Merge tag 'pull-vfio-20240310' of https://github.com/legoater/qemu into staging
[qemu/armbru.git] / system / physmem.c
blob6e9ed97597e9be110d73c5df9006f54da8d2e2c8
1 /*
2 * RAM allocation and memory access
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "exec/page-vary.h"
22 #include "qapi/error.h"
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
26 #include "qemu/hbitmap.h"
27 #include "qemu/madvise.h"
29 #ifdef CONFIG_TCG
30 #include "hw/core/tcg-cpu-ops.h"
31 #endif /* CONFIG_TCG */
33 #include "exec/exec-all.h"
34 #include "exec/target_page.h"
35 #include "hw/qdev-core.h"
36 #include "hw/qdev-properties.h"
37 #include "hw/boards.h"
38 #include "sysemu/xen.h"
39 #include "sysemu/kvm.h"
40 #include "sysemu/tcg.h"
41 #include "sysemu/qtest.h"
42 #include "qemu/timer.h"
43 #include "qemu/config-file.h"
44 #include "qemu/error-report.h"
45 #include "qemu/qemu-print.h"
46 #include "qemu/log.h"
47 #include "qemu/memalign.h"
48 #include "exec/memory.h"
49 #include "exec/ioport.h"
50 #include "sysemu/dma.h"
51 #include "sysemu/hostmem.h"
52 #include "sysemu/hw_accel.h"
53 #include "sysemu/xen-mapcache.h"
54 #include "trace/trace-root.h"
56 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
57 #include <linux/falloc.h>
58 #endif
60 #include "qemu/rcu_queue.h"
61 #include "qemu/main-loop.h"
62 #include "exec/translate-all.h"
63 #include "sysemu/replay.h"
65 #include "exec/memory-internal.h"
66 #include "exec/ram_addr.h"
68 #include "qemu/pmem.h"
70 #include "migration/vmstate.h"
72 #include "qemu/range.h"
73 #ifndef _WIN32
74 #include "qemu/mmap-alloc.h"
75 #endif
77 #include "monitor/monitor.h"
79 #ifdef CONFIG_LIBDAXCTL
80 #include <daxctl/libdaxctl.h>
81 #endif
83 //#define DEBUG_SUBPAGE
85 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
86 * are protected by the ramlist lock.
88 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
90 static MemoryRegion *system_memory;
91 static MemoryRegion *system_io;
93 AddressSpace address_space_io;
94 AddressSpace address_space_memory;
96 static MemoryRegion io_mem_unassigned;
98 typedef struct PhysPageEntry PhysPageEntry;
100 struct PhysPageEntry {
101 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
102 uint32_t skip : 6;
103 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
104 uint32_t ptr : 26;
107 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
109 /* Size of the L2 (and L3, etc) page tables. */
110 #define ADDR_SPACE_BITS 64
112 #define P_L2_BITS 9
113 #define P_L2_SIZE (1 << P_L2_BITS)
115 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
117 typedef PhysPageEntry Node[P_L2_SIZE];
119 typedef struct PhysPageMap {
120 struct rcu_head rcu;
122 unsigned sections_nb;
123 unsigned sections_nb_alloc;
124 unsigned nodes_nb;
125 unsigned nodes_nb_alloc;
126 Node *nodes;
127 MemoryRegionSection *sections;
128 } PhysPageMap;
130 struct AddressSpaceDispatch {
131 MemoryRegionSection *mru_section;
132 /* This is a multi-level map on the physical address space.
133 * The bottom level has pointers to MemoryRegionSections.
135 PhysPageEntry phys_map;
136 PhysPageMap map;
139 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
140 typedef struct subpage_t {
141 MemoryRegion iomem;
142 FlatView *fv;
143 hwaddr base;
144 uint16_t sub_section[];
145 } subpage_t;
147 #define PHYS_SECTION_UNASSIGNED 0
149 static void io_mem_init(void);
150 static void memory_map_init(void);
151 static void tcg_log_global_after_sync(MemoryListener *listener);
152 static void tcg_commit(MemoryListener *listener);
155 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
156 * @cpu: the CPU whose AddressSpace this is
157 * @as: the AddressSpace itself
158 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
159 * @tcg_as_listener: listener for tracking changes to the AddressSpace
161 struct CPUAddressSpace {
162 CPUState *cpu;
163 AddressSpace *as;
164 struct AddressSpaceDispatch *memory_dispatch;
165 MemoryListener tcg_as_listener;
168 struct DirtyBitmapSnapshot {
169 ram_addr_t start;
170 ram_addr_t end;
171 unsigned long dirty[];
174 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
176 static unsigned alloc_hint = 16;
177 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
178 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
179 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
180 alloc_hint = map->nodes_nb_alloc;
184 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
186 unsigned i;
187 uint32_t ret;
188 PhysPageEntry e;
189 PhysPageEntry *p;
191 ret = map->nodes_nb++;
192 p = map->nodes[ret];
193 assert(ret != PHYS_MAP_NODE_NIL);
194 assert(ret != map->nodes_nb_alloc);
196 e.skip = leaf ? 0 : 1;
197 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
198 for (i = 0; i < P_L2_SIZE; ++i) {
199 memcpy(&p[i], &e, sizeof(e));
201 return ret;
204 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
205 hwaddr *index, uint64_t *nb, uint16_t leaf,
206 int level)
208 PhysPageEntry *p;
209 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
211 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
212 lp->ptr = phys_map_node_alloc(map, level == 0);
214 p = map->nodes[lp->ptr];
215 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
217 while (*nb && lp < &p[P_L2_SIZE]) {
218 if ((*index & (step - 1)) == 0 && *nb >= step) {
219 lp->skip = 0;
220 lp->ptr = leaf;
221 *index += step;
222 *nb -= step;
223 } else {
224 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
226 ++lp;
230 static void phys_page_set(AddressSpaceDispatch *d,
231 hwaddr index, uint64_t nb,
232 uint16_t leaf)
234 /* Wildly overreserve - it doesn't matter much. */
235 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
237 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
240 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
241 * and update our entry so we can skip it and go directly to the destination.
243 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
245 unsigned valid_ptr = P_L2_SIZE;
246 int valid = 0;
247 PhysPageEntry *p;
248 int i;
250 if (lp->ptr == PHYS_MAP_NODE_NIL) {
251 return;
254 p = nodes[lp->ptr];
255 for (i = 0; i < P_L2_SIZE; i++) {
256 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
257 continue;
260 valid_ptr = i;
261 valid++;
262 if (p[i].skip) {
263 phys_page_compact(&p[i], nodes);
267 /* We can only compress if there's only one child. */
268 if (valid != 1) {
269 return;
272 assert(valid_ptr < P_L2_SIZE);
274 /* Don't compress if it won't fit in the # of bits we have. */
275 if (P_L2_LEVELS >= (1 << 6) &&
276 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
277 return;
280 lp->ptr = p[valid_ptr].ptr;
281 if (!p[valid_ptr].skip) {
282 /* If our only child is a leaf, make this a leaf. */
283 /* By design, we should have made this node a leaf to begin with so we
284 * should never reach here.
285 * But since it's so simple to handle this, let's do it just in case we
286 * change this rule.
288 lp->skip = 0;
289 } else {
290 lp->skip += p[valid_ptr].skip;
294 void address_space_dispatch_compact(AddressSpaceDispatch *d)
296 if (d->phys_map.skip) {
297 phys_page_compact(&d->phys_map, d->map.nodes);
301 static inline bool section_covers_addr(const MemoryRegionSection *section,
302 hwaddr addr)
304 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
305 * the section must cover the entire address space.
307 return int128_gethi(section->size) ||
308 range_covers_byte(section->offset_within_address_space,
309 int128_getlo(section->size), addr);
312 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
314 PhysPageEntry lp = d->phys_map, *p;
315 Node *nodes = d->map.nodes;
316 MemoryRegionSection *sections = d->map.sections;
317 hwaddr index = addr >> TARGET_PAGE_BITS;
318 int i;
320 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
321 if (lp.ptr == PHYS_MAP_NODE_NIL) {
322 return &sections[PHYS_SECTION_UNASSIGNED];
324 p = nodes[lp.ptr];
325 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
328 if (section_covers_addr(&sections[lp.ptr], addr)) {
329 return &sections[lp.ptr];
330 } else {
331 return &sections[PHYS_SECTION_UNASSIGNED];
335 /* Called from RCU critical section */
336 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
337 hwaddr addr,
338 bool resolve_subpage)
340 MemoryRegionSection *section = qatomic_read(&d->mru_section);
341 subpage_t *subpage;
343 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
344 !section_covers_addr(section, addr)) {
345 section = phys_page_find(d, addr);
346 qatomic_set(&d->mru_section, section);
348 if (resolve_subpage && section->mr->subpage) {
349 subpage = container_of(section->mr, subpage_t, iomem);
350 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
352 return section;
355 /* Called from RCU critical section */
356 static MemoryRegionSection *
357 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
358 hwaddr *plen, bool resolve_subpage)
360 MemoryRegionSection *section;
361 MemoryRegion *mr;
362 Int128 diff;
364 section = address_space_lookup_region(d, addr, resolve_subpage);
365 /* Compute offset within MemoryRegionSection */
366 addr -= section->offset_within_address_space;
368 /* Compute offset within MemoryRegion */
369 *xlat = addr + section->offset_within_region;
371 mr = section->mr;
373 /* MMIO registers can be expected to perform full-width accesses based only
374 * on their address, without considering adjacent registers that could
375 * decode to completely different MemoryRegions. When such registers
376 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
377 * regions overlap wildly. For this reason we cannot clamp the accesses
378 * here.
380 * If the length is small (as is the case for address_space_ldl/stl),
381 * everything works fine. If the incoming length is large, however,
382 * the caller really has to do the clamping through memory_access_size.
384 if (memory_region_is_ram(mr)) {
385 diff = int128_sub(section->size, int128_make64(addr));
386 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
388 return section;
392 * address_space_translate_iommu - translate an address through an IOMMU
393 * memory region and then through the target address space.
395 * @iommu_mr: the IOMMU memory region that we start the translation from
396 * @addr: the address to be translated through the MMU
397 * @xlat: the translated address offset within the destination memory region.
398 * It cannot be %NULL.
399 * @plen_out: valid read/write length of the translated address. It
400 * cannot be %NULL.
401 * @page_mask_out: page mask for the translated address. This
402 * should only be meaningful for IOMMU translated
403 * addresses, since there may be huge pages that this bit
404 * would tell. It can be %NULL if we don't care about it.
405 * @is_write: whether the translation operation is for write
406 * @is_mmio: whether this can be MMIO, set true if it can
407 * @target_as: the address space targeted by the IOMMU
408 * @attrs: transaction attributes
410 * This function is called from RCU critical section. It is the common
411 * part of flatview_do_translate and address_space_translate_cached.
413 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
414 hwaddr *xlat,
415 hwaddr *plen_out,
416 hwaddr *page_mask_out,
417 bool is_write,
418 bool is_mmio,
419 AddressSpace **target_as,
420 MemTxAttrs attrs)
422 MemoryRegionSection *section;
423 hwaddr page_mask = (hwaddr)-1;
425 do {
426 hwaddr addr = *xlat;
427 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
428 int iommu_idx = 0;
429 IOMMUTLBEntry iotlb;
431 if (imrc->attrs_to_index) {
432 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
435 iotlb = imrc->translate(iommu_mr, addr, is_write ?
436 IOMMU_WO : IOMMU_RO, iommu_idx);
438 if (!(iotlb.perm & (1 << is_write))) {
439 goto unassigned;
442 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
443 | (addr & iotlb.addr_mask));
444 page_mask &= iotlb.addr_mask;
445 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
446 *target_as = iotlb.target_as;
448 section = address_space_translate_internal(
449 address_space_to_dispatch(iotlb.target_as), addr, xlat,
450 plen_out, is_mmio);
452 iommu_mr = memory_region_get_iommu(section->mr);
453 } while (unlikely(iommu_mr));
455 if (page_mask_out) {
456 *page_mask_out = page_mask;
458 return *section;
460 unassigned:
461 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
465 * flatview_do_translate - translate an address in FlatView
467 * @fv: the flat view that we want to translate on
468 * @addr: the address to be translated in above address space
469 * @xlat: the translated address offset within memory region. It
470 * cannot be @NULL.
471 * @plen_out: valid read/write length of the translated address. It
472 * can be @NULL when we don't care about it.
473 * @page_mask_out: page mask for the translated address. This
474 * should only be meaningful for IOMMU translated
475 * addresses, since there may be huge pages that this bit
476 * would tell. It can be @NULL if we don't care about it.
