 (3b), 58 (3a), 29 (1d), 28 (1c), 57 (39), 56 (38),
210 * | 55 (37), 54 (36), 27 (1b), 26 (1a), 53 (35), 52 (34),
211 * | 51 (33), 50 (32), 25 (19), 24 (18), 49 (31), 48 (30)
213 * | 11 (0b), 3 (03), 7 (07)
214 * | 9 (09), 1 (01), 5 (05)
215 * | 12 (0c)
216 * | 10 (0a), 2 (02), 6 (06)
218 * | 47 (2f), 46 (2e), 23 (17), 22 (16), 45 (2d), 44 (2c),
219 * | 43 (2b), 42 (2a), 21 (15), 20 (14), 41 (29), 40 (28),
220 * | 39 (27), 38 (26), 19 (13), 18 (12), 37 (25), 36 (24),
221 * Lowest | 35 (23), 34 (22), 17 (11), 16 (10), 33 (21), 32 (20)
222 * ----------------------------------------------------------------
224 static const uint8_t default_iprio[64] = {
225 [63] = IPRIO_DEFAULT_UPPER,
226 [62] = IPRIO_DEFAULT_UPPER + 1,
227 [31] = IPRIO_DEFAULT_UPPER + 2,
228 [30] = IPRIO_DEFAULT_UPPER + 3,
229 [61] = IPRIO_DEFAULT_UPPER + 4,
230 [60] = IPRIO_DEFAULT_UPPER + 5,
232 [59] = IPRIO_DEFAULT_UPPER + 6,
233 [58] = IPRIO_DEFAULT_UPPER + 7,
234 [29] = IPRIO_DEFAULT_UPPER + 8,
235 [28] = IPRIO_DEFAULT_UPPER + 9,
236 [57] = IPRIO_DEFAULT_UPPER + 10,
237 [56] = IPRIO_DEFAULT_UPPER + 11,
239 [55] = IPRIO_DEFAULT_UPPER + 12,
240 [54] = IPRIO_DEFAULT_UPPER + 13,
241 [27] = IPRIO_DEFAULT_UPPER + 14,
242 [26] = IPRIO_DEFAULT_UPPER + 15,
243 [53] = IPRIO_DEFAULT_UPPER + 16,
244 [52] = IPRIO_DEFAULT_UPPER + 17,
246 [51] = IPRIO_DEFAULT_UPPER + 18,
247 [50] = IPRIO_DEFAULT_UPPER + 19,
248 [25] = IPRIO_DEFAULT_UPPER + 20,
249 [24] = IPRIO_DEFAULT_UPPER + 21,
250 [49] = IPRIO_DEFAULT_UPPER + 22,
251 [48] = IPRIO_DEFAULT_UPPER + 23,
253 [11] = IPRIO_DEFAULT_M,
254 [3] = IPRIO_DEFAULT_M + 1,
255 [7] = IPRIO_DEFAULT_M + 2,
257 [9] = IPRIO_DEFAULT_S,
258 [1] = IPRIO_DEFAULT_S + 1,
259 [5] = IPRIO_DEFAULT_S + 2,
261 [12] = IPRIO_DEFAULT_SGEXT,
263 [10] = IPRIO_DEFAULT_VS,
264 [2] = IPRIO_DEFAULT_VS + 1,
265 [6] = IPRIO_DEFAULT_VS + 2,
267 [47] = IPRIO_DEFAULT_LOWER,
268 [46] = IPRIO_DEFAULT_LOWER + 1,
269 [23] = IPRIO_DEFAULT_LOWER + 2,
270 [22] = IPRIO_DEFAULT_LOWER + 3,
271 [45] = IPRIO_DEFAULT_LOWER + 4,
272 [44] = IPRIO_DEFAULT_LOWER + 5,
274 [43] = IPRIO_DEFAULT_LOWER + 6,
275 [42] = IPRIO_DEFAULT_LOWER + 7,
276 [21] = IPRIO_DEFAULT_LOWER + 8,
277 [20] = IPRIO_DEFAULT_LOWER + 9,
278 [41] = IPRIO_DEFAULT_LOWER + 10,
279 [40] = IPRIO_DEFAULT_LOWER + 11,
281 [39] = IPRIO_DEFAULT_LOWER + 12,
282 [38] = IPRIO_DEFAULT_LOWER + 13,
283 [19] = IPRIO_DEFAULT_LOWER + 14,
284 [18] = IPRIO_DEFAULT_LOWER + 15,
285 [37] = IPRIO_DEFAULT_LOWER + 16,
286 [36] = IPRIO_DEFAULT_LOWER + 17,
288 [35] = IPRIO_DEFAULT_LOWER + 18,
289 [34] = IPRIO_DEFAULT_LOWER + 19,
290 [17] = IPRIO_DEFAULT_LOWER + 20,
291 [16] = IPRIO_DEFAULT_LOWER + 21,
292 [33] = IPRIO_DEFAULT_LOWER + 22,
293 [32] = IPRIO_DEFAULT_LOWER + 23,
296 uint8_t riscv_cpu_default_priority(int irq)
298 if (irq < 0 || irq > 63) {
299 return IPRIO_MMAXIPRIO;
302 return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO;
305 static int riscv_cpu_pending_to_irq(CPURISCVState *env,
306 int extirq, unsigned int extirq_def_prio,
307 uint64_t pending, uint8_t *iprio)
309 int irq, best_irq = RISCV_EXCP_NONE;
310 unsigned int prio, best_prio = UINT_MAX;
312 if (!pending) {
313 return RISCV_EXCP_NONE;
316 irq = ctz64(pending);
317 if (!riscv_feature(env, RISCV_FEATURE_AIA)) {
318 return irq;
321 pending = pending >> irq;
322 while (pending) {
323 prio = iprio[irq];
324 if (!prio) {
325 if (irq == extirq) {
326 prio = extirq_def_prio;
327 } else {
328 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ?
