Merge tag 'pull-ufs-20240630' of https://gitlab.com/jeuk20.kim/qemu into staging
[qemu/armbru.git] / block / io.c
blob7217cf811b45094755451f5c0e14b65cc63cadef
1 /*
2 * Block layer I/O functions
4 * Copyright (c) 2003 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "block/coroutines.h"
33 #include "block/dirty-bitmap.h"
34 #include "block/write-threshold.h"
35 #include "qemu/cutils.h"
36 #include "qemu/memalign.h"
37 #include "qapi/error.h"
38 #include "qemu/error-report.h"
39 #include "qemu/main-loop.h"
40 #include "sysemu/replay.h"
42 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
43 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
45 static void coroutine_fn GRAPH_RDLOCK
46 bdrv_parent_cb_resize(BlockDriverState *bs);
48 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
49 int64_t offset, int64_t bytes, BdrvRequestFlags flags);
51 static void GRAPH_RDLOCK
52 bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore)
54 BdrvChild *c, *next;
55 IO_OR_GS_CODE();
56 assert_bdrv_graph_readable();
58 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
59 if (c == ignore) {
60 continue;
62 bdrv_parent_drained_begin_single(c);
66 void bdrv_parent_drained_end_single(BdrvChild *c)
68 GLOBAL_STATE_CODE();
70 assert(c->quiesced_parent);
71 c->quiesced_parent = false;
73 if (c->klass->drained_end) {
74 c->klass->drained_end(c);
78 static void GRAPH_RDLOCK
79 bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore)
81 BdrvChild *c;
82 IO_OR_GS_CODE();
83 assert_bdrv_graph_readable();
85 QLIST_FOREACH(c, &bs->parents, next_parent) {
86 if (c == ignore) {
87 continue;
89 bdrv_parent_drained_end_single(c);
93 bool bdrv_parent_drained_poll_single(BdrvChild *c)
95 IO_OR_GS_CODE();
97 if (c->klass->drained_poll) {
98 return c->klass->drained_poll(c);
100 return false;
103 static bool GRAPH_RDLOCK
104 bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
105 bool ignore_bds_parents)
107 BdrvChild *c, *next;
108 bool busy = false;
109 IO_OR_GS_CODE();
110 assert_bdrv_graph_readable();
112 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
113 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
114 continue;
116 busy |= bdrv_parent_drained_poll_single(c);
119 return busy;
122 void bdrv_parent_drained_begin_single(BdrvChild *c)
124 GLOBAL_STATE_CODE();
126 assert(!c->quiesced_parent);
127 c->quiesced_parent = true;
129 if (c->klass->drained_begin) {
130 /* called with rdlock taken, but it doesn't really need it. */
131 c->klass->drained_begin(c);
135 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
137 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment,
138 src->pdiscard_alignment);
139 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
140 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
141 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer,
142 src->max_hw_transfer);
143 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
144 src->opt_mem_alignment);
145 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
146 src->min_mem_alignment);
147 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
148 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov);
151 typedef struct BdrvRefreshLimitsState {
152 BlockDriverState *bs;
153 BlockLimits old_bl;
154 } BdrvRefreshLimitsState;
156 static void bdrv_refresh_limits_abort(void *opaque)
158 BdrvRefreshLimitsState *s = opaque;
160 s->bs->bl = s->old_bl;
163 static TransactionActionDrv bdrv_refresh_limits_drv = {
164 .abort = bdrv_refresh_limits_abort,
165 .clean = g_free,
168 /* @tran is allowed to be NULL, in this case no rollback is possible. */
169 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp)
171 ERRP_GUARD();
172 BlockDriver *drv = bs->drv;
173 BdrvChild *c;
174 bool have_limits;
176 GLOBAL_STATE_CODE();
178 if (tran) {
179 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1);
180 *s = (BdrvRefreshLimitsState) {
181 .bs = bs,
182 .old_bl = bs->bl,
184 tran_add(tran, &bdrv_refresh_limits_drv, s);
187 memset(&bs->bl, 0, sizeof(bs->bl));
189 if (!drv) {
190 return;
193 /* Default alignment based on whether driver has byte interface */
194 bs->bl.request_alignment = (drv->bdrv_co_preadv ||
195 drv->bdrv_aio_preadv ||
196 drv->bdrv_co_preadv_part) ? 1 : 512;
198 /* Take some limits from the children as a default */
199 have_limits = false;
200 QLIST_FOREACH(c, &bs->children, next) {
201 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
203 bdrv_merge_limits(&bs->bl, &c->bs->bl);
204 have_limits = true;
207 if (c->role & BDRV_CHILD_FILTERED) {
208 bs->bl.has_variable_length |= c->bs->bl.has_variable_length;
212 if (!have_limits) {
213 bs->bl.min_mem_alignment = 512;
214 bs->bl.opt_mem_alignment = qemu_real_host_page_size();
216 /* Safe default since most protocols use readv()/writev()/etc */
217 bs->bl.max_iov = IOV_MAX;
220 /* Then let the driver override it */
221 if (drv->bdrv_refresh_limits) {
222 drv->bdrv_refresh_limits(bs, errp);
223 if (*errp) {
224 return;
228 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
229 error_setg(errp, "Driver requires too large request alignment");
234 * The copy-on-read flag is actually a reference count so multiple users may
235 * use the feature without worrying about clobbering its previous state.