477 * @is_write: whether the translation operation is for write
478 * @is_mmio: whether this can be MMIO, set true if it can
479 * @target_as: the address space targeted by the IOMMU
480 * @attrs: memory transaction attributes
482 * This function is called from RCU critical section
484 static MemoryRegionSection flatview_do_translate(FlatView *fv,
485 hwaddr addr,
486 hwaddr *xlat,
487 hwaddr *plen_out,
488 hwaddr *page_mask_out,
489 bool is_write,
490 bool is_mmio,
491 AddressSpace **target_as,
492 MemTxAttrs attrs)
494 MemoryRegionSection *section;
495 IOMMUMemoryRegion *iommu_mr;
496 hwaddr plen = (hwaddr)(-1);
498 if (!plen_out) {
499 plen_out = &plen;
502 section = address_space_translate_internal(
503 flatview_to_dispatch(fv), addr, xlat,
504 plen_out, is_mmio);
506 iommu_mr = memory_region_get_iommu(section->mr);
507 if (unlikely(iommu_mr)) {
508 return address_space_translate_iommu(iommu_mr, xlat,
509 plen_out, page_mask_out,
510 is_write, is_mmio,
511 target_as, attrs);
513 if (page_mask_out) {
514 /* Not behind an IOMMU, use default page size. */
515 *page_mask_out = ~TARGET_PAGE_MASK;
518 return *section;
521 /* Called from RCU critical section */
522 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
523 bool is_write, MemTxAttrs attrs)
525 MemoryRegionSection section;
526 hwaddr xlat, page_mask;
529 * This can never be MMIO, and we don't really care about plen,
530 * but page mask.
532 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
533 NULL, &page_mask, is_write, false, &as,
534 attrs);
536 /* Illegal translation */
537 if (section.mr == &io_mem_unassigned) {
538 goto iotlb_fail;
541 /* Convert memory region offset into address space offset */
542 xlat += section.offset_within_address_space -
543 section.offset_within_region;
545 return (IOMMUTLBEntry) {
546 .target_as = as,
547 .iova = addr & ~page_mask,
548 .translated_addr = xlat & ~page_mask,
549 .addr_mask = page_mask,
550 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
551 .perm = IOMMU_RW,
554 iotlb_fail:
555 return (IOMMUTLBEntry) {0};
558 /* Called from RCU critical section */
559 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
560 hwaddr *plen, bool is_write,
561 MemTxAttrs attrs)
563 MemoryRegion *mr;
564 MemoryRegionSection section;
565 AddressSpace *as = NULL;
567 /* This can be MMIO, so setup MMIO bit. */
568 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
569 is_write, true, &as, attrs);
570 mr = section.mr;
572 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
573 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
574 *plen = MIN(page, *plen);
577 return mr;
580 typedef struct TCGIOMMUNotifier {
581 IOMMUNotifier n;
582 MemoryRegion *mr;
583 CPUState *cpu;
584 int iommu_idx;
585 bool active;
586 } TCGIOMMUNotifier;
588 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
590 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
592 if (!notifier->active) {
593 return;
595 tlb_flush(notifier->cpu);
596 notifier->active = false;
597 /* We leave the notifier struct on the list to avoid reallocating it later.
598 * Generally the number of IOMMUs a CPU deals with will be small.
599 * In any case we can't unregister the iommu notifier from a notify
600 * callback.
604 static void tcg_register_iommu_notifier(CPUState *cpu,
605 IOMMUMemoryRegion *iommu_mr,
606 int iommu_idx)
608 /* Make sure this CPU has an IOMMU notifier registered for this
609 * IOMMU/IOMMU index combination, so that we can flush its TLB
610 * when the IOMMU tells us the mappings we've cached have changed.
612 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
613 TCGIOMMUNotifier *notifier = NULL;
614 int i;
616 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
617 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
618 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
619 break;
622 if (i == cpu->iommu_notifiers->len) {
623 /* Not found, add a new entry at the end of the array */
624 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
625 notifier = g_new0(TCGIOMMUNotifier, 1);
626 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
628 notifier->mr = mr;
629 notifier->iommu_idx = iommu_idx;
630 notifier->cpu = cpu;
631 /* Rather than trying to register interest in the specific part
632 * of the iommu's address space that we've accessed and then
633 * expand it later as subsequent accesses touch more of it, we
634 * just register interest in the whole thing, on the assumption
635 * that iommu reconfiguration will be rare.
637 iommu_notifier_init(&notifier->n,
638 tcg_iommu_unmap_notify,
639 IOMMU_NOTIFIER_UNMAP,
641 HWADDR_MAX,
642 iommu_idx);
643 memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
644 &error_fatal);
647 if (!notifier->active) {
648 notifier->active = true;
652 void tcg_iommu_free_notifier_list(CPUState *cpu)
654 /* Destroy the CPU's notifier list */
655 int i;
656 TCGIOMMUNotifier *notifier;
658 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
659 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
660 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
661 g_free(notifier);
663 g_array_free(cpu->iommu_notifiers, true);
666 void tcg_iommu_init_notifier_list(CPUState *cpu)
668 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
671 /* Called from RCU critical section */
672 MemoryRegionSection *
673 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr,
674 hwaddr *xlat, hwaddr *plen,
675 MemTxAttrs attrs, int *prot)
677 MemoryRegionSection *section;
678 IOMMUMemoryRegion *iommu_mr;
679 IOMMUMemoryRegionClass *imrc;
680 IOMMUTLBEntry iotlb;
681 int iommu_idx;
682 hwaddr addr = orig_addr;
683 AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
685 for (;;) {
686 section = address_space_translate_internal(d, addr, &addr, plen, false);
688 iommu_mr = memory_region_get_iommu(section->mr);
689 if (!iommu_mr) {
690 break;
693 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
695 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
696 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
697 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
698 * doesn't short-cut its translation table walk.
700 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
701 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
702 | (addr & iotlb.addr_mask));
703 /* Update the caller's prot bits to remove permissions the IOMMU
704 * is giving us a failure response for. If we get down to no
705 * permissions left at all we can give up now.
707 if (!(iotlb.perm & IOMMU_RO)) {
708 *prot &= ~(PAGE_READ | PAGE_EXEC);
710 if (!(iotlb.perm & IOMMU_WO)) {
711 *prot &= ~PAGE_WRITE;
714 if (!*prot) {
715 goto translate_fail;
718 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
721 assert(!memory_region_is_iommu(section->mr));
722 *xlat = addr;
723 return section;
725 translate_fail:
727 * We should be given a page-aligned address -- certainly
728 * tlb_set_page_with_attrs() does so. The page offset of xlat
729 * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0.
730 * The page portion of xlat will be logged by memory_region_access_valid()
731 * when this memory access is rejected, so use the original untranslated
732 * physical address.
734 assert((orig_addr & ~TARGET_PAGE_MASK) == 0);
735 *xlat = orig_addr;
736 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
739 void cpu_address_space_init(CPUState *cpu, int asidx,
740 const char *prefix, MemoryRegion *mr)
742 CPUAddressSpace *newas;
743 AddressSpace *as = g_new0(AddressSpace, 1);
744 char *as_name;
746 assert(mr);
747 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
748 address_space_init(as, mr, as_name);
749 g_free(as_name);
751 /* Target code should have set num_ases before calling us */
752 assert(asidx < cpu->num_ases);
754 if (asidx == 0) {
755 /* address space 0 gets the convenience alias */
756 cpu->as = as;
759 /* KVM cannot currently support multiple address spaces. */
760 assert(asidx == 0 || !kvm_enabled());
762 if (!cpu->cpu_ases) {
763 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
766 newas = &cpu->cpu_ases[asidx];
767 newas->cpu = cpu;
768 newas->as = as;
769 if (tcg_enabled()) {
770 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
771 newas->tcg_as_listener.commit = tcg_commit;
772 newas->tcg_as_listener.name = "tcg";
773 memory_listener_register(&newas->tcg_as_listener, as);
777 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
779 /* Return the AddressSpace corresponding to the specified index */
780 return cpu->cpu_ases[asidx].as;
783 /* Called from RCU critical section */
784 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
786 RAMBlock *block;
788 block = qatomic_rcu_read(&ram_list.mru_block);
789 if (block && addr - block->offset < block->max_length) {
790 return block;
792 RAMBLOCK_FOREACH(block) {
793 if (addr - block->offset < block->max_length) {
794 goto found;
798 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
799 abort();
801 found:
802 /* It is safe to write mru_block outside the BQL. This
803 * is what happens:
805 * mru_block = xxx
806 * rcu_read_unlock()
807 * xxx removed from list
808 * rcu_read_lock()
809 * read mru_block
810 * mru_block = NULL;
811 * call_rcu(reclaim_ramblock, xxx);
812 * rcu_read_unlock()
814 * qatomic_rcu_set is not needed here. The block was already published
815 * when it was placed into the list. Here we're just making an extra
816 * copy of the pointer.
818 ram_list.mru_block = block;
819 return block;
822 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
824 CPUState *cpu;
825 ram_addr_t start1;
826 RAMBlock *block;
827 ram_addr_t end;
829 assert(tcg_enabled());
830 end = TARGET_PAGE_ALIGN(start + length);
831 start &= TARGET_PAGE_MASK;
833 RCU_READ_LOCK_GUARD();
834 block = qemu_get_ram_block(start);
835 assert(block == qemu_get_ram_block(end - 1));
836 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
837 CPU_FOREACH(cpu) {
838 tlb_reset_dirty(cpu, start1, length);
842 /* Note: start and end must be within the same ram block. */
843 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
844 ram_addr_t length,
845 unsigned client)
847 DirtyMemoryBlocks *blocks;
848 unsigned long end, page, start_page;
849 bool dirty = false;
850 RAMBlock *ramblock;
851 uint64_t mr_offset, mr_size;
853 if (length == 0) {
854 return false;
857 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
858 start_page = start >> TARGET_PAGE_BITS;
859 page = start_page;
861 WITH_RCU_READ_LOCK_GUARD() {
862 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
863 ramblock = qemu_get_ram_block(start);
864 /* Range sanity check on the ramblock */
865 assert(start >= ramblock->offset &&
866 start + length <= ramblock->offset + ramblock->used_length);
868 while (page < end) {
869 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
870 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
871 unsigned long num = MIN(end - page,
872 DIRTY_MEMORY_BLOCK_SIZE - offset);
874 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
875 offset, num);
876 page += num;
879 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
880 mr_size = (end - start_page) << TARGET_PAGE_BITS;
881 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
884 if (dirty && tcg_enabled()) {
885 tlb_reset_dirty_range_all(start, length);
888 return dirty;
891 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
892 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
894 DirtyMemoryBlocks *blocks;
895 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
896 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
897 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
898 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
899 DirtyBitmapSnapshot *snap;
900 unsigned long page, end, dest;
902 snap = g_malloc0(sizeof(*snap) +
903 ((last - first) >> (TARGET_PAGE_BITS + 3)));
904 snap->start = first;
905 snap->end = last;
907 page = first >> TARGET_PAGE_BITS;
908 end = last >> TARGET_PAGE_BITS;
909 dest = 0;
911 WITH_RCU_READ_LOCK_GUARD() {
912 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
914 while (page < end) {
915 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
916 unsigned long ofs = page % DIRTY_MEMORY_BLOCK_SIZE;
917 unsigned long num = MIN(end - page,
918 DIRTY_MEMORY_BLOCK_SIZE - ofs);
920 assert(QEMU_IS_ALIGNED(ofs, (1 << BITS_PER_LEVEL)));
921 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
922 ofs >>= BITS_PER_LEVEL;
924 bitmap_copy_and_clear_atomic(snap->dirty + dest,
925 blocks->blocks[idx] + ofs,
926 num);
927 page += num;
928 dest += num >> BITS_PER_LEVEL;
932 if (tcg_enabled()) {
933 tlb_reset_dirty_range_all(start, length);
936 memory_region_clear_dirty_bitmap(mr, offset, length);
938 return snap;
941 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
942 ram_addr_t start,
943 ram_addr_t length)
945 unsigned long page, end;
947 assert(start >= snap->start);
948 assert(start + length <= snap->end);
950 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
951 page = (start - snap->start) >> TARGET_PAGE_BITS;
953 while (page < end) {
954 if (test_bit(page, snap->dirty)) {
955 return true;
957 page++;
959 return false;
962 /* Called from RCU critical section */
963 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
964 MemoryRegionSection *section)
966 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
967 return section - d->map.sections;
970 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
971 uint16_t section);
972 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
974 static uint16_t phys_section_add(PhysPageMap *map,
975 MemoryRegionSection *section)
977 /* The physical section number is ORed with a page-aligned
978 * pointer to produce the iotlb entries. Thus it should
979 * never overflow into the page-aligned value.