329 1 : IPRIO_MMAXIPRIO;
332 if ((pending & 0x1) && (prio <= best_prio)) {
333 best_irq = irq;
334 best_prio = prio;
336 irq++;
337 pending = pending >> 1;
340 return best_irq;
343 static uint64_t riscv_cpu_all_pending(CPURISCVState *env)
345 uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN);
346 uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
348 return (env->mip | vsgein) & env->mie;
351 int riscv_cpu_mirq_pending(CPURISCVState *env)
353 uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg &
354 ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
356 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
357 irqs, env->miprio);
360 int riscv_cpu_sirq_pending(CPURISCVState *env)
362 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
363 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
365 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
366 irqs, env->siprio);
369 int riscv_cpu_vsirq_pending(CPURISCVState *env)
371 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
372 (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
374 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
375 irqs >> 1, env->hviprio);
378 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
380 int virq;
381 uint64_t irqs, pending, mie, hsie, vsie;
383 /* Determine interrupt enable state of all privilege modes */
384 if (riscv_cpu_virt_enabled(env)) {
385 mie = 1;
386 hsie = 1;
387 vsie = (env->priv < PRV_S) ||
388 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
389 } else {
390 mie = (env->priv < PRV_M) ||
391 (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE));
392 hsie = (env->priv < PRV_S) ||
393 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
394 vsie = 0;
397 /* Determine all pending interrupts */
398 pending = riscv_cpu_all_pending(env);
400 /* Check M-mode interrupts */
401 irqs = pending & ~env->mideleg & -mie;
402 if (irqs) {
403 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
404 irqs, env->miprio);
407 /* Check HS-mode interrupts */
408 irqs = pending & env->mideleg & ~env->hideleg & -hsie;
409 if (irqs) {
410 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
411 irqs, env->siprio);
414 /* Check VS-mode interrupts */
415 irqs = pending & env->mideleg & env->hideleg & -vsie;
416 if (irqs) {
417 virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
418 irqs >> 1, env->hviprio);
419 return (virq <= 0) ? virq : virq + 1;
422 /* Indicate no pending interrupt */
423 return RISCV_EXCP_NONE;
426 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
428 if (interrupt_request & CPU_INTERRUPT_HARD) {
429 RISCVCPU *cpu = RISCV_CPU(cs);
430 CPURISCVState *env = &cpu->env;
431 int interruptno = riscv_cpu_local_irq_pending(env);
432 if (interruptno >= 0) {
433 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
434 riscv_cpu_do_interrupt(cs);
435 return true;
438 return false;
441 /* Return true is floating point support is currently enabled */
442 bool riscv_cpu_fp_enabled(CPURISCVState *env)
444 if (env->mstatus & MSTATUS_FS) {
445 if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) {
446 return false;
448 return true;
451 return false;
454 /* Return true is vector support is currently enabled */
455 bool riscv_cpu_vector_enabled(CPURISCVState *env)
457 if (env->mstatus & MSTATUS_VS) {
458 if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_VS)) {
459 return false;
461 return true;
464 return false;
467 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
469 uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM |
470 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
471 MSTATUS64_UXL | MSTATUS_VS;
473 if (riscv_has_ext(env, RVF)) {
474 mstatus_mask |= MSTATUS_FS;
476 bool current_virt = riscv_cpu_virt_enabled(env);
478 g_assert(riscv_has_ext(env, RVH));
480 if (current_virt) {
481 /* Current V=1 and we are about to change to V=0 */
482 env->vsstatus = env->mstatus & mstatus_mask;
483 env->mstatus &= ~mstatus_mask;
484 env->mstatus |= env->mstatus_hs;
486 env->vstvec = env->stvec;
487 env->stvec = env->stvec_hs;
489 env->vsscratch = env->sscratch;
490 env->sscratch = env->sscratch_hs;
492 env->vsepc = env->sepc;
493 env->sepc = env->sepc_hs;
495 env->vscause = env->scause;
496 env->scause = env->scause_hs;
498 env->vstval = env->stval;
499 env->stval = env->stval_hs;
501 env->vsatp = env->satp;
502 env->satp = env->satp_hs;
503 } else {
504 /* Current V=0 and we are about to change to V=1 */
505 env->mstatus_hs = env->mstatus & mstatus_mask;
506 env->mstatus &= ~mstatus_mask;
507 env->mstatus |= env->vsstatus;
