linux-user: Emulate the Anonymous: keyword in /proc/self/smaps
[qemu/armbru.git] / linux-user / syscall.c
blob8d96acd08534b101a0fb8e86371a89f8b4d02975
1 /*
2 * Linux syscalls
4 * Copyright (c) 2003 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 #define _ATFILE_SOURCE
20 #include "qemu/osdep.h"
21 #include "qemu/cutils.h"
22 #include "qemu/path.h"
23 #include "qemu/memfd.h"
24 #include "qemu/queue.h"
25 #include "qemu/plugin.h"
26 #include "target_mman.h"
27 #include <elf.h>
28 #include <endian.h>
29 #include <grp.h>
30 #include <sys/ipc.h>
31 #include <sys/msg.h>
32 #include <sys/wait.h>
33 #include <sys/mount.h>
34 #include <sys/file.h>
35 #include <sys/fsuid.h>
36 #include <sys/personality.h>
37 #include <sys/prctl.h>
38 #include <sys/resource.h>
39 #include <sys/swap.h>
40 #include <linux/capability.h>
41 #include <sched.h>
42 #include <sys/timex.h>
43 #include <sys/socket.h>
44 #include <linux/sockios.h>
45 #include <sys/un.h>
46 #include <sys/uio.h>
47 #include <poll.h>
48 #include <sys/times.h>
49 #include <sys/shm.h>
50 #include <sys/sem.h>
51 #include <sys/statfs.h>
52 #include <utime.h>
53 #include <sys/sysinfo.h>
54 #include <sys/signalfd.h>
55 //#include <sys/user.h>
56 #include <netinet/in.h>
57 #include <netinet/ip.h>
58 #include <netinet/tcp.h>
59 #include <netinet/udp.h>
60 #include <linux/wireless.h>
61 #include <linux/icmp.h>
62 #include <linux/icmpv6.h>
63 #include <linux/if_tun.h>
64 #include <linux/in6.h>
65 #include <linux/errqueue.h>
66 #include <linux/random.h>
67 #ifdef CONFIG_TIMERFD
68 #include <sys/timerfd.h>
69 #endif
70 #ifdef CONFIG_EVENTFD
71 #include <sys/eventfd.h>
72 #endif
73 #ifdef CONFIG_EPOLL
74 #include <sys/epoll.h>
75 #endif
76 #ifdef CONFIG_ATTR
77 #include "qemu/xattr.h"
78 #endif
79 #ifdef CONFIG_SENDFILE
80 #include <sys/sendfile.h>
81 #endif
82 #ifdef HAVE_SYS_KCOV_H
83 #include <sys/kcov.h>
84 #endif
86 #define termios host_termios
87 #define winsize host_winsize
88 #define termio host_termio
89 #define sgttyb host_sgttyb /* same as target */
90 #define tchars host_tchars /* same as target */
91 #define ltchars host_ltchars /* same as target */
93 #include <linux/termios.h>
94 #include <linux/unistd.h>
95 #include <linux/cdrom.h>
96 #include <linux/hdreg.h>
97 #include <linux/soundcard.h>
98 #include <linux/kd.h>
99 #include <linux/mtio.h>
100 #include <linux/fs.h>
101 #include <linux/fd.h>
102 #if defined(CONFIG_FIEMAP)
103 #include <linux/fiemap.h>
104 #endif
105 #include <linux/fb.h>
106 #if defined(CONFIG_USBFS)
107 #include <linux/usbdevice_fs.h>
108 #include <linux/usb/ch9.h>
109 #endif
110 #include <linux/vt.h>
111 #include <linux/dm-ioctl.h>
112 #include <linux/reboot.h>
113 #include <linux/route.h>
114 #include <linux/filter.h>
115 #include <linux/blkpg.h>
116 #include <netpacket/packet.h>
117 #include <linux/netlink.h>
118 #include <linux/if_alg.h>
119 #include <linux/rtc.h>
120 #include <sound/asound.h>
121 #ifdef HAVE_BTRFS_H
122 #include <linux/btrfs.h>
123 #endif
124 #ifdef HAVE_DRM_H
125 #include <libdrm/drm.h>
126 #include <libdrm/i915_drm.h>
127 #endif
128 #include "linux_loop.h"
129 #include "uname.h"
131 #include "qemu.h"
132 #include "user-internals.h"
133 #include "strace.h"
134 #include "signal-common.h"
135 #include "loader.h"
136 #include "user-mmap.h"
137 #include "user/safe-syscall.h"
138 #include "qemu/guest-random.h"
139 #include "qemu/selfmap.h"
140 #include "user/syscall-trace.h"
141 #include "special-errno.h"
142 #include "qapi/error.h"
143 #include "fd-trans.h"
144 #include "tcg/tcg.h"
145 #include "cpu_loop-common.h"
147 #ifndef CLONE_IO
148 #define CLONE_IO 0x80000000 /* Clone io context */
149 #endif
151 /* We can't directly call the host clone syscall, because this will
152 * badly confuse libc (breaking mutexes, for example). So we must
153 * divide clone flags into:
154 * * flag combinations that look like pthread_create()
155 * * flag combinations that look like fork()
156 * * flags we can implement within QEMU itself
157 * * flags we can't support and will return an error for
159 /* For thread creation, all these flags must be present; for
160 * fork, none must be present.
162 #define CLONE_THREAD_FLAGS \
163 (CLONE_VM | CLONE_FS | CLONE_FILES | \
164 CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM)
166 /* These flags are ignored:
167 * CLONE_DETACHED is now ignored by the kernel;
168 * CLONE_IO is just an optimisation hint to the I/O scheduler
170 #define CLONE_IGNORED_FLAGS \
171 (CLONE_DETACHED | CLONE_IO)
173 #ifndef CLONE_PIDFD
174 # define CLONE_PIDFD 0x00001000
175 #endif
177 /* Flags for fork which we can implement within QEMU itself */
178 #define CLONE_OPTIONAL_FORK_FLAGS \
179 (CLONE_SETTLS | CLONE_PARENT_SETTID | CLONE_PIDFD | \
180 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID)
182 /* Flags for thread creation which we can implement within QEMU itself */
183 #define CLONE_OPTIONAL_THREAD_FLAGS \
184 (CLONE_SETTLS | CLONE_PARENT_SETTID | \
185 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT)
187 #define CLONE_INVALID_FORK_FLAGS \
188 (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS))
190 #define CLONE_INVALID_THREAD_FLAGS \
191 (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS | \
192 CLONE_IGNORED_FLAGS))
194 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits
195 * have almost all been allocated. We cannot support any of
196 * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC,
197 * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED.
198 * The checks against the invalid thread masks above will catch these.
199 * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.)
202 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted
203 * once. This exercises the codepaths for restart.
205 //#define DEBUG_ERESTARTSYS
207 //#include <linux/msdos_fs.h>
208 #define VFAT_IOCTL_READDIR_BOTH \
209 _IOC(_IOC_READ, 'r', 1, (sizeof(struct linux_dirent) + 256) * 2)
210 #define VFAT_IOCTL_READDIR_SHORT \
211 _IOC(_IOC_READ, 'r', 2, (sizeof(struct linux_dirent) + 256) * 2)
213 #undef _syscall0
214 #undef _syscall1
215 #undef _syscall2
216 #undef _syscall3
217 #undef _syscall4
218 #undef _syscall5
219 #undef _syscall6
221 #define _syscall0(type,name) \
222 static type name (void) \
224 return syscall(__NR_##name); \
227 #define _syscall1(type,name,type1,arg1) \
228 static type name (type1 arg1) \
230 return syscall(__NR_##name, arg1); \
233 #define _syscall2(type,name,type1,arg1,type2,arg2) \
234 static type name (type1 arg1,type2 arg2) \
236 return syscall(__NR_##name, arg1, arg2); \
239 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \
240 static type name (type1 arg1,type2 arg2,type3 arg3) \
242 return syscall(__NR_##name, arg1, arg2, arg3); \
245 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \
246 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \
248 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \
251 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
252 type5,arg5) \
253 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \
255 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
259 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
260 type5,arg5,type6,arg6) \
261 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \
262 type6 arg6) \
264 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
268 #define __NR_sys_uname __NR_uname
269 #define __NR_sys_getcwd1 __NR_getcwd
270 #define __NR_sys_getdents __NR_getdents
271 #define __NR_sys_getdents64 __NR_getdents64
272 #define __NR_sys_getpriority __NR_getpriority
273 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
274 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo
275 #define __NR_sys_syslog __NR_syslog
276 #if defined(__NR_futex)
277 # define __NR_sys_futex __NR_futex
278 #endif
279 #if defined(__NR_futex_time64)
280 # define __NR_sys_futex_time64 __NR_futex_time64
281 #endif
282 #define __NR_sys_statx __NR_statx
284 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__)
285 #define __NR__llseek __NR_lseek
286 #endif
288 /* Newer kernel ports have llseek() instead of _llseek() */
289 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
290 #define TARGET_NR__llseek TARGET_NR_llseek
291 #endif
293 /* some platforms need to mask more bits than just TARGET_O_NONBLOCK */
294 #ifndef TARGET_O_NONBLOCK_MASK
295 #define TARGET_O_NONBLOCK_MASK TARGET_O_NONBLOCK
296 #endif
298 #define __NR_sys_gettid __NR_gettid
299 _syscall0(int, sys_gettid)
301 /* For the 64-bit guest on 32-bit host case we must emulate
302 * getdents using getdents64, because otherwise the host
303 * might hand us back more dirent records than we can fit
304 * into the guest buffer after structure format conversion.
305 * Otherwise we emulate getdents with getdents if the host has it.
307 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS
308 #define EMULATE_GETDENTS_WITH_GETDENTS
309 #endif
311 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS)
312 _syscall3(int, sys_getdents, unsigned int, fd, struct linux_dirent *, dirp, unsigned int, count);
313 #endif
314 #if (defined(TARGET_NR_getdents) && \
315 !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \
316 (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
317 _syscall3(int, sys_getdents64, unsigned int, fd, struct linux_dirent64 *, dirp, unsigned int, count);
318 #endif
319 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
320 _syscall5(int, _llseek, unsigned int, fd, unsigned long, hi, unsigned long, lo,
321 loff_t *, res, unsigned int, wh);
322 #endif
323 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo)
324 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig,
325 siginfo_t *, uinfo)
326 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len)
327 #ifdef __NR_exit_group
328 _syscall1(int,exit_group,int,error_code)
329 #endif
330 #if defined(__NR_close_range) && defined(TARGET_NR_close_range)
331 #define __NR_sys_close_range __NR_close_range
332 _syscall3(int,sys_close_range,int,first,int,last,int,flags)
333 #ifndef CLOSE_RANGE_CLOEXEC
334 #define CLOSE_RANGE_CLOEXEC (1U << 2)
335 #endif
336 #endif
337 #if defined(__NR_futex)
338 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val,
339 const struct timespec *,timeout,int *,uaddr2,int,val3)
340 #endif
341 #if defined(__NR_futex_time64)
342 _syscall6(int,sys_futex_time64,int *,uaddr,int,op,int,val,
343 const struct timespec *,timeout,int *,uaddr2,int,val3)
344 #endif
345 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
346 _syscall2(int, pidfd_open, pid_t, pid, unsigned int, flags);
347 #endif
348 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal)
349 _syscall4(int, pidfd_send_signal, int, pidfd, int, sig, siginfo_t *, info,
350 unsigned int, flags);
351 #endif
352 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd)
353 _syscall3(int, pidfd_getfd, int, pidfd, int, targetfd, unsigned int, flags);
354 #endif
355 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
356 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len,
357 unsigned long *, user_mask_ptr);
358 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
359 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len,
360 unsigned long *, user_mask_ptr);
361 /* sched_attr is not defined in glibc */
362 struct sched_attr {
363 uint32_t size;
364 uint32_t sched_policy;
365 uint64_t sched_flags;
366 int32_t sched_nice;
367 uint32_t sched_priority;
368 uint64_t sched_runtime;
369 uint64_t sched_deadline;
370 uint64_t sched_period;
371 uint32_t sched_util_min;
372 uint32_t sched_util_max;
374 #define __NR_sys_sched_getattr __NR_sched_getattr
375 _syscall4(int, sys_sched_getattr, pid_t, pid, struct sched_attr *, attr,
376 unsigned int, size, unsigned int, flags);
377 #define __NR_sys_sched_setattr __NR_sched_setattr
378 _syscall3(int, sys_sched_setattr, pid_t, pid, struct sched_attr *, attr,
379 unsigned int, flags);
380 #define __NR_sys_sched_getscheduler __NR_sched_getscheduler
381 _syscall1(int, sys_sched_getscheduler, pid_t, pid);
382 #define __NR_sys_sched_setscheduler __NR_sched_setscheduler
383 _syscall3(int, sys_sched_setscheduler, pid_t, pid, int, policy,
384 const struct sched_param *, param);
385 #define __NR_sys_sched_getparam __NR_sched_getparam
386 _syscall2(int, sys_sched_getparam, pid_t, pid,
387 struct sched_param *, param);
388 #define __NR_sys_sched_setparam __NR_sched_setparam
389 _syscall2(int, sys_sched_setparam, pid_t, pid,
390 const struct sched_param *, param);
391 #define __NR_sys_getcpu __NR_getcpu
392 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache);
393 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd,
394 void *, arg);
395 _syscall2(int, capget, struct __user_cap_header_struct *, header,
396 struct __user_cap_data_struct *, data);
397 _syscall2(int, capset, struct __user_cap_header_struct *, header,
398 struct __user_cap_data_struct *, data);
399 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
400 _syscall2(int, ioprio_get, int, which, int, who)
401 #endif
402 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
403 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio)
404 #endif
405 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
406 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags)
407 #endif
409 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
410 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type,
411 unsigned long, idx1, unsigned long, idx2)
412 #endif
415 * It is assumed that struct statx is architecture independent.
417 #if defined(TARGET_NR_statx) && defined(__NR_statx)
418 _syscall5(int, sys_statx, int, dirfd, const char *, pathname, int, flags,
419 unsigned int, mask, struct target_statx *, statxbuf)
420 #endif
421 #if defined(TARGET_NR_membarrier) && defined(__NR_membarrier)
422 _syscall2(int, membarrier, int, cmd, int, flags)
423 #endif
425 static const bitmask_transtbl fcntl_flags_tbl[] = {
426 { TARGET_O_ACCMODE, TARGET_O_WRONLY, O_ACCMODE, O_WRONLY, },
427 { TARGET_O_ACCMODE, TARGET_O_RDWR, O_ACCMODE, O_RDWR, },
428 { TARGET_O_CREAT, TARGET_O_CREAT, O_CREAT, O_CREAT, },
429 { TARGET_O_EXCL, TARGET_O_EXCL, O_EXCL, O_EXCL, },
430 { TARGET_O_NOCTTY, TARGET_O_NOCTTY, O_NOCTTY, O_NOCTTY, },
431 { TARGET_O_TRUNC, TARGET_O_TRUNC, O_TRUNC, O_TRUNC, },
432 { TARGET_O_APPEND, TARGET_O_APPEND, O_APPEND, O_APPEND, },
433 { TARGET_O_NONBLOCK, TARGET_O_NONBLOCK, O_NONBLOCK, O_NONBLOCK, },
434 { TARGET_O_SYNC, TARGET_O_DSYNC, O_SYNC, O_DSYNC, },
435 { TARGET_O_SYNC, TARGET_O_SYNC, O_SYNC, O_SYNC, },
436 { TARGET_FASYNC, TARGET_FASYNC, FASYNC, FASYNC, },
437 { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, },
438 { TARGET_O_NOFOLLOW, TARGET_O_NOFOLLOW, O_NOFOLLOW, O_NOFOLLOW, },
439 #if defined(O_DIRECT)
440 { TARGET_O_DIRECT, TARGET_O_DIRECT, O_DIRECT, O_DIRECT, },
441 #endif
442 #if defined(O_NOATIME)
443 { TARGET_O_NOATIME, TARGET_O_NOATIME, O_NOATIME, O_NOATIME },
444 #endif
445 #if defined(O_CLOEXEC)
446 { TARGET_O_CLOEXEC, TARGET_O_CLOEXEC, O_CLOEXEC, O_CLOEXEC },
447 #endif
448 #if defined(O_PATH)
449 { TARGET_O_PATH, TARGET_O_PATH, O_PATH, O_PATH },
450 #endif
451 #if defined(O_TMPFILE)
452 { TARGET_O_TMPFILE, TARGET_O_TMPFILE, O_TMPFILE, O_TMPFILE },
453 #endif
454 /* Don't terminate the list prematurely on 64-bit host+guest. */
455 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
456 { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, },
457 #endif
460 _syscall2(int, sys_getcwd1, char *, buf, size_t, size)
462 #if defined(TARGET_NR_utimensat) || defined(TARGET_NR_utimensat_time64)
463 #if defined(__NR_utimensat)
464 #define __NR_sys_utimensat __NR_utimensat
465 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname,
466 const struct timespec *,tsp,int,flags)
467 #else
468 static int sys_utimensat(int dirfd, const char *pathname,
469 const struct timespec times[2], int flags)
471 errno = ENOSYS;
472 return -1;
474 #endif
475 #endif /* TARGET_NR_utimensat */
477 #ifdef TARGET_NR_renameat2
478 #if defined(__NR_renameat2)
479 #define __NR_sys_renameat2 __NR_renameat2
480 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd,
481 const char *, new, unsigned int, flags)
482 #else
483 static int sys_renameat2(int oldfd, const char *old,
484 int newfd, const char *new, int flags)
486 if (flags == 0) {
487 return renameat(oldfd, old, newfd, new);
489 errno = ENOSYS;
490 return -1;
492 #endif
493 #endif /* TARGET_NR_renameat2 */
495 #ifdef CONFIG_INOTIFY
496 #include <sys/inotify.h>
497 #else
498 /* Userspace can usually survive runtime without inotify */
499 #undef TARGET_NR_inotify_init
500 #undef TARGET_NR_inotify_init1
501 #undef TARGET_NR_inotify_add_watch
502 #undef TARGET_NR_inotify_rm_watch
503 #endif /* CONFIG_INOTIFY */
505 #if defined(TARGET_NR_prlimit64)
506 #ifndef __NR_prlimit64
507 # define __NR_prlimit64 -1
508 #endif
509 #define __NR_sys_prlimit64 __NR_prlimit64
510 /* The glibc rlimit structure may not be that used by the underlying syscall */
511 struct host_rlimit64 {
512 uint64_t rlim_cur;
513 uint64_t rlim_max;
515 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource,
516 const struct host_rlimit64 *, new_limit,
517 struct host_rlimit64 *, old_limit)
518 #endif
521 #if defined(TARGET_NR_timer_create)
522 /* Maximum of 32 active POSIX timers allowed at any one time. */
523 #define GUEST_TIMER_MAX 32
524 static timer_t g_posix_timers[GUEST_TIMER_MAX];
525 static int g_posix_timer_allocated[GUEST_TIMER_MAX];
527 static inline int next_free_host_timer(void)
529 int k;
530 for (k = 0; k < ARRAY_SIZE(g_posix_timer_allocated); k++) {
531 if (qatomic_xchg(g_posix_timer_allocated + k, 1) == 0) {
532 return k;
535 return -1;
538 static inline void free_host_timer_slot(int id)
540 qatomic_store_release(g_posix_timer_allocated + id, 0);
542 #endif
544 static inline int host_to_target_errno(int host_errno)
546 switch (host_errno) {
547 #define E(X) case X: return TARGET_##X;
548 #include "errnos.c.inc"
549 #undef E
550 default:
551 return host_errno;
555 static inline int target_to_host_errno(int target_errno)
557 switch (target_errno) {
558 #define E(X) case TARGET_##X: return X;
559 #include "errnos.c.inc"
560 #undef E
561 default:
562 return target_errno;
566 abi_long get_errno(abi_long ret)
568 if (ret == -1)
569 return -host_to_target_errno(errno);
570 else
571 return ret;
574 const char *target_strerror(int err)
576 if (err == QEMU_ERESTARTSYS) {
577 return "To be restarted";
579 if (err == QEMU_ESIGRETURN) {
580 return "Successful exit from sigreturn";
583 return strerror(target_to_host_errno(err));
586 static int check_zeroed_user(abi_long addr, size_t ksize, size_t usize)
588 int i;
589 uint8_t b;
590 if (usize <= ksize) {
591 return 1;
593 for (i = ksize; i < usize; i++) {
594 if (get_user_u8(b, addr + i)) {
595 return -TARGET_EFAULT;
597 if (b != 0) {
598 return 0;
601 return 1;
604 #define safe_syscall0(type, name) \
605 static type safe_##name(void) \
607 return safe_syscall(__NR_##name); \
610 #define safe_syscall1(type, name, type1, arg1) \
611 static type safe_##name(type1 arg1) \
613 return safe_syscall(__NR_##name, arg1); \
616 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \
617 static type safe_##name(type1 arg1, type2 arg2) \
619 return safe_syscall(__NR_##name, arg1, arg2); \
622 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
623 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \
625 return safe_syscall(__NR_##name, arg1, arg2, arg3); \
628 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
629 type4, arg4) \
630 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
632 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \
635 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
636 type4, arg4, type5, arg5) \
637 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
638 type5 arg5) \
640 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
643 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
644 type4, arg4, type5, arg5, type6, arg6) \
645 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
646 type5 arg5, type6 arg6) \
648 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
651 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count)
652 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count)
653 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \
654 int, flags, mode_t, mode)
655 #if defined(TARGET_NR_wait4) || defined(TARGET_NR_waitpid)
656 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \
657 struct rusage *, rusage)
658 #endif
659 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \
660 int, options, struct rusage *, rusage)
661 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp)
662 safe_syscall5(int, execveat, int, dirfd, const char *, filename,
663 char **, argv, char **, envp, int, flags)
664 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
665 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
666 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \
667 fd_set *, exceptfds, struct timespec *, timeout, void *, sig)
668 #endif
669 #if defined(TARGET_NR_ppoll) || defined(TARGET_NR_ppoll_time64)
670 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds,
671 struct timespec *, tsp, const sigset_t *, sigmask,
672 size_t, sigsetsize)
673 #endif
674 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events,
675 int, maxevents, int, timeout, const sigset_t *, sigmask,
676 size_t, sigsetsize)
677 #if defined(__NR_futex)
678 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \
679 const struct timespec *,timeout,int *,uaddr2,int,val3)
680 #endif
681 #if defined(__NR_futex_time64)
682 safe_syscall6(int,futex_time64,int *,uaddr,int,op,int,val, \
683 const struct timespec *,timeout,int *,uaddr2,int,val3)
684 #endif
685 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize)
686 safe_syscall2(int, kill, pid_t, pid, int, sig)
687 safe_syscall2(int, tkill, int, tid, int, sig)
688 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig)
689 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt)
690 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt)
691 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt,
692 unsigned long, pos_l, unsigned long, pos_h)
693 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt,
694 unsigned long, pos_l, unsigned long, pos_h)
695 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr,
696 socklen_t, addrlen)
697 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len,
698 int, flags, const struct sockaddr *, addr, socklen_t, addrlen)
699 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len,
700 int, flags, struct sockaddr *, addr, socklen_t *, addrlen)
701 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags)
702 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags)
703 safe_syscall2(int, flock, int, fd, int, operation)
704 #if defined(TARGET_NR_rt_sigtimedwait) || defined(TARGET_NR_rt_sigtimedwait_time64)
705 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo,
706 const struct timespec *, uts, size_t, sigsetsize)
707 #endif
708 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len,
709 int, flags)
710 #if defined(TARGET_NR_nanosleep)
711 safe_syscall2(int, nanosleep, const struct timespec *, req,
712 struct timespec *, rem)
713 #endif
714 #if defined(TARGET_NR_clock_nanosleep) || \
715 defined(TARGET_NR_clock_nanosleep_time64)
716 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags,
717 const struct timespec *, req, struct timespec *, rem)
718 #endif
719 #ifdef __NR_ipc
720 #ifdef __s390x__
721 safe_syscall5(int, ipc, int, call, long, first, long, second, long, third,
722 void *, ptr)
723 #else
724 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third,
725 void *, ptr, long, fifth)
726 #endif
727 #endif
728 #ifdef __NR_msgsnd
729 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz,
730 int, flags)
731 #endif
732 #ifdef __NR_msgrcv
733 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz,
734 long, msgtype, int, flags)
735 #endif
736 #ifdef __NR_semtimedop
737 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops,
738 unsigned, nsops, const struct timespec *, timeout)
739 #endif
740 #if defined(TARGET_NR_mq_timedsend) || \
741 defined(TARGET_NR_mq_timedsend_time64)
742 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr,
743 size_t, len, unsigned, prio, const struct timespec *, timeout)
744 #endif
745 #if defined(TARGET_NR_mq_timedreceive) || \
746 defined(TARGET_NR_mq_timedreceive_time64)
747 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr,
748 size_t, len, unsigned *, prio, const struct timespec *, timeout)
749 #endif
750 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
751 safe_syscall6(ssize_t, copy_file_range, int, infd, loff_t *, pinoff,
752 int, outfd, loff_t *, poutoff, size_t, length,
753 unsigned int, flags)
754 #endif
756 /* We do ioctl like this rather than via safe_syscall3 to preserve the
757 * "third argument might be integer or pointer or not present" behaviour of
758 * the libc function.
760 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__)
761 /* Similarly for fcntl. Note that callers must always:
762 * pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK
763 * use the flock64 struct rather than unsuffixed flock
764 * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts.
766 #ifdef __NR_fcntl64
767 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__)
768 #else
769 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__)
770 #endif
772 static inline int host_to_target_sock_type(int host_type)
774 int target_type;
776 switch (host_type & 0xf /* SOCK_TYPE_MASK */) {
777 case SOCK_DGRAM:
778 target_type = TARGET_SOCK_DGRAM;
779 break;
780 case SOCK_STREAM:
781 target_type = TARGET_SOCK_STREAM;
782 break;
783 default:
784 target_type = host_type & 0xf /* SOCK_TYPE_MASK */;
785 break;
788 #if defined(SOCK_CLOEXEC)
789 if (host_type & SOCK_CLOEXEC) {
790 target_type |= TARGET_SOCK_CLOEXEC;
792 #endif
794 #if defined(SOCK_NONBLOCK)
795 if (host_type & SOCK_NONBLOCK) {
796 target_type |= TARGET_SOCK_NONBLOCK;
798 #endif
800 return target_type;
803 static abi_ulong target_brk, initial_target_brk;
805 void target_set_brk(abi_ulong new_brk)
807 target_brk = TARGET_PAGE_ALIGN(new_brk);
808 initial_target_brk = target_brk;
811 /* do_brk() must return target values and target errnos. */
812 abi_long do_brk(abi_ulong brk_val)
814 abi_long mapped_addr;
815 abi_ulong new_brk;
816 abi_ulong old_brk;
818 /* brk pointers are always untagged */
820 /* do not allow to shrink below initial brk value */
821 if (brk_val < initial_target_brk) {
822 return target_brk;
825 new_brk = TARGET_PAGE_ALIGN(brk_val);
826 old_brk = TARGET_PAGE_ALIGN(target_brk);
828 /* new and old target_brk might be on the same page */
829 if (new_brk == old_brk) {
830 target_brk = brk_val;
831 return target_brk;
834 /* Release heap if necesary */
835 if (new_brk < old_brk) {
836 target_munmap(new_brk, old_brk - new_brk);
838 target_brk = brk_val;
839 return target_brk;
842 mapped_addr = target_mmap(old_brk, new_brk - old_brk,
843 PROT_READ | PROT_WRITE,
844 MAP_FIXED_NOREPLACE | MAP_ANON | MAP_PRIVATE,
845 -1, 0);
847 if (mapped_addr == old_brk) {
848 target_brk = brk_val;
849 return target_brk;
852 #if defined(TARGET_ALPHA)
853 /* We (partially) emulate OSF/1 on Alpha, which requires we
854 return a proper errno, not an unchanged brk value. */
855 return -TARGET_ENOMEM;
856 #endif
857 /* For everything else, return the previous break. */
858 return target_brk;
861 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
862 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
863 static inline abi_long copy_from_user_fdset(fd_set *fds,
864 abi_ulong target_fds_addr,
865 int n)
867 int i, nw, j, k;
868 abi_ulong b, *target_fds;
870 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
871 if (!(target_fds = lock_user(VERIFY_READ,
872 target_fds_addr,
873 sizeof(abi_ulong) * nw,
874 1)))
875 return -TARGET_EFAULT;
877 FD_ZERO(fds);
878 k = 0;
879 for (i = 0; i < nw; i++) {
880 /* grab the abi_ulong */
881 __get_user(b, &target_fds[i]);
882 for (j = 0; j < TARGET_ABI_BITS; j++) {
883 /* check the bit inside the abi_ulong */
884 if ((b >> j) & 1)
885 FD_SET(k, fds);
886 k++;
890 unlock_user(target_fds, target_fds_addr, 0);
892 return 0;
895 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr,
896 abi_ulong target_fds_addr,
897 int n)
899 if (target_fds_addr) {
900 if (copy_from_user_fdset(fds, target_fds_addr, n))
901 return -TARGET_EFAULT;
902 *fds_ptr = fds;
903 } else {
904 *fds_ptr = NULL;
906 return 0;
909 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr,
910 const fd_set *fds,
911 int n)
913 int i, nw, j, k;
914 abi_long v;
915 abi_ulong *target_fds;
917 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
918 if (!(target_fds = lock_user(VERIFY_WRITE,
919 target_fds_addr,
920 sizeof(abi_ulong) * nw,
921 0)))
922 return -TARGET_EFAULT;
924 k = 0;
925 for (i = 0; i < nw; i++) {
926 v = 0;
927 for (j = 0; j < TARGET_ABI_BITS; j++) {
928 v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j);
929 k++;
931 __put_user(v, &target_fds[i]);
934 unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw);
936 return 0;
938 #endif
940 #if defined(__alpha__)
941 #define HOST_HZ 1024
942 #else
943 #define HOST_HZ 100
944 #endif
946 static inline abi_long host_to_target_clock_t(long ticks)
948 #if HOST_HZ == TARGET_HZ
949 return ticks;
950 #else
951 return ((int64_t)ticks * TARGET_HZ) / HOST_HZ;
952 #endif
955 static inline abi_long host_to_target_rusage(abi_ulong target_addr,
956 const struct rusage *rusage)
958 struct target_rusage *target_rusage;
960 if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0))
961 return -TARGET_EFAULT;
962 target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec);
963 target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec);
964 target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec);
965 target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec);
966 target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss);
967 target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss);
968 target_rusage->ru_idrss = tswapal(rusage->ru_idrss);
969 target_rusage->ru_isrss = tswapal(rusage->ru_isrss);
970 target_rusage->ru_minflt = tswapal(rusage->ru_minflt);
971 target_rusage->ru_majflt = tswapal(rusage->ru_majflt);
972 target_rusage->ru_nswap = tswapal(rusage->ru_nswap);
973 target_rusage->ru_inblock = tswapal(rusage->ru_inblock);
974 target_rusage->ru_oublock = tswapal(rusage->ru_oublock);
975 target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd);
976 target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv);
977 target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals);
978 target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw);
979 target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw);
980 unlock_user_struct(target_rusage, target_addr, 1);
982 return 0;
985 #ifdef TARGET_NR_setrlimit
986 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim)
988 abi_ulong target_rlim_swap;
989 rlim_t result;
991 target_rlim_swap = tswapal(target_rlim);
992 if (target_rlim_swap == TARGET_RLIM_INFINITY)
993 return RLIM_INFINITY;
995 result = target_rlim_swap;
996 if (target_rlim_swap != (rlim_t)result)
997 return RLIM_INFINITY;
999 return result;
1001 #endif
1003 #if defined(TARGET_NR_getrlimit) || defined(TARGET_NR_ugetrlimit)
1004 static inline abi_ulong host_to_target_rlim(rlim_t rlim)
1006 abi_ulong target_rlim_swap;
1007 abi_ulong result;
1009 if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim)
1010 target_rlim_swap = TARGET_RLIM_INFINITY;
1011 else
1012 target_rlim_swap = rlim;
1013 result = tswapal(target_rlim_swap);
1015 return result;
1017 #endif
1019 static inline int target_to_host_resource(int code)
1021 switch (code) {
1022 case TARGET_RLIMIT_AS:
1023 return RLIMIT_AS;
1024 case TARGET_RLIMIT_CORE:
1025 return RLIMIT_CORE;
1026 case TARGET_RLIMIT_CPU:
1027 return RLIMIT_CPU;
1028 case TARGET_RLIMIT_DATA:
1029 return RLIMIT_DATA;
1030 case TARGET_RLIMIT_FSIZE:
1031 return RLIMIT_FSIZE;
1032 case TARGET_RLIMIT_LOCKS:
1033 return RLIMIT_LOCKS;
1034 case TARGET_RLIMIT_MEMLOCK:
1035 return RLIMIT_MEMLOCK;
1036 case TARGET_RLIMIT_MSGQUEUE:
1037 return RLIMIT_MSGQUEUE;
1038 case TARGET_RLIMIT_NICE:
1039 return RLIMIT_NICE;
1040 case TARGET_RLIMIT_NOFILE:
1041 return RLIMIT_NOFILE;
1042 case TARGET_RLIMIT_NPROC:
1043 return RLIMIT_NPROC;
1044 case TARGET_RLIMIT_RSS:
1045 return RLIMIT_RSS;
1046 case TARGET_RLIMIT_RTPRIO:
1047 return RLIMIT_RTPRIO;
1048 #ifdef RLIMIT_RTTIME
1049 case TARGET_RLIMIT_RTTIME:
1050 return RLIMIT_RTTIME;
1051 #endif
1052 case TARGET_RLIMIT_SIGPENDING:
1053 return RLIMIT_SIGPENDING;
1054 case TARGET_RLIMIT_STACK:
1055 return RLIMIT_STACK;
1056 default:
1057 return code;
1061 static inline abi_long copy_from_user_timeval(struct timeval *tv,
1062 abi_ulong target_tv_addr)
1064 struct target_timeval *target_tv;
1066 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1067 return -TARGET_EFAULT;
1070 __get_user(tv->tv_sec, &target_tv->tv_sec);
1071 __get_user(tv->tv_usec, &target_tv->tv_usec);
1073 unlock_user_struct(target_tv, target_tv_addr, 0);
1075 return 0;
1078 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr,
1079 const struct timeval *tv)
1081 struct target_timeval *target_tv;
1083 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1084 return -TARGET_EFAULT;
1087 __put_user(tv->tv_sec, &target_tv->tv_sec);
1088 __put_user(tv->tv_usec, &target_tv->tv_usec);
1090 unlock_user_struct(target_tv, target_tv_addr, 1);
1092 return 0;
1095 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
1096 static inline abi_long copy_from_user_timeval64(struct timeval *tv,
1097 abi_ulong target_tv_addr)
1099 struct target__kernel_sock_timeval *target_tv;
1101 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1102 return -TARGET_EFAULT;
1105 __get_user(tv->tv_sec, &target_tv->tv_sec);
1106 __get_user(tv->tv_usec, &target_tv->tv_usec);
1108 unlock_user_struct(target_tv, target_tv_addr, 0);
1110 return 0;
1112 #endif
1114 static inline abi_long copy_to_user_timeval64(abi_ulong target_tv_addr,
1115 const struct timeval *tv)
1117 struct target__kernel_sock_timeval *target_tv;
1119 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1120 return -TARGET_EFAULT;
1123 __put_user(tv->tv_sec, &target_tv->tv_sec);
1124 __put_user(tv->tv_usec, &target_tv->tv_usec);
1126 unlock_user_struct(target_tv, target_tv_addr, 1);
1128 return 0;
1131 #if defined(TARGET_NR_futex) || \
1132 defined(TARGET_NR_rt_sigtimedwait) || \
1133 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6) || \
1134 defined(TARGET_NR_nanosleep) || defined(TARGET_NR_clock_settime) || \
1135 defined(TARGET_NR_utimensat) || defined(TARGET_NR_mq_timedsend) || \
1136 defined(TARGET_NR_mq_timedreceive) || defined(TARGET_NR_ipc) || \
1137 defined(TARGET_NR_semop) || defined(TARGET_NR_semtimedop) || \
1138 defined(TARGET_NR_timer_settime) || \
1139 (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
1140 static inline abi_long target_to_host_timespec(struct timespec *host_ts,
1141 abi_ulong target_addr)
1143 struct target_timespec *target_ts;
1145 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1146 return -TARGET_EFAULT;
1148 __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1149 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1150 unlock_user_struct(target_ts, target_addr, 0);
1151 return 0;
1153 #endif
1155 #if defined(TARGET_NR_clock_settime64) || defined(TARGET_NR_futex_time64) || \
1156 defined(TARGET_NR_timer_settime64) || \
1157 defined(TARGET_NR_mq_timedsend_time64) || \
1158 defined(TARGET_NR_mq_timedreceive_time64) || \
1159 (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) || \
1160 defined(TARGET_NR_clock_nanosleep_time64) || \
1161 defined(TARGET_NR_rt_sigtimedwait_time64) || \
1162 defined(TARGET_NR_utimensat) || \
1163 defined(TARGET_NR_utimensat_time64) || \
1164 defined(TARGET_NR_semtimedop_time64) || \
1165 defined(TARGET_NR_pselect6_time64) || defined(TARGET_NR_ppoll_time64)
1166 static inline abi_long target_to_host_timespec64(struct timespec *host_ts,
1167 abi_ulong target_addr)
1169 struct target__kernel_timespec *target_ts;
1171 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1172 return -TARGET_EFAULT;
1174 __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1175 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1176 /* in 32bit mode, this drops the padding */
1177 host_ts->tv_nsec = (long)(abi_long)host_ts->tv_nsec;
1178 unlock_user_struct(target_ts, target_addr, 0);
1179 return 0;
1181 #endif
1183 static inline abi_long host_to_target_timespec(abi_ulong target_addr,
1184 struct timespec *host_ts)
1186 struct target_timespec *target_ts;
1188 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1189 return -TARGET_EFAULT;
1191 __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1192 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1193 unlock_user_struct(target_ts, target_addr, 1);
1194 return 0;
1197 static inline abi_long host_to_target_timespec64(abi_ulong target_addr,
1198 struct timespec *host_ts)
1200 struct target__kernel_timespec *target_ts;
1202 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1203 return -TARGET_EFAULT;
1205 __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1206 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1207 unlock_user_struct(target_ts, target_addr, 1);
1208 return 0;
1211 #if defined(TARGET_NR_gettimeofday)
1212 static inline abi_long copy_to_user_timezone(abi_ulong target_tz_addr,
1213 struct timezone *tz)
1215 struct target_timezone *target_tz;
1217 if (!lock_user_struct(VERIFY_WRITE, target_tz, target_tz_addr, 1)) {
1218 return -TARGET_EFAULT;
1221 __put_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1222 __put_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1224 unlock_user_struct(target_tz, target_tz_addr, 1);
1226 return 0;
1228 #endif
1230 #if defined(TARGET_NR_settimeofday)
1231 static inline abi_long copy_from_user_timezone(struct timezone *tz,
1232 abi_ulong target_tz_addr)
1234 struct target_timezone *target_tz;
1236 if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) {
1237 return -TARGET_EFAULT;
1240 __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1241 __get_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1243 unlock_user_struct(target_tz, target_tz_addr, 0);
1245 return 0;
1247 #endif
1249 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1250 #include <mqueue.h>
1252 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr,
1253 abi_ulong target_mq_attr_addr)
1255 struct target_mq_attr *target_mq_attr;
1257 if (!lock_user_struct(VERIFY_READ, target_mq_attr,
1258 target_mq_attr_addr, 1))
1259 return -TARGET_EFAULT;
1261 __get_user(attr->mq_flags, &target_mq_attr->mq_flags);
1262 __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1263 __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1264 __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1266 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0);
1268 return 0;
1271 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr,
1272 const struct mq_attr *attr)
1274 struct target_mq_attr *target_mq_attr;
1276 if (!lock_user_struct(VERIFY_WRITE, target_mq_attr,
1277 target_mq_attr_addr, 0))
1278 return -TARGET_EFAULT;
1280 __put_user(attr->mq_flags, &target_mq_attr->mq_flags);
1281 __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1282 __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1283 __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1285 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1);
1287 return 0;
1289 #endif
1291 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1292 /* do_select() must return target values and target errnos. */
1293 static abi_long do_select(int n,
1294 abi_ulong rfd_addr, abi_ulong wfd_addr,
1295 abi_ulong efd_addr, abi_ulong target_tv_addr)
1297 fd_set rfds, wfds, efds;
1298 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1299 struct timeval tv;
1300 struct timespec ts, *ts_ptr;
1301 abi_long ret;
1303 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1304 if (ret) {
1305 return ret;
1307 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1308 if (ret) {
1309 return ret;
1311 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1312 if (ret) {
1313 return ret;
1316 if (target_tv_addr) {
1317 if (copy_from_user_timeval(&tv, target_tv_addr))
1318 return -TARGET_EFAULT;
1319 ts.tv_sec = tv.tv_sec;
1320 ts.tv_nsec = tv.tv_usec * 1000;
1321 ts_ptr = &ts;
1322 } else {
1323 ts_ptr = NULL;
1326 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1327 ts_ptr, NULL));
1329 if (!is_error(ret)) {
1330 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
1331 return -TARGET_EFAULT;
1332 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
1333 return -TARGET_EFAULT;
1334 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
1335 return -TARGET_EFAULT;
1337 if (target_tv_addr) {
1338 tv.tv_sec = ts.tv_sec;
1339 tv.tv_usec = ts.tv_nsec / 1000;
1340 if (copy_to_user_timeval(target_tv_addr, &tv)) {
1341 return -TARGET_EFAULT;
1346 return ret;
1349 #if defined(TARGET_WANT_OLD_SYS_SELECT)
1350 static abi_long do_old_select(abi_ulong arg1)
1352 struct target_sel_arg_struct *sel;
1353 abi_ulong inp, outp, exp, tvp;
1354 long nsel;
1356 if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) {
1357 return -TARGET_EFAULT;
1360 nsel = tswapal(sel->n);
1361 inp = tswapal(sel->inp);
1362 outp = tswapal(sel->outp);
1363 exp = tswapal(sel->exp);
1364 tvp = tswapal(sel->tvp);
1366 unlock_user_struct(sel, arg1, 0);
1368 return do_select(nsel, inp, outp, exp, tvp);
1370 #endif
1371 #endif
1373 #if defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
1374 static abi_long do_pselect6(abi_long arg1, abi_long arg2, abi_long arg3,
1375 abi_long arg4, abi_long arg5, abi_long arg6,
1376 bool time64)
1378 abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr;
1379 fd_set rfds, wfds, efds;
1380 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1381 struct timespec ts, *ts_ptr;
1382 abi_long ret;
1385 * The 6th arg is actually two args smashed together,
1386 * so we cannot use the C library.
1388 struct {
1389 sigset_t *set;
1390 size_t size;
1391 } sig, *sig_ptr;
1393 abi_ulong arg_sigset, arg_sigsize, *arg7;
1395 n = arg1;
1396 rfd_addr = arg2;
1397 wfd_addr = arg3;
1398 efd_addr = arg4;
1399 ts_addr = arg5;
1401 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1402 if (ret) {
1403 return ret;
1405 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1406 if (ret) {
1407 return ret;
1409 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1410 if (ret) {
1411 return ret;
1415 * This takes a timespec, and not a timeval, so we cannot
1416 * use the do_select() helper ...
1418 if (ts_addr) {
1419 if (time64) {
1420 if (target_to_host_timespec64(&ts, ts_addr)) {
1421 return -TARGET_EFAULT;
1423 } else {
1424 if (target_to_host_timespec(&ts, ts_addr)) {
1425 return -TARGET_EFAULT;
1428 ts_ptr = &ts;
1429 } else {
1430 ts_ptr = NULL;
1433 /* Extract the two packed args for the sigset */
1434 sig_ptr = NULL;
1435 if (arg6) {
1436 arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1);
1437 if (!arg7) {
1438 return -TARGET_EFAULT;
1440 arg_sigset = tswapal(arg7[0]);
1441 arg_sigsize = tswapal(arg7[1]);
1442 unlock_user(arg7, arg6, 0);
1444 if (arg_sigset) {
1445 ret = process_sigsuspend_mask(&sig.set, arg_sigset, arg_sigsize);
1446 if (ret != 0) {
1447 return ret;
1449 sig_ptr = &sig;
1450 sig.size = SIGSET_T_SIZE;
1454 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1455 ts_ptr, sig_ptr));
1457 if (sig_ptr) {
1458 finish_sigsuspend_mask(ret);
1461 if (!is_error(ret)) {
1462 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) {
1463 return -TARGET_EFAULT;
1465 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) {
1466 return -TARGET_EFAULT;
1468 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) {
1469 return -TARGET_EFAULT;
1471 if (time64) {
1472 if (ts_addr && host_to_target_timespec64(ts_addr, &ts)) {
1473 return -TARGET_EFAULT;
1475 } else {
1476 if (ts_addr && host_to_target_timespec(ts_addr, &ts)) {
1477 return -TARGET_EFAULT;
1481 return ret;
1483 #endif
1485 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) || \
1486 defined(TARGET_NR_ppoll_time64)
1487 static abi_long do_ppoll(abi_long arg1, abi_long arg2, abi_long arg3,
1488 abi_long arg4, abi_long arg5, bool ppoll, bool time64)
1490 struct target_pollfd *target_pfd;
1491 unsigned int nfds = arg2;
1492 struct pollfd *pfd;
1493 unsigned int i;
1494 abi_long ret;
1496 pfd = NULL;
1497 target_pfd = NULL;
1498 if (nfds) {
1499 if (nfds > (INT_MAX / sizeof(struct target_pollfd))) {
1500 return -TARGET_EINVAL;
1502 target_pfd = lock_user(VERIFY_WRITE, arg1,
1503 sizeof(struct target_pollfd) * nfds, 1);
1504 if (!target_pfd) {
1505 return -TARGET_EFAULT;
1508 pfd = alloca(sizeof(struct pollfd) * nfds);
1509 for (i = 0; i < nfds; i++) {
1510 pfd[i].fd = tswap32(target_pfd[i].fd);
1511 pfd[i].events = tswap16(target_pfd[i].events);
1514 if (ppoll) {
1515 struct timespec _timeout_ts, *timeout_ts = &_timeout_ts;
1516 sigset_t *set = NULL;
1518 if (arg3) {
1519 if (time64) {
1520 if (target_to_host_timespec64(timeout_ts, arg3)) {
1521 unlock_user(target_pfd, arg1, 0);
1522 return -TARGET_EFAULT;
1524 } else {
1525 if (target_to_host_timespec(timeout_ts, arg3)) {
1526 unlock_user(target_pfd, arg1, 0);
1527 return -TARGET_EFAULT;
1530 } else {
1531 timeout_ts = NULL;
1534 if (arg4) {
1535 ret = process_sigsuspend_mask(&set, arg4, arg5);
1536 if (ret != 0) {
1537 unlock_user(target_pfd, arg1, 0);
1538 return ret;
1542 ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts,
1543 set, SIGSET_T_SIZE));
1545 if (set) {
1546 finish_sigsuspend_mask(ret);
1548 if (!is_error(ret) && arg3) {
1549 if (time64) {
1550 if (host_to_target_timespec64(arg3, timeout_ts)) {
1551 return -TARGET_EFAULT;
1553 } else {
1554 if (host_to_target_timespec(arg3, timeout_ts)) {
1555 return -TARGET_EFAULT;
1559 } else {
1560 struct timespec ts, *pts;
1562 if (arg3 >= 0) {
1563 /* Convert ms to secs, ns */
1564 ts.tv_sec = arg3 / 1000;
1565 ts.tv_nsec = (arg3 % 1000) * 1000000LL;
1566 pts = &ts;
1567 } else {
1568 /* -ve poll() timeout means "infinite" */
1569 pts = NULL;
1571 ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0));
1574 if (!is_error(ret)) {
1575 for (i = 0; i < nfds; i++) {
1576 target_pfd[i].revents = tswap16(pfd[i].revents);
1579 unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds);
1580 return ret;
1582 #endif
1584 static abi_long do_pipe(CPUArchState *cpu_env, abi_ulong pipedes,
1585 int flags, int is_pipe2)
1587 int host_pipe[2];
1588 abi_long ret;
1589 ret = pipe2(host_pipe, flags);
1591 if (is_error(ret))
1592 return get_errno(ret);
1594 /* Several targets have special calling conventions for the original
1595 pipe syscall, but didn't replicate this into the pipe2 syscall. */
1596 if (!is_pipe2) {
1597 #if defined(TARGET_ALPHA)
1598 cpu_env->ir[IR_A4] = host_pipe[1];
1599 return host_pipe[0];
1600 #elif defined(TARGET_MIPS)
1601 cpu_env->active_tc.gpr[3] = host_pipe[1];
1602 return host_pipe[0];
1603 #elif defined(TARGET_SH4)
1604 cpu_env->gregs[1] = host_pipe[1];
1605 return host_pipe[0];
1606 #elif defined(TARGET_SPARC)
1607 cpu_env->regwptr[1] = host_pipe[1];
1608 return host_pipe[0];
1609 #endif
1612 if (put_user_s32(host_pipe[0], pipedes)
1613 || put_user_s32(host_pipe[1], pipedes + sizeof(abi_int)))
1614 return -TARGET_EFAULT;
1615 return get_errno(ret);
1618 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn,
1619 abi_ulong target_addr,
1620 socklen_t len)
1622 struct target_ip_mreqn *target_smreqn;
1624 target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1);
1625 if (!target_smreqn)
1626 return -TARGET_EFAULT;
1627 mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr;
1628 mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr;
1629 if (len == sizeof(struct target_ip_mreqn))
1630 mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex);
1631 unlock_user(target_smreqn, target_addr, 0);
1633 return 0;
1636 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr,
1637 abi_ulong target_addr,
1638 socklen_t len)
1640 const socklen_t unix_maxlen = sizeof (struct sockaddr_un);
1641 sa_family_t sa_family;
1642 struct target_sockaddr *target_saddr;
1644 if (fd_trans_target_to_host_addr(fd)) {
1645 return fd_trans_target_to_host_addr(fd)(addr, target_addr, len);
1648 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
1649 if (!target_saddr)
1650 return -TARGET_EFAULT;
1652 sa_family = tswap16(target_saddr->sa_family);
1654 /* Oops. The caller might send a incomplete sun_path; sun_path
1655 * must be terminated by \0 (see the manual page), but
1656 * unfortunately it is quite common to specify sockaddr_un
1657 * length as "strlen(x->sun_path)" while it should be
1658 * "strlen(...) + 1". We'll fix that here if needed.
1659 * Linux kernel has a similar feature.
1662 if (sa_family == AF_UNIX) {
1663 if (len < unix_maxlen && len > 0) {
1664 char *cp = (char*)target_saddr;
1666 if ( cp[len-1] && !cp[len] )
1667 len++;
1669 if (len > unix_maxlen)
1670 len = unix_maxlen;
1673 memcpy(addr, target_saddr, len);
1674 addr->sa_family = sa_family;
1675 if (sa_family == AF_NETLINK) {
1676 struct sockaddr_nl *nladdr;
1678 nladdr = (struct sockaddr_nl *)addr;
1679 nladdr->nl_pid = tswap32(nladdr->nl_pid);
1680 nladdr->nl_groups = tswap32(nladdr->nl_groups);
1681 } else if (sa_family == AF_PACKET) {
1682 struct target_sockaddr_ll *lladdr;
1684 lladdr = (struct target_sockaddr_ll *)addr;
1685 lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex);
1686 lladdr->sll_hatype = tswap16(lladdr->sll_hatype);
1687 } else if (sa_family == AF_INET6) {
1688 struct sockaddr_in6 *in6addr;
1690 in6addr = (struct sockaddr_in6 *)addr;
1691 in6addr->sin6_scope_id = tswap32(in6addr->sin6_scope_id);
1693 unlock_user(target_saddr, target_addr, 0);
1695 return 0;
1698 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr,
1699 struct sockaddr *addr,
1700 socklen_t len)
1702 struct target_sockaddr *target_saddr;
1704 if (len == 0) {
1705 return 0;
1707 assert(addr);
1709 target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0);
1710 if (!target_saddr)
1711 return -TARGET_EFAULT;
1712 memcpy(target_saddr, addr, len);
1713 if (len >= offsetof(struct target_sockaddr, sa_family) +
1714 sizeof(target_saddr->sa_family)) {
1715 target_saddr->sa_family = tswap16(addr->sa_family);
1717 if (addr->sa_family == AF_NETLINK &&
1718 len >= sizeof(struct target_sockaddr_nl)) {
1719 struct target_sockaddr_nl *target_nl =
1720 (struct target_sockaddr_nl *)target_saddr;
1721 target_nl->nl_pid = tswap32(target_nl->nl_pid);
1722 target_nl->nl_groups = tswap32(target_nl->nl_groups);
1723 } else if (addr->sa_family == AF_PACKET) {
1724 struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr;
1725 target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex);
1726 target_ll->sll_hatype = tswap16(target_ll->sll_hatype);
1727 } else if (addr->sa_family == AF_INET6 &&
1728 len >= sizeof(struct target_sockaddr_in6)) {
1729 struct target_sockaddr_in6 *target_in6 =
1730 (struct target_sockaddr_in6 *)target_saddr;
1731 target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id);
1733 unlock_user(target_saddr, target_addr, len);
1735 return 0;
1738 static inline abi_long target_to_host_cmsg(struct msghdr *msgh,
1739 struct target_msghdr *target_msgh)
1741 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1742 abi_long msg_controllen;
1743 abi_ulong target_cmsg_addr;
1744 struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1745 socklen_t space = 0;
1747 msg_controllen = tswapal(target_msgh->msg_controllen);
1748 if (msg_controllen < sizeof (struct target_cmsghdr))
1749 goto the_end;
1750 target_cmsg_addr = tswapal(target_msgh->msg_control);
1751 target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1);
1752 target_cmsg_start = target_cmsg;
1753 if (!target_cmsg)
1754 return -TARGET_EFAULT;
1756 while (cmsg && target_cmsg) {
1757 void *data = CMSG_DATA(cmsg);
1758 void *target_data = TARGET_CMSG_DATA(target_cmsg);
1760 int len = tswapal(target_cmsg->cmsg_len)
1761 - sizeof(struct target_cmsghdr);
1763 space += CMSG_SPACE(len);
1764 if (space > msgh->msg_controllen) {
1765 space -= CMSG_SPACE(len);
1766 /* This is a QEMU bug, since we allocated the payload
1767 * area ourselves (unlike overflow in host-to-target
1768 * conversion, which is just the guest giving us a buffer
1769 * that's too small). It can't happen for the payload types
1770 * we currently support; if it becomes an issue in future
1771 * we would need to improve our allocation strategy to
1772 * something more intelligent than "twice the size of the
1773 * target buffer we're reading from".
1775 qemu_log_mask(LOG_UNIMP,
1776 ("Unsupported ancillary data %d/%d: "
1777 "unhandled msg size\n"),
1778 tswap32(target_cmsg->cmsg_level),
1779 tswap32(target_cmsg->cmsg_type));
1780 break;
1783 if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) {
1784 cmsg->cmsg_level = SOL_SOCKET;
1785 } else {
1786 cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level);
1788 cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type);
1789 cmsg->cmsg_len = CMSG_LEN(len);
1791 if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
1792 int *fd = (int *)data;
1793 int *target_fd = (int *)target_data;
1794 int i, numfds = len / sizeof(int);
1796 for (i = 0; i < numfds; i++) {
1797 __get_user(fd[i], target_fd + i);
1799 } else if (cmsg->cmsg_level == SOL_SOCKET
1800 && cmsg->cmsg_type == SCM_CREDENTIALS) {
1801 struct ucred *cred = (struct ucred *)data;
1802 struct target_ucred *target_cred =
1803 (struct target_ucred *)target_data;
1805 __get_user(cred->pid, &target_cred->pid);
1806 __get_user(cred->uid, &target_cred->uid);
1807 __get_user(cred->gid, &target_cred->gid);
1808 } else if (cmsg->cmsg_level == SOL_ALG) {
1809 uint32_t *dst = (uint32_t *)data;
1811 memcpy(dst, target_data, len);
1812 /* fix endianess of first 32-bit word */
1813 if (len >= sizeof(uint32_t)) {
1814 *dst = tswap32(*dst);
1816 } else {
1817 qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
1818 cmsg->cmsg_level, cmsg->cmsg_type);
1819 memcpy(data, target_data, len);
1822 cmsg = CMSG_NXTHDR(msgh, cmsg);
1823 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1824 target_cmsg_start);
1826 unlock_user(target_cmsg, target_cmsg_addr, 0);
1827 the_end:
1828 msgh->msg_controllen = space;
1829 return 0;
1832 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh,
1833 struct msghdr *msgh)
1835 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1836 abi_long msg_controllen;
1837 abi_ulong target_cmsg_addr;
1838 struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1839 socklen_t space = 0;
1841 msg_controllen = tswapal(target_msgh->msg_controllen);
1842 if (msg_controllen < sizeof (struct target_cmsghdr))
1843 goto the_end;
1844 target_cmsg_addr = tswapal(target_msgh->msg_control);
1845 target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0);
1846 target_cmsg_start = target_cmsg;
1847 if (!target_cmsg)
1848 return -TARGET_EFAULT;
1850 while (cmsg && target_cmsg) {
1851 void *data = CMSG_DATA(cmsg);
1852 void *target_data = TARGET_CMSG_DATA(target_cmsg);
1854 int len = cmsg->cmsg_len - sizeof(struct cmsghdr);
1855 int tgt_len, tgt_space;
1857 /* We never copy a half-header but may copy half-data;
1858 * this is Linux's behaviour in put_cmsg(). Note that
1859 * truncation here is a guest problem (which we report
1860 * to the guest via the CTRUNC bit), unlike truncation
1861 * in target_to_host_cmsg, which is a QEMU bug.