981 assert(map->sections_nb < TARGET_PAGE_SIZE);
983 if (map->sections_nb == map->sections_nb_alloc) {
984 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
985 map->sections = g_renew(MemoryRegionSection, map->sections,
986 map->sections_nb_alloc);
988 map->sections[map->sections_nb] = *section;
989 memory_region_ref(section->mr);
990 return map->sections_nb++;
993 static void phys_section_destroy(MemoryRegion *mr)
995 bool have_sub_page = mr->subpage;
997 memory_region_unref(mr);
999 if (have_sub_page) {
1000 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1001 object_unref(OBJECT(&subpage->iomem));
1002 g_free(subpage);
1006 static void phys_sections_free(PhysPageMap *map)
1008 while (map->sections_nb > 0) {
1009 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1010 phys_section_destroy(section->mr);
1012 g_free(map->sections);
1013 g_free(map->nodes);
1016 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1018 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1019 subpage_t *subpage;
1020 hwaddr base = section->offset_within_address_space
1021 & TARGET_PAGE_MASK;
1022 MemoryRegionSection *existing = phys_page_find(d, base);
1023 MemoryRegionSection subsection = {
1024 .offset_within_address_space = base,
1025 .size = int128_make64(TARGET_PAGE_SIZE),
1027 hwaddr start, end;
1029 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1031 if (!(existing->mr->subpage)) {
1032 subpage = subpage_init(fv, base);
1033 subsection.fv = fv;
1034 subsection.mr = &subpage->iomem;
1035 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1036 phys_section_add(&d->map, &subsection));
1037 } else {
1038 subpage = container_of(existing->mr, subpage_t, iomem);
1040 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1041 end = start + int128_get64(section->size) - 1;
1042 subpage_register(subpage, start, end,
1043 phys_section_add(&d->map, section));
1047 static void register_multipage(FlatView *fv,
1048 MemoryRegionSection *section)
1050 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1051 hwaddr start_addr = section->offset_within_address_space;
1052 uint16_t section_index = phys_section_add(&d->map, section);
1053 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1054 TARGET_PAGE_BITS));
1056 assert(num_pages);
1057 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1061 * The range in *section* may look like this:
1063 * |s|PPPPPPP|s|
1065 * where s stands for subpage and P for page.
1067 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1069 MemoryRegionSection remain = *section;
1070 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1072 /* register first subpage */
1073 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1074 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1075 - remain.offset_within_address_space;
1077 MemoryRegionSection now = remain;
1078 now.size = int128_min(int128_make64(left), now.size);
1079 register_subpage(fv, &now);
1080 if (int128_eq(remain.size, now.size)) {
1081 return;
1083 remain.size = int128_sub(remain.size, now.size);
1084 remain.offset_within_address_space += int128_get64(now.size);
1085 remain.offset_within_region += int128_get64(now.size);
1088 /* register whole pages */
1089 if (int128_ge(remain.size, page_size)) {
1090 MemoryRegionSection now = remain;
1091 now.size = int128_and(now.size, int128_neg(page_size));
1092 register_multipage(fv, &now);
1093 if (int128_eq(remain.size, now.size)) {
1094 return;
1096 remain.size = int128_sub(remain.size, now.size);
1097 remain.offset_within_address_space += int128_get64(now.size);
1098 remain.offset_within_region += int128_get64(now.size);
1101 /* register last subpage */
1102 register_subpage(fv, &remain);
1105 void qemu_flush_coalesced_mmio_buffer(void)
1107 if (kvm_enabled())
1108 kvm_flush_coalesced_mmio_buffer();
1111 void qemu_mutex_lock_ramlist(void)
1113 qemu_mutex_lock(&ram_list.mutex);
1116 void qemu_mutex_unlock_ramlist(void)
1118 qemu_mutex_unlock(&ram_list.mutex);
1121 GString *ram_block_format(void)
1123 RAMBlock *block;
1124 char *psize;
1125 GString *buf = g_string_new("");
1127 RCU_READ_LOCK_GUARD();
1128 g_string_append_printf(buf, "%24s %8s %18s %18s %18s %18s %3s\n",
1129 "Block Name", "PSize", "Offset", "Used", "Total",
1130 "HVA", "RO");
1132 RAMBLOCK_FOREACH(block) {
1133 psize = size_to_str(block->page_size);
1134 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1135 " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n",
1136 block->idstr, psize,
1137 (uint64_t)block->offset,
1138 (uint64_t)block->used_length,
1139 (uint64_t)block->max_length,
1140 (uint64_t)(uintptr_t)block->host,
1141 block->mr->readonly ? "ro" : "rw");
1143 g_free(psize);
1146 return buf;
1149 static int find_min_backend_pagesize(Object *obj, void *opaque)
1151 long *hpsize_min = opaque;
1153 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1154 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1155 long hpsize = host_memory_backend_pagesize(backend);
1157 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1158 *hpsize_min = hpsize;
1162 return 0;
1165 static int find_max_backend_pagesize(Object *obj, void *opaque)
1167 long *hpsize_max = opaque;
1169 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1170 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1171 long hpsize = host_memory_backend_pagesize(backend);
1173 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1174 *hpsize_max = hpsize;
1178 return 0;
1182 * TODO: We assume right now that all mapped host memory backends are
1183 * used as RAM, however some might be used for different purposes.
1185 long qemu_minrampagesize(void)
1187 long hpsize = LONG_MAX;
1188 Object *memdev_root = object_resolve_path("/objects", NULL);
1190 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1191 return hpsize;
1194 long qemu_maxrampagesize(void)
1196 long pagesize = 0;
1197 Object *memdev_root = object_resolve_path("/objects", NULL);
1199 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1200 return pagesize;
1203 #ifdef CONFIG_POSIX
1204 static int64_t get_file_size(int fd)
1206 int64_t size;
1207 #if defined(__linux__)
1208 struct stat st;
1210 if (fstat(fd, &st) < 0) {
1211 return -errno;
1214 /* Special handling for devdax character devices */
1215 if (S_ISCHR(st.st_mode)) {
1216 g_autofree char *subsystem_path = NULL;
1217 g_autofree char *subsystem = NULL;
1219 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1220 major(st.st_rdev), minor(st.st_rdev));
1221 subsystem = g_file_read_link(subsystem_path, NULL);
1223 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1224 g_autofree char *size_path = NULL;
1225 g_autofree char *size_str = NULL;
1227 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1228 major(st.st_rdev), minor(st.st_rdev));
1230 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1231 return g_ascii_strtoll(size_str, NULL, 0);
1235 #endif /* defined(__linux__) */
1237 /* st.st_size may be zero for special files yet lseek(2) works */
1238 size = lseek(fd, 0, SEEK_END);
1239 if (size < 0) {
1240 return -errno;
1242 return size;
1245 static int64_t get_file_align(int fd)
1247 int64_t align = -1;
1248 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1249 struct stat st;
1251 if (fstat(fd, &st) < 0) {
1252 return -errno;
1255 /* Special handling for devdax character devices */
1256 if (S_ISCHR(st.st_mode)) {
1257 g_autofree char *path = NULL;
1258 g_autofree char *rpath = NULL;
1259 struct daxctl_ctx *ctx;
1260 struct daxctl_region *region;
1261 int rc = 0;
1263 path = g_strdup_printf("/sys/dev/char/%d:%d",
1264 major(st.st_rdev), minor(st.st_rdev));
1265 rpath = realpath(path, NULL);
1266 if (!rpath) {
1267 return -errno;
1270 rc = daxctl_new(&ctx);
1271 if (rc) {
1272 return -1;
1275 daxctl_region_foreach(ctx, region) {
1276 if (strstr(rpath, daxctl_region_get_path(region))) {
1277 align = daxctl_region_get_align(region);
1278 break;
1281 daxctl_unref(ctx);
1283 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1285 return align;
1288 static int file_ram_open(const char *path,
1289 const char *region_name,
1290 bool readonly,
1291 bool *created)
1293 char *filename;
1294 char *sanitized_name;
1295 char *c;
1296 int fd = -1;
1298 *created = false;
1299 for (;;) {
1300 fd = open(path, readonly ? O_RDONLY : O_RDWR);
1301 if (fd >= 0) {
1303 * open(O_RDONLY) won't fail with EISDIR. Check manually if we
1304 * opened a directory and fail similarly to how we fail ENOENT
1305 * in readonly mode. Note that mkstemp() would imply O_RDWR.
1307 if (readonly) {
1308 struct stat file_stat;
1310 if (fstat(fd, &file_stat)) {
1311 close(fd);
1312 if (errno == EINTR) {
1313 continue;
1315 return -errno;
1316 } else if (S_ISDIR(file_stat.st_mode)) {
1317 close(fd);
1318 return -EISDIR;
1321 /* @path names an existing file, use it */
1322 break;
1324 if (errno == ENOENT) {
1325 if (readonly) {
1326 /* Refuse to create new, readonly files. */
1327 return -ENOENT;
1329 /* @path names a file that doesn't exist, create it */
1330 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1331 if (fd >= 0) {
1332 *created = true;
1333 break;
1335 } else if (errno == EISDIR) {
1336 /* @path names a directory, create a file there */
1337 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1338 sanitized_name = g_strdup(region_name);
1339 for (c = sanitized_name; *c != '\0'; c++) {
1340 if (*c == '/') {
1341 *c = '_';
1345 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1346 sanitized_name);
1347 g_free(sanitized_name);
1349 fd = mkstemp(filename);
1350 if (fd >= 0) {
1351 unlink(filename);
1352 g_free(filename);
1353 break;
1355 g_free(filename);
1357 if (errno != EEXIST && errno != EINTR) {
1358 return -errno;
1361 * Try again on EINTR and EEXIST. The latter happens when
1362 * something else creates the file between our two open().
1366 return fd;
1369 static void *file_ram_alloc(RAMBlock *block,
1370 ram_addr_t memory,
1371 int fd,
1372 bool truncate,
1373 off_t offset,
1374 Error **errp)
1376 uint32_t qemu_map_flags;
1377 void *area;
1379 block->page_size = qemu_fd_getpagesize(fd);
1380 if (block->mr->align % block->page_size) {
1381 error_setg(errp, "alignment 0x%" PRIx64
1382 " must be multiples of page size 0x%zx",
1383 block->mr->align, block->page_size);
1384 return NULL;
1385 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1386 error_setg(errp, "alignment 0x%" PRIx64
1387 " must be a power of two", block->mr->align);
1388 return NULL;
1389 } else if (offset % block->page_size) {
1390 error_setg(errp, "offset 0x%" PRIx64
1391 " must be multiples of page size 0x%zx",
1392 offset, block->page_size);
1393 return NULL;
1395 block->mr->align = MAX(block->page_size, block->mr->align);
1396 #if defined(__s390x__)
1397 if (kvm_enabled()) {
1398 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1400 #endif
1402 if (memory < block->page_size) {
1403 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1404 "or larger than page size 0x%zx",
1405 memory, block->page_size);
1406 return NULL;
1409 memory = ROUND_UP(memory, block->page_size);
1412 * ftruncate is not supported by hugetlbfs in older
1413 * hosts, so don't bother bailing out on errors.
1414 * If anything goes wrong with it under other filesystems,
1415 * mmap will fail.
1417 * Do not truncate the non-empty backend file to avoid corrupting
1418 * the existing data in the file. Disabling shrinking is not
1419 * enough. For example, the current vNVDIMM implementation stores
1420 * the guest NVDIMM labels at the end of the backend file. If the
1421 * backend file is later extended, QEMU will not be able to find
1422 * those labels. Therefore, extending the non-empty backend file
1423 * is disabled as well.
1425 if (truncate && ftruncate(fd, offset + memory)) {
1426 perror("ftruncate");
1429 qemu_map_flags = (block->flags & RAM_READONLY) ? QEMU_MAP_READONLY : 0;
1430 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1431 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1432 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
1433 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1434 if (area == MAP_FAILED) {
1435 error_setg_errno(errp, errno,
1436 "unable to map backing store for guest RAM");
1437 return NULL;
1440 block->fd = fd;
1441 block->fd_offset = offset;
1442 return area;
1444 #endif
1446 /* Allocate space within the ram_addr_t space that governs the
1447 * dirty bitmaps.
1448 * Called with the ramlist lock held.