509 env->stvec_hs = env->stvec;
510 env->stvec = env->vstvec;
512 env->sscratch_hs = env->sscratch;
513 env->sscratch = env->vsscratch;
515 env->sepc_hs = env->sepc;
516 env->sepc = env->vsepc;
518 env->scause_hs = env->scause;
519 env->scause = env->vscause;
521 env->stval_hs = env->stval;
522 env->stval = env->vstval;
524 env->satp_hs = env->satp;
525 env->satp = env->vsatp;
529 target_ulong riscv_cpu_get_geilen(CPURISCVState *env)
531 if (!riscv_has_ext(env, RVH)) {
532 return 0;
535 return env->geilen;
538 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen)
540 if (!riscv_has_ext(env, RVH)) {
541 return;
544 if (geilen > (TARGET_LONG_BITS - 1)) {
545 return;
548 env->geilen = geilen;
551 bool riscv_cpu_virt_enabled(CPURISCVState *env)
553 if (!riscv_has_ext(env, RVH)) {
554 return false;
557 return get_field(env->virt, VIRT_ONOFF);
560 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
562 if (!riscv_has_ext(env, RVH)) {
563 return;
566 /* Flush the TLB on all virt mode changes. */
567 if (get_field(env->virt, VIRT_ONOFF) != enable) {
568 tlb_flush(env_cpu(env));
571 env->virt = set_field(env->virt, VIRT_ONOFF, enable);
573 if (enable) {
575 * The guest external interrupts from an interrupt controller are
576 * delivered only when the Guest/VM is running (i.e. V=1). This means
577 * any guest external interrupt which is triggered while the Guest/VM
578 * is not running (i.e. V=0) will be missed on QEMU resulting in guest
579 * with sluggish response to serial console input and other I/O events.
581 * To solve this, we check and inject interrupt after setting V=1.
583 riscv_cpu_update_mip(env_archcpu(env), 0, 0);
587 bool riscv_cpu_two_stage_lookup(int mmu_idx)
589 return mmu_idx & TB_FLAGS_PRIV_HYP_ACCESS_MASK;
592 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts)
594 CPURISCVState *env = &cpu->env;
595 if (env->miclaim & interrupts) {
596 return -1;
597 } else {
598 env->miclaim |= interrupts;
599 return 0;
603 uint64_t riscv_cpu_update_mip(RISCVCPU *cpu, uint64_t mask, uint64_t value)
605 CPURISCVState *env = &cpu->env;
606 CPUState *cs = CPU(cpu);
607 uint64_t gein, vsgein = 0, old = env->mip;
608 bool locked = false;
610 if (riscv_cpu_virt_enabled(env)) {
611 gein = get_field(env->hstatus, HSTATUS_VGEIN);
612 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
615 if (!qemu_mutex_iothread_locked()) {
616 locked = true;
617 qemu_mutex_lock_iothread();
620 env->mip = (env->mip & ~mask) | (value & mask);
622 if (env->mip | vsgein) {
623 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
624 } else {
625 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
628 if (locked) {
629 qemu_mutex_unlock_iothread();
632 return old;
635 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *),
636 void *arg)
638 env->rdtime_fn = fn;
639 env->rdtime_fn_arg = arg;
642 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv,
643 int (*rmw_fn)(void *arg,
644 target_ulong reg,
645 target_ulong *val,
646 target_ulong new_val,
647 target_ulong write_mask),
648 void *rmw_fn_arg)
650 if (priv <= PRV_M) {
651 env->aia_ireg_rmw_fn[priv] = rmw_fn;
652 env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg;
656 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
658 if (newpriv > PRV_M) {
659 g_assert_not_reached();
661 if (newpriv == PRV_H) {
662 newpriv = PRV_U;
664 /* tlb_flush is unnecessary as mode is contained in mmu_idx */
665 env->priv = newpriv;
666 env->xl = cpu_recompute_xl(env);
667 riscv_cpu_update_mask(env);
670 * Clear the load reservation - otherwise a reservation placed in one
671 * context/process can be used by another, resulting in an SC succeeding
672 * incorrectly. Version 2.2 of the ISA specification explicitly requires
673 * this behaviour, while later revisions say that the kernel "should" use
674 * an SC instruction to force the yielding of a load reservation on a
675 * preemptive context switch. As a result, do both.
677 env->load_res = -1;
681 * get_physical_address_pmp - check PMP permission for this physical address
683 * Match the PMP region and check permission for this physical address and it's
684 * TLB page. Returns 0 if the permission checking was successful
686 * @env: CPURISCVState
687 * @prot: The returned protection attributes
688 * @tlb_size: TLB page size containing addr. It could be modified after PMP
689 * permission checking. NULL if not set TLB page for addr.
690 * @addr: The physical address to be checked permission
691 * @access_type: The type of MMU access
692 * @mode: Indicates current privilege level.