1863 if (msg_controllen < sizeof(struct target_cmsghdr)) {
1864 target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1865 break;
1868 if (cmsg->cmsg_level == SOL_SOCKET) {
1869 target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET);
1870 } else {
1871 target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level);
1873 target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type);
1875 /* Payload types which need a different size of payload on
1876 * the target must adjust tgt_len here.
1878 tgt_len = len;
1879 switch (cmsg->cmsg_level) {
1880 case SOL_SOCKET:
1881 switch (cmsg->cmsg_type) {
1882 case SO_TIMESTAMP:
1883 tgt_len = sizeof(struct target_timeval);
1884 break;
1885 default:
1886 break;
1888 break;
1889 default:
1890 break;
1893 if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) {
1894 target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1895 tgt_len = msg_controllen - sizeof(struct target_cmsghdr);
1898 /* We must now copy-and-convert len bytes of payload
1899 * into tgt_len bytes of destination space. Bear in mind
1900 * that in both source and destination we may be dealing
1901 * with a truncated value!
1903 switch (cmsg->cmsg_level) {
1904 case SOL_SOCKET:
1905 switch (cmsg->cmsg_type) {
1906 case SCM_RIGHTS:
1908 int *fd = (int *)data;
1909 int *target_fd = (int *)target_data;
1910 int i, numfds = tgt_len / sizeof(int);
1912 for (i = 0; i < numfds; i++) {
1913 __put_user(fd[i], target_fd + i);
1915 break;
1917 case SO_TIMESTAMP:
1919 struct timeval *tv = (struct timeval *)data;
1920 struct target_timeval *target_tv =
1921 (struct target_timeval *)target_data;
1923 if (len != sizeof(struct timeval) ||
1924 tgt_len != sizeof(struct target_timeval)) {
1925 goto unimplemented;
1928 /* copy struct timeval to target */
1929 __put_user(tv->tv_sec, &target_tv->tv_sec);
1930 __put_user(tv->tv_usec, &target_tv->tv_usec);
1931 break;
1933 case SCM_CREDENTIALS:
1935 struct ucred *cred = (struct ucred *)data;
1936 struct target_ucred *target_cred =
1937 (struct target_ucred *)target_data;
1939 __put_user(cred->pid, &target_cred->pid);
1940 __put_user(cred->uid, &target_cred->uid);
1941 __put_user(cred->gid, &target_cred->gid);
1942 break;
1944 default:
1945 goto unimplemented;
1947 break;
1949 case SOL_IP:
1950 switch (cmsg->cmsg_type) {
1951 case IP_TTL:
1953 uint32_t *v = (uint32_t *)data;
1954 uint32_t *t_int = (uint32_t *)target_data;
1956 if (len != sizeof(uint32_t) ||
1957 tgt_len != sizeof(uint32_t)) {
1958 goto unimplemented;
1960 __put_user(*v, t_int);
1961 break;
1963 case IP_RECVERR:
1965 struct errhdr_t {
1966 struct sock_extended_err ee;
1967 struct sockaddr_in offender;
1969 struct errhdr_t *errh = (struct errhdr_t *)data;
1970 struct errhdr_t *target_errh =
1971 (struct errhdr_t *)target_data;
1973 if (len != sizeof(struct errhdr_t) ||
1974 tgt_len != sizeof(struct errhdr_t)) {
1975 goto unimplemented;
1977 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
1978 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
1979 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type);
1980 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
1981 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
1982 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
1983 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
1984 host_to_target_sockaddr((unsigned long) &target_errh->offender,
1985 (void *) &errh->offender, sizeof(errh->offender));
1986 break;
1988 default:
1989 goto unimplemented;
1991 break;
1993 case SOL_IPV6:
1994 switch (cmsg->cmsg_type) {
1995 case IPV6_HOPLIMIT:
1997 uint32_t *v = (uint32_t *)data;
1998 uint32_t *t_int = (uint32_t *)target_data;
2000 if (len != sizeof(uint32_t) ||
2001 tgt_len != sizeof(uint32_t)) {
2002 goto unimplemented;
2004 __put_user(*v, t_int);
2005 break;
2007 case IPV6_RECVERR:
2009 struct errhdr6_t {
2010 struct sock_extended_err ee;
2011 struct sockaddr_in6 offender;
2013 struct errhdr6_t *errh = (struct errhdr6_t *)data;
2014 struct errhdr6_t *target_errh =
2015 (struct errhdr6_t *)target_data;
2017 if (len != sizeof(struct errhdr6_t) ||
2018 tgt_len != sizeof(struct errhdr6_t)) {
2019 goto unimplemented;
2021 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
2022 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
2023 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type);
2024 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
2025 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
2026 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
2027 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
2028 host_to_target_sockaddr((unsigned long) &target_errh->offender,
2029 (void *) &errh->offender, sizeof(errh->offender));
2030 break;
2032 default:
2033 goto unimplemented;
2035 break;
2037 default:
2038 unimplemented:
2039 qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
2040 cmsg->cmsg_level, cmsg->cmsg_type);
2041 memcpy(target_data, data, MIN(len, tgt_len));
2042 if (tgt_len > len) {
2043 memset(target_data + len, 0, tgt_len - len);
2047 target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len));
2048 tgt_space = TARGET_CMSG_SPACE(tgt_len);
2049 if (msg_controllen < tgt_space) {
2050 tgt_space = msg_controllen;
2052 msg_controllen -= tgt_space;
2053 space += tgt_space;
2054 cmsg = CMSG_NXTHDR(msgh, cmsg);
2055 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
2056 target_cmsg_start);
2058 unlock_user(target_cmsg, target_cmsg_addr, space);
2059 the_end:
2060 target_msgh->msg_controllen = tswapal(space);
2061 return 0;
2064 /* do_setsockopt() Must return target values and target errnos. */
2065 static abi_long do_setsockopt(int sockfd, int level, int optname,
2066 abi_ulong optval_addr, socklen_t optlen)
2068 abi_long ret;
2069 int val;
2070 struct ip_mreqn *ip_mreq;
2071 struct ip_mreq_source *ip_mreq_source;
2073 switch(level) {
2074 case SOL_TCP:
2075 case SOL_UDP:
2076 /* TCP and UDP options all take an 'int' value. */
2077 if (optlen < sizeof(uint32_t))
2078 return -TARGET_EINVAL;
2080 if (get_user_u32(val, optval_addr))
2081 return -TARGET_EFAULT;
2082 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2083 break;
2084 case SOL_IP:
2085 switch(optname) {
2086 case IP_TOS:
2087 case IP_TTL:
2088 case IP_HDRINCL:
2089 case IP_ROUTER_ALERT:
2090 case IP_RECVOPTS:
2091 case IP_RETOPTS:
2092 case IP_PKTINFO:
2093 case IP_MTU_DISCOVER:
2094 case IP_RECVERR:
2095 case IP_RECVTTL:
2096 case IP_RECVTOS:
2097 #ifdef IP_FREEBIND
2098 case IP_FREEBIND:
2099 #endif
2100 case IP_MULTICAST_TTL:
2101 case IP_MULTICAST_LOOP:
2102 val = 0;
2103 if (optlen >= sizeof(uint32_t)) {
2104 if (get_user_u32(val, optval_addr))
2105 return -TARGET_EFAULT;
2106 } else if (optlen >= 1) {
2107 if (get_user_u8(val, optval_addr))
2108 return -TARGET_EFAULT;
2110 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2111 break;
2112 case IP_ADD_MEMBERSHIP:
2113 case IP_DROP_MEMBERSHIP:
2114 if (optlen < sizeof (struct target_ip_mreq) ||
2115 optlen > sizeof (struct target_ip_mreqn))
2116 return -TARGET_EINVAL;
2118 ip_mreq = (struct ip_mreqn *) alloca(optlen);
2119 target_to_host_ip_mreq(ip_mreq, optval_addr, optlen);
2120 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen));
2121 break;
2123 case IP_BLOCK_SOURCE:
2124 case IP_UNBLOCK_SOURCE:
2125 case IP_ADD_SOURCE_MEMBERSHIP:
2126 case IP_DROP_SOURCE_MEMBERSHIP:
2127 if (optlen != sizeof (struct target_ip_mreq_source))
2128 return -TARGET_EINVAL;
2130 ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2131 if (!ip_mreq_source) {
2132 return -TARGET_EFAULT;
2134 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen));
2135 unlock_user (ip_mreq_source, optval_addr, 0);
2136 break;
2138 default:
2139 goto unimplemented;
2141 break;
2142 case SOL_IPV6:
2143 switch (optname) {
2144 case IPV6_MTU_DISCOVER:
2145 case IPV6_MTU:
2146 case IPV6_V6ONLY:
2147 case IPV6_RECVPKTINFO:
2148 case IPV6_UNICAST_HOPS:
2149 case IPV6_MULTICAST_HOPS:
2150 case IPV6_MULTICAST_LOOP:
2151 case IPV6_RECVERR:
2152 case IPV6_RECVHOPLIMIT:
2153 case IPV6_2292HOPLIMIT:
2154 case IPV6_CHECKSUM:
2155 case IPV6_ADDRFORM:
2156 case IPV6_2292PKTINFO:
2157 case IPV6_RECVTCLASS:
2158 case IPV6_RECVRTHDR:
2159 case IPV6_2292RTHDR:
2160 case IPV6_RECVHOPOPTS:
2161 case IPV6_2292HOPOPTS:
2162 case IPV6_RECVDSTOPTS:
2163 case IPV6_2292DSTOPTS:
2164 case IPV6_TCLASS:
2165 case IPV6_ADDR_PREFERENCES:
2166 #ifdef IPV6_RECVPATHMTU
2167 case IPV6_RECVPATHMTU:
2168 #endif
2169 #ifdef IPV6_TRANSPARENT
2170 case IPV6_TRANSPARENT:
2171 #endif
2172 #ifdef IPV6_FREEBIND
2173 case IPV6_FREEBIND:
2174 #endif
2175 #ifdef IPV6_RECVORIGDSTADDR
2176 case IPV6_RECVORIGDSTADDR:
2177 #endif
2178 val = 0;
2179 if (optlen < sizeof(uint32_t)) {
2180 return -TARGET_EINVAL;
2182 if (get_user_u32(val, optval_addr)) {
2183 return -TARGET_EFAULT;
2185 ret = get_errno(setsockopt(sockfd, level, optname,
2186 &val, sizeof(val)));
2187 break;
2188 case IPV6_PKTINFO:
2190 struct in6_pktinfo pki;
2192 if (optlen < sizeof(pki)) {
2193 return -TARGET_EINVAL;
2196 if (copy_from_user(&pki, optval_addr, sizeof(pki))) {
2197 return -TARGET_EFAULT;
2200 pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex);
2202 ret = get_errno(setsockopt(sockfd, level, optname,
2203 &pki, sizeof(pki)));
2204 break;
2206 case IPV6_ADD_MEMBERSHIP:
2207 case IPV6_DROP_MEMBERSHIP:
2209 struct ipv6_mreq ipv6mreq;
2211 if (optlen < sizeof(ipv6mreq)) {
2212 return -TARGET_EINVAL;
2215 if (copy_from_user(&ipv6mreq, optval_addr, sizeof(ipv6mreq))) {
2216 return -TARGET_EFAULT;
2219 ipv6mreq.ipv6mr_interface = tswap32(ipv6mreq.ipv6mr_interface);
2221 ret = get_errno(setsockopt(sockfd, level, optname,
2222 &ipv6mreq, sizeof(ipv6mreq)));
2223 break;
2225 default:
2226 goto unimplemented;
2228 break;
2229 case SOL_ICMPV6:
2230 switch (optname) {
2231 case ICMPV6_FILTER:
2233 struct icmp6_filter icmp6f;
2235 if (optlen > sizeof(icmp6f)) {
2236 optlen = sizeof(icmp6f);
2239 if (copy_from_user(&icmp6f, optval_addr, optlen)) {
2240 return -TARGET_EFAULT;
2243 for (val = 0; val < 8; val++) {
2244 icmp6f.data[val] = tswap32(icmp6f.data[val]);
2247 ret = get_errno(setsockopt(sockfd, level, optname,
2248 &icmp6f, optlen));
2249 break;
2251 default:
2252 goto unimplemented;
2254 break;
2255 case SOL_RAW:
2256 switch (optname) {
2257 case ICMP_FILTER:
2258 case IPV6_CHECKSUM:
2259 /* those take an u32 value */
2260 if (optlen < sizeof(uint32_t)) {
2261 return -TARGET_EINVAL;
2264 if (get_user_u32(val, optval_addr)) {
2265 return -TARGET_EFAULT;
2267 ret = get_errno(setsockopt(sockfd, level, optname,
2268 &val, sizeof(val)));
2269 break;
2271 default:
2272 goto unimplemented;
2274 break;
2275 #if defined(SOL_ALG) && defined(ALG_SET_KEY) && defined(ALG_SET_AEAD_AUTHSIZE)
2276 case SOL_ALG:
2277 switch (optname) {
2278 case ALG_SET_KEY:
2280 char *alg_key = g_malloc(optlen);
2282 if (!alg_key) {
2283 return -TARGET_ENOMEM;
2285 if (copy_from_user(alg_key, optval_addr, optlen)) {
2286 g_free(alg_key);
2287 return -TARGET_EFAULT;
2289 ret = get_errno(setsockopt(sockfd, level, optname,
2290 alg_key, optlen));
2291 g_free(alg_key);
2292 break;
2294 case ALG_SET_AEAD_AUTHSIZE:
2296 ret = get_errno(setsockopt(sockfd, level, optname,
2297 NULL, optlen));
2298 break;
2300 default:
2301 goto unimplemented;
2303 break;
2304 #endif
2305 case TARGET_SOL_SOCKET:
2306 switch (optname) {
2307 case TARGET_SO_RCVTIMEO:
2309 struct timeval tv;
2311 optname = SO_RCVTIMEO;
2313 set_timeout:
2314 if (optlen != sizeof(struct target_timeval)) {
2315 return -TARGET_EINVAL;
2318 if (copy_from_user_timeval(&tv, optval_addr)) {
2319 return -TARGET_EFAULT;
2322 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2323 &tv, sizeof(tv)));
2324 return ret;
2326 case TARGET_SO_SNDTIMEO:
2327 optname = SO_SNDTIMEO;
2328 goto set_timeout;
2329 case TARGET_SO_ATTACH_FILTER:
2331 struct target_sock_fprog *tfprog;
2332 struct target_sock_filter *tfilter;
2333 struct sock_fprog fprog;
2334 struct sock_filter *filter;
2335 int i;
2337 if (optlen != sizeof(*tfprog)) {
2338 return -TARGET_EINVAL;
2340 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) {
2341 return -TARGET_EFAULT;
2343 if (!lock_user_struct(VERIFY_READ, tfilter,
2344 tswapal(tfprog->filter), 0)) {
2345 unlock_user_struct(tfprog, optval_addr, 1);
2346 return -TARGET_EFAULT;
2349 fprog.len = tswap16(tfprog->len);
2350 filter = g_try_new(struct sock_filter, fprog.len);
2351 if (filter == NULL) {
2352 unlock_user_struct(tfilter, tfprog->filter, 1);
2353 unlock_user_struct(tfprog, optval_addr, 1);
2354 return -TARGET_ENOMEM;
2356 for (i = 0; i < fprog.len; i++) {
2357 filter[i].code = tswap16(tfilter[i].code);
2358 filter[i].jt = tfilter[i].jt;
2359 filter[i].jf = tfilter[i].jf;
2360 filter[i].k = tswap32(tfilter[i].k);
2362 fprog.filter = filter;
2364 ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
2365 SO_ATTACH_FILTER, &fprog, sizeof(fprog)));
2366 g_free(filter);
2368 unlock_user_struct(tfilter, tfprog->filter, 1);
2369 unlock_user_struct(tfprog, optval_addr, 1);
2370 return ret;
2372 case TARGET_SO_BINDTODEVICE:
2374 char *dev_ifname, *addr_ifname;
2376 if (optlen > IFNAMSIZ - 1) {
2377 optlen = IFNAMSIZ - 1;
2379 dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2380 if (!dev_ifname) {
2381 return -TARGET_EFAULT;
2383 optname = SO_BINDTODEVICE;
2384 addr_ifname = alloca(IFNAMSIZ);
2385 memcpy(addr_ifname, dev_ifname, optlen);
2386 addr_ifname[optlen] = 0;
2387 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2388 addr_ifname, optlen));
2389 unlock_user (dev_ifname, optval_addr, 0);
2390 return ret;
2392 case TARGET_SO_LINGER:
2394 struct linger lg;
2395 struct target_linger *tlg;
2397 if (optlen != sizeof(struct target_linger)) {
2398 return -TARGET_EINVAL;
2400 if (!lock_user_struct(VERIFY_READ, tlg, optval_addr, 1)) {
2401 return -TARGET_EFAULT;
2403 __get_user(lg.l_onoff, &tlg->l_onoff);
2404 __get_user(lg.l_linger, &tlg->l_linger);
2405 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, SO_LINGER,
2406 &lg, sizeof(lg)));
2407 unlock_user_struct(tlg, optval_addr, 0);
2408 return ret;
2410 /* Options with 'int' argument. */
2411 case TARGET_SO_DEBUG:
2412 optname = SO_DEBUG;
2413 break;
2414 case TARGET_SO_REUSEADDR:
2415 optname = SO_REUSEADDR;
2416 break;
2417 #ifdef SO_REUSEPORT
2418 case TARGET_SO_REUSEPORT:
2419 optname = SO_REUSEPORT;
2420 break;
2421 #endif
2422 case TARGET_SO_TYPE:
2423 optname = SO_TYPE;
2424 break;
2425 case TARGET_SO_ERROR:
2426 optname = SO_ERROR;
2427 break;
2428 case TARGET_SO_DONTROUTE:
2429 optname = SO_DONTROUTE;
2430 break;
2431 case TARGET_SO_BROADCAST:
2432 optname = SO_BROADCAST;
2433 break;
2434 case TARGET_SO_SNDBUF:
2435 optname = SO_SNDBUF;
2436 break;
2437 case TARGET_SO_SNDBUFFORCE:
2438 optname = SO_SNDBUFFORCE;
2439 break;
2440 case TARGET_SO_RCVBUF:
2441 optname = SO_RCVBUF;
2442 break;
2443 case TARGET_SO_RCVBUFFORCE:
2444 optname = SO_RCVBUFFORCE;
2445 break;
2446 case TARGET_SO_KEEPALIVE:
2447 optname = SO_KEEPALIVE;
2448 break;
2449 case TARGET_SO_OOBINLINE:
2450 optname = SO_OOBINLINE;
2451 break;
2452 case TARGET_SO_NO_CHECK:
2453 optname = SO_NO_CHECK;
2454 break;
2455 case TARGET_SO_PRIORITY:
2456 optname = SO_PRIORITY;
2457 break;
2458 #ifdef SO_BSDCOMPAT
2459 case TARGET_SO_BSDCOMPAT:
2460 optname = SO_BSDCOMPAT;
2461 break;
2462 #endif
2463 case TARGET_SO_PASSCRED:
2464 optname = SO_PASSCRED;
2465 break;
2466 case TARGET_SO_PASSSEC:
2467 optname = SO_PASSSEC;
2468 break;
2469 case TARGET_SO_TIMESTAMP:
2470 optname = SO_TIMESTAMP;
2471 break;
2472 case TARGET_SO_RCVLOWAT:
2473 optname = SO_RCVLOWAT;
2474 break;
2475 default:
2476 goto unimplemented;
2478 if (optlen < sizeof(uint32_t))
2479 return -TARGET_EINVAL;
2481 if (get_user_u32(val, optval_addr))
2482 return -TARGET_EFAULT;
2483 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val)));
2484 break;
2485 #ifdef SOL_NETLINK
2486 case SOL_NETLINK:
2487 switch (optname) {
2488 case NETLINK_PKTINFO:
2489 case NETLINK_ADD_MEMBERSHIP:
2490 case NETLINK_DROP_MEMBERSHIP:
2491 case NETLINK_BROADCAST_ERROR:
2492 case NETLINK_NO_ENOBUFS:
2493 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2494 case NETLINK_LISTEN_ALL_NSID:
2495 case NETLINK_CAP_ACK:
2496 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2497 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2498 case NETLINK_EXT_ACK:
2499 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2500 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2501 case NETLINK_GET_STRICT_CHK:
2502 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2503 break;
2504 default:
2505 goto unimplemented;
2507 val = 0;
2508 if (optlen < sizeof(uint32_t)) {
2509 return -TARGET_EINVAL;
2511 if (get_user_u32(val, optval_addr)) {
2512 return -TARGET_EFAULT;
2514 ret = get_errno(setsockopt(sockfd, SOL_NETLINK, optname, &val,
2515 sizeof(val)));
2516 break;
2517 #endif /* SOL_NETLINK */
2518 default:
2519 unimplemented:
2520 qemu_log_mask(LOG_UNIMP, "Unsupported setsockopt level=%d optname=%d\n",
2521 level, optname);
2522 ret = -TARGET_ENOPROTOOPT;
2524 return ret;
2527 /* do_getsockopt() Must return target values and target errnos. */
2528 static abi_long do_getsockopt(int sockfd, int level, int optname,
2529 abi_ulong optval_addr, abi_ulong optlen)
2531 abi_long ret;
2532 int len, val;
2533 socklen_t lv;
2535 switch(level) {
2536 case TARGET_SOL_SOCKET:
2537 level = SOL_SOCKET;
2538 switch (optname) {
2539 /* These don't just return a single integer */
2540 case TARGET_SO_PEERNAME:
2541 goto unimplemented;
2542 case TARGET_SO_RCVTIMEO: {
2543 struct timeval tv;
2544 socklen_t tvlen;
2546 optname = SO_RCVTIMEO;
2548 get_timeout:
2549 if (get_user_u32(len, optlen)) {
2550 return -TARGET_EFAULT;
2552 if (len < 0) {
2553 return -TARGET_EINVAL;
2556 tvlen = sizeof(tv);
2557 ret = get_errno(getsockopt(sockfd, level, optname,
2558 &tv, &tvlen));
2559 if (ret < 0) {
2560 return ret;
2562 if (len > sizeof(struct target_timeval)) {
2563 len = sizeof(struct target_timeval);
2565 if (copy_to_user_timeval(optval_addr, &tv)) {
2566 return -TARGET_EFAULT;
2568 if (put_user_u32(len, optlen)) {
2569 return -TARGET_EFAULT;
2571 break;
2573 case TARGET_SO_SNDTIMEO:
2574 optname = SO_SNDTIMEO;
2575 goto get_timeout;
2576 case TARGET_SO_PEERCRED: {
2577 struct ucred cr;
2578 socklen_t crlen;
2579 struct target_ucred *tcr;
2581 if (get_user_u32(len, optlen)) {
2582 return -TARGET_EFAULT;
2584 if (len < 0) {
2585 return -TARGET_EINVAL;
2588 crlen = sizeof(cr);
2589 ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED,
2590 &cr, &crlen));
2591 if (ret < 0) {
2592 return ret;
2594 if (len > crlen) {
2595 len = crlen;
2597 if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) {
2598 return -TARGET_EFAULT;
2600 __put_user(cr.pid, &tcr->pid);
2601 __put_user(cr.uid, &tcr->uid);
2602 __put_user(cr.gid, &tcr->gid);
2603 unlock_user_struct(tcr, optval_addr, 1);
2604 if (put_user_u32(len, optlen)) {
2605 return -TARGET_EFAULT;
2607 break;
2609 case TARGET_SO_PEERSEC: {
2610 char *name;
2612 if (get_user_u32(len, optlen)) {
2613 return -TARGET_EFAULT;
2615 if (len < 0) {
2616 return -TARGET_EINVAL;
2618 name = lock_user(VERIFY_WRITE, optval_addr, len, 0);
2619 if (!name) {
2620 return -TARGET_EFAULT;
2622 lv = len;
2623 ret = get_errno(getsockopt(sockfd, level, SO_PEERSEC,
2624 name, &lv));
2625 if (put_user_u32(lv, optlen)) {
2626 ret = -TARGET_EFAULT;
2628 unlock_user(name, optval_addr, lv);
2629 break;
2631 case TARGET_SO_LINGER:
2633 struct linger lg;
2634 socklen_t lglen;
2635 struct target_linger *tlg;
2637 if (get_user_u32(len, optlen)) {
2638 return -TARGET_EFAULT;
2640 if (len < 0) {
2641 return -TARGET_EINVAL;
2644 lglen = sizeof(lg);
2645 ret = get_errno(getsockopt(sockfd, level, SO_LINGER,
2646 &lg, &lglen));
2647 if (ret < 0) {
2648 return ret;
2650 if (len > lglen) {
2651 len = lglen;
2653 if (!lock_user_struct(VERIFY_WRITE, tlg, optval_addr, 0)) {
2654 return -TARGET_EFAULT;
2656 __put_user(lg.l_onoff, &tlg->l_onoff);
2657 __put_user(lg.l_linger, &tlg->l_linger);
2658 unlock_user_struct(tlg, optval_addr, 1);
2659 if (put_user_u32(len, optlen)) {
2660 return -TARGET_EFAULT;
2662 break;
2664 /* Options with 'int' argument. */
2665 case TARGET_SO_DEBUG:
2666 optname = SO_DEBUG;
2667 goto int_case;
2668 case TARGET_SO_REUSEADDR:
2669 optname = SO_REUSEADDR;
2670 goto int_case;
2671 #ifdef SO_REUSEPORT
2672 case TARGET_SO_REUSEPORT:
2673 optname = SO_REUSEPORT;
2674 goto int_case;
2675 #endif
2676 case TARGET_SO_TYPE:
2677 optname = SO_TYPE;
2678 goto int_case;
2679 case TARGET_SO_ERROR:
2680 optname = SO_ERROR;
2681 goto int_case;
2682 case TARGET_SO_DONTROUTE:
2683 optname = SO_DONTROUTE;
2684 goto int_case;
2685 case TARGET_SO_BROADCAST:
2686 optname = SO_BROADCAST;
2687 goto int_case;
2688 case TARGET_SO_SNDBUF:
2689 optname = SO_SNDBUF;
2690 goto int_case;
2691 case TARGET_SO_RCVBUF:
2692 optname = SO_RCVBUF;
2693 goto int_case;
2694 case TARGET_SO_KEEPALIVE:
2695 optname = SO_KEEPALIVE;
2696 goto int_case;
2697 case TARGET_SO_OOBINLINE:
2698 optname = SO_OOBINLINE;
2699 goto int_case;
2700 case TARGET_SO_NO_CHECK:
2701 optname = SO_NO_CHECK;
2702 goto int_case;
2703 case TARGET_SO_PRIORITY:
2704 optname = SO_PRIORITY;
2705 goto int_case;
2706 #ifdef SO_BSDCOMPAT
2707 case TARGET_SO_BSDCOMPAT:
2708 optname = SO_BSDCOMPAT;
2709 goto int_case;
2710 #endif
2711 case TARGET_SO_PASSCRED:
2712 optname = SO_PASSCRED;
2713 goto int_case;
2714 case TARGET_SO_TIMESTAMP:
2715 optname = SO_TIMESTAMP;
2716 goto int_case;
2717 case TARGET_SO_RCVLOWAT:
2718 optname = SO_RCVLOWAT;
2719 goto int_case;
2720 case TARGET_SO_ACCEPTCONN:
2721 optname = SO_ACCEPTCONN;
2722 goto int_case;
2723 case TARGET_SO_PROTOCOL:
2724 optname = SO_PROTOCOL;
2725 goto int_case;
2726 case TARGET_SO_DOMAIN:
2727 optname = SO_DOMAIN;
2728 goto int_case;
2729 default:
2730 goto int_case;
2732 break;
2733 case SOL_TCP:
2734 case SOL_UDP:
2735 /* TCP and UDP options all take an 'int' value. */
2736 int_case:
2737 if (get_user_u32(len, optlen))
2738 return -TARGET_EFAULT;
2739 if (len < 0)
2740 return -TARGET_EINVAL;
2741 lv = sizeof(lv);
2742 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2743 if (ret < 0)
2744 return ret;
2745 switch (optname) {
2746 case SO_TYPE:
2747 val = host_to_target_sock_type(val);
2748 break;
2749 case SO_ERROR:
2750 val = host_to_target_errno(val);
2751 break;
2753 if (len > lv)
2754 len = lv;
2755 if (len == 4) {
2756 if (put_user_u32(val, optval_addr))
2757 return -TARGET_EFAULT;
2758 } else {
2759 if (put_user_u8(val, optval_addr))
2760 return -TARGET_EFAULT;
2762 if (put_user_u32(len, optlen))
2763 return -TARGET_EFAULT;
2764 break;
2765 case SOL_IP:
2766 switch(optname) {
2767 case IP_TOS:
2768 case IP_TTL:
2769 case IP_HDRINCL:
2770 case IP_ROUTER_ALERT:
2771 case IP_RECVOPTS:
2772 case IP_RETOPTS:
2773 case IP_PKTINFO:
2774 case IP_MTU_DISCOVER:
2775 case IP_RECVERR:
2776 case IP_RECVTOS:
2777 #ifdef IP_FREEBIND
2778 case IP_FREEBIND:
2779 #endif
2780 case IP_MULTICAST_TTL:
2781 case IP_MULTICAST_LOOP:
2782 if (get_user_u32(len, optlen))
2783 return -TARGET_EFAULT;
2784 if (len < 0)
2785 return -TARGET_EINVAL;
2786 lv = sizeof(lv);
2787 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2788 if (ret < 0)
2789 return ret;
2790 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2791 len = 1;
2792 if (put_user_u32(len, optlen)
2793 || put_user_u8(val, optval_addr))
2794 return -TARGET_EFAULT;
2795 } else {
2796 if (len > sizeof(int))
2797 len = sizeof(int);
2798 if (put_user_u32(len, optlen)
2799 || put_user_u32(val, optval_addr))
2800 return -TARGET_EFAULT;
2802 break;
2803 default:
2804 ret = -TARGET_ENOPROTOOPT;
2805 break;
2807 break;
2808 case SOL_IPV6:
2809 switch (optname) {
2810 case IPV6_MTU_DISCOVER:
2811 case IPV6_MTU:
2812 case IPV6_V6ONLY:
2813 case IPV6_RECVPKTINFO:
2814 case IPV6_UNICAST_HOPS:
2815 case IPV6_MULTICAST_HOPS:
2816 case IPV6_MULTICAST_LOOP:
2817 case IPV6_RECVERR:
2818 case IPV6_RECVHOPLIMIT:
2819 case IPV6_2292HOPLIMIT:
2820 case IPV6_CHECKSUM:
2821 case IPV6_ADDRFORM:
2822 case IPV6_2292PKTINFO:
2823 case IPV6_RECVTCLASS:
2824 case IPV6_RECVRTHDR:
2825 case IPV6_2292RTHDR:
2826 case IPV6_RECVHOPOPTS:
2827 case IPV6_2292HOPOPTS:
2828 case IPV6_RECVDSTOPTS:
2829 case IPV6_2292DSTOPTS:
2830 case IPV6_TCLASS:
2831 case IPV6_ADDR_PREFERENCES:
2832 #ifdef IPV6_RECVPATHMTU
2833 case IPV6_RECVPATHMTU:
2834 #endif
2835 #ifdef IPV6_TRANSPARENT
2836 case IPV6_TRANSPARENT:
2837 #endif
2838 #ifdef IPV6_FREEBIND
2839 case IPV6_FREEBIND:
2840 #endif
2841 #ifdef IPV6_RECVORIGDSTADDR
2842 case IPV6_RECVORIGDSTADDR:
2843 #endif
2844 if (get_user_u32(len, optlen))
2845 return -TARGET_EFAULT;
2846 if (len < 0)
2847 return -TARGET_EINVAL;
2848 lv = sizeof(lv);
2849 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2850 if (ret < 0)
2851 return ret;
2852 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2853 len = 1;
2854 if (put_user_u32(len, optlen)
2855 || put_user_u8(val, optval_addr))
2856 return -TARGET_EFAULT;
2857 } else {
2858 if (len > sizeof(int))
2859 len = sizeof(int);
2860 if (put_user_u32(len, optlen)
2861 || put_user_u32(val, optval_addr))
2862 return -TARGET_EFAULT;
2864 break;
2865 default:
2866 ret = -TARGET_ENOPROTOOPT;
2867 break;
2869 break;
2870 #ifdef SOL_NETLINK
2871 case SOL_NETLINK:
2872 switch (optname) {
2873 case NETLINK_PKTINFO:
2874 case NETLINK_BROADCAST_ERROR:
2875 case NETLINK_NO_ENOBUFS:
2876 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2877 case NETLINK_LISTEN_ALL_NSID:
2878 case NETLINK_CAP_ACK:
2879 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2880 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2881 case NETLINK_EXT_ACK:
2882 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2883 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2884 case NETLINK_GET_STRICT_CHK:
2885 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2886 if (get_user_u32(len, optlen)) {
2887 return -TARGET_EFAULT;
2889 if (len != sizeof(val)) {
2890 return -TARGET_EINVAL;
2892 lv = len;
2893 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2894 if (ret < 0) {
2895 return ret;
2897 if (put_user_u32(lv, optlen)
2898 || put_user_u32(val, optval_addr)) {
2899 return -TARGET_EFAULT;
2901 break;
2902 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2903 case NETLINK_LIST_MEMBERSHIPS:
2905 uint32_t *results;
2906 int i;
2907 if (get_user_u32(len, optlen)) {
2908 return -TARGET_EFAULT;
2910 if (len < 0) {
2911 return -TARGET_EINVAL;
2913 results = lock_user(VERIFY_WRITE, optval_addr, len, 1);
2914 if (!results && len > 0) {
2915 return -TARGET_EFAULT;
2917 lv = len;
2918 ret = get_errno(getsockopt(sockfd, level, optname, results, &lv));
2919 if (ret < 0) {
2920 unlock_user(results, optval_addr, 0);
2921 return ret;
2923 /* swap host endianess to target endianess. */
2924 for (i = 0; i < (len / sizeof(uint32_t)); i++) {
2925 results[i] = tswap32(results[i]);
2927 if (put_user_u32(lv, optlen)) {
2928 return -TARGET_EFAULT;
2930 unlock_user(results, optval_addr, 0);
2931 break;
2933 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2934 default:
2935 goto unimplemented;
2937 break;
2938 #endif /* SOL_NETLINK */
2939 default:
2940 unimplemented:
2941 qemu_log_mask(LOG_UNIMP,
2942 "getsockopt level=%d optname=%d not yet supported\n",
2943 level, optname);
2944 ret = -TARGET_EOPNOTSUPP;
2945 break;
2947 return ret;
2950 /* Convert target low/high pair representing file offset into the host
2951 * low/high pair. This function doesn't handle offsets bigger than 64 bits
2952 * as the kernel doesn't handle them either.
2954 static void target_to_host_low_high(abi_ulong tlow,
2955 abi_ulong thigh,
2956 unsigned long *hlow,
2957 unsigned long *hhigh)
2959 uint64_t off = tlow |
2960 ((unsigned long long)thigh << TARGET_LONG_BITS / 2) <<
2961 TARGET_LONG_BITS / 2;
2963 *hlow = off;
2964 *hhigh = (off >> HOST_LONG_BITS / 2) >> HOST_LONG_BITS / 2;
2967 static struct iovec *lock_iovec(int type, abi_ulong target_addr,
2968 abi_ulong count, int copy)
2970 struct target_iovec *target_vec;
2971 struct iovec *vec;
2972 abi_ulong total_len, max_len;
2973 int i;
2974 int err = 0;
2975 bool bad_address = false;
2977 if (count == 0) {
2978 errno = 0;
2979 return NULL;
2981 if (count > IOV_MAX) {
2982 errno = EINVAL;
2983 return NULL;
2986 vec = g_try_new0(struct iovec, count);
2987 if (vec == NULL) {
2988 errno = ENOMEM;
2989 return NULL;
2992 target_vec = lock_user(VERIFY_READ, target_addr,
2993 count * sizeof(struct target_iovec), 1);
2994 if (target_vec == NULL) {
2995 err = EFAULT;
2996 goto fail2;
2999 /* ??? If host page size > target page size, this will result in a
3000 value larger than what we can actually support. */
3001 max_len = 0x7fffffff & TARGET_PAGE_MASK;
3002 total_len = 0;
3004 for (i = 0; i < count; i++) {
3005 abi_ulong base = tswapal(target_vec[i].iov_base);
3006 abi_long len = tswapal(target_vec[i].iov_len);
3008 if (len < 0) {
3009 err = EINVAL;
3010 goto fail;
3011 } else if (len == 0) {
3012 /* Zero length pointer is ignored. */
3013 vec[i].iov_base = 0;
3014 } else {
3015 vec[i].iov_base = lock_user(type, base, len, copy);
3016 /* If the first buffer pointer is bad, this is a fault. But
3017 * subsequent bad buffers will result in a partial write; this
3018 * is realized by filling the vector with null pointers and
3019 * zero lengths. */
3020 if (!vec[i].iov_base) {
3021 if (i == 0) {
3022 err = EFAULT;
3023 goto fail;
3024 } else {
3025 bad_address = true;
3028 if (bad_address) {
3029 len = 0;
3031 if (len > max_len - total_len) {
3032 len = max_len - total_len;
3035 vec[i].iov_len = len;
3036 total_len += len;
3039 unlock_user(target_vec, target_addr, 0);
3040 return vec;
3042 fail:
3043 while (--i >= 0) {
3044 if (tswapal(target_vec[i].iov_len) > 0) {
3045 unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0);
3048 unlock_user(target_vec, target_addr, 0);
3049 fail2:
3050 g_free(vec);
3051 errno = err;
3052 return NULL;
3055 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr,
3056 abi_ulong count, int copy)
3058 struct target_iovec *target_vec;
3059 int i;
3061 target_vec = lock_user(VERIFY_READ, target_addr,
3062 count * sizeof(struct target_iovec), 1);
3063 if (target_vec) {
3064 for (i = 0; i < count; i++) {
3065 abi_ulong base = tswapal(target_vec[i].iov_base);
3066 abi_long len = tswapal(target_vec[i].iov_len);
3067 if (len < 0) {
3068 break;
3070 unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0);
3072 unlock_user(target_vec, target_addr, 0);
3075 g_free(vec);
3078 static inline int target_to_host_sock_type(int *type)
3080 int host_type = 0;
3081 int target_type = *type;
3083 switch (target_type & TARGET_SOCK_TYPE_MASK) {
3084 case TARGET_SOCK_DGRAM:
3085 host_type = SOCK_DGRAM;
3086 break;
3087 case TARGET_SOCK_STREAM:
3088 host_type = SOCK_STREAM;
3089 break;
3090 default:
3091 host_type = target_type & TARGET_SOCK_TYPE_MASK;
3092 break;
3094 if (target_type & TARGET_SOCK_CLOEXEC) {
3095 #if defined(SOCK_CLOEXEC)
3096 host_type |= SOCK_CLOEXEC;
3097 #else
3098 return -TARGET_EINVAL;
3099 #endif
3101 if (target_type & TARGET_SOCK_NONBLOCK) {
3102 #if defined(SOCK_NONBLOCK)
3103 host_type |= SOCK_NONBLOCK;
3104 #elif !defined(O_NONBLOCK)
3105 return -TARGET_EINVAL;
3106 #endif
3108 *type = host_type;
3109 return 0;
3112 /* Try to emulate socket type flags after socket creation. */
3113 static int sock_flags_fixup(int fd, int target_type)
3115 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
3116 if (target_type & TARGET_SOCK_NONBLOCK) {
3117 int flags = fcntl(fd, F_GETFL);
3118 if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) {
3119 close(fd);
3120 return -TARGET_EINVAL;
3123 #endif
3124 return fd;
3127 /* do_socket() Must return target values and target errnos. */
3128 static abi_long do_socket(int domain, int type, int protocol)
3130 int target_type = type;
3131 int ret;
3133 ret = target_to_host_sock_type(&type);
3134 if (ret) {
3135 return ret;
3138 if (domain == PF_NETLINK && !(
3139 #ifdef CONFIG_RTNETLINK
3140 protocol == NETLINK_ROUTE ||
3141 #endif
3142 protocol == NETLINK_KOBJECT_UEVENT ||
3143 protocol == NETLINK_AUDIT)) {
3144 return -TARGET_EPROTONOSUPPORT;
3147 if (domain == AF_PACKET ||
3148 (domain == AF_INET && type == SOCK_PACKET)) {
3149 protocol = tswap16(protocol);
3152 ret = get_errno(socket(domain, type, protocol));
3153 if (ret >= 0) {
3154 ret = sock_flags_fixup(ret, target_type);
3155 if (type == SOCK_PACKET) {
3156 /* Manage an obsolete case :
3157 * if socket type is SOCK_PACKET, bind by name
3159 fd_trans_register(ret, &target_packet_trans);
3160 } else if (domain == PF_NETLINK) {
3161 switch (protocol) {
3162 #ifdef CONFIG_RTNETLINK
3163 case NETLINK_ROUTE:
3164 fd_trans_register(ret, &target_netlink_route_trans);
3165 break;
3166 #endif
3167 case NETLINK_KOBJECT_UEVENT:
3168 /* nothing to do: messages are strings */
3169 break;
3170 case NETLINK_AUDIT:
3171 fd_trans_register(ret, &target_netlink_audit_trans);
3172 break;
3173 default:
3174 g_assert_not_reached();
3178 return ret;
3181 /* do_bind() Must return target values and target errnos. */
3182 static abi_long do_bind(int sockfd, abi_ulong target_addr,
3183 socklen_t addrlen)
3185 void *addr;
3186 abi_long ret;
3188 if ((int)addrlen < 0) {
3189 return -TARGET_EINVAL;
3192 addr = alloca(addrlen+1);
3194 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3195 if (ret)
3196 return ret;
3198 return get_errno(bind(sockfd, addr, addrlen));
3201 /* do_connect() Must return target values and target errnos. */
3202 static abi_long do_connect(int sockfd, abi_ulong target_addr,
3203 socklen_t addrlen)
3205 void *addr;
3206 abi_long ret;
3208 if ((int)addrlen < 0) {
3209 return -TARGET_EINVAL;
3212 addr = alloca(addrlen+1);
3214 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3215 if (ret)
3216 return ret;
3218 return get_errno(safe_connect(sockfd, addr, addrlen));
3221 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
3222 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp,
3223 int flags, int send)
3225 abi_long ret, len;
3226 struct msghdr msg;
3227 abi_ulong count;
3228 struct iovec *vec;
3229 abi_ulong target_vec;
3231 if (msgp->msg_name) {
3232 msg.msg_namelen = tswap32(msgp->msg_namelen);
3233 msg.msg_name = alloca(msg.msg_namelen+1);
3234 ret = target_to_host_sockaddr(fd, msg.msg_name,
3235 tswapal(msgp->msg_name),
3236 msg.msg_namelen);
3237 if (ret == -TARGET_EFAULT) {
3238 /* For connected sockets msg_name and msg_namelen must
3239 * be ignored, so returning EFAULT immediately is wrong.
3240 * Instead, pass a bad msg_name to the host kernel, and
3241 * let it decide whether to return EFAULT or not.
3243 msg.msg_name = (void *)-1;
3244 } else if (ret) {
3245 goto out2;
3247 } else {
3248 msg.msg_name = NULL;
3249 msg.msg_namelen = 0;
3251 msg.msg_controllen = 2 * tswapal(msgp->msg_controllen);
3252 msg.msg_control = alloca(msg.msg_controllen);
3253 memset(msg.msg_control, 0, msg.msg_controllen);
3255 msg.msg_flags = tswap32(msgp->msg_flags);
3257 count = tswapal(msgp->msg_iovlen);
3258 target_vec = tswapal(msgp->msg_iov);
3260 if (count > IOV_MAX) {
3261 /* sendrcvmsg returns a different errno for this condition than
3262 * readv/writev, so we must catch it here before lock_iovec() does.
3264 ret = -TARGET_EMSGSIZE;
3265 goto out2;
3268 vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE,
3269 target_vec, count, send);
3270 if (vec == NULL) {
3271 ret = -host_to_target_errno(errno);
3272 /* allow sending packet without any iov, e.g. with MSG_MORE flag */
3273 if (!send || ret) {
3274 goto out2;
3277 msg.msg_iovlen = count;
3278 msg.msg_iov = vec;
3280 if (send) {
3281 if (fd_trans_target_to_host_data(fd)) {
3282 void *host_msg;
3284 host_msg = g_malloc(msg.msg_iov->iov_len);
3285 memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len);
3286 ret = fd_trans_target_to_host_data(fd)(host_msg,
3287 msg.msg_iov->iov_len);
3288 if (ret >= 0) {
3289 msg.msg_iov->iov_base = host_msg;
3290 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3292 g_free(host_msg);
3293 } else {
3294 ret = target_to_host_cmsg(&msg, msgp);
3295 if (ret == 0) {
3296 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3299 } else {
3300 ret = get_errno(safe_recvmsg(fd, &msg, flags));
3301 if (!is_error(ret)) {
3302 len = ret;
3303 if (fd_trans_host_to_target_data(fd)) {
3304 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base,
3305 MIN(msg.msg_iov->iov_len, len));
3307 if (!is_error(ret)) {
3308 ret = host_to_target_cmsg(msgp, &msg);
3310 if (!is_error(ret)) {
3311 msgp->msg_namelen = tswap32(msg.msg_namelen);
3312 msgp->msg_flags = tswap32(msg.msg_flags);
3313 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) {
3314 ret = host_to_target_sockaddr(tswapal(msgp->msg_name),
3315 msg.msg_name, msg.msg_namelen);
3316 if (ret) {
3317 goto out;
3321 ret = len;
3326 out:
3327 if (vec) {
3328 unlock_iovec(vec, target_vec, count, !send);
3330 out2:
3331 return ret;
3334 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg,
3335 int flags, int send)
3337 abi_long ret;
3338 struct target_msghdr *msgp;
3340 if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE,
3341 msgp,
3342 target_msg,
3343 send ? 1 : 0)) {
3344 return -TARGET_EFAULT;
3346 ret = do_sendrecvmsg_locked(fd, msgp, flags, send);
3347 unlock_user_struct(msgp, target_msg, send ? 0 : 1);
3348 return ret;
3351 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
3352 * so it might not have this *mmsg-specific flag either.
3354 #ifndef MSG_WAITFORONE
3355 #define MSG_WAITFORONE 0x10000
3356 #endif
3358 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec,
3359 unsigned int vlen, unsigned int flags,
3360 int send)
3362 struct target_mmsghdr *mmsgp;
3363 abi_long ret = 0;
3364 int i;
3366 if (vlen > UIO_MAXIOV) {
3367 vlen = UIO_MAXIOV;
3370 mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1);
3371 if (!mmsgp) {
3372 return -TARGET_EFAULT;
3375 for (i = 0; i < vlen; i++) {
3376 ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send);
3377 if (is_error(ret)) {
3378 break;
3380 mmsgp[i].msg_len = tswap32(ret);
3381 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
3382 if (flags & MSG_WAITFORONE) {
3383 flags |= MSG_DONTWAIT;
3387 unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i);
3389 /* Return number of datagrams sent if we sent any at all;
3390 * otherwise return the error.