1450 static ram_addr_t find_ram_offset(ram_addr_t size)
1452 RAMBlock *block, *next_block;
1453 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1455 assert(size != 0); /* it would hand out same offset multiple times */
1457 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1458 return 0;
1461 RAMBLOCK_FOREACH(block) {
1462 ram_addr_t candidate, next = RAM_ADDR_MAX;
1464 /* Align blocks to start on a 'long' in the bitmap
1465 * which makes the bitmap sync'ing take the fast path.
1467 candidate = block->offset + block->max_length;
1468 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1470 /* Search for the closest following block
1471 * and find the gap.
1473 RAMBLOCK_FOREACH(next_block) {
1474 if (next_block->offset >= candidate) {
1475 next = MIN(next, next_block->offset);
1479 /* If it fits remember our place and remember the size
1480 * of gap, but keep going so that we might find a smaller
1481 * gap to fill so avoiding fragmentation.
1483 if (next - candidate >= size && next - candidate < mingap) {
1484 offset = candidate;
1485 mingap = next - candidate;
1488 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1491 if (offset == RAM_ADDR_MAX) {
1492 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1493 (uint64_t)size);
1494 abort();
1497 trace_find_ram_offset(size, offset);
1499 return offset;
1502 static unsigned long last_ram_page(void)
1504 RAMBlock *block;
1505 ram_addr_t last = 0;
1507 RCU_READ_LOCK_GUARD();
1508 RAMBLOCK_FOREACH(block) {
1509 last = MAX(last, block->offset + block->max_length);
1511 return last >> TARGET_PAGE_BITS;
1514 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1516 int ret;
1518 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1519 if (!machine_dump_guest_core(current_machine)) {
1520 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1521 if (ret) {
1522 perror("qemu_madvise");
1523 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1524 "but dump_guest_core=off specified\n");
1529 const char *qemu_ram_get_idstr(RAMBlock *rb)
1531 return rb->idstr;
1534 void *qemu_ram_get_host_addr(RAMBlock *rb)
1536 return rb->host;
1539 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1541 return rb->offset;
1544 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1546 return rb->used_length;
1549 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1551 return rb->max_length;
1554 bool qemu_ram_is_shared(RAMBlock *rb)
1556 return rb->flags & RAM_SHARED;
1559 bool qemu_ram_is_noreserve(RAMBlock *rb)
1561 return rb->flags & RAM_NORESERVE;
1564 /* Note: Only set at the start of postcopy */
1565 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1567 return rb->flags & RAM_UF_ZEROPAGE;
1570 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1572 rb->flags |= RAM_UF_ZEROPAGE;
1575 bool qemu_ram_is_migratable(RAMBlock *rb)
1577 return rb->flags & RAM_MIGRATABLE;
1580 void qemu_ram_set_migratable(RAMBlock *rb)
1582 rb->flags |= RAM_MIGRATABLE;
1585 void qemu_ram_unset_migratable(RAMBlock *rb)
1587 rb->flags &= ~RAM_MIGRATABLE;
1590 bool qemu_ram_is_named_file(RAMBlock *rb)
1592 return rb->flags & RAM_NAMED_FILE;
1595 int qemu_ram_get_fd(RAMBlock *rb)
1597 return rb->fd;
1600 /* Called with the BQL held. */
1601 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1603 RAMBlock *block;
1605 assert(new_block);
1606 assert(!new_block->idstr[0]);
1608 if (dev) {
1609 char *id = qdev_get_dev_path(dev);
1610 if (id) {
1611 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1612 g_free(id);
1615 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1617 RCU_READ_LOCK_GUARD();
1618 RAMBLOCK_FOREACH(block) {
1619 if (block != new_block &&
1620 !strcmp(block->idstr, new_block->idstr)) {
1621 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1622 new_block->idstr);
1623 abort();
1628 /* Called with the BQL held. */
1629 void qemu_ram_unset_idstr(RAMBlock *block)
1631 /* FIXME: arch_init.c assumes that this is not called throughout
1632 * migration. Ignore the problem since hot-unplug during migration
1633 * does not work anyway.
1635 if (block) {
1636 memset(block->idstr, 0, sizeof(block->idstr));
1640 size_t qemu_ram_pagesize(RAMBlock *rb)
1642 return rb->page_size;
1645 /* Returns the largest size of page in use */
1646 size_t qemu_ram_pagesize_largest(void)
1648 RAMBlock *block;
1649 size_t largest = 0;
1651 RAMBLOCK_FOREACH(block) {
1652 largest = MAX(largest, qemu_ram_pagesize(block));
1655 return largest;
1658 static int memory_try_enable_merging(void *addr, size_t len)
1660 if (!machine_mem_merge(current_machine)) {
1661 /* disabled by the user */
1662 return 0;
1665 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1669 * Resizing RAM while migrating can result in the migration being canceled.
1670 * Care has to be taken if the guest might have already detected the memory.
1672 * As memory core doesn't know how is memory accessed, it is up to
1673 * resize callback to update device state and/or add assertions to detect
1674 * misuse, if necessary.
1676 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1678 const ram_addr_t oldsize = block->used_length;
1679 const ram_addr_t unaligned_size = newsize;
1681 assert(block);
1683 newsize = TARGET_PAGE_ALIGN(newsize);
1684 newsize = REAL_HOST_PAGE_ALIGN(newsize);
1686 if (block->used_length == newsize) {
1688 * We don't have to resize the ram block (which only knows aligned
1689 * sizes), however, we have to notify if the unaligned size changed.
1691 if (unaligned_size != memory_region_size(block->mr)) {
1692 memory_region_set_size(block->mr, unaligned_size);
1693 if (block->resized) {
1694 block->resized(block->idstr, unaligned_size, block->host);
1697 return 0;
1700 if (!(block->flags & RAM_RESIZEABLE)) {
1701 error_setg_errno(errp, EINVAL,
1702 "Size mismatch: %s: 0x" RAM_ADDR_FMT
1703 " != 0x" RAM_ADDR_FMT, block->idstr,
1704 newsize, block->used_length);
1705 return -EINVAL;
1708 if (block->max_length < newsize) {
1709 error_setg_errno(errp, EINVAL,
1710 "Size too large: %s: 0x" RAM_ADDR_FMT
1711 " > 0x" RAM_ADDR_FMT, block->idstr,
1712 newsize, block->max_length);
1713 return -EINVAL;
1716 /* Notify before modifying the ram block and touching the bitmaps. */
1717 if (block->host) {
1718 ram_block_notify_resize(block->host, oldsize, newsize);
1721 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1722 block->used_length = newsize;
1723 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1724 DIRTY_CLIENTS_ALL);
1725 memory_region_set_size(block->mr, unaligned_size);
1726 if (block->resized) {
1727 block->resized(block->idstr, unaligned_size, block->host);
1729 return 0;
1733 * Trigger sync on the given ram block for range [start, start + length]
1734 * with the backing store if one is available.
1735 * Otherwise no-op.
1736 * @Note: this is supposed to be a synchronous op.
1738 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1740 /* The requested range should fit in within the block range */
1741 g_assert((start + length) <= block->used_length);
1743 #ifdef CONFIG_LIBPMEM
1744 /* The lack of support for pmem should not block the sync */
1745 if (ramblock_is_pmem(block)) {
1746 void *addr = ramblock_ptr(block, start);
1747 pmem_persist(addr, length);
1748 return;
1750 #endif
1751 if (block->fd >= 0) {
1753 * Case there is no support for PMEM or the memory has not been
1754 * specified as persistent (or is not one) - use the msync.
1755 * Less optimal but still achieves the same goal
1757 void *addr = ramblock_ptr(block, start);
1758 if (qemu_msync(addr, length, block->fd)) {
1759 warn_report("%s: failed to sync memory range: start: "
1760 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1761 __func__, start, length);
1766 /* Called with ram_list.mutex held */
1767 static void dirty_memory_extend(ram_addr_t old_ram_size,
1768 ram_addr_t new_ram_size)
1770 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1771 DIRTY_MEMORY_BLOCK_SIZE);
1772 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1773 DIRTY_MEMORY_BLOCK_SIZE);
1774 int i;
1776 /* Only need to extend if block count increased */
1777 if (new_num_blocks <= old_num_blocks) {
1778 return;
1781 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1782 DirtyMemoryBlocks *old_blocks;
1783 DirtyMemoryBlocks *new_blocks;
1784 int j;
1786 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1787 new_blocks = g_malloc(sizeof(*new_blocks) +
1788 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1790 if (old_num_blocks) {
1791 memcpy(new_blocks->blocks, old_blocks->blocks,
1792 old_num_blocks * sizeof(old_blocks->blocks[0]));
1795 for (j = old_num_blocks; j < new_num_blocks; j++) {
1796 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1799 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1801 if (old_blocks) {
1802 g_free_rcu(old_blocks, rcu);
1807 static void ram_block_add(RAMBlock *new_block, Error **errp)
1809 const bool noreserve = qemu_ram_is_noreserve(new_block);
1810 const bool shared = qemu_ram_is_shared(new_block);
1811 RAMBlock *block;
1812 RAMBlock *last_block = NULL;
1813 ram_addr_t old_ram_size, new_ram_size;
1814 Error *err = NULL;
1816 old_ram_size = last_ram_page();
1818 qemu_mutex_lock_ramlist();
1819 new_block->offset = find_ram_offset(new_block->max_length);
1821 if (!new_block->host) {
1822 if (xen_enabled()) {
1823 xen_ram_alloc(new_block->offset, new_block->max_length,
1824 new_block->mr, &err);
1825 if (err) {
1826 error_propagate(errp, err);
1827 qemu_mutex_unlock_ramlist();
1828 return;
1830 } else {
1831 new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1832 &new_block->mr->align,
1833 shared, noreserve);
1834 if (!new_block->host) {
1835 error_setg_errno(errp, errno,
1836 "cannot set up guest memory '%s'",
1837 memory_region_name(new_block->mr));
1838 qemu_mutex_unlock_ramlist();
1839 return;
1841 memory_try_enable_merging(new_block->host, new_block->max_length);
1845 new_ram_size = MAX(old_ram_size,
1846 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1847 if (new_ram_size > old_ram_size) {
1848 dirty_memory_extend(old_ram_size, new_ram_size);
1850 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1851 * QLIST (which has an RCU-friendly variant) does not have insertion at
1852 * tail, so save the last element in last_block.
1854 RAMBLOCK_FOREACH(block) {
1855 last_block = block;
1856 if (block->max_length < new_block->max_length) {
1857 break;
1860 if (block) {
1861 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1862 } else if (last_block) {
1863 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1864 } else { /* list is empty */
1865 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1867 ram_list.mru_block = NULL;
1869 /* Write list before version */
1870 smp_wmb();
1871 ram_list.version++;
1872 qemu_mutex_unlock_ramlist();
1874 cpu_physical_memory_set_dirty_range(new_block->offset,
1875 new_block->used_length,
1876 DIRTY_CLIENTS_ALL);
1878 if (new_block->host) {
1879 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1880 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1882 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
1883 * Configure it unless the machine is a qtest server, in which case
1884 * KVM is not used and it may be forked (eg for fuzzing purposes).
1886 if (!qtest_enabled()) {
1887 qemu_madvise(new_block->host, new_block->max_length,
1888 QEMU_MADV_DONTFORK);
1890 ram_block_notify_add(new_block->host, new_block->used_length,
1891 new_block->max_length);
1895 #ifdef CONFIG_POSIX
1896 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1897 uint32_t ram_flags, int fd, off_t offset,
1898 Error **errp)
1900 RAMBlock *new_block;
1901 Error *local_err = NULL;
1902 int64_t file_size, file_align;
1904 /* Just support these ram flags by now. */
1905 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
1906 RAM_PROTECTED | RAM_NAMED_FILE | RAM_READONLY |
1907 RAM_READONLY_FD)) == 0);
1909 if (xen_enabled()) {
1910 error_setg(errp, "-mem-path not supported with Xen");
1911 return NULL;
1914 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1915 error_setg(errp,
1916 "host lacks kvm mmu notifiers, -mem-path unsupported");
1917 return NULL;
1920 size = TARGET_PAGE_ALIGN(size);
1921 size = REAL_HOST_PAGE_ALIGN(size);
1923 file_size = get_file_size(fd);
1924 if (file_size > offset && file_size < (offset + size)) {
1925 error_setg(errp, "backing store size 0x%" PRIx64
1926 " does not match 'size' option 0x" RAM_ADDR_FMT,
1927 file_size, size);
1928 return NULL;
1931 file_align = get_file_align(fd);
1932 if (file_align > 0 && file_align > mr->align) {
1933 error_setg(errp, "backing store align 0x%" PRIx64
1934 " is larger than 'align' option 0x%" PRIx64,
1935 file_align, mr->align);
1936 return NULL;
1939 new_block = g_malloc0(sizeof(*new_block));
1940 new_block->mr = mr;
1941 new_block->used_length = size;
1942 new_block->max_length = size;
1943 new_block->flags = ram_flags;
1944 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, offset,
1945 errp);
1946 if (!new_block->host) {
1947 g_free(new_block);
1948 return NULL;
1951 ram_block_add(new_block, &local_err);
1952 if (local_err) {
1953 g_free(new_block);
1954 error_propagate(errp, local_err);
1955 return NULL;
1957 return new_block;
1962 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1963 uint32_t ram_flags, const char *mem_path,
1964 off_t offset, Error **errp)
1966 int fd;
1967 bool created;
1968 RAMBlock *block;
1970 fd = file_ram_open(mem_path, memory_region_name(mr),
1971 !!(ram_flags & RAM_READONLY_FD), &created);
1972 if (fd < 0) {
1973 error_setg_errno(errp, -fd, "can't open backing store %s for guest RAM",
1974 mem_path);
1975 if (!(ram_flags & RAM_READONLY_FD) && !(ram_flags & RAM_SHARED) &&
1976 fd == -EACCES) {
1978 * If we can open the file R/O (note: will never create a new file)
1979 * and we are dealing with a private mapping, there are still ways
1980 * to consume such files and get RAM instead of ROM.