694 static int get_physical_address_pmp(CPURISCVState *env, int *prot,
695 target_ulong *tlb_size, hwaddr addr,
696 int size, MMUAccessType access_type,
697 int mode)
699 pmp_priv_t pmp_priv;
700 target_ulong tlb_size_pmp = 0;
702 if (!riscv_feature(env, RISCV_FEATURE_PMP)) {
703 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
704 return TRANSLATE_SUCCESS;
707 if (!pmp_hart_has_privs(env, addr, size, 1 << access_type, &pmp_priv,
708 mode)) {
709 *prot = 0;
710 return TRANSLATE_PMP_FAIL;
713 *prot = pmp_priv_to_page_prot(pmp_priv);
714 if (tlb_size != NULL) {
715 if (pmp_is_range_in_tlb(env, addr & ~(*tlb_size - 1), &tlb_size_pmp)) {
716 *tlb_size = tlb_size_pmp;
720 return TRANSLATE_SUCCESS;
723 /* get_physical_address - get the physical address for this virtual address
725 * Do a page table walk to obtain the physical address corresponding to a
726 * virtual address. Returns 0 if the translation was successful
728 * Adapted from Spike's mmu_t::translate and mmu_t::walk
730 * @env: CPURISCVState
731 * @physical: This will be set to the calculated physical address
732 * @prot: The returned protection attributes
733 * @addr: The virtual address to be translated
734 * @fault_pte_addr: If not NULL, this will be set to fault pte address
735 * when a error occurs on pte address translation.
736 * This will already be shifted to match htval.
737 * @access_type: The type of MMU access
738 * @mmu_idx: Indicates current privilege level
739 * @first_stage: Are we in first stage translation?
740 * Second stage is used for hypervisor guest translation
741 * @two_stage: Are we going to perform two stage translation
742 * @is_debug: Is this access from a debugger or the monitor?
744 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
745 int *prot, target_ulong addr,
746 target_ulong *fault_pte_addr,
747 int access_type, int mmu_idx,
748 bool first_stage, bool two_stage,
749 bool is_debug)
751 /* NOTE: the env->pc value visible here will not be
752 * correct, but the value visible to the exception handler
753 * (riscv_cpu_do_interrupt) is correct */
754 MemTxResult res;
755 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
756 int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK;
757 bool use_background = false;
758 hwaddr ppn;
759 RISCVCPU *cpu = env_archcpu(env);
760 int napot_bits = 0;
761 target_ulong napot_mask;
764 * Check if we should use the background registers for the two
765 * stage translation. We don't need to check if we actually need
766 * two stage translation as that happened before this function
767 * was called. Background registers will be used if the guest has
768 * forced a two stage translation to be on (in HS or M mode).
770 if (!riscv_cpu_virt_enabled(env) && two_stage) {
771 use_background = true;
774 /* MPRV does not affect the virtual-machine load/store
775 instructions, HLV, HLVX, and HSV. */
776 if (riscv_cpu_two_stage_lookup(mmu_idx)) {
777 mode = get_field(env->hstatus, HSTATUS_SPVP);
778 } else if (mode == PRV_M && access_type != MMU_INST_FETCH) {
779 if (get_field(env->mstatus, MSTATUS_MPRV)) {
780 mode = get_field(env->mstatus, MSTATUS_MPP);
784 if (first_stage == false) {
785 /* We are in stage 2 translation, this is similar to stage 1. */
786 /* Stage 2 is always taken as U-mode */
787 mode = PRV_U;
790 if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
791 *physical = addr;
792 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
793 return TRANSLATE_SUCCESS;
796 *prot = 0;
798 hwaddr base;
799 int levels, ptidxbits, ptesize, vm, sum, mxr, widened;
801 if (first_stage == true) {
802 mxr = get_field(env->mstatus, MSTATUS_MXR);
803 } else {
804 mxr = get_field(env->vsstatus, MSTATUS_MXR);
807 if (first_stage == true) {
808 if (use_background) {
809 if (riscv_cpu_mxl(env) == MXL_RV32) {
810 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
811 vm = get_field(env->vsatp, SATP32_MODE);
812 } else {
813 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
814 vm = get_field(env->vsatp, SATP64_MODE);
816 } else {
817 if (riscv_cpu_mxl(env) == MXL_RV32) {
818 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
819 vm = get_field(env->satp, SATP32_MODE);
820 } else {
821 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
822 vm = get_field(env->satp, SATP64_MODE);
825 widened = 0;
826 } else {
827 if (riscv_cpu_mxl(env) == MXL_RV32) {
828 base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
829 vm = get_field(env->hgatp, SATP32_MODE);
830 } else {
831 base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
832 vm = get_field(env->hgatp, SATP64_MODE);
834 widened = 2;
836 /* status.SUM will be ignored if execute on background */
837 sum = get_field(env->mstatus, MSTATUS_SUM) || use_background || is_debug;