3392 if (i) {
3393 return i;
3395 return ret;
3398 /* do_accept4() Must return target values and target errnos. */
3399 static abi_long do_accept4(int fd, abi_ulong target_addr,
3400 abi_ulong target_addrlen_addr, int flags)
3402 socklen_t addrlen, ret_addrlen;
3403 void *addr;
3404 abi_long ret;
3405 int host_flags;
3407 if (flags & ~(TARGET_SOCK_CLOEXEC | TARGET_SOCK_NONBLOCK)) {
3408 return -TARGET_EINVAL;
3411 host_flags = 0;
3412 if (flags & TARGET_SOCK_NONBLOCK) {
3413 host_flags |= SOCK_NONBLOCK;
3415 if (flags & TARGET_SOCK_CLOEXEC) {
3416 host_flags |= SOCK_CLOEXEC;
3419 if (target_addr == 0) {
3420 return get_errno(safe_accept4(fd, NULL, NULL, host_flags));
3423 /* linux returns EFAULT if addrlen pointer is invalid */
3424 if (get_user_u32(addrlen, target_addrlen_addr))
3425 return -TARGET_EFAULT;
3427 if ((int)addrlen < 0) {
3428 return -TARGET_EINVAL;
3431 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3432 return -TARGET_EFAULT;
3435 addr = alloca(addrlen);
3437 ret_addrlen = addrlen;
3438 ret = get_errno(safe_accept4(fd, addr, &ret_addrlen, host_flags));
3439 if (!is_error(ret)) {
3440 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3441 if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3442 ret = -TARGET_EFAULT;
3445 return ret;
3448 /* do_getpeername() Must return target values and target errnos. */
3449 static abi_long do_getpeername(int fd, abi_ulong target_addr,
3450 abi_ulong target_addrlen_addr)
3452 socklen_t addrlen, ret_addrlen;
3453 void *addr;
3454 abi_long ret;
3456 if (get_user_u32(addrlen, target_addrlen_addr))
3457 return -TARGET_EFAULT;
3459 if ((int)addrlen < 0) {
3460 return -TARGET_EINVAL;
3463 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3464 return -TARGET_EFAULT;
3467 addr = alloca(addrlen);
3469 ret_addrlen = addrlen;
3470 ret = get_errno(getpeername(fd, addr, &ret_addrlen));
3471 if (!is_error(ret)) {
3472 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3473 if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3474 ret = -TARGET_EFAULT;
3477 return ret;
3480 /* do_getsockname() Must return target values and target errnos. */
3481 static abi_long do_getsockname(int fd, abi_ulong target_addr,
3482 abi_ulong target_addrlen_addr)
3484 socklen_t addrlen, ret_addrlen;
3485 void *addr;
3486 abi_long ret;
3488 if (get_user_u32(addrlen, target_addrlen_addr))
3489 return -TARGET_EFAULT;
3491 if ((int)addrlen < 0) {
3492 return -TARGET_EINVAL;
3495 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3496 return -TARGET_EFAULT;
3499 addr = alloca(addrlen);
3501 ret_addrlen = addrlen;
3502 ret = get_errno(getsockname(fd, addr, &ret_addrlen));
3503 if (!is_error(ret)) {
3504 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3505 if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3506 ret = -TARGET_EFAULT;
3509 return ret;
3512 /* do_socketpair() Must return target values and target errnos. */
3513 static abi_long do_socketpair(int domain, int type, int protocol,
3514 abi_ulong target_tab_addr)
3516 int tab[2];
3517 abi_long ret;
3519 target_to_host_sock_type(&type);
3521 ret = get_errno(socketpair(domain, type, protocol, tab));
3522 if (!is_error(ret)) {
3523 if (put_user_s32(tab[0], target_tab_addr)
3524 || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0])))
3525 ret = -TARGET_EFAULT;
3527 return ret;
3530 /* do_sendto() Must return target values and target errnos. */
3531 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags,
3532 abi_ulong target_addr, socklen_t addrlen)
3534 void *addr;
3535 void *host_msg;
3536 void *copy_msg = NULL;
3537 abi_long ret;
3539 if ((int)addrlen < 0) {
3540 return -TARGET_EINVAL;
3543 host_msg = lock_user(VERIFY_READ, msg, len, 1);
3544 if (!host_msg)
3545 return -TARGET_EFAULT;
3546 if (fd_trans_target_to_host_data(fd)) {
3547 copy_msg = host_msg;
3548 host_msg = g_malloc(len);
3549 memcpy(host_msg, copy_msg, len);
3550 ret = fd_trans_target_to_host_data(fd)(host_msg, len);
3551 if (ret < 0) {
3552 goto fail;
3555 if (target_addr) {
3556 addr = alloca(addrlen+1);
3557 ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen);
3558 if (ret) {
3559 goto fail;
3561 ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen));
3562 } else {
3563 ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0));
3565 fail:
3566 if (copy_msg) {
3567 g_free(host_msg);
3568 host_msg = copy_msg;
3570 unlock_user(host_msg, msg, 0);
3571 return ret;
3574 /* do_recvfrom() Must return target values and target errnos. */
3575 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags,
3576 abi_ulong target_addr,
3577 abi_ulong target_addrlen)
3579 socklen_t addrlen, ret_addrlen;
3580 void *addr;
3581 void *host_msg;
3582 abi_long ret;
3584 if (!msg) {
3585 host_msg = NULL;
3586 } else {
3587 host_msg = lock_user(VERIFY_WRITE, msg, len, 0);
3588 if (!host_msg) {
3589 return -TARGET_EFAULT;
3592 if (target_addr) {
3593 if (get_user_u32(addrlen, target_addrlen)) {
3594 ret = -TARGET_EFAULT;
3595 goto fail;
3597 if ((int)addrlen < 0) {
3598 ret = -TARGET_EINVAL;
3599 goto fail;
3601 addr = alloca(addrlen);
3602 ret_addrlen = addrlen;
3603 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags,
3604 addr, &ret_addrlen));
3605 } else {
3606 addr = NULL; /* To keep compiler quiet. */
3607 addrlen = 0; /* To keep compiler quiet. */
3608 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0));
3610 if (!is_error(ret)) {
3611 if (fd_trans_host_to_target_data(fd)) {
3612 abi_long trans;
3613 trans = fd_trans_host_to_target_data(fd)(host_msg, MIN(ret, len));
3614 if (is_error(trans)) {
3615 ret = trans;
3616 goto fail;
3619 if (target_addr) {
3620 host_to_target_sockaddr(target_addr, addr,
3621 MIN(addrlen, ret_addrlen));
3622 if (put_user_u32(ret_addrlen, target_addrlen)) {
3623 ret = -TARGET_EFAULT;
3624 goto fail;
3627 unlock_user(host_msg, msg, len);
3628 } else {
3629 fail:
3630 unlock_user(host_msg, msg, 0);
3632 return ret;
3635 #ifdef TARGET_NR_socketcall
3636 /* do_socketcall() must return target values and target errnos. */
3637 static abi_long do_socketcall(int num, abi_ulong vptr)
3639 static const unsigned nargs[] = { /* number of arguments per operation */
3640 [TARGET_SYS_SOCKET] = 3, /* domain, type, protocol */
3641 [TARGET_SYS_BIND] = 3, /* fd, addr, addrlen */
3642 [TARGET_SYS_CONNECT] = 3, /* fd, addr, addrlen */
3643 [TARGET_SYS_LISTEN] = 2, /* fd, backlog */
3644 [TARGET_SYS_ACCEPT] = 3, /* fd, addr, addrlen */
3645 [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */
3646 [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */
3647 [TARGET_SYS_SOCKETPAIR] = 4, /* domain, type, protocol, tab */
3648 [TARGET_SYS_SEND] = 4, /* fd, msg, len, flags */
3649 [TARGET_SYS_RECV] = 4, /* fd, msg, len, flags */
3650 [TARGET_SYS_SENDTO] = 6, /* fd, msg, len, flags, addr, addrlen */
3651 [TARGET_SYS_RECVFROM] = 6, /* fd, msg, len, flags, addr, addrlen */
3652 [TARGET_SYS_SHUTDOWN] = 2, /* fd, how */
3653 [TARGET_SYS_SETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */
3654 [TARGET_SYS_GETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */
3655 [TARGET_SYS_SENDMSG] = 3, /* fd, msg, flags */
3656 [TARGET_SYS_RECVMSG] = 3, /* fd, msg, flags */
3657 [TARGET_SYS_ACCEPT4] = 4, /* fd, addr, addrlen, flags */
3658 [TARGET_SYS_RECVMMSG] = 4, /* fd, msgvec, vlen, flags */
3659 [TARGET_SYS_SENDMMSG] = 4, /* fd, msgvec, vlen, flags */
3661 abi_long a[6]; /* max 6 args */
3662 unsigned i;
3664 /* check the range of the first argument num */
3665 /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */
3666 if (num < 1 || num > TARGET_SYS_SENDMMSG) {
3667 return -TARGET_EINVAL;
3669 /* ensure we have space for args */
3670 if (nargs[num] > ARRAY_SIZE(a)) {
3671 return -TARGET_EINVAL;
3673 /* collect the arguments in a[] according to nargs[] */
3674 for (i = 0; i < nargs[num]; ++i) {
3675 if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) {
3676 return -TARGET_EFAULT;
3679 /* now when we have the args, invoke the appropriate underlying function */
3680 switch (num) {
3681 case TARGET_SYS_SOCKET: /* domain, type, protocol */
3682 return do_socket(a[0], a[1], a[2]);
3683 case TARGET_SYS_BIND: /* sockfd, addr, addrlen */
3684 return do_bind(a[0], a[1], a[2]);
3685 case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */
3686 return do_connect(a[0], a[1], a[2]);
3687 case TARGET_SYS_LISTEN: /* sockfd, backlog */
3688 return get_errno(listen(a[0], a[1]));
3689 case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */
3690 return do_accept4(a[0], a[1], a[2], 0);
3691 case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */
3692 return do_getsockname(a[0], a[1], a[2]);
3693 case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */
3694 return do_getpeername(a[0], a[1], a[2]);
3695 case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */
3696 return do_socketpair(a[0], a[1], a[2], a[3]);
3697 case TARGET_SYS_SEND: /* sockfd, msg, len, flags */
3698 return do_sendto(a[0], a[1], a[2], a[3], 0, 0);
3699 case TARGET_SYS_RECV: /* sockfd, msg, len, flags */
3700 return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0);
3701 case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */
3702 return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]);
3703 case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */
3704 return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]);
3705 case TARGET_SYS_SHUTDOWN: /* sockfd, how */
3706 return get_errno(shutdown(a[0], a[1]));
3707 case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3708 return do_setsockopt(a[0], a[1], a[2], a[3], a[4]);
3709 case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3710 return do_getsockopt(a[0], a[1], a[2], a[3], a[4]);
3711 case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */
3712 return do_sendrecvmsg(a[0], a[1], a[2], 1);
3713 case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */
3714 return do_sendrecvmsg(a[0], a[1], a[2], 0);
3715 case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */
3716 return do_accept4(a[0], a[1], a[2], a[3]);
3717 case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */
3718 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0);
3719 case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */
3720 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1);
3721 default:
3722 qemu_log_mask(LOG_UNIMP, "Unsupported socketcall: %d\n", num);
3723 return -TARGET_EINVAL;
3726 #endif
3728 #define N_SHM_REGIONS 32
3730 static struct shm_region {
3731 abi_ulong start;
3732 abi_ulong size;
3733 bool in_use;
3734 } shm_regions[N_SHM_REGIONS];
3736 #ifndef TARGET_SEMID64_DS
3737 /* asm-generic version of this struct */
3738 struct target_semid64_ds
3740 struct target_ipc_perm sem_perm;
3741 abi_ulong sem_otime;
3742 #if TARGET_ABI_BITS == 32
3743 abi_ulong __unused1;
3744 #endif
3745 abi_ulong sem_ctime;
3746 #if TARGET_ABI_BITS == 32
3747 abi_ulong __unused2;
3748 #endif
3749 abi_ulong sem_nsems;
3750 abi_ulong __unused3;
3751 abi_ulong __unused4;
3753 #endif
3755 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip,
3756 abi_ulong target_addr)
3758 struct target_ipc_perm *target_ip;
3759 struct target_semid64_ds *target_sd;
3761 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3762 return -TARGET_EFAULT;
3763 target_ip = &(target_sd->sem_perm);
3764 host_ip->__key = tswap32(target_ip->__key);
3765 host_ip->uid = tswap32(target_ip->uid);
3766 host_ip->gid = tswap32(target_ip->gid);
3767 host_ip->cuid = tswap32(target_ip->cuid);
3768 host_ip->cgid = tswap32(target_ip->cgid);
3769 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3770 host_ip->mode = tswap32(target_ip->mode);
3771 #else
3772 host_ip->mode = tswap16(target_ip->mode);
3773 #endif
3774 #if defined(TARGET_PPC)
3775 host_ip->__seq = tswap32(target_ip->__seq);
3776 #else
3777 host_ip->__seq = tswap16(target_ip->__seq);
3778 #endif
3779 unlock_user_struct(target_sd, target_addr, 0);
3780 return 0;
3783 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr,
3784 struct ipc_perm *host_ip)
3786 struct target_ipc_perm *target_ip;
3787 struct target_semid64_ds *target_sd;
3789 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3790 return -TARGET_EFAULT;
3791 target_ip = &(target_sd->sem_perm);
3792 target_ip->__key = tswap32(host_ip->__key);
3793 target_ip->uid = tswap32(host_ip->uid);
3794 target_ip->gid = tswap32(host_ip->gid);
3795 target_ip->cuid = tswap32(host_ip->cuid);
3796 target_ip->cgid = tswap32(host_ip->cgid);
3797 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3798 target_ip->mode = tswap32(host_ip->mode);
3799 #else
3800 target_ip->mode = tswap16(host_ip->mode);
3801 #endif
3802 #if defined(TARGET_PPC)
3803 target_ip->__seq = tswap32(host_ip->__seq);
3804 #else
3805 target_ip->__seq = tswap16(host_ip->__seq);
3806 #endif
3807 unlock_user_struct(target_sd, target_addr, 1);
3808 return 0;
3811 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd,
3812 abi_ulong target_addr)
3814 struct target_semid64_ds *target_sd;
3816 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3817 return -TARGET_EFAULT;
3818 if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr))
3819 return -TARGET_EFAULT;
3820 host_sd->sem_nsems = tswapal(target_sd->sem_nsems);
3821 host_sd->sem_otime = tswapal(target_sd->sem_otime);
3822 host_sd->sem_ctime = tswapal(target_sd->sem_ctime);
3823 unlock_user_struct(target_sd, target_addr, 0);
3824 return 0;
3827 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr,
3828 struct semid_ds *host_sd)
3830 struct target_semid64_ds *target_sd;
3832 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3833 return -TARGET_EFAULT;
3834 if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm)))
3835 return -TARGET_EFAULT;
3836 target_sd->sem_nsems = tswapal(host_sd->sem_nsems);
3837 target_sd->sem_otime = tswapal(host_sd->sem_otime);
3838 target_sd->sem_ctime = tswapal(host_sd->sem_ctime);
3839 unlock_user_struct(target_sd, target_addr, 1);
3840 return 0;
3843 struct target_seminfo {
3844 int semmap;
3845 int semmni;
3846 int semmns;
3847 int semmnu;
3848 int semmsl;
3849 int semopm;
3850 int semume;
3851 int semusz;
3852 int semvmx;
3853 int semaem;
3856 static inline abi_long host_to_target_seminfo(abi_ulong target_addr,
3857 struct seminfo *host_seminfo)
3859 struct target_seminfo *target_seminfo;
3860 if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0))
3861 return -TARGET_EFAULT;
3862 __put_user(host_seminfo->semmap, &target_seminfo->semmap);
3863 __put_user(host_seminfo->semmni, &target_seminfo->semmni);
3864 __put_user(host_seminfo->semmns, &target_seminfo->semmns);
3865 __put_user(host_seminfo->semmnu, &target_seminfo->semmnu);
3866 __put_user(host_seminfo->semmsl, &target_seminfo->semmsl);
3867 __put_user(host_seminfo->semopm, &target_seminfo->semopm);
3868 __put_user(host_seminfo->semume, &target_seminfo->semume);
3869 __put_user(host_seminfo->semusz, &target_seminfo->semusz);
3870 __put_user(host_seminfo->semvmx, &target_seminfo->semvmx);
3871 __put_user(host_seminfo->semaem, &target_seminfo->semaem);
3872 unlock_user_struct(target_seminfo, target_addr, 1);
3873 return 0;
3876 union semun {
3877 int val;
3878 struct semid_ds *buf;
3879 unsigned short *array;
3880 struct seminfo *__buf;
3883 union target_semun {
3884 int val;
3885 abi_ulong buf;
3886 abi_ulong array;
3887 abi_ulong __buf;
3890 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array,
3891 abi_ulong target_addr)
3893 int nsems;
3894 unsigned short *array;
3895 union semun semun;
3896 struct semid_ds semid_ds;
3897 int i, ret;
3899 semun.buf = &semid_ds;
3901 ret = semctl(semid, 0, IPC_STAT, semun);
3902 if (ret == -1)
3903 return get_errno(ret);
3905 nsems = semid_ds.sem_nsems;
3907 *host_array = g_try_new(unsigned short, nsems);
3908 if (!*host_array) {
3909 return -TARGET_ENOMEM;
3911 array = lock_user(VERIFY_READ, target_addr,
3912 nsems*sizeof(unsigned short), 1);
3913 if (!array) {
3914 g_free(*host_array);
3915 return -TARGET_EFAULT;
3918 for(i=0; i<nsems; i++) {
3919 __get_user((*host_array)[i], &array[i]);
3921 unlock_user(array, target_addr, 0);
3923 return 0;
3926 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr,
3927 unsigned short **host_array)
3929 int nsems;
3930 unsigned short *array;
3931 union semun semun;
3932 struct semid_ds semid_ds;
3933 int i, ret;
3935 semun.buf = &semid_ds;
3937 ret = semctl(semid, 0, IPC_STAT, semun);
3938 if (ret == -1)
3939 return get_errno(ret);
3941 nsems = semid_ds.sem_nsems;
3943 array = lock_user(VERIFY_WRITE, target_addr,
3944 nsems*sizeof(unsigned short), 0);
3945 if (!array)
3946 return -TARGET_EFAULT;
3948 for(i=0; i<nsems; i++) {
3949 __put_user((*host_array)[i], &array[i]);
3951 g_free(*host_array);
3952 unlock_user(array, target_addr, 1);
3954 return 0;
3957 static inline abi_long do_semctl(int semid, int semnum, int cmd,
3958 abi_ulong target_arg)
3960 union target_semun target_su = { .buf = target_arg };
3961 union semun arg;
3962 struct semid_ds dsarg;
3963 unsigned short *array = NULL;
3964 struct seminfo seminfo;
3965 abi_long ret = -TARGET_EINVAL;
3966 abi_long err;
3967 cmd &= 0xff;
3969 switch( cmd ) {
3970 case GETVAL:
3971 case SETVAL:
3972 /* In 64 bit cross-endian situations, we will erroneously pick up
3973 * the wrong half of the union for the "val" element. To rectify
3974 * this, the entire 8-byte structure is byteswapped, followed by
3975 * a swap of the 4 byte val field. In other cases, the data is
3976 * already in proper host byte order. */
3977 if (sizeof(target_su.val) != (sizeof(target_su.buf))) {
3978 target_su.buf = tswapal(target_su.buf);
3979 arg.val = tswap32(target_su.val);
3980 } else {
3981 arg.val = target_su.val;
3983 ret = get_errno(semctl(semid, semnum, cmd, arg));
3984 break;
3985 case GETALL:
3986 case SETALL:
3987 err = target_to_host_semarray(semid, &array, target_su.array);
3988 if (err)
3989 return err;
3990 arg.array = array;
3991 ret = get_errno(semctl(semid, semnum, cmd, arg));
3992 err = host_to_target_semarray(semid, target_su.array, &array);
3993 if (err)
3994 return err;
3995 break;
3996 case IPC_STAT:
3997 case IPC_SET:
3998 case SEM_STAT:
3999 err = target_to_host_semid_ds(&dsarg, target_su.buf);
4000 if (err)
4001 return err;
4002 arg.buf = &dsarg;
4003 ret = get_errno(semctl(semid, semnum, cmd, arg));
4004 err = host_to_target_semid_ds(target_su.buf, &dsarg);
4005 if (err)
4006 return err;
4007 break;
4008 case IPC_INFO:
4009 case SEM_INFO:
4010 arg.__buf = &seminfo;
4011 ret = get_errno(semctl(semid, semnum, cmd, arg));
4012 err = host_to_target_seminfo(target_su.__buf, &seminfo);
4013 if (err)
4014 return err;
4015 break;
4016 case IPC_RMID:
4017 case GETPID:
4018 case GETNCNT:
4019 case GETZCNT:
4020 ret = get_errno(semctl(semid, semnum, cmd, NULL));
4021 break;
4024 return ret;
4027 struct target_sembuf {
4028 unsigned short sem_num;
4029 short sem_op;
4030 short sem_flg;
4033 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf,
4034 abi_ulong target_addr,
4035 unsigned nsops)
4037 struct target_sembuf *target_sembuf;
4038 int i;
4040 target_sembuf = lock_user(VERIFY_READ, target_addr,
4041 nsops*sizeof(struct target_sembuf), 1);
4042 if (!target_sembuf)
4043 return -TARGET_EFAULT;
4045 for(i=0; i<nsops; i++) {
4046 __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num);
4047 __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op);
4048 __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg);
4051 unlock_user(target_sembuf, target_addr, 0);
4053 return 0;
4056 #if defined(TARGET_NR_ipc) || defined(TARGET_NR_semop) || \
4057 defined(TARGET_NR_semtimedop) || defined(TARGET_NR_semtimedop_time64)
4060 * This macro is required to handle the s390 variants, which passes the
4061 * arguments in a different order than default.
4063 #ifdef __s390x__
4064 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4065 (__nsops), (__timeout), (__sops)
4066 #else
4067 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4068 (__nsops), 0, (__sops), (__timeout)
4069 #endif
4071 static inline abi_long do_semtimedop(int semid,
4072 abi_long ptr,
4073 unsigned nsops,
4074 abi_long timeout, bool time64)
4076 struct sembuf *sops;
4077 struct timespec ts, *pts = NULL;
4078 abi_long ret;
4080 if (timeout) {
4081 pts = &ts;
4082 if (time64) {
4083 if (target_to_host_timespec64(pts, timeout)) {
4084 return -TARGET_EFAULT;
4086 } else {
4087 if (target_to_host_timespec(pts, timeout)) {
4088 return -TARGET_EFAULT;
4093 if (nsops > TARGET_SEMOPM) {
4094 return -TARGET_E2BIG;
4097 sops = g_new(struct sembuf, nsops);
4099 if (target_to_host_sembuf(sops, ptr, nsops)) {
4100 g_free(sops);
4101 return -TARGET_EFAULT;
4104 ret = -TARGET_ENOSYS;
4105 #ifdef __NR_semtimedop
4106 ret = get_errno(safe_semtimedop(semid, sops, nsops, pts));
4107 #endif
4108 #ifdef __NR_ipc
4109 if (ret == -TARGET_ENOSYS) {
4110 ret = get_errno(safe_ipc(IPCOP_semtimedop, semid,
4111 SEMTIMEDOP_IPC_ARGS(nsops, sops, (long)pts)));
4113 #endif
4114 g_free(sops);
4115 return ret;
4117 #endif
4119 struct target_msqid_ds
4121 struct target_ipc_perm msg_perm;
4122 abi_ulong msg_stime;
4123 #if TARGET_ABI_BITS == 32
4124 abi_ulong __unused1;
4125 #endif
4126 abi_ulong msg_rtime;
4127 #if TARGET_ABI_BITS == 32
4128 abi_ulong __unused2;
4129 #endif
4130 abi_ulong msg_ctime;
4131 #if TARGET_ABI_BITS == 32
4132 abi_ulong __unused3;
4133 #endif
4134 abi_ulong __msg_cbytes;
4135 abi_ulong msg_qnum;
4136 abi_ulong msg_qbytes;
4137 abi_ulong msg_lspid;
4138 abi_ulong msg_lrpid;
4139 abi_ulong __unused4;
4140 abi_ulong __unused5;
4143 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md,
4144 abi_ulong target_addr)
4146 struct target_msqid_ds *target_md;
4148 if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1))
4149 return -TARGET_EFAULT;
4150 if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr))
4151 return -TARGET_EFAULT;
4152 host_md->msg_stime = tswapal(target_md->msg_stime);
4153 host_md->msg_rtime = tswapal(target_md->msg_rtime);
4154 host_md->msg_ctime = tswapal(target_md->msg_ctime);
4155 host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes);
4156 host_md->msg_qnum = tswapal(target_md->msg_qnum);
4157 host_md->msg_qbytes = tswapal(target_md->msg_qbytes);
4158 host_md->msg_lspid = tswapal(target_md->msg_lspid);
4159 host_md->msg_lrpid = tswapal(target_md->msg_lrpid);
4160 unlock_user_struct(target_md, target_addr, 0);
4161 return 0;
4164 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr,
4165 struct msqid_ds *host_md)
4167 struct target_msqid_ds *target_md;
4169 if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0))
4170 return -TARGET_EFAULT;
4171 if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm)))
4172 return -TARGET_EFAULT;
4173 target_md->msg_stime = tswapal(host_md->msg_stime);
4174 target_md->msg_rtime = tswapal(host_md->msg_rtime);
4175 target_md->msg_ctime = tswapal(host_md->msg_ctime);
4176 target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes);
4177 target_md->msg_qnum = tswapal(host_md->msg_qnum);
4178 target_md->msg_qbytes = tswapal(host_md->msg_qbytes);
4179 target_md->msg_lspid = tswapal(host_md->msg_lspid);
4180 target_md->msg_lrpid = tswapal(host_md->msg_lrpid);
4181 unlock_user_struct(target_md, target_addr, 1);
4182 return 0;
4185 struct target_msginfo {
4186 int msgpool;
4187 int msgmap;
4188 int msgmax;
4189 int msgmnb;
4190 int msgmni;
4191 int msgssz;
4192 int msgtql;
4193 unsigned short int msgseg;
4196 static inline abi_long host_to_target_msginfo(abi_ulong target_addr,
4197 struct msginfo *host_msginfo)
4199 struct target_msginfo *target_msginfo;
4200 if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0))
4201 return -TARGET_EFAULT;
4202 __put_user(host_msginfo->msgpool, &target_msginfo->msgpool);
4203 __put_user(host_msginfo->msgmap, &target_msginfo->msgmap);
4204 __put_user(host_msginfo->msgmax, &target_msginfo->msgmax);
4205 __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb);
4206 __put_user(host_msginfo->msgmni, &target_msginfo->msgmni);
4207 __put_user(host_msginfo->msgssz, &target_msginfo->msgssz);
4208 __put_user(host_msginfo->msgtql, &target_msginfo->msgtql);
4209 __put_user(host_msginfo->msgseg, &target_msginfo->msgseg);
4210 unlock_user_struct(target_msginfo, target_addr, 1);
4211 return 0;
4214 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr)
4216 struct msqid_ds dsarg;
4217 struct msginfo msginfo;
4218 abi_long ret = -TARGET_EINVAL;
4220 cmd &= 0xff;
4222 switch (cmd) {
4223 case IPC_STAT:
4224 case IPC_SET:
4225 case MSG_STAT:
4226 if (target_to_host_msqid_ds(&dsarg,ptr))
4227 return -TARGET_EFAULT;
4228 ret = get_errno(msgctl(msgid, cmd, &dsarg));
4229 if (host_to_target_msqid_ds(ptr,&dsarg))
4230 return -TARGET_EFAULT;
4231 break;
4232 case IPC_RMID:
4233 ret = get_errno(msgctl(msgid, cmd, NULL));
4234 break;
4235 case IPC_INFO:
4236 case MSG_INFO:
4237 ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo));
4238 if (host_to_target_msginfo(ptr, &msginfo))
4239 return -TARGET_EFAULT;
4240 break;
4243 return ret;
4246 struct target_msgbuf {
4247 abi_long mtype;
4248 char mtext[1];
4251 static inline abi_long do_msgsnd(int msqid, abi_long msgp,
4252 ssize_t msgsz, int msgflg)
4254 struct target_msgbuf *target_mb;
4255 struct msgbuf *host_mb;
4256 abi_long ret = 0;
4258 if (msgsz < 0) {
4259 return -TARGET_EINVAL;
4262 if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0))
4263 return -TARGET_EFAULT;
4264 host_mb = g_try_malloc(msgsz + sizeof(long));
4265 if (!host_mb) {
4266 unlock_user_struct(target_mb, msgp, 0);
4267 return -TARGET_ENOMEM;
4269 host_mb->mtype = (abi_long) tswapal(target_mb->mtype);
4270 memcpy(host_mb->mtext, target_mb->mtext, msgsz);
4271 ret = -TARGET_ENOSYS;
4272 #ifdef __NR_msgsnd
4273 ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg));
4274 #endif
4275 #ifdef __NR_ipc
4276 if (ret == -TARGET_ENOSYS) {
4277 #ifdef __s390x__
4278 ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4279 host_mb));
4280 #else
4281 ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4282 host_mb, 0));
4283 #endif
4285 #endif
4286 g_free(host_mb);
4287 unlock_user_struct(target_mb, msgp, 0);
4289 return ret;
4292 #ifdef __NR_ipc
4293 #if defined(__sparc__)
4294 /* SPARC for msgrcv it does not use the kludge on final 2 arguments. */
4295 #define MSGRCV_ARGS(__msgp, __msgtyp) __msgp, __msgtyp
4296 #elif defined(__s390x__)
4297 /* The s390 sys_ipc variant has only five parameters. */
4298 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4299 ((long int[]){(long int)__msgp, __msgtyp})
4300 #else
4301 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4302 ((long int[]){(long int)__msgp, __msgtyp}), 0
4303 #endif
4304 #endif
4306 static inline abi_long do_msgrcv(int msqid, abi_long msgp,
4307 ssize_t msgsz, abi_long msgtyp,
4308 int msgflg)
4310 struct target_msgbuf *target_mb;
4311 char *target_mtext;
4312 struct msgbuf *host_mb;
4313 abi_long ret = 0;
4315 if (msgsz < 0) {
4316 return -TARGET_EINVAL;
4319 if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0))
4320 return -TARGET_EFAULT;
4322 host_mb = g_try_malloc(msgsz + sizeof(long));
4323 if (!host_mb) {
4324 ret = -TARGET_ENOMEM;
4325 goto end;
4327 ret = -TARGET_ENOSYS;
4328 #ifdef __NR_msgrcv
4329 ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg));
4330 #endif
4331 #ifdef __NR_ipc
4332 if (ret == -TARGET_ENOSYS) {
4333 ret = get_errno(safe_ipc(IPCOP_CALL(1, IPCOP_msgrcv), msqid, msgsz,
4334 msgflg, MSGRCV_ARGS(host_mb, msgtyp)));
4336 #endif
4338 if (ret > 0) {
4339 abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong);
4340 target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0);
4341 if (!target_mtext) {
4342 ret = -TARGET_EFAULT;
4343 goto end;
4345 memcpy(target_mb->mtext, host_mb->mtext, ret);
4346 unlock_user(target_mtext, target_mtext_addr, ret);
4349 target_mb->mtype = tswapal(host_mb->mtype);
4351 end:
4352 if (target_mb)
4353 unlock_user_struct(target_mb, msgp, 1);
4354 g_free(host_mb);
4355 return ret;
4358 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd,
4359 abi_ulong target_addr)
4361 struct target_shmid_ds *target_sd;
4363 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
4364 return -TARGET_EFAULT;
4365 if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr))
4366 return -TARGET_EFAULT;
4367 __get_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4368 __get_user(host_sd->shm_atime, &target_sd->shm_atime);
4369 __get_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4370 __get_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4371 __get_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4372 __get_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4373 __get_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4374 unlock_user_struct(target_sd, target_addr, 0);
4375 return 0;
4378 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr,
4379 struct shmid_ds *host_sd)
4381 struct target_shmid_ds *target_sd;
4383 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
4384 return -TARGET_EFAULT;
4385 if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm)))
4386 return -TARGET_EFAULT;
4387 __put_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4388 __put_user(host_sd->shm_atime, &target_sd->shm_atime);
4389 __put_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4390 __put_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4391 __put_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4392 __put_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4393 __put_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4394 unlock_user_struct(target_sd, target_addr, 1);
4395 return 0;
4398 struct target_shminfo {
4399 abi_ulong shmmax;
4400 abi_ulong shmmin;
4401 abi_ulong shmmni;
4402 abi_ulong shmseg;
4403 abi_ulong shmall;
4406 static inline abi_long host_to_target_shminfo(abi_ulong target_addr,
4407 struct shminfo *host_shminfo)
4409 struct target_shminfo *target_shminfo;
4410 if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0))
4411 return -TARGET_EFAULT;
4412 __put_user(host_shminfo->shmmax, &target_shminfo->shmmax);
4413 __put_user(host_shminfo->shmmin, &target_shminfo->shmmin);
4414 __put_user(host_shminfo->shmmni, &target_shminfo->shmmni);
4415 __put_user(host_shminfo->shmseg, &target_shminfo->shmseg);
4416 __put_user(host_shminfo->shmall, &target_shminfo->shmall);
4417 unlock_user_struct(target_shminfo, target_addr, 1);
4418 return 0;
4421 struct target_shm_info {
4422 int used_ids;
4423 abi_ulong shm_tot;
4424 abi_ulong shm_rss;
4425 abi_ulong shm_swp;
4426 abi_ulong swap_attempts;
4427 abi_ulong swap_successes;
4430 static inline abi_long host_to_target_shm_info(abi_ulong target_addr,
4431 struct shm_info *host_shm_info)
4433 struct target_shm_info *target_shm_info;
4434 if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0))
4435 return -TARGET_EFAULT;
4436 __put_user(host_shm_info->used_ids, &target_shm_info->used_ids);
4437 __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot);
4438 __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss);
4439 __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp);
4440 __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts);
4441 __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes);
4442 unlock_user_struct(target_shm_info, target_addr, 1);
4443 return 0;
4446 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf)
4448 struct shmid_ds dsarg;
4449 struct shminfo shminfo;
4450 struct shm_info shm_info;
4451 abi_long ret = -TARGET_EINVAL;
4453 cmd &= 0xff;
4455 switch(cmd) {
4456 case IPC_STAT:
4457 case IPC_SET:
4458 case SHM_STAT:
4459 if (target_to_host_shmid_ds(&dsarg, buf))
4460 return -TARGET_EFAULT;
4461 ret = get_errno(shmctl(shmid, cmd, &dsarg));
4462 if (host_to_target_shmid_ds(buf, &dsarg))
4463 return -TARGET_EFAULT;
4464 break;
4465 case IPC_INFO:
4466 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo));
4467 if (host_to_target_shminfo(buf, &shminfo))
4468 return -TARGET_EFAULT;
4469 break;
4470 case SHM_INFO:
4471 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info));
4472 if (host_to_target_shm_info(buf, &shm_info))
4473 return -TARGET_EFAULT;
4474 break;
4475 case IPC_RMID:
4476 case SHM_LOCK:
4477 case SHM_UNLOCK:
4478 ret = get_errno(shmctl(shmid, cmd, NULL));
4479 break;
4482 return ret;
4485 #ifndef TARGET_FORCE_SHMLBA
4486 /* For most architectures, SHMLBA is the same as the page size;
4487 * some architectures have larger values, in which case they should
4488 * define TARGET_FORCE_SHMLBA and provide a target_shmlba() function.
4489 * This corresponds to the kernel arch code defining __ARCH_FORCE_SHMLBA
4490 * and defining its own value for SHMLBA.
4492 * The kernel also permits SHMLBA to be set by the architecture to a
4493 * value larger than the page size without setting __ARCH_FORCE_SHMLBA;
4494 * this means that addresses are rounded to the large size if
4495 * SHM_RND is set but addresses not aligned to that size are not rejected
4496 * as long as they are at least page-aligned. Since the only architecture
4497 * which uses this is ia64 this code doesn't provide for that oddity.
4499 static inline abi_ulong target_shmlba(CPUArchState *cpu_env)
4501 return TARGET_PAGE_SIZE;
4503 #endif
4505 static abi_ulong do_shmat(CPUArchState *cpu_env, int shmid,
4506 abi_ulong shmaddr, int shmflg)
4508 CPUState *cpu = env_cpu(cpu_env);
4509 abi_ulong raddr;
4510 void *host_raddr;
4511 struct shmid_ds shm_info;
4512 int i, ret;
4513 abi_ulong shmlba;
4515 /* shmat pointers are always untagged */
4517 /* find out the length of the shared memory segment */
4518 ret = get_errno(shmctl(shmid, IPC_STAT, &shm_info));
4519 if (is_error(ret)) {
4520 /* can't get length, bail out */
4521 return ret;
4524 shmlba = target_shmlba(cpu_env);
4526 if (shmaddr & (shmlba - 1)) {
4527 if (shmflg & SHM_RND) {
4528 shmaddr &= ~(shmlba - 1);
4529 } else {
4530 return -TARGET_EINVAL;
4533 if (!guest_range_valid_untagged(shmaddr, shm_info.shm_segsz)) {
4534 return -TARGET_EINVAL;
4537 mmap_lock();
4540 * We're mapping shared memory, so ensure we generate code for parallel
4541 * execution and flush old translations. This will work up to the level
4542 * supported by the host -- anything that requires EXCP_ATOMIC will not
4543 * be atomic with respect to an external process.
4545 if (!(cpu->tcg_cflags & CF_PARALLEL)) {
4546 cpu->tcg_cflags |= CF_PARALLEL;
4547 tb_flush(cpu);
4550 if (shmaddr)
4551 host_raddr = shmat(shmid, (void *)g2h_untagged(shmaddr), shmflg);
4552 else {
4553 abi_ulong mmap_start;
4555 /* In order to use the host shmat, we need to honor host SHMLBA. */
4556 mmap_start = mmap_find_vma(0, shm_info.shm_segsz, MAX(SHMLBA, shmlba));
4558 if (mmap_start == -1) {
4559 errno = ENOMEM;
4560 host_raddr = (void *)-1;
4561 } else
4562 host_raddr = shmat(shmid, g2h_untagged(mmap_start),
4563 shmflg | SHM_REMAP);
4566 if (host_raddr == (void *)-1) {
4567 mmap_unlock();
4568 return get_errno((intptr_t)host_raddr);
4570 raddr = h2g((uintptr_t)host_raddr);
4572 page_set_flags(raddr, raddr + shm_info.shm_segsz - 1,
4573 PAGE_VALID | PAGE_RESET | PAGE_READ |
4574 (shmflg & SHM_RDONLY ? 0 : PAGE_WRITE));
4576 for (i = 0; i < N_SHM_REGIONS; i++) {
4577 if (!shm_regions[i].in_use) {
4578 shm_regions[i].in_use = true;
4579 shm_regions[i].start = raddr;
4580 shm_regions[i].size = shm_info.shm_segsz;
4581 break;
4585 mmap_unlock();
4586 return raddr;
4589 static inline abi_long do_shmdt(abi_ulong shmaddr)
4591 int i;
4592 abi_long rv;
4594 /* shmdt pointers are always untagged */
4596 mmap_lock();
4598 for (i = 0; i < N_SHM_REGIONS; ++i) {
4599 if (shm_regions[i].in_use && shm_regions[i].start == shmaddr) {
4600 shm_regions[i].in_use = false;
4601 page_set_flags(shmaddr, shmaddr + shm_regions[i].size - 1, 0);
4602 break;
4605 rv = get_errno(shmdt(g2h_untagged(shmaddr)));
4607 mmap_unlock();
4609 return rv;
4612 #ifdef TARGET_NR_ipc
4613 /* ??? This only works with linear mappings. */
4614 /* do_ipc() must return target values and target errnos. */
4615 static abi_long do_ipc(CPUArchState *cpu_env,
4616 unsigned int call, abi_long first,
4617 abi_long second, abi_long third,
4618 abi_long ptr, abi_long fifth)
4620 int version;
4621 abi_long ret = 0;
4623 version = call >> 16;
4624 call &= 0xffff;
4626 switch (call) {
4627 case IPCOP_semop:
4628 ret = do_semtimedop(first, ptr, second, 0, false);
4629 break;
4630 case IPCOP_semtimedop:
4632 * The s390 sys_ipc variant has only five parameters instead of six
4633 * (as for default variant) and the only difference is the handling of
4634 * SEMTIMEDOP where on s390 the third parameter is used as a pointer
4635 * to a struct timespec where the generic variant uses fifth parameter.
4637 #if defined(TARGET_S390X)
4638 ret = do_semtimedop(first, ptr, second, third, TARGET_ABI_BITS == 64);
4639 #else
4640 ret = do_semtimedop(first, ptr, second, fifth, TARGET_ABI_BITS == 64);
4641 #endif
4642 break;
4644 case IPCOP_semget:
4645 ret = get_errno(semget(first, second, third));
4646 break;
4648 case IPCOP_semctl: {
4649 /* The semun argument to semctl is passed by value, so dereference the
4650 * ptr argument. */
4651 abi_ulong atptr;
4652 get_user_ual(atptr, ptr);
4653 ret = do_semctl(first, second, third, atptr);
4654 break;
4657 case IPCOP_msgget:
4658 ret = get_errno(msgget(first, second));
4659 break;
4661 case IPCOP_msgsnd:
4662 ret = do_msgsnd(first, ptr, second, third);
4663 break;
4665 case IPCOP_msgctl:
4666 ret = do_msgctl(first, second, ptr);
4667 break;
4669 case IPCOP_msgrcv:
4670 switch (version) {
4671 case 0:
4673 struct target_ipc_kludge {
4674 abi_long msgp;
4675 abi_long msgtyp;
4676 } *tmp;
4678 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) {
4679 ret = -TARGET_EFAULT;
4680 break;
4683 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third);
4685 unlock_user_struct(tmp, ptr, 0);
4686 break;
4688 default:
4689 ret = do_msgrcv(first, ptr, second, fifth, third);
4691 break;
4693 case IPCOP_shmat:
4694 switch (version) {
4695 default:
4697 abi_ulong raddr;
4698 raddr = do_shmat(cpu_env, first, ptr, second);
4699 if (is_error(raddr))
4700 return get_errno(raddr);
4701 if (put_user_ual(raddr, third))
4702 return -TARGET_EFAULT;
4703 break;
4705 case 1:
4706 ret = -TARGET_EINVAL;
4707 break;
4709 break;
4710 case IPCOP_shmdt:
4711 ret = do_shmdt(ptr);
4712 break;
4714 case IPCOP_shmget:
4715 /* IPC_* flag values are the same on all linux platforms */
4716 ret = get_errno(shmget(first, second, third));
4717 break;
4719 /* IPC_* and SHM_* command values are the same on all linux platforms */
4720 case IPCOP_shmctl:
4721 ret = do_shmctl(first, second, ptr);
4722 break;
4723 default:
4724 qemu_log_mask(LOG_UNIMP, "Unsupported ipc call: %d (version %d)\n",
4725 call, version);
4726 ret = -TARGET_ENOSYS;
4727 break;
4729 return ret;
4731 #endif
4733 /* kernel structure types definitions */
4735 #define STRUCT(name, ...) STRUCT_ ## name,
4736 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
4737 enum {
4738 #include "syscall_types.h"
4739 STRUCT_MAX
4741 #undef STRUCT
4742 #undef STRUCT_SPECIAL
4744 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL };
4745 #define STRUCT_SPECIAL(name)
4746 #include "syscall_types.h"
4747 #undef STRUCT
4748 #undef STRUCT_SPECIAL
4750 #define MAX_STRUCT_SIZE 4096
4752 #ifdef CONFIG_FIEMAP
4753 /* So fiemap access checks don't overflow on 32 bit systems.
4754 * This is very slightly smaller than the limit imposed by
4755 * the underlying kernel.
4757 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \
4758 / sizeof(struct fiemap_extent))
4760 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp,
4761 int fd, int cmd, abi_long arg)
4763 /* The parameter for this ioctl is a struct fiemap followed
4764 * by an array of struct fiemap_extent whose size is set
4765 * in fiemap->fm_extent_count. The array is filled in by the
4766 * ioctl.
4768 int target_size_in, target_size_out;
4769 struct fiemap *fm;
4770 const argtype *arg_type = ie->arg_type;
4771 const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) };
4772 void *argptr, *p;
4773 abi_long ret;
4774 int i, extent_size = thunk_type_size(extent_arg_type, 0);
4775 uint32_t outbufsz;
4776 int free_fm = 0;
4778 assert(arg_type[0] == TYPE_PTR);
4779 assert(ie->access == IOC_RW);
4780 arg_type++;
4781 target_size_in = thunk_type_size(arg_type, 0);
4782 argptr = lock_user(VERIFY_READ, arg, target_size_in, 1);
4783 if (!argptr) {
4784 return -TARGET_EFAULT;
4786 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4787 unlock_user(argptr, arg, 0);
4788 fm = (struct fiemap *)buf_temp;
4789 if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) {
4790 return -TARGET_EINVAL;
4793 outbufsz = sizeof (*fm) +
4794 (sizeof(struct fiemap_extent) * fm->fm_extent_count);
4796 if (outbufsz > MAX_STRUCT_SIZE) {
4797 /* We can't fit all the extents into the fixed size buffer.
4798 * Allocate one that is large enough and use it instead.
4800 fm = g_try_malloc(outbufsz);
4801 if (!fm) {
4802 return -TARGET_ENOMEM;
4804 memcpy(fm, buf_temp, sizeof(struct fiemap));
4805 free_fm = 1;
4807 ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm));
4808 if (!is_error(ret)) {
4809 target_size_out = target_size_in;
4810 /* An extent_count of 0 means we were only counting the extents
4811 * so there are no structs to copy
4813 if (fm->fm_extent_count != 0) {
4814 target_size_out += fm->fm_mapped_extents * extent_size;
4816 argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0);
4817 if (!argptr) {
4818 ret = -TARGET_EFAULT;
4819 } else {
4820 /* Convert the struct fiemap */
4821 thunk_convert(argptr, fm, arg_type, THUNK_TARGET);
4822 if (fm->fm_extent_count != 0) {
4823 p = argptr + target_size_in;
4824 /* ...and then all the struct fiemap_extents */
4825 for (i = 0; i < fm->fm_mapped_extents; i++) {
4826 thunk_convert(p, &fm->fm_extents[i], extent_arg_type,
4827 THUNK_TARGET);
4828 p += extent_size;
4831 unlock_user(argptr, arg, target_size_out);
4834 if (free_fm) {
4835 g_free(fm);
4837 return ret;
4839 #endif
4841 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp,
4842 int fd, int cmd, abi_long arg)
4844 const argtype *arg_type = ie->arg_type;
4845 int target_size;
4846 void *argptr;
4847 int ret;
4848 struct ifconf *host_ifconf;
4849 uint32_t outbufsz;
4850 const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) };
4851 const argtype ifreq_max_type[] = { MK_STRUCT(STRUCT_ifmap_ifreq) };
4852 int target_ifreq_size;
4853 int nb_ifreq;
4854 int free_buf = 0;
4855 int i;
4856 int target_ifc_len;
4857 abi_long target_ifc_buf;
4858 int host_ifc_len;
4859 char *host_ifc_buf;
4861 assert(arg_type[0] == TYPE_PTR);
4862 assert(ie->access == IOC_RW);
4864 arg_type++;
4865 target_size = thunk_type_size(arg_type, 0);
4867 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4868 if (!argptr)
4869 return -TARGET_EFAULT;
4870 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4871 unlock_user(argptr, arg, 0);
4873 host_ifconf = (struct ifconf *)(unsigned long)buf_temp;
4874 target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf;
4875 target_ifreq_size = thunk_type_size(ifreq_max_type, 0);
4877 if (target_ifc_buf != 0) {
4878 target_ifc_len = host_ifconf->ifc_len;
4879 nb_ifreq = target_ifc_len / target_ifreq_size;
4880 host_ifc_len = nb_ifreq * sizeof(struct ifreq);
4882 outbufsz = sizeof(*host_ifconf) + host_ifc_len;
4883 if (outbufsz > MAX_STRUCT_SIZE) {
4885 * We can't fit all the extents into the fixed size buffer.
4886 * Allocate one that is large enough and use it instead.
4888 host_ifconf = g_try_malloc(outbufsz);
4889 if (!host_ifconf) {
4890 return -TARGET_ENOMEM;
4892 memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf));
4893 free_buf = 1;
4895 host_ifc_buf = (char *)host_ifconf + sizeof(*host_ifconf);
4897 host_ifconf->ifc_len = host_ifc_len;
4898 } else {
4899 host_ifc_buf = NULL;
4901 host_ifconf->ifc_buf = host_ifc_buf;
4903 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf));
4904 if (!is_error(ret)) {
4905 /* convert host ifc_len to target ifc_len */
4907 nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq);
4908 target_ifc_len = nb_ifreq * target_ifreq_size;
4909 host_ifconf->ifc_len = target_ifc_len;
4911 /* restore target ifc_buf */
4913 host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf;
4915 /* copy struct ifconf to target user */
4917 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4918 if (!argptr)
4919 return -TARGET_EFAULT;
4920 thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET);
4921 unlock_user(argptr, arg, target_size);
4923 if (target_ifc_buf != 0) {
4924 /* copy ifreq[] to target user */
4925 argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0);
4926 for (i = 0; i < nb_ifreq ; i++) {
4927 thunk_convert(argptr + i * target_ifreq_size,
4928 host_ifc_buf + i * sizeof(struct ifreq),
4929 ifreq_arg_type, THUNK_TARGET);
4931 unlock_user(argptr, target_ifc_buf, target_ifc_len);
4935 if (free_buf) {
4936 g_free(host_ifconf);
4939 return ret;
4942 #if defined(CONFIG_USBFS)
4943 #if HOST_LONG_BITS > 64
4944 #error USBDEVFS thunks do not support >64 bit hosts yet.
4945 #endif
4946 struct live_urb {
4947 uint64_t target_urb_adr;
4948 uint64_t target_buf_adr;
4949 char *target_buf_ptr;
4950 struct usbdevfs_urb host_urb;
4953 static GHashTable *usbdevfs_urb_hashtable(void)
4955 static GHashTable *urb_hashtable;
4957 if (!urb_hashtable) {
4958 urb_hashtable = g_hash_table_new(g_int64_hash, g_int64_equal);
4960 return urb_hashtable;
4963 static void urb_hashtable_insert(struct live_urb *urb)
4965 GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4966 g_hash_table_insert(urb_hashtable, urb, urb);
4969 static struct live_urb *urb_hashtable_lookup(uint64_t target_urb_adr)
4971 GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4972 return g_hash_table_lookup(urb_hashtable, &target_urb_adr);
4975 static void urb_hashtable_remove(struct live_urb *urb)
4977 GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4978 g_hash_table_remove(urb_hashtable, urb);
4981 static abi_long
4982 do_ioctl_usbdevfs_reapurb(const IOCTLEntry *ie, uint8_t *buf_temp,
4983 int fd, int cmd, abi_long arg)
4985 const argtype usbfsurb_arg_type[] = { MK_STRUCT(STRUCT_usbdevfs_urb) };
4986 const argtype ptrvoid_arg_type[] = { TYPE_PTRVOID, 0, 0 };
4987 struct live_urb *lurb;
4988 void *argptr;
4989 uint64_t hurb;
4990 int target_size;
4991 uintptr_t target_urb_adr;
4992 abi_long ret;
4994 target_size = thunk_type_size(usbfsurb_arg_type, THUNK_TARGET);
4996 memset(buf_temp, 0, sizeof(uint64_t));
4997 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
4998 if (is_error(ret)) {
4999 return ret;
5002 memcpy(&hurb, buf_temp, sizeof(uint64_t));
5003 lurb = (void *)((uintptr_t)hurb - offsetof(struct live_urb, host_urb));
5004 if (!lurb->target_urb_adr) {
5005 return -TARGET_EFAULT;
5007 urb_hashtable_remove(lurb);
5008 unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr,
5009 lurb->host_urb.buffer_length);
5010 lurb->target_buf_ptr = NULL;
5012 /* restore the guest buffer pointer */
5013 lurb->host_urb.buffer = (void *)(uintptr_t)lurb->target_buf_adr;
5015 /* update the guest urb struct */
5016 argptr = lock_user(VERIFY_WRITE, lurb->target_urb_adr, target_size, 0);
5017 if (!argptr) {
5018 g_free(lurb);
5019 return -TARGET_EFAULT;
5021 thunk_convert(argptr, &lurb->host_urb, usbfsurb_arg_type, THUNK_TARGET);
5022 unlock_user(argptr, lurb->target_urb_adr, target_size);
5024 target_size = thunk_type_size(ptrvoid_arg_type, THUNK_TARGET);
5025 /* write back the urb handle */
5026 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5027 if (!argptr) {
5028 g_free(lurb);
5029 return -TARGET_EFAULT;
5032 /* GHashTable uses 64-bit keys but thunk_convert expects uintptr_t */
5033 target_urb_adr = lurb->target_urb_adr;
5034 thunk_convert(argptr, &target_urb_adr, ptrvoid_arg_type, THUNK_TARGET);
5035 unlock_user(argptr, arg, target_size);
5037 g_free(lurb);
5038 return ret;
5041 static abi_long
5042 do_ioctl_usbdevfs_discardurb(const IOCTLEntry *ie,
5043 uint8_t *buf_temp __attribute__((unused)),
5044 int fd, int cmd, abi_long arg)
5046 struct live_urb *lurb;
5048 /* map target address back to host URB with metadata. */
5049 lurb = urb_hashtable_lookup(arg);
5050 if (!lurb) {
5051 return -TARGET_EFAULT;
5053 return get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
5056 static abi_long
5057 do_ioctl_usbdevfs_submiturb(const IOCTLEntry *ie, uint8_t *buf_temp,
5058 int fd, int cmd, abi_long arg)
5060 const argtype *arg_type = ie->arg_type;
5061 int target_size;
5062 abi_long ret;
5063 void *argptr;
5064 int rw_dir;
5065 struct live_urb *lurb;
5068 * each submitted URB needs to map to a unique ID for the
5069 * kernel, and that unique ID needs to be a pointer to
5070 * host memory. hence, we need to malloc for each URB.
5071 * isochronous transfers have a variable length struct.