1982 fd = file_ram_open(mem_path, memory_region_name(mr), true,
1983 &created);
1984 if (fd < 0) {
1985 return NULL;
1987 assert(!created);
1988 close(fd);
1989 error_append_hint(errp, "Consider opening the backing store"
1990 " read-only but still creating writable RAM using"
1991 " '-object memory-backend-file,readonly=on,rom=off...'"
1992 " (see \"VM templating\" documentation)\n");
1994 return NULL;
1997 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset, errp);
1998 if (!block) {
1999 if (created) {
2000 unlink(mem_path);
2002 close(fd);
2003 return NULL;
2006 return block;
2008 #endif
2010 static
2011 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2012 void (*resized)(const char*,
2013 uint64_t length,
2014 void *host),
2015 void *host, uint32_t ram_flags,
2016 MemoryRegion *mr, Error **errp)
2018 RAMBlock *new_block;
2019 Error *local_err = NULL;
2020 int align;
2022 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
2023 RAM_NORESERVE)) == 0);
2024 assert(!host ^ (ram_flags & RAM_PREALLOC));
2026 align = qemu_real_host_page_size();
2027 align = MAX(align, TARGET_PAGE_SIZE);
2028 size = ROUND_UP(size, align);
2029 max_size = ROUND_UP(max_size, align);
2031 new_block = g_malloc0(sizeof(*new_block));
2032 new_block->mr = mr;
2033 new_block->resized = resized;
2034 new_block->used_length = size;
2035 new_block->max_length = max_size;
2036 assert(max_size >= size);
2037 new_block->fd = -1;
2038 new_block->page_size = qemu_real_host_page_size();
2039 new_block->host = host;
2040 new_block->flags = ram_flags;
2041 ram_block_add(new_block, &local_err);
2042 if (local_err) {
2043 g_free(new_block);
2044 error_propagate(errp, local_err);
2045 return NULL;
2047 return new_block;
2050 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2051 MemoryRegion *mr, Error **errp)
2053 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
2054 errp);
2057 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
2058 MemoryRegion *mr, Error **errp)
2060 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0);
2061 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
2064 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2065 void (*resized)(const char*,
2066 uint64_t length,
2067 void *host),
2068 MemoryRegion *mr, Error **errp)
2070 return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2071 RAM_RESIZEABLE, mr, errp);
2074 static void reclaim_ramblock(RAMBlock *block)
2076 if (block->flags & RAM_PREALLOC) {
2078 } else if (xen_enabled()) {
2079 xen_invalidate_map_cache_entry(block->host);
2080 #ifndef _WIN32
2081 } else if (block->fd >= 0) {
2082 qemu_ram_munmap(block->fd, block->host, block->max_length);
2083 close(block->fd);
2084 #endif
2085 } else {
2086 qemu_anon_ram_free(block->host, block->max_length);
2088 g_free(block);
2091 void qemu_ram_free(RAMBlock *block)
2093 if (!block) {
2094 return;
2097 if (block->host) {
2098 ram_block_notify_remove(block->host, block->used_length,
2099 block->max_length);
2102 qemu_mutex_lock_ramlist();
2103 QLIST_REMOVE_RCU(block, next);
2104 ram_list.mru_block = NULL;
2105 /* Write list before version */
2106 smp_wmb();
2107 ram_list.version++;
2108 call_rcu(block, reclaim_ramblock, rcu);
2109 qemu_mutex_unlock_ramlist();
2112 #ifndef _WIN32
2113 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2115 RAMBlock *block;
2116 ram_addr_t offset;
2117 int flags;
2118 void *area, *vaddr;
2119 int prot;
2121 RAMBLOCK_FOREACH(block) {
2122 offset = addr - block->offset;
2123 if (offset < block->max_length) {
2124 vaddr = ramblock_ptr(block, offset);
2125 if (block->flags & RAM_PREALLOC) {
2127 } else if (xen_enabled()) {
2128 abort();
2129 } else {
2130 flags = MAP_FIXED;
2131 flags |= block->flags & RAM_SHARED ?
2132 MAP_SHARED : MAP_PRIVATE;
2133 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
2134 prot = PROT_READ;
2135 prot |= block->flags & RAM_READONLY ? 0 : PROT_WRITE;
2136 if (block->fd >= 0) {
2137 area = mmap(vaddr, length, prot, flags, block->fd,
2138 offset + block->fd_offset);
2139 } else {
2140 flags |= MAP_ANONYMOUS;
2141 area = mmap(vaddr, length, prot, flags, -1, 0);
2143 if (area != vaddr) {
2144 error_report("Could not remap addr: "
2145 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2146 length, addr);
2147 exit(1);
2149 memory_try_enable_merging(vaddr, length);
2150 qemu_ram_setup_dump(vaddr, length);
2155 #endif /* !_WIN32 */
2157 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2158 * This should not be used for general purpose DMA. Use address_space_map
2159 * or address_space_rw instead. For local memory (e.g. video ram) that the
2160 * device owns, use memory_region_get_ram_ptr.
2162 * Called within RCU critical section.
2164 void *qemu_map_ram_ptr(RAMBlock *block, ram_addr_t addr)
2166 if (block == NULL) {
2167 block = qemu_get_ram_block(addr);
2168 addr -= block->offset;
2171 if (xen_enabled() && block->host == NULL) {
2172 /* We need to check if the requested address is in the RAM
2173 * because we don't want to map the entire memory in QEMU.
2174 * In that case just map until the end of the page.
2176 if (block->offset == 0) {
2177 return xen_map_cache(addr, 0, 0, false);
2180 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2182 return ramblock_ptr(block, addr);
2185 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2186 * but takes a size argument.
2188 * Called within RCU critical section.
2190 static void *qemu_ram_ptr_length(RAMBlock *block, ram_addr_t addr,
2191 hwaddr *size, bool lock)
2193 if (*size == 0) {
2194 return NULL;
2197 if (block == NULL) {
2198 block = qemu_get_ram_block(addr);
2199 addr -= block->offset;
2201 *size = MIN(*size, block->max_length - addr);
2203 if (xen_enabled() && block->host == NULL) {
2204 /* We need to check if the requested address is in the RAM
2205 * because we don't want to map the entire memory in QEMU.
2206 * In that case just map the requested area.
2208 if (block->offset == 0) {
2209 return xen_map_cache(addr, *size, lock, lock);
2212 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2215 return ramblock_ptr(block, addr);
2218 /* Return the offset of a hostpointer within a ramblock */
2219 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2221 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2222 assert((uintptr_t)host >= (uintptr_t)rb->host);
2223 assert(res < rb->max_length);
2225 return res;
2228 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2229 ram_addr_t *offset)
2231 RAMBlock *block;
2232 uint8_t *host = ptr;
2234 if (xen_enabled()) {
2235 ram_addr_t ram_addr;
2236 RCU_READ_LOCK_GUARD();
2237 ram_addr = xen_ram_addr_from_mapcache(ptr);
2238 block = qemu_get_ram_block(ram_addr);
2239 if (block) {
2240 *offset = ram_addr - block->offset;
2242 return block;
2245 RCU_READ_LOCK_GUARD();
2246 block = qatomic_rcu_read(&ram_list.mru_block);
2247 if (block && block->host && host - block->host < block->max_length) {
2248 goto found;
2251 RAMBLOCK_FOREACH(block) {
2252 /* This case append when the block is not mapped. */
2253 if (block->host == NULL) {
2254 continue;
2256 if (host - block->host < block->max_length) {
2257 goto found;
2261 return NULL;
2263 found:
2264 *offset = (host - block->host);
2265 if (round_offset) {
2266 *offset &= TARGET_PAGE_MASK;
2268 return block;
2272 * Finds the named RAMBlock
2274 * name: The name of RAMBlock to find
2276 * Returns: RAMBlock (or NULL if not found)
2278 RAMBlock *qemu_ram_block_by_name(const char *name)
2280 RAMBlock *block;
2282 RAMBLOCK_FOREACH(block) {
2283 if (!strcmp(name, block->idstr)) {
2284 return block;
2288 return NULL;
2292 * Some of the system routines need to translate from a host pointer
2293 * (typically a TLB entry) back to a ram offset.
2295 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2297 RAMBlock *block;
2298 ram_addr_t offset;
2300 block = qemu_ram_block_from_host(ptr, false, &offset);
2301 if (!block) {
2302 return RAM_ADDR_INVALID;
2305 return block->offset + offset;
2308 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2310 ram_addr_t ram_addr;
2312 ram_addr = qemu_ram_addr_from_host(ptr);
2313 if (ram_addr == RAM_ADDR_INVALID) {
2314 error_report("Bad ram pointer %p", ptr);
2315 abort();
2317 return ram_addr;
2320 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2321 MemTxAttrs attrs, void *buf, hwaddr len);
2322 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2323 const void *buf, hwaddr len);
2324 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2325 bool is_write, MemTxAttrs attrs);
2327 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2328 unsigned len, MemTxAttrs attrs)
2330 subpage_t *subpage = opaque;
2331 uint8_t buf[8];
2332 MemTxResult res;
2334 #if defined(DEBUG_SUBPAGE)
2335 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__,
2336 subpage, len, addr);
2337 #endif
2338 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2339 if (res) {
2340 return res;
2342 *data = ldn_p(buf, len);
2343 return MEMTX_OK;
2346 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2347 uint64_t value, unsigned len, MemTxAttrs attrs)
2349 subpage_t *subpage = opaque;
2350 uint8_t buf[8];
2352 #if defined(DEBUG_SUBPAGE)
2353 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx
2354 " value %"PRIx64"\n",
2355 __func__, subpage, len, addr, value);
2356 #endif
2357 stn_p(buf, len, value);
2358 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2361 static bool subpage_accepts(void *opaque, hwaddr addr,
2362 unsigned len, bool is_write,
2363 MemTxAttrs attrs)
2365 subpage_t *subpage = opaque;
2366 #if defined(DEBUG_SUBPAGE)
2367 printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n",
2368 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2369 #endif
2371 return flatview_access_valid(subpage->fv, addr + subpage->base,
2372 len, is_write, attrs);
2375 static const MemoryRegionOps subpage_ops = {
2376 .read_with_attrs = subpage_read,
2377 .write_with_attrs = subpage_write,
2378 .impl.min_access_size = 1,
2379 .impl.max_access_size = 8,
2380 .valid.min_access_size = 1,
2381 .valid.max_access_size = 8,
2382 .valid.accepts = subpage_accepts,
2383 .endianness = DEVICE_NATIVE_ENDIAN,
2386 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2387 uint16_t section)
2389 int idx, eidx;
2391 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2392 return -1;
2393 idx = SUBPAGE_IDX(start);
2394 eidx = SUBPAGE_IDX(end);
2395 #if defined(DEBUG_SUBPAGE)
2396 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2397 __func__, mmio, start, end, idx, eidx, section);
2398 #endif
2399 for (; idx <= eidx; idx++) {
2400 mmio->sub_section[idx] = section;
2403 return 0;
2406 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2408 subpage_t *mmio;
2410 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2411 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2412 mmio->fv = fv;
2413 mmio->base = base;
2414 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2415 NULL, TARGET_PAGE_SIZE);
2416 mmio->iomem.subpage = true;
2417 #if defined(DEBUG_SUBPAGE)
2418 printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__,
2419 mmio, base, TARGET_PAGE_SIZE);
2420 #endif
2422 return mmio;
2425 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2427 assert(fv);
2428 MemoryRegionSection section = {
2429 .fv = fv,
2430 .mr = mr,
2431 .offset_within_address_space = 0,
2432 .offset_within_region = 0,
2433 .size = int128_2_64(),
2436 return phys_section_add(map, &section);
2439 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2440 hwaddr index, MemTxAttrs attrs)
2442 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2443 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2444 AddressSpaceDispatch *d = cpuas->memory_dispatch;
2445 int section_index = index & ~TARGET_PAGE_MASK;
2446 MemoryRegionSection *ret;
2448 assert(section_index < d->map.sections_nb);
2449 ret = d->map.sections + section_index;
2450 assert(ret->mr);
2451 assert(ret->mr->ops);
2453 return ret;
2456 static void io_mem_init(void)
2458 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2459 NULL, UINT64_MAX);
2462 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2464 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2465 uint16_t n;
2467 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2468 assert(n == PHYS_SECTION_UNASSIGNED);
2470 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2472 return d;
2475 void address_space_dispatch_free(AddressSpaceDispatch *d)
2477 phys_sections_free(&d->map);
2478 g_free(d);
2481 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2485 static void tcg_log_global_after_sync(MemoryListener *listener)
2487 CPUAddressSpace *cpuas;
2489 /* Wait for the CPU to end the current TB. This avoids the following
2490 * incorrect race:
2492 * vCPU migration
2493 * ---------------------- -------------------------
2494 * TLB check -> slow path
2495 * notdirty_mem_write
2496 * write to RAM
2497 * mark dirty
2498 * clear dirty flag
2499 * TLB check -> fast path
2500 * read memory
2501 * write to RAM
2503 * by pushing the migration thread's memory read after the vCPU thread has
2504 * written the memory.