838 switch (vm) {
839 case VM_1_10_SV32:
840 levels = 2; ptidxbits = 10; ptesize = 4; break;
841 case VM_1_10_SV39:
842 levels = 3; ptidxbits = 9; ptesize = 8; break;
843 case VM_1_10_SV48:
844 levels = 4; ptidxbits = 9; ptesize = 8; break;
845 case VM_1_10_SV57:
846 levels = 5; ptidxbits = 9; ptesize = 8; break;
847 case VM_1_10_MBARE:
848 *physical = addr;
849 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
850 return TRANSLATE_SUCCESS;
851 default:
852 g_assert_not_reached();
855 CPUState *cs = env_cpu(env);
856 int va_bits = PGSHIFT + levels * ptidxbits + widened;
857 target_ulong mask, masked_msbs;
859 if (TARGET_LONG_BITS > (va_bits - 1)) {
860 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
861 } else {
862 mask = 0;
864 masked_msbs = (addr >> (va_bits - 1)) & mask;
866 if (masked_msbs != 0 && masked_msbs != mask) {
867 return TRANSLATE_FAIL;
870 int ptshift = (levels - 1) * ptidxbits;
871 int i;
873 #if !TCG_OVERSIZED_GUEST
874 restart:
875 #endif
876 for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
877 target_ulong idx;
878 if (i == 0) {
879 idx = (addr >> (PGSHIFT + ptshift)) &
880 ((1 << (ptidxbits + widened)) - 1);
881 } else {
882 idx = (addr >> (PGSHIFT + ptshift)) &
883 ((1 << ptidxbits) - 1);
886 /* check that physical address of PTE is legal */
887 hwaddr pte_addr;
889 if (two_stage && first_stage) {
890 int vbase_prot;
891 hwaddr vbase;
893 /* Do the second stage translation on the base PTE address. */
894 int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
895 base, NULL, MMU_DATA_LOAD,
896 mmu_idx, false, true,
897 is_debug);
899 if (vbase_ret != TRANSLATE_SUCCESS) {
900 if (fault_pte_addr) {
901 *fault_pte_addr = (base + idx * ptesize) >> 2;
903 return TRANSLATE_G_STAGE_FAIL;
906 pte_addr = vbase + idx * ptesize;
907 } else {
908 pte_addr = base + idx * ptesize;
911 int pmp_prot;
912 int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr,
913 sizeof(target_ulong),
914 MMU_DATA_LOAD, PRV_S);
915 if (pmp_ret != TRANSLATE_SUCCESS) {
916 return TRANSLATE_PMP_FAIL;
919 target_ulong pte;
920 if (riscv_cpu_mxl(env) == MXL_RV32) {
921 pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
922 } else {
923 pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
926 if (res != MEMTX_OK) {
927 return TRANSLATE_FAIL;
930 if (riscv_cpu_sxl(env) == MXL_RV32) {
931 ppn = pte >> PTE_PPN_SHIFT;
932 } else if (cpu->cfg.ext_svpbmt || cpu->cfg.ext_svnapot) {
933 ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT;
934 } else {
935 ppn = pte >> PTE_PPN_SHIFT;
936 if ((pte & ~(target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT) {
937 return TRANSLATE_FAIL;
941 if (!(pte & PTE_V)) {
942 /* Invalid PTE */
943 return TRANSLATE_FAIL;
944 } else if (!cpu->cfg.ext_svpbmt && (pte & PTE_PBMT)) {
945 return TRANSLATE_FAIL;
946 } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
947 /* Inner PTE, continue walking */
948 if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) {
949 return TRANSLATE_FAIL;
951 base = ppn << PGSHIFT;
952 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
953 /* Reserved leaf PTE flags: PTE_W */
954 return TRANSLATE_FAIL;
955 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
956 /* Reserved leaf PTE flags: PTE_W + PTE_X */
957 return TRANSLATE_FAIL;
958 } else if ((pte & PTE_U) && ((mode != PRV_U) &&
959 (!sum || access_type == MMU_INST_FETCH))) {
960 /* User PTE flags when not U mode and mstatus.SUM is not set,
961 or the access type is an instruction fetch */
962 return TRANSLATE_FAIL;
963 } else if (!(pte & PTE_U) && (mode != PRV_S)) {
964 /* Supervisor PTE flags when not S mode */
965 return TRANSLATE_FAIL;
966 } else if (ppn & ((1ULL << ptshift) - 1)) {
967 /* Misaligned PPN */
968 return TRANSLATE_FAIL;
969 } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
970 ((pte & PTE_X) && mxr))) {
971 /* Read access check failed */
972 return TRANSLATE_FAIL;
973 } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
974 /* Write access check failed */
975 return TRANSLATE_FAIL;
976 } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
977 /* Fetch access check failed */
978 return TRANSLATE_FAIL;
979 } else {
980 /* if necessary, set accessed and dirty bits. */
981 target_ulong updated_pte = pte | PTE_A |
982 (access_type == MMU_DATA_STORE ? PTE_D : 0);
984 /* Page table updates need to be atomic with MTTCG enabled */
985 if (updated_pte != pte) {
987 * - if accessed or dirty bits need updating, and the PTE is
988 * in RAM, then we do so atomically with a compare and swap.
989 * - if the PTE is in IO space or ROM, then it can't be updated
990 * and we return TRANSLATE_FAIL.
991 * - if the PTE changed by the time we went to update it, then
992 * it is no longer valid and we must re-walk the page table.