236 * Copy-on-read stays enabled until all users have called to disable it.
238 void bdrv_enable_copy_on_read(BlockDriverState *bs)
240 IO_CODE();
241 qatomic_inc(&bs->copy_on_read);
244 void bdrv_disable_copy_on_read(BlockDriverState *bs)
246 int old = qatomic_fetch_dec(&bs->copy_on_read);
247 IO_CODE();
248 assert(old >= 1);
251 typedef struct {
252 Coroutine *co;
253 BlockDriverState *bs;
254 bool done;
255 bool begin;
256 bool poll;
257 BdrvChild *parent;
258 } BdrvCoDrainData;
260 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
261 bool bdrv_drain_poll(BlockDriverState *bs, BdrvChild *ignore_parent,
262 bool ignore_bds_parents)
264 GLOBAL_STATE_CODE();
266 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
267 return true;
270 if (qatomic_read(&bs->in_flight)) {
271 return true;
274 return false;
277 static bool bdrv_drain_poll_top_level(BlockDriverState *bs,
278 BdrvChild *ignore_parent)
280 GLOBAL_STATE_CODE();
281 GRAPH_RDLOCK_GUARD_MAINLOOP();
283 return bdrv_drain_poll(bs, ignore_parent, false);
286 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
287 bool poll);
288 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent);
290 static void bdrv_co_drain_bh_cb(void *opaque)
292 BdrvCoDrainData *data = opaque;
293 Coroutine *co = data->co;
294 BlockDriverState *bs = data->bs;
296 if (bs) {
297 bdrv_dec_in_flight(bs);
298 if (data->begin) {
299 bdrv_do_drained_begin(bs, data->parent, data->poll);
300 } else {
301 assert(!data->poll);
302 bdrv_do_drained_end(bs, data->parent);
304 } else {
305 assert(data->begin);
306 bdrv_drain_all_begin();
309 data->done = true;
310 aio_co_wake(co);
313 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
314 bool begin,
315 BdrvChild *parent,
316 bool poll)
318 BdrvCoDrainData data;
319 Coroutine *self = qemu_coroutine_self();
321 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
322 * other coroutines run if they were queued by aio_co_enter(). */
324 assert(qemu_in_coroutine());
325 data = (BdrvCoDrainData) {
326 .co = self,
327 .bs = bs,
328 .done = false,
329 .begin = begin,
330 .parent = parent,
331 .poll = poll,
334 if (bs) {
335 bdrv_inc_in_flight(bs);
338 replay_bh_schedule_oneshot_event(qemu_get_aio_context(),
339 bdrv_co_drain_bh_cb, &data);
341 qemu_coroutine_yield();
342 /* If we are resumed from some other event (such as an aio completion or a
343 * timer callback), it is a bug in the caller that should be fixed. */
344 assert(data.done);
347 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
348 bool poll)
350 IO_OR_GS_CODE();
352 if (qemu_in_coroutine()) {
353 bdrv_co_yield_to_drain(bs, true, parent, poll);
354 return;
357 GLOBAL_STATE_CODE();
359 /* Stop things in parent-to-child order */
360 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
361 GRAPH_RDLOCK_GUARD_MAINLOOP();
362 bdrv_parent_drained_begin(bs, parent);
363 if (bs->drv && bs->drv->bdrv_drain_begin) {
364 bs->drv->bdrv_drain_begin(bs);
369 * Wait for drained requests to finish.
371 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
372 * call is needed so things in this AioContext can make progress even
373 * though we don't return to the main AioContext loop - this automatically
374 * includes other nodes in the same AioContext and therefore all child
375 * nodes.
377 if (poll) {
378 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, parent));
382 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, BdrvChild *parent)
384 bdrv_do_drained_begin(bs, parent, false);
387 void coroutine_mixed_fn
388 bdrv_drained_begin(BlockDriverState *bs)
390 IO_OR_GS_CODE();
391 bdrv_do_drained_begin(bs, NULL, true);
395 * This function does not poll, nor must any of its recursively called
396 * functions.
398 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent)
400 int old_quiesce_counter;
402 IO_OR_GS_CODE();
404 if (qemu_in_coroutine()) {
405 bdrv_co_yield_to_drain(bs, false, parent, false);
406 return;
409 /* At this point, we should be always running in the main loop. */
410 GLOBAL_STATE_CODE();
411 assert(bs->quiesce_counter > 0);
412 GLOBAL_STATE_CODE();
414 /* Re-enable things in child-to-parent order */
415 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
416 if (old_quiesce_counter == 1) {
417 GRAPH_RDLOCK_GUARD_MAINLOOP();
418 if (bs->drv && bs->drv->bdrv_drain_end) {
419 bs->drv->bdrv_drain_end(bs);
421 bdrv_parent_drained_end(bs, parent);
425 void bdrv_drained_end(BlockDriverState *bs)
427 IO_OR_GS_CODE();
428 bdrv_do_drained_end(bs, NULL);
431 void bdrv_drain(BlockDriverState *bs)
433 IO_OR_GS_CODE();
434 bdrv_drained_begin(bs);
435 bdrv_drained_end(bs);
438 static void bdrv_drain_assert_idle(BlockDriverState *bs)
440 BdrvChild *child, *next;
441 GLOBAL_STATE_CODE();
442 GRAPH_RDLOCK_GUARD_MAINLOOP();
444 assert(qatomic_read(&bs->in_flight) == 0);
445 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
446 bdrv_drain_assert_idle(child->bs);
450 unsigned int bdrv_drain_all_count = 0;
452 static bool bdrv_drain_all_poll(void)
454 BlockDriverState *bs = NULL;
455 bool result = false;
457 GLOBAL_STATE_CODE();
458 GRAPH_RDLOCK_GUARD_MAINLOOP();
461 * bdrv_drain_poll() can't make changes to the graph and we hold the BQL,
462 * so iterating bdrv_next_all_states() is safe.