5073 arg_type++;
5074 target_size = thunk_type_size(arg_type, THUNK_TARGET);
5076 /* construct host copy of urb and metadata */
5077 lurb = g_try_new0(struct live_urb, 1);
5078 if (!lurb) {
5079 return -TARGET_ENOMEM;
5082 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5083 if (!argptr) {
5084 g_free(lurb);
5085 return -TARGET_EFAULT;
5087 thunk_convert(&lurb->host_urb, argptr, arg_type, THUNK_HOST);
5088 unlock_user(argptr, arg, 0);
5090 lurb->target_urb_adr = arg;
5091 lurb->target_buf_adr = (uintptr_t)lurb->host_urb.buffer;
5093 /* buffer space used depends on endpoint type so lock the entire buffer */
5094 /* control type urbs should check the buffer contents for true direction */
5095 rw_dir = lurb->host_urb.endpoint & USB_DIR_IN ? VERIFY_WRITE : VERIFY_READ;
5096 lurb->target_buf_ptr = lock_user(rw_dir, lurb->target_buf_adr,
5097 lurb->host_urb.buffer_length, 1);
5098 if (lurb->target_buf_ptr == NULL) {
5099 g_free(lurb);
5100 return -TARGET_EFAULT;
5103 /* update buffer pointer in host copy */
5104 lurb->host_urb.buffer = lurb->target_buf_ptr;
5106 ret = get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
5107 if (is_error(ret)) {
5108 unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 0);
5109 g_free(lurb);
5110 } else {
5111 urb_hashtable_insert(lurb);
5114 return ret;
5116 #endif /* CONFIG_USBFS */
5118 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5119 int cmd, abi_long arg)
5121 void *argptr;
5122 struct dm_ioctl *host_dm;
5123 abi_long guest_data;
5124 uint32_t guest_data_size;
5125 int target_size;
5126 const argtype *arg_type = ie->arg_type;
5127 abi_long ret;
5128 void *big_buf = NULL;
5129 char *host_data;
5131 arg_type++;
5132 target_size = thunk_type_size(arg_type, 0);
5133 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5134 if (!argptr) {
5135 ret = -TARGET_EFAULT;
5136 goto out;
5138 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5139 unlock_user(argptr, arg, 0);
5141 /* buf_temp is too small, so fetch things into a bigger buffer */
5142 big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2);
5143 memcpy(big_buf, buf_temp, target_size);
5144 buf_temp = big_buf;
5145 host_dm = big_buf;
5147 guest_data = arg + host_dm->data_start;
5148 if ((guest_data - arg) < 0) {
5149 ret = -TARGET_EINVAL;
5150 goto out;
5152 guest_data_size = host_dm->data_size - host_dm->data_start;
5153 host_data = (char*)host_dm + host_dm->data_start;
5155 argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1);
5156 if (!argptr) {
5157 ret = -TARGET_EFAULT;
5158 goto out;
5161 switch (ie->host_cmd) {
5162 case DM_REMOVE_ALL:
5163 case DM_LIST_DEVICES:
5164 case DM_DEV_CREATE:
5165 case DM_DEV_REMOVE:
5166 case DM_DEV_SUSPEND:
5167 case DM_DEV_STATUS:
5168 case DM_DEV_WAIT:
5169 case DM_TABLE_STATUS:
5170 case DM_TABLE_CLEAR:
5171 case DM_TABLE_DEPS:
5172 case DM_LIST_VERSIONS:
5173 /* no input data */
5174 break;
5175 case DM_DEV_RENAME:
5176 case DM_DEV_SET_GEOMETRY:
5177 /* data contains only strings */
5178 memcpy(host_data, argptr, guest_data_size);
5179 break;
5180 case DM_TARGET_MSG:
5181 memcpy(host_data, argptr, guest_data_size);
5182 *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr);
5183 break;
5184 case DM_TABLE_LOAD:
5186 void *gspec = argptr;
5187 void *cur_data = host_data;
5188 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5189 int spec_size = thunk_type_size(arg_type, 0);
5190 int i;
5192 for (i = 0; i < host_dm->target_count; i++) {
5193 struct dm_target_spec *spec = cur_data;
5194 uint32_t next;
5195 int slen;
5197 thunk_convert(spec, gspec, arg_type, THUNK_HOST);
5198 slen = strlen((char*)gspec + spec_size) + 1;
5199 next = spec->next;
5200 spec->next = sizeof(*spec) + slen;
5201 strcpy((char*)&spec[1], gspec + spec_size);
5202 gspec += next;
5203 cur_data += spec->next;
5205 break;
5207 default:
5208 ret = -TARGET_EINVAL;
5209 unlock_user(argptr, guest_data, 0);
5210 goto out;
5212 unlock_user(argptr, guest_data, 0);
5214 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5215 if (!is_error(ret)) {
5216 guest_data = arg + host_dm->data_start;
5217 guest_data_size = host_dm->data_size - host_dm->data_start;
5218 argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0);
5219 switch (ie->host_cmd) {
5220 case DM_REMOVE_ALL:
5221 case DM_DEV_CREATE:
5222 case DM_DEV_REMOVE:
5223 case DM_DEV_RENAME:
5224 case DM_DEV_SUSPEND:
5225 case DM_DEV_STATUS:
5226 case DM_TABLE_LOAD:
5227 case DM_TABLE_CLEAR:
5228 case DM_TARGET_MSG:
5229 case DM_DEV_SET_GEOMETRY:
5230 /* no return data */
5231 break;
5232 case DM_LIST_DEVICES:
5234 struct dm_name_list *nl = (void*)host_dm + host_dm->data_start;
5235 uint32_t remaining_data = guest_data_size;
5236 void *cur_data = argptr;
5237 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) };
5238 int nl_size = 12; /* can't use thunk_size due to alignment */
5240 while (1) {
5241 uint32_t next = nl->next;
5242 if (next) {
5243 nl->next = nl_size + (strlen(nl->name) + 1);
5245 if (remaining_data < nl->next) {
5246 host_dm->flags |= DM_BUFFER_FULL_FLAG;
5247 break;
5249 thunk_convert(cur_data, nl, arg_type, THUNK_TARGET);
5250 strcpy(cur_data + nl_size, nl->name);
5251 cur_data += nl->next;
5252 remaining_data -= nl->next;
5253 if (!next) {
5254 break;
5256 nl = (void*)nl + next;
5258 break;
5260 case DM_DEV_WAIT:
5261 case DM_TABLE_STATUS:
5263 struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start;
5264 void *cur_data = argptr;
5265 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5266 int spec_size = thunk_type_size(arg_type, 0);
5267 int i;
5269 for (i = 0; i < host_dm->target_count; i++) {
5270 uint32_t next = spec->next;
5271 int slen = strlen((char*)&spec[1]) + 1;
5272 spec->next = (cur_data - argptr) + spec_size + slen;
5273 if (guest_data_size < spec->next) {
5274 host_dm->flags |= DM_BUFFER_FULL_FLAG;
5275 break;
5277 thunk_convert(cur_data, spec, arg_type, THUNK_TARGET);
5278 strcpy(cur_data + spec_size, (char*)&spec[1]);
5279 cur_data = argptr + spec->next;
5280 spec = (void*)host_dm + host_dm->data_start + next;
5282 break;
5284 case DM_TABLE_DEPS:
5286 void *hdata = (void*)host_dm + host_dm->data_start;
5287 int count = *(uint32_t*)hdata;
5288 uint64_t *hdev = hdata + 8;
5289 uint64_t *gdev = argptr + 8;
5290 int i;
5292 *(uint32_t*)argptr = tswap32(count);
5293 for (i = 0; i < count; i++) {
5294 *gdev = tswap64(*hdev);
5295 gdev++;
5296 hdev++;
5298 break;
5300 case DM_LIST_VERSIONS:
5302 struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start;
5303 uint32_t remaining_data = guest_data_size;
5304 void *cur_data = argptr;
5305 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) };
5306 int vers_size = thunk_type_size(arg_type, 0);
5308 while (1) {
5309 uint32_t next = vers->next;
5310 if (next) {
5311 vers->next = vers_size + (strlen(vers->name) + 1);
5313 if (remaining_data < vers->next) {
5314 host_dm->flags |= DM_BUFFER_FULL_FLAG;
5315 break;
5317 thunk_convert(cur_data, vers, arg_type, THUNK_TARGET);
5318 strcpy(cur_data + vers_size, vers->name);
5319 cur_data += vers->next;
5320 remaining_data -= vers->next;
5321 if (!next) {
5322 break;
5324 vers = (void*)vers + next;
5326 break;
5328 default:
5329 unlock_user(argptr, guest_data, 0);
5330 ret = -TARGET_EINVAL;
5331 goto out;
5333 unlock_user(argptr, guest_data, guest_data_size);
5335 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5336 if (!argptr) {
5337 ret = -TARGET_EFAULT;
5338 goto out;
5340 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5341 unlock_user(argptr, arg, target_size);
5343 out:
5344 g_free(big_buf);
5345 return ret;
5348 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5349 int cmd, abi_long arg)
5351 void *argptr;
5352 int target_size;
5353 const argtype *arg_type = ie->arg_type;
5354 const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) };
5355 abi_long ret;
5357 struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp;
5358 struct blkpg_partition host_part;
5360 /* Read and convert blkpg */
5361 arg_type++;
5362 target_size = thunk_type_size(arg_type, 0);
5363 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5364 if (!argptr) {
5365 ret = -TARGET_EFAULT;
5366 goto out;
5368 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5369 unlock_user(argptr, arg, 0);
5371 switch (host_blkpg->op) {
5372 case BLKPG_ADD_PARTITION:
5373 case BLKPG_DEL_PARTITION:
5374 /* payload is struct blkpg_partition */
5375 break;
5376 default:
5377 /* Unknown opcode */
5378 ret = -TARGET_EINVAL;
5379 goto out;
5382 /* Read and convert blkpg->data */
5383 arg = (abi_long)(uintptr_t)host_blkpg->data;
5384 target_size = thunk_type_size(part_arg_type, 0);
5385 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5386 if (!argptr) {
5387 ret = -TARGET_EFAULT;
5388 goto out;
5390 thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST);
5391 unlock_user(argptr, arg, 0);
5393 /* Swizzle the data pointer to our local copy and call! */
5394 host_blkpg->data = &host_part;
5395 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg));
5397 out:
5398 return ret;
5401 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp,
5402 int fd, int cmd, abi_long arg)
5404 const argtype *arg_type = ie->arg_type;
5405 const StructEntry *se;
5406 const argtype *field_types;
5407 const int *dst_offsets, *src_offsets;
5408 int target_size;
5409 void *argptr;
5410 abi_ulong *target_rt_dev_ptr = NULL;
5411 unsigned long *host_rt_dev_ptr = NULL;
5412 abi_long ret;
5413 int i;
5415 assert(ie->access == IOC_W);
5416 assert(*arg_type == TYPE_PTR);
5417 arg_type++;
5418 assert(*arg_type == TYPE_STRUCT);
5419 target_size = thunk_type_size(arg_type, 0);
5420 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5421 if (!argptr) {
5422 return -TARGET_EFAULT;
5424 arg_type++;
5425 assert(*arg_type == (int)STRUCT_rtentry);
5426 se = struct_entries + *arg_type++;
5427 assert(se->convert[0] == NULL);
5428 /* convert struct here to be able to catch rt_dev string */
5429 field_types = se->field_types;
5430 dst_offsets = se->field_offsets[THUNK_HOST];
5431 src_offsets = se->field_offsets[THUNK_TARGET];
5432 for (i = 0; i < se->nb_fields; i++) {
5433 if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) {
5434 assert(*field_types == TYPE_PTRVOID);
5435 target_rt_dev_ptr = argptr + src_offsets[i];
5436 host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]);
5437 if (*target_rt_dev_ptr != 0) {
5438 *host_rt_dev_ptr = (unsigned long)lock_user_string(
5439 tswapal(*target_rt_dev_ptr));
5440 if (!*host_rt_dev_ptr) {
5441 unlock_user(argptr, arg, 0);
5442 return -TARGET_EFAULT;
5444 } else {
5445 *host_rt_dev_ptr = 0;
5447 field_types++;
5448 continue;
5450 field_types = thunk_convert(buf_temp + dst_offsets[i],
5451 argptr + src_offsets[i],
5452 field_types, THUNK_HOST);
5454 unlock_user(argptr, arg, 0);
5456 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5458 assert(host_rt_dev_ptr != NULL);
5459 assert(target_rt_dev_ptr != NULL);
5460 if (*host_rt_dev_ptr != 0) {
5461 unlock_user((void *)*host_rt_dev_ptr,
5462 *target_rt_dev_ptr, 0);
5464 return ret;
5467 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp,
5468 int fd, int cmd, abi_long arg)
5470 int sig = target_to_host_signal(arg);
5471 return get_errno(safe_ioctl(fd, ie->host_cmd, sig));
5474 static abi_long do_ioctl_SIOCGSTAMP(const IOCTLEntry *ie, uint8_t *buf_temp,
5475 int fd, int cmd, abi_long arg)
5477 struct timeval tv;
5478 abi_long ret;
5480 ret = get_errno(safe_ioctl(fd, SIOCGSTAMP, &tv));
5481 if (is_error(ret)) {
5482 return ret;
5485 if (cmd == (int)TARGET_SIOCGSTAMP_OLD) {
5486 if (copy_to_user_timeval(arg, &tv)) {
5487 return -TARGET_EFAULT;
5489 } else {
5490 if (copy_to_user_timeval64(arg, &tv)) {
5491 return -TARGET_EFAULT;
5495 return ret;
5498 static abi_long do_ioctl_SIOCGSTAMPNS(const IOCTLEntry *ie, uint8_t *buf_temp,
5499 int fd, int cmd, abi_long arg)
5501 struct timespec ts;
5502 abi_long ret;
5504 ret = get_errno(safe_ioctl(fd, SIOCGSTAMPNS, &ts));
5505 if (is_error(ret)) {
5506 return ret;
5509 if (cmd == (int)TARGET_SIOCGSTAMPNS_OLD) {
5510 if (host_to_target_timespec(arg, &ts)) {
5511 return -TARGET_EFAULT;
5513 } else{
5514 if (host_to_target_timespec64(arg, &ts)) {
5515 return -TARGET_EFAULT;
5519 return ret;
5522 #ifdef TIOCGPTPEER
5523 static abi_long do_ioctl_tiocgptpeer(const IOCTLEntry *ie, uint8_t *buf_temp,
5524 int fd, int cmd, abi_long arg)
5526 int flags = target_to_host_bitmask(arg, fcntl_flags_tbl);
5527 return get_errno(safe_ioctl(fd, ie->host_cmd, flags));
5529 #endif
5531 #ifdef HAVE_DRM_H
5533 static void unlock_drm_version(struct drm_version *host_ver,
5534 struct target_drm_version *target_ver,
5535 bool copy)
5537 unlock_user(host_ver->name, target_ver->name,
5538 copy ? host_ver->name_len : 0);
5539 unlock_user(host_ver->date, target_ver->date,
5540 copy ? host_ver->date_len : 0);
5541 unlock_user(host_ver->desc, target_ver->desc,
5542 copy ? host_ver->desc_len : 0);
5545 static inline abi_long target_to_host_drmversion(struct drm_version *host_ver,
5546 struct target_drm_version *target_ver)
5548 memset(host_ver, 0, sizeof(*host_ver));
5550 __get_user(host_ver->name_len, &target_ver->name_len);
5551 if (host_ver->name_len) {
5552 host_ver->name = lock_user(VERIFY_WRITE, target_ver->name,
5553 target_ver->name_len, 0);
5554 if (!host_ver->name) {
5555 return -EFAULT;
5559 __get_user(host_ver->date_len, &target_ver->date_len);
5560 if (host_ver->date_len) {
5561 host_ver->date = lock_user(VERIFY_WRITE, target_ver->date,
5562 target_ver->date_len, 0);
5563 if (!host_ver->date) {
5564 goto err;
5568 __get_user(host_ver->desc_len, &target_ver->desc_len);
5569 if (host_ver->desc_len) {
5570 host_ver->desc = lock_user(VERIFY_WRITE, target_ver->desc,
5571 target_ver->desc_len, 0);
5572 if (!host_ver->desc) {
5573 goto err;
5577 return 0;
5578 err:
5579 unlock_drm_version(host_ver, target_ver, false);
5580 return -EFAULT;
5583 static inline void host_to_target_drmversion(
5584 struct target_drm_version *target_ver,
5585 struct drm_version *host_ver)
5587 __put_user(host_ver->version_major, &target_ver->version_major);
5588 __put_user(host_ver->version_minor, &target_ver->version_minor);
5589 __put_user(host_ver->version_patchlevel, &target_ver->version_patchlevel);
5590 __put_user(host_ver->name_len, &target_ver->name_len);
5591 __put_user(host_ver->date_len, &target_ver->date_len);
5592 __put_user(host_ver->desc_len, &target_ver->desc_len);
5593 unlock_drm_version(host_ver, target_ver, true);
5596 static abi_long do_ioctl_drm(const IOCTLEntry *ie, uint8_t *buf_temp,
5597 int fd, int cmd, abi_long arg)
5599 struct drm_version *ver;
5600 struct target_drm_version *target_ver;
5601 abi_long ret;
5603 switch (ie->host_cmd) {
5604 case DRM_IOCTL_VERSION:
5605 if (!lock_user_struct(VERIFY_WRITE, target_ver, arg, 0)) {
5606 return -TARGET_EFAULT;
5608 ver = (struct drm_version *)buf_temp;
5609 ret = target_to_host_drmversion(ver, target_ver);
5610 if (!is_error(ret)) {
5611 ret = get_errno(safe_ioctl(fd, ie->host_cmd, ver));
5612 if (is_error(ret)) {
5613 unlock_drm_version(ver, target_ver, false);
5614 } else {
5615 host_to_target_drmversion(target_ver, ver);
5618 unlock_user_struct(target_ver, arg, 0);
5619 return ret;
5621 return -TARGET_ENOSYS;
5624 static abi_long do_ioctl_drm_i915_getparam(const IOCTLEntry *ie,
5625 struct drm_i915_getparam *gparam,
5626 int fd, abi_long arg)
5628 abi_long ret;
5629 int value;
5630 struct target_drm_i915_getparam *target_gparam;
5632 if (!lock_user_struct(VERIFY_READ, target_gparam, arg, 0)) {
5633 return -TARGET_EFAULT;
5636 __get_user(gparam->param, &target_gparam->param);
5637 gparam->value = &value;
5638 ret = get_errno(safe_ioctl(fd, ie->host_cmd, gparam));
5639 put_user_s32(value, target_gparam->value);
5641 unlock_user_struct(target_gparam, arg, 0);
5642 return ret;
5645 static abi_long do_ioctl_drm_i915(const IOCTLEntry *ie, uint8_t *buf_temp,
5646 int fd, int cmd, abi_long arg)
5648 switch (ie->host_cmd) {
5649 case DRM_IOCTL_I915_GETPARAM:
5650 return do_ioctl_drm_i915_getparam(ie,
5651 (struct drm_i915_getparam *)buf_temp,
5652 fd, arg);
5653 default:
5654 return -TARGET_ENOSYS;
5658 #endif
5660 static abi_long do_ioctl_TUNSETTXFILTER(const IOCTLEntry *ie, uint8_t *buf_temp,
5661 int fd, int cmd, abi_long arg)
5663 struct tun_filter *filter = (struct tun_filter *)buf_temp;
5664 struct tun_filter *target_filter;
5665 char *target_addr;
5667 assert(ie->access == IOC_W);
5669 target_filter = lock_user(VERIFY_READ, arg, sizeof(*target_filter), 1);
5670 if (!target_filter) {
5671 return -TARGET_EFAULT;
5673 filter->flags = tswap16(target_filter->flags);
5674 filter->count = tswap16(target_filter->count);
5675 unlock_user(target_filter, arg, 0);
5677 if (filter->count) {
5678 if (offsetof(struct tun_filter, addr) + filter->count * ETH_ALEN >
5679 MAX_STRUCT_SIZE) {
5680 return -TARGET_EFAULT;
5683 target_addr = lock_user(VERIFY_READ,
5684 arg + offsetof(struct tun_filter, addr),
5685 filter->count * ETH_ALEN, 1);
5686 if (!target_addr) {
5687 return -TARGET_EFAULT;
5689 memcpy(filter->addr, target_addr, filter->count * ETH_ALEN);
5690 unlock_user(target_addr, arg + offsetof(struct tun_filter, addr), 0);
5693 return get_errno(safe_ioctl(fd, ie->host_cmd, filter));
5696 IOCTLEntry ioctl_entries[] = {
5697 #define IOCTL(cmd, access, ...) \
5698 { TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } },
5699 #define IOCTL_SPECIAL(cmd, access, dofn, ...) \
5700 { TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } },
5701 #define IOCTL_IGNORE(cmd) \
5702 { TARGET_ ## cmd, 0, #cmd },
5703 #include "ioctls.h"
5704 { 0, 0, },
5707 /* ??? Implement proper locking for ioctls. */
5708 /* do_ioctl() Must return target values and target errnos. */
5709 static abi_long do_ioctl(int fd, int cmd, abi_long arg)
5711 const IOCTLEntry *ie;
5712 const argtype *arg_type;
5713 abi_long ret;
5714 uint8_t buf_temp[MAX_STRUCT_SIZE];
5715 int target_size;
5716 void *argptr;
5718 ie = ioctl_entries;
5719 for(;;) {
5720 if (ie->target_cmd == 0) {
5721 qemu_log_mask(
5722 LOG_UNIMP, "Unsupported ioctl: cmd=0x%04lx\n", (long)cmd);
5723 return -TARGET_ENOTTY;
5725 if (ie->target_cmd == cmd)
5726 break;
5727 ie++;
5729 arg_type = ie->arg_type;
5730 if (ie->do_ioctl) {
5731 return ie->do_ioctl(ie, buf_temp, fd, cmd, arg);
5732 } else if (!ie->host_cmd) {
5733 /* Some architectures define BSD ioctls in their headers
5734 that are not implemented in Linux. */
5735 return -TARGET_ENOTTY;
5738 switch(arg_type[0]) {
5739 case TYPE_NULL:
5740 /* no argument */
5741 ret = get_errno(safe_ioctl(fd, ie->host_cmd));
5742 break;
5743 case TYPE_PTRVOID:
5744 case TYPE_INT:
5745 case TYPE_LONG:
5746 case TYPE_ULONG:
5747 ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg));
5748 break;
5749 case TYPE_PTR:
5750 arg_type++;
5751 target_size = thunk_type_size(arg_type, 0);
5752 switch(ie->access) {
5753 case IOC_R:
5754 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5755 if (!is_error(ret)) {
5756 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5757 if (!argptr)
5758 return -TARGET_EFAULT;
5759 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5760 unlock_user(argptr, arg, target_size);
5762 break;
5763 case IOC_W:
5764 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5765 if (!argptr)
5766 return -TARGET_EFAULT;
5767 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5768 unlock_user(argptr, arg, 0);
5769 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5770 break;
5771 default:
5772 case IOC_RW:
5773 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5774 if (!argptr)
5775 return -TARGET_EFAULT;
5776 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5777 unlock_user(argptr, arg, 0);
5778 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5779 if (!is_error(ret)) {
5780 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5781 if (!argptr)
5782 return -TARGET_EFAULT;
5783 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5784 unlock_user(argptr, arg, target_size);
5786 break;
5788 break;
5789 default:
5790 qemu_log_mask(LOG_UNIMP,
5791 "Unsupported ioctl type: cmd=0x%04lx type=%d\n",
5792 (long)cmd, arg_type[0]);
5793 ret = -TARGET_ENOTTY;
5794 break;
5796 return ret;
5799 static const bitmask_transtbl iflag_tbl[] = {
5800 { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK },
5801 { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT },
5802 { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR },
5803 { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK },
5804 { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK },
5805 { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP },
5806 { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR },
5807 { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR },
5808 { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL },
5809 { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC },
5810 { TARGET_IXON, TARGET_IXON, IXON, IXON },
5811 { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY },
5812 { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF },
5813 { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL },
5814 { TARGET_IUTF8, TARGET_IUTF8, IUTF8, IUTF8},
5817 static const bitmask_transtbl oflag_tbl[] = {
5818 { TARGET_OPOST, TARGET_OPOST, OPOST, OPOST },
5819 { TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC },
5820 { TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR },
5821 { TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL },
5822 { TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR },
5823 { TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET },
5824 { TARGET_OFILL, TARGET_OFILL, OFILL, OFILL },
5825 { TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL },
5826 { TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 },
5827 { TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 },
5828 { TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 },
5829 { TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 },
5830 { TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 },
5831 { TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 },
5832 { TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 },
5833 { TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 },
5834 { TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 },
5835 { TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 },
5836 { TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 },
5837 { TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 },
5838 { TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 },
5839 { TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 },
5840 { TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 },
5841 { TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 },
5844 static const bitmask_transtbl cflag_tbl[] = {
5845 { TARGET_CBAUD, TARGET_B0, CBAUD, B0 },
5846 { TARGET_CBAUD, TARGET_B50, CBAUD, B50 },
5847 { TARGET_CBAUD, TARGET_B75, CBAUD, B75 },
5848 { TARGET_CBAUD, TARGET_B110, CBAUD, B110 },
5849 { TARGET_CBAUD, TARGET_B134, CBAUD, B134 },
5850 { TARGET_CBAUD, TARGET_B150, CBAUD, B150 },
5851 { TARGET_CBAUD, TARGET_B200, CBAUD, B200 },
5852 { TARGET_CBAUD, TARGET_B300, CBAUD, B300 },
5853 { TARGET_CBAUD, TARGET_B600, CBAUD, B600 },
5854 { TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 },
5855 { TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 },
5856 { TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 },
5857 { TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 },
5858 { TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 },
5859 { TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 },
5860 { TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 },
5861 { TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 },
5862 { TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 },
5863 { TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 },
5864 { TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 },
5865 { TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 },
5866 { TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 },
5867 { TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 },
5868 { TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 },
5869 { TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB },
5870 { TARGET_CREAD, TARGET_CREAD, CREAD, CREAD },
5871 { TARGET_PARENB, TARGET_PARENB, PARENB, PARENB },
5872 { TARGET_PARODD, TARGET_PARODD, PARODD, PARODD },
5873 { TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL },
5874 { TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL },
5875 { TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS },
5878 static const bitmask_transtbl lflag_tbl[] = {
5879 { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG },
5880 { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON },
5881 { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE },
5882 { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO },
5883 { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE },
5884 { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK },
5885 { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL },
5886 { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH },
5887 { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP },
5888 { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL },
5889 { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT },
5890 { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE },
5891 { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO },
5892 { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN },
5893 { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN },
5894 { TARGET_EXTPROC, TARGET_EXTPROC, EXTPROC, EXTPROC},
5897 static void target_to_host_termios (void *dst, const void *src)
5899 struct host_termios *host = dst;
5900 const struct target_termios *target = src;
5902 host->c_iflag =
5903 target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl);
5904 host->c_oflag =
5905 target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl);
5906 host->c_cflag =
5907 target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl);
5908 host->c_lflag =
5909 target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl);
5910 host->c_line = target->c_line;
5912 memset(host->c_cc, 0, sizeof(host->c_cc));
5913 host->c_cc[VINTR] = target->c_cc[TARGET_VINTR];
5914 host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT];
5915 host->c_cc[VERASE] = target->c_cc[TARGET_VERASE];
5916 host->c_cc[VKILL] = target->c_cc[TARGET_VKILL];
5917 host->c_cc[VEOF] = target->c_cc[TARGET_VEOF];
5918 host->c_cc[VTIME] = target->c_cc[TARGET_VTIME];
5919 host->c_cc[VMIN] = target->c_cc[TARGET_VMIN];
5920 host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC];
5921 host->c_cc[VSTART] = target->c_cc[TARGET_VSTART];
5922 host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP];
5923 host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP];
5924 host->c_cc[VEOL] = target->c_cc[TARGET_VEOL];
5925 host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT];
5926 host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD];
5927 host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE];
5928 host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT];
5929 host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2];
5932 static void host_to_target_termios (void *dst, const void *src)
5934 struct target_termios *target = dst;
5935 const struct host_termios *host = src;
5937 target->c_iflag =
5938 tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl));
5939 target->c_oflag =
5940 tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl));
5941 target->c_cflag =
5942 tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl));
5943 target->c_lflag =
5944 tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl));
5945 target->c_line = host->c_line;
5947 memset(target->c_cc, 0, sizeof(target->c_cc));
5948 target->c_cc[TARGET_VINTR] = host->c_cc[VINTR];
5949 target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT];
5950 target->c_cc[TARGET_VERASE] = host->c_cc[VERASE];
5951 target->c_cc[TARGET_VKILL] = host->c_cc[VKILL];
5952 target->c_cc[TARGET_VEOF] = host->c_cc[VEOF];
5953 target->c_cc[TARGET_VTIME] = host->c_cc[VTIME];
5954 target->c_cc[TARGET_VMIN] = host->c_cc[VMIN];
5955 target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC];
5956 target->c_cc[TARGET_VSTART] = host->c_cc[VSTART];
5957 target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP];
5958 target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP];
5959 target->c_cc[TARGET_VEOL] = host->c_cc[VEOL];
5960 target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT];
5961 target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD];
5962 target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE];
5963 target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT];
5964 target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2];
5967 static const StructEntry struct_termios_def = {
5968 .convert = { host_to_target_termios, target_to_host_termios },
5969 .size = { sizeof(struct target_termios), sizeof(struct host_termios) },
5970 .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) },
5971 .print = print_termios,
5974 /* If the host does not provide these bits, they may be safely discarded. */
5975 #ifndef MAP_SYNC
5976 #define MAP_SYNC 0
5977 #endif
5978 #ifndef MAP_UNINITIALIZED
5979 #define MAP_UNINITIALIZED 0
5980 #endif
5982 static const bitmask_transtbl mmap_flags_tbl[] = {
5983 { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED },
5984 { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS,
5985 MAP_ANONYMOUS, MAP_ANONYMOUS },
5986 { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN,
5987 MAP_GROWSDOWN, MAP_GROWSDOWN },
5988 { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE,
5989 MAP_DENYWRITE, MAP_DENYWRITE },
5990 { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE,
5991 MAP_EXECUTABLE, MAP_EXECUTABLE },
5992 { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED },
5993 { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE,
5994 MAP_NORESERVE, MAP_NORESERVE },
5995 { TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB },
5996 /* MAP_STACK had been ignored by the kernel for quite some time.
5997 Recognize it for the target insofar as we do not want to pass
5998 it through to the host. */
5999 { TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 },
6000 { TARGET_MAP_NONBLOCK, TARGET_MAP_NONBLOCK, MAP_NONBLOCK, MAP_NONBLOCK },
6001 { TARGET_MAP_POPULATE, TARGET_MAP_POPULATE, MAP_POPULATE, MAP_POPULATE },
6002 { TARGET_MAP_FIXED_NOREPLACE, TARGET_MAP_FIXED_NOREPLACE,
6003 MAP_FIXED_NOREPLACE, MAP_FIXED_NOREPLACE },
6004 { TARGET_MAP_UNINITIALIZED, TARGET_MAP_UNINITIALIZED,
6005 MAP_UNINITIALIZED, MAP_UNINITIALIZED },
6009 * Arrange for legacy / undefined architecture specific flags to be
6010 * ignored by mmap handling code.
6012 #ifndef TARGET_MAP_32BIT
6013 #define TARGET_MAP_32BIT 0
6014 #endif
6015 #ifndef TARGET_MAP_HUGE_2MB
6016 #define TARGET_MAP_HUGE_2MB 0
6017 #endif
6018 #ifndef TARGET_MAP_HUGE_1GB
6019 #define TARGET_MAP_HUGE_1GB 0
6020 #endif
6022 static abi_long do_mmap(abi_ulong addr, abi_ulong len, int prot,
6023 int target_flags, int fd, off_t offset)
6026 * The historical set of flags that all mmap types implicitly support.
6028 enum {
6029 TARGET_LEGACY_MAP_MASK = TARGET_MAP_SHARED
6030 | TARGET_MAP_PRIVATE
6031 | TARGET_MAP_FIXED
6032 | TARGET_MAP_ANONYMOUS
6033 | TARGET_MAP_DENYWRITE
6034 | TARGET_MAP_EXECUTABLE
6035 | TARGET_MAP_UNINITIALIZED
6036 | TARGET_MAP_GROWSDOWN
6037 | TARGET_MAP_LOCKED
6038 | TARGET_MAP_NORESERVE
6039 | TARGET_MAP_POPULATE
6040 | TARGET_MAP_NONBLOCK
6041 | TARGET_MAP_STACK
6042 | TARGET_MAP_HUGETLB
6043 | TARGET_MAP_32BIT
6044 | TARGET_MAP_HUGE_2MB
6045 | TARGET_MAP_HUGE_1GB
6047 int host_flags;
6049 switch (target_flags & TARGET_MAP_TYPE) {
6050 case TARGET_MAP_PRIVATE:
6051 host_flags = MAP_PRIVATE;
6052 break;
6053 case TARGET_MAP_SHARED:
6054 host_flags = MAP_SHARED;
6055 break;
6056 case TARGET_MAP_SHARED_VALIDATE:
6058 * MAP_SYNC is only supported for MAP_SHARED_VALIDATE, and is
6059 * therefore omitted from mmap_flags_tbl and TARGET_LEGACY_MAP_MASK.
6061 if (target_flags & ~(TARGET_LEGACY_MAP_MASK | TARGET_MAP_SYNC)) {
6062 return -TARGET_EOPNOTSUPP;
6064 host_flags = MAP_SHARED_VALIDATE;
6065 if (target_flags & TARGET_MAP_SYNC) {
6066 host_flags |= MAP_SYNC;
6068 break;
6069 default:
6070 return -TARGET_EINVAL;
6072 host_flags |= target_to_host_bitmask(target_flags, mmap_flags_tbl);
6074 return get_errno(target_mmap(addr, len, prot, host_flags, fd, offset));
6078 * NOTE: TARGET_ABI32 is defined for TARGET_I386 (but not for TARGET_X86_64)
6079 * TARGET_I386 is defined if TARGET_X86_64 is defined
6081 #if defined(TARGET_I386)
6083 /* NOTE: there is really one LDT for all the threads */
6084 static uint8_t *ldt_table;
6086 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount)
6088 int size;
6089 void *p;
6091 if (!ldt_table)
6092 return 0;
6093 size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE;
6094 if (size > bytecount)
6095 size = bytecount;
6096 p = lock_user(VERIFY_WRITE, ptr, size, 0);
6097 if (!p)
6098 return -TARGET_EFAULT;
6099 /* ??? Should this by byteswapped? */
6100 memcpy(p, ldt_table, size);
6101 unlock_user(p, ptr, size);
6102 return size;
6105 /* XXX: add locking support */
6106 static abi_long write_ldt(CPUX86State *env,
6107 abi_ulong ptr, unsigned long bytecount, int oldmode)
6109 struct target_modify_ldt_ldt_s ldt_info;
6110 struct target_modify_ldt_ldt_s *target_ldt_info;
6111 int seg_32bit, contents, read_exec_only, limit_in_pages;
6112 int seg_not_present, useable, lm;
6113 uint32_t *lp, entry_1, entry_2;
6115 if (bytecount != sizeof(ldt_info))
6116 return -TARGET_EINVAL;
6117 if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1))
6118 return -TARGET_EFAULT;
6119 ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
6120 ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
6121 ldt_info.limit = tswap32(target_ldt_info->limit);
6122 ldt_info.flags = tswap32(target_ldt_info->flags);
6123 unlock_user_struct(target_ldt_info, ptr, 0);
6125 if (ldt_info.entry_number >= TARGET_LDT_ENTRIES)
6126 return -TARGET_EINVAL;
6127 seg_32bit = ldt_info.flags & 1;
6128 contents = (ldt_info.flags >> 1) & 3;
6129 read_exec_only = (ldt_info.flags >> 3) & 1;
6130 limit_in_pages = (ldt_info.flags >> 4) & 1;
6131 seg_not_present = (ldt_info.flags >> 5) & 1;
6132 useable = (ldt_info.flags >> 6) & 1;
6133 #ifdef TARGET_ABI32
6134 lm = 0;
6135 #else
6136 lm = (ldt_info.flags >> 7) & 1;
6137 #endif
6138 if (contents == 3) {
6139 if (oldmode)
6140 return -TARGET_EINVAL;
6141 if (seg_not_present == 0)
6142 return -TARGET_EINVAL;
6144 /* allocate the LDT */
6145 if (!ldt_table) {
6146 env->ldt.base = target_mmap(0,
6147 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE,
6148 PROT_READ|PROT_WRITE,
6149 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
6150 if (env->ldt.base == -1)
6151 return -TARGET_ENOMEM;
6152 memset(g2h_untagged(env->ldt.base), 0,
6153 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE);
6154 env->ldt.limit = 0xffff;
6155 ldt_table = g2h_untagged(env->ldt.base);
6158 /* NOTE: same code as Linux kernel */
6159 /* Allow LDTs to be cleared by the user. */
6160 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6161 if (oldmode ||
6162 (contents == 0 &&
6163 read_exec_only == 1 &&
6164 seg_32bit == 0 &&
6165 limit_in_pages == 0 &&
6166 seg_not_present == 1 &&
6167 useable == 0 )) {
6168 entry_1 = 0;
6169 entry_2 = 0;
6170 goto install;
6174 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6175 (ldt_info.limit & 0x0ffff);
6176 entry_2 = (ldt_info.base_addr & 0xff000000) |
6177 ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6178 (ldt_info.limit & 0xf0000) |
6179 ((read_exec_only ^ 1) << 9) |
6180 (contents << 10) |
6181 ((seg_not_present ^ 1) << 15) |
6182 (seg_32bit << 22) |
6183 (limit_in_pages << 23) |
6184 (lm << 21) |
6185 0x7000;
6186 if (!oldmode)
6187 entry_2 |= (useable << 20);
6189 /* Install the new entry ... */
6190 install:
6191 lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3));
6192 lp[0] = tswap32(entry_1);
6193 lp[1] = tswap32(entry_2);
6194 return 0;
6197 /* specific and weird i386 syscalls */
6198 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr,
6199 unsigned long bytecount)
6201 abi_long ret;
6203 switch (func) {
6204 case 0:
6205 ret = read_ldt(ptr, bytecount);
6206 break;
6207 case 1:
6208 ret = write_ldt(env, ptr, bytecount, 1);
6209 break;
6210 case 0x11:
6211 ret = write_ldt(env, ptr, bytecount, 0);
6212 break;
6213 default:
6214 ret = -TARGET_ENOSYS;
6215 break;
6217 return ret;
6220 #if defined(TARGET_ABI32)
6221 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr)
6223 uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6224 struct target_modify_ldt_ldt_s ldt_info;
6225 struct target_modify_ldt_ldt_s *target_ldt_info;
6226 int seg_32bit, contents, read_exec_only, limit_in_pages;
6227 int seg_not_present, useable, lm;
6228 uint32_t *lp, entry_1, entry_2;
6229 int i;
6231 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6232 if (!target_ldt_info)
6233 return -TARGET_EFAULT;
6234 ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
6235 ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
6236 ldt_info.limit = tswap32(target_ldt_info->limit);
6237 ldt_info.flags = tswap32(target_ldt_info->flags);
6238 if (ldt_info.entry_number == -1) {
6239 for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) {
6240 if (gdt_table[i] == 0) {
6241 ldt_info.entry_number = i;
6242 target_ldt_info->entry_number = tswap32(i);
6243 break;
6247 unlock_user_struct(target_ldt_info, ptr, 1);
6249 if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN ||
6250 ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX)
6251 return -TARGET_EINVAL;
6252 seg_32bit = ldt_info.flags & 1;
6253 contents = (ldt_info.flags >> 1) & 3;
6254 read_exec_only = (ldt_info.flags >> 3) & 1;
6255 limit_in_pages = (ldt_info.flags >> 4) & 1;
6256 seg_not_present = (ldt_info.flags >> 5) & 1;
6257 useable = (ldt_info.flags >> 6) & 1;
6258 #ifdef TARGET_ABI32
6259 lm = 0;
6260 #else
6261 lm = (ldt_info.flags >> 7) & 1;
6262 #endif
6264 if (contents == 3) {
6265 if (seg_not_present == 0)
6266 return -TARGET_EINVAL;
6269 /* NOTE: same code as Linux kernel */
6270 /* Allow LDTs to be cleared by the user. */
6271 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6272 if ((contents == 0 &&
6273 read_exec_only == 1 &&
6274 seg_32bit == 0 &&
6275 limit_in_pages == 0 &&
6276 seg_not_present == 1 &&
6277 useable == 0 )) {
6278 entry_1 = 0;
6279 entry_2 = 0;
6280 goto install;
6284 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6285 (ldt_info.limit & 0x0ffff);
6286 entry_2 = (ldt_info.base_addr & 0xff000000) |
6287 ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6288 (ldt_info.limit & 0xf0000) |
6289 ((read_exec_only ^ 1) << 9) |
6290 (contents << 10) |
6291 ((seg_not_present ^ 1) << 15) |
6292 (seg_32bit << 22) |
6293 (limit_in_pages << 23) |
6294 (useable << 20) |
6295 (lm << 21) |
6296 0x7000;
6298 /* Install the new entry ... */
6299 install:
6300 lp = (uint32_t *)(gdt_table + ldt_info.entry_number);
6301 lp[0] = tswap32(entry_1);
6302 lp[1] = tswap32(entry_2);
6303 return 0;
6306 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr)
6308 struct target_modify_ldt_ldt_s *target_ldt_info;
6309 uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6310 uint32_t base_addr, limit, flags;
6311 int seg_32bit, contents, read_exec_only, limit_in_pages, idx;
6312 int seg_not_present, useable, lm;
6313 uint32_t *lp, entry_1, entry_2;
6315 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6316 if (!target_ldt_info)
6317 return -TARGET_EFAULT;
6318 idx = tswap32(target_ldt_info->entry_number);
6319 if (idx < TARGET_GDT_ENTRY_TLS_MIN ||
6320 idx > TARGET_GDT_ENTRY_TLS_MAX) {
6321 unlock_user_struct(target_ldt_info, ptr, 1);
6322 return -TARGET_EINVAL;
6324 lp = (uint32_t *)(gdt_table + idx);
6325 entry_1 = tswap32(lp[0]);
6326 entry_2 = tswap32(lp[1]);
6328 read_exec_only = ((entry_2 >> 9) & 1) ^ 1;
6329 contents = (entry_2 >> 10) & 3;
6330 seg_not_present = ((entry_2 >> 15) & 1) ^ 1;
6331 seg_32bit = (entry_2 >> 22) & 1;
6332 limit_in_pages = (entry_2 >> 23) & 1;
6333 useable = (entry_2 >> 20) & 1;
6334 #ifdef TARGET_ABI32
6335 lm = 0;
6336 #else
6337 lm = (entry_2 >> 21) & 1;
6338 #endif
6339 flags = (seg_32bit << 0) | (contents << 1) |
6340 (read_exec_only << 3) | (limit_in_pages << 4) |
6341 (seg_not_present << 5) | (useable << 6) | (lm << 7);
6342 limit = (entry_1 & 0xffff) | (entry_2 & 0xf0000);
6343 base_addr = (entry_1 >> 16) |
6344 (entry_2 & 0xff000000) |
6345 ((entry_2 & 0xff) << 16);
6346 target_ldt_info->base_addr = tswapal(base_addr);
6347 target_ldt_info->limit = tswap32(limit);
6348 target_ldt_info->flags = tswap32(flags);
6349 unlock_user_struct(target_ldt_info, ptr, 1);
6350 return 0;
6353 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6355 return -TARGET_ENOSYS;
6357 #else
6358 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6360 abi_long ret = 0;
6361 abi_ulong val;
6362 int idx;
6364 switch(code) {
6365 case TARGET_ARCH_SET_GS:
6366 case TARGET_ARCH_SET_FS:
6367 if (code == TARGET_ARCH_SET_GS)
6368 idx = R_GS;
6369 else
6370 idx = R_FS;
6371 cpu_x86_load_seg(env, idx, 0);
6372 env->segs[idx].base = addr;
6373 break;
6374 case TARGET_ARCH_GET_GS:
6375 case TARGET_ARCH_GET_FS:
6376 if (code == TARGET_ARCH_GET_GS)
6377 idx = R_GS;
6378 else
6379 idx = R_FS;
6380 val = env->segs[idx].base;
6381 if (put_user(val, addr, abi_ulong))
6382 ret = -TARGET_EFAULT;
6383 break;
6384 default:
6385 ret = -TARGET_EINVAL;
6386 break;
6388 return ret;
6390 #endif /* defined(TARGET_ABI32 */
6391 #endif /* defined(TARGET_I386) */
6394 * These constants are generic. Supply any that are missing from the host.
6396 #ifndef PR_SET_NAME
6397 # define PR_SET_NAME 15
6398 # define PR_GET_NAME 16
6399 #endif
6400 #ifndef PR_SET_FP_MODE
6401 # define PR_SET_FP_MODE 45
6402 # define PR_GET_FP_MODE 46
6403 # define PR_FP_MODE_FR (1 << 0)
6404 # define PR_FP_MODE_FRE (1 << 1)
6405 #endif
6406 #ifndef PR_SVE_SET_VL
6407 # define PR_SVE_SET_VL 50
6408 # define PR_SVE_GET_VL 51
6409 # define PR_SVE_VL_LEN_MASK 0xffff
6410 # define PR_SVE_VL_INHERIT (1 << 17)
6411 #endif
6412 #ifndef PR_PAC_RESET_KEYS
6413 # define PR_PAC_RESET_KEYS 54
6414 # define PR_PAC_APIAKEY (1 << 0)
6415 # define PR_PAC_APIBKEY (1 << 1)
6416 # define PR_PAC_APDAKEY (1 << 2)
6417 # define PR_PAC_APDBKEY (1 << 3)
6418 # define PR_PAC_APGAKEY (1 << 4)
6419 #endif
6420 #ifndef PR_SET_TAGGED_ADDR_CTRL
6421 # define PR_SET_TAGGED_ADDR_CTRL 55
6422 # define PR_GET_TAGGED_ADDR_CTRL 56
6423 # define PR_TAGGED_ADDR_ENABLE (1UL << 0)
6424 #endif
6425 #ifndef PR_MTE_TCF_SHIFT
6426 # define PR_MTE_TCF_SHIFT 1
6427 # define PR_MTE_TCF_NONE (0UL << PR_MTE_TCF_SHIFT)
6428 # define PR_MTE_TCF_SYNC (1UL << PR_MTE_TCF_SHIFT)
6429 # define PR_MTE_TCF_ASYNC (2UL << PR_MTE_TCF_SHIFT)
6430 # define PR_MTE_TCF_MASK (3UL << PR_MTE_TCF_SHIFT)
6431 # define PR_MTE_TAG_SHIFT 3
6432 # define PR_MTE_TAG_MASK (0xffffUL << PR_MTE_TAG_SHIFT)
6433 #endif
6434 #ifndef PR_SET_IO_FLUSHER
6435 # define PR_SET_IO_FLUSHER 57
6436 # define PR_GET_IO_FLUSHER 58
6437 #endif
6438 #ifndef PR_SET_SYSCALL_USER_DISPATCH
6439 # define PR_SET_SYSCALL_USER_DISPATCH 59
6440 #endif
6441 #ifndef PR_SME_SET_VL
6442 # define PR_SME_SET_VL 63
6443 # define PR_SME_GET_VL 64
6444 # define PR_SME_VL_LEN_MASK 0xffff
6445 # define PR_SME_VL_INHERIT (1 << 17)
6446 #endif
6448 #include "target_prctl.h"
6450 static abi_long do_prctl_inval0(CPUArchState *env)
6452 return -TARGET_EINVAL;
6455 static abi_long do_prctl_inval1(CPUArchState *env, abi_long arg2)
6457 return -TARGET_EINVAL;
6460 #ifndef do_prctl_get_fp_mode
6461 #define do_prctl_get_fp_mode do_prctl_inval0
6462 #endif
6463 #ifndef do_prctl_set_fp_mode
6464 #define do_prctl_set_fp_mode do_prctl_inval1
6465 #endif
6466 #ifndef do_prctl_sve_get_vl
6467 #define do_prctl_sve_get_vl do_prctl_inval0
6468 #endif
6469 #ifndef do_prctl_sve_set_vl
6470 #define do_prctl_sve_set_vl do_prctl_inval1
6471 #endif
6472 #ifndef do_prctl_reset_keys
6473 #define do_prctl_reset_keys do_prctl_inval1
6474 #endif
6475 #ifndef do_prctl_set_tagged_addr_ctrl
6476 #define do_prctl_set_tagged_addr_ctrl do_prctl_inval1
6477 #endif
6478 #ifndef do_prctl_get_tagged_addr_ctrl
6479 #define do_prctl_get_tagged_addr_ctrl do_prctl_inval0
6480 #endif
6481 #ifndef do_prctl_get_unalign
6482 #define do_prctl_get_unalign do_prctl_inval1
6483 #endif
6484 #ifndef do_prctl_set_unalign
6485 #define do_prctl_set_unalign do_prctl_inval1
6486 #endif
6487 #ifndef do_prctl_sme_get_vl
6488 #define do_prctl_sme_get_vl do_prctl_inval0
6489 #endif
6490 #ifndef do_prctl_sme_set_vl
6491 #define do_prctl_sme_set_vl do_prctl_inval1
6492 #endif
6494 static abi_long do_prctl(CPUArchState *env, abi_long option, abi_long arg2,
6495 abi_long arg3, abi_long arg4, abi_long arg5)
6497 abi_long ret;
6499 switch (option) {
6500 case PR_GET_PDEATHSIG:
6502 int deathsig;
6503 ret = get_errno(prctl(PR_GET_PDEATHSIG, &deathsig,
6504 arg3, arg4, arg5));
6505 if (!is_error(ret) &&
6506 put_user_s32(host_to_target_signal(deathsig), arg2)) {
6507 return -TARGET_EFAULT;
6509 return ret;
6511 case PR_SET_PDEATHSIG:
6512 return get_errno(prctl(PR_SET_PDEATHSIG, target_to_host_signal(arg2),
6513 arg3, arg4, arg5));
6514 case PR_GET_NAME:
6516 void *name = lock_user(VERIFY_WRITE, arg2, 16, 1);
6517 if (!name) {
6518 return -TARGET_EFAULT;
6520 ret = get_errno(prctl(PR_GET_NAME, (uintptr_t)name,
6521 arg3, arg4, arg5));
6522 unlock_user(name, arg2, 16);
6523 return ret;
6525 case PR_SET_NAME:
6527 void *name = lock_user(VERIFY_READ, arg2, 16, 1);
6528 if (!name) {
6529 return -TARGET_EFAULT;
6531 ret = get_errno(prctl(PR_SET_NAME, (uintptr_t)name,
6532 arg3, arg4, arg5));
6533 unlock_user(name, arg2, 0);
6534 return ret;
6536 case PR_GET_FP_MODE:
6537 return do_prctl_get_fp_mode(env);
6538 case PR_SET_FP_MODE:
6539 return do_prctl_set_fp_mode(env, arg2);
6540 case PR_SVE_GET_VL:
6541 return do_prctl_sve_get_vl(env);
6542 case PR_SVE_SET_VL:
6543 return do_prctl_sve_set_vl(env, arg2);
6544 case PR_SME_GET_VL:
6545 return do_prctl_sme_get_vl(env);
6546 case PR_SME_SET_VL:
6547 return do_prctl_sme_set_vl(env, arg2);
6548 case PR_PAC_RESET_KEYS:
6549 if (arg3 || arg4 || arg5) {
6550 return -TARGET_EINVAL;
6552 return do_prctl_reset_keys(env, arg2);
6553 case PR_SET_TAGGED_ADDR_CTRL:
6554 if (arg3 || arg4 || arg5) {
6555 return -TARGET_EINVAL;
6557 return do_prctl_set_tagged_addr_ctrl(env, arg2);
6558 case PR_GET_TAGGED_ADDR_CTRL:
6559 if (arg2 || arg3 || arg4 || arg5) {
6560 return -TARGET_EINVAL;
6562 return do_prctl_get_tagged_addr_ctrl(env);
6564 case PR_GET_UNALIGN:
6565 return do_prctl_get_unalign(env, arg2);
6566 case PR_SET_UNALIGN:
6567 return do_prctl_set_unalign(env, arg2);
6569 case PR_CAP_AMBIENT:
6570 case PR_CAPBSET_READ:
6571 case PR_CAPBSET_DROP:
6572 case PR_GET_DUMPABLE:
6573 case PR_SET_DUMPABLE:
6574 case PR_GET_KEEPCAPS:
6575 case PR_SET_KEEPCAPS:
6576 case PR_GET_SECUREBITS:
6577 case PR_SET_SECUREBITS:
6578 case PR_GET_TIMING:
6579 case PR_SET_TIMING:
6580 case PR_GET_TIMERSLACK:
6581 case PR_SET_TIMERSLACK:
6582 case PR_MCE_KILL:
6583 case PR_MCE_KILL_GET:
6584 case PR_GET_NO_NEW_PRIVS:
6585 case PR_SET_NO_NEW_PRIVS:
6586 case PR_GET_IO_FLUSHER:
6587 case PR_SET_IO_FLUSHER:
6588 /* Some prctl options have no pointer arguments and we can pass on. */
6589 return get_errno(prctl(option, arg2, arg3, arg4, arg5));
6591 case PR_GET_CHILD_SUBREAPER:
6592 case PR_SET_CHILD_SUBREAPER:
6593 case PR_GET_SPECULATION_CTRL:
6594 case PR_SET_SPECULATION_CTRL:
6595 case PR_GET_TID_ADDRESS:
6596 /* TODO */
6597 return -TARGET_EINVAL;
6599 case PR_GET_FPEXC:
6600 case PR_SET_FPEXC:
6601 /* Was used for SPE on PowerPC. */
6602 return -TARGET_EINVAL;
6604 case PR_GET_ENDIAN:
6605 case PR_SET_ENDIAN:
6606 case PR_GET_FPEMU:
6607 case PR_SET_FPEMU:
6608 case PR_SET_MM:
6609 case PR_GET_SECCOMP:
6610 case PR_SET_SECCOMP:
6611 case PR_SET_SYSCALL_USER_DISPATCH:
6612 case PR_GET_THP_DISABLE:
6613 case PR_SET_THP_DISABLE:
6614 case PR_GET_TSC:
6615 case PR_SET_TSC:
6616 /* Disable to prevent the target disabling stuff we need. */
6617 return -TARGET_EINVAL;
6619 default:
6620 qemu_log_mask(LOG_UNIMP, "Unsupported prctl: " TARGET_ABI_FMT_ld "\n",
6621 option);
6622 return -TARGET_EINVAL;
6626 #define NEW_STACK_SIZE 0x40000
6629 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER;
6630 typedef struct {
6631 CPUArchState *env;
6632 pthread_mutex_t mutex;
6633 pthread_cond_t cond;
6634 pthread_t thread;
6635 uint32_t tid;
6636 abi_ulong child_tidptr;
6637 abi_ulong parent_tidptr;
6638 sigset_t sigmask;
6639 } new_thread_info;
6641 static void *clone_func(void *arg)
6643 new_thread_info *info = arg;
6644 CPUArchState *env;
6645 CPUState *cpu;
6646 TaskState *ts;
6648 rcu_register_thread();
6649 tcg_register_thread();
6650 env = info->env;
6651 cpu = env_cpu(env);
6652 thread_cpu = cpu;
6653 ts = (TaskState *)cpu->opaque;
6654 info->tid = sys_gettid();
6655 task_settid(ts);
6656 if (info->child_tidptr)
6657 put_user_u32(info->tid, info->child_tidptr);
6658 if (info->parent_tidptr)
6659 put_user_u32(info->tid, info->parent_tidptr);
6660 qemu_guest_random_seed_thread_part2(cpu->random_seed);
6661 /* Enable signals. */
6662 sigprocmask(SIG_SETMASK, &info->sigmask, NULL);
6663 /* Signal to the parent that we're ready. */
6664 pthread_mutex_lock(&info->mutex);
6665 pthread_cond_broadcast(&info->cond);
6666 pthread_mutex_unlock(&info->mutex);
6667 /* Wait until the parent has finished initializing the tls state. */
6668 pthread_mutex_lock(&clone_lock);
6669 pthread_mutex_unlock(&clone_lock);
6670 cpu_loop(env);
6671 /* never exits */
6672 return NULL;
6675 /* do_fork() Must return host values and target errnos (unlike most
6676 do_*() functions). */
6677 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp,
6678 abi_ulong parent_tidptr, target_ulong newtls,
6679 abi_ulong child_tidptr)
6681 CPUState *cpu = env_cpu(env);
6682 int ret;
6683 TaskState *ts;
6684 CPUState *new_cpu;
6685 CPUArchState *new_env;
6686 sigset_t sigmask;
6688 flags &= ~CLONE_IGNORED_FLAGS;
6690 /* Emulate vfork() with fork() */
6691 if (flags & CLONE_VFORK)
6692 flags &= ~(CLONE_VFORK | CLONE_VM);
6694 if (flags & CLONE_VM) {
6695 TaskState *parent_ts = (TaskState *)cpu->opaque;
6696 new_thread_info info;
6697 pthread_attr_t attr;
6699 if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) ||
6700 (flags & CLONE_INVALID_THREAD_FLAGS)) {
6701 return -TARGET_EINVAL;
6704 ts = g_new0(TaskState, 1);
6705 init_task_state(ts);
6707 /* Grab a mutex so that thread setup appears atomic. */
6708 pthread_mutex_lock(&clone_lock);
6711 * If this is our first additional thread, we need to ensure we
6712 * generate code for parallel execution and flush old translations.
6713 * Do this now so that the copy gets CF_PARALLEL too.
6715 if (!(cpu->tcg_cflags & CF_PARALLEL)) {
6716 cpu->tcg_cflags |= CF_PARALLEL;
6717 tb_flush(cpu);
6720 /* we create a new CPU instance. */
6721 new_env = cpu_copy(env);
6722 /* Init regs that differ from the parent. */
6723 cpu_clone_regs_child(new_env, newsp, flags);
6724 cpu_clone_regs_parent(env, flags);
6725 new_cpu = env_cpu(new_env);
6726 new_cpu->opaque = ts;
6727 ts->bprm = parent_ts->bprm;
6728 ts->info = parent_ts->info;
6729 ts->signal_mask = parent_ts->signal_mask;
6731 if (flags & CLONE_CHILD_CLEARTID) {
6732 ts->child_tidptr = child_tidptr;
6735 if (flags & CLONE_SETTLS) {
6736 cpu_set_tls (new_env, newtls);
6739 memset(&info, 0, sizeof(info));
6740 pthread_mutex_init(&info.mutex, NULL);
6741 pthread_mutex_lock(&info.mutex);
6742 pthread_cond_init(&info.cond, NULL);
6743 info.env = new_env;
6744 if (flags & CLONE_CHILD_SETTID) {
6745 info.child_tidptr = child_tidptr;
6747 if (flags & CLONE_PARENT_SETTID) {
6748 info.parent_tidptr = parent_tidptr;
6751 ret = pthread_attr_init(&attr);
6752 ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE);
6753 ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
6754 /* It is not safe to deliver signals until the child has finished
6755 initializing, so temporarily block all signals. */
6756 sigfillset(&sigmask);
6757 sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask);
6758 cpu->random_seed = qemu_guest_random_seed_thread_part1();
6760 ret = pthread_create(&info.thread, &attr, clone_func, &info);
6761 /* TODO: Free new CPU state if thread creation failed. */
6763 sigprocmask(SIG_SETMASK, &info.sigmask, NULL);
6764 pthread_attr_destroy(&attr);
6765 if (ret == 0) {
6766 /* Wait for the child to initialize. */
6767 pthread_cond_wait(&info.cond, &info.mutex);
6768 ret = info.tid;
6769 } else {
6770 ret = -1;
6772 pthread_mutex_unlock(&info.mutex);
6773 pthread_cond_destroy(&info.cond);
6774 pthread_mutex_destroy(&info.mutex);
6775 pthread_mutex_unlock(&clone_lock);
6776 } else {
6777 /* if no CLONE_VM, we consider it is a fork */
6778 if (flags & CLONE_INVALID_FORK_FLAGS) {
6779 return -TARGET_EINVAL;
6782 /* We can't support custom termination signals */
6783 if ((flags & CSIGNAL) != TARGET_SIGCHLD) {
6784 return -TARGET_EINVAL;
6787 #if !defined(__NR_pidfd_open) || !defined(TARGET_NR_pidfd_open)
6788 if (flags & CLONE_PIDFD) {
6789 return -TARGET_EINVAL;
6791 #endif
6793 /* Can not allow CLONE_PIDFD with CLONE_PARENT_SETTID */
6794 if ((flags & CLONE_PIDFD) && (flags & CLONE_PARENT_SETTID)) {
6795 return -TARGET_EINVAL;
6798 if (block_signals()) {
6799 return -QEMU_ERESTARTSYS;
6802 fork_start();
6803 ret = fork();
6804 if (ret == 0) {
6805 /* Child Process. */
6806 cpu_clone_regs_child(env, newsp, flags);
6807 fork_end(1);
6808 /* There is a race condition here. The parent process could
6809 theoretically read the TID in the child process before the child
6810 tid is set. This would require using either ptrace
6811 (not implemented) or having *_tidptr to point at a shared memory
6812 mapping. We can't repeat the spinlock hack used above because
6813 the child process gets its own copy of the lock. */
6814 if (flags & CLONE_CHILD_SETTID)
6815 put_user_u32(sys_gettid(), child_tidptr);
6816 if (flags & CLONE_PARENT_SETTID)
6817 put_user_u32(sys_gettid(), parent_tidptr);
6818 ts = (TaskState *)cpu->opaque;
6819 if (flags & CLONE_SETTLS)
6820 cpu_set_tls (env, newtls);
6821 if (flags & CLONE_CHILD_CLEARTID)
6822 ts->child_tidptr = child_tidptr;
6823 } else {
6824 cpu_clone_regs_parent(env, flags);
6825 if (flags & CLONE_PIDFD) {
6826 int pid_fd = 0;
6827 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
6828 int pid_child = ret;
6829 pid_fd = pidfd_open(pid_child, 0);
6830 if (pid_fd >= 0) {
6831 fcntl(pid_fd, F_SETFD, fcntl(pid_fd, F_GETFL)
6832 | FD_CLOEXEC);
6833 } else {
6834 pid_fd = 0;
6836 #endif
6837 put_user_u32(pid_fd, parent_tidptr);
6839 fork_end(0);
6841 g_assert(!cpu_in_exclusive_context(cpu));
6843 return ret;
6846 /* warning : doesn't handle linux specific flags... */
6847 static int target_to_host_fcntl_cmd(int cmd)
6849 int ret;
6851 switch(cmd) {
6852 case TARGET_F_DUPFD:
6853 case TARGET_F_GETFD:
6854 case TARGET_F_SETFD:
6855 case TARGET_F_GETFL:
6856 case TARGET_F_SETFL:
6857 case TARGET_F_OFD_GETLK:
6858 case TARGET_F_OFD_SETLK:
6859 case TARGET_F_OFD_SETLKW:
6860 ret = cmd;
6861 break;
6862 case TARGET_F_GETLK:
6863 ret = F_GETLK64;
6864 break;
6865 case TARGET_F_SETLK:
6866 ret = F_SETLK64;
6867 break;
6868 case TARGET_F_SETLKW:
6869 ret = F_SETLKW64;
6870 break;
6871 case TARGET_F_GETOWN:
6872 ret = F_GETOWN;
6873 break;
6874 case TARGET_F_SETOWN:
6875 ret = F_SETOWN;
6876 break;
6877 case TARGET_F_GETSIG:
6878 ret = F_GETSIG;
6879 break;
6880 case TARGET_F_SETSIG:
6881 ret = F_SETSIG;
6882 break;
6883 #if TARGET_ABI_BITS == 32
6884 case TARGET_F_GETLK64:
6885 ret = F_GETLK64;
6886 break;
6887 case TARGET_F_SETLK64:
6888 ret = F_SETLK64;
6889 break;
6890 case TARGET_F_SETLKW64:
6891 ret = F_SETLKW64;
6892 break;
6893 #endif
6894 case TARGET_F_SETLEASE:
6895 ret = F_SETLEASE;
6896 break;
6897 case TARGET_F_GETLEASE:
6898 ret = F_GETLEASE;
6899 break;
6900 #ifdef F_DUPFD_CLOEXEC
6901 case TARGET_F_DUPFD_CLOEXEC:
6902 ret = F_DUPFD_CLOEXEC;
6903 break;
6904 #endif
6905 case TARGET_F_NOTIFY:
6906 ret = F_NOTIFY;
6907 break;
6908 #ifdef F_GETOWN_EX
6909 case TARGET_F_GETOWN_EX:
6910 ret = F_GETOWN_EX;
6911 break;
6912 #endif
6913 #ifdef F_SETOWN_EX
6914 case TARGET_F_SETOWN_EX:
6915 ret = F_SETOWN_EX;
6916 break;
6917 #endif
6918 #ifdef F_SETPIPE_SZ
6919 case TARGET_F_SETPIPE_SZ:
6920 ret = F_SETPIPE_SZ;
6921 break;
6922 case TARGET_F_GETPIPE_SZ:
6923 ret = F_GETPIPE_SZ;
6924 break;
6925 #endif
6926 #ifdef F_ADD_SEALS
6927 case TARGET_F_ADD_SEALS:
6928 ret = F_ADD_SEALS;
6929 break;
6930 case TARGET_F_GET_SEALS:
6931 ret = F_GET_SEALS;
6932 break;
6933 #endif
6934 default:
6935 ret = -TARGET_EINVAL;
6936 break;
6939 #if defined(__powerpc64__)
6940 /* On PPC64, glibc headers has the F_*LK* defined to 12, 13 and 14 and
6941 * is not supported by kernel. The glibc fcntl call actually adjusts
6942 * them to 5, 6 and 7 before making the syscall(). Since we make the
6943 * syscall directly, adjust to what is supported by the kernel.
6945 if (ret >= F_GETLK64 && ret <= F_SETLKW64) {
6946 ret -= F_GETLK64 - 5;
6948 #endif
6950 return ret;
6953 #define FLOCK_TRANSTBL \
6954 switch (type) { \
6955 TRANSTBL_CONVERT(F_RDLCK); \
6956 TRANSTBL_CONVERT(F_WRLCK); \
6957 TRANSTBL_CONVERT(F_UNLCK); \
6960 static int target_to_host_flock(int type)
6962 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a
6963 FLOCK_TRANSTBL
6964 #undef TRANSTBL_CONVERT
6965 return -TARGET_EINVAL;
6968 static int host_to_target_flock(int type)
6970 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a
6971 FLOCK_TRANSTBL
6972 #undef TRANSTBL_CONVERT
6973 /* if we don't know how to convert the value coming
6974 * from the host we copy to the target field as-is
6976 return type;
6979 static inline abi_long copy_from_user_flock(struct flock64 *fl,
6980 abi_ulong target_flock_addr)
6982 struct target_flock *target_fl;
6983 int l_type;
6985 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6986 return -TARGET_EFAULT;
6989 __get_user(l_type, &target_fl->l_type);
6990 l_type = target_to_host_flock(l_type);
6991 if (l_type < 0) {
6992 return l_type;
6994 fl->l_type = l_type;
6995 __get_user(fl->l_whence, &target_fl->l_whence);
6996 __get_user(fl->l_start, &target_fl->l_start);
6997 __get_user(fl->l_len, &target_fl->l_len);
6998 __get_user(fl->l_pid, &target_fl->l_pid);
6999 unlock_user_struct(target_fl, target_flock_addr, 0);
7000 return 0;
7003 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr,
7004 const struct flock64 *fl)
7006 struct target_flock *target_fl;
7007 short l_type;
7009 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
7010 return -TARGET_EFAULT;
7013 l_type = host_to_target_flock(fl->l_type);
7014 __put_user(l_type, &target_fl->l_type);
7015 __put_user(fl->l_whence, &target_fl->l_whence);
7016 __put_user(fl->l_start, &target_fl->l_start);
7017 __put_user(fl->l_len, &target_fl->l_len);
7018 __put_user(fl->l_pid, &target_fl->l_pid);
7019 unlock_user_struct(target_fl, target_flock_addr, 1);
7020 return 0;
7023 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr);
7024 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl);
7026 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32
7027 struct target_oabi_flock64 {
7028 abi_short l_type;
7029 abi_short l_whence;
7030 abi_llong l_start;
7031 abi_llong l_len;
7032 abi_int l_pid;
7033 } QEMU_PACKED;
7035 static inline abi_long copy_from_user_oabi_flock64(struct flock64 *fl,
7036 abi_ulong target_flock_addr)
7038 struct target_oabi_flock64 *target_fl;
7039 int l_type;
7041 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
7042 return -TARGET_EFAULT;
7045 __get_user(l_type, &target_fl->l_type);
7046 l_type = target_to_host_flock(l_type);
7047 if (l_type < 0) {
7048 return l_type;
7050 fl->l_type = l_type;
7051 __get_user(fl->l_whence, &target_fl->l_whence);
7052 __get_user(fl->l_start, &target_fl->l_start);
7053 __get_user(fl->l_len, &target_fl->l_len);
7054 __get_user(fl->l_pid, &target_fl->l_pid);
7055 unlock_user_struct(target_fl, target_flock_addr, 0);
7056 return 0;
7059 static inline abi_long copy_to_user_oabi_flock64(abi_ulong target_flock_addr,
7060 const struct flock64 *fl)
7062 struct target_oabi_flock64 *target_fl;
7063 short l_type;
7065 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
7066 return -TARGET_EFAULT;
7069 l_type = host_to_target_flock(fl->l_type);
7070 __put_user(l_type, &target_fl->l_type);
7071 __put_user(fl->l_whence, &target_fl->l_whence);
7072 __put_user(fl->l_start, &target_fl->l_start);
7073 __put_user(fl->l_len, &target_fl->l_len);
7074 __put_user(fl->l_pid, &target_fl->l_pid);
7075 unlock_user_struct(target_fl, target_flock_addr, 1);
7076 return 0;
7078 #endif
7080 static inline abi_long copy_from_user_flock64(struct flock64 *fl,
7081 abi_ulong target_flock_addr)
7083 struct target_flock64 *target_fl;
7084 int l_type;
7086 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
7087 return -TARGET_EFAULT;
7090 __get_user(l_type, &target_fl->l_type);
7091 l_type = target_to_host_flock(l_type);
7092 if (l_type < 0) {
7093 return l_type;
7095 fl->l_type = l_type;
7096 __get_user(fl->l_whence, &target_fl->l_whence);
7097 __get_user(fl->l_start, &target_fl->l_start);
7098 __get_user(fl->l_len, &target_fl->l_len);
7099 __get_user(fl->l_pid, &target_fl->l_pid);
7100 unlock_user_struct(target_fl, target_flock_addr, 0);
7101 return 0;
7104 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr,
7105 const struct flock64 *fl)
7107 struct target_flock64 *target_fl;
7108 short l_type;
7110 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
7111 return -TARGET_EFAULT;
7114 l_type = host_to_target_flock(fl->l_type);
7115 __put_user(l_type, &target_fl->l_type);
7116 __put_user(fl->l_whence, &target_fl->l_whence);
7117 __put_user(fl->l_start, &target_fl->l_start);
7118 __put_user(fl->l_len, &target_fl->l_len);
7119 __put_user(fl->l_pid, &target_fl->l_pid);
7120 unlock_user_struct(target_fl, target_flock_addr, 1);
7121 return 0;
7124 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg)
7126 struct flock64 fl64;
7127 #ifdef F_GETOWN_EX
7128 struct f_owner_ex fox;
7129 struct target_f_owner_ex *target_fox;
7130 #endif
7131 abi_long ret;
7132 int host_cmd = target_to_host_fcntl_cmd(cmd);
7134 if (host_cmd == -TARGET_EINVAL)
7135 return host_cmd;
7137 switch(cmd) {
7138 case TARGET_F_GETLK:
7139 ret = copy_from_user_flock(&fl64, arg);
7140 if (ret) {
7141 return ret;
7143 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7144 if (ret == 0) {
7145 ret = copy_to_user_flock(arg, &fl64);
7147 break;
7149 case TARGET_F_SETLK:
7150 case TARGET_F_SETLKW:
7151 ret = copy_from_user_flock(&fl64, arg);
7152 if (ret) {
7153 return ret;
7155 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7156 break;
7158 case TARGET_F_GETLK64:
7159 case TARGET_F_OFD_GETLK:
7160 ret = copy_from_user_flock64(&fl64, arg);
7161 if (ret) {
7162 return ret;
7164 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7165 if (ret == 0) {
7166 ret = copy_to_user_flock64(arg, &fl64);
7168 break;
7169 case TARGET_F_SETLK64:
7170 case TARGET_F_SETLKW64:
7171 case TARGET_F_OFD_SETLK:
7172 case TARGET_F_OFD_SETLKW:
7173 ret = copy_from_user_flock64(&fl64, arg);
7174 if (ret) {
7175 return ret;
7177 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7178 break;
7180 case TARGET_F_GETFL:
7181 ret = get_errno(safe_fcntl(fd, host_cmd, arg));
7182 if (ret >= 0) {
7183 ret = host_to_target_bitmask(ret, fcntl_flags_tbl);
7184 /* tell 32-bit guests it uses largefile on 64-bit hosts: */
7185 if (O_LARGEFILE == 0 && HOST_LONG_BITS == 64) {
7186 ret |= TARGET_O_LARGEFILE;
7189 break;
7191 case TARGET_F_SETFL:
7192 ret = get_errno(safe_fcntl(fd, host_cmd,
7193 target_to_host_bitmask(arg,
7194 fcntl_flags_tbl)));
7195 break;
7197 #ifdef F_GETOWN_EX
7198 case TARGET_F_GETOWN_EX:
7199 ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
7200 if (ret >= 0) {
7201 if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0))
7202 return -TARGET_EFAULT;
7203 target_fox->type = tswap32(fox.type);
7204 target_fox->pid = tswap32(fox.pid);
7205 unlock_user_struct(target_fox, arg, 1);
7207 break;
7208 #endif
7210 #ifdef F_SETOWN_EX
7211 case TARGET_F_SETOWN_EX:
7212 if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1))
7213 return -TARGET_EFAULT;
7214 fox.type = tswap32(target_fox->type);
7215 fox.pid = tswap32(target_fox->pid);
7216 unlock_user_struct(target_fox, arg, 0);
7217 ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
7218 break;
7219 #endif
7221 case TARGET_F_SETSIG:
7222 ret = get_errno(safe_fcntl(fd, host_cmd, target_to_host_signal(arg)));
7223 break;
7225 case TARGET_F_GETSIG:
7226 ret = host_to_target_signal(get_errno(safe_fcntl(fd, host_cmd, arg)));
7227 break;
7229 case TARGET_F_SETOWN:
7230 case TARGET_F_GETOWN:
7231 case TARGET_F_SETLEASE:
7232 case TARGET_F_GETLEASE:
7233 case TARGET_F_SETPIPE_SZ:
7234 case TARGET_F_GETPIPE_SZ:
7235 case TARGET_F_ADD_SEALS:
7236 case TARGET_F_GET_SEALS:
7237 ret = get_errno(safe_fcntl(fd, host_cmd, arg));
7238 break;
7240 default:
7241 ret = get_errno(safe_fcntl(fd, cmd, arg));
7242 break;
7244 return ret;
7247 #ifdef USE_UID16
7249 static inline int high2lowuid(int uid)
7251 if (uid > 65535)
7252 return 65534;
7253 else
7254 return uid;
7257 static inline int high2lowgid(int gid)
7259 if (gid > 65535)
7260 return 65534;
7261 else
7262 return gid;
7265 static inline int low2highuid(int uid)
7267 if ((int16_t)uid == -1)
7268 return -1;
7269 else
7270 return uid;
7273 static inline int low2highgid(int gid)
7275 if ((int16_t)gid == -1)
7276 return -1;
7277 else
7278 return gid;
7280 static inline int tswapid(int id)
7282 return tswap16(id);
7285 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
7287 #else /* !USE_UID16 */
7288 static inline int high2lowuid(int uid)
7290 return uid;
7292 static inline int high2lowgid(int gid)
7294 return gid;
7296 static inline int low2highuid(int uid)
7298 return uid;
7300 static inline int low2highgid(int gid)
7302 return gid;
7304 static inline int tswapid(int id)
7306 return tswap32(id);
7309 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
7311 #endif /* USE_UID16 */
7313 /* We must do direct syscalls for setting UID/GID, because we want to
7314 * implement the Linux system call semantics of "change only for this thread",
7315 * not the libc/POSIX semantics of "change for all threads in process".
7316 * (See http://ewontfix.com/17/ for more details.)
7317 * We use the 32-bit version of the syscalls if present; if it is not
7318 * then either the host architecture supports 32-bit UIDs natively with
7319 * the standard syscall, or the 16-bit UID is the best we can do.
7321 #ifdef __NR_setuid32
7322 #define __NR_sys_setuid __NR_setuid32
7323 #else
7324 #define __NR_sys_setuid __NR_setuid
7325 #endif
7326 #ifdef __NR_setgid32
7327 #define __NR_sys_setgid __NR_setgid32
7328 #else
7329 #define __NR_sys_setgid __NR_setgid
7330 #endif
7331 #ifdef __NR_setresuid32
7332 #define __NR_sys_setresuid __NR_setresuid32
7333 #else
7334 #define __NR_sys_setresuid __NR_setresuid
7335 #endif
7336 #ifdef __NR_setresgid32
7337 #define __NR_sys_setresgid __NR_setresgid32
7338 #else
7339 #define __NR_sys_setresgid __NR_setresgid
7340 #endif
7342 _syscall1(int, sys_setuid, uid_t, uid)
7343 _syscall1(int, sys_setgid, gid_t, gid)
7344 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
7345 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
7347 void syscall_init(void)
7349 IOCTLEntry *ie;
7350 const argtype *arg_type;
7351 int size;
7353 thunk_init(STRUCT_MAX);
7355 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
7356 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
7357 #include "syscall_types.h"
7358 #undef STRUCT
7359 #undef STRUCT_SPECIAL
7361 /* we patch the ioctl size if necessary. We rely on the fact that
7362 no ioctl has all the bits at '1' in the size field */
7363 ie = ioctl_entries;
7364 while (ie->target_cmd != 0) {
7365 if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) ==
7366 TARGET_IOC_SIZEMASK) {
7367 arg_type = ie->arg_type;
7368 if (arg_type[0] != TYPE_PTR) {
7369 fprintf(stderr, "cannot patch size for ioctl 0x%x\n",
7370 ie->target_cmd);
7371 exit(1);
7373 arg_type++;
7374 size = thunk_type_size(arg_type, 0);
7375 ie->target_cmd = (ie->target_cmd &
7376 ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) |
7377 (size << TARGET_IOC_SIZESHIFT);
7380 /* automatic consistency check if same arch */
7381 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
7382 (defined(__x86_64__) && defined(TARGET_X86_64))
7383 if (unlikely(ie->target_cmd != ie->host_cmd)) {
7384 fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
7385 ie->name, ie->target_cmd, ie->host_cmd);
7387 #endif
7388 ie++;
7392 #ifdef TARGET_NR_truncate64
7393 static inline abi_long target_truncate64(CPUArchState *cpu_env, const char *arg1,
7394 abi_long arg2,
7395 abi_long arg3,
7396 abi_long arg4)
7398 if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) {
7399 arg2 = arg3;
7400 arg3 = arg4;
7402 return get_errno(truncate64(arg1, target_offset64(arg2, arg3)));
7404 #endif
7406 #ifdef TARGET_NR_ftruncate64
7407 static inline abi_long target_ftruncate64(CPUArchState *cpu_env, abi_long arg1,
7408 abi_long arg2,
7409 abi_long arg3,
7410 abi_long arg4)
7412 if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) {
7413 arg2 = arg3;
7414 arg3 = arg4;
7416 return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3)));
7418 #endif
7420 #if defined(TARGET_NR_timer_settime) || \
7421 (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
7422 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_its,
7423 abi_ulong target_addr)
7425 if (target_to_host_timespec(&host_its->it_interval, target_addr +
7426 offsetof(struct target_itimerspec,
7427 it_interval)) ||
7428 target_to_host_timespec(&host_its->it_value, target_addr +
7429 offsetof(struct target_itimerspec,
7430 it_value))) {
7431 return -TARGET_EFAULT;
7434 return 0;
7436 #endif
7438 #if defined(TARGET_NR_timer_settime64) || \
7439 (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD))
7440 static inline abi_long target_to_host_itimerspec64(struct itimerspec *host_its,
7441 abi_ulong target_addr)
7443 if (target_to_host_timespec64(&host_its->it_interval, target_addr +
7444 offsetof(struct target__kernel_itimerspec,
7445 it_interval)) ||
7446 target_to_host_timespec64(&host_its->it_value, target_addr +
7447 offsetof(struct target__kernel_itimerspec,
7448 it_value))) {
7449 return -TARGET_EFAULT;
7452 return 0;
7454 #endif
7456 #if ((defined(TARGET_NR_timerfd_gettime) || \
7457 defined(TARGET_NR_timerfd_settime)) && defined(CONFIG_TIMERFD)) || \
7458 defined(TARGET_NR_timer_gettime) || defined(TARGET_NR_timer_settime)
7459 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr,
7460 struct itimerspec *host_its)
7462 if (host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7463 it_interval),
7464 &host_its->it_interval) ||
7465 host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7466 it_value),
7467 &host_its->it_value)) {
7468 return -TARGET_EFAULT;
7470 return 0;
7472 #endif
7474 #if ((defined(TARGET_NR_timerfd_gettime64) || \
7475 defined(TARGET_NR_timerfd_settime64)) && defined(CONFIG_TIMERFD)) || \
7476 defined(TARGET_NR_timer_gettime64) || defined(TARGET_NR_timer_settime64)
7477 static inline abi_long host_to_target_itimerspec64(abi_ulong target_addr,
7478 struct itimerspec *host_its)
7480 if (host_to_target_timespec64(target_addr +
7481 offsetof(struct target__kernel_itimerspec,
7482 it_interval),
7483 &host_its->it_interval) ||
7484 host_to_target_timespec64(target_addr +
7485 offsetof(struct target__kernel_itimerspec,
7486 it_value),
7487 &host_its->it_value)) {
7488 return -TARGET_EFAULT;
7490 return 0;
7492 #endif
7494 #if defined(TARGET_NR_adjtimex) || \
7495 (defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME))
7496 static inline abi_long target_to_host_timex(struct timex *host_tx,
7497 abi_long target_addr)
7499 struct target_timex *target_tx;
7501 if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7502 return -TARGET_EFAULT;
7505 __get_user(host_tx->modes, &target_tx->modes);
7506 __get_user(host_tx->offset, &target_tx->offset);
7507 __get_user(host_tx->freq, &target_tx->freq);
7508 __get_user(host_tx->maxerror, &target_tx->maxerror);
7509 __get_user(host_tx->esterror, &target_tx->esterror);
7510 __get_user(host_tx->status, &target_tx->status);
7511 __get_user(host_tx->constant, &target_tx->constant);
7512 __get_user(host_tx->precision, &target_tx->precision);
7513 __get_user(host_tx->tolerance, &target_tx->tolerance);
7514 __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7515 __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7516 __get_user(host_tx->tick, &target_tx->tick);
7517 __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7518 __get_user(host_tx->jitter, &target_tx->jitter);
7519 __get_user(host_tx->shift, &target_tx->shift);
7520 __get_user(host_tx->stabil, &target_tx->stabil);
7521 __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7522 __get_user(host_tx->calcnt, &target_tx->calcnt);
7523 __get_user(host_tx->errcnt, &target_tx->errcnt);
7524 __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7525 __get_user(host_tx->tai, &target_tx->tai);
7527 unlock_user_struct(target_tx, target_addr, 0);
7528 return 0;
7531 static inline abi_long host_to_target_timex(abi_long target_addr,
7532 struct timex *host_tx)
7534 struct target_timex *target_tx;
7536 if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7537 return -TARGET_EFAULT;
7540 __put_user(host_tx->modes, &target_tx->modes);
7541 __put_user(host_tx->offset, &target_tx->offset);
7542 __put_user(host_tx->freq, &target_tx->freq);
7543 __put_user(host_tx->maxerror, &target_tx->maxerror);
7544 __put_user(host_tx->esterror, &target_tx->esterror);
7545 __put_user(host_tx->status, &target_tx->status);
7546 __put_user(host_tx->constant, &target_tx->constant);
7547 __put_user(host_tx->precision, &target_tx->precision);
7548 __put_user(host_tx->tolerance, &target_tx->tolerance);
7549 __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7550 __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7551 __put_user(host_tx->tick, &target_tx->tick);
7552 __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7553 __put_user(host_tx->jitter, &target_tx->jitter);
7554 __put_user(host_tx->shift, &target_tx->shift);
7555 __put_user(host_tx->stabil, &target_tx->stabil);
7556 __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7557 __put_user(host_tx->calcnt, &target_tx->calcnt);
7558 __put_user(host_tx->errcnt, &target_tx->errcnt);
7559 __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7560 __put_user(host_tx->tai, &target_tx->tai);
7562 unlock_user_struct(target_tx, target_addr, 1);
7563 return 0;
7565 #endif
7568 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
7569 static inline abi_long target_to_host_timex64(struct timex *host_tx,
7570 abi_long target_addr)
7572 struct target__kernel_timex *target_tx;
7574 if (copy_from_user_timeval64(&host_tx->time, target_addr +
7575 offsetof(struct target__kernel_timex,
7576 time))) {
7577 return -TARGET_EFAULT;
7580 if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7581 return -TARGET_EFAULT;
7584 __get_user(host_tx->modes, &target_tx->modes);
7585 __get_user(host_tx->offset, &target_tx->offset);
7586 __get_user(host_tx->freq, &target_tx->freq);
7587 __get_user(host_tx->maxerror, &target_tx->maxerror);
7588 __get_user(host_tx->esterror, &target_tx->esterror);
7589 __get_user(host_tx->status, &target_tx->status);
7590 __get_user(host_tx->constant, &target_tx->constant);
7591 __get_user(host_tx->precision, &target_tx->precision);
7592 __get_user(host_tx->tolerance, &target_tx->tolerance);
7593 __get_user(host_tx->tick, &target_tx->tick);
7594 __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7595 __get_user(host_tx->jitter, &target_tx->jitter);
7596 __get_user(host_tx->shift, &target_tx->shift);
7597 __get_user(host_tx->stabil, &target_tx->stabil);
7598 __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7599 __get_user(host_tx->calcnt, &target_tx->calcnt);
7600 __get_user(host_tx->errcnt, &target_tx->errcnt);
7601 __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7602 __get_user(host_tx->tai, &target_tx->tai);
7604 unlock_user_struct(target_tx, target_addr, 0);
7605 return 0;
7608 static inline abi_long host_to_target_timex64(abi_long target_addr,
7609 struct timex *host_tx)
7611 struct target__kernel_timex *target_tx;
7613 if (copy_to_user_timeval64(target_addr +
7614 offsetof(struct target__kernel_timex, time),
7615 &host_tx->time)) {
7616 return -TARGET_EFAULT;
7619 if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7620 return -TARGET_EFAULT;
7623 __put_user(host_tx->modes, &target_tx->modes);
7624 __put_user(host_tx->offset, &target_tx->offset);
7625 __put_user(host_tx->freq, &target_tx->freq);
7626 __put_user(host_tx->maxerror, &target_tx->maxerror);
7627 __put_user(host_tx->esterror, &target_tx->esterror);
7628 __put_user(host_tx->status, &target_tx->status);
7629 __put_user(host_tx->constant, &target_tx->constant);
7630 __put_user(host_tx->precision, &target_tx->precision);
7631 __put_user(host_tx->tolerance, &target_tx->tolerance);
7632 __put_user(host_tx->tick, &target_tx->tick);
7633 __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7634 __put_user(host_tx->jitter, &target_tx->jitter);
7635 __put_user(host_tx->shift, &target_tx->shift);
7636 __put_user(host_tx->stabil, &target_tx->stabil);
7637 __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7638 __put_user(host_tx->calcnt, &target_tx->calcnt);
7639 __put_user(host_tx->errcnt, &target_tx->errcnt);
7640 __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7641 __put_user(host_tx->tai, &target_tx->tai);
7643 unlock_user_struct(target_tx, target_addr, 1);
7644 return 0;
7646 #endif
7648 #ifndef HAVE_SIGEV_NOTIFY_THREAD_ID
7649 #define sigev_notify_thread_id _sigev_un._tid
7650 #endif
7652 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp,
7653 abi_ulong target_addr)
7655 struct target_sigevent *target_sevp;
7657 if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) {
7658 return -TARGET_EFAULT;
7661 /* This union is awkward on 64 bit systems because it has a 32 bit
7662 * integer and a pointer in it; we follow the conversion approach
7663 * used for handling sigval types in signal.c so the guest should get
7664 * the correct value back even if we did a 64 bit byteswap and it's
7665 * using the 32 bit integer.
7667 host_sevp->sigev_value.sival_ptr =
7668 (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr);
7669 host_sevp->sigev_signo =
7670 target_to_host_signal(tswap32(target_sevp->sigev_signo));
7671 host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify);
7672 host_sevp->sigev_notify_thread_id = tswap32(target_sevp->_sigev_un._tid);
7674 unlock_user_struct(target_sevp, target_addr, 1);
7675 return 0;
7678 #if defined(TARGET_NR_mlockall)
7679 static inline int target_to_host_mlockall_arg(int arg)
7681 int result = 0;
7683 if (arg & TARGET_MCL_CURRENT) {
7684 result |= MCL_CURRENT;
7686 if (arg & TARGET_MCL_FUTURE) {
7687 result |= MCL_FUTURE;
7689 #ifdef MCL_ONFAULT
7690 if (arg & TARGET_MCL_ONFAULT) {
7691 result |= MCL_ONFAULT;
7693 #endif
7695 return result;
7697 #endif
7699 static inline int target_to_host_msync_arg(abi_long arg)
7701 return ((arg & TARGET_MS_ASYNC) ? MS_ASYNC : 0) |
7702 ((arg & TARGET_MS_INVALIDATE) ? MS_INVALIDATE : 0) |
7703 ((arg & TARGET_MS_SYNC) ? MS_SYNC : 0) |
7704 (arg & ~(TARGET_MS_ASYNC | TARGET_MS_INVALIDATE | TARGET_MS_SYNC));
7707 #if (defined(TARGET_NR_stat64) || defined(TARGET_NR_lstat64) || \
7708 defined(TARGET_NR_fstat64) || defined(TARGET_NR_fstatat64) || \
7709 defined(TARGET_NR_newfstatat))
7710 static inline abi_long host_to_target_stat64(CPUArchState *cpu_env,
7711 abi_ulong target_addr,
7712 struct stat *host_st)
7714 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
7715 if (cpu_env->eabi) {
7716 struct target_eabi_stat64 *target_st;
7718 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7719 return -TARGET_EFAULT;
7720 memset(target_st, 0, sizeof(struct target_eabi_stat64));
7721 __put_user(host_st->st_dev, &target_st->st_dev);
7722 __put_user(host_st->st_ino, &target_st->st_ino);
7723 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7724 __put_user(host_st->st_ino, &target_st->__st_ino);
7725 #endif
7726 __put_user(host_st->st_mode, &target_st->st_mode);
7727 __put_user(host_st->st_nlink, &target_st->st_nlink);
7728 __put_user(host_st->st_uid, &target_st->st_uid);
7729 __put_user(host_st->st_gid, &target_st->st_gid);
7730 __put_user(host_st->st_rdev, &target_st->st_rdev);
7731 __put_user(host_st->st_size, &target_st->st_size);
7732 __put_user(host_st->st_blksize, &target_st->st_blksize);
7733 __put_user(host_st->st_blocks, &target_st->st_blocks);
7734 __put_user(host_st->st_atime, &target_st->target_st_atime);
7735 __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7736 __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7737 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7738 __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7739 __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7740 __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7741 #endif
7742 unlock_user_struct(target_st, target_addr, 1);
7743 } else
7744 #endif
7746 #if defined(TARGET_HAS_STRUCT_STAT64)
7747 struct target_stat64 *target_st;
7748 #else
7749 struct target_stat *target_st;
7750 #endif
7752 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7753 return -TARGET_EFAULT;
7754 memset(target_st, 0, sizeof(*target_st));
7755 __put_user(host_st->st_dev, &target_st->st_dev);
7756 __put_user(host_st->st_ino, &target_st->st_ino);
7757 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7758 __put_user(host_st->st_ino, &target_st->__st_ino);
7759 #endif
7760 __put_user(host_st->st_mode, &target_st->st_mode);
7761 __put_user(host_st->st_nlink, &target_st->st_nlink);
7762 __put_user(host_st->st_uid, &target_st->st_uid);
7763 __put_user(host_st->st_gid, &target_st->st_gid);
7764 __put_user(host_st->st_rdev, &target_st->st_rdev);
7765 /* XXX: better use of kernel struct */
7766 __put_user(host_st->st_size, &target_st->st_size);
7767 __put_user(host_st->st_blksize, &target_st->st_blksize);
7768 __put_user(host_st->st_blocks, &target_st->st_blocks);
7769 __put_user(host_st->st_atime, &target_st->target_st_atime);
7770 __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7771 __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7772 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7773 __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7774 __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7775 __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7776 #endif
7777 unlock_user_struct(target_st, target_addr, 1);
7780 return 0;
7782 #endif
7784 #if defined(TARGET_NR_statx) && defined(__NR_statx)
7785 static inline abi_long host_to_target_statx(struct target_statx *host_stx,
7786 abi_ulong target_addr)
7788 struct target_statx *target_stx;
7790 if (!lock_user_struct(VERIFY_WRITE, target_stx, target_addr, 0)) {
7791 return -TARGET_EFAULT;
7793 memset(target_stx, 0, sizeof(*target_stx));
7795 __put_user(host_stx->stx_mask, &target_stx->stx_mask);
7796 __put_user(host_stx->stx_blksize, &target_stx->stx_blksize);
7797 __put_user(host_stx->stx_attributes, &target_stx->stx_attributes);
7798 __put_user(host_stx->stx_nlink, &target_stx->stx_nlink);
7799 __put_user(host_stx->stx_uid, &target_stx->stx_uid);
7800 __put_user(host_stx->stx_gid, &target_stx->stx_gid);
7801 __put_user(host_stx->stx_mode, &target_stx->stx_mode);
7802 __put_user(host_stx->stx_ino, &target_stx->stx_ino);
7803 __put_user(host_stx->stx_size, &target_stx->stx_size);
7804 __put_user(host_stx->stx_blocks, &target_stx->stx_blocks);
7805 __put_user(host_stx->stx_attributes_mask, &target_stx->stx_attributes_mask);
7806 __put_user(host_stx->stx_atime.tv_sec, &target_stx->stx_atime.tv_sec);
7807 __put_user(host_stx->stx_atime.tv_nsec, &target_stx->stx_atime.tv_nsec);
7808 __put_user(host_stx->stx_btime.tv_sec, &target_stx->stx_btime.tv_sec);
7809 __put_user(host_stx->stx_btime.tv_nsec, &target_stx->stx_btime.tv_nsec);
7810 __put_user(host_stx->stx_ctime.tv_sec, &target_stx->stx_ctime.tv_sec);
7811 __put_user(host_stx->stx_ctime.tv_nsec, &target_stx->stx_ctime.tv_nsec);
7812 __put_user(host_stx->stx_mtime.tv_sec, &target_stx->stx_mtime.tv_sec);
7813 __put_user(host_stx->stx_mtime.tv_nsec, &target_stx->stx_mtime.tv_nsec);
7814 __put_user(host_stx->stx_rdev_major, &target_stx->stx_rdev_major);
7815 __put_user(host_stx->stx_rdev_minor, &target_stx->stx_rdev_minor);
7816 __put_user(host_stx->stx_dev_major, &target_stx->stx_dev_major);
7817 __put_user(host_stx->stx_dev_minor, &target_stx->stx_dev_minor);
7819 unlock_user_struct(target_stx, target_addr, 1);
7821 return 0;
7823 #endif
7825 static int do_sys_futex(int *uaddr, int op, int val,
7826 const struct timespec *timeout, int *uaddr2,
7827 int val3)
7829 #if HOST_LONG_BITS == 64
7830 #if defined(__NR_futex)
7831 /* always a 64-bit time_t, it doesn't define _time64 version */
7832 return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7834 #endif
7835 #else /* HOST_LONG_BITS == 64 */
7836 #if defined(__NR_futex_time64)
7837 if (sizeof(timeout->tv_sec) == 8) {
7838 /* _time64 function on 32bit arch */
7839 return sys_futex_time64(uaddr, op, val, timeout, uaddr2, val3);
7841 #endif
7842 #if defined(__NR_futex)
7843 /* old function on 32bit arch */
7844 return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7845 #endif
7846 #endif /* HOST_LONG_BITS == 64 */
7847 g_assert_not_reached();
7850 static int do_safe_futex(int *uaddr, int op, int val,
7851 const struct timespec *timeout, int *uaddr2,
7852 int val3)
7854 #if HOST_LONG_BITS == 64
7855 #if defined(__NR_futex)
7856 /* always a 64-bit time_t, it doesn't define _time64 version */
7857 return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7858 #endif
7859 #else /* HOST_LONG_BITS == 64 */
7860 #if defined(__NR_futex_time64)
7861 if (sizeof(timeout->tv_sec) == 8) {
7862 /* _time64 function on 32bit arch */
7863 return get_errno(safe_futex_time64(uaddr, op, val, timeout, uaddr2,
7864 val3));
7866 #endif
7867 #if defined(__NR_futex)
7868 /* old function on 32bit arch */
7869 return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7870 #endif
7871 #endif /* HOST_LONG_BITS == 64 */
7872 return -TARGET_ENOSYS;
7875 /* ??? Using host futex calls even when target atomic operations
7876 are not really atomic probably breaks things. However implementing
7877 futexes locally would make futexes shared between multiple processes
7878 tricky. However they're probably useless because guest atomic
7879 operations won't work either. */
7880 #if defined(TARGET_NR_futex) || defined(TARGET_NR_futex_time64)
7881 static int do_futex(CPUState *cpu, bool time64, target_ulong uaddr,
7882 int op, int val, target_ulong timeout,
7883 target_ulong uaddr2, int val3)
7885 struct timespec ts, *pts = NULL;
7886 void *haddr2 = NULL;
7887 int base_op;
7889 /* We assume FUTEX_* constants are the same on both host and target. */
7890 #ifdef FUTEX_CMD_MASK
7891 base_op = op & FUTEX_CMD_MASK;
7892 #else
7893 base_op = op;
7894 #endif
7895 switch (base_op) {
7896 case FUTEX_WAIT:
7897 case FUTEX_WAIT_BITSET:
7898 val = tswap32(val);
7899 break;
7900 case FUTEX_WAIT_REQUEUE_PI:
7901 val = tswap32(val);
7902 haddr2 = g2h(cpu, uaddr2);
7903 break;
7904 case FUTEX_LOCK_PI:
7905 case FUTEX_LOCK_PI2:
7906 break;
7907 case FUTEX_WAKE:
7908 case FUTEX_WAKE_BITSET:
7909 case FUTEX_TRYLOCK_PI:
7910 case FUTEX_UNLOCK_PI:
7911 timeout = 0;
7912 break;
7913 case FUTEX_FD:
7914 val = target_to_host_signal(val);
7915 timeout = 0;
7916 break;
7917 case FUTEX_CMP_REQUEUE:
7918 case FUTEX_CMP_REQUEUE_PI:
7919 val3 = tswap32(val3);
7920 /* fall through */
7921 case FUTEX_REQUEUE:
7922 case FUTEX_WAKE_OP:
7924 * For these, the 4th argument is not TIMEOUT, but VAL2.
7925 * But the prototype of do_safe_futex takes a pointer, so
7926 * insert casts to satisfy the compiler. We do not need
7927 * to tswap VAL2 since it's not compared to guest memory.
7929 pts = (struct timespec *)(uintptr_t)timeout;
7930 timeout = 0;
7931 haddr2 = g2h(cpu, uaddr2);
7932 break;
7933 default:
7934 return -TARGET_ENOSYS;
7936 if (timeout) {
7937 pts = &ts;
7938 if (time64
7939 ? target_to_host_timespec64(pts, timeout)
7940 : target_to_host_timespec(pts, timeout)) {
7941 return -TARGET_EFAULT;
7944 return do_safe_futex(g2h(cpu, uaddr), op, val, pts, haddr2, val3);
7946 #endif
7948 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7949 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname,
7950 abi_long handle, abi_long mount_id,
7951 abi_long flags)
7953 struct file_handle *target_fh;
7954 struct file_handle *fh;
7955 int mid = 0;
7956 abi_long ret;
7957 char *name;
7958 unsigned int size, total_size;
7960 if (get_user_s32(size, handle)) {
7961 return -TARGET_EFAULT;
7964 name = lock_user_string(pathname);
7965 if (!name) {
7966 return -TARGET_EFAULT;
7969 total_size = sizeof(struct file_handle) + size;
7970 target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0);
7971 if (!target_fh) {
7972 unlock_user(name, pathname, 0);
7973 return -TARGET_EFAULT;
7976 fh = g_malloc0(total_size);
7977 fh->handle_bytes = size;
7979 ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags));
7980 unlock_user(name, pathname, 0);
7982 /* man name_to_handle_at(2):
7983 * Other than the use of the handle_bytes field, the caller should treat
7984 * the file_handle structure as an opaque data type
7987 memcpy(target_fh, fh, total_size);
7988 target_fh->handle_bytes = tswap32(fh->handle_bytes);
7989 target_fh->handle_type = tswap32(fh->handle_type);
7990 g_free(fh);
7991 unlock_user(target_fh, handle, total_size);
7993 if (put_user_s32(mid, mount_id)) {
7994 return -TARGET_EFAULT;
7997 return ret;
8000 #endif
8002 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
8003 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle,
8004 abi_long flags)
8006 struct file_handle *target_fh;
8007 struct file_handle *fh;
8008 unsigned int size, total_size;
8009 abi_long ret;
8011 if (get_user_s32(size, handle)) {
8012 return -TARGET_EFAULT;
8015 total_size = sizeof(struct file_handle) + size;
8016 target_fh = lock_user(VERIFY_READ, handle, total_size, 1);
8017 if (!target_fh) {
8018 return -TARGET_EFAULT;
8021 fh = g_memdup(target_fh, total_size);
8022 fh->handle_bytes = size;
8023 fh->handle_type = tswap32(target_fh->handle_type);
8025 ret = get_errno(open_by_handle_at(mount_fd, fh,
8026 target_to_host_bitmask(flags, fcntl_flags_tbl)));
8028 g_free(fh);
8030 unlock_user(target_fh, handle, total_size);
8032 return ret;
8034 #endif
8036 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4)
8038 static abi_long do_signalfd4(int fd, abi_long mask, int flags)
8040 int host_flags;
8041 target_sigset_t *target_mask;
8042 sigset_t host_mask;
8043 abi_long ret;
8045 if (flags & ~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC)) {
8046 return -TARGET_EINVAL;
8048 if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) {
8049 return -TARGET_EFAULT;
8052 target_to_host_sigset(&host_mask, target_mask);
8054 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
8056 ret = get_errno(signalfd(fd, &host_mask, host_flags));
8057 if (ret >= 0) {
8058 fd_trans_register(ret, &target_signalfd_trans);
8061 unlock_user_struct(target_mask, mask, 0);
8063 return ret;
8065 #endif
8067 /* Map host to target signal numbers for the wait family of syscalls.
8068 Assume all other status bits are the same. */
8069 int host_to_target_waitstatus(int status)
8071 if (WIFSIGNALED(status)) {
8072 return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f);
8074 if (WIFSTOPPED(status)) {
8075 return (host_to_target_signal(WSTOPSIG(status)) << 8)
8076 | (status & 0xff);
8078 return status;
8081 static int open_self_cmdline(CPUArchState *cpu_env, int fd)
8083 CPUState *cpu = env_cpu(cpu_env);
8084 struct linux_binprm *bprm = ((TaskState *)cpu->opaque)->bprm;
8085 int i;
8087 for (i = 0; i < bprm->argc; i++) {
8088 size_t len = strlen(bprm->argv[i]) + 1;
8090 if (write(fd, bprm->argv[i], len) != len) {
8091 return -1;
8095 return 0;
8098 struct open_self_maps_data {
8099 TaskState *ts;
8100 IntervalTreeRoot *host_maps;
8101 int fd;
8102 bool smaps;
8106 * Subroutine to output one line of /proc/self/maps,
8107 * or one region of /proc/self/smaps.
8110 #ifdef TARGET_HPPA
8111 # define test_stack(S, E, L) (E == L)
8112 #else
8113 # define test_stack(S, E, L) (S == L)
8114 #endif
8116 static void open_self_maps_4(const struct open_self_maps_data *d,
8117 const MapInfo *mi, abi_ptr start,
8118 abi_ptr end, unsigned flags)
8120 const struct image_info *info = d->ts->info;
8121 const char *path = mi->path;
8122 uint64_t offset;
8123 int fd = d->fd;
8124 int count;
8126 if (test_stack(start, end, info->stack_limit)) {
8127 path = "[stack]";
8128 } else if (start == info->brk) {
8129 path = "[heap]";
8132 /* Except null device (MAP_ANON), adjust offset for this fragment. */
8133 offset = mi->offset;
8134 if (mi->dev) {
8135 uintptr_t hstart = (uintptr_t)g2h_untagged(start);
8136 offset += hstart - mi->itree.start;
8139 count = dprintf(fd, TARGET_ABI_FMT_ptr "-" TARGET_ABI_FMT_ptr
8140 " %c%c%c%c %08" PRIx64 " %02x:%02x %"PRId64,
8141 start, end,
8142 (flags & PAGE_READ) ? 'r' : '-',
8143 (flags & PAGE_WRITE_ORG) ? 'w' : '-',
8144 (flags & PAGE_EXEC) ? 'x' : '-',
8145 mi->is_priv ? 'p' : 's',
8146 offset, major(mi->dev), minor(mi->dev),
8147 (uint64_t)mi->inode);
8148 if (path) {
8149 dprintf(fd, "%*s%s\n", 73 - count, "", path);
8150 } else {
8151 dprintf(fd, "\n");
8154 if (d->smaps) {
8155 unsigned long size = end - start;
8156 unsigned long page_size_kb = TARGET_PAGE_SIZE >> 10;
8157 unsigned long size_kb = size >> 10;
8159 dprintf(fd, "Size: %lu kB\n"
8160 "KernelPageSize: %lu kB\n"
8161 "MMUPageSize: %lu kB\n"
8162 "Rss: 0 kB\n"
8163 "Pss: 0 kB\n"
8164 "Pss_Dirty: 0 kB\n"
8165 "Shared_Clean: 0 kB\n"
8166 "Shared_Dirty: 0 kB\n"
8167 "Private_Clean: 0 kB\n"
8168 "Private_Dirty: 0 kB\n"
8169 "Referenced: 0 kB\n"
8170 "Anonymous: %lu kB\n"
8171 "LazyFree: 0 kB\n"
8172 "AnonHugePages: 0 kB\n"
8173 "ShmemPmdMapped: 0 kB\n"
8174 "FilePmdMapped: 0 kB\n"
8175 "Shared_Hugetlb: 0 kB\n"
8176 "Private_Hugetlb: 0 kB\n"
8177 "Swap: 0 kB\n"
8178 "SwapPss: 0 kB\n"
8179 "Locked: 0 kB\n"
8180 "THPeligible: 0\n"
8181 "VmFlags:%s%s%s%s%s%s%s%s\n",
8182 size_kb, page_size_kb, page_size_kb,
8183 (flags & PAGE_ANON ? size_kb : 0),
8184 (flags & PAGE_READ) ? " rd" : "",
8185 (flags & PAGE_WRITE_ORG) ? " wr" : "",
8186 (flags & PAGE_EXEC) ? " ex" : "",
8187 mi->is_priv ? "" : " sh",
8188 (flags & PAGE_READ) ? " mr" : "",
8189 (flags & PAGE_WRITE_ORG) ? " mw" : "",
8190 (flags & PAGE_EXEC) ? " me" : "",
8191 mi->is_priv ? "" : " ms");
8196 * Callback for walk_memory_regions, when read_self_maps() fails.
8197 * Proceed without the benefit of host /proc/self/maps cross-check.
8199 static int open_self_maps_3(void *opaque, target_ulong guest_start,
8200 target_ulong guest_end, unsigned long flags)
8202 static const MapInfo mi = { .is_priv = true };
8204 open_self_maps_4(opaque, &mi, guest_start, guest_end, flags);
8205 return 0;
8209 * Callback for walk_memory_regions, when read_self_maps() succeeds.
8211 static int open_self_maps_2(void *opaque, target_ulong guest_start,
8212 target_ulong guest_end, unsigned long flags)
8214 const struct open_self_maps_data *d = opaque;
8215 uintptr_t host_start = (uintptr_t)g2h_untagged(guest_start);
8216 uintptr_t host_last = (uintptr_t)g2h_untagged(guest_end - 1);
8218 while (1) {
8219 IntervalTreeNode *n =
8220 interval_tree_iter_first(d->host_maps, host_start, host_start);
8221 MapInfo *mi = container_of(n, MapInfo, itree);
8222 uintptr_t this_hlast = MIN(host_last, n->last);
8223 target_ulong this_gend = h2g(this_hlast) + 1;
8225 open_self_maps_4(d, mi, guest_start, this_gend, flags);
8227 if (this_hlast == host_last) {
8228 return 0;
8230 host_start = this_hlast + 1;
8231 guest_start = h2g(host_start);
8235 static int open_self_maps_1(CPUArchState *env, int fd, bool smaps)
8237 struct open_self_maps_data d = {
8238 .ts = env_cpu(env)->opaque,
8239 .host_maps = read_self_maps(),
8240 .fd = fd,
8241 .smaps = smaps
8244 if (d.host_maps) {
8245 walk_memory_regions(&d, open_self_maps_2);
8246 free_self_maps(d.host_maps);
8247 } else {
8248 walk_memory_regions(&d, open_self_maps_3);
8250 return 0;
8253 static int open_self_maps(CPUArchState *cpu_env, int fd)
8255 return open_self_maps_1(cpu_env, fd, false);
8258 static int open_self_smaps(CPUArchState *cpu_env, int fd)
8260 return open_self_maps_1(cpu_env, fd, true);
8263 static int open_self_stat(CPUArchState *cpu_env, int fd)
8265 CPUState *cpu = env_cpu(cpu_env);
8266 TaskState *ts = cpu->opaque;
8267 g_autoptr(GString) buf = g_string_new(NULL);
8268 int i;
8270 for (i = 0; i < 44; i++) {
8271 if (i == 0) {
8272 /* pid */
8273 g_string_printf(buf, FMT_pid " ", getpid());
8274 } else if (i == 1) {
8275 /* app name */
8276 gchar *bin = g_strrstr(ts->bprm->argv[0], "/");
8277 bin = bin ? bin + 1 : ts->bprm->argv[0];
8278 g_string_printf(buf, "(%.15s) ", bin);
8279 } else if (i == 2) {
8280 /* task state */
8281 g_string_assign(buf, "R "); /* we are running right now */
8282 } else if (i == 3) {
8283 /* ppid */
8284 g_string_printf(buf, FMT_pid " ", getppid());
8285 } else if (i == 21) {
8286 /* starttime */
8287 g_string_printf(buf, "%" PRIu64 " ", ts->start_boottime);
8288 } else if (i == 27) {
8289 /* stack bottom */
8290 g_string_printf(buf, TARGET_ABI_FMT_ld " ", ts->info->start_stack);
8291 } else {
8292 /* for the rest, there is MasterCard */
8293 g_string_printf(buf, "0%c", i == 43 ? '\n' : ' ');
8296 if (write(fd, buf->str, buf->len) != buf->len) {
8297 return -1;
8301 return 0;
8304 static int open_self_auxv(CPUArchState *cpu_env, int fd)
8306 CPUState *cpu = env_cpu(cpu_env);
8307 TaskState *ts = cpu->opaque;
8308 abi_ulong auxv = ts->info->saved_auxv;
8309 abi_ulong len = ts->info->auxv_len;
8310 char *ptr;
8313 * Auxiliary vector is stored in target process stack.
8314 * read in whole auxv vector and copy it to file
8316 ptr = lock_user(VERIFY_READ, auxv, len, 0);
8317 if (ptr != NULL) {
8318 while (len > 0) {
8319 ssize_t r;
8320 r = write(fd, ptr, len);
8321 if (r <= 0) {
8322 break;
8324 len -= r;
8325 ptr += r;
8327 lseek(fd, 0, SEEK_SET);
8328 unlock_user(ptr, auxv, len);
8331 return 0;
8334 static int is_proc_myself(const char *filename, const char *entry)
8336 if (!strncmp(filename, "/proc/", strlen("/proc/"))) {
8337 filename += strlen("/proc/");
8338 if (!strncmp(filename, "self/", strlen("self/"))) {
8339 filename += strlen("self/");
8340 } else if (*filename >= '1' && *filename <= '9') {
8341 char myself[80];
8342 snprintf(myself, sizeof(myself), "%d/", getpid());
8343 if (!strncmp(filename, myself, strlen(myself))) {
8344 filename += strlen(myself);
8345 } else {
8346 return 0;
8348 } else {
8349 return 0;
8351 if (!strcmp(filename, entry)) {
8352 return 1;
8355 return 0;
8358 static void excp_dump_file(FILE *logfile, CPUArchState *env,
8359 const char *fmt, int code)
8361 if (logfile) {
8362 CPUState *cs = env_cpu(env);
8364 fprintf(logfile, fmt, code);
8365 fprintf(logfile, "Failing executable: %s\n", exec_path);
8366 cpu_dump_state(cs, logfile, 0);
8367 open_self_maps(env, fileno(logfile));
8371 void target_exception_dump(CPUArchState *env, const char *fmt, int code)
8373 /* dump to console */
8374 excp_dump_file(stderr, env, fmt, code);
8376 /* dump to log file */
8377 if (qemu_log_separate()) {
8378 FILE *logfile = qemu_log_trylock();
8380 excp_dump_file(logfile, env, fmt, code);
8381 qemu_log_unlock(logfile);
8385 #include "target_proc.h"
8387 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN || \
8388 defined(HAVE_ARCH_PROC_CPUINFO) || \
8389 defined(HAVE_ARCH_PROC_HARDWARE)
8390 static int is_proc(const char *filename, const char *entry)
8392 return strcmp(filename, entry) == 0;
8394 #endif
8396 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
8397 static int open_net_route(CPUArchState *cpu_env, int fd)
8399 FILE *fp;
8400 char *line = NULL;
8401 size_t len = 0;
8402 ssize_t read;
8404 fp = fopen("/proc/net/route", "r");
8405 if (fp == NULL) {
8406 return -1;
8409 /* read header */
8411 read = getline(&line, &len, fp);
8412 dprintf(fd, "%s", line);
8414 /* read routes */
8416 while ((read = getline(&line, &len, fp)) != -1) {
8417 char iface[16];
8418 uint32_t dest, gw, mask;
8419 unsigned int flags, refcnt, use, metric, mtu, window, irtt;
8420 int fields;
8422 fields = sscanf(line,
8423 "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8424 iface, &dest, &gw, &flags, &refcnt, &use, &metric,
8425 &mask, &mtu, &window, &irtt);
8426 if (fields != 11) {
8427 continue;
8429 dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8430 iface, tswap32(dest), tswap32(gw), flags, refcnt, use,
8431 metric, tswap32(mask), mtu, window, irtt);
8434 free(line);
8435 fclose(fp);
8437 return 0;
8439 #endif
8441 int do_guest_openat(CPUArchState *cpu_env, int dirfd, const char *fname,
8442 int flags, mode_t mode, bool safe)
8444 g_autofree char *proc_name = NULL;
8445 const char *pathname;
8446 struct fake_open {
8447 const char *filename;
8448 int (*fill)(CPUArchState *cpu_env, int fd);
8449 int (*cmp)(const char *s1, const char *s2);
8451 const struct fake_open *fake_open;
8452 static const struct fake_open fakes[] = {
8453 { "maps", open_self_maps, is_proc_myself },
8454 { "smaps", open_self_smaps, is_proc_myself },
8455 { "stat", open_self_stat, is_proc_myself },
8456 { "auxv", open_self_auxv, is_proc_myself },
8457 { "cmdline", open_self_cmdline, is_proc_myself },
8458 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
8459 { "/proc/net/route", open_net_route, is_proc },
8460 #endif
8461 #if defined(HAVE_ARCH_PROC_CPUINFO)
8462 { "/proc/cpuinfo", open_cpuinfo, is_proc },
8463 #endif
8464 #if defined(HAVE_ARCH_PROC_HARDWARE)
8465 { "/proc/hardware", open_hardware, is_proc },
8466 #endif
8467 { NULL, NULL, NULL }
8470 /* if this is a file from /proc/ filesystem, expand full name */
8471 proc_name = realpath(fname, NULL);
8472 if (proc_name && strncmp(proc_name, "/proc/", 6) == 0) {
8473 pathname = proc_name;
8474 } else {
8475 pathname = fname;
8478 if (is_proc_myself(pathname, "exe")) {
8479 if (safe) {
8480 return safe_openat(dirfd, exec_path, flags, mode);
8481 } else {
8482 return openat(dirfd, exec_path, flags, mode);
8486 for (fake_open = fakes; fake_open->filename; fake_open++) {
8487 if (fake_open->cmp(pathname, fake_open->filename)) {
8488 break;
8492 if (fake_open->filename) {
8493 const char *tmpdir;
8494 char filename[PATH_MAX];
8495 int fd, r;
8497 fd = memfd_create("qemu-open", 0);
8498 if (fd < 0) {
8499 if (errno != ENOSYS) {
8500 return fd;
8502 /* create temporary file to map stat to */
8503 tmpdir = getenv("TMPDIR");
8504 if (!tmpdir)
8505 tmpdir = "/tmp";
8506 snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir);
8507 fd = mkstemp(filename);
8508 if (fd < 0) {
8509 return fd;
8511 unlink(filename);
8514 if ((r = fake_open->fill(cpu_env, fd))) {
8515 int e = errno;
8516 close(fd);
8517 errno = e;
8518 return r;
8520 lseek(fd, 0, SEEK_SET);
8522 return fd;
8525 if (safe) {
8526 return safe_openat(dirfd, path(pathname), flags, mode);
8527 } else {
8528 return openat(dirfd, path(pathname), flags, mode);
8532 ssize_t do_guest_readlink(const char *pathname, char *buf, size_t bufsiz)
8534 ssize_t ret;
8536 if (!pathname || !buf) {
8537 errno = EFAULT;
8538 return -1;
8541 if (!bufsiz) {
8542 /* Short circuit this for the magic exe check. */
8543 errno = EINVAL;
8544 return -1;
8547 if (is_proc_myself((const char *)pathname, "exe")) {
8549 * Don't worry about sign mismatch as earlier mapping
8550 * logic would have thrown a bad address error.
8552 ret = MIN(strlen(exec_path), bufsiz);
8553 /* We cannot NUL terminate the string. */
8554 memcpy(buf, exec_path, ret);
8555 } else {
8556 ret = readlink(path(pathname), buf, bufsiz);
8559 return ret;
8562 static int do_execv(CPUArchState *cpu_env, int dirfd,
8563 abi_long pathname, abi_long guest_argp,
8564 abi_long guest_envp, int flags, bool is_execveat)
8566 int ret;
8567 char **argp, **envp;
8568 int argc, envc;
8569 abi_ulong gp;
8570 abi_ulong addr;
8571 char **q;
8572 void *p;
8574 argc = 0;
8576 for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) {
8577 if (get_user_ual(addr, gp)) {
8578 return -TARGET_EFAULT;
8580 if (!addr) {
8581 break;
8583 argc++;
8585 envc = 0;
8586 for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) {
8587 if (get_user_ual(addr, gp)) {
8588 return -TARGET_EFAULT;
8590 if (!addr) {
8591 break;
8593 envc++;
8596 argp = g_new0(char *, argc + 1);
8597 envp = g_new0(char *, envc + 1);
8599 for (gp = guest_argp, q = argp; gp; gp += sizeof(abi_ulong), q++) {
8600 if (get_user_ual(addr, gp)) {
8601 goto execve_efault;
8603 if (!addr) {
8604 break;
8606 *q = lock_user_string(addr);
8607 if (!*q) {
8608 goto execve_efault;
8611 *q = NULL;
8613 for (gp = guest_envp, q = envp; gp; gp += sizeof(abi_ulong), q++) {
8614 if (get_user_ual(addr, gp)) {
8615 goto execve_efault;
8617 if (!addr) {
8618 break;
8620 *q = lock_user_string(addr);
8621 if (!*q) {
8622 goto execve_efault;
8625 *q = NULL;
8628 * Although execve() is not an interruptible syscall it is
8629 * a special case where we must use the safe_syscall wrapper:
8630 * if we allow a signal to happen before we make the host
8631 * syscall then we will 'lose' it, because at the point of
8632 * execve the process leaves QEMU's control. So we use the
8633 * safe syscall wrapper to ensure that we either take the
8634 * signal as a guest signal, or else it does not happen
8635 * before the execve completes and makes it the other
8636 * program's problem.
8638 p = lock_user_string(pathname);
8639 if (!p) {
8640 goto execve_efault;
8643 const char *exe = p;
8644 if (is_proc_myself(p, "exe")) {
8645 exe = exec_path;
8647 ret = is_execveat
8648 ? safe_execveat(dirfd, exe, argp, envp, flags)
8649 : safe_execve(exe, argp, envp);
8650 ret = get_errno(ret);
8652 unlock_user(p, pathname, 0);
8654 goto execve_end;
8656 execve_efault:
8657 ret = -TARGET_EFAULT;
8659 execve_end:
8660 for (gp = guest_argp, q = argp; *q; gp += sizeof(abi_ulong), q++) {
8661 if (get_user_ual(addr, gp) || !addr) {
8662 break;
8664 unlock_user(*q, addr, 0);
8666 for (gp = guest_envp, q = envp; *q; gp += sizeof(abi_ulong), q++) {
8667 if (get_user_ual(addr, gp) || !addr) {
8668 break;
8670 unlock_user(*q, addr, 0);
8673 g_free(argp);
8674 g_free(envp);
8675 return ret;
8678 #define TIMER_MAGIC 0x0caf0000
8679 #define TIMER_MAGIC_MASK 0xffff0000
8681 /* Convert QEMU provided timer ID back to internal 16bit index format */
8682 static target_timer_t get_timer_id(abi_long arg)
8684 target_timer_t timerid = arg;
8686 if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) {
8687 return -TARGET_EINVAL;
8690 timerid &= 0xffff;
8692 if (timerid >= ARRAY_SIZE(g_posix_timers)) {
8693 return -TARGET_EINVAL;
8696 return timerid;
8699 static int target_to_host_cpu_mask(unsigned long *host_mask,
8700 size_t host_size,
8701 abi_ulong target_addr,
8702 size_t target_size)
8704 unsigned target_bits = sizeof(abi_ulong) * 8;
8705 unsigned host_bits = sizeof(*host_mask) * 8;
8706 abi_ulong *target_mask;
8707 unsigned i, j;
8709 assert(host_size >= target_size);
8711 target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1);
8712 if (!target_mask) {
8713 return -TARGET_EFAULT;
8715 memset(host_mask, 0, host_size);
8717 for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8718 unsigned bit = i * target_bits;
8719 abi_ulong val;
8721 __get_user(val, &target_mask[i]);
8722 for (j = 0; j < target_bits; j++, bit++) {
8723 if (val & (1UL << j)) {
8724 host_mask[bit / host_bits] |= 1UL << (bit % host_bits);
8729 unlock_user(target_mask, target_addr, 0);
8730 return 0;
8733 static int host_to_target_cpu_mask(const unsigned long *host_mask,
8734 size_t host_size,
8735 abi_ulong target_addr,
8736 size_t target_size)
8738 unsigned target_bits = sizeof(abi_ulong) * 8;
8739 unsigned host_bits = sizeof(*host_mask) * 8;
8740 abi_ulong *target_mask;
8741 unsigned i, j;
8743 assert(host_size >= target_size);
8745 target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0);
8746 if (!target_mask) {
8747 return -TARGET_EFAULT;
8750 for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8751 unsigned bit = i * target_bits;
8752 abi_ulong val = 0;
8754 for (j = 0; j < target_bits; j++, bit++) {
8755 if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) {
8756 val |= 1UL << j;
8759 __put_user(val, &target_mask[i]);
8762 unlock_user(target_mask, target_addr, target_size);
8763 return 0;
8766 #ifdef TARGET_NR_getdents
8767 static int do_getdents(abi_long dirfd, abi_long arg2, abi_long count)
8769 g_autofree void *hdirp = NULL;
8770 void *tdirp;
8771 int hlen, hoff, toff;
8772 int hreclen, treclen;
8773 off64_t prev_diroff = 0;
8775 hdirp = g_try_malloc(count);
8776 if (!hdirp) {
8777 return -TARGET_ENOMEM;
8780 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8781 hlen = sys_getdents(dirfd, hdirp, count);
8782 #else
8783 hlen = sys_getdents64(dirfd, hdirp, count);
8784 #endif
8786 hlen = get_errno(hlen);
8787 if (is_error(hlen)) {
8788 return hlen;
8791 tdirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8792 if (!tdirp) {
8793 return -TARGET_EFAULT;
8796 for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) {
8797 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8798 struct linux_dirent *hde = hdirp + hoff;
8799 #else
8800 struct linux_dirent64 *hde = hdirp + hoff;
8801 #endif
8802 struct target_dirent *tde = tdirp + toff;
8803 int namelen;
8804 uint8_t type;
8806 namelen = strlen(hde->d_name);
8807 hreclen = hde->d_reclen;
8808 treclen = offsetof(struct target_dirent, d_name) + namelen + 2;
8809 treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent));
8811 if (toff + treclen > count) {
8813 * If the host struct is smaller than the target struct, or
8814 * requires less alignment and thus packs into less space,
8815 * then the host can return more entries than we can pass
8816 * on to the guest.
8818 if (toff == 0) {
8819 toff = -TARGET_EINVAL; /* result buffer is too small */
8820 break;
8823 * Return what we have, resetting the file pointer to the
8824 * location of the first record not returned.
8826 lseek64(dirfd, prev_diroff, SEEK_SET);
8827 break;
8830 prev_diroff = hde->d_off;
8831 tde->d_ino = tswapal(hde->d_ino);
8832 tde->d_off = tswapal(hde->d_off);
8833 tde->d_reclen = tswap16(treclen);
8834 memcpy(tde->d_name, hde->d_name, namelen + 1);
8837 * The getdents type is in what was formerly a padding byte at the
8838 * end of the structure.
8840 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8841 type = *((uint8_t *)hde + hreclen - 1);
8842 #else
8843 type = hde->d_type;
8844 #endif
8845 *((uint8_t *)tde + treclen - 1) = type;
8848 unlock_user(tdirp, arg2, toff);
8849 return toff;
8851 #endif /* TARGET_NR_getdents */
8853 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
8854 static int do_getdents64(abi_long dirfd, abi_long arg2, abi_long count)
8856 g_autofree void *hdirp = NULL;
8857 void *tdirp;
8858 int hlen, hoff, toff;
8859 int hreclen, treclen;
8860 off64_t prev_diroff = 0;
8862 hdirp = g_try_malloc(count);
8863 if (!hdirp) {
8864 return -TARGET_ENOMEM;
8867 hlen = get_errno(sys_getdents64(dirfd, hdirp, count));
8868 if (is_error(hlen)) {
8869 return hlen;
8872 tdirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8873 if (!tdirp) {
8874 return -TARGET_EFAULT;
8877 for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) {
8878 struct linux_dirent64 *hde = hdirp + hoff;
8879 struct target_dirent64 *tde = tdirp + toff;
8880 int namelen;
8882 namelen = strlen(hde->d_name) + 1;
8883 hreclen = hde->d_reclen;
8884 treclen = offsetof(struct target_dirent64, d_name) + namelen;
8885 treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent64));
8887 if (toff + treclen > count) {
8889 * If the host struct is smaller than the target struct, or
8890 * requires less alignment and thus packs into less space,
8891 * then the host can return more entries than we can pass
8892 * on to the guest.
8894 if (toff == 0) {
8895 toff = -TARGET_EINVAL; /* result buffer is too small */
8896 break;
8899 * Return what we have, resetting the file pointer to the
8900 * location of the first record not returned.
8902 lseek64(dirfd, prev_diroff, SEEK_SET);
8903 break;
8906 prev_diroff = hde->d_off;
8907 tde->d_ino = tswap64(hde->d_ino);
8908 tde->d_off = tswap64(hde->d_off);
8909 tde->d_reclen = tswap16(treclen);
8910 tde->d_type = hde->d_type;
8911 memcpy(tde->d_name, hde->d_name, namelen);
8914 unlock_user(tdirp, arg2, toff);
8915 return toff;
8917 #endif /* TARGET_NR_getdents64 */
8919 #if defined(TARGET_NR_riscv_hwprobe)
8921 #define RISCV_HWPROBE_KEY_MVENDORID 0
8922 #define RISCV_HWPROBE_KEY_MARCHID 1
8923 #define RISCV_HWPROBE_KEY_MIMPID 2
8925 #define RISCV_HWPROBE_KEY_BASE_BEHAVIOR 3
8926 #define RISCV_HWPROBE_BASE_BEHAVIOR_IMA (1 << 0)
8928 #define RISCV_HWPROBE_KEY_IMA_EXT_0 4
8929 #define RISCV_HWPROBE_IMA_FD (1 << 0)
8930 #define RISCV_HWPROBE_IMA_C (1 << 1)
8932 #define RISCV_HWPROBE_KEY_CPUPERF_0 5
8933 #define RISCV_HWPROBE_MISALIGNED_UNKNOWN (0 << 0)
8934 #define RISCV_HWPROBE_MISALIGNED_EMULATED (1 << 0)
8935 #define RISCV_HWPROBE_MISALIGNED_SLOW (2 << 0)
8936 #define RISCV_HWPROBE_MISALIGNED_FAST (3 << 0)
8937 #define RISCV_HWPROBE_MISALIGNED_UNSUPPORTED (4 << 0)
8938 #define RISCV_HWPROBE_MISALIGNED_MASK (7 << 0)
8940 struct riscv_hwprobe {
8941 abi_llong key;
8942 abi_ullong value;
8945 static void risc_hwprobe_fill_pairs(CPURISCVState *env,
8946 struct riscv_hwprobe *pair,
8947 size_t pair_count)
8949 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env);
8951 for (; pair_count > 0; pair_count--, pair++) {
8952 abi_llong key;
8953 abi_ullong value;
8954 __put_user(0, &pair->value);
8955 __get_user(key, &pair->key);
8956 switch (key) {
8957 case RISCV_HWPROBE_KEY_MVENDORID:
8958 __put_user(cfg->mvendorid, &pair->value);
8959 break;
8960 case RISCV_HWPROBE_KEY_MARCHID:
8961 __put_user(cfg->marchid, &pair->value);
8962 break;
8963 case RISCV_HWPROBE_KEY_MIMPID:
8964 __put_user(cfg->mimpid, &pair->value);
8965 break;
8966 case RISCV_HWPROBE_KEY_BASE_BEHAVIOR:
8967 value = riscv_has_ext(env, RVI) &&
8968 riscv_has_ext(env, RVM) &&
8969 riscv_has_ext(env, RVA) ?
8970 RISCV_HWPROBE_BASE_BEHAVIOR_IMA : 0;
8971 __put_user(value, &pair->value);
8972 break;
8973 case RISCV_HWPROBE_KEY_IMA_EXT_0:
8974 value = riscv_has_ext(env, RVF) &&
8975 riscv_has_ext(env, RVD) ?
8976 RISCV_HWPROBE_IMA_FD : 0;
8977 value |= riscv_has_ext(env, RVC) ?
8978 RISCV_HWPROBE_IMA_C : pair->value;
8979 __put_user(value, &pair->value);
8980 break;
8981 case RISCV_HWPROBE_KEY_CPUPERF_0:
8982 __put_user(RISCV_HWPROBE_MISALIGNED_FAST, &pair->value);
8983 break;
8984 default:
8985 __put_user(-1, &pair->key);
8986 break;
8991 static int cpu_set_valid(abi_long arg3, abi_long arg4)
8993 int ret, i, tmp;
8994 size_t host_mask_size, target_mask_size;
8995 unsigned long *host_mask;
8998 * cpu_set_t represent CPU masks as bit masks of type unsigned long *.
8999 * arg3 contains the cpu count.
9001 tmp = (8 * sizeof(abi_ulong));
9002 target_mask_size = ((arg3 + tmp - 1) / tmp) * sizeof(abi_ulong);
9003 host_mask_size = (target_mask_size + (sizeof(*host_mask) - 1)) &
9004 ~(sizeof(*host_mask) - 1);
9006 host_mask = alloca(host_mask_size);
9008 ret = target_to_host_cpu_mask(host_mask, host_mask_size,
9009 arg4, target_mask_size);
9010 if (ret != 0) {
9011 return ret;
9014 for (i = 0 ; i < host_mask_size / sizeof(*host_mask); i++) {
9015 if (host_mask[i] != 0) {
9016 return 0;
9019 return -TARGET_EINVAL;
9022 static abi_long do_riscv_hwprobe(CPUArchState *cpu_env, abi_long arg1,
9023 abi_long arg2, abi_long arg3,
9024 abi_long arg4, abi_long arg5)
9026 int ret;
9027 struct riscv_hwprobe *host_pairs;
9029 /* flags must be 0 */
9030 if (arg5 != 0) {
9031 return -TARGET_EINVAL;
9034 /* check cpu_set */
9035 if (arg3 != 0) {
9036 ret = cpu_set_valid(arg3, arg4);
9037 if (ret != 0) {
9038 return ret;
9040 } else if (arg4 != 0) {
9041 return -TARGET_EINVAL;
9044 /* no pairs */
9045 if (arg2 == 0) {
9046 return 0;
9049 host_pairs = lock_user(VERIFY_WRITE, arg1,
9050 sizeof(*host_pairs) * (size_t)arg2, 0);
9051 if (host_pairs == NULL) {
9052 return -TARGET_EFAULT;
9054 risc_hwprobe_fill_pairs(cpu_env, host_pairs, arg2);
9055 unlock_user(host_pairs, arg1, sizeof(*host_pairs) * (size_t)arg2);
9056 return 0;
9058 #endif /* TARGET_NR_riscv_hwprobe */
9060 #if defined(TARGET_NR_pivot_root) && defined(__NR_pivot_root)
9061 _syscall2(int, pivot_root, const char *, new_root, const char *, put_old)
9062 #endif
9064 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree)
9065 #define __NR_sys_open_tree __NR_open_tree
9066 _syscall3(int, sys_open_tree, int, __dfd, const char *, __filename,
9067 unsigned int, __flags)
9068 #endif
9070 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount)
9071 #define __NR_sys_move_mount __NR_move_mount
9072 _syscall5(int, sys_move_mount, int, __from_dfd, const char *, __from_pathname,
9073 int, __to_dfd, const char *, __to_pathname, unsigned int, flag)
9074 #endif
9076 /* This is an internal helper for do_syscall so that it is easier
9077 * to have a single return point, so that actions, such as logging
9078 * of syscall results, can be performed.
9079 * All errnos that do_syscall() returns must be -TARGET_<errcode>.
9081 static abi_long do_syscall1(CPUArchState *cpu_env, int num, abi_long arg1,
9082 abi_long arg2, abi_long arg3, abi_long arg4,
9083 abi_long arg5, abi_long arg6, abi_long arg7,
9084 abi_long arg8)
9086 CPUState *cpu = env_cpu(cpu_env);
9087 abi_long ret;
9088 #if defined(TARGET_NR_stat) || defined(TARGET_NR_stat64) \
9089 || defined(TARGET_NR_lstat) || defined(TARGET_NR_lstat64) \
9090 || defined(TARGET_NR_fstat) || defined(TARGET_NR_fstat64) \
9091 || defined(TARGET_NR_statx)
9092 struct stat st;
9093 #endif
9094 #if defined(TARGET_NR_statfs) || defined(TARGET_NR_statfs64) \
9095 || defined(TARGET_NR_fstatfs)
9096 struct statfs stfs;
9097 #endif
9098 void *p;
9100 switch(num) {
9101 case TARGET_NR_exit:
9102 /* In old applications this may be used to implement _exit(2).
9103 However in threaded applications it is used for thread termination,
9104 and _exit_group is used for application termination.
9105 Do thread termination if we have more then one thread. */
9107 if (block_signals()) {
9108 return -QEMU_ERESTARTSYS;
9111 pthread_mutex_lock(&clone_lock);
9113 if (CPU_NEXT(first_cpu)) {
9114 TaskState *ts = cpu->opaque;
9116 if (ts->child_tidptr) {
9117 put_user_u32(0, ts->child_tidptr);
9118 do_sys_futex(g2h(cpu, ts->child_tidptr),
9119 FUTEX_WAKE, INT_MAX, NULL, NULL, 0);
9122 object_unparent(OBJECT(cpu));
9123 object_unref(OBJECT(cpu));
9125 * At this point the CPU should be unrealized and removed
9126 * from cpu lists. We can clean-up the rest of the thread
9127 * data without the lock held.
9130 pthread_mutex_unlock(&clone_lock);
9132 thread_cpu = NULL;
9133 g_free(ts);
9134 rcu_unregister_thread();
9135 pthread_exit(NULL);
9138 pthread_mutex_unlock(&clone_lock);
9139 preexit_cleanup(cpu_env, arg1);
9140 _exit(arg1);
9141 return 0; /* avoid warning */
9142 case TARGET_NR_read:
9143 if (arg2 == 0 && arg3 == 0) {
9144 return get_errno(safe_read(arg1, 0, 0));
9145 } else {
9146 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
9147 return -TARGET_EFAULT;
9148 ret = get_errno(safe_read(arg1, p, arg3));
9149 if (ret >= 0 &&
9150 fd_trans_host_to_target_data(arg1)) {
9151 ret = fd_trans_host_to_target_data(arg1)(p, ret);
9153 unlock_user(p, arg2, ret);
9155 return ret;
9156 case TARGET_NR_write:
9157 if (arg2 == 0 && arg3 == 0) {
9158 return get_errno(safe_write(arg1, 0, 0));
9160 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
9161 return -TARGET_EFAULT;
9162 if (fd_trans_target_to_host_data(arg1)) {
9163 void *copy = g_malloc(arg3);
9164 memcpy(copy, p, arg3);
9165 ret = fd_trans_target_to_host_data(arg1)(copy, arg3);
9166 if (ret >= 0) {
9167 ret = get_errno(safe_write(arg1, copy, ret));
9169 g_free(copy);
9170 } else {
9171 ret = get_errno(safe_write(arg1, p, arg3));
9173 unlock_user(p, arg2, 0);
9174 return ret;
9176 #ifdef TARGET_NR_open
9177 case TARGET_NR_open:
9178 if (!(p = lock_user_string(arg1)))
9179 return -TARGET_EFAULT;
9180 ret = get_errno(do_guest_openat(cpu_env, AT_FDCWD, p,
9181 target_to_host_bitmask(arg2, fcntl_flags_tbl),
9182 arg3, true));
9183 fd_trans_unregister(ret);
9184 unlock_user(p, arg1, 0);
9185 return ret;
9186 #endif
9187 case TARGET_NR_openat:
9188 if (!(p = lock_user_string(arg2)))
9189 return -TARGET_EFAULT;
9190 ret = get_errno(do_guest_openat(cpu_env, arg1, p,
9191 target_to_host_bitmask(arg3, fcntl_flags_tbl),
9192 arg4, true));
9193 fd_trans_unregister(ret);
9194 unlock_user(p, arg2, 0);
9195 return ret;
9196 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
9197 case TARGET_NR_name_to_handle_at:
9198 ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5);
9199 return ret;
9200 #endif
9201 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
9202 case TARGET_NR_open_by_handle_at:
9203 ret = do_open_by_handle_at(arg1, arg2, arg3);
9204 fd_trans_unregister(ret);
9205 return ret;
9206 #endif
9207 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
9208 case TARGET_NR_pidfd_open:
9209 return get_errno(pidfd_open(arg1, arg2));
9210 #endif
9211 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal)
9212 case TARGET_NR_pidfd_send_signal:
9214 siginfo_t uinfo, *puinfo;
9216 if (arg3) {
9217 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
9218 if (!p) {
9219 return -TARGET_EFAULT;
9221 target_to_host_siginfo(&uinfo, p);
9222 unlock_user(p, arg3, 0);
9223 puinfo = &uinfo;
9224 } else {
9225 puinfo = NULL;
9227 ret = get_errno(pidfd_send_signal(arg1, target_to_host_signal(arg2),
9228 puinfo, arg4));
9230 return ret;
9231 #endif
9232 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd)
9233 case TARGET_NR_pidfd_getfd:
9234 return get_errno(pidfd_getfd(arg1, arg2, arg3));
9235 #endif
9236 case TARGET_NR_close:
9237 fd_trans_unregister(arg1);
9238 return get_errno(close(arg1));
9239 #if defined(__NR_close_range) && defined(TARGET_NR_close_range)
9240 case TARGET_NR_close_range:
9241 ret = get_errno(sys_close_range(arg1, arg2, arg3));
9242 if (ret == 0 && !(arg3 & CLOSE_RANGE_CLOEXEC)) {
9243 abi_long fd, maxfd;
9244 maxfd = MIN(arg2, target_fd_max);
9245 for (fd = arg1; fd < maxfd; fd++) {
9246 fd_trans_unregister(fd);
9249 return ret;
9250 #endif
9252 case TARGET_NR_brk:
9253 return do_brk(arg1);
9254 #ifdef TARGET_NR_fork
9255 case TARGET_NR_fork:
9256 return get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0));
9257 #endif
9258 #ifdef TARGET_NR_waitpid
9259 case TARGET_NR_waitpid:
9261 int status;
9262 ret = get_errno(safe_wait4(arg1, &status, arg3, 0));
9263 if (!is_error(ret) && arg2 && ret
9264 && put_user_s32(host_to_target_waitstatus(status), arg2))
9265 return -TARGET_EFAULT;
9267 return ret;
9268 #endif
9269 #ifdef TARGET_NR_waitid
9270 case TARGET_NR_waitid:
9272 siginfo_t info;
9273 info.si_pid = 0;
9274 ret = get_errno(safe_waitid(arg1, arg2, &info, arg4, NULL));
9275 if (!is_error(ret) && arg3 && info.si_pid != 0) {
9276 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0)))
9277 return -TARGET_EFAULT;
9278 host_to_target_siginfo(p, &info);
9279 unlock_user(p, arg3, sizeof(target_siginfo_t));
9282 return ret;
9283 #endif
9284 #ifdef TARGET_NR_creat /* not on alpha */
9285 case TARGET_NR_creat:
9286 if (!(p = lock_user_string(arg1)))
9287 return -TARGET_EFAULT;
9288 ret = get_errno(creat(p, arg2));
9289 fd_trans_unregister(ret);
9290 unlock_user(p, arg1, 0);
9291 return ret;
9292 #endif
9293 #ifdef TARGET_NR_link
9294 case TARGET_NR_link:
9296 void * p2;
9297 p = lock_user_string(arg1);
9298 p2 = lock_user_string(arg2);
9299 if (!p || !p2)
9300 ret = -TARGET_EFAULT;
9301 else
9302 ret = get_errno(link(p, p2));
9303 unlock_user(p2, arg2, 0);
9304 unlock_user(p, arg1, 0);
9306 return ret;
9307 #endif
9308 #if defined(TARGET_NR_linkat)
9309 case TARGET_NR_linkat:
9311 void * p2 = NULL;
9312 if (!arg2 || !arg4)
9313 return -TARGET_EFAULT;
9314 p = lock_user_string(arg2);
9315 p2 = lock_user_string(arg4);
9316 if (!p || !p2)
9317 ret = -TARGET_EFAULT;
9318 else
9319 ret = get_errno(linkat(arg1, p, arg3, p2, arg5));
9320 unlock_user(p, arg2, 0);
9321 unlock_user(p2, arg4, 0);
9323 return ret;
9324 #endif
9325 #ifdef TARGET_NR_unlink
9326 case TARGET_NR_unlink:
9327 if (!(p = lock_user_string(arg1)))
9328 return -TARGET_EFAULT;
9329 ret = get_errno(unlink(p));
9330 unlock_user(p, arg1, 0);
9331 return ret;
9332 #endif
9333 #if defined(TARGET_NR_unlinkat)
9334 case TARGET_NR_unlinkat:
9335 if (!(p = lock_user_string(arg2)))
9336 return -TARGET_EFAULT;
9337 ret = get_errno(unlinkat(arg1, p, arg3));
9338 unlock_user(p, arg2, 0);
9339 return ret;
9340 #endif
9341 case TARGET_NR_execveat:
9342 return do_execv(cpu_env, arg1, arg2, arg3, arg4, arg5, true);
9343 case TARGET_NR_execve:
9344 return do_execv(cpu_env, AT_FDCWD, arg1, arg2, arg3, 0, false);
9345 case TARGET_NR_chdir:
9346 if (!(p = lock_user_string(arg1)))
9347 return -TARGET_EFAULT;
9348 ret = get_errno(chdir(p));
9349 unlock_user(p, arg1, 0);
9350 return ret;
9351 #ifdef TARGET_NR_time
9352 case TARGET_NR_time:
9354 time_t host_time;
9355 ret = get_errno(time(&host_time));
9356 if (!is_error(ret)
9357 && arg1
9358 && put_user_sal(host_time, arg1))
9359 return -TARGET_EFAULT;
9361 return ret;
9362 #endif
9363 #ifdef TARGET_NR_mknod
9364 case TARGET_NR_mknod:
9365 if (!(p = lock_user_string(arg1)))
9366 return -TARGET_EFAULT;
9367 ret = get_errno(mknod(p, arg2, arg3));
9368 unlock_user(p, arg1, 0);
9369 return ret;
9370 #endif
9371 #if defined(TARGET_NR_mknodat)
9372 case TARGET_NR_mknodat:
9373 if (!(p = lock_user_string(arg2)))
9374 return -TARGET_EFAULT;
9375 ret = get_errno(mknodat(arg1, p, arg3, arg4));
9376 unlock_user(p, arg2, 0);
9377 return ret;
9378 #endif
9379 #ifdef TARGET_NR_chmod
9380 case TARGET_NR_chmod:
9381 if (!(p = lock_user_string(arg1)))
9382 return -TARGET_EFAULT;
9383 ret = get_errno(chmod(p, arg2));
9384 unlock_user(p, arg1, 0);
9385 return ret;
9386 #endif
9387 #ifdef TARGET_NR_lseek
9388 case TARGET_NR_lseek:
9389 return get_errno(lseek(arg1, arg2, arg3));
9390 #endif
9391 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
9392 /* Alpha specific */
9393 case TARGET_NR_getxpid:
9394 cpu_env->ir[IR_A4] = getppid();
9395 return get_errno(getpid());
9396 #endif
9397 #ifdef TARGET_NR_getpid
9398 case TARGET_NR_getpid:
9399 return get_errno(getpid());
9400 #endif
9401 case TARGET_NR_mount:
9403 /* need to look at the data field */
9404 void *p2, *p3;
9406 if (arg1) {
9407 p = lock_user_string(arg1);
9408 if (!p) {
9409 return -TARGET_EFAULT;
9411 } else {
9412 p = NULL;
9415 p2 = lock_user_string(arg2);
9416 if (!p2) {
9417 if (arg1) {
9418 unlock_user(p, arg1, 0);
9420 return -TARGET_EFAULT;
9423 if (arg3) {
9424 p3 = lock_user_string(arg3);
9425 if (!p3) {
9426 if (arg1) {
9427 unlock_user(p, arg1, 0);
9429 unlock_user(p2, arg2, 0);
9430 return -TARGET_EFAULT;
9432 } else {
9433 p3 = NULL;
9436 /* FIXME - arg5 should be locked, but it isn't clear how to
9437 * do that since it's not guaranteed to be a NULL-terminated
9438 * string.
9440 if (!arg5) {
9441 ret = mount(p, p2, p3, (unsigned long)arg4, NULL);
9442 } else {
9443 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(cpu, arg5));
9445 ret = get_errno(ret);
9447 if (arg1) {
9448 unlock_user(p, arg1, 0);
9450 unlock_user(p2, arg2, 0);
9451 if (arg3) {
9452 unlock_user(p3, arg3, 0);
9455 return ret;
9456 #if defined(TARGET_NR_umount) || defined(TARGET_NR_oldumount)
9457 #if defined(TARGET_NR_umount)
9458 case TARGET_NR_umount:
9459 #endif
9460 #if defined(TARGET_NR_oldumount)
9461 case TARGET_NR_oldumount:
9462 #endif
9463 if (!(p = lock_user_string(arg1)))
9464 return -TARGET_EFAULT;
9465 ret = get_errno(umount(p));
9466 unlock_user(p, arg1, 0);
9467 return ret;
9468 #endif
9469 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount)
9470 case TARGET_NR_move_mount:
9472 void *p2, *p4;
9474 if (!arg2 || !arg4) {
9475 return -TARGET_EFAULT;
9478 p2 = lock_user_string(arg2);
9479 if (!p2) {
9480 return -TARGET_EFAULT;
9483 p4 = lock_user_string(arg4);
9484 if (!p4) {
9485 unlock_user(p2, arg2, 0);
9486 return -TARGET_EFAULT;
9488 ret = get_errno(sys_move_mount(arg1, p2, arg3, p4, arg5));
9490 unlock_user(p2, arg2, 0);
9491 unlock_user(p4, arg4, 0);
9493 return ret;
9495 #endif
9496 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree)
9497 case TARGET_NR_open_tree:
9499 void *p2;
9500 int host_flags;
9502 if (!arg2) {
9503 return -TARGET_EFAULT;
9506 p2 = lock_user_string(arg2);
9507 if (!p2) {
9508 return -TARGET_EFAULT;
9511 host_flags = arg3 & ~TARGET_O_CLOEXEC;
9512 if (arg3 & TARGET_O_CLOEXEC) {
9513 host_flags |= O_CLOEXEC;
9516 ret = get_errno(sys_open_tree(arg1, p2, host_flags));
9518 unlock_user(p2, arg2, 0);
9520 return ret;
9522 #endif
9523 #ifdef TARGET_NR_stime /* not on alpha */
9524 case TARGET_NR_stime:
9526 struct timespec ts;
9527 ts.tv_nsec = 0;
9528 if (get_user_sal(ts.tv_sec, arg1)) {
9529 return -TARGET_EFAULT;
9531 return get_errno(clock_settime(CLOCK_REALTIME, &ts));
9533 #endif
9534 #ifdef TARGET_NR_alarm /* not on alpha */
9535 case TARGET_NR_alarm:
9536 return alarm(arg1);
9537 #endif
9538 #ifdef TARGET_NR_pause /* not on alpha */
9539 case TARGET_NR_pause:
9540 if (!block_signals()) {
9541 sigsuspend(&((TaskState *)cpu->opaque)->signal_mask);
9543 return -TARGET_EINTR;
9544 #endif
9545 #ifdef TARGET_NR_utime
9546 case TARGET_NR_utime:
9548 struct utimbuf tbuf, *host_tbuf;
9549 struct target_utimbuf *target_tbuf;
9550 if (arg2) {
9551 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1))
9552 return -TARGET_EFAULT;
9553 tbuf.actime = tswapal(target_tbuf->actime);
9554 tbuf.modtime = tswapal(target_tbuf->modtime);
9555 unlock_user_struct(target_tbuf, arg2, 0);
9556 host_tbuf = &tbuf;
9557 } else {
9558 host_tbuf = NULL;
9560 if (!(p = lock_user_string(arg1)))
9561 return -TARGET_EFAULT;
9562 ret = get_errno(utime(p, host_tbuf));
9563 unlock_user(p, arg1, 0);
9565 return ret;
9566 #endif
9567 #ifdef TARGET_NR_utimes
9568 case TARGET_NR_utimes:
9570 struct timeval *tvp, tv[2];
9571 if (arg2) {
9572 if (copy_from_user_timeval(&tv[0], arg2)
9573 || copy_from_user_timeval(&tv[1],
9574 arg2 + sizeof(struct target_timeval)))
9575 return -TARGET_EFAULT;
9576 tvp = tv;
9577 } else {
9578 tvp = NULL;
9580 if (!(p = lock_user_string(arg1)))
9581 return -TARGET_EFAULT;
9582 ret = get_errno(utimes(p, tvp));
9583 unlock_user(p, arg1, 0);
9585 return ret;
9586 #endif
9587 #if defined(TARGET_NR_futimesat)
9588 case TARGET_NR_futimesat:
9590 struct timeval *tvp, tv[2];
9591 if (arg3) {
9592 if (copy_from_user_timeval(&tv[0], arg3)
9593 || copy_from_user_timeval(&tv[1],
9594 arg3 + sizeof(struct target_timeval)))
9595 return -TARGET_EFAULT;
9596 tvp = tv;
9597 } else {
9598 tvp = NULL;
9600 if (!(p = lock_user_string(arg2))) {
9601 return -TARGET_EFAULT;
9603 ret = get_errno(futimesat(arg1, path(p), tvp));
9604 unlock_user(p, arg2, 0);
9606 return ret;
9607 #endif
9608 #ifdef TARGET_NR_access
9609 case TARGET_NR_access:
9610 if (!(p = lock_user_string(arg1))) {
9611 return -TARGET_EFAULT;
9613 ret = get_errno(access(path(p), arg2));
9614 unlock_user(p, arg1, 0);
9615 return ret;
9616 #endif
9617 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
9618 case TARGET_NR_faccessat:
9619 if (!(p = lock_user_string(arg2))) {
9620 return -TARGET_EFAULT;
9622 ret = get_errno(faccessat(arg1, p, arg3, 0));
9623 unlock_user(p, arg2, 0);
9624 return ret;
9625 #endif
9626 #if defined(TARGET_NR_faccessat2)
9627 case TARGET_NR_faccessat2:
9628 if (!(p = lock_user_string(arg2))) {
9629 return -TARGET_EFAULT;
9631 ret = get_errno(faccessat(arg1, p, arg3, arg4));
9632 unlock_user(p, arg2, 0);
9633 return ret;
9634 #endif
9635 #ifdef TARGET_NR_nice /* not on alpha */
9636 case TARGET_NR_nice:
9637 return get_errno(nice(arg1));
9638 #endif
9639 case TARGET_NR_sync:
9640 sync();
9641 return 0;
9642 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS)
9643 case TARGET_NR_syncfs:
9644 return get_errno(syncfs(arg1));
9645 #endif
9646 case TARGET_NR_kill:
9647 return get_errno(safe_kill(arg1, target_to_host_signal(arg2)));
9648 #ifdef TARGET_NR_rename
9649 case TARGET_NR_rename:
9651 void *p2;
9652 p = lock_user_string(arg1);
9653 p2 = lock_user_string(arg2);
9654 if (!p || !p2)
9655 ret = -TARGET_EFAULT;
9656 else
9657 ret = get_errno(rename(p, p2));
9658 unlock_user(p2, arg2, 0);
9659 unlock_user(p, arg1, 0);
9661 return ret;
9662 #endif
9663 #if defined(TARGET_NR_renameat)
9664 case TARGET_NR_renameat:
9666 void *p2;
9667 p = lock_user_string(arg2);
9668 p2 = lock_user_string(arg4);
9669 if (!p || !p2)
9670 ret = -TARGET_EFAULT;
9671 else
9672 ret = get_errno(renameat(arg1, p, arg3, p2));
9673 unlock_user(p2, arg4, 0);
9674 unlock_user(p, arg2, 0);
9676 return ret;
9677 #endif
9678 #if defined(TARGET_NR_renameat2)
9679 case TARGET_NR_renameat2:
9681 void *p2;
9682 p = lock_user_string(arg2);
9683 p2 = lock_user_string(arg4);
9684 if (!p || !p2) {
9685 ret = -TARGET_EFAULT;
9686 } else {
9687 ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5));
9689 unlock_user(p2, arg4, 0);
9690 unlock_user(p, arg2, 0);
9692 return ret;
9693 #endif
9694 #ifdef TARGET_NR_mkdir
9695 case TARGET_NR_mkdir:
9696 if (!(p = lock_user_string(arg1)))
9697 return -TARGET_EFAULT;
9698 ret = get_errno(mkdir(p, arg2));
9699 unlock_user(p, arg1, 0);
9700 return ret;
9701 #endif
9702 #if defined(TARGET_NR_mkdirat)
9703 case TARGET_NR_mkdirat:
9704 if (!(p = lock_user_string(arg2)))
9705 return -TARGET_EFAULT;
9706 ret = get_errno(mkdirat(arg1, p, arg3));
9707 unlock_user(p, arg2, 0);
9708 return ret;
9709 #endif
9710 #ifdef TARGET_NR_rmdir
9711 case TARGET_NR_rmdir:
9712 if (!(p = lock_user_string(arg1)))
9713 return -TARGET_EFAULT;
9714 ret = get_errno(rmdir(p));
9715 unlock_user(p, arg1, 0);
9716 return ret;
9717 #endif
9718 case TARGET_NR_dup:
9719 ret = get_errno(dup(arg1));
9720 if (ret >= 0) {
9721 fd_trans_dup(arg1, ret);
9723 return ret;
9724 #ifdef TARGET_NR_pipe
9725 case TARGET_NR_pipe:
9726 return do_pipe(cpu_env, arg1, 0, 0);
9727 #endif
9728 #ifdef TARGET_NR_pipe2
9729 case TARGET_NR_pipe2:
9730 return do_pipe(cpu_env, arg1,
9731 target_to_host_bitmask(arg2, fcntl_flags_tbl), 1);
9732 #endif
9733 case TARGET_NR_times:
9735 struct target_tms *tmsp;
9736 struct tms tms;
9737 ret = get_errno(times(&tms));
9738 if (arg1) {
9739 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0);
9740 if (!tmsp)
9741 return -TARGET_EFAULT;
9742 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime));
9743 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime));
9744 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime));
9745 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime));
9747 if (!is_error(ret))
9748 ret = host_to_target_clock_t(ret);
9750 return ret;
9751 case TARGET_NR_acct:
9752 if (arg1 == 0) {
9753 ret = get_errno(acct(NULL));
9754 } else {
9755 if (!(p = lock_user_string(arg1))) {
9756 return -TARGET_EFAULT;
9758 ret = get_errno(acct(path(p)));
9759 unlock_user(p, arg1, 0);
9761 return ret;
9762 #ifdef TARGET_NR_umount2
9763 case TARGET_NR_umount2:
9764 if (!(p = lock_user_string(arg1)))
9765 return -TARGET_EFAULT;
9766 ret = get_errno(umount2(p, arg2));
9767 unlock_user(p, arg1, 0);
9768 return ret;
9769 #endif
9770 case TARGET_NR_ioctl:
9771 return do_ioctl(arg1, arg2, arg3);
9772 #ifdef TARGET_NR_fcntl
9773 case TARGET_NR_fcntl:
9774 return do_fcntl(arg1, arg2, arg3);
9775 #endif
9776 case TARGET_NR_setpgid:
9777 return get_errno(setpgid(arg1, arg2));
9778 case TARGET_NR_umask:
9779 return get_errno(umask(arg1));
9780 case TARGET_NR_chroot:
9781 if (!(p = lock_user_string(arg1)))
9782 return -TARGET_EFAULT;
9783 ret = get_errno(chroot(p));
9784 unlock_user(p, arg1, 0);
9785 return ret;
9786 #ifdef TARGET_NR_dup2
9787 case TARGET_NR_dup2:
9788 ret = get_errno(dup2(arg1, arg2));
9789 if (ret >= 0) {
9790 fd_trans_dup(arg1, arg2);
9792 return ret;
9793 #endif
9794 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
9795 case TARGET_NR_dup3:
9797 int host_flags;
9799 if ((arg3 & ~TARGET_O_CLOEXEC) != 0) {
9800 return -EINVAL;
9802 host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl);
9803 ret = get_errno(dup3(arg1, arg2, host_flags));
9804 if (ret >= 0) {
9805 fd_trans_dup(arg1, arg2);
9807 return ret;
9809 #endif
9810 #ifdef TARGET_NR_getppid /* not on alpha */
9811 case TARGET_NR_getppid:
9812 return get_errno(getppid());
9813 #endif
9814 #ifdef TARGET_NR_getpgrp
9815 case TARGET_NR_getpgrp:
9816 return get_errno(getpgrp());
9817 #endif
9818 case TARGET_NR_setsid:
9819 return get_errno(setsid());
9820 #ifdef TARGET_NR_sigaction
9821 case TARGET_NR_sigaction:
9823 #if defined(TARGET_MIPS)
9824 struct target_sigaction act, oact, *pact, *old_act;
9826 if (arg2) {
9827 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9828 return -TARGET_EFAULT;
9829 act._sa_handler = old_act->_sa_handler;
9830 target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]);
9831 act.sa_flags = old_act->sa_flags;
9832 unlock_user_struct(old_act, arg2, 0);
9833 pact = &act;
9834 } else {
9835 pact = NULL;
9838 ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9840 if (!is_error(ret) && arg3) {
9841 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9842 return -TARGET_EFAULT;
9843 old_act->_sa_handler = oact._sa_handler;
9844 old_act->sa_flags = oact.sa_flags;
9845 old_act->sa_mask.sig[0] = oact.sa_mask.sig[0];
9846 old_act->sa_mask.sig[1] = 0;
9847 old_act->sa_mask.sig[2] = 0;
9848 old_act->sa_mask.sig[3] = 0;
9849 unlock_user_struct(old_act, arg3, 1);
9851 #else
9852 struct target_old_sigaction *old_act;
9853 struct target_sigaction act, oact, *pact;
9854 if (arg2) {
9855 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9856 return -TARGET_EFAULT;
9857 act._sa_handler = old_act->_sa_handler;
9858 target_siginitset(&act.sa_mask, old_act->sa_mask);
9859 act.sa_flags = old_act->sa_flags;
9860 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9861 act.sa_restorer = old_act->sa_restorer;
9862 #endif
9863 unlock_user_struct(old_act, arg2, 0);
9864 pact = &act;
9865 } else {
9866 pact = NULL;
9868 ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9869 if (!is_error(ret) && arg3) {
9870 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9871 return -TARGET_EFAULT;
9872 old_act->_sa_handler = oact._sa_handler;
9873 old_act->sa_mask = oact.sa_mask.sig[0];
9874 old_act->sa_flags = oact.sa_flags;
9875 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9876 old_act->sa_restorer = oact.sa_restorer;
9877 #endif
9878 unlock_user_struct(old_act, arg3, 1);
9880 #endif
9882 return ret;
9883 #endif
9884 case TARGET_NR_rt_sigaction:
9887 * For Alpha and SPARC this is a 5 argument syscall, with
9888 * a 'restorer' parameter which must be copied into the
9889 * sa_restorer field of the sigaction struct.
9890 * For Alpha that 'restorer' is arg5; for SPARC it is arg4,
9891 * and arg5 is the sigsetsize.
9893 #if defined(TARGET_ALPHA)
9894 target_ulong sigsetsize = arg4;
9895 target_ulong restorer = arg5;
9896 #elif defined(TARGET_SPARC)
9897 target_ulong restorer = arg4;
9898 target_ulong sigsetsize = arg5;
9899 #else
9900 target_ulong sigsetsize = arg4;
9901 target_ulong restorer = 0;
9902 #endif
9903 struct target_sigaction *act = NULL;
9904 struct target_sigaction *oact = NULL;
9906 if (sigsetsize != sizeof(target_sigset_t)) {
9907 return -TARGET_EINVAL;
9909 if (arg2 && !lock_user_struct(VERIFY_READ, act, arg2, 1)) {
9910 return -TARGET_EFAULT;
9912 if (arg3 && !lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) {
9913 ret = -TARGET_EFAULT;
9914 } else {
9915 ret = get_errno(do_sigaction(arg1, act, oact, restorer));
9916 if (oact) {
9917 unlock_user_struct(oact, arg3, 1);
9920 if (act) {
9921 unlock_user_struct(act, arg2, 0);
9924 return ret;
9925 #ifdef TARGET_NR_sgetmask /* not on alpha */
9926 case TARGET_NR_sgetmask:
9928 sigset_t cur_set;
9929 abi_ulong target_set;
9930 ret = do_sigprocmask(0, NULL, &cur_set);
9931 if (!ret) {
9932 host_to_target_old_sigset(&target_set, &cur_set);
9933 ret = target_set;
9936 return ret;
9937 #endif
9938 #ifdef TARGET_NR_ssetmask /* not on alpha */
9939 case TARGET_NR_ssetmask:
9941 sigset_t set, oset;
9942 abi_ulong target_set = arg1;
9943 target_to_host_old_sigset(&set, &target_set);
9944 ret = do_sigprocmask(SIG_SETMASK, &set, &oset);
9945 if (!ret) {
9946 host_to_target_old_sigset(&target_set, &oset);
9947 ret = target_set;
9950 return ret;
9951 #endif
9952 #ifdef TARGET_NR_sigprocmask
9953 case TARGET_NR_sigprocmask:
9955 #if defined(TARGET_ALPHA)
9956 sigset_t set, oldset;
9957 abi_ulong mask;
9958 int how;
9960 switch (arg1) {
9961 case TARGET_SIG_BLOCK:
9962 how = SIG_BLOCK;
9963 break;
9964 case TARGET_SIG_UNBLOCK:
9965 how = SIG_UNBLOCK;
9966 break;
9967 case TARGET_SIG_SETMASK:
9968 how = SIG_SETMASK;
9969 break;
9970 default:
9971 return -TARGET_EINVAL;
9973 mask = arg2;
9974 target_to_host_old_sigset(&set, &mask);
9976 ret = do_sigprocmask(how, &set, &oldset);
9977 if (!is_error(ret)) {
9978 host_to_target_old_sigset(&mask, &oldset);
9979 ret = mask;
9980 cpu_env->ir[IR_V0] = 0; /* force no error */
9982 #else
9983 sigset_t set, oldset, *set_ptr;
9984 int how;
9986 if (arg2) {
9987 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1);
9988 if (!p) {
9989 return -TARGET_EFAULT;
9991 target_to_host_old_sigset(&set, p);
9992 unlock_user(p, arg2, 0);
9993 set_ptr = &set;
9994 switch (arg1) {
9995 case TARGET_SIG_BLOCK:
9996 how = SIG_BLOCK;
9997 break;
9998 case TARGET_SIG_UNBLOCK:
9999 how = SIG_UNBLOCK;
10000 break;
10001 case TARGET_SIG_SETMASK:
10002 how = SIG_SETMASK;
10003 break;
10004 default:
10005 return -TARGET_EINVAL;
10007 } else {
10008 how = 0;
10009 set_ptr = NULL;
10011 ret = do_sigprocmask(how, set_ptr, &oldset);
10012 if (!is_error(ret) && arg3) {
10013 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
10014 return -TARGET_EFAULT;
10015 host_to_target_old_sigset(p, &oldset);
10016 unlock_user(p, arg3, sizeof(target_sigset_t));
10018 #endif
10020 return ret;
10021 #endif
10022 case TARGET_NR_rt_sigprocmask:
10024 int how = arg1;
10025 sigset_t set, oldset, *set_ptr;
10027 if (arg4 != sizeof(target_sigset_t)) {
10028 return -TARGET_EINVAL;
10031 if (arg2) {
10032 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1);
10033 if (!p) {
10034 return -TARGET_EFAULT;
10036 target_to_host_sigset(&set, p);
10037 unlock_user(p, arg2, 0);
10038 set_ptr = &set;
10039 switch(how) {
10040 case TARGET_SIG_BLOCK:
10041 how = SIG_BLOCK;
10042 break;
10043 case TARGET_SIG_UNBLOCK:
10044 how = SIG_UNBLOCK;
10045 break;
10046 case TARGET_SIG_SETMASK:
10047 how = SIG_SETMASK;
10048 break;
10049 default:
10050 return -TARGET_EINVAL;
10052 } else {
10053 how = 0;
10054 set_ptr = NULL;
10056 ret = do_sigprocmask(how, set_ptr, &oldset);
10057 if (!is_error(ret) && arg3) {
10058 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
10059 return -TARGET_EFAULT;
10060 host_to_target_sigset(p, &oldset);
10061 unlock_user(p, arg3, sizeof(target_sigset_t));
10064 return ret;
10065 #ifdef TARGET_NR_sigpending
10066 case TARGET_NR_sigpending:
10068 sigset_t set;
10069 ret = get_errno(sigpending(&set));
10070 if (!is_error(ret)) {
10071 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
10072 return -TARGET_EFAULT;
10073 host_to_target_old_sigset(p, &set);
10074 unlock_user(p, arg1, sizeof(target_sigset_t));
10077 return ret;
10078 #endif
10079 case TARGET_NR_rt_sigpending:
10081 sigset_t set;
10083 /* Yes, this check is >, not != like most. We follow the kernel's
10084 * logic and it does it like this because it implements
10085 * NR_sigpending through the same code path, and in that case
10086 * the old_sigset_t is smaller in size.
10088 if (arg2 > sizeof(target_sigset_t)) {
10089 return -TARGET_EINVAL;
10092 ret = get_errno(sigpending(&set));
10093 if (!is_error(ret)) {
10094 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
10095 return -TARGET_EFAULT;
10096 host_to_target_sigset(p, &set);
10097 unlock_user(p, arg1, sizeof(target_sigset_t));
10100 return ret;
10101 #ifdef TARGET_NR_sigsuspend
10102 case TARGET_NR_sigsuspend:
10104 sigset_t *set;
10106 #if defined(TARGET_ALPHA)
10107 TaskState *ts = cpu->opaque;
10108 /* target_to_host_old_sigset will bswap back */
10109 abi_ulong mask = tswapal(arg1);
10110 set = &ts->sigsuspend_mask;
10111 target_to_host_old_sigset(set, &mask);
10112 #else
10113 ret = process_sigsuspend_mask(&set, arg1, sizeof(target_sigset_t));
10114 if (ret != 0) {
10115 return ret;
10117 #endif
10118 ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE));
10119 finish_sigsuspend_mask(ret);
10121 return ret;
10122 #endif
10123 case TARGET_NR_rt_sigsuspend:
10125 sigset_t *set;
10127 ret = process_sigsuspend_mask(&set, arg1, arg2);
10128 if (ret != 0) {
10129 return ret;
10131 ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE));
10132 finish_sigsuspend_mask(ret);
10134 return ret;
10135 #ifdef TARGET_NR_rt_sigtimedwait
10136 case TARGET_NR_rt_sigtimedwait:
10138 sigset_t set;
10139 struct timespec uts, *puts;
10140 siginfo_t uinfo;
10142 if (arg4 != sizeof(target_sigset_t)) {
10143 return -TARGET_EINVAL;
10146 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
10147 return -TARGET_EFAULT;
10148 target_to_host_sigset(&set, p);
10149 unlock_user(p, arg1, 0);
10150 if (arg3) {
10151 puts = &uts;
10152 if (target_to_host_timespec(puts, arg3)) {
10153 return -TARGET_EFAULT;
10155 } else {
10156 puts = NULL;
10158 ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
10159 SIGSET_T_SIZE));
10160 if (!is_error(ret)) {
10161 if (arg2) {
10162 p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t),
10164 if (!p) {
10165 return -TARGET_EFAULT;
10167 host_to_target_siginfo(p, &uinfo);
10168 unlock_user(p, arg2, sizeof(target_siginfo_t));
10170 ret = host_to_target_signal(ret);
10173 return ret;
10174 #endif
10175 #ifdef TARGET_NR_rt_sigtimedwait_time64
10176 case TARGET_NR_rt_sigtimedwait_time64:
10178 sigset_t set;
10179 struct timespec uts, *puts;
10180 siginfo_t uinfo;
10182 if (arg4 != sizeof(target_sigset_t)) {
10183 return -TARGET_EINVAL;
10186 p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1);
10187 if (!p) {
10188 return -TARGET_EFAULT;
10190 target_to_host_sigset(&set, p);
10191 unlock_user(p, arg1, 0);
10192 if (arg3) {
10193 puts = &uts;
10194 if (target_to_host_timespec64(puts, arg3)) {
10195 return -TARGET_EFAULT;
10197 } else {
10198 puts = NULL;
10200 ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
10201 SIGSET_T_SIZE));
10202 if (!is_error(ret)) {
10203 if (arg2) {
10204 p = lock_user(VERIFY_WRITE, arg2,
10205 sizeof(target_siginfo_t), 0);
10206 if (!p) {
10207 return -TARGET_EFAULT;
10209 host_to_target_siginfo(p, &uinfo);
10210 unlock_user(p, arg2, sizeof(target_siginfo_t));
10212 ret = host_to_target_signal(ret);
10215 return ret;
10216 #endif
10217 case TARGET_NR_rt_sigqueueinfo:
10219 siginfo_t uinfo;
10221 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
10222 if (!p) {
10223 return -TARGET_EFAULT;
10225 target_to_host_siginfo(&uinfo, p);
10226 unlock_user(p, arg3, 0);
10227 ret = get_errno(sys_rt_sigqueueinfo(arg1, target_to_host_signal(arg2), &uinfo));
10229 return ret;
10230 case TARGET_NR_rt_tgsigqueueinfo:
10232 siginfo_t uinfo;
10234 p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1);
10235 if (!p) {
10236 return -TARGET_EFAULT;
10238 target_to_host_siginfo(&uinfo, p);
10239 unlock_user(p, arg4, 0);
10240 ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, target_to_host_signal(arg3), &uinfo));
10242 return ret;
10243 #ifdef TARGET_NR_sigreturn
10244 case TARGET_NR_sigreturn:
10245 if (block_signals()) {
10246 return -QEMU_ERESTARTSYS;
10248 return do_sigreturn(cpu_env);
10249 #endif
10250 case TARGET_NR_rt_sigreturn:
10251 if (block_signals()) {
10252 return -QEMU_ERESTARTSYS;
10254 return do_rt_sigreturn(cpu_env);
10255 case TARGET_NR_sethostname:
10256 if (!(p = lock_user_string(arg1)))
10257 return -TARGET_EFAULT;
10258 ret = get_errno(sethostname(p, arg2));
10259 unlock_user(p, arg1, 0);
10260 return ret;
10261 #ifdef TARGET_NR_setrlimit
10262 case TARGET_NR_setrlimit:
10264 int resource = target_to_host_resource(arg1);
10265 struct target_rlimit *target_rlim;
10266 struct rlimit rlim;
10267 if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1))
10268 return -TARGET_EFAULT;
10269 rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur);
10270 rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max);
10271 unlock_user_struct(target_rlim, arg2, 0);
10273 * If we just passed through resource limit settings for memory then
10274 * they would also apply to QEMU's own allocations, and QEMU will
10275 * crash or hang or die if its allocations fail. Ideally we would
10276 * track the guest allocations in QEMU and apply the limits ourselves.
10277 * For now, just tell the guest the call succeeded but don't actually
10278 * limit anything.
10280 if (resource != RLIMIT_AS &&
10281 resource != RLIMIT_DATA &&
10282 resource != RLIMIT_STACK) {
10283 return get_errno(setrlimit(resource, &rlim));
10284 } else {
10285 return 0;
10288 #endif
10289 #ifdef TARGET_NR_getrlimit
10290 case TARGET_NR_getrlimit:
10292 int resource = target_to_host_resource(arg1);
10293 struct target_rlimit *target_rlim;
10294 struct rlimit rlim;
10296 ret = get_errno(getrlimit(resource, &rlim));
10297 if (!is_error(ret)) {
10298 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
10299 return -TARGET_EFAULT;
10300 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
10301 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
10302 unlock_user_struct(target_rlim, arg2, 1);
10305 return ret;
10306 #endif
10307 case TARGET_NR_getrusage:
10309 struct rusage rusage;
10310 ret = get_errno(getrusage(arg1, &rusage));
10311 if (!is_error(ret)) {
10312 ret = host_to_target_rusage(arg2, &rusage);
10315 return ret;
10316 #if defined(TARGET_NR_gettimeofday)
10317 case TARGET_NR_gettimeofday:
10319 struct timeval tv;
10320 struct timezone tz;
10322 ret = get_errno(gettimeofday(&tv, &tz));
10323 if (!is_error(ret)) {
10324 if (arg1 && copy_to_user_timeval(arg1, &tv)) {
10325 return -TARGET_EFAULT;
10327 if (arg2 && copy_to_user_timezone(arg2, &tz)) {
10328 return -TARGET_EFAULT;
10332 return ret;
10333 #endif
10334 #if defined(TARGET_NR_settimeofday)
10335 case TARGET_NR_settimeofday:
10337 struct timeval tv, *ptv = NULL;
10338 struct timezone tz, *ptz = NULL;
10340 if (arg1) {
10341 if (copy_from_user_timeval(&tv, arg1)) {
10342 return -TARGET_EFAULT;
10344 ptv = &tv;
10347 if (arg2) {
10348 if (copy_from_user_timezone(&tz, arg2)) {
10349 return -TARGET_EFAULT;
10351 ptz = &tz;
10354 return get_errno(settimeofday(ptv, ptz));
10356 #endif
10357 #if defined(TARGET_NR_select)
10358 case TARGET_NR_select:
10359 #if defined(TARGET_WANT_NI_OLD_SELECT)
10360 /* some architectures used to have old_select here
10361 * but now ENOSYS it.
10363 ret = -TARGET_ENOSYS;
10364 #elif defined(TARGET_WANT_OLD_SYS_SELECT)
10365 ret = do_old_select(arg1);
10366 #else
10367 ret = do_select(arg1, arg2, arg3, arg4, arg5);
10368 #endif
10369 return ret;
10370 #endif
10371 #ifdef TARGET_NR_pselect6
10372 case TARGET_NR_pselect6:
10373 return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, false);
10374 #endif
10375 #ifdef TARGET_NR_pselect6_time64
10376 case TARGET_NR_pselect6_time64:
10377 return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, true);
10378 #endif
10379 #ifdef TARGET_NR_symlink
10380 case TARGET_NR_symlink:
10382 void *p2;
10383 p = lock_user_string(arg1);
10384 p2 = lock_user_string(arg2);
10385 if (!p || !p2)
10386 ret = -TARGET_EFAULT;
10387 else
10388 ret = get_errno(symlink(p, p2));
10389 unlock_user(p2, arg2, 0);
10390 unlock_user(p, arg1, 0);
10392 return ret;
10393 #endif
10394 #if defined(TARGET_NR_symlinkat)
10395 case TARGET_NR_symlinkat:
10397 void *p2;
10398 p = lock_user_string(arg1);
10399 p2 = lock_user_string(arg3);
10400 if (!p || !p2)
10401 ret = -TARGET_EFAULT;
10402 else
10403 ret = get_errno(symlinkat(p, arg2, p2));
10404 unlock_user(p2, arg3, 0);
10405 unlock_user(p, arg1, 0);
10407 return ret;
10408 #endif
10409 #ifdef TARGET_NR_readlink
10410 case TARGET_NR_readlink:
10412 void *p2;
10413 p = lock_user_string(arg1);
10414 p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10415 ret = get_errno(do_guest_readlink(p, p2, arg3));
10416 unlock_user(p2, arg2, ret);
10417 unlock_user(p, arg1, 0);
10419 return ret;
10420 #endif
10421 #if defined(TARGET_NR_readlinkat)
10422 case TARGET_NR_readlinkat:
10424 void *p2;
10425 p = lock_user_string(arg2);
10426 p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0);
10427 if (!p || !p2) {
10428 ret = -TARGET_EFAULT;
10429 } else if (!arg4) {
10430 /* Short circuit this for the magic exe check. */
10431 ret = -TARGET_EINVAL;
10432 } else if (is_proc_myself((const char *)p, "exe")) {
10434 * Don't worry about sign mismatch as earlier mapping
10435 * logic would have thrown a bad address error.
10437 ret = MIN(strlen(exec_path), arg4);
10438 /* We cannot NUL terminate the string. */
10439 memcpy(p2, exec_path, ret);
10440 } else {
10441 ret = get_errno(readlinkat(arg1, path(p), p2, arg4));
10443 unlock_user(p2, arg3, ret);
10444 unlock_user(p, arg2, 0);
10446 return ret;
10447 #endif
10448 #ifdef TARGET_NR_swapon
10449 case TARGET_NR_swapon:
10450 if (!(p = lock_user_string(arg1)))
10451 return -TARGET_EFAULT;
10452 ret = get_errno(swapon(p, arg2));
10453 unlock_user(p, arg1, 0);
10454 return ret;
10455 #endif
10456 case TARGET_NR_reboot:
10457 if (arg3 == LINUX_REBOOT_CMD_RESTART2) {
10458 /* arg4 must be ignored in all other cases */
10459 p = lock_user_string(arg4);
10460 if (!p) {
10461 return -TARGET_EFAULT;
10463 ret = get_errno(reboot(arg1, arg2, arg3, p));
10464 unlock_user(p, arg4, 0);
10465 } else {
10466 ret = get_errno(reboot(arg1, arg2, arg3, NULL));
10468 return ret;
10469 #ifdef TARGET_NR_mmap
10470 case TARGET_NR_mmap:
10471 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
10472 (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
10473 defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
10474 || defined(TARGET_S390X)
10476 abi_ulong *v;
10477 abi_ulong v1, v2, v3, v4, v5, v6;
10478 if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1)))
10479 return -TARGET_EFAULT;
10480 v1 = tswapal(v[0]);
10481 v2 = tswapal(v[1]);
10482 v3 = tswapal(v[2]);
10483 v4 = tswapal(v[3]);
10484 v5 = tswapal(v[4]);
10485 v6 = tswapal(v[5]);
10486 unlock_user(v, arg1, 0);
10487 return do_mmap(v1, v2, v3, v4, v5, v6);
10489 #else
10490 /* mmap pointers are always untagged */
10491 return do_mmap(arg1, arg2, arg3, arg4, arg5, arg6);
10492 #endif
10493 #endif
10494 #ifdef TARGET_NR_mmap2
10495 case TARGET_NR_mmap2:
10496 #ifndef MMAP_SHIFT
10497 #define MMAP_SHIFT 12
10498 #endif
10499 return do_mmap(arg1, arg2, arg3, arg4, arg5,
10500 (off_t)(abi_ulong)arg6 << MMAP_SHIFT);
10501 #endif
10502 case TARGET_NR_munmap:
10503 arg1 = cpu_untagged_addr(cpu, arg1);
10504 return get_errno(target_munmap(arg1, arg2));
10505 case TARGET_NR_mprotect:
10506 arg1 = cpu_untagged_addr(cpu, arg1);
10508 TaskState *ts = cpu->opaque;
10509 /* Special hack to detect libc making the stack executable. */
10510 if ((arg3 & PROT_GROWSDOWN)
10511 && arg1 >= ts->info->stack_limit
10512 && arg1 <= ts->info->start_stack) {
10513 arg3 &= ~PROT_GROWSDOWN;
10514 arg2 = arg2 + arg1 - ts->info->stack_limit;
10515 arg1 = ts->info->stack_limit;
10518 return get_errno(target_mprotect(arg1, arg2, arg3));
10519 #ifdef TARGET_NR_mremap
10520 case TARGET_NR_mremap:
10521 arg1 = cpu_untagged_addr(cpu, arg1);
10522 /* mremap new_addr (arg5) is always untagged */
10523 return get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5));
10524 #endif
10525 /* ??? msync/mlock/munlock are broken for softmmu. */
10526 #ifdef TARGET_NR_msync
10527 case TARGET_NR_msync:
10528 return get_errno(msync(g2h(cpu, arg1), arg2,
10529 target_to_host_msync_arg(arg3)));
10530 #endif
10531 #ifdef TARGET_NR_mlock
10532 case TARGET_NR_mlock:
10533 return get_errno(mlock(g2h(cpu, arg1), arg2));
10534 #endif
10535 #ifdef TARGET_NR_munlock
10536 case TARGET_NR_munlock:
10537 return get_errno(munlock(g2h(cpu, arg1), arg2));
10538 #endif
10539 #ifdef TARGET_NR_mlockall
10540 case TARGET_NR_mlockall:
10541 return get_errno(mlockall(target_to_host_mlockall_arg(arg1)));
10542 #endif
10543 #ifdef TARGET_NR_munlockall
10544 case TARGET_NR_munlockall:
10545 return get_errno(munlockall());
10546 #endif
10547 #ifdef TARGET_NR_truncate
10548 case TARGET_NR_truncate:
10549 if (!(p = lock_user_string(arg1)))
10550 return -TARGET_EFAULT;
10551 ret = get_errno(truncate(p, arg2));
10552 unlock_user(p, arg1, 0);
10553 return ret;
10554 #endif
10555 #ifdef TARGET_NR_ftruncate
10556 case TARGET_NR_ftruncate:
10557 return get_errno(ftruncate(arg1, arg2));
10558 #endif
10559 case TARGET_NR_fchmod:
10560 return get_errno(fchmod(arg1, arg2));
10561 #if defined(TARGET_NR_fchmodat)
10562 case TARGET_NR_fchmodat:
10563 if (!(p = lock_user_string(arg2)))
10564 return -TARGET_EFAULT;
10565 ret = get_errno(fchmodat(arg1, p, arg3, 0));
10566 unlock_user(p, arg2, 0);
10567 return ret;
10568 #endif
10569 case TARGET_NR_getpriority:
10570 /* Note that negative values are valid for getpriority, so we must
10571 differentiate based on errno settings. */
10572 errno = 0;
10573 ret = getpriority(arg1, arg2);
10574 if (ret == -1 && errno != 0) {
10575 return -host_to_target_errno(errno);
10577 #ifdef TARGET_ALPHA
10578 /* Return value is the unbiased priority. Signal no error. */
10579 cpu_env->ir[IR_V0] = 0;
10580 #else
10581 /* Return value is a biased priority to avoid negative numbers. */
10582 ret = 20 - ret;
10583 #endif
10584 return ret;
10585 case TARGET_NR_setpriority:
10586 return get_errno(setpriority(arg1, arg2, arg3));
10587 #ifdef TARGET_NR_statfs
10588 case TARGET_NR_statfs:
10589 if (!(p = lock_user_string(arg1))) {
10590 return -TARGET_EFAULT;
10592 ret = get_errno(statfs(path(p), &stfs));
10593 unlock_user(p, arg1, 0);
10594 convert_statfs:
10595 if (!is_error(ret)) {
10596 struct target_statfs *target_stfs;
10598 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0))
10599 return -TARGET_EFAULT;
10600 __put_user(stfs.f_type, &target_stfs->f_type);
10601 __put_user(stfs.f_bsize, &target_stfs->f_bsize);
10602 __put_user(stfs.f_blocks, &target_stfs->f_blocks);
10603 __put_user(stfs.f_bfree, &target_stfs->f_bfree);
10604 __put_user(stfs.f_bavail, &target_stfs->f_bavail);
10605 __put_user(stfs.f_files, &target_stfs->f_files);
10606 __put_user(stfs.f_ffree, &target_stfs->f_ffree);
10607 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
10608 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
10609 __put_user(stfs.f_namelen, &target_stfs->f_namelen);
10610 __put_user(stfs.f_frsize, &target_stfs->f_frsize);
10611 #ifdef _STATFS_F_FLAGS
10612 __put_user(stfs.f_flags, &target_stfs->f_flags);
10613 #else
10614 __put_user(0, &target_stfs->f_flags);
10615 #endif
10616 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
10617 unlock_user_struct(target_stfs, arg2, 1);
10619 return ret;
10620 #endif
10621 #ifdef TARGET_NR_fstatfs
10622 case TARGET_NR_fstatfs:
10623 ret = get_errno(fstatfs(arg1, &stfs));
10624 goto convert_statfs;
10625 #endif
10626 #ifdef TARGET_NR_statfs64
10627 case TARGET_NR_statfs64:
10628 if (!(p = lock_user_string(arg1))) {
10629 return -TARGET_EFAULT;
10631 ret = get_errno(statfs(path(p), &stfs));
10632 unlock_user(p, arg1, 0);
10633 convert_statfs64:
10634 if (!is_error(ret)) {
10635 struct target_statfs64 *target_stfs;
10637 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0))
10638 return -TARGET_EFAULT;
10639 __put_user(stfs.f_type, &target_stfs->f_type);
10640 __put_user(stfs.f_bsize, &target_stfs->f_bsize);
10641 __put_user(stfs.f_blocks, &target_stfs->f_blocks);
10642 __put_user(stfs.f_bfree, &target_stfs->f_bfree);
10643 __put_user(stfs.f_bavail, &target_stfs->f_bavail);
10644 __put_user(stfs.f_files, &target_stfs->f_files);
10645 __put_user(stfs.f_ffree, &target_stfs->f_ffree);
10646 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
10647 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
10648 __put_user(stfs.f_namelen, &target_stfs->f_namelen);
10649 __put_user(stfs.f_frsize, &target_stfs->f_frsize);
10650 #ifdef _STATFS_F_FLAGS
10651 __put_user(stfs.f_flags, &target_stfs->f_flags);
10652 #else
10653 __put_user(0, &target_stfs->f_flags);
10654 #endif
10655 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
10656 unlock_user_struct(target_stfs, arg3, 1);
10658 return ret;
10659 case TARGET_NR_fstatfs64:
10660 ret = get_errno(fstatfs(arg1, &stfs));
10661 goto convert_statfs64;
10662 #endif
10663 #ifdef TARGET_NR_socketcall
10664 case TARGET_NR_socketcall:
10665 return do_socketcall(arg1, arg2);
10666 #endif
10667 #ifdef TARGET_NR_accept
10668 case TARGET_NR_accept:
10669 return do_accept4(arg1, arg2, arg3, 0);
10670 #endif
10671 #ifdef TARGET_NR_accept4
10672 case TARGET_NR_accept4:
10673 return do_accept4(arg1, arg2, arg3, arg4);
10674 #endif
10675 #ifdef TARGET_NR_bind
10676 case TARGET_NR_bind:
10677 return do_bind(arg1, arg2, arg3);
10678 #endif
10679 #ifdef TARGET_NR_connect
10680 case TARGET_NR_connect:
10681 return do_connect(arg1, arg2, arg3);
10682 #endif
10683 #ifdef TARGET_NR_getpeername
10684 case TARGET_NR_getpeername:
10685 return do_getpeername(arg1, arg2, arg3);
10686 #endif
10687 #ifdef TARGET_NR_getsockname
10688 case TARGET_NR_getsockname:
10689 return do_getsockname(arg1, arg2, arg3);
10690 #endif
10691 #ifdef TARGET_NR_getsockopt
10692 case TARGET_NR_getsockopt:
10693 return do_getsockopt(arg1, arg2, arg3, arg4, arg5);
10694 #endif
10695 #ifdef TARGET_NR_listen
10696 case TARGET_NR_listen:
10697 return get_errno(listen(arg1, arg2));
10698 #endif
10699 #ifdef TARGET_NR_recv
10700 case TARGET_NR_recv:
10701 return do_recvfrom(arg1, arg2, arg3, arg4, 0, 0);
10702 #endif
10703 #ifdef TARGET_NR_recvfrom
10704 case TARGET_NR_recvfrom:
10705 return do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6);
10706 #endif
10707 #ifdef TARGET_NR_recvmsg
10708 case TARGET_NR_recvmsg:
10709 return do_sendrecvmsg(arg1, arg2, arg3, 0);
10710 #endif
10711 #ifdef TARGET_NR_send
10712 case TARGET_NR_send:
10713 return do_sendto(arg1, arg2, arg3, arg4, 0, 0);
10714 #endif
10715 #ifdef TARGET_NR_sendmsg
10716 case TARGET_NR_sendmsg:
10717 return do_sendrecvmsg(arg1, arg2, arg3, 1);
10718 #endif
10719 #ifdef TARGET_NR_sendmmsg
10720 case TARGET_NR_sendmmsg:
10721 return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1);
10722 #endif
10723 #ifdef TARGET_NR_recvmmsg
10724 case TARGET_NR_recvmmsg:
10725 return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0);
10726 #endif
10727 #ifdef TARGET_NR_sendto
10728 case TARGET_NR_sendto:
10729 return do_sendto(arg1, arg2, arg3, arg4, arg5, arg6);
10730 #endif
10731 #ifdef TARGET_NR_shutdown
10732 case TARGET_NR_shutdown:
10733 return get_errno(shutdown(arg1, arg2));
10734 #endif
10735 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
10736 case TARGET_NR_getrandom:
10737 p = lock_user(VERIFY_WRITE, arg1, arg2, 0);
10738 if (!p) {
10739 return -TARGET_EFAULT;
10741 ret = get_errno(getrandom(p, arg2, arg3));
10742 unlock_user(p, arg1, ret);
10743 return ret;
10744 #endif
10745 #ifdef TARGET_NR_socket
10746 case TARGET_NR_socket:
10747 return do_socket(arg1, arg2, arg3);
10748 #endif
10749 #ifdef TARGET_NR_socketpair
10750 case TARGET_NR_socketpair:
10751 return do_socketpair(arg1, arg2, arg3, arg4);
10752 #endif
10753 #ifdef TARGET_NR_setsockopt
10754 case TARGET_NR_setsockopt:
10755 return do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5);
10756 #endif
10757 #if defined(TARGET_NR_syslog)
10758 case TARGET_NR_syslog:
10760 int len = arg2;
10762 switch (arg1) {
10763 case TARGET_SYSLOG_ACTION_CLOSE: /* Close log */
10764 case TARGET_SYSLOG_ACTION_OPEN: /* Open log */
10765 case TARGET_SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
10766 case TARGET_SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging */
10767 case TARGET_SYSLOG_ACTION_CONSOLE_ON: /* Enable logging */
10768 case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */
10769 case TARGET_SYSLOG_ACTION_SIZE_UNREAD: /* Number of chars */
10770 case TARGET_SYSLOG_ACTION_SIZE_BUFFER: /* Size of the buffer */
10771 return get_errno(sys_syslog((int)arg1, NULL, (int)arg3));
10772 case TARGET_SYSLOG_ACTION_READ: /* Read from log */
10773 case TARGET_SYSLOG_ACTION_READ_CLEAR: /* Read/clear msgs */
10774 case TARGET_SYSLOG_ACTION_READ_ALL: /* Read last messages */
10776 if (len < 0) {
10777 return -TARGET_EINVAL;
10779 if (len == 0) {
10780 return 0;
10782 p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10783 if (!p) {
10784 return -TARGET_EFAULT;
10786 ret = get_errno(sys_syslog((int)arg1, p, (int)arg3));
10787 unlock_user(p, arg2, arg3);
10789 return ret;
10790 default:
10791 return -TARGET_EINVAL;
10794 break;
10795 #endif
10796 case TARGET_NR_setitimer:
10798 struct itimerval value, ovalue, *pvalue;
10800 if (arg2) {
10801 pvalue = &value;
10802 if (copy_from_user_timeval(&pvalue->it_interval, arg2)
10803 || copy_from_user_timeval(&pvalue->it_value,
10804 arg2 + sizeof(struct target_timeval)))
10805 return -TARGET_EFAULT;
10806 } else {
10807 pvalue = NULL;
10809 ret = get_errno(setitimer(arg1, pvalue, &ovalue));
10810 if (!is_error(ret) && arg3) {
10811 if (copy_to_user_timeval(arg3,
10812 &ovalue.it_interval)
10813 || copy_to_user_timeval(arg3 + sizeof(struct target_timeval),
10814 &ovalue.it_value))
10815 return -TARGET_EFAULT;
10818 return ret;
10819 case TARGET_NR_getitimer:
10821 struct itimerval value;
10823 ret = get_errno(getitimer(arg1, &value));
10824 if (!is_error(ret) && arg2) {
10825 if (copy_to_user_timeval(arg2,
10826 &value.it_interval)
10827 || copy_to_user_timeval(arg2 + sizeof(struct target_timeval),
10828 &value.it_value))
10829 return -TARGET_EFAULT;
10832 return ret;
10833 #ifdef TARGET_NR_stat
10834 case TARGET_NR_stat:
10835 if (!(p = lock_user_string(arg1))) {
10836 return -TARGET_EFAULT;
10838 ret = get_errno(stat(path(p), &st));
10839 unlock_user(p, arg1, 0);
10840 goto do_stat;
10841 #endif
10842 #ifdef TARGET_NR_lstat
10843 case TARGET_NR_lstat:
10844 if (!(p = lock_user_string(arg1))) {
10845 return -TARGET_EFAULT;
10847 ret = get_errno(lstat(path(p), &st));
10848 unlock_user(p, arg1, 0);
10849 goto do_stat;
10850 #endif
10851 #ifdef TARGET_NR_fstat
10852 case TARGET_NR_fstat:
10854 ret = get_errno(fstat(arg1, &st));
10855 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat)
10856 do_stat:
10857 #endif
10858 if (!is_error(ret)) {
10859 struct target_stat *target_st;
10861 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0))
10862 return -TARGET_EFAULT;
10863 memset(target_st, 0, sizeof(*target_st));
10864 __put_user(st.st_dev, &target_st->st_dev);
10865 __put_user(st.st_ino, &target_st->st_ino);
10866 __put_user(st.st_mode, &target_st->st_mode);
10867 __put_user(st.st_uid, &target_st->st_uid);
10868 __put_user(st.st_gid, &target_st->st_gid);
10869 __put_user(st.st_nlink, &target_st->st_nlink);
10870 __put_user(st.st_rdev, &target_st->st_rdev);
10871 __put_user(st.st_size, &target_st->st_size);
10872 __put_user(st.st_blksize, &target_st->st_blksize);
10873 __put_user(st.st_blocks, &target_st->st_blocks);
10874 __put_user(st.st_atime, &target_st->target_st_atime);
10875 __put_user(st.st_mtime, &target_st->target_st_mtime);
10876 __put_user(st.st_ctime, &target_st->target_st_ctime);
10877 #if defined(HAVE_STRUCT_STAT_ST_ATIM) && defined(TARGET_STAT_HAVE_NSEC)
10878 __put_user(st.st_atim.tv_nsec,
10879 &target_st->target_st_atime_nsec);
10880 __put_user(st.st_mtim.tv_nsec,
10881 &target_st->target_st_mtime_nsec);
10882 __put_user(st.st_ctim.tv_nsec,
10883 &target_st->target_st_ctime_nsec);
10884 #endif
10885 unlock_user_struct(target_st, arg2, 1);
10888 return ret;
10889 #endif
10890 case TARGET_NR_vhangup:
10891 return get_errno(vhangup());
10892 #ifdef TARGET_NR_syscall
10893 case TARGET_NR_syscall:
10894 return do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5,
10895 arg6, arg7, arg8, 0);
10896 #endif
10897 #if defined(TARGET_NR_wait4)
10898 case TARGET_NR_wait4:
10900 int status;
10901 abi_long status_ptr = arg2;
10902 struct rusage rusage, *rusage_ptr;
10903 abi_ulong target_rusage = arg4;
10904 abi_long rusage_err;
10905 if (target_rusage)
10906 rusage_ptr = &rusage;
10907 else
10908 rusage_ptr = NULL;
10909 ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr));
10910 if (!is_error(ret)) {
10911 if (status_ptr && ret) {
10912 status = host_to_target_waitstatus(status);
10913 if (put_user_s32(status, status_ptr))
10914 return -TARGET_EFAULT;
10916 if (target_rusage) {
10917 rusage_err = host_to_target_rusage(target_rusage, &rusage);
10918 if (rusage_err) {
10919 ret = rusage_err;
10924 return ret;
10925 #endif
10926 #ifdef TARGET_NR_swapoff
10927 case TARGET_NR_swapoff:
10928 if (!(p = lock_user_string(arg1)))
10929 return -TARGET_EFAULT;
10930 ret = get_errno(swapoff(p));
10931 unlock_user(p, arg1, 0);
10932 return ret;
10933 #endif
10934 case TARGET_NR_sysinfo:
10936 struct target_sysinfo *target_value;
10937 struct sysinfo value;
10938 ret = get_errno(sysinfo(&value));
10939 if (!is_error(ret) && arg1)
10941 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0))
10942 return -TARGET_EFAULT;
10943 __put_user(value.uptime, &target_value->uptime);
10944 __put_user(value.loads[0], &target_value->loads[0]);
10945 __put_user(value.loads[1], &target_value->loads[1]);
10946 __put_user(value.loads[2], &target_value->loads[2]);
10947 __put_user(value.totalram, &target_value->totalram);
10948 __put_user(value.freeram, &target_value->freeram);
10949 __put_user(value.sharedram, &target_value->sharedram);
10950 __put_user(value.bufferram, &target_value->bufferram);
10951 __put_user(value.totalswap, &target_value->totalswap);
10952 __put_user(value.freeswap, &target_value->freeswap);
10953 __put_user(value.procs, &target_value->procs);
10954 __put_user(value.totalhigh, &target_value->totalhigh);
10955 __put_user(value.freehigh, &target_value->freehigh);
10956 __put_user(value.mem_unit, &target_value->mem_unit);
10957 unlock_user_struct(target_value, arg1, 1);
10960 return ret;
10961 #ifdef TARGET_NR_ipc
10962 case TARGET_NR_ipc:
10963 return do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6);
10964 #endif
10965 #ifdef TARGET_NR_semget
10966 case TARGET_NR_semget:
10967 return get_errno(semget(arg1, arg2, arg3));
10968 #endif
10969 #ifdef TARGET_NR_semop
10970 case TARGET_NR_semop:
10971 return do_semtimedop(arg1, arg2, arg3, 0, false);
10972 #endif
10973 #ifdef TARGET_NR_semtimedop
10974 case TARGET_NR_semtimedop:
10975 return do_semtimedop(arg1, arg2, arg3, arg4, false);
10976 #endif
10977 #ifdef TARGET_NR_semtimedop_time64
10978 case TARGET_NR_semtimedop_time64:
10979 return do_semtimedop(arg1, arg2, arg3, arg4, true);
10980 #endif
10981 #ifdef TARGET_NR_semctl
10982 case TARGET_NR_semctl:
10983 return do_semctl(arg1, arg2, arg3, arg4);
10984 #endif
10985 #ifdef TARGET_NR_msgctl
10986 case TARGET_NR_msgctl:
10987 return do_msgctl(arg1, arg2, arg3);
10988 #endif
10989 #ifdef TARGET_NR_msgget
10990 case TARGET_NR_msgget:
10991 return get_errno(msgget(arg1, arg2));
10992 #endif
10993 #ifdef TARGET_NR_msgrcv
10994 case TARGET_NR_msgrcv:
10995 return do_msgrcv(arg1, arg2, arg3, arg4, arg5);
10996 #endif
10997 #ifdef TARGET_NR_msgsnd
10998 case TARGET_NR_msgsnd:
10999 return do_msgsnd(arg1, arg2, arg3, arg4);
11000 #endif
11001 #ifdef TARGET_NR_shmget
11002 case TARGET_NR_shmget:
11003 return get_errno(shmget(arg1, arg2, arg3));
11004 #endif
11005 #ifdef TARGET_NR_shmctl
11006 case TARGET_NR_shmctl:
11007 return do_shmctl(arg1, arg2, arg3);
11008 #endif
11009 #ifdef TARGET_NR_shmat
11010 case TARGET_NR_shmat:
11011 return do_shmat(cpu_env, arg1, arg2, arg3);
11012 #endif
11013 #ifdef TARGET_NR_shmdt
11014 case TARGET_NR_shmdt:
11015 return do_shmdt(arg1);
11016 #endif
11017 case TARGET_NR_fsync:
11018 return get_errno(fsync(arg1));
11019 case TARGET_NR_clone:
11020 /* Linux manages to have three different orderings for its
11021 * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
11022 * match the kernel's CONFIG_CLONE_* settings.
11023 * Microblaze is further special in that it uses a sixth
11024 * implicit argument to clone for the TLS pointer.
11026 #if defined(TARGET_MICROBLAZE)
11027 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5));
11028 #elif defined(TARGET_CLONE_BACKWARDS)
11029 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5));
11030 #elif defined(TARGET_CLONE_BACKWARDS2)
11031 ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4));
11032 #else
11033 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4));
11034 #endif
11035 return ret;
11036 #ifdef __NR_exit_group
11037 /* new thread calls */
11038 case TARGET_NR_exit_group:
11039 preexit_cleanup(cpu_env, arg1);
11040 return get_errno(exit_group(arg1));
11041 #endif
11042 case TARGET_NR_setdomainname:
11043 if (!(p = lock_user_string(arg1)))
11044 return -TARGET_EFAULT;
11045 ret = get_errno(setdomainname(p, arg2));
11046 unlock_user(p, arg1, 0);
11047 return ret;
11048 case TARGET_NR_uname:
11049 /* no need to transcode because we use the linux syscall */
11051 struct new_utsname * buf;
11053 if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0))
11054 return -TARGET_EFAULT;
11055 ret = get_errno(sys_uname(buf));
11056 if (!is_error(ret)) {
11057 /* Overwrite the native machine name with whatever is being
11058 emulated. */
11059 g_strlcpy(buf->machine, cpu_to_uname_machine(cpu_env),
11060 sizeof(buf->machine));
11061 /* Allow the user to override the reported release. */
11062 if (qemu_uname_release && *qemu_uname_release) {
11063 g_strlcpy(buf->release, qemu_uname_release,
11064 sizeof(buf->release));
11067 unlock_user_struct(buf, arg1, 1);
11069 return ret;
11070 #ifdef TARGET_I386
11071 case TARGET_NR_modify_ldt:
11072 return do_modify_ldt(cpu_env, arg1, arg2, arg3);
11073 #if !defined(TARGET_X86_64)
11074 case TARGET_NR_vm86:
11075 return do_vm86(cpu_env, arg1, arg2);
11076 #endif
11077 #endif
11078 #if defined(TARGET_NR_adjtimex)
11079 case TARGET_NR_adjtimex:
11081 struct timex host_buf;
11083 if (target_to_host_timex(&host_buf, arg1) != 0) {
11084 return -TARGET_EFAULT;
11086 ret = get_errno(adjtimex(&host_buf));
11087 if (!is_error(ret)) {
11088 if (host_to_target_timex(arg1, &host_buf) != 0) {
11089 return -TARGET_EFAULT;
11093 return ret;
11094 #endif
11095 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)
11096 case TARGET_NR_clock_adjtime:
11098 struct timex htx;
11100 if (target_to_host_timex(&htx, arg2) != 0) {
11101 return -TARGET_EFAULT;
11103 ret = get_errno(clock_adjtime(arg1, &htx));
11104 if (!is_error(ret) && host_to_target_timex(arg2, &htx)) {
11105 return -TARGET_EFAULT;
11108 return ret;
11109 #endif
11110 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
11111 case TARGET_NR_clock_adjtime64:
11113 struct timex htx;
11115 if (target_to_host_timex64(&htx, arg2) != 0) {
11116 return -TARGET_EFAULT;
11118 ret = get_errno(clock_adjtime(arg1, &htx));
11119 if (!is_error(ret) && host_to_target_timex64(arg2, &htx)) {
11120 return -TARGET_EFAULT;
11123 return ret;
11124 #endif
11125 case TARGET_NR_getpgid:
11126 return get_errno(getpgid(arg1));
11127 case TARGET_NR_fchdir:
11128 return get_errno(fchdir(arg1));
11129 case TARGET_NR_personality:
11130 return get_errno(personality(arg1));
11131 #ifdef TARGET_NR__llseek /* Not on alpha */
11132 case TARGET_NR__llseek:
11134 int64_t res;
11135 #if !defined(__NR_llseek)
11136 res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5);
11137 if (res == -1) {
11138 ret = get_errno(res);
11139 } else {
11140 ret = 0;
11142 #else
11143 ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5));
11144 #endif
11145 if ((ret == 0) && put_user_s64(res, arg4)) {
11146 return -TARGET_EFAULT;
11149 return ret;
11150 #endif
11151 #ifdef TARGET_NR_getdents
11152 case TARGET_NR_getdents:
11153 return do_getdents(arg1, arg2, arg3);
11154 #endif /* TARGET_NR_getdents */
11155 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
11156 case TARGET_NR_getdents64:
11157 return do_getdents64(arg1, arg2, arg3);
11158 #endif /* TARGET_NR_getdents64 */
11159 #if defined(TARGET_NR__newselect)
11160 case TARGET_NR__newselect:
11161 return do_select(arg1, arg2, arg3, arg4, arg5);
11162 #endif
11163 #ifdef TARGET_NR_poll
11164 case TARGET_NR_poll:
11165 return do_ppoll(arg1, arg2, arg3, arg4, arg5, false, false);
11166 #endif
11167 #ifdef TARGET_NR_ppoll
11168 case TARGET_NR_ppoll:
11169 return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, false);
11170 #endif
11171 #ifdef TARGET_NR_ppoll_time64
11172 case TARGET_NR_ppoll_time64:
11173 return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, true);
11174 #endif
11175 case TARGET_NR_flock:
11176 /* NOTE: the flock constant seems to be the same for every
11177 Linux platform */
11178 return get_errno(safe_flock(arg1, arg2));
11179 case TARGET_NR_readv:
11181 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
11182 if (vec != NULL) {
11183 ret = get_errno(safe_readv(arg1, vec, arg3));
11184 unlock_iovec(vec, arg2, arg3, 1);
11185 } else {
11186 ret = -host_to_target_errno(errno);
11189 return ret;
11190 case TARGET_NR_writev:
11192 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
11193 if (vec != NULL) {
11194 ret = get_errno(safe_writev(arg1, vec, arg3));
11195 unlock_iovec(vec, arg2, arg3, 0);
11196 } else {
11197 ret = -host_to_target_errno(errno);
11200 return ret;
11201 #if defined(TARGET_NR_preadv)
11202 case TARGET_NR_preadv:
11204 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
11205 if (vec != NULL) {
11206 unsigned long low, high;
11208 target_to_host_low_high(arg4, arg5, &low, &high);
11209 ret = get_errno(safe_preadv(arg1, vec, arg3, low, high));
11210 unlock_iovec(vec, arg2, arg3, 1);
11211 } else {
11212 ret = -host_to_target_errno(errno);
11215 return ret;
11216 #endif
11217 #if defined(TARGET_NR_pwritev)
11218 case TARGET_NR_pwritev:
11220 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
11221 if (vec != NULL) {
11222 unsigned long low, high;
11224 target_to_host_low_high(arg4, arg5, &low, &high);
11225 ret = get_errno(safe_pwritev(arg1, vec, arg3, low, high));
11226 unlock_iovec(vec, arg2, arg3, 0);
11227 } else {
11228 ret = -host_to_target_errno(errno);
11231 return ret;
11232 #endif
11233 case TARGET_NR_getsid:
11234 return get_errno(getsid(arg1));
11235 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
11236 case TARGET_NR_fdatasync:
11237 return get_errno(fdatasync(arg1));
11238 #endif
11239 case TARGET_NR_sched_getaffinity:
11241 unsigned int mask_size;
11242 unsigned long *mask;
11245 * sched_getaffinity needs multiples of ulong, so need to take
11246 * care of mismatches between target ulong and host ulong sizes.
11248 if (arg2 & (sizeof(abi_ulong) - 1)) {
11249 return -TARGET_EINVAL;
11251 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
11253 mask = alloca(mask_size);
11254 memset(mask, 0, mask_size);
11255 ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask));
11257 if (!is_error(ret)) {
11258 if (ret > arg2) {
11259 /* More data returned than the caller's buffer will fit.
11260 * This only happens if sizeof(abi_long) < sizeof(long)
11261 * and the caller passed us a buffer holding an odd number
11262 * of abi_longs. If the host kernel is actually using the
11263 * extra 4 bytes then fail EINVAL; otherwise we can just
11264 * ignore them and only copy the interesting part.
11266 int numcpus = sysconf(_SC_NPROCESSORS_CONF);
11267 if (numcpus > arg2 * 8) {
11268 return -TARGET_EINVAL;
11270 ret = arg2;
11273 if (host_to_target_cpu_mask(mask, mask_size, arg3, ret)) {
11274 return -TARGET_EFAULT;
11278 return ret;
11279 case TARGET_NR_sched_setaffinity:
11281 unsigned int mask_size;
11282 unsigned long *mask;
11285 * sched_setaffinity needs multiples of ulong, so need to take
11286 * care of mismatches between target ulong and host ulong sizes.
11288 if (arg2 & (sizeof(abi_ulong) - 1)) {
11289 return -TARGET_EINVAL;
11291 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
11292 mask = alloca(mask_size);
11294 ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2);
11295 if (ret) {
11296 return ret;
11299 return get_errno(sys_sched_setaffinity(arg1, mask_size, mask));
11301 case TARGET_NR_getcpu:
11303 unsigned cpu, node;
11304 ret = get_errno(sys_getcpu(arg1 ? &cpu : NULL,
11305 arg2 ? &node : NULL,
11306 NULL));
11307 if (is_error(ret)) {
11308 return ret;
11310 if (arg1 && put_user_u32(cpu, arg1)) {
11311 return -TARGET_EFAULT;
11313 if (arg2 && put_user_u32(node, arg2)) {
11314 return -TARGET_EFAULT;
11317 return ret;
11318 case TARGET_NR_sched_setparam:
11320 struct target_sched_param *target_schp;
11321 struct sched_param schp;
11323 if (arg2 == 0) {
11324 return -TARGET_EINVAL;
11326 if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1)) {
11327 return -TARGET_EFAULT;
11329 schp.sched_priority = tswap32(target_schp->sched_priority);
11330 unlock_user_struct(target_schp, arg2, 0);
11331 return get_errno(sys_sched_setparam(arg1, &schp));
11333 case TARGET_NR_sched_getparam:
11335 struct target_sched_param *target_schp;
11336 struct sched_param schp;
11338 if (arg2 == 0) {
11339 return -TARGET_EINVAL;
11341 ret = get_errno(sys_sched_getparam(arg1, &schp));
11342 if (!is_error(ret)) {
11343 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0)) {
11344 return -TARGET_EFAULT;
11346 target_schp->sched_priority = tswap32(schp.sched_priority);
11347 unlock_user_struct(target_schp, arg2, 1);
11350 return ret;
11351 case TARGET_NR_sched_setscheduler:
11353 struct target_sched_param *target_schp;
11354 struct sched_param schp;
11355 if (arg3 == 0) {
11356 return -TARGET_EINVAL;
11358 if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1)) {
11359 return -TARGET_EFAULT;
11361 schp.sched_priority = tswap32(target_schp->sched_priority);
11362 unlock_user_struct(target_schp, arg3, 0);
11363 return get_errno(sys_sched_setscheduler(arg1, arg2, &schp));
11365 case TARGET_NR_sched_getscheduler:
11366 return get_errno(sys_sched_getscheduler(arg1));
11367 case TARGET_NR_sched_getattr:
11369 struct target_sched_attr *target_scha;
11370 struct sched_attr scha;
11371 if (arg2 == 0) {
11372 return -TARGET_EINVAL;
11374 if (arg3 > sizeof(scha)) {
11375 arg3 = sizeof(scha);
11377 ret = get_errno(sys_sched_getattr(arg1, &scha, arg3, arg4));
11378 if (!is_error(ret)) {
11379 target_scha = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11380 if (!target_scha) {
11381 return -TARGET_EFAULT;
11383 target_scha->size = tswap32(scha.size);
11384 target_scha->sched_policy = tswap32(scha.sched_policy);
11385 target_scha->sched_flags = tswap64(scha.sched_flags);
11386 target_scha->sched_nice = tswap32(scha.sched_nice);
11387 target_scha->sched_priority = tswap32(scha.sched_priority);
11388 target_scha->sched_runtime = tswap64(scha.sched_runtime);
11389 target_scha->sched_deadline = tswap64(scha.sched_deadline);
11390 target_scha->sched_period = tswap64(scha.sched_period);
11391 if (scha.size > offsetof(struct sched_attr, sched_util_min)) {
11392 target_scha->sched_util_min = tswap32(scha.sched_util_min);
11393 target_scha->sched_util_max = tswap32(scha.sched_util_max);
11395 unlock_user(target_scha, arg2, arg3);
11397 return ret;
11399 case TARGET_NR_sched_setattr:
11401 struct target_sched_attr *target_scha;
11402 struct sched_attr scha;
11403 uint32_t size;
11404 int zeroed;
11405 if (arg2 == 0) {
11406 return -TARGET_EINVAL;
11408 if (get_user_u32(size, arg2)) {
11409 return -TARGET_EFAULT;
11411 if (!size) {
11412 size = offsetof(struct target_sched_attr, sched_util_min);
11414 if (size < offsetof(struct target_sched_attr, sched_util_min)) {
11415 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) {
11416 return -TARGET_EFAULT;
11418 return -TARGET_E2BIG;
11421 zeroed = check_zeroed_user(arg2, sizeof(struct target_sched_attr), size);
11422 if (zeroed < 0) {
11423 return zeroed;
11424 } else if (zeroed == 0) {
11425 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) {
11426 return -TARGET_EFAULT;
11428 return -TARGET_E2BIG;
11430 if (size > sizeof(struct target_sched_attr)) {
11431 size = sizeof(struct target_sched_attr);
11434 target_scha = lock_user(VERIFY_READ, arg2, size, 1);
11435 if (!target_scha) {
11436 return -TARGET_EFAULT;
11438 scha.size = size;
11439 scha.sched_policy = tswap32(target_scha->sched_policy);
11440 scha.sched_flags = tswap64(target_scha->sched_flags);
11441 scha.sched_nice = tswap32(target_scha->sched_nice);
11442 scha.sched_priority = tswap32(target_scha->sched_priority);
11443 scha.sched_runtime = tswap64(target_scha->sched_runtime);
11444 scha.sched_deadline = tswap64(target_scha->sched_deadline);
11445 scha.sched_period = tswap64(target_scha->sched_period);
11446 if (size > offsetof(struct target_sched_attr, sched_util_min)) {
11447 scha.sched_util_min = tswap32(target_scha->sched_util_min);
11448 scha.sched_util_max = tswap32(target_scha->sched_util_max);
11450 unlock_user(target_scha, arg2, 0);
11451 return get_errno(sys_sched_setattr(arg1, &scha, arg3));
11453 case TARGET_NR_sched_yield:
11454 return get_errno(sched_yield());
11455 case TARGET_NR_sched_get_priority_max:
11456 return get_errno(sched_get_priority_max(arg1));
11457 case TARGET_NR_sched_get_priority_min:
11458 return get_errno(sched_get_priority_min(arg1));
11459 #ifdef TARGET_NR_sched_rr_get_interval
11460 case TARGET_NR_sched_rr_get_interval:
11462 struct timespec ts;
11463 ret = get_errno(sched_rr_get_interval(arg1, &ts));
11464 if (!is_error(ret)) {
11465 ret = host_to_target_timespec(arg2, &ts);
11468 return ret;
11469 #endif
11470 #ifdef TARGET_NR_sched_rr_get_interval_time64
11471 case TARGET_NR_sched_rr_get_interval_time64:
11473 struct timespec ts;
11474 ret = get_errno(sched_rr_get_interval(arg1, &ts));
11475 if (!is_error(ret)) {
11476 ret = host_to_target_timespec64(arg2, &ts);
11479 return ret;
11480 #endif
11481 #if defined(TARGET_NR_nanosleep)
11482 case TARGET_NR_nanosleep:
11484 struct timespec req, rem;
11485 target_to_host_timespec(&req, arg1);
11486 ret = get_errno(safe_nanosleep(&req, &rem));
11487 if (is_error(ret) && arg2) {
11488 host_to_target_timespec(arg2, &rem);
11491 return ret;
11492 #endif
11493 case TARGET_NR_prctl:
11494 return do_prctl(cpu_env, arg1, arg2, arg3, arg4, arg5);
11495 break;
11496 #ifdef TARGET_NR_arch_prctl
11497 case TARGET_NR_arch_prctl:
11498 return do_arch_prctl(cpu_env, arg1, arg2);
11499 #endif
11500 #ifdef TARGET_NR_pread64
11501 case TARGET_NR_pread64:
11502 if (regpairs_aligned(cpu_env, num)) {
11503 arg4 = arg5;
11504 arg5 = arg6;
11506 if (arg2 == 0 && arg3 == 0) {
11507 /* Special-case NULL buffer and zero length, which should succeed */
11508 p = 0;
11509 } else {
11510 p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11511 if (!p) {
11512 return -TARGET_EFAULT;
11515 ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5)));
11516 unlock_user(p, arg2, ret);
11517 return ret;
11518 case TARGET_NR_pwrite64:
11519 if (regpairs_aligned(cpu_env, num)) {
11520 arg4 = arg5;
11521 arg5 = arg6;
11523 if (arg2 == 0 && arg3 == 0) {
11524 /* Special-case NULL buffer and zero length, which should succeed */
11525 p = 0;
11526 } else {
11527 p = lock_user(VERIFY_READ, arg2, arg3, 1);
11528 if (!p) {
11529 return -TARGET_EFAULT;
11532 ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5)));
11533 unlock_user(p, arg2, 0);
11534 return ret;
11535 #endif
11536 case TARGET_NR_getcwd:
11537 if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0)))
11538 return -TARGET_EFAULT;
11539 ret = get_errno(sys_getcwd1(p, arg2));
11540 unlock_user(p, arg1, ret);
11541 return ret;
11542 case TARGET_NR_capget:
11543 case TARGET_NR_capset:
11545 struct target_user_cap_header *target_header;
11546 struct target_user_cap_data *target_data = NULL;
11547 struct __user_cap_header_struct header;
11548 struct __user_cap_data_struct data[2];
11549 struct __user_cap_data_struct *dataptr = NULL;
11550 int i, target_datalen;
11551 int data_items = 1;
11553 if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) {
11554 return -TARGET_EFAULT;
11556 header.version = tswap32(target_header->version);
11557 header.pid = tswap32(target_header->pid);
11559 if (header.version != _LINUX_CAPABILITY_VERSION) {
11560 /* Version 2 and up takes pointer to two user_data structs */
11561 data_items = 2;
11564 target_datalen = sizeof(*target_data) * data_items;
11566 if (arg2) {
11567 if (num == TARGET_NR_capget) {
11568 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0);
11569 } else {
11570 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1);
11572 if (!target_data) {
11573 unlock_user_struct(target_header, arg1, 0);
11574 return -TARGET_EFAULT;
11577 if (num == TARGET_NR_capset) {
11578 for (i = 0; i < data_items; i++) {
11579 data[i].effective = tswap32(target_data[i].effective);
11580 data[i].permitted = tswap32(target_data[i].permitted);
11581 data[i].inheritable = tswap32(target_data[i].inheritable);
11585 dataptr = data;
11588 if (num == TARGET_NR_capget) {
11589 ret = get_errno(capget(&header, dataptr));
11590 } else {
11591 ret = get_errno(capset(&header, dataptr));
11594 /* The kernel always updates version for both capget and capset */
11595 target_header->version = tswap32(header.version);
11596 unlock_user_struct(target_header, arg1, 1);
11598 if (arg2) {
11599 if (num == TARGET_NR_capget) {
11600 for (i = 0; i < data_items; i++) {
11601 target_data[i].effective = tswap32(data[i].effective);
11602 target_data[i].permitted = tswap32(data[i].permitted);
11603 target_data[i].inheritable = tswap32(data[i].inheritable);
11605 unlock_user(target_data, arg2, target_datalen);
11606 } else {
11607 unlock_user(target_data, arg2, 0);
11610 return ret;
11612 case TARGET_NR_sigaltstack:
11613 return do_sigaltstack(arg1, arg2, cpu_env);
11615 #ifdef CONFIG_SENDFILE
11616 #ifdef TARGET_NR_sendfile
11617 case TARGET_NR_sendfile:
11619 off_t *offp = NULL;
11620 off_t off;
11621 if (arg3) {
11622 ret = get_user_sal(off, arg3);
11623 if (is_error(ret)) {
11624 return ret;
11626 offp = &off;
11628 ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11629 if (!is_error(ret) && arg3) {
11630 abi_long ret2 = put_user_sal(off, arg3);
11631 if (is_error(ret2)) {
11632 ret = ret2;
11635 return ret;
11637 #endif
11638 #ifdef TARGET_NR_sendfile64
11639 case TARGET_NR_sendfile64:
11641 off_t *offp = NULL;
11642 off_t off;
11643 if (arg3) {
11644 ret = get_user_s64(off, arg3);
11645 if (is_error(ret)) {
11646 return ret;
11648 offp = &off;
11650 ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11651 if (!is_error(ret) && arg3) {
11652 abi_long ret2 = put_user_s64(off, arg3);
11653 if (is_error(ret2)) {
11654 ret = ret2;
11657 return ret;
11659 #endif
11660 #endif
11661 #ifdef TARGET_NR_vfork
11662 case TARGET_NR_vfork:
11663 return get_errno(do_fork(cpu_env,
11664 CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD,
11665 0, 0, 0, 0));
11666 #endif
11667 #ifdef TARGET_NR_ugetrlimit
11668 case TARGET_NR_ugetrlimit:
11670 struct rlimit rlim;
11671 int resource = target_to_host_resource(arg1);
11672 ret = get_errno(getrlimit(resource, &rlim));
11673 if (!is_error(ret)) {
11674 struct target_rlimit *target_rlim;
11675 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
11676 return -TARGET_EFAULT;
11677 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
11678 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
11679 unlock_user_struct(target_rlim, arg2, 1);
11681 return ret;
11683 #endif
11684 #ifdef TARGET_NR_truncate64
11685 case TARGET_NR_truncate64:
11686 if (!(p = lock_user_string(arg1)))
11687 return -TARGET_EFAULT;
11688 ret = target_truncate64(cpu_env, p, arg2, arg3, arg4);
11689 unlock_user(p, arg1, 0);
11690 return ret;
11691 #endif
11692 #ifdef TARGET_NR_ftruncate64
11693 case TARGET_NR_ftruncate64:
11694 return target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4);
11695 #endif
11696 #ifdef TARGET_NR_stat64
11697 case TARGET_NR_stat64:
11698 if (!(p = lock_user_string(arg1))) {
11699 return -TARGET_EFAULT;
11701 ret = get_errno(stat(path(p), &st));
11702 unlock_user(p, arg1, 0);
11703 if (!is_error(ret))
11704 ret = host_to_target_stat64(cpu_env, arg2, &st);
11705 return ret;
11706 #endif
11707 #ifdef TARGET_NR_lstat64
11708 case TARGET_NR_lstat64:
11709 if (!(p = lock_user_string(arg1))) {
11710 return -TARGET_EFAULT;
11712 ret = get_errno(lstat(path(p), &st));
11713 unlock_user(p, arg1, 0);
11714 if (!is_error(ret))
11715 ret = host_to_target_stat64(cpu_env, arg2, &st);
11716 return ret;
11717 #endif
11718 #ifdef TARGET_NR_fstat64
11719 case TARGET_NR_fstat64:
11720 ret = get_errno(fstat(arg1, &st));
11721 if (!is_error(ret))
11722 ret = host_to_target_stat64(cpu_env, arg2, &st);
11723 return ret;
11724 #endif
11725 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
11726 #ifdef TARGET_NR_fstatat64
11727 case TARGET_NR_fstatat64:
11728 #endif
11729 #ifdef TARGET_NR_newfstatat
11730 case TARGET_NR_newfstatat:
11731 #endif
11732 if (!(p = lock_user_string(arg2))) {
11733 return -TARGET_EFAULT;
11735 ret = get_errno(fstatat(arg1, path(p), &st, arg4));
11736 unlock_user(p, arg2, 0);
11737 if (!is_error(ret))
11738 ret = host_to_target_stat64(cpu_env, arg3, &st);
11739 return ret;
11740 #endif
11741 #if defined(TARGET_NR_statx)
11742 case TARGET_NR_statx:
11744 struct target_statx *target_stx;
11745 int dirfd = arg1;
11746 int flags = arg3;
11748 p = lock_user_string(arg2);
11749 if (p == NULL) {
11750 return -TARGET_EFAULT;
11752 #if defined(__NR_statx)
11755 * It is assumed that struct statx is architecture independent.
11757 struct target_statx host_stx;
11758 int mask = arg4;
11760 ret = get_errno(sys_statx(dirfd, p, flags, mask, &host_stx));
11761 if (!is_error(ret)) {
11762 if (host_to_target_statx(&host_stx, arg5) != 0) {
11763 unlock_user(p, arg2, 0);
11764 return -TARGET_EFAULT;
11768 if (ret != -TARGET_ENOSYS) {
11769 unlock_user(p, arg2, 0);
11770 return ret;
11773 #endif
11774 ret = get_errno(fstatat(dirfd, path(p), &st, flags));
11775 unlock_user(p, arg2, 0);
11777 if (!is_error(ret)) {
11778 if (!lock_user_struct(VERIFY_WRITE, target_stx, arg5, 0)) {
11779 return -TARGET_EFAULT;
11781 memset(target_stx, 0, sizeof(*target_stx));
11782 __put_user(major(st.st_dev), &target_stx->stx_dev_major);
11783 __put_user(minor(st.st_dev), &target_stx->stx_dev_minor);
11784 __put_user(st.st_ino, &target_stx->stx_ino);
11785 __put_user(st.st_mode, &target_stx->stx_mode);
11786 __put_user(st.st_uid, &target_stx->stx_uid);
11787 __put_user(st.st_gid, &target_stx->stx_gid);
11788 __put_user(st.st_nlink, &target_stx->stx_nlink);
11789 __put_user(major(st.st_rdev), &target_stx->stx_rdev_major);
11790 __put_user(minor(st.st_rdev), &target_stx->stx_rdev_minor);
11791 __put_user(st.st_size, &target_stx->stx_size);
11792 __put_user(st.st_blksize, &target_stx->stx_blksize);
11793 __put_user(st.st_blocks, &target_stx->stx_blocks);
11794 __put_user(st.st_atime, &target_stx->stx_atime.tv_sec);
11795 __put_user(st.st_mtime, &target_stx->stx_mtime.tv_sec);
11796 __put_user(st.st_ctime, &target_stx->stx_ctime.tv_sec);
11797 unlock_user_struct(target_stx, arg5, 1);
11800 return ret;
11801 #endif
11802 #ifdef TARGET_NR_lchown
11803 case TARGET_NR_lchown:
11804 if (!(p = lock_user_string(arg1)))
11805 return -TARGET_EFAULT;
11806 ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3)));
11807 unlock_user(p, arg1, 0);
11808 return ret;
11809 #endif
11810 #ifdef TARGET_NR_getuid
11811 case TARGET_NR_getuid:
11812 return get_errno(high2lowuid(getuid()));
11813 #endif
11814 #ifdef TARGET_NR_getgid
11815 case TARGET_NR_getgid:
11816 return get_errno(high2lowgid(getgid()));
11817 #endif
11818 #ifdef TARGET_NR_geteuid
11819 case TARGET_NR_geteuid:
11820 return get_errno(high2lowuid(geteuid()));
11821 #endif
11822 #ifdef TARGET_NR_getegid
11823 case TARGET_NR_getegid:
11824 return get_errno(high2lowgid(getegid()));
11825 #endif
11826 case TARGET_NR_setreuid:
11827 return get_errno(setreuid(low2highuid(arg1), low2highuid(arg2)));
11828 case TARGET_NR_setregid:
11829 return get_errno(setregid(low2highgid(arg1), low2highgid(arg2)));
11830 case TARGET_NR_getgroups:
11831 { /* the same code as for TARGET_NR_getgroups32 */
11832 int gidsetsize = arg1;
11833 target_id *target_grouplist;
11834 g_autofree gid_t *grouplist = NULL;
11835 int i;
11837 if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
11838 return -TARGET_EINVAL;
11840 if (gidsetsize > 0) {
11841 grouplist = g_try_new(gid_t, gidsetsize);
11842 if (!grouplist) {
11843 return -TARGET_ENOMEM;
11846 ret = get_errno(getgroups(gidsetsize, grouplist));
11847 if (!is_error(ret) && gidsetsize > 0) {
11848 target_grouplist = lock_user(VERIFY_WRITE, arg2,
11849 gidsetsize * sizeof(target_id), 0);
11850 if (!target_grouplist) {
11851 return -TARGET_EFAULT;
11853 for (i = 0; i < ret; i++) {
11854 target_grouplist[i] = tswapid(high2lowgid(grouplist[i]));
11856 unlock_user(target_grouplist, arg2,
11857 gidsetsize * sizeof(target_id));
11859 return ret;
11861 case TARGET_NR_setgroups:
11862 { /* the same code as for TARGET_NR_setgroups32 */
11863 int gidsetsize = arg1;
11864 target_id *target_grouplist;
11865 g_autofree gid_t *grouplist = NULL;
11866 int i;
11868 if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
11869 return -TARGET_EINVAL;
11871 if (gidsetsize > 0) {
11872 grouplist = g_try_new(gid_t, gidsetsize);
11873 if (!grouplist) {
11874 return -TARGET_ENOMEM;
11876 target_grouplist = lock_user(VERIFY_READ, arg2,
11877 gidsetsize * sizeof(target_id), 1);
11878 if (!target_grouplist) {
11879 return -TARGET_EFAULT;
11881 for (i = 0; i < gidsetsize; i++) {
11882 grouplist[i] = low2highgid(tswapid(target_grouplist[i]));
11884 unlock_user(target_grouplist, arg2,
11885 gidsetsize * sizeof(target_id));
11887 return get_errno(setgroups(gidsetsize, grouplist));
11889 case TARGET_NR_fchown:
11890 return get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3)));
11891 #if defined(TARGET_NR_fchownat)
11892 case TARGET_NR_fchownat:
11893 if (!(p = lock_user_string(arg2)))
11894 return -TARGET_EFAULT;
11895 ret = get_errno(fchownat(arg1, p, low2highuid(arg3),
11896 low2highgid(arg4), arg5));
11897 unlock_user(p, arg2, 0);
11898 return ret;
11899 #endif
11900 #ifdef TARGET_NR_setresuid
11901 case TARGET_NR_setresuid:
11902 return get_errno(sys_setresuid(low2highuid(arg1),
11903 low2highuid(arg2),
11904 low2highuid(arg3)));
11905 #endif
11906 #ifdef TARGET_NR_getresuid
11907 case TARGET_NR_getresuid:
11909 uid_t ruid, euid, suid;
11910 ret = get_errno(getresuid(&ruid, &euid, &suid));
11911 if (!is_error(ret)) {
11912 if (put_user_id(high2lowuid(ruid), arg1)
11913 || put_user_id(high2lowuid(euid), arg2)
11914 || put_user_id(high2lowuid(suid), arg3))
11915 return -TARGET_EFAULT;
11918 return ret;
11919 #endif
11920 #ifdef TARGET_NR_getresgid
11921 case TARGET_NR_setresgid:
11922 return get_errno(sys_setresgid(low2highgid(arg1),
11923 low2highgid(arg2),
11924 low2highgid(arg3)));
11925 #endif
11926 #ifdef TARGET_NR_getresgid
11927 case TARGET_NR_getresgid:
11929 gid_t rgid, egid, sgid;
11930 ret = get_errno(getresgid(&rgid, &egid, &sgid));
11931 if (!is_error(ret)) {
11932 if (put_user_id(high2lowgid(rgid), arg1)
11933 || put_user_id(high2lowgid(egid), arg2)
11934 || put_user_id(high2lowgid(sgid), arg3))
11935 return -TARGET_EFAULT;
11938 return ret;
11939 #endif
11940 #ifdef TARGET_NR_chown
11941 case TARGET_NR_chown:
11942 if (!(p = lock_user_string(arg1)))
11943 return -TARGET_EFAULT;
11944 ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3)));
11945 unlock_user(p, arg1, 0);
11946 return ret;
11947 #endif
11948 case TARGET_NR_setuid:
11949 return get_errno(sys_setuid(low2highuid(arg1)));
11950 case TARGET_NR_setgid:
11951 return get_errno(sys_setgid(low2highgid(arg1)));
11952 case TARGET_NR_setfsuid:
11953 return get_errno(setfsuid(arg1));
11954 case TARGET_NR_setfsgid:
11955 return get_errno(setfsgid(arg1));
11957 #ifdef TARGET_NR_lchown32
11958 case TARGET_NR_lchown32:
11959 if (!(p = lock_user_string(arg1)))
11960 return -TARGET_EFAULT;
11961 ret = get_errno(lchown(p, arg2, arg3));
11962 unlock_user(p, arg1, 0);
11963 return ret;
11964 #endif
11965 #ifdef TARGET_NR_getuid32
11966 case TARGET_NR_getuid32:
11967 return get_errno(getuid());
11968 #endif
11970 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
11971 /* Alpha specific */
11972 case TARGET_NR_getxuid:
11974 uid_t euid;
11975 euid=geteuid();
11976 cpu_env->ir[IR_A4]=euid;
11978 return get_errno(getuid());
11979 #endif
11980 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
11981 /* Alpha specific */
11982 case TARGET_NR_getxgid:
11984 uid_t egid;
11985 egid=getegid();
11986 cpu_env->ir[IR_A4]=egid;
11988 return get_errno(getgid());
11989 #endif
11990 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
11991 /* Alpha specific */
11992 case TARGET_NR_osf_getsysinfo:
11993 ret = -TARGET_EOPNOTSUPP;
11994 switch (arg1) {
11995 case TARGET_GSI_IEEE_FP_CONTROL:
11997 uint64_t fpcr = cpu_alpha_load_fpcr(cpu_env);
11998 uint64_t swcr = cpu_env->swcr;
12000 swcr &= ~SWCR_STATUS_MASK;
12001 swcr |= (fpcr >> 35) & SWCR_STATUS_MASK;
12003 if (put_user_u64 (swcr, arg2))
12004 return -TARGET_EFAULT;
12005 ret = 0;
12007 break;
12009 /* case GSI_IEEE_STATE_AT_SIGNAL:
12010 -- Not implemented in linux kernel.
12011 case GSI_UACPROC:
12012 -- Retrieves current unaligned access state; not much used.
12013 case GSI_PROC_TYPE:
12014 -- Retrieves implver information; surely not used.
12015 case GSI_GET_HWRPB:
12016 -- Grabs a copy of the HWRPB; surely not used.
12019 return ret;
12020 #endif
12021 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
12022 /* Alpha specific */
12023 case TARGET_NR_osf_setsysinfo:
12024 ret = -TARGET_EOPNOTSUPP;
12025 switch (arg1) {
12026 case TARGET_SSI_IEEE_FP_CONTROL:
12028 uint64_t swcr, fpcr;
12030 if (get_user_u64 (swcr, arg2)) {
12031 return -TARGET_EFAULT;
12035 * The kernel calls swcr_update_status to update the
12036 * status bits from the fpcr at every point that it
12037 * could be queried. Therefore, we store the status
12038 * bits only in FPCR.
12040 cpu_env->swcr = swcr & (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK);
12042 fpcr = cpu_alpha_load_fpcr(cpu_env);
12043 fpcr &= ((uint64_t)FPCR_DYN_MASK << 32);
12044 fpcr |= alpha_ieee_swcr_to_fpcr(swcr);
12045 cpu_alpha_store_fpcr(cpu_env, fpcr);
12046 ret = 0;
12048 break;
12050 case TARGET_SSI_IEEE_RAISE_EXCEPTION:
12052 uint64_t exc, fpcr, fex;
12054 if (get_user_u64(exc, arg2)) {
12055 return -TARGET_EFAULT;
12057 exc &= SWCR_STATUS_MASK;
12058 fpcr = cpu_alpha_load_fpcr(cpu_env);
12060 /* Old exceptions are not signaled. */
12061 fex = alpha_ieee_fpcr_to_swcr(fpcr);
12062 fex = exc & ~fex;
12063 fex >>= SWCR_STATUS_TO_EXCSUM_SHIFT;
12064 fex &= (cpu_env)->swcr;
12066 /* Update the hardware fpcr. */
12067 fpcr |= alpha_ieee_swcr_to_fpcr(exc);
12068 cpu_alpha_store_fpcr(cpu_env, fpcr);
12070 if (fex) {
12071 int si_code = TARGET_FPE_FLTUNK;
12072 target_siginfo_t info;
12074 if (fex & SWCR_TRAP_ENABLE_DNO) {
12075 si_code = TARGET_FPE_FLTUND;
12077 if (fex & SWCR_TRAP_ENABLE_INE) {
12078 si_code = TARGET_FPE_FLTRES;
12080 if (fex & SWCR_TRAP_ENABLE_UNF) {
12081 si_code = TARGET_FPE_FLTUND;
12083 if (fex & SWCR_TRAP_ENABLE_OVF) {
12084 si_code = TARGET_FPE_FLTOVF;
12086 if (fex & SWCR_TRAP_ENABLE_DZE) {
12087 si_code = TARGET_FPE_FLTDIV;
12089 if (fex & SWCR_TRAP_ENABLE_INV) {
12090 si_code = TARGET_FPE_FLTINV;
12093 info.si_signo = SIGFPE;
12094 info.si_errno = 0;
12095 info.si_code = si_code;
12096 info._sifields._sigfault._addr = (cpu_env)->pc;
12097 queue_signal(cpu_env, info.si_signo,
12098 QEMU_SI_FAULT, &info);
12100 ret = 0;
12102 break;
12104 /* case SSI_NVPAIRS:
12105 -- Used with SSIN_UACPROC to enable unaligned accesses.
12106 case SSI_IEEE_STATE_AT_SIGNAL:
12107 case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
12108 -- Not implemented in linux kernel
12111 return ret;
12112 #endif
12113 #ifdef TARGET_NR_osf_sigprocmask
12114 /* Alpha specific. */
12115 case TARGET_NR_osf_sigprocmask:
12117 abi_ulong mask;
12118 int how;
12119 sigset_t set, oldset;
12121 switch(arg1) {
12122 case TARGET_SIG_BLOCK:
12123 how = SIG_BLOCK;
12124 break;
12125 case TARGET_SIG_UNBLOCK:
12126 how = SIG_UNBLOCK;
12127 break;
12128 case TARGET_SIG_SETMASK:
12129 how = SIG_SETMASK;
12130 break;
12131 default:
12132 return -TARGET_EINVAL;
12134 mask = arg2;
12135 target_to_host_old_sigset(&set, &mask);
12136 ret = do_sigprocmask(how, &set, &oldset);
12137 if (!ret) {
12138 host_to_target_old_sigset(&mask, &oldset);
12139 ret = mask;
12142 return ret;
12143 #endif
12145 #ifdef TARGET_NR_getgid32
12146 case TARGET_NR_getgid32:
12147 return get_errno(getgid());
12148 #endif
12149 #ifdef TARGET_NR_geteuid32
12150 case TARGET_NR_geteuid32:
12151 return get_errno(geteuid());
12152 #endif
12153 #ifdef TARGET_NR_getegid32
12154 case TARGET_NR_getegid32:
12155 return get_errno(getegid());
12156 #endif
12157 #ifdef TARGET_NR_setreuid32
12158 case TARGET_NR_setreuid32:
12159 return get_errno(setreuid(arg1, arg2));
12160 #endif
12161 #ifdef TARGET_NR_setregid32
12162 case TARGET_NR_setregid32:
12163 return get_errno(setregid(arg1, arg2));
12164 #endif
12165 #ifdef TARGET_NR_getgroups32
12166 case TARGET_NR_getgroups32:
12167 { /* the same code as for TARGET_NR_getgroups */
12168 int gidsetsize = arg1;
12169 uint32_t *target_grouplist;
12170 g_autofree gid_t *grouplist = NULL;
12171 int i;
12173 if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
12174 return -TARGET_EINVAL;
12176 if (gidsetsize > 0) {
12177 grouplist = g_try_new(gid_t, gidsetsize);
12178 if (!grouplist) {
12179 return -TARGET_ENOMEM;
12182 ret = get_errno(getgroups(gidsetsize, grouplist));
12183 if (!is_error(ret) && gidsetsize > 0) {
12184 target_grouplist = lock_user(VERIFY_WRITE, arg2,
12185 gidsetsize * 4, 0);
12186 if (!target_grouplist) {
12187 return -TARGET_EFAULT;
12189 for (i = 0; i < ret; i++) {
12190 target_grouplist[i] = tswap32(grouplist[i]);
12192 unlock_user(target_grouplist, arg2, gidsetsize * 4);
12194 return ret;
12196 #endif
12197 #ifdef TARGET_NR_setgroups32
12198 case TARGET_NR_setgroups32:
12199 { /* the same code as for TARGET_NR_setgroups */
12200 int gidsetsize = arg1;
12201 uint32_t *target_grouplist;
12202 g_autofree gid_t *grouplist = NULL;
12203 int i;
12205 if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
12206 return -TARGET_EINVAL;
12208 if (gidsetsize > 0) {
12209 grouplist = g_try_new(gid_t, gidsetsize);
12210 if (!grouplist) {
12211 return -TARGET_ENOMEM;
12213 target_grouplist = lock_user(VERIFY_READ, arg2,
12214 gidsetsize * 4, 1);
12215 if (!target_grouplist) {
12216 return -TARGET_EFAULT;
12218 for (i = 0; i < gidsetsize; i++) {
12219 grouplist[i] = tswap32(target_grouplist[i]);
12221 unlock_user(target_grouplist, arg2, 0);
12223 return get_errno(setgroups(gidsetsize, grouplist));
12225 #endif
12226 #ifdef TARGET_NR_fchown32
12227 case TARGET_NR_fchown32:
12228 return get_errno(fchown(arg1, arg2, arg3));
12229 #endif
12230 #ifdef TARGET_NR_setresuid32
12231 case TARGET_NR_setresuid32:
12232 return get_errno(sys_setresuid(arg1, arg2, arg3));
12233 #endif
12234 #ifdef TARGET_NR_getresuid32
12235 case TARGET_NR_getresuid32:
12237 uid_t ruid, euid, suid;
12238 ret = get_errno(getresuid(&ruid, &euid, &suid));
12239 if (!is_error(ret)) {
12240 if (put_user_u32(ruid, arg1)
12241 || put_user_u32(euid, arg2)
12242 || put_user_u32(suid, arg3))
12243 return -TARGET_EFAULT;
12246 return ret;
12247 #endif
12248 #ifdef TARGET_NR_setresgid32
12249 case TARGET_NR_setresgid32:
12250 return get_errno(sys_setresgid(arg1, arg2, arg3));
12251 #endif
12252 #ifdef TARGET_NR_getresgid32
12253 case TARGET_NR_getresgid32:
12255 gid_t rgid, egid, sgid;
12256 ret = get_errno(getresgid(&rgid, &egid, &sgid));
12257 if (!is_error(ret)) {
12258 if (put_user_u32(rgid, arg1)
12259 || put_user_u32(egid, arg2)
12260 || put_user_u32(sgid, arg3))
12261 return -TARGET_EFAULT;
12264 return ret;
12265 #endif
12266 #ifdef TARGET_NR_chown32
12267 case TARGET_NR_chown32:
12268 if (!(p = lock_user_string(arg1)))
12269 return -TARGET_EFAULT;
12270 ret = get_errno(chown(p, arg2, arg3));
12271 unlock_user(p, arg1, 0);
12272 return ret;
12273 #endif
12274 #ifdef TARGET_NR_setuid32
12275 case TARGET_NR_setuid32:
12276 return get_errno(sys_setuid(arg1));
12277 #endif
12278 #ifdef TARGET_NR_setgid32
12279 case TARGET_NR_setgid32:
12280 return get_errno(sys_setgid(arg1));
12281 #endif
12282 #ifdef TARGET_NR_setfsuid32
12283 case TARGET_NR_setfsuid32:
12284 return get_errno(setfsuid(arg1));
12285 #endif
12286 #ifdef TARGET_NR_setfsgid32
12287 case TARGET_NR_setfsgid32:
12288 return get_errno(setfsgid(arg1));
12289 #endif
12290 #ifdef TARGET_NR_mincore
12291 case TARGET_NR_mincore:
12293 void *a = lock_user(VERIFY_NONE, arg1, arg2, 0);
12294 if (!a) {
12295 return -TARGET_ENOMEM;
12297 p = lock_user_string(arg3);
12298 if (!p) {
12299 ret = -TARGET_EFAULT;
12300 } else {
12301 ret = get_errno(mincore(a, arg2, p));
12302 unlock_user(p, arg3, ret);
12304 unlock_user(a, arg1, 0);
12306 return ret;
12307 #endif
12308 #ifdef TARGET_NR_arm_fadvise64_64
12309 case TARGET_NR_arm_fadvise64_64:
12310 /* arm_fadvise64_64 looks like fadvise64_64 but
12311 * with different argument order: fd, advice, offset, len
12312 * rather than the usual fd, offset, len, advice.
12313 * Note that offset and len are both 64-bit so appear as
12314 * pairs of 32-bit registers.
12316 ret = posix_fadvise(arg1, target_offset64(arg3, arg4),
12317 target_offset64(arg5, arg6), arg2);
12318 return -host_to_target_errno(ret);
12319 #endif
12321 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
12323 #ifdef TARGET_NR_fadvise64_64
12324 case TARGET_NR_fadvise64_64:
12325 #if defined(TARGET_PPC) || defined(TARGET_XTENSA)
12326 /* 6 args: fd, advice, offset (high, low), len (high, low) */
12327 ret = arg2;
12328 arg2 = arg3;
12329 arg3 = arg4;
12330 arg4 = arg5;
12331 arg5 = arg6;
12332 arg6 = ret;
12333 #else
12334 /* 6 args: fd, offset (high, low), len (high, low), advice */
12335 if (regpairs_aligned(cpu_env, num)) {
12336 /* offset is in (3,4), len in (5,6) and advice in 7 */
12337 arg2 = arg3;
12338 arg3 = arg4;
12339 arg4 = arg5;
12340 arg5 = arg6;
12341 arg6 = arg7;
12343 #endif
12344 ret = posix_fadvise(arg1, target_offset64(arg2, arg3),
12345 target_offset64(arg4, arg5), arg6);
12346 return -host_to_target_errno(ret);
12347 #endif
12349 #ifdef TARGET_NR_fadvise64
12350 case TARGET_NR_fadvise64:
12351 /* 5 args: fd, offset (high, low), len, advice */
12352 if (regpairs_aligned(cpu_env, num)) {
12353 /* offset is in (3,4), len in 5 and advice in 6 */
12354 arg2 = arg3;
12355 arg3 = arg4;
12356 arg4 = arg5;
12357 arg5 = arg6;
12359 ret = posix_fadvise(arg1, target_offset64(arg2, arg3), arg4, arg5);
12360 return -host_to_target_errno(ret);
12361 #endif
12363 #else /* not a 32-bit ABI */
12364 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64)
12365 #ifdef TARGET_NR_fadvise64_64
12366 case TARGET_NR_fadvise64_64:
12367 #endif
12368 #ifdef TARGET_NR_fadvise64
12369 case TARGET_NR_fadvise64:
12370 #endif
12371 #ifdef TARGET_S390X
12372 switch (arg4) {
12373 case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */
12374 case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */
12375 case 6: arg4 = POSIX_FADV_DONTNEED; break;
12376 case 7: arg4 = POSIX_FADV_NOREUSE; break;
12377 default: break;
12379 #endif
12380 return -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4));
12381 #endif
12382 #endif /* end of 64-bit ABI fadvise handling */
12384 #ifdef TARGET_NR_madvise
12385 case TARGET_NR_madvise:
12386 return target_madvise(arg1, arg2, arg3);
12387 #endif
12388 #ifdef TARGET_NR_fcntl64
12389 case TARGET_NR_fcntl64:
12391 int cmd;
12392 struct flock64 fl;
12393 from_flock64_fn *copyfrom = copy_from_user_flock64;
12394 to_flock64_fn *copyto = copy_to_user_flock64;
12396 #ifdef TARGET_ARM
12397 if (!cpu_env->eabi) {
12398 copyfrom = copy_from_user_oabi_flock64;
12399 copyto = copy_to_user_oabi_flock64;
12401 #endif
12403 cmd = target_to_host_fcntl_cmd(arg2);
12404 if (cmd == -TARGET_EINVAL) {
12405 return cmd;
12408 switch(arg2) {
12409 case TARGET_F_GETLK64:
12410 ret = copyfrom(&fl, arg3);
12411 if (ret) {
12412 break;
12414 ret = get_errno(safe_fcntl(arg1, cmd, &fl));
12415 if (ret == 0) {
12416 ret = copyto(arg3, &fl);
12418 break;
12420 case TARGET_F_SETLK64:
12421 case TARGET_F_SETLKW64:
12422 ret = copyfrom(&fl, arg3);
12423 if (ret) {
12424 break;
12426 ret = get_errno(safe_fcntl(arg1, cmd, &fl));
12427 break;
12428 default:
12429 ret = do_fcntl(arg1, arg2, arg3);
12430 break;
12432 return ret;
12434 #endif
12435 #ifdef TARGET_NR_cacheflush
12436 case TARGET_NR_cacheflush:
12437 /* self-modifying code is handled automatically, so nothing needed */
12438 return 0;
12439 #endif
12440 #ifdef TARGET_NR_getpagesize
12441 case TARGET_NR_getpagesize:
12442 return TARGET_PAGE_SIZE;
12443 #endif
12444 case TARGET_NR_gettid:
12445 return get_errno(sys_gettid());
12446 #ifdef TARGET_NR_readahead
12447 case TARGET_NR_readahead:
12448 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
12449 if (regpairs_aligned(cpu_env, num)) {
12450 arg2 = arg3;
12451 arg3 = arg4;
12452 arg4 = arg5;
12454 ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4));
12455 #else
12456 ret = get_errno(readahead(arg1, arg2, arg3));
12457 #endif
12458 return ret;
12459 #endif
12460 #ifdef CONFIG_ATTR
12461 #ifdef TARGET_NR_setxattr
12462 case TARGET_NR_listxattr:
12463 case TARGET_NR_llistxattr:
12465 void *p, *b = 0;
12466 if (arg2) {
12467 b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
12468 if (!b) {
12469 return -TARGET_EFAULT;
12472 p = lock_user_string(arg1);
12473 if (p) {
12474 if (num == TARGET_NR_listxattr) {
12475 ret = get_errno(listxattr(p, b, arg3));
12476 } else {
12477 ret = get_errno(llistxattr(p, b, arg3));
12479 } else {
12480 ret = -TARGET_EFAULT;
12482 unlock_user(p, arg1, 0);
12483 unlock_user(b, arg2, arg3);
12484 return ret;
12486 case TARGET_NR_flistxattr:
12488 void *b = 0;
12489 if (arg2) {
12490 b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
12491 if (!b) {
12492 return -TARGET_EFAULT;
12495 ret = get_errno(flistxattr(arg1, b, arg3));
12496 unlock_user(b, arg2, arg3);
12497 return ret;
12499 case TARGET_NR_setxattr:
12500 case TARGET_NR_lsetxattr:
12502 void *p, *n, *v = 0;
12503 if (arg3) {
12504 v = lock_user(VERIFY_READ, arg3, arg4, 1);
12505 if (!v) {
12506 return -TARGET_EFAULT;
12509 p = lock_user_string(arg1);
12510 n = lock_user_string(arg2);
12511 if (p && n) {
12512 if (num == TARGET_NR_setxattr) {
12513 ret = get_errno(setxattr(p, n, v, arg4, arg5));
12514 } else {
12515 ret = get_errno(lsetxattr(p, n, v, arg4, arg5));
12517 } else {
12518 ret = -TARGET_EFAULT;
12520 unlock_user(p, arg1, 0);
12521 unlock_user(n, arg2, 0);
12522 unlock_user(v, arg3, 0);
12524 return ret;
12525 case TARGET_NR_fsetxattr:
12527 void *n, *v = 0;
12528 if (arg3) {
12529 v = lock_user(VERIFY_READ, arg3, arg4, 1);
12530 if (!v) {
12531 return -TARGET_EFAULT;
12534 n = lock_user_string(arg2);
12535 if (n) {
12536 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5));
12537 } else {
12538 ret = -TARGET_EFAULT;
12540 unlock_user(n, arg2, 0);
12541 unlock_user(v, arg3, 0);
12543 return ret;
12544 case TARGET_NR_getxattr:
12545 case TARGET_NR_lgetxattr:
12547 void *p, *n, *v = 0;
12548 if (arg3) {
12549 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12550 if (!v) {
12551 return -TARGET_EFAULT;
12554 p = lock_user_string(arg1);
12555 n = lock_user_string(arg2);
12556 if (p && n) {
12557 if (num == TARGET_NR_getxattr) {
12558 ret = get_errno(getxattr(p, n, v, arg4));
12559 } else {
12560 ret = get_errno(lgetxattr(p, n, v, arg4));
12562 } else {
12563 ret = -TARGET_EFAULT;
12565 unlock_user(p, arg1, 0);
12566 unlock_user(n, arg2, 0);
12567 unlock_user(v, arg3, arg4);
12569 return ret;
12570 case TARGET_NR_fgetxattr:
12572 void *n, *v = 0;
12573 if (arg3) {
12574 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12575 if (!v) {
12576 return -TARGET_EFAULT;
12579 n = lock_user_string(arg2);
12580 if (n) {
12581 ret = get_errno(fgetxattr(arg1, n, v, arg4));
12582 } else {
12583 ret = -TARGET_EFAULT;
12585 unlock_user(n, arg2, 0);
12586 unlock_user(v, arg3, arg4);
12588 return ret;
12589 case TARGET_NR_removexattr:
12590 case TARGET_NR_lremovexattr:
12592 void *p, *n;
12593 p = lock_user_string(arg1);
12594 n = lock_user_string(arg2);
12595 if (p && n) {
12596 if (num == TARGET_NR_removexattr) {
12597 ret = get_errno(removexattr(p, n));
12598 } else {
12599 ret = get_errno(lremovexattr(p, n));
12601 } else {
12602 ret = -TARGET_EFAULT;
12604 unlock_user(p, arg1, 0);
12605 unlock_user(n, arg2, 0);
12607 return ret;
12608 case TARGET_NR_fremovexattr:
12610 void *n;
12611 n = lock_user_string(arg2);
12612 if (n) {
12613 ret = get_errno(fremovexattr(arg1, n));
12614 } else {
12615 ret = -TARGET_EFAULT;
12617 unlock_user(n, arg2, 0);
12619 return ret;
12620 #endif
12621 #endif /* CONFIG_ATTR */
12622 #ifdef TARGET_NR_set_thread_area
12623 case TARGET_NR_set_thread_area:
12624 #if defined(TARGET_MIPS)
12625 cpu_env->active_tc.CP0_UserLocal = arg1;
12626 return 0;
12627 #elif defined(TARGET_CRIS)
12628 if (arg1 & 0xff)
12629 ret = -TARGET_EINVAL;
12630 else {
12631 cpu_env->pregs[PR_PID] = arg1;
12632 ret = 0;
12634 return ret;
12635 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
12636 return do_set_thread_area(cpu_env, arg1);
12637 #elif defined(TARGET_M68K)
12639 TaskState *ts = cpu->opaque;
12640 ts->tp_value = arg1;
12641 return 0;
12643 #else
12644 return -TARGET_ENOSYS;
12645 #endif
12646 #endif
12647 #ifdef TARGET_NR_get_thread_area
12648 case TARGET_NR_get_thread_area:
12649 #if defined(TARGET_I386) && defined(TARGET_ABI32)
12650 return do_get_thread_area(cpu_env, arg1);
12651 #elif defined(TARGET_M68K)
12653 TaskState *ts = cpu->opaque;
12654 return ts->tp_value;
12656 #else
12657 return -TARGET_ENOSYS;
12658 #endif
12659 #endif
12660 #ifdef TARGET_NR_getdomainname
12661 case TARGET_NR_getdomainname:
12662 return -TARGET_ENOSYS;
12663 #endif
12665 #ifdef TARGET_NR_clock_settime
12666 case TARGET_NR_clock_settime:
12668 struct timespec ts;
12670 ret = target_to_host_timespec(&ts, arg2);
12671 if (!is_error(ret)) {
12672 ret = get_errno(clock_settime(arg1, &ts));
12674 return ret;
12676 #endif
12677 #ifdef TARGET_NR_clock_settime64
12678 case TARGET_NR_clock_settime64:
12680 struct timespec ts;
12682 ret = target_to_host_timespec64(&ts, arg2);
12683 if (!is_error(ret)) {
12684 ret = get_errno(clock_settime(arg1, &ts));
12686 return ret;
12688 #endif
12689 #ifdef TARGET_NR_clock_gettime
12690 case TARGET_NR_clock_gettime:
12692 struct timespec ts;
12693 ret = get_errno(clock_gettime(arg1, &ts));
12694 if (!is_error(ret)) {
12695 ret = host_to_target_timespec(arg2, &ts);
12697 return ret;
12699 #endif
12700 #ifdef TARGET_NR_clock_gettime64
12701 case TARGET_NR_clock_gettime64:
12703 struct timespec ts;
12704 ret = get_errno(clock_gettime(arg1, &ts));
12705 if (!is_error(ret)) {
12706 ret = host_to_target_timespec64(arg2, &ts);
12708 return ret;
12710 #endif
12711 #ifdef TARGET_NR_clock_getres
12712 case TARGET_NR_clock_getres:
12714 struct timespec ts;
12715 ret = get_errno(clock_getres(arg1, &ts));
12716 if (!is_error(ret)) {
12717 host_to_target_timespec(arg2, &ts);
12719 return ret;
12721 #endif
12722 #ifdef TARGET_NR_clock_getres_time64
12723 case TARGET_NR_clock_getres_time64:
12725 struct timespec ts;
12726 ret = get_errno(clock_getres(arg1, &ts));
12727 if (!is_error(ret)) {
12728 host_to_target_timespec64(arg2, &ts);
12730 return ret;
12732 #endif
12733 #ifdef TARGET_NR_clock_nanosleep
12734 case TARGET_NR_clock_nanosleep:
12736 struct timespec ts;
12737 if (target_to_host_timespec(&ts, arg3)) {
12738 return -TARGET_EFAULT;
12740 ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12741 &ts, arg4 ? &ts : NULL));
12743 * if the call is interrupted by a signal handler, it fails
12744 * with error -TARGET_EINTR and if arg4 is not NULL and arg2 is not
12745 * TIMER_ABSTIME, it returns the remaining unslept time in arg4.
12747 if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12748 host_to_target_timespec(arg4, &ts)) {
12749 return -TARGET_EFAULT;
12752 return ret;
12754 #endif
12755 #ifdef TARGET_NR_clock_nanosleep_time64
12756 case TARGET_NR_clock_nanosleep_time64:
12758 struct timespec ts;
12760 if (target_to_host_timespec64(&ts, arg3)) {
12761 return -TARGET_EFAULT;
12764 ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12765 &ts, arg4 ? &ts : NULL));
12767 if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12768 host_to_target_timespec64(arg4, &ts)) {
12769 return -TARGET_EFAULT;
12771 return ret;
12773 #endif
12775 #if defined(TARGET_NR_set_tid_address)
12776 case TARGET_NR_set_tid_address:
12778 TaskState *ts = cpu->opaque;
12779 ts->child_tidptr = arg1;
12780 /* do not call host set_tid_address() syscall, instead return tid() */
12781 return get_errno(sys_gettid());
12783 #endif
12785 case TARGET_NR_tkill:
12786 return get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2)));
12788 case TARGET_NR_tgkill:
12789 return get_errno(safe_tgkill((int)arg1, (int)arg2,
12790 target_to_host_signal(arg3)));
12792 #ifdef TARGET_NR_set_robust_list
12793 case TARGET_NR_set_robust_list:
12794 case TARGET_NR_get_robust_list:
12795 /* The ABI for supporting robust futexes has userspace pass
12796 * the kernel a pointer to a linked list which is updated by
12797 * userspace after the syscall; the list is walked by the kernel
12798 * when the thread exits. Since the linked list in QEMU guest
12799 * memory isn't a valid linked list for the host and we have
12800 * no way to reliably intercept the thread-death event, we can't
12801 * support these. Silently return ENOSYS so that guest userspace
12802 * falls back to a non-robust futex implementation (which should
12803 * be OK except in the corner case of the guest crashing while
12804 * holding a mutex that is shared with another process via
12805 * shared memory).
12807 return -TARGET_ENOSYS;
12808 #endif
12810 #if defined(TARGET_NR_utimensat)
12811 case TARGET_NR_utimensat:
12813 struct timespec *tsp, ts[2];
12814 if (!arg3) {
12815 tsp = NULL;
12816 } else {
12817 if (target_to_host_timespec(ts, arg3)) {
12818 return -TARGET_EFAULT;
12820 if (target_to_host_timespec(ts + 1, arg3 +
12821 sizeof(struct target_timespec))) {
12822 return -TARGET_EFAULT;
12824 tsp = ts;
12826 if (!arg2)
12827 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12828 else {
12829 if (!(p = lock_user_string(arg2))) {
12830 return -TARGET_EFAULT;
12832 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12833 unlock_user(p, arg2, 0);
12836 return ret;
12837 #endif
12838 #ifdef TARGET_NR_utimensat_time64
12839 case TARGET_NR_utimensat_time64:
12841 struct timespec *tsp, ts[2];
12842 if (!arg3) {
12843 tsp = NULL;
12844 } else {
12845 if (target_to_host_timespec64(ts, arg3)) {
12846 return -TARGET_EFAULT;
12848 if (target_to_host_timespec64(ts + 1, arg3 +
12849 sizeof(struct target__kernel_timespec))) {
12850 return -TARGET_EFAULT;
12852 tsp = ts;
12854 if (!arg2)
12855 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12856 else {
12857 p = lock_user_string(arg2);
12858 if (!p) {
12859 return -TARGET_EFAULT;
12861 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12862 unlock_user(p, arg2, 0);
12865 return ret;
12866 #endif
12867 #ifdef TARGET_NR_futex
12868 case TARGET_NR_futex:
12869 return do_futex(cpu, false, arg1, arg2, arg3, arg4, arg5, arg6);
12870 #endif
12871 #ifdef TARGET_NR_futex_time64
12872 case TARGET_NR_futex_time64:
12873 return do_futex(cpu, true, arg1, arg2, arg3, arg4, arg5, arg6);
12874 #endif
12875 #ifdef CONFIG_INOTIFY
12876 #if defined(TARGET_NR_inotify_init)
12877 case TARGET_NR_inotify_init:
12878 ret = get_errno(inotify_init());
12879 if (ret >= 0) {
12880 fd_trans_register(ret, &target_inotify_trans);
12882 return ret;
12883 #endif
12884 #if defined(TARGET_NR_inotify_init1) && defined(CONFIG_INOTIFY1)
12885 case TARGET_NR_inotify_init1:
12886 ret = get_errno(inotify_init1(target_to_host_bitmask(arg1,
12887 fcntl_flags_tbl)));
12888 if (ret >= 0) {
12889 fd_trans_register(ret, &target_inotify_trans);
12891 return ret;
12892 #endif
12893 #if defined(TARGET_NR_inotify_add_watch)
12894 case TARGET_NR_inotify_add_watch:
12895 p = lock_user_string(arg2);
12896 ret = get_errno(inotify_add_watch(arg1, path(p), arg3));
12897 unlock_user(p, arg2, 0);
12898 return ret;
12899 #endif
12900 #if defined(TARGET_NR_inotify_rm_watch)
12901 case TARGET_NR_inotify_rm_watch:
12902 return get_errno(inotify_rm_watch(arg1, arg2));
12903 #endif
12904 #endif
12906 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
12907 case TARGET_NR_mq_open:
12909 struct mq_attr posix_mq_attr;
12910 struct mq_attr *pposix_mq_attr;
12911 int host_flags;
12913 host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl);
12914 pposix_mq_attr = NULL;
12915 if (arg4) {
12916 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) {
12917 return -TARGET_EFAULT;
12919 pposix_mq_attr = &posix_mq_attr;
12921 p = lock_user_string(arg1 - 1);
12922 if (!p) {
12923 return -TARGET_EFAULT;
12925 ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr));
12926 unlock_user (p, arg1, 0);
12928 return ret;
12930 case TARGET_NR_mq_unlink:
12931 p = lock_user_string(arg1 - 1);
12932 if (!p) {
12933 return -TARGET_EFAULT;
12935 ret = get_errno(mq_unlink(p));
12936 unlock_user (p, arg1, 0);
12937 return ret;
12939 #ifdef TARGET_NR_mq_timedsend
12940 case TARGET_NR_mq_timedsend:
12942 struct timespec ts;
12944 p = lock_user (VERIFY_READ, arg2, arg3, 1);
12945 if (arg5 != 0) {
12946 if (target_to_host_timespec(&ts, arg5)) {
12947 return -TARGET_EFAULT;
12949 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12950 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
12951 return -TARGET_EFAULT;
12953 } else {
12954 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12956 unlock_user (p, arg2, arg3);
12958 return ret;
12959 #endif
12960 #ifdef TARGET_NR_mq_timedsend_time64
12961 case TARGET_NR_mq_timedsend_time64:
12963 struct timespec ts;
12965 p = lock_user(VERIFY_READ, arg2, arg3, 1);
12966 if (arg5 != 0) {
12967 if (target_to_host_timespec64(&ts, arg5)) {
12968 return -TARGET_EFAULT;
12970 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12971 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
12972 return -TARGET_EFAULT;
12974 } else {
12975 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12977 unlock_user(p, arg2, arg3);
12979 return ret;
12980 #endif
12982 #ifdef TARGET_NR_mq_timedreceive
12983 case TARGET_NR_mq_timedreceive:
12985 struct timespec ts;
12986 unsigned int prio;
12988 p = lock_user (VERIFY_READ, arg2, arg3, 1);
12989 if (arg5 != 0) {
12990 if (target_to_host_timespec(&ts, arg5)) {
12991 return -TARGET_EFAULT;
12993 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12994 &prio, &ts));
12995 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
12996 return -TARGET_EFAULT;
12998 } else {
12999 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
13000 &prio, NULL));
13002 unlock_user (p, arg2, arg3);
13003 if (arg4 != 0)
13004 put_user_u32(prio, arg4);
13006 return ret;
13007 #endif
13008 #ifdef TARGET_NR_mq_timedreceive_time64
13009 case TARGET_NR_mq_timedreceive_time64:
13011 struct timespec ts;
13012 unsigned int prio;
13014 p = lock_user(VERIFY_READ, arg2, arg3, 1);
13015 if (arg5 != 0) {
13016 if (target_to_host_timespec64(&ts, arg5)) {
13017 return -TARGET_EFAULT;
13019 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
13020 &prio, &ts));
13021 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
13022 return -TARGET_EFAULT;
13024 } else {
13025 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
13026 &prio, NULL));
13028 unlock_user(p, arg2, arg3);
13029 if (arg4 != 0) {
13030 put_user_u32(prio, arg4);
13033 return ret;
13034 #endif
13036 /* Not implemented for now... */
13037 /* case TARGET_NR_mq_notify: */
13038 /* break; */
13040 case TARGET_NR_mq_getsetattr:
13042 struct mq_attr posix_mq_attr_in, posix_mq_attr_out;
13043 ret = 0;
13044 if (arg2 != 0) {
13045 copy_from_user_mq_attr(&posix_mq_attr_in, arg2);
13046 ret = get_errno(mq_setattr(arg1, &posix_mq_attr_in,
13047 &posix_mq_attr_out));
13048 } else if (arg3 != 0) {
13049 ret = get_errno(mq_getattr(arg1, &posix_mq_attr_out));
13051 if (ret == 0 && arg3 != 0) {
13052 copy_to_user_mq_attr(arg3, &posix_mq_attr_out);
13055 return ret;
13056 #endif
13058 #ifdef CONFIG_SPLICE
13059 #ifdef TARGET_NR_tee
13060 case TARGET_NR_tee:
13062 ret = get_errno(tee(arg1,arg2,arg3,arg4));
13064 return ret;
13065 #endif
13066 #ifdef TARGET_NR_splice
13067 case TARGET_NR_splice:
13069 loff_t loff_in, loff_out;
13070 loff_t *ploff_in = NULL, *ploff_out = NULL;
13071 if (arg2) {
13072 if (get_user_u64(loff_in, arg2)) {
13073 return -TARGET_EFAULT;
13075 ploff_in = &loff_in;
13077 if (arg4) {
13078 if (get_user_u64(loff_out, arg4)) {
13079 return -TARGET_EFAULT;
13081 ploff_out = &loff_out;
13083 ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6));
13084 if (arg2) {
13085 if (put_user_u64(loff_in, arg2)) {
13086 return -TARGET_EFAULT;
13089 if (arg4) {
13090 if (put_user_u64(loff_out, arg4)) {
13091 return -TARGET_EFAULT;
13095 return ret;
13096 #endif
13097 #ifdef TARGET_NR_vmsplice
13098 case TARGET_NR_vmsplice:
13100 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
13101 if (vec != NULL) {
13102 ret = get_errno(vmsplice(arg1, vec, arg3, arg4));
13103 unlock_iovec(vec, arg2, arg3, 0);
13104 } else {
13105 ret = -host_to_target_errno(errno);
13108 return ret;
13109 #endif
13110 #endif /* CONFIG_SPLICE */
13111 #ifdef CONFIG_EVENTFD
13112 #if defined(TARGET_NR_eventfd)
13113 case TARGET_NR_eventfd:
13114 ret = get_errno(eventfd(arg1, 0));
13115 if (ret >= 0) {
13116 fd_trans_register(ret, &target_eventfd_trans);
13118 return ret;
13119 #endif
13120 #if defined(TARGET_NR_eventfd2)
13121 case TARGET_NR_eventfd2:
13123 int host_flags = arg2 & (~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC));
13124 if (arg2 & TARGET_O_NONBLOCK) {
13125 host_flags |= O_NONBLOCK;
13127 if (arg2 & TARGET_O_CLOEXEC) {
13128 host_flags |= O_CLOEXEC;
13130 ret = get_errno(eventfd(arg1, host_flags));
13131 if (ret >= 0) {
13132 fd_trans_register(ret, &target_eventfd_trans);
13134 return ret;
13136 #endif
13137 #endif /* CONFIG_EVENTFD */
13138 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
13139 case TARGET_NR_fallocate:
13140 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13141 ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4),
13142 target_offset64(arg5, arg6)));
13143 #else
13144 ret = get_errno(fallocate(arg1, arg2, arg3, arg4));
13145 #endif
13146 return ret;
13147 #endif
13148 #if defined(CONFIG_SYNC_FILE_RANGE)
13149 #if defined(TARGET_NR_sync_file_range)
13150 case TARGET_NR_sync_file_range:
13151 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13152 #if defined(TARGET_MIPS)
13153 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
13154 target_offset64(arg5, arg6), arg7));
13155 #else
13156 ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3),
13157 target_offset64(arg4, arg5), arg6));
13158 #endif /* !TARGET_MIPS */
13159 #else
13160 ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4));
13161 #endif
13162 return ret;
13163 #endif
13164 #if defined(TARGET_NR_sync_file_range2) || \
13165 defined(TARGET_NR_arm_sync_file_range)
13166 #if defined(TARGET_NR_sync_file_range2)
13167 case TARGET_NR_sync_file_range2:
13168 #endif
13169 #if defined(TARGET_NR_arm_sync_file_range)
13170 case TARGET_NR_arm_sync_file_range:
13171 #endif
13172 /* This is like sync_file_range but the arguments are reordered */
13173 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13174 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
13175 target_offset64(arg5, arg6), arg2));
13176 #else
13177 ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2));
13178 #endif
13179 return ret;
13180 #endif
13181 #endif
13182 #if defined(TARGET_NR_signalfd4)
13183 case TARGET_NR_signalfd4:
13184 return do_signalfd4(arg1, arg2, arg4);
13185 #endif
13186 #if defined(TARGET_NR_signalfd)
13187 case TARGET_NR_signalfd:
13188 return do_signalfd4(arg1, arg2, 0);
13189 #endif
13190 #if defined(CONFIG_EPOLL)
13191 #if defined(TARGET_NR_epoll_create)
13192 case TARGET_NR_epoll_create:
13193 return get_errno(epoll_create(arg1));
13194 #endif
13195 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
13196 case TARGET_NR_epoll_create1:
13197 return get_errno(epoll_create1(target_to_host_bitmask(arg1, fcntl_flags_tbl)));
13198 #endif
13199 #if defined(TARGET_NR_epoll_ctl)
13200 case TARGET_NR_epoll_ctl:
13202 struct epoll_event ep;
13203 struct epoll_event *epp = 0;
13204 if (arg4) {
13205 if (arg2 != EPOLL_CTL_DEL) {
13206 struct target_epoll_event *target_ep;
13207 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) {
13208 return -TARGET_EFAULT;
13210 ep.events = tswap32(target_ep->events);
13212 * The epoll_data_t union is just opaque data to the kernel,
13213 * so we transfer all 64 bits across and need not worry what
13214 * actual data type it is.
13216 ep.data.u64 = tswap64(target_ep->data.u64);
13217 unlock_user_struct(target_ep, arg4, 0);
13220 * before kernel 2.6.9, EPOLL_CTL_DEL operation required a
13221 * non-null pointer, even though this argument is ignored.
13224 epp = &ep;
13226 return get_errno(epoll_ctl(arg1, arg2, arg3, epp));
13228 #endif
13230 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait)
13231 #if defined(TARGET_NR_epoll_wait)
13232 case TARGET_NR_epoll_wait:
13233 #endif
13234 #if defined(TARGET_NR_epoll_pwait)
13235 case TARGET_NR_epoll_pwait:
13236 #endif
13238 struct target_epoll_event *target_ep;
13239 struct epoll_event *ep;
13240 int epfd = arg1;
13241 int maxevents = arg3;
13242 int timeout = arg4;
13244 if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) {
13245 return -TARGET_EINVAL;
13248 target_ep = lock_user(VERIFY_WRITE, arg2,
13249 maxevents * sizeof(struct target_epoll_event), 1);
13250 if (!target_ep) {
13251 return -TARGET_EFAULT;
13254 ep = g_try_new(struct epoll_event, maxevents);
13255 if (!ep) {
13256 unlock_user(target_ep, arg2, 0);
13257 return -TARGET_ENOMEM;
13260 switch (num) {
13261 #if defined(TARGET_NR_epoll_pwait)
13262 case TARGET_NR_epoll_pwait:
13264 sigset_t *set = NULL;
13266 if (arg5) {
13267 ret = process_sigsuspend_mask(&set, arg5, arg6);
13268 if (ret != 0) {
13269 break;
13273 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
13274 set, SIGSET_T_SIZE));
13276 if (set) {
13277 finish_sigsuspend_mask(ret);
13279 break;
13281 #endif
13282 #if defined(TARGET_NR_epoll_wait)
13283 case TARGET_NR_epoll_wait:
13284 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
13285 NULL, 0));
13286 break;
13287 #endif
13288 default:
13289 ret = -TARGET_ENOSYS;
13291 if (!is_error(ret)) {
13292 int i;
13293 for (i = 0; i < ret; i++) {
13294 target_ep[i].events = tswap32(ep[i].events);
13295 target_ep[i].data.u64 = tswap64(ep[i].data.u64);
13297 unlock_user(target_ep, arg2,
13298 ret * sizeof(struct target_epoll_event));
13299 } else {
13300 unlock_user(target_ep, arg2, 0);
13302 g_free(ep);
13303 return ret;
13305 #endif
13306 #endif
13307 #ifdef TARGET_NR_prlimit64
13308 case TARGET_NR_prlimit64:
13310 /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
13311 struct target_rlimit64 *target_rnew, *target_rold;
13312 struct host_rlimit64 rnew, rold, *rnewp = 0;
13313 int resource = target_to_host_resource(arg2);
13315 if (arg3 && (resource != RLIMIT_AS &&
13316 resource != RLIMIT_DATA &&
13317 resource != RLIMIT_STACK)) {
13318 if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) {
13319 return -TARGET_EFAULT;
13321 __get_user(rnew.rlim_cur, &target_rnew->rlim_cur);
13322 __get_user(rnew.rlim_max, &target_rnew->rlim_max);
13323 unlock_user_struct(target_rnew, arg3, 0);
13324 rnewp = &rnew;
13327 ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0));
13328 if (!is_error(ret) && arg4) {
13329 if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) {
13330 return -TARGET_EFAULT;
13332 __put_user(rold.rlim_cur, &target_rold->rlim_cur);
13333 __put_user(rold.rlim_max, &target_rold->rlim_max);
13334 unlock_user_struct(target_rold, arg4, 1);
13336 return ret;
13338 #endif
13339 #ifdef TARGET_NR_gethostname
13340 case TARGET_NR_gethostname:
13342 char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0);
13343 if (name) {
13344 ret = get_errno(gethostname(name, arg2));
13345 unlock_user(name, arg1, arg2);
13346 } else {
13347 ret = -TARGET_EFAULT;
13349 return ret;
13351 #endif
13352 #ifdef TARGET_NR_atomic_cmpxchg_32
13353 case TARGET_NR_atomic_cmpxchg_32:
13355 /* should use start_exclusive from main.c */
13356 abi_ulong mem_value;
13357 if (get_user_u32(mem_value, arg6)) {
13358 target_siginfo_t info;
13359 info.si_signo = SIGSEGV;
13360 info.si_errno = 0;
13361 info.si_code = TARGET_SEGV_MAPERR;
13362 info._sifields._sigfault._addr = arg6;
13363 queue_signal(cpu_env, info.si_signo, QEMU_SI_FAULT, &info);
13364 ret = 0xdeadbeef;
13367 if (mem_value == arg2)
13368 put_user_u32(arg1, arg6);
13369 return mem_value;
13371 #endif
13372 #ifdef TARGET_NR_atomic_barrier
13373 case TARGET_NR_atomic_barrier:
13374 /* Like the kernel implementation and the
13375 qemu arm barrier, no-op this? */
13376 return 0;
13377 #endif
13379 #ifdef TARGET_NR_timer_create
13380 case TARGET_NR_timer_create:
13382 /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
13384 struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL;
13386 int clkid = arg1;
13387 int timer_index = next_free_host_timer();
13389 if (timer_index < 0) {
13390 ret = -TARGET_EAGAIN;
13391 } else {
13392 timer_t *phtimer = g_posix_timers + timer_index;
13394 if (arg2) {
13395 phost_sevp = &host_sevp;
13396 ret = target_to_host_sigevent(phost_sevp, arg2);
13397 if (ret != 0) {
13398 free_host_timer_slot(timer_index);
13399 return ret;
13403 ret = get_errno(timer_create(clkid, phost_sevp, phtimer));
13404 if (ret) {
13405 free_host_timer_slot(timer_index);
13406 } else {
13407 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) {
13408 timer_delete(*phtimer);
13409 free_host_timer_slot(timer_index);
13410 return -TARGET_EFAULT;
13414 return ret;
13416 #endif
13418 #ifdef TARGET_NR_timer_settime
13419 case TARGET_NR_timer_settime:
13421 /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
13422 * struct itimerspec * old_value */
13423 target_timer_t timerid = get_timer_id(arg1);
13425 if (timerid < 0) {
13426 ret = timerid;
13427 } else if (arg3 == 0) {
13428 ret = -TARGET_EINVAL;
13429 } else {
13430 timer_t htimer = g_posix_timers[timerid];
13431 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
13433 if (target_to_host_itimerspec(&hspec_new, arg3)) {
13434 return -TARGET_EFAULT;
13436 ret = get_errno(
13437 timer_settime(htimer, arg2, &hspec_new, &hspec_old));
13438 if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) {
13439 return -TARGET_EFAULT;
13442 return ret;
13444 #endif
13446 #ifdef TARGET_NR_timer_settime64
13447 case TARGET_NR_timer_settime64:
13449 target_timer_t timerid = get_timer_id(arg1);
13451 if (timerid < 0) {
13452 ret = timerid;
13453 } else if (arg3 == 0) {
13454 ret = -TARGET_EINVAL;
13455 } else {
13456 timer_t htimer = g_posix_timers[timerid];
13457 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
13459 if (target_to_host_itimerspec64(&hspec_new, arg3)) {
13460 return -TARGET_EFAULT;
13462 ret = get_errno(
13463 timer_settime(htimer, arg2, &hspec_new, &hspec_old));
13464 if (arg4 && host_to_target_itimerspec64(arg4, &hspec_old)) {
13465 return -TARGET_EFAULT;
13468 return ret;
13470 #endif
13472 #ifdef TARGET_NR_timer_gettime
13473 case TARGET_NR_timer_gettime:
13475 /* args: timer_t timerid, struct itimerspec *curr_value */
13476 target_timer_t timerid = get_timer_id(arg1);
13478 if (timerid < 0) {
13479 ret = timerid;
13480 } else if (!arg2) {
13481 ret = -TARGET_EFAULT;
13482 } else {
13483 timer_t htimer = g_posix_timers[timerid];
13484 struct itimerspec hspec;
13485 ret = get_errno(timer_gettime(htimer, &hspec));
13487 if (host_to_target_itimerspec(arg2, &hspec)) {
13488 ret = -TARGET_EFAULT;
13491 return ret;
13493 #endif
13495 #ifdef TARGET_NR_timer_gettime64
13496 case TARGET_NR_timer_gettime64:
13498 /* args: timer_t timerid, struct itimerspec64 *curr_value */
13499 target_timer_t timerid = get_timer_id(arg1);
13501 if (timerid < 0) {
13502 ret = timerid;
13503 } else if (!arg2) {
13504 ret = -TARGET_EFAULT;
13505 } else {
13506 timer_t htimer = g_posix_timers[timerid];
13507 struct itimerspec hspec;
13508 ret = get_errno(timer_gettime(htimer, &hspec));
13510 if (host_to_target_itimerspec64(arg2, &hspec)) {
13511 ret = -TARGET_EFAULT;
13514 return ret;
13516 #endif
13518 #ifdef TARGET_NR_timer_getoverrun
13519 case TARGET_NR_timer_getoverrun:
13521 /* args: timer_t timerid */
13522 target_timer_t timerid = get_timer_id(arg1);
13524 if (timerid < 0) {
13525 ret = timerid;
13526 } else {
13527 timer_t htimer = g_posix_timers[timerid];
13528 ret = get_errno(timer_getoverrun(htimer));
13530 return ret;
13532 #endif
13534 #ifdef TARGET_NR_timer_delete
13535 case TARGET_NR_timer_delete:
13537 /* args: timer_t timerid */
13538 target_timer_t timerid = get_timer_id(arg1);
13540 if (timerid < 0) {
13541 ret = timerid;
13542 } else {
13543 timer_t htimer = g_posix_timers[timerid];
13544 ret = get_errno(timer_delete(htimer));
13545 free_host_timer_slot(timerid);
13547 return ret;
13549 #endif
13551 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
13552 case TARGET_NR_timerfd_create:
13553 ret = get_errno(timerfd_create(arg1,
13554 target_to_host_bitmask(arg2, fcntl_flags_tbl)));
13555 if (ret >= 0) {
13556 fd_trans_register(ret, &target_timerfd_trans);
13558 return ret;
13559 #endif
13561 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
13562 case TARGET_NR_timerfd_gettime:
13564 struct itimerspec its_curr;
13566 ret = get_errno(timerfd_gettime(arg1, &its_curr));
13568 if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) {
13569 return -TARGET_EFAULT;
13572 return ret;
13573 #endif
13575 #if defined(TARGET_NR_timerfd_gettime64) && defined(CONFIG_TIMERFD)
13576 case TARGET_NR_timerfd_gettime64:
13578 struct itimerspec its_curr;
13580 ret = get_errno(timerfd_gettime(arg1, &its_curr));
13582 if (arg2 && host_to_target_itimerspec64(arg2, &its_curr)) {
13583 return -TARGET_EFAULT;
13586 return ret;
13587 #endif
13589 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
13590 case TARGET_NR_timerfd_settime:
13592 struct itimerspec its_new, its_old, *p_new;
13594 if (arg3) {
13595 if (target_to_host_itimerspec(&its_new, arg3)) {
13596 return -TARGET_EFAULT;
13598 p_new = &its_new;
13599 } else {
13600 p_new = NULL;
13603 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13605 if (arg4 && host_to_target_itimerspec(arg4, &its_old)) {
13606 return -TARGET_EFAULT;
13609 return ret;
13610 #endif
13612 #if defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)
13613 case TARGET_NR_timerfd_settime64:
13615 struct itimerspec its_new, its_old, *p_new;
13617 if (arg3) {
13618 if (target_to_host_itimerspec64(&its_new, arg3)) {
13619 return -TARGET_EFAULT;
13621 p_new = &its_new;
13622 } else {
13623 p_new = NULL;
13626 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13628 if (arg4 && host_to_target_itimerspec64(arg4, &its_old)) {
13629 return -TARGET_EFAULT;
13632 return ret;
13633 #endif
13635 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
13636 case TARGET_NR_ioprio_get:
13637 return get_errno(ioprio_get(arg1, arg2));
13638 #endif
13640 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
13641 case TARGET_NR_ioprio_set:
13642 return get_errno(ioprio_set(arg1, arg2, arg3));
13643 #endif
13645 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
13646 case TARGET_NR_setns:
13647 return get_errno(setns(arg1, arg2));
13648 #endif
13649 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
13650 case TARGET_NR_unshare:
13651 return get_errno(unshare(arg1));
13652 #endif
13653 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
13654 case TARGET_NR_kcmp:
13655 return get_errno(kcmp(arg1, arg2, arg3, arg4, arg5));
13656 #endif
13657 #ifdef TARGET_NR_swapcontext
13658 case TARGET_NR_swapcontext:
13659 /* PowerPC specific. */
13660 return do_swapcontext(cpu_env, arg1, arg2, arg3);
13661 #endif
13662 #ifdef TARGET_NR_memfd_create
13663 case TARGET_NR_memfd_create:
13664 p = lock_user_string(arg1);
13665 if (!p) {
13666 return -TARGET_EFAULT;
13668 ret = get_errno(memfd_create(p, arg2));
13669 fd_trans_unregister(ret);
13670 unlock_user(p, arg1, 0);
13671 return ret;
13672 #endif
13673 #if defined TARGET_NR_membarrier && defined __NR_membarrier
13674 case TARGET_NR_membarrier:
13675 return get_errno(membarrier(arg1, arg2));
13676 #endif
13678 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
13679 case TARGET_NR_copy_file_range:
13681 loff_t inoff, outoff;
13682 loff_t *pinoff = NULL, *poutoff = NULL;
13684 if (arg2) {
13685 if (get_user_u64(inoff, arg2)) {
13686 return -TARGET_EFAULT;
13688 pinoff = &inoff;
13690 if (arg4) {
13691 if (get_user_u64(outoff, arg4)) {
13692 return -TARGET_EFAULT;
13694 poutoff = &outoff;
13696 /* Do not sign-extend the count parameter. */
13697 ret = get_errno(safe_copy_file_range(arg1, pinoff, arg3, poutoff,
13698 (abi_ulong)arg5, arg6));
13699 if (!is_error(ret) && ret > 0) {
13700 if (arg2) {
13701 if (put_user_u64(inoff, arg2)) {
13702 return -TARGET_EFAULT;
13705 if (arg4) {
13706 if (put_user_u64(outoff, arg4)) {
13707 return -TARGET_EFAULT;
13712 return ret;
13713 #endif
13715 #if defined(TARGET_NR_pivot_root)
13716 case TARGET_NR_pivot_root:
13718 void *p2;
13719 p = lock_user_string(arg1); /* new_root */
13720 p2 = lock_user_string(arg2); /* put_old */
13721 if (!p || !p2) {
13722 ret = -TARGET_EFAULT;
13723 } else {
13724 ret = get_errno(pivot_root(p, p2));
13726 unlock_user(p2, arg2, 0);
13727 unlock_user(p, arg1, 0);
13729 return ret;
13730 #endif
13732 #if defined(TARGET_NR_riscv_hwprobe)
13733 case TARGET_NR_riscv_hwprobe:
13734 return do_riscv_hwprobe(cpu_env, arg1, arg2, arg3, arg4, arg5);
13735 #endif
13737 default:
13738 qemu_log_mask(LOG_UNIMP, "Unsupported syscall: %d\n", num);
13739 return -TARGET_ENOSYS;
13741 return ret;
13744 abi_long do_syscall(CPUArchState *cpu_env, int num, abi_long arg1,
13745 abi_long arg2, abi_long arg3, abi_long arg4,
13746 abi_long arg5, abi_long arg6, abi_long arg7,
13747 abi_long arg8)
13749 CPUState *cpu = env_cpu(cpu_env);
13750 abi_long ret;
13752 #ifdef DEBUG_ERESTARTSYS
13753 /* Debug-only code for exercising the syscall-restart code paths
13754 * in the per-architecture cpu main loops: restart every syscall
13755 * the guest makes once before letting it through.
13758 static bool flag;
13759 flag = !flag;
13760 if (flag) {
13761 return -QEMU_ERESTARTSYS;
13764 #endif
13766 record_syscall_start(cpu, num, arg1,
13767 arg2, arg3, arg4, arg5, arg6, arg7, arg8);
13769 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13770 print_syscall(cpu_env, num, arg1, arg2, arg3, arg4, arg5, arg6);
13773 ret = do_syscall1(cpu_env, num, arg1, arg2, arg3, arg4,
13774 arg5, arg6, arg7, arg8);
13776 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13777 print_syscall_ret(cpu_env, num, ret, arg1, arg2,
13778 arg3, arg4, arg5, arg6);
13781 record_syscall_return(cpu, num, ret);
13782 return ret;