994 MemoryRegion *mr;
995 hwaddr l = sizeof(target_ulong), addr1;
996 mr = address_space_translate(cs->as, pte_addr,
997 &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
998 if (memory_region_is_ram(mr)) {
999 target_ulong *pte_pa =
1000 qemu_map_ram_ptr(mr->ram_block, addr1);
1001 #if TCG_OVERSIZED_GUEST
1002 /* MTTCG is not enabled on oversized TCG guests so
1003 * page table updates do not need to be atomic */
1004 *pte_pa = pte = updated_pte;
1005 #else
1006 target_ulong old_pte =
1007 qatomic_cmpxchg(pte_pa, pte, updated_pte);
1008 if (old_pte != pte) {
1009 goto restart;
1010 } else {
1011 pte = updated_pte;
1013 #endif
1014 } else {
1015 /* misconfigured PTE in ROM (AD bits are not preset) or
1016 * PTE is in IO space and can't be updated atomically */
1017 return TRANSLATE_FAIL;
1021 /* for superpage mappings, make a fake leaf PTE for the TLB's
1022 benefit. */
1023 target_ulong vpn = addr >> PGSHIFT;
1025 if (cpu->cfg.ext_svnapot && (pte & PTE_N)) {
1026 napot_bits = ctzl(ppn) + 1;
1027 if ((i != (levels - 1)) || (napot_bits != 4)) {
1028 return TRANSLATE_FAIL;
1032 napot_mask = (1 << napot_bits) - 1;
1033 *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) |
1034 (vpn & (((target_ulong)1 << ptshift) - 1))
1035 ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK);
1037 /* set permissions on the TLB entry */
1038 if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
1039 *prot |= PAGE_READ;
1041 if ((pte & PTE_X)) {
1042 *prot |= PAGE_EXEC;
1044 /* add write permission on stores or if the page is already dirty,
1045 so that we TLB miss on later writes to update the dirty bit */
1046 if ((pte & PTE_W) &&
1047 (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
1048 *prot |= PAGE_WRITE;
1050 return TRANSLATE_SUCCESS;
1053 return TRANSLATE_FAIL;
1056 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
1057 MMUAccessType access_type, bool pmp_violation,
1058 bool first_stage, bool two_stage)
1060 CPUState *cs = env_cpu(env);
1061 int page_fault_exceptions, vm;
1062 uint64_t stap_mode;
1064 if (riscv_cpu_mxl(env) == MXL_RV32) {
1065 stap_mode = SATP32_MODE;
1066 } else {
1067 stap_mode = SATP64_MODE;
1070 if (first_stage) {
1071 vm = get_field(env->satp, stap_mode);
1072 } else {
1073 vm = get_field(env->hgatp, stap_mode);
1076 page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation;
1078 switch (access_type) {
1079 case MMU_INST_FETCH:
1080 if (riscv_cpu_virt_enabled(env) && !first_stage) {
1081 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
1082 } else {
1083 cs->exception_index = page_fault_exceptions ?
1084 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
1086 break;
1087 case MMU_DATA_LOAD:
1088 if (two_stage && !first_stage) {
1089 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
1090 } else {
1091 cs->exception_index = page_fault_exceptions ?
1092 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
1094 break;
1095 case MMU_DATA_STORE:
1096 if (two_stage && !first_stage) {
1097 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
1098 } else {
1099 cs->exception_index = page_fault_exceptions ?
1100 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1102 break;
1103 default:
1104 g_assert_not_reached();
1106 env->badaddr = address;
1107 env->two_stage_lookup = two_stage;
1110 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
1112 RISCVCPU *cpu = RISCV_CPU(cs);
1113 CPURISCVState *env = &cpu->env;
1114 hwaddr phys_addr;
1115 int prot;
1116 int mmu_idx = cpu_mmu_index(&cpu->env, false);
1118 if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
1119 true, riscv_cpu_virt_enabled(env), true)) {
1120 return -1;
1123 if (riscv_cpu_virt_enabled(env)) {
1124 if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
1125 0, mmu_idx, false, true, true)) {
1126 return -1;
1130 return phys_addr & TARGET_PAGE_MASK;
1133 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1134 vaddr addr, unsigned size,
1135 MMUAccessType access_type,
1136 int mmu_idx, MemTxAttrs attrs,
1137 MemTxResult response, uintptr_t retaddr)
1139 RISCVCPU *cpu = RISCV_CPU(cs);
1140 CPURISCVState *env = &cpu->env;
1142 if (access_type == MMU_DATA_STORE) {
1143 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1144 } else if (access_type == MMU_DATA_LOAD) {
1145 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
1146 } else {
1147 cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
1150 env->badaddr = addr;
1151 env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
1152 riscv_cpu_two_stage_lookup(mmu_idx);
1153 cpu_loop_exit_restore(cs, retaddr);
1156 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1157 MMUAccessType access_type, int mmu_idx,
1158 uintptr_t retaddr)
1160 RISCVCPU *cpu = RISCV_CPU(cs);
1161 CPURISCVState *env = &cpu->env;
1162 switch (access_type) {
1163 case MMU_INST_FETCH:
1164 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
1165 break;
1166 case MMU_DATA_LOAD:
1167 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
1168 break;
1169 case MMU_DATA_STORE:
1170 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
1171 break;
1172 default:
1173 g_assert_not_reached();
1175 env->badaddr = addr;
1176 env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
1177 riscv_cpu_two_stage_lookup(mmu_idx);
1178 cpu_loop_exit_restore(cs, retaddr);
1181 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
1182 MMUAccessType access_type, int mmu_idx,
1183 bool probe, uintptr_t retaddr)
1185 RISCVCPU *cpu = RISCV_CPU(cs);
1186 CPURISCVState *env = &cpu->env;
1187 vaddr im_address;
1188 hwaddr pa = 0;
1189 int prot, prot2, prot_pmp;
1190 bool pmp_violation = false;
1191 bool first_stage_error = true;
1192 bool two_stage_lookup = false;
1193 int ret = TRANSLATE_FAIL;
1194 int mode = mmu_idx;
1195 /* default TLB page size */
1196 target_ulong tlb_size = TARGET_PAGE_SIZE;
1198 env->guest_phys_fault_addr = 0;
1200 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
1201 __func__, address, access_type, mmu_idx);
1203 /* MPRV does not affect the virtual-machine load/store
1204 instructions, HLV, HLVX, and HSV. */
1205 if (riscv_cpu_two_stage_lookup(mmu_idx)) {
1206 mode = get_field(env->hstatus, HSTATUS_SPVP);
1207 } else if (mode == PRV_M && access_type != MMU_INST_FETCH &&
1208 get_field(env->mstatus, MSTATUS_MPRV)) {
1209 mode = get_field(env->mstatus, MSTATUS_MPP);
1210 if (riscv_has_ext(env, RVH) && get_field(env->mstatus, MSTATUS_MPV)) {
1211 two_stage_lookup = true;
1215 if (riscv_cpu_virt_enabled(env) ||
1216 ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) &&
1217 access_type != MMU_INST_FETCH)) {
1218 /* Two stage lookup */
1219 ret = get_physical_address(env, &pa, &prot, address,
1220 &env->guest_phys_fault_addr, access_type,
1221 mmu_idx, true, true, false);
1224 * A G-stage exception may be triggered during two state lookup.