464 while ((bs = bdrv_next_all_states(bs))) {
465 result |= bdrv_drain_poll(bs, NULL, true);
468 return result;
472 * Wait for pending requests to complete across all BlockDriverStates
474 * This function does not flush data to disk, use bdrv_flush_all() for that
475 * after calling this function.
477 * This pauses all block jobs and disables external clients. It must
478 * be paired with bdrv_drain_all_end().
480 * NOTE: no new block jobs or BlockDriverStates can be created between
481 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
483 void bdrv_drain_all_begin_nopoll(void)
485 BlockDriverState *bs = NULL;
486 GLOBAL_STATE_CODE();
489 * bdrv queue is managed by record/replay,
490 * waiting for finishing the I/O requests may
491 * be infinite
493 if (replay_events_enabled()) {
494 return;
497 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
498 * loop AioContext, so make sure we're in the main context. */
499 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
500 assert(bdrv_drain_all_count < INT_MAX);
501 bdrv_drain_all_count++;
503 /* Quiesce all nodes, without polling in-flight requests yet. The graph
504 * cannot change during this loop. */
505 while ((bs = bdrv_next_all_states(bs))) {
506 bdrv_do_drained_begin(bs, NULL, false);
510 void coroutine_mixed_fn bdrv_drain_all_begin(void)
512 BlockDriverState *bs = NULL;
514 if (qemu_in_coroutine()) {
515 bdrv_co_yield_to_drain(NULL, true, NULL, true);
516 return;
520 * bdrv queue is managed by record/replay,
521 * waiting for finishing the I/O requests may
522 * be infinite
524 if (replay_events_enabled()) {
525 return;
528 bdrv_drain_all_begin_nopoll();
530 /* Now poll the in-flight requests */
531 AIO_WAIT_WHILE_UNLOCKED(NULL, bdrv_drain_all_poll());
533 while ((bs = bdrv_next_all_states(bs))) {
534 bdrv_drain_assert_idle(bs);
538 void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
540 GLOBAL_STATE_CODE();
542 g_assert(bs->quiesce_counter > 0);
543 g_assert(!bs->refcnt);
545 while (bs->quiesce_counter) {
546 bdrv_do_drained_end(bs, NULL);
550 void bdrv_drain_all_end(void)
552 BlockDriverState *bs = NULL;
553 GLOBAL_STATE_CODE();
556 * bdrv queue is managed by record/replay,
557 * waiting for finishing the I/O requests may
558 * be endless
560 if (replay_events_enabled()) {
561 return;
564 while ((bs = bdrv_next_all_states(bs))) {
565 bdrv_do_drained_end(bs, NULL);
568 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
569 assert(bdrv_drain_all_count > 0);
570 bdrv_drain_all_count--;
573 void bdrv_drain_all(void)
575 GLOBAL_STATE_CODE();
576 bdrv_drain_all_begin();
577 bdrv_drain_all_end();
581 * Remove an active request from the tracked requests list
583 * This function should be called when a tracked request is completing.
585 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req)
587 if (req->serialising) {
588 qatomic_dec(&req->bs->serialising_in_flight);
591 qemu_mutex_lock(&req->bs->reqs_lock);
592 QLIST_REMOVE(req, list);
593 qemu_mutex_unlock(&req->bs->reqs_lock);
596 * At this point qemu_co_queue_wait(&req->wait_queue, ...) won't be called
597 * anymore because the request has been removed from the list, so it's safe
598 * to restart the queue outside reqs_lock to minimize the critical section.
600 qemu_co_queue_restart_all(&req->wait_queue);
604 * Add an active request to the tracked requests list
606 static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req,
607 BlockDriverState *bs,
608 int64_t offset,
609 int64_t bytes,
610 enum BdrvTrackedRequestType type)
612 bdrv_check_request(offset, bytes, &error_abort);
614 *req = (BdrvTrackedRequest){
615 .bs = bs,
616 .offset = offset,
617 .bytes = bytes,
618 .type = type,
619 .co = qemu_coroutine_self(),
620 .serialising = false,
621 .overlap_offset = offset,
622 .overlap_bytes = bytes,
625 qemu_co_queue_init(&req->wait_queue);
627 qemu_mutex_lock(&bs->reqs_lock);
628 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
629 qemu_mutex_unlock(&bs->reqs_lock);
632 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
633 int64_t offset, int64_t bytes)
635 bdrv_check_request(offset, bytes, &error_abort);
637 /* aaaa bbbb */
638 if (offset >= req->overlap_offset + req->overlap_bytes) {
639 return false;
641 /* bbbb aaaa */
642 if (req->overlap_offset >= offset + bytes) {
643 return false;
645 return true;
648 /* Called with self->bs->reqs_lock held */
649 static coroutine_fn BdrvTrackedRequest *
650 bdrv_find_conflicting_request(BdrvTrackedRequest *self)
652 BdrvTrackedRequest *req;
654 QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
655 if (req == self || (!req->serialising && !self->serialising)) {
656 continue;
658 if (tracked_request_overlaps(req, self->overlap_offset,
659 self->overlap_bytes))
662 * Hitting this means there was a reentrant request, for
663 * example, a block driver issuing nested requests. This must
664 * never happen since it means deadlock.