2506 if (replay_mode == REPLAY_MODE_NONE) {
2508 * VGA can make calls to this function while updating the screen.
2509 * In record/replay mode this causes a deadlock, because
2510 * run_on_cpu waits for rr mutex. Therefore no races are possible
2511 * in this case and no need for making run_on_cpu when
2512 * record/replay is enabled.
2514 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2515 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2519 static void tcg_commit_cpu(CPUState *cpu, run_on_cpu_data data)
2521 CPUAddressSpace *cpuas = data.host_ptr;
2523 cpuas->memory_dispatch = address_space_to_dispatch(cpuas->as);
2524 tlb_flush(cpu);
2527 static void tcg_commit(MemoryListener *listener)
2529 CPUAddressSpace *cpuas;
2530 CPUState *cpu;
2532 assert(tcg_enabled());
2533 /* since each CPU stores ram addresses in its TLB cache, we must
2534 reset the modified entries */
2535 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2536 cpu = cpuas->cpu;
2539 * Defer changes to as->memory_dispatch until the cpu is quiescent.
2540 * Otherwise we race between (1) other cpu threads and (2) ongoing
2541 * i/o for the current cpu thread, with data cached by mmu_lookup().
2543 * In addition, queueing the work function will kick the cpu back to
2544 * the main loop, which will end the RCU critical section and reclaim
2545 * the memory data structures.
2547 * That said, the listener is also called during realize, before
2548 * all of the tcg machinery for run-on is initialized: thus halt_cond.
2550 if (cpu->halt_cond) {
2551 async_run_on_cpu(cpu, tcg_commit_cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2552 } else {
2553 tcg_commit_cpu(cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2557 static void memory_map_init(void)
2559 system_memory = g_malloc(sizeof(*system_memory));
2561 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2562 address_space_init(&address_space_memory, system_memory, "memory");
2564 system_io = g_malloc(sizeof(*system_io));
2565 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2566 65536);
2567 address_space_init(&address_space_io, system_io, "I/O");
2570 MemoryRegion *get_system_memory(void)
2572 return system_memory;
2575 MemoryRegion *get_system_io(void)
2577 return system_io;
2580 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2581 hwaddr length)
2583 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2584 addr += memory_region_get_ram_addr(mr);
2586 /* No early return if dirty_log_mask is or becomes 0, because
2587 * cpu_physical_memory_set_dirty_range will still call
2588 * xen_modified_memory.
2590 if (dirty_log_mask) {
2591 dirty_log_mask =
2592 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2594 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2595 assert(tcg_enabled());
2596 tb_invalidate_phys_range(addr, addr + length - 1);
2597 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2599 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2602 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2605 * In principle this function would work on other memory region types too,
2606 * but the ROM device use case is the only one where this operation is
2607 * necessary. Other memory regions should use the
2608 * address_space_read/write() APIs.
2610 assert(memory_region_is_romd(mr));
2612 invalidate_and_set_dirty(mr, addr, size);
2615 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2617 unsigned access_size_max = mr->ops->valid.max_access_size;
2619 /* Regions are assumed to support 1-4 byte accesses unless
2620 otherwise specified. */
2621 if (access_size_max == 0) {
2622 access_size_max = 4;
2625 /* Bound the maximum access by the alignment of the address. */
2626 if (!mr->ops->impl.unaligned) {
2627 unsigned align_size_max = addr & -addr;
2628 if (align_size_max != 0 && align_size_max < access_size_max) {
2629 access_size_max = align_size_max;
2633 /* Don't attempt accesses larger than the maximum. */
2634 if (l > access_size_max) {
2635 l = access_size_max;
2637 l = pow2floor(l);
2639 return l;
2642 bool prepare_mmio_access(MemoryRegion *mr)
2644 bool release_lock = false;
2646 if (!bql_locked()) {
2647 bql_lock();
2648 release_lock = true;
2650 if (mr->flush_coalesced_mmio) {
2651 qemu_flush_coalesced_mmio_buffer();
2654 return release_lock;
2658 * flatview_access_allowed
2659 * @mr: #MemoryRegion to be accessed
2660 * @attrs: memory transaction attributes
2661 * @addr: address within that memory region
2662 * @len: the number of bytes to access
2664 * Check if a memory transaction is allowed.
2666 * Returns: true if transaction is allowed, false if denied.
2668 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs,
2669 hwaddr addr, hwaddr len)
2671 if (likely(!attrs.memory)) {
2672 return true;
2674 if (memory_region_is_ram(mr)) {
2675 return true;
2677 qemu_log_mask(LOG_GUEST_ERROR,
2678 "Invalid access to non-RAM device at "
2679 "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", "
2680 "region '%s'\n", addr, len, memory_region_name(mr));
2681 return false;
2684 /* Called within RCU critical section. */
2685 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2686 MemTxAttrs attrs,
2687 const void *ptr,
2688 hwaddr len, hwaddr addr1,
2689 hwaddr l, MemoryRegion *mr)
2691 uint8_t *ram_ptr;
2692 uint64_t val;
2693 MemTxResult result = MEMTX_OK;
2694 bool release_lock = false;
2695 const uint8_t *buf = ptr;
2697 for (;;) {
2698 if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2699 result |= MEMTX_ACCESS_ERROR;
2700 /* Keep going. */
2701 } else if (!memory_access_is_direct(mr, true)) {
2702 release_lock |= prepare_mmio_access(mr);
2703 l = memory_access_size(mr, l, addr1);
2704 /* XXX: could force current_cpu to NULL to avoid
2705 potential bugs */
2708 * Assure Coverity (and ourselves) that we are not going to OVERRUN
2709 * the buffer by following ldn_he_p().
2711 #ifdef QEMU_STATIC_ANALYSIS
2712 assert((l == 1 && len >= 1) ||
2713 (l == 2 && len >= 2) ||
2714 (l == 4 && len >= 4) ||
2715 (l == 8 && len >= 8));
2716 #endif
2717 val = ldn_he_p(buf, l);
2718 result |= memory_region_dispatch_write(mr, addr1, val,
2719 size_memop(l), attrs);
2720 } else {
2721 /* RAM case */
2722 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2723 memmove(ram_ptr, buf, l);
2724 invalidate_and_set_dirty(mr, addr1, l);
2727 if (release_lock) {
2728 bql_unlock();
2729 release_lock = false;
2732 len -= l;
2733 buf += l;
2734 addr += l;
2736 if (!len) {
2737 break;
2740 l = len;
2741 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2744 return result;
2747 /* Called from RCU critical section. */
2748 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2749 const void *buf, hwaddr len)
2751 hwaddr l;
2752 hwaddr addr1;
2753 MemoryRegion *mr;
2755 l = len;
2756 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2757 if (!flatview_access_allowed(mr, attrs, addr, len)) {
2758 return MEMTX_ACCESS_ERROR;
2760 return flatview_write_continue(fv, addr, attrs, buf, len,
2761 addr1, l, mr);
2764 /* Called within RCU critical section. */
2765 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2766 MemTxAttrs attrs, void *ptr,
2767 hwaddr len, hwaddr addr1, hwaddr l,
2768 MemoryRegion *mr)
2770 uint8_t *ram_ptr;
2771 uint64_t val;
2772 MemTxResult result = MEMTX_OK;
2773 bool release_lock = false;
2774 uint8_t *buf = ptr;
2776 fuzz_dma_read_cb(addr, len, mr);
2777 for (;;) {
2778 if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2779 result |= MEMTX_ACCESS_ERROR;
2780 /* Keep going. */
2781 } else if (!memory_access_is_direct(mr, false)) {
2782 /* I/O case */
2783 release_lock |= prepare_mmio_access(mr);
2784 l = memory_access_size(mr, l, addr1);
2785 result |= memory_region_dispatch_read(mr, addr1, &val,
2786 size_memop(l), attrs);
2789 * Assure Coverity (and ourselves) that we are not going to OVERRUN
2790 * the buffer by following stn_he_p().
2792 #ifdef QEMU_STATIC_ANALYSIS
2793 assert((l == 1 && len >= 1) ||
2794 (l == 2 && len >= 2) ||
2795 (l == 4 && len >= 4) ||
2796 (l == 8 && len >= 8));
2797 #endif
2798 stn_he_p(buf, l, val);
2799 } else {
2800 /* RAM case */
2801 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2802 memcpy(buf, ram_ptr, l);
2805 if (release_lock) {
2806 bql_unlock();
2807 release_lock = false;
2810 len -= l;
2811 buf += l;
2812 addr += l;
2814 if (!len) {
2815 break;
2818 l = len;
2819 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2822 return result;
2825 /* Called from RCU critical section. */
2826 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2827 MemTxAttrs attrs, void *buf, hwaddr len)
2829 hwaddr l;
2830 hwaddr addr1;
2831 MemoryRegion *mr;
2833 l = len;
2834 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2835 if (!flatview_access_allowed(mr, attrs, addr, len)) {
2836 return MEMTX_ACCESS_ERROR;
2838 return flatview_read_continue(fv, addr, attrs, buf, len,
2839 addr1, l, mr);
2842 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2843 MemTxAttrs attrs, void *buf, hwaddr len)
2845 MemTxResult result = MEMTX_OK;
2846 FlatView *fv;
2848 if (len > 0) {
2849 RCU_READ_LOCK_GUARD();
2850 fv = address_space_to_flatview(as);
2851 result = flatview_read(fv, addr, attrs, buf, len);
2854 return result;
2857 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2858 MemTxAttrs attrs,
2859 const void *buf, hwaddr len)
2861 MemTxResult result = MEMTX_OK;
2862 FlatView *fv;
2864 if (len > 0) {
2865 RCU_READ_LOCK_GUARD();
2866 fv = address_space_to_flatview(as);
2867 result = flatview_write(fv, addr, attrs, buf, len);
2870 return result;
2873 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2874 void *buf, hwaddr len, bool is_write)
2876 if (is_write) {
2877 return address_space_write(as, addr, attrs, buf, len);
2878 } else {
2879 return address_space_read_full(as, addr, attrs, buf, len);
2883 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2884 uint8_t c, hwaddr len, MemTxAttrs attrs)
2886 #define FILLBUF_SIZE 512
2887 uint8_t fillbuf[FILLBUF_SIZE];
2888 int l;
2889 MemTxResult error = MEMTX_OK;
2891 memset(fillbuf, c, FILLBUF_SIZE);
2892 while (len > 0) {
2893 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
2894 error |= address_space_write(as, addr, attrs, fillbuf, l);
2895 len -= l;
2896 addr += l;
2899 return error;
2902 void cpu_physical_memory_rw(hwaddr addr, void *buf,
2903 hwaddr len, bool is_write)
2905 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2906 buf, len, is_write);
2909 enum write_rom_type {
2910 WRITE_DATA,
2911 FLUSH_CACHE,
2914 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
2915 hwaddr addr,
2916 MemTxAttrs attrs,
2917 const void *ptr,
2918 hwaddr len,
2919 enum write_rom_type type)
2921 hwaddr l;
2922 uint8_t *ram_ptr;
2923 hwaddr addr1;
2924 MemoryRegion *mr;
2925 const uint8_t *buf = ptr;
2927 RCU_READ_LOCK_GUARD();
2928 while (len > 0) {
2929 l = len;
2930 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
2932 if (!(memory_region_is_ram(mr) ||
2933 memory_region_is_romd(mr))) {
2934 l = memory_access_size(mr, l, addr1);
2935 } else {
2936 /* ROM/RAM case */
2937 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2938 switch (type) {
2939 case WRITE_DATA:
2940 memcpy(ram_ptr, buf, l);
2941 invalidate_and_set_dirty(mr, addr1, l);
2942 break;
2943 case FLUSH_CACHE:
2944 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
2945 break;
2948 len -= l;
2949 buf += l;
2950 addr += l;
2952 return MEMTX_OK;
2955 /* used for ROM loading : can write in RAM and ROM */
2956 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2957 MemTxAttrs attrs,
2958 const void *buf, hwaddr len)
2960 return address_space_write_rom_internal(as, addr, attrs,
2961 buf, len, WRITE_DATA);
2964 void cpu_flush_icache_range(hwaddr start, hwaddr len)
2967 * This function should do the same thing as an icache flush that was
2968 * triggered from within the guest. For TCG we are always cache coherent,
2969 * so there is no need to flush anything. For KVM / Xen we need to flush
2970 * the host's instruction cache at least.
2972 if (tcg_enabled()) {
2973 return;
2976 address_space_write_rom_internal(&address_space_memory,
2977 start, MEMTXATTRS_UNSPECIFIED,
2978 NULL, len, FLUSH_CACHE);
2981 typedef struct {
2982 MemoryRegion *mr;
2983 void *buffer;
2984 hwaddr addr;
2985 hwaddr len;
2986 bool in_use;
2987 } BounceBuffer;
2989 static BounceBuffer bounce;
2991 typedef struct MapClient {
2992 QEMUBH *bh;
2993 QLIST_ENTRY(MapClient) link;
2994 } MapClient;
2996 QemuMutex map_client_list_lock;
2997 static QLIST_HEAD(, MapClient) map_client_list
2998 = QLIST_HEAD_INITIALIZER(map_client_list);
3000 static void cpu_unregister_map_client_do(MapClient *client)
3002 QLIST_REMOVE(client, link);
3003 g_free(client);
3006 static void cpu_notify_map_clients_locked(void)
3008 MapClient *client;
3010 while (!QLIST_EMPTY(&map_client_list)) {
3011 client = QLIST_FIRST(&map_client_list);
3012 qemu_bh_schedule(client->bh);
3013 cpu_unregister_map_client_do(client);
3017 void cpu_register_map_client(QEMUBH *bh)
3019 MapClient *client = g_malloc(sizeof(*client));
3021 qemu_mutex_lock(&map_client_list_lock);
3022 client->bh = bh;
3023 QLIST_INSERT_HEAD(&map_client_list, client, link);
3024 /* Write map_client_list before reading in_use. */
3025 smp_mb();
3026 if (!qatomic_read(&bounce.in_use)) {
3027 cpu_notify_map_clients_locked();
3029 qemu_mutex_unlock(&map_client_list_lock);
3032 void cpu_exec_init_all(void)
3034 qemu_mutex_init(&ram_list.mutex);
3035 /* The data structures we set up here depend on knowing the page size,
3036 * so no more changes can be made after this point.
3037 * In an ideal world, nothing we did before we had finished the
3038 * machine setup would care about the target page size, and we could
3039 * do this much later, rather than requiring board models to state
3040 * up front what their requirements are.
3042 finalize_target_page_bits();
3043 io_mem_init();
3044 memory_map_init();
3045 qemu_mutex_init(&map_client_list_lock);
3048 void cpu_unregister_map_client(QEMUBH *bh)
3050 MapClient *client;
3052 qemu_mutex_lock(&map_client_list_lock);
3053 QLIST_FOREACH(client, &map_client_list, link) {
3054 if (client->bh == bh) {
3055 cpu_unregister_map_client_do(client);
3056 break;
3059 qemu_mutex_unlock(&map_client_list_lock);
3062 static void cpu_notify_map_clients(void)
3064 qemu_mutex_lock(&map_client_list_lock);
3065 cpu_notify_map_clients_locked();
3066 qemu_mutex_unlock(&map_client_list_lock);
3069 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3070 bool is_write, MemTxAttrs attrs)
3072 MemoryRegion *mr;
3073 hwaddr l, xlat;
3075 while (len > 0) {
3076 l = len;
3077 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3078 if (!memory_access_is_direct(mr, is_write)) {
3079 l = memory_access_size(mr, l, addr);
3080 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3081 return false;
3085 len -= l;
3086 addr += l;
3088 return true;
3091 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3092 hwaddr len, bool is_write,
3093 MemTxAttrs attrs)
3095 FlatView *fv;
3097 RCU_READ_LOCK_GUARD();
3098 fv = address_space_to_flatview(as);
3099 return flatview_access_valid(fv, addr, len, is_write, attrs);
3102 static hwaddr
3103 flatview_extend_translation(FlatView *fv, hwaddr addr,
3104 hwaddr target_len,
3105 MemoryRegion *mr, hwaddr base, hwaddr len,
3106 bool is_write, MemTxAttrs attrs)
3108 hwaddr done = 0;
3109 hwaddr xlat;
3110 MemoryRegion *this_mr;
3112 for (;;) {
3113 target_len -= len;
3114 addr += len;
3115 done += len;
3116 if (target_len == 0) {
3117 return done;
3120 len = target_len;
3121 this_mr = flatview_translate(fv, addr, &xlat,
3122 &len, is_write, attrs);
3123 if (this_mr != mr || xlat != base + done) {
3124 return done;
3129 /* Map a physical memory region into a host virtual address.
3130 * May map a subset of the requested range, given by and returned in *plen.
3131 * May return NULL if resources needed to perform the mapping are exhausted.
3132 * Use only for reads OR writes - not for read-modify-write operations.
3133 * Use cpu_register_map_client() to know when retrying the map operation is
3134 * likely to succeed.
3136 void *address_space_map(AddressSpace *as,
3137 hwaddr addr,
3138 hwaddr *plen,
3139 bool is_write,
3140 MemTxAttrs attrs)
3142 hwaddr len = *plen;
3143 hwaddr l, xlat;
3144 MemoryRegion *mr;
3145 FlatView *fv;
3147 if (len == 0) {
3148 return NULL;
3151 l = len;
3152 RCU_READ_LOCK_GUARD();
3153 fv = address_space_to_flatview(as);
3154 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3156 if (!memory_access_is_direct(mr, is_write)) {
3157 if (qatomic_xchg(&bounce.in_use, true)) {
3158 *plen = 0;
3159 return NULL;
3161 /* Avoid unbounded allocations */
3162 l = MIN(l, TARGET_PAGE_SIZE);
3163 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3164 bounce.addr = addr;
3165 bounce.len = l;
3167 memory_region_ref(mr);
3168 bounce.mr = mr;
3169 if (!is_write) {
3170 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3171 bounce.buffer, l);
3174 *plen = l;
3175 return bounce.buffer;
3179 memory_region_ref(mr);
3180 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3181 l, is_write, attrs);
3182 fuzz_dma_read_cb(addr, *plen, mr);
3183 return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3186 /* Unmaps a memory region previously mapped by address_space_map().
3187 * Will also mark the memory as dirty if is_write is true. access_len gives
3188 * the amount of memory that was actually read or written by the caller.
3190 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3191 bool is_write, hwaddr access_len)
3193 if (buffer != bounce.buffer) {
3194 MemoryRegion *mr;
3195 ram_addr_t addr1;
3197 mr = memory_region_from_host(buffer, &addr1);
3198 assert(mr != NULL);
3199 if (is_write) {
3200 invalidate_and_set_dirty(mr, addr1, access_len);
3202 if (xen_enabled()) {
3203 xen_invalidate_map_cache_entry(buffer);
3205 memory_region_unref(mr);
3206 return;
3208 if (is_write) {
3209 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3210 bounce.buffer, access_len);
3212 qemu_vfree(bounce.buffer);
3213 bounce.buffer = NULL;
3214 memory_region_unref(bounce.mr);
3215 /* Clear in_use before reading map_client_list. */
3216 qatomic_set_mb(&bounce.in_use, false);
3217 cpu_notify_map_clients();
3220 void *cpu_physical_memory_map(hwaddr addr,
3221 hwaddr *plen,
3222 bool is_write)
3224 return address_space_map(&address_space_memory, addr, plen, is_write,
3225 MEMTXATTRS_UNSPECIFIED);
3228 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3229 bool is_write, hwaddr access_len)
3231 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3234 #define ARG1_DECL AddressSpace *as
3235 #define ARG1 as
3236 #define SUFFIX
3237 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3238 #define RCU_READ_LOCK(...) rcu_read_lock()
3239 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3240 #include "memory_ldst.c.inc"
3242 int64_t address_space_cache_init(MemoryRegionCache *cache,
3243 AddressSpace *as,
3244 hwaddr addr,
3245 hwaddr len,
3246 bool is_write)
3248 AddressSpaceDispatch *d;
3249 hwaddr l;
3250 MemoryRegion *mr;
3251 Int128 diff;
3253 assert(len > 0);
3255 l = len;
3256 cache->fv = address_space_get_flatview(as);
3257 d = flatview_to_dispatch(cache->fv);
3258 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3261 * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3262 * Take that into account to compute how many bytes are there between
3263 * cache->xlat and the end of the section.
3265 diff = int128_sub(cache->mrs.size,
3266 int128_make64(cache->xlat - cache->mrs.offset_within_region));
3267 l = int128_get64(int128_min(diff, int128_make64(l)));
3269 mr = cache->mrs.mr;
3270 memory_region_ref(mr);
3271 if (memory_access_is_direct(mr, is_write)) {
3272 /* We don't care about the memory attributes here as we're only
3273 * doing this if we found actual RAM, which behaves the same
3274 * regardless of attributes; so UNSPECIFIED is fine.
3276 l = flatview_extend_translation(cache->fv, addr, len, mr,
3277 cache->xlat, l, is_write,
3278 MEMTXATTRS_UNSPECIFIED);
3279 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3280 } else {
3281 cache->ptr = NULL;
3284 cache->len = l;
3285 cache->is_write = is_write;
3286 return l;
3289 void address_space_cache_invalidate(MemoryRegionCache *cache,
3290 hwaddr addr,
3291 hwaddr access_len)
3293 assert(cache->is_write);
3294 if (likely(cache->ptr)) {
3295 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3299 void address_space_cache_destroy(MemoryRegionCache *cache)
3301 if (!cache->mrs.mr) {
3302 return;
3305 if (xen_enabled()) {
3306 xen_invalidate_map_cache_entry(cache->ptr);
3308 memory_region_unref(cache->mrs.mr);
3309 flatview_unref(cache->fv);
3310 cache->mrs.mr = NULL;
3311 cache->fv = NULL;
3314 /* Called from RCU critical section. This function has the same
3315 * semantics as address_space_translate, but it only works on a
3316 * predefined range of a MemoryRegion that was mapped with
3317 * address_space_cache_init.
3319 static inline MemoryRegion *address_space_translate_cached(
3320 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3321 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3323 MemoryRegionSection section;
3324 MemoryRegion *mr;
3325 IOMMUMemoryRegion *iommu_mr;
3326 AddressSpace *target_as;
3328 assert(!cache->ptr);
3329 *xlat = addr + cache->xlat;
3331 mr = cache->mrs.mr;
3332 iommu_mr = memory_region_get_iommu(mr);
3333 if (!iommu_mr) {
3334 /* MMIO region. */
3335 return mr;
3338 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3339 NULL, is_write, true,
3340 &target_as, attrs);
3341 return section.mr;
3344 /* Called from RCU critical section. address_space_read_cached uses this
3345 * out of line function when the target is an MMIO or IOMMU region.
3347 MemTxResult
3348 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3349 void *buf, hwaddr len)
3351 hwaddr addr1, l;
3352 MemoryRegion *mr;
3354 l = len;
3355 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3356 MEMTXATTRS_UNSPECIFIED);
3357 return flatview_read_continue(cache->fv,
3358 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3359 addr1, l, mr);
3362 /* Called from RCU critical section. address_space_write_cached uses this
3363 * out of line function when the target is an MMIO or IOMMU region.
3365 MemTxResult
3366 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3367 const void *buf, hwaddr len)
3369 hwaddr addr1, l;
3370 MemoryRegion *mr;
3372 l = len;
3373 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3374 MEMTXATTRS_UNSPECIFIED);
3375 return flatview_write_continue(cache->fv,
3376 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3377 addr1, l, mr);
3380 #define ARG1_DECL MemoryRegionCache *cache
3381 #define ARG1 cache
3382 #define SUFFIX _cached_slow
3383 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3384 #define RCU_READ_LOCK() ((void)0)
3385 #define RCU_READ_UNLOCK() ((void)0)
3386 #include "memory_ldst.c.inc"
3388 /* virtual memory access for debug (includes writing to ROM) */
3389 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
3390 void *ptr, size_t len, bool is_write)
3392 hwaddr phys_addr;
3393 vaddr l, page;
3394 uint8_t *buf = ptr;
3396 cpu_synchronize_state(cpu);
3397 while (len > 0) {
3398 int asidx;
3399 MemTxAttrs attrs;
3400 MemTxResult res;
3402 page = addr & TARGET_PAGE_MASK;
3403 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3404 asidx = cpu_asidx_from_attrs(cpu, attrs);
3405 /* if no physical page mapped, return an error */
3406 if (phys_addr == -1)
3407 return -1;
3408 l = (page + TARGET_PAGE_SIZE) - addr;
3409 if (l > len)
3410 l = len;
3411 phys_addr += (addr & ~TARGET_PAGE_MASK);
3412 if (is_write) {
3413 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3414 attrs, buf, l);
3415 } else {
3416 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3417 attrs, buf, l);
3419 if (res != MEMTX_OK) {
3420 return -1;
3422 len -= l;
3423 buf += l;
3424 addr += l;
3426 return 0;
3430 * Allows code that needs to deal with migration bitmaps etc to still be built
3431 * target independent.
3433 size_t qemu_target_page_size(void)
3435 return TARGET_PAGE_SIZE;
3438 int qemu_target_page_bits(void)
3440 return TARGET_PAGE_BITS;
3443 int qemu_target_page_bits_min(void)
3445 return TARGET_PAGE_BITS_MIN;
3448 /* Convert target pages to MiB (2**20). */
3449 size_t qemu_target_pages_to_MiB(size_t pages)
3451 int page_bits = TARGET_PAGE_BITS;
3453 /* So far, the largest (non-huge) page size is 64k, i.e. 16 bits. */
3454 g_assert(page_bits < 20);
3456 return pages >> (20 - page_bits);
3459 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3461 MemoryRegion*mr;
3462 hwaddr l = 1;
3464 RCU_READ_LOCK_GUARD();
3465 mr = address_space_translate(&address_space_memory,
3466 phys_addr, &phys_addr, &l, false,
3467 MEMTXATTRS_UNSPECIFIED);
3469 return !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3472 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3474 RAMBlock *block;
3475 int ret = 0;
3477 RCU_READ_LOCK_GUARD();
3478 RAMBLOCK_FOREACH(block) {
3479 ret = func(block, opaque);
3480 if (ret) {
3481 break;
3484 return ret;
3488 * Unmap pages of memory from start to start+length such that
3489 * they a) read as 0, b) Trigger whatever fault mechanism
3490 * the OS provides for postcopy.
3491 * The pages must be unmapped by the end of the function.
3492 * Returns: 0 on success, none-0 on failure
3495 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3497 int ret = -1;
3499 uint8_t *host_startaddr = rb->host + start;
3501 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3502 error_report("%s: Unaligned start address: %p",
3503 __func__, host_startaddr);
3504 goto err;
3507 if ((start + length) <= rb->max_length) {
3508 bool need_madvise, need_fallocate;
3509 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3510 error_report("%s: Unaligned length: %zx", __func__, length);
3511 goto err;
3514 errno = ENOTSUP; /* If we are missing MADVISE etc */
3516 /* The logic here is messy;
3517 * madvise DONTNEED fails for hugepages
3518 * fallocate works on hugepages and shmem
3519 * shared anonymous memory requires madvise REMOVE
3521 need_madvise = (rb->page_size == qemu_real_host_page_size());
3522 need_fallocate = rb->fd != -1;
3523 if (need_fallocate) {
3524 /* For a file, this causes the area of the file to be zero'd
3525 * if read, and for hugetlbfs also causes it to be unmapped
3526 * so a userfault will trigger.
3528 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3530 * fallocate() will fail with readonly files. Let's print a
3531 * proper error message.
3533 if (rb->flags & RAM_READONLY_FD) {
3534 error_report("%s: Discarding RAM with readonly files is not"
3535 " supported", __func__);
3536 goto err;
3540 * We'll discard data from the actual file, even though we only
3541 * have a MAP_PRIVATE mapping, possibly messing with other
3542 * MAP_PRIVATE/MAP_SHARED mappings. There is no easy way to
3543 * change that behavior whithout violating the promised
3544 * semantics of ram_block_discard_range().
3546 * Only warn, because it works as long as nobody else uses that
3547 * file.
3549 if (!qemu_ram_is_shared(rb)) {
3550 warn_report_once("%s: Discarding RAM"
3551 " in private file mappings is possibly"
3552 " dangerous, because it will modify the"
3553 " underlying file and will affect other"
3554 " users of the file", __func__);
3557 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3558 start, length);
3559 if (ret) {
3560 ret = -errno;
3561 error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)",
3562 __func__, rb->idstr, start, length, ret);
3563 goto err;
3565 #else
3566 ret = -ENOSYS;
3567 error_report("%s: fallocate not available/file"
3568 "%s:%" PRIx64 " +%zx (%d)",
3569 __func__, rb->idstr, start, length, ret);
3570 goto err;
3571 #endif
3573 if (need_madvise) {
3574 /* For normal RAM this causes it to be unmapped,
3575 * for shared memory it causes the local mapping to disappear
3576 * and to fall back on the file contents (which we just
3577 * fallocate'd away).
3579 #if defined(CONFIG_MADVISE)
3580 if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3581 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3582 } else {
3583 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3585 if (ret) {
3586 ret = -errno;
3587 error_report("%s: Failed to discard range "
3588 "%s:%" PRIx64 " +%zx (%d)",
3589 __func__, rb->idstr, start, length, ret);
3590 goto err;
3592 #else
3593 ret = -ENOSYS;
3594 error_report("%s: MADVISE not available %s:%" PRIx64 " +%zx (%d)",
3595 __func__, rb->idstr, start, length, ret);
3596 goto err;
3597 #endif
3599 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3600 need_madvise, need_fallocate, ret);
3601 } else {
3602 error_report("%s: Overrun block '%s' (%" PRIu64 "/%zx/" RAM_ADDR_FMT")",
3603 __func__, rb->idstr, start, length, rb->max_length);
3606 err:
3607 return ret;
3610 bool ramblock_is_pmem(RAMBlock *rb)
3612 return rb->flags & RAM_PMEM;
3615 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3617 if (start == end - 1) {
3618 qemu_printf("\t%3d ", start);
3619 } else {
3620 qemu_printf("\t%3d..%-3d ", start, end - 1);
3622 qemu_printf(" skip=%d ", skip);
3623 if (ptr == PHYS_MAP_NODE_NIL) {
3624 qemu_printf(" ptr=NIL");
3625 } else if (!skip) {
3626 qemu_printf(" ptr=#%d", ptr);
3627 } else {
3628 qemu_printf(" ptr=[%d]", ptr);
3630 qemu_printf("\n");
3633 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3634 int128_sub((size), int128_one())) : 0)
3636 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3638 int i;
3640 qemu_printf(" Dispatch\n");
3641 qemu_printf(" Physical sections\n");
3643 for (i = 0; i < d->map.sections_nb; ++i) {
3644 MemoryRegionSection *s = d->map.sections + i;
3645 const char *names[] = { " [unassigned]", " [not dirty]",
3646 " [ROM]", " [watch]" };
3648 qemu_printf(" #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx
3649 " %s%s%s%s%s",
3651 s->offset_within_address_space,
3652 s->offset_within_address_space + MR_SIZE(s->size),
3653 s->mr->name ? s->mr->name : "(noname)",
3654 i < ARRAY_SIZE(names) ? names[i] : "",
3655 s->mr == root ? " [ROOT]" : "",
3656 s == d->mru_section ? " [MRU]" : "",
3657 s->mr->is_iommu ? " [iommu]" : "");
3659 if (s->mr->alias) {
3660 qemu_printf(" alias=%s", s->mr->alias->name ?
3661 s->mr->alias->name : "noname");
3663 qemu_printf("\n");
3666 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3667 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3668 for (i = 0; i < d->map.nodes_nb; ++i) {
3669 int j, jprev;
3670 PhysPageEntry prev;
3671 Node *n = d->map.nodes + i;
3673 qemu_printf(" [%d]\n", i);
3675 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3676 PhysPageEntry *pe = *n + j;
3678 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3679 continue;
3682 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3684 jprev = j;
3685 prev = *pe;
3688 if (jprev != ARRAY_SIZE(*n)) {
3689 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3694 /* Require any discards to work. */
3695 static unsigned int ram_block_discard_required_cnt;
3696 /* Require only coordinated discards to work. */
3697 static unsigned int ram_block_coordinated_discard_required_cnt;
3698 /* Disable any discards. */
3699 static unsigned int ram_block_discard_disabled_cnt;
3700 /* Disable only uncoordinated discards. */
3701 static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
3702 static QemuMutex ram_block_discard_disable_mutex;
3704 static void ram_block_discard_disable_mutex_lock(void)
3706 static gsize initialized;
3708 if (g_once_init_enter(&initialized)) {
3709 qemu_mutex_init(&ram_block_discard_disable_mutex);
3710 g_once_init_leave(&initialized, 1);
3712 qemu_mutex_lock(&ram_block_discard_disable_mutex);
3715 static void ram_block_discard_disable_mutex_unlock(void)
3717 qemu_mutex_unlock(&ram_block_discard_disable_mutex);
3720 int ram_block_discard_disable(bool state)
3722 int ret = 0;
3724 ram_block_discard_disable_mutex_lock();
3725 if (!state) {
3726 ram_block_discard_disabled_cnt--;
3727 } else if (ram_block_discard_required_cnt ||
3728 ram_block_coordinated_discard_required_cnt) {
3729 ret = -EBUSY;
3730 } else {
3731 ram_block_discard_disabled_cnt++;
3733 ram_block_discard_disable_mutex_unlock();
3734 return ret;
3737 int ram_block_uncoordinated_discard_disable(bool state)
3739 int ret = 0;
3741 ram_block_discard_disable_mutex_lock();
3742 if (!state) {
3743 ram_block_uncoordinated_discard_disabled_cnt--;
3744 } else if (ram_block_discard_required_cnt) {
3745 ret = -EBUSY;
3746 } else {
3747 ram_block_uncoordinated_discard_disabled_cnt++;
3749 ram_block_discard_disable_mutex_unlock();
3750 return ret;
3753 int ram_block_discard_require(bool state)
3755 int ret = 0;
3757 ram_block_discard_disable_mutex_lock();
3758 if (!state) {
3759 ram_block_discard_required_cnt--;
3760 } else if (ram_block_discard_disabled_cnt ||
3761 ram_block_uncoordinated_discard_disabled_cnt) {
3762 ret = -EBUSY;
3763 } else {
3764 ram_block_discard_required_cnt++;
3766 ram_block_discard_disable_mutex_unlock();
3767 return ret;
3770 int ram_block_coordinated_discard_require(bool state)
3772 int ret = 0;
3774 ram_block_discard_disable_mutex_lock();
3775 if (!state) {
3776 ram_block_coordinated_discard_required_cnt--;
3777 } else if (ram_block_discard_disabled_cnt) {
3778 ret = -EBUSY;
3779 } else {
3780 ram_block_coordinated_discard_required_cnt++;
3782 ram_block_discard_disable_mutex_unlock();
3783 return ret;
3786 bool ram_block_discard_is_disabled(void)
3788 return qatomic_read(&ram_block_discard_disabled_cnt) ||
3789 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
3792 bool ram_block_discard_is_required(void)
3794 return qatomic_read(&ram_block_discard_required_cnt) ||
3795 qatomic_read(&ram_block_coordinated_discard_required_cnt);