1225 * And the env->guest_phys_fault_addr has already been set in
1226 * get_physical_address().
1228 if (ret == TRANSLATE_G_STAGE_FAIL) {
1229 first_stage_error = false;
1230 access_type = MMU_DATA_LOAD;
1233 qemu_log_mask(CPU_LOG_MMU,
1234 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
1235 TARGET_FMT_plx " prot %d\n",
1236 __func__, address, ret, pa, prot);
1238 if (ret == TRANSLATE_SUCCESS) {
1239 /* Second stage lookup */
1240 im_address = pa;
1242 ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
1243 access_type, mmu_idx, false, true,
1244 false);
1246 qemu_log_mask(CPU_LOG_MMU,
1247 "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical "
1248 TARGET_FMT_plx " prot %d\n",
1249 __func__, im_address, ret, pa, prot2);
1251 prot &= prot2;
1253 if (ret == TRANSLATE_SUCCESS) {
1254 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1255 size, access_type, mode);
1257 qemu_log_mask(CPU_LOG_MMU,
1258 "%s PMP address=" TARGET_FMT_plx " ret %d prot"
1259 " %d tlb_size " TARGET_FMT_lu "\n",
1260 __func__, pa, ret, prot_pmp, tlb_size);
1262 prot &= prot_pmp;
1265 if (ret != TRANSLATE_SUCCESS) {
1267 * Guest physical address translation failed, this is a HS
1268 * level exception
1270 first_stage_error = false;
1271 env->guest_phys_fault_addr = (im_address |
1272 (address &
1273 (TARGET_PAGE_SIZE - 1))) >> 2;
1276 } else {
1277 /* Single stage lookup */
1278 ret = get_physical_address(env, &pa, &prot, address, NULL,
1279 access_type, mmu_idx, true, false, false);
1281 qemu_log_mask(CPU_LOG_MMU,
1282 "%s address=%" VADDR_PRIx " ret %d physical "
1283 TARGET_FMT_plx " prot %d\n",
1284 __func__, address, ret, pa, prot);
1286 if (ret == TRANSLATE_SUCCESS) {
1287 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1288 size, access_type, mode);
1290 qemu_log_mask(CPU_LOG_MMU,
1291 "%s PMP address=" TARGET_FMT_plx " ret %d prot"
1292 " %d tlb_size " TARGET_FMT_lu "\n",
1293 __func__, pa, ret, prot_pmp, tlb_size);
1295 prot &= prot_pmp;
1299 if (ret == TRANSLATE_PMP_FAIL) {
1300 pmp_violation = true;
1303 if (ret == TRANSLATE_SUCCESS) {
1304 tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
1305 prot, mmu_idx, tlb_size);
1306 return true;
1307 } else if (probe) {
1308 return false;
1309 } else {
1310 raise_mmu_exception(env, address, access_type, pmp_violation,
1311 first_stage_error,
1312 riscv_cpu_virt_enabled(env) ||
1313 riscv_cpu_two_stage_lookup(mmu_idx));
1314 cpu_loop_exit_restore(cs, retaddr);
1317 return true;
1319 #endif /* !CONFIG_USER_ONLY */
1322 * Handle Traps
1324 * Adapted from Spike's processor_t::take_trap.
1327 void riscv_cpu_do_interrupt(CPUState *cs)
1329 #if !defined(CONFIG_USER_ONLY)
1331 RISCVCPU *cpu = RISCV_CPU(cs);
1332 CPURISCVState *env = &cpu->env;
1333 bool write_gva = false;
1334 uint64_t s;
1336 /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
1337 * so we mask off the MSB and separate into trap type and cause.