666 assert(qemu_coroutine_self() != req->co);
669 * If the request is already (indirectly) waiting for us, or
670 * will wait for us as soon as it wakes up, then just go on
671 * (instead of producing a deadlock in the former case).
673 if (!req->waiting_for) {
674 return req;
679 return NULL;
682 /* Called with self->bs->reqs_lock held */
683 static void coroutine_fn
684 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
686 BdrvTrackedRequest *req;
688 while ((req = bdrv_find_conflicting_request(self))) {
689 self->waiting_for = req;
690 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
691 self->waiting_for = NULL;
695 /* Called with req->bs->reqs_lock held */
696 static void tracked_request_set_serialising(BdrvTrackedRequest *req,
697 uint64_t align)
699 int64_t overlap_offset = req->offset & ~(align - 1);
700 int64_t overlap_bytes =
701 ROUND_UP(req->offset + req->bytes, align) - overlap_offset;
703 bdrv_check_request(req->offset, req->bytes, &error_abort);
705 if (!req->serialising) {
706 qatomic_inc(&req->bs->serialising_in_flight);
707 req->serialising = true;
710 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
711 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
715 * Return the tracked request on @bs for the current coroutine, or
716 * NULL if there is none.
718 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
720 BdrvTrackedRequest *req;
721 Coroutine *self = qemu_coroutine_self();
722 IO_CODE();
724 QLIST_FOREACH(req, &bs->tracked_requests, list) {
725 if (req->co == self) {
726 return req;
730 return NULL;
734 * Round a region to subcluster (if supported) or cluster boundaries
736 void coroutine_fn GRAPH_RDLOCK
737 bdrv_round_to_subclusters(BlockDriverState *bs, int64_t offset, int64_t bytes,
738 int64_t *align_offset, int64_t *align_bytes)
740 BlockDriverInfo bdi;
741 IO_CODE();
742 if (bdrv_co_get_info(bs, &bdi) < 0 || bdi.subcluster_size == 0) {
743 *align_offset = offset;
744 *align_bytes = bytes;
745 } else {
746 int64_t c = bdi.subcluster_size;
747 *align_offset = QEMU_ALIGN_DOWN(offset, c);
748 *align_bytes = QEMU_ALIGN_UP(offset - *align_offset + bytes, c);
752 static int coroutine_fn GRAPH_RDLOCK bdrv_get_cluster_size(BlockDriverState *bs)
754 BlockDriverInfo bdi;
755 int ret;
757 ret = bdrv_co_get_info(bs, &bdi);
758 if (ret < 0 || bdi.cluster_size == 0) {
759 return bs->bl.request_alignment;
760 } else {
761 return bdi.cluster_size;
765 void bdrv_inc_in_flight(BlockDriverState *bs)
767 IO_CODE();
768 qatomic_inc(&bs->in_flight);
771 void bdrv_wakeup(BlockDriverState *bs)
773 IO_CODE();
774 aio_wait_kick();
777 void bdrv_dec_in_flight(BlockDriverState *bs)
779 IO_CODE();
780 qatomic_dec(&bs->in_flight);
781 bdrv_wakeup(bs);
784 static void coroutine_fn
785 bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
787 BlockDriverState *bs = self->bs;
789 if (!qatomic_read(&bs->serialising_in_flight)) {
790 return;
793 qemu_mutex_lock(&bs->reqs_lock);
794 bdrv_wait_serialising_requests_locked(self);
795 qemu_mutex_unlock(&bs->reqs_lock);
798 void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
799 uint64_t align)
801 IO_CODE();
803 qemu_mutex_lock(&req->bs->reqs_lock);
805 tracked_request_set_serialising(req, align);
806 bdrv_wait_serialising_requests_locked(req);
808 qemu_mutex_unlock(&req->bs->reqs_lock);
811 int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
812 QEMUIOVector *qiov, size_t qiov_offset,
813 Error **errp)
816 * Check generic offset/bytes correctness
819 if (offset < 0) {
820 error_setg(errp, "offset is negative: %" PRIi64, offset);
821 return -EIO;
824 if (bytes < 0) {
825 error_setg(errp, "bytes is negative: %" PRIi64, bytes);
826 return -EIO;
829 if (bytes > BDRV_MAX_LENGTH) {
830 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
831 bytes, BDRV_MAX_LENGTH);
832 return -EIO;
835 if (offset > BDRV_MAX_LENGTH) {
836 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
837 offset, BDRV_MAX_LENGTH);
838 return -EIO;
841 if (offset > BDRV_MAX_LENGTH - bytes) {
842 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") "
843 "exceeds maximum(%" PRIi64 ")", offset, bytes,
844 BDRV_MAX_LENGTH);
845 return -EIO;
848 if (!qiov) {
849 return 0;
853 * Check qiov and qiov_offset
856 if (qiov_offset > qiov->size) {
857 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)",
858 qiov_offset, qiov->size);
859 return -EIO;
862 if (bytes > qiov->size - qiov_offset) {
863 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io "
864 "vector size(%zu)", bytes, qiov_offset, qiov->size);
865 return -EIO;
868 return 0;
871 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp)
873 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp);
876 static int bdrv_check_request32(int64_t offset, int64_t bytes,
877 QEMUIOVector *qiov, size_t qiov_offset)
879 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
880 if (ret < 0) {
881 return ret;
884 if (bytes > BDRV_REQUEST_MAX_BYTES) {
885 return -EIO;
888 return 0;
892 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
893 * The operation is sped up by checking the block status and only writing
894 * zeroes to the device if they currently do not return zeroes. Optional
895 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
896 * BDRV_REQ_FUA).
898 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
900 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
902 int ret;
903 int64_t target_size, bytes, offset = 0;
904 BlockDriverState *bs = child->bs;
905 IO_CODE();
907 target_size = bdrv_getlength(bs);
908 if (target_size < 0) {
909 return target_size;
912 for (;;) {
913 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
914 if (bytes <= 0) {
915 return 0;
917 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
918 if (ret < 0) {
919 return ret;
921 if (ret & BDRV_BLOCK_ZERO) {
922 offset += bytes;
923 continue;
925 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
926 if (ret < 0) {
927 return ret;
929 offset += bytes;
934 * Writes to the file and ensures that no writes are reordered across this
935 * request (acts as a barrier)
937 * Returns 0 on success, -errno in error cases.
939 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset,
940 int64_t bytes, const void *buf,
941 BdrvRequestFlags flags)
943 int ret;
944 IO_CODE();
945 assert_bdrv_graph_readable();
947 ret = bdrv_co_pwrite(child, offset, bytes, buf, flags);
948 if (ret < 0) {
949 return ret;
952 ret = bdrv_co_flush(child->bs);
953 if (ret < 0) {
954 return ret;
957 return 0;
960 typedef struct CoroutineIOCompletion {
961 Coroutine *coroutine;
962 int ret;
963 } CoroutineIOCompletion;
965 static void bdrv_co_io_em_complete(void *opaque, int ret)
967 CoroutineIOCompletion *co = opaque;
969 co->ret = ret;
970 aio_co_wake(co->coroutine);
973 static int coroutine_fn GRAPH_RDLOCK
974 bdrv_driver_preadv(BlockDriverState *bs, int64_t offset, int64_t bytes,
975 QEMUIOVector *qiov, size_t qiov_offset, int flags)
977 BlockDriver *drv = bs->drv;
978 int64_t sector_num;
979 unsigned int nb_sectors;
980 QEMUIOVector local_qiov;
981 int ret;
982 assert_bdrv_graph_readable();
984 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
985 assert(!(flags & ~bs->supported_read_flags));
987 if (!drv) {
988 return -ENOMEDIUM;
991 if (drv->bdrv_co_preadv_part) {
992 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
993 flags);
996 if (qiov_offset > 0 || bytes != qiov->size) {
997 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
998 qiov = &local_qiov;
1001 if (drv->bdrv_co_preadv) {
1002 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1003 goto out;
1006 if (drv->bdrv_aio_preadv) {
1007 BlockAIOCB *acb;
1008 CoroutineIOCompletion co = {
1009 .coroutine = qemu_coroutine_self(),
1012 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1013 bdrv_co_io_em_complete, &co);
1014 if (acb == NULL) {
1015 ret = -EIO;
1016 goto out;
1017 } else {
1018 qemu_coroutine_yield();
1019 ret = co.ret;
1020 goto out;
1024 sector_num = offset >> BDRV_SECTOR_BITS;
1025 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1027 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1028 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1029 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1030 assert(drv->bdrv_co_readv);
1032 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1034 out:
1035 if (qiov == &local_qiov) {
1036 qemu_iovec_destroy(&local_qiov);
1039 return ret;
1042 static int coroutine_fn GRAPH_RDLOCK
1043 bdrv_driver_pwritev(BlockDriverState *bs, int64_t offset, int64_t bytes,
1044 QEMUIOVector *qiov, size_t qiov_offset,
1045 BdrvRequestFlags flags)
1047 BlockDriver *drv = bs->drv;
1048 bool emulate_fua = false;
1049 int64_t sector_num;
1050 unsigned int nb_sectors;
1051 QEMUIOVector local_qiov;
1052 int ret;
1053 assert_bdrv_graph_readable();
1055 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1057 if (!drv) {
1058 return -ENOMEDIUM;
1061 if ((flags & BDRV_REQ_FUA) &&
1062 (~bs->supported_write_flags & BDRV_REQ_FUA)) {
1063 flags &= ~BDRV_REQ_FUA;
1064 emulate_fua = true;
1067 flags &= bs->supported_write_flags;
1069 if (drv->bdrv_co_pwritev_part) {
1070 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1071 flags);
1072 goto emulate_flags;
1075 if (qiov_offset > 0 || bytes != qiov->size) {
1076 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1077 qiov = &local_qiov;
1080 if (drv->bdrv_co_pwritev) {
1081 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags);
1082 goto emulate_flags;
1085 if (drv->bdrv_aio_pwritev) {
1086 BlockAIOCB *acb;
1087 CoroutineIOCompletion co = {
1088 .coroutine = qemu_coroutine_self(),
1091 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags,
1092 bdrv_co_io_em_complete, &co);
1093 if (acb == NULL) {
1094 ret = -EIO;
1095 } else {
1096 qemu_coroutine_yield();
1097 ret = co.ret;
1099 goto emulate_flags;
1102 sector_num = offset >> BDRV_SECTOR_BITS;
1103 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1105 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1106 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1107 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1109 assert(drv->bdrv_co_writev);
1110 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, flags);
1112 emulate_flags:
1113 if (ret == 0 && emulate_fua) {
1114 ret = bdrv_co_flush(bs);
1117 if (qiov == &local_qiov) {
1118 qemu_iovec_destroy(&local_qiov);
1121 return ret;
1124 static int coroutine_fn GRAPH_RDLOCK
1125 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset,
1126 int64_t bytes, QEMUIOVector *qiov,
1127 size_t qiov_offset)
1129 BlockDriver *drv = bs->drv;
1130 QEMUIOVector local_qiov;
1131 int ret;
1132 assert_bdrv_graph_readable();
1134 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1136 if (!drv) {
1137 return -ENOMEDIUM;
1140 if (!block_driver_can_compress(drv)) {
1141 return -ENOTSUP;
1144 if (drv->bdrv_co_pwritev_compressed_part) {
1145 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1146 qiov, qiov_offset);
1149 if (qiov_offset == 0) {
1150 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1153 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1154 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1155 qemu_iovec_destroy(&local_qiov);
1157 return ret;
1160 static int coroutine_fn GRAPH_RDLOCK
1161 bdrv_co_do_copy_on_readv(BdrvChild *child, int64_t offset, int64_t bytes,
1162 QEMUIOVector *qiov, size_t qiov_offset, int flags)
1164 BlockDriverState *bs = child->bs;
1166 /* Perform I/O through a temporary buffer so that users who scribble over
1167 * their read buffer while the operation is in progress do not end up
1168 * modifying the image file. This is critical for zero-copy guest I/O
1169 * where anything might happen inside guest memory.
1171 void *bounce_buffer = NULL;
1173 BlockDriver *drv = bs->drv;
1174 int64_t align_offset;
1175 int64_t align_bytes;
1176 int64_t skip_bytes;
1177 int ret;
1178 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1179 BDRV_REQUEST_MAX_BYTES);
1180 int64_t progress = 0;
1181 bool skip_write;
1183 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1185 if (!drv) {
1186 return -ENOMEDIUM;
1190 * Do not write anything when the BDS is inactive. That is not
1191 * allowed, and it would not help.
1193 skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1195 /* FIXME We cannot require callers to have write permissions when all they
1196 * are doing is a read request. If we did things right, write permissions
1197 * would be obtained anyway, but internally by the copy-on-read code. As
1198 * long as it is implemented here rather than in a separate filter driver,
1199 * the copy-on-read code doesn't have its own BdrvChild, however, for which
1200 * it could request permissions. Therefore we have to bypass the permission
1201 * system for the moment. */
1202 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1204 /* Cover entire cluster so no additional backing file I/O is required when
1205 * allocating cluster in the image file. Note that this value may exceed
1206 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1207 * is one reason we loop rather than doing it all at once.
1209 bdrv_round_to_subclusters(bs, offset, bytes, &align_offset, &align_bytes);
1210 skip_bytes = offset - align_offset;
1212 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1213 align_offset, align_bytes);
1215 while (align_bytes) {
1216 int64_t pnum;
1218 if (skip_write) {
1219 ret = 1; /* "already allocated", so nothing will be copied */
1220 pnum = MIN(align_bytes, max_transfer);
1221 } else {
1222 ret = bdrv_co_is_allocated(bs, align_offset,
1223 MIN(align_bytes, max_transfer), &pnum);
1224 if (ret < 0) {
1226 * Safe to treat errors in querying allocation as if
1227 * unallocated; we'll probably fail again soon on the
1228 * read, but at least that will set a decent errno.
1230 pnum = MIN(align_bytes, max_transfer);
1233 /* Stop at EOF if the image ends in the middle of the cluster */
1234 if (ret == 0 && pnum == 0) {
1235 assert(progress >= bytes);
1236 break;
1239 assert(skip_bytes < pnum);
1242 if (ret <= 0) {
1243 QEMUIOVector local_qiov;
1245 /* Must copy-on-read; use the bounce buffer */
1246 pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1247 if (!bounce_buffer) {
1248 int64_t max_we_need = MAX(pnum, align_bytes - pnum);
1249 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1250 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1252 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1253 if (!bounce_buffer) {
1254 ret = -ENOMEM;
1255 goto err;
1258 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1260 ret = bdrv_driver_preadv(bs, align_offset, pnum,
1261 &local_qiov, 0, 0);
1262 if (ret < 0) {
1263 goto err;
1266 bdrv_co_debug_event(bs, BLKDBG_COR_WRITE);
1267 if (drv->bdrv_co_pwrite_zeroes &&
1268 buffer_is_zero(bounce_buffer, pnum)) {
1269 /* FIXME: Should we (perhaps conditionally) be setting
1270 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1271 * that still correctly reads as zero? */
1272 ret = bdrv_co_do_pwrite_zeroes(bs, align_offset, pnum,
1273 BDRV_REQ_WRITE_UNCHANGED);
1274 } else {
1275 /* This does not change the data on the disk, it is not
1276 * necessary to flush even in cache=writethrough mode.
1278 ret = bdrv_driver_pwritev(bs, align_offset, pnum,
1279 &local_qiov, 0,
1280 BDRV_REQ_WRITE_UNCHANGED);
1283 if (ret < 0) {
1284 /* It might be okay to ignore write errors for guest
1285 * requests. If this is a deliberate copy-on-read
1286 * then we don't want to ignore the error. Simply
1287 * report it in all cases.
1289 goto err;
1292 if (!(flags & BDRV_REQ_PREFETCH)) {
1293 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1294 bounce_buffer + skip_bytes,
1295 MIN(pnum - skip_bytes, bytes - progress));
1297 } else if (!(flags & BDRV_REQ_PREFETCH)) {
1298 /* Read directly into the destination */
1299 ret = bdrv_driver_preadv(bs, offset + progress,
1300 MIN(pnum - skip_bytes, bytes - progress),
1301 qiov, qiov_offset + progress, 0);
1302 if (ret < 0) {
1303 goto err;
1307 align_offset += pnum;
1308 align_bytes -= pnum;
1309 progress += pnum - skip_bytes;
1310 skip_bytes = 0;
1312 ret = 0;
1314 err:
1315 qemu_vfree(bounce_buffer);
1316 return ret;
1320 * Forwards an already correctly aligned request to the BlockDriver. This
1321 * handles copy on read, zeroing after EOF, and fragmentation of large
1322 * reads; any other features must be implemented by the caller.
1324 static int coroutine_fn GRAPH_RDLOCK
1325 bdrv_aligned_preadv(BdrvChild *child, BdrvTrackedRequest *req,
1326 int64_t offset, int64_t bytes, int64_t align,
1327 QEMUIOVector *qiov, size_t qiov_offset, int flags)
1329 BlockDriverState *bs = child->bs;
1330 int64_t total_bytes, max_bytes;
1331 int ret = 0;
1332 int64_t bytes_remaining = bytes;
1333 int max_transfer;
1335 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1336 assert(is_power_of_2(align));
1337 assert((offset & (align - 1)) == 0);
1338 assert((bytes & (align - 1)) == 0);
1339 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1340 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1341 align);
1344 * TODO: We would need a per-BDS .supported_read_flags and
1345 * potential fallback support, if we ever implement any read flags
1346 * to pass through to drivers. For now, there aren't any
1347 * passthrough flags except the BDRV_REQ_REGISTERED_BUF optimization hint.
1349 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH |
1350 BDRV_REQ_REGISTERED_BUF)));
1352 /* Handle Copy on Read and associated serialisation */
1353 if (flags & BDRV_REQ_COPY_ON_READ) {
1354 /* If we touch the same cluster it counts as an overlap. This
1355 * guarantees that allocating writes will be serialized and not race
1356 * with each other for the same cluster. For example, in copy-on-read
1357 * it ensures that the CoR read and write operations are atomic and
1358 * guest writes cannot interleave between them. */
1359 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1360 } else {
1361 bdrv_wait_serialising_requests(req);
1364 if (flags & BDRV_REQ_COPY_ON_READ) {
1365 int64_t pnum;
1367 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
1368 flags &= ~BDRV_REQ_COPY_ON_READ;
1370 ret = bdrv_co_is_allocated(bs, offset, bytes, &pnum);
1371 if (ret < 0) {
1372 goto out;
1375 if (!ret || pnum != bytes) {
1376 ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1377 qiov, qiov_offset, flags);
1378 goto out;
1379 } else if (flags & BDRV_REQ_PREFETCH) {
1380 goto out;
1384 /* Forward the request to the BlockDriver, possibly fragmenting it */
1385 total_bytes = bdrv_co_getlength(bs);
1386 if (total_bytes < 0) {
1387 ret = total_bytes;
1388 goto out;
1391 assert(!(flags & ~(bs->supported_read_flags | BDRV_REQ_REGISTERED_BUF)));
1393 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1394 if (bytes <= max_bytes && bytes <= max_transfer) {
1395 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
1396 goto out;
1399 while (bytes_remaining) {
1400 int64_t num;
1402 if (max_bytes) {
1403 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1404 assert(num);
1406 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1407 num, qiov,
1408 qiov_offset + bytes - bytes_remaining,
1409 flags);
1410 max_bytes -= num;
1411 } else {
1412 num = bytes_remaining;
1413 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1414 0, bytes_remaining);
1416 if (ret < 0) {
1417 goto out;
1419 bytes_remaining -= num;
1422 out:
1423 return ret < 0 ? ret : 0;
1427 * Request padding
1429 * |<---- align ----->| |<----- align ---->|
1430 * |<- head ->|<------------- bytes ------------->|<-- tail -->|
1431 * | | | | | |
1432 * -*----------$-------*-------- ... --------*-----$------------*---
1433 * | | | | | |
1434 * | offset | | end |
1435 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end)
1436 * [buf ... ) [tail_buf )
1438 * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1439 * is placed at the beginning of @buf and @tail at the @end.
1441 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1442 * around tail, if tail exists.
1444 * @merge_reads is true for small requests,
1445 * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1446 * head and tail exist but @buf_len == align and @tail_buf == @buf.
1448 * @write is true for write requests, false for read requests.
1450 * If padding makes the vector too long (exceeding IOV_MAX), then we need to
1451 * merge existing vector elements into a single one. @collapse_bounce_buf acts
1452 * as the bounce buffer in such cases. @pre_collapse_qiov has the pre-collapse
1453 * I/O vector elements so for read requests, the data can be copied back after
1454 * the read is done.
1456 typedef struct BdrvRequestPadding {
1457 uint8_t *buf;
1458 size_t buf_len;
1459 uint8_t *tail_buf;
1460 size_t head;
1461 size_t tail;
1462 bool merge_reads;
1463 bool write;
1464 QEMUIOVector local_qiov;
1466 uint8_t *collapse_bounce_buf;
1467 size_t collapse_len;
1468 QEMUIOVector pre_collapse_qiov;
1469 } BdrvRequestPadding;
1471 static bool bdrv_init_padding(BlockDriverState *bs,
1472 int64_t offset, int64_t bytes,
1473 bool write,
1474 BdrvRequestPadding *pad)
1476 int64_t align = bs->bl.request_alignment;
1477 int64_t sum;
1479 bdrv_check_request(offset, bytes, &error_abort);
1480 assert(align <= INT_MAX); /* documented in block/block_int.h */
1481 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */
1483 memset(pad, 0, sizeof(*pad));
1485 pad->head = offset & (align - 1);
1486 pad->tail = ((offset + bytes) & (align - 1));
1487 if (pad->tail) {
1488 pad->tail = align - pad->tail;
1491 if (!pad->head && !pad->tail) {
1492 return false;
1495 assert(bytes); /* Nothing good in aligning zero-length requests */
1497 sum = pad->head + bytes + pad->tail;
1498 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1499 pad->buf = qemu_blockalign(bs, pad->buf_len);
1500 pad->merge_reads = sum == pad->buf_len;
1501 if (pad->tail) {
1502 pad->tail_buf = pad->buf + pad->buf_len - align;
1505 pad->write = write;
1507 return true;
1510 static int coroutine_fn GRAPH_RDLOCK
1511 bdrv_padding_rmw_read(BdrvChild *child, BdrvTrackedRequest *req,
1512 BdrvRequestPadding *pad, bool zero_middle)
1514 QEMUIOVector local_qiov;
1515 BlockDriverState *bs = child->bs;
1516 uint64_t align = bs->bl.request_alignment;
1517 int ret;
1519 assert(req->serialising && pad->buf);
1521 if (pad->head || pad->merge_reads) {
1522 int64_t bytes = pad->merge_reads ? pad->buf_len : align;
1524 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1526 if (pad->head) {
1527 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1529 if (pad->merge_reads && pad->tail) {
1530 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1532 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1533 align, &local_qiov, 0, 0);
1534 if (ret < 0) {
1535 return ret;
1537 if (pad->head) {
1538 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1540 if (pad->merge_reads && pad->tail) {
1541 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1544 if (pad->merge_reads) {
1545 goto zero_mem;
1549 if (pad->tail) {
1550 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1552 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1553 ret = bdrv_aligned_preadv(
1554 child, req,
1555 req->overlap_offset + req->overlap_bytes - align,
1556 align, align, &local_qiov, 0, 0);
1557 if (ret < 0) {
1558 return ret;
1560 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1563 zero_mem:
1564 if (zero_middle) {
1565 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1568 return 0;
1572 * Free *pad's associated buffers, and perform any necessary finalization steps.
1574 static void bdrv_padding_finalize(BdrvRequestPadding *pad)
1576 if (pad->collapse_bounce_buf) {
1577 if (!pad->write) {
1579 * If padding required elements in the vector to be collapsed into a
1580 * bounce buffer, copy the bounce buffer content back
1582 qemu_iovec_from_buf(&pad->pre_collapse_qiov, 0,
1583 pad->collapse_bounce_buf, pad->collapse_len);
1585 qemu_vfree(pad->collapse_bounce_buf);
1586 qemu_iovec_destroy(&pad->pre_collapse_qiov);
1588 if (pad->buf) {
1589 qemu_vfree(pad->buf);
1590 qemu_iovec_destroy(&pad->local_qiov);
1592 memset(pad, 0, sizeof(*pad));
1596 * Create pad->local_qiov by wrapping @iov in the padding head and tail, while
1597 * ensuring that the resulting vector will not exceed IOV_MAX elements.
1599 * To ensure this, when necessary, the first two or three elements of @iov are
1600 * merged into pad->collapse_bounce_buf and replaced by a reference to that
1601 * bounce buffer in pad->local_qiov.
1603 * After performing a read request, the data from the bounce buffer must be
1604 * copied back into pad->pre_collapse_qiov (e.g. by bdrv_padding_finalize()).
1606 static int bdrv_create_padded_qiov(BlockDriverState *bs,
1607 BdrvRequestPadding *pad,
1608 struct iovec *iov, int niov,
1609 size_t iov_offset, size_t bytes)
1611 int padded_niov, surplus_count, collapse_count;
1613 /* Assert this invariant */
1614 assert(niov <= IOV_MAX);
1617 * Cannot pad if resulting length would exceed SIZE_MAX. Returning an error
1618 * to the guest is not ideal, but there is little else we can do. At least
1619 * this will practically never happen on 64-bit systems.
1621 if (SIZE_MAX - pad->