1339 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
1340 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
1341 uint64_t deleg = async ? env->mideleg : env->medeleg;
1342 target_ulong tval = 0;
1343 target_ulong htval = 0;
1344 target_ulong mtval2 = 0;
1346 if (cause == RISCV_EXCP_SEMIHOST) {
1347 if (env->priv >= PRV_S) {
1348 env->gpr[xA0] = do_common_semihosting(cs);
1349 env->pc += 4;
1350 return;
1352 cause = RISCV_EXCP_BREAKPOINT;
1355 if (!async) {
1356 /* set tval to badaddr for traps with address information */
1357 switch (cause) {
1358 case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
1359 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
1360 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
1361 case RISCV_EXCP_INST_ADDR_MIS:
1362 case RISCV_EXCP_INST_ACCESS_FAULT:
1363 case RISCV_EXCP_LOAD_ADDR_MIS:
1364 case RISCV_EXCP_STORE_AMO_ADDR_MIS:
1365 case RISCV_EXCP_LOAD_ACCESS_FAULT:
1366 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
1367 case RISCV_EXCP_INST_PAGE_FAULT:
1368 case RISCV_EXCP_LOAD_PAGE_FAULT:
1369 case RISCV_EXCP_STORE_PAGE_FAULT:
1370 write_gva = true;
1371 tval = env->badaddr;
1372 break;
1373 case RISCV_EXCP_ILLEGAL_INST:
1374 tval = env->bins;
1375 break;
1376 default:
1377 break;
1379 /* ecall is dispatched as one cause so translate based on mode */
1380 if (cause == RISCV_EXCP_U_ECALL) {
1381 assert(env->priv <= 3);
1383 if (env->priv == PRV_M) {
1384 cause = RISCV_EXCP_M_ECALL;
1385 } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) {
1386 cause = RISCV_EXCP_VS_ECALL;
1387 } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) {
1388 cause = RISCV_EXCP_S_ECALL;
1389 } else if (env->priv == PRV_U) {
1390 cause = RISCV_EXCP_U_ECALL;
1395 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
1396 riscv_cpu_get_trap_name(cause, async));
1398 qemu_log_mask(CPU_LOG_INT,
1399 "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
1400 "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
1401 __func__, env->mhartid, async, cause, env->pc, tval,
1402 riscv_cpu_get_trap_name(cause, async));
1404 if (env->priv <= PRV_S &&
1405 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
1406 /* handle the trap in S-mode */
1407 if (riscv_has_ext(env, RVH)) {
1408 uint64_t hdeleg = async ? env->hideleg : env->hedeleg;
1410 if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1)) {
1411 /* Trap to VS mode */
1413 * See if we need to adjust cause. Yes if its VS mode interrupt
1414 * no if hypervisor has delegated one of hs mode's interrupt
1416 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
1417 cause == IRQ_VS_EXT) {
1418 cause = cause - 1;
1420 write_gva = false;
1421 } else if (riscv_cpu_virt_enabled(env)) {
1422 /* Trap into HS mode, from virt */
1423 riscv_cpu_swap_hypervisor_regs(env);
1424 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
1425 env->priv);
1426 env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
1427 riscv_cpu_virt_enabled(env));
1430 htval = env->guest_phys_fault_addr;
1432 riscv_cpu_set_virt_enabled(env, 0);
1433 } else {
1434 /* Trap into HS mode */
1435 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
1436 htval = env->guest_phys_fault_addr;
1437 write_gva = false;
1439 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva);
1442 s = env->mstatus;
1443 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
1444 s = set_field(s, MSTATUS_SPP, env->priv);
1445 s = set_field(s, MSTATUS_SIE, 0);
1446 env->mstatus = s;
1447 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
1448 env->sepc = env->pc;
1449 env->stval = tval;
1450 env->htval = htval;
1451 env->pc = (env->stvec >> 2 << 2) +
1452 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
1453 riscv_cpu_set_mode(env, PRV_S);
1454 } else {
1455 /* handle the trap in M-mode */
1456 if (riscv_has_ext(env, RVH)) {
1457 if (riscv_cpu_virt_enabled(env)) {
1458 riscv_cpu_swap_hypervisor_regs(env);
1460 env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
1461 riscv_cpu_virt_enabled(env));
1462 if (riscv_cpu_virt_enabled(env) && tval) {
1463 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1466 mtval2 = env->guest_phys_fault_addr;
1468 /* Trapping to M mode, virt is disabled */
1469 riscv_cpu_set_virt_enabled(env, 0);
1472 s = env->mstatus;
1473 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
1474 s = set_field(s, MSTATUS_MPP, env->priv);
1475 s = set_field(s, MSTATUS_MIE, 0);
1476 env->mstatus = s;
1477 env->mcause = cause | ~(((target_ulong)-1) >> async);
1478 env->mepc = env->pc;
1479 env->mtval = tval;
1480 env->mtval2 = mtval2;
1481 env->pc = (env->mtvec >> 2 << 2) +
1482 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
1483 riscv_cpu_set_mode(env, PRV_M);
1486 /* NOTE: it is not necessary to yield load reservations here. It is only
1487 * necessary for an SC from "another hart" to cause a load reservation
1488 * to be yielded. Refer to the memory consistency model section of the
1489 * RISC-V ISA Specification.
1492 env->two_stage_lookup = false;
1493 #endif
1494 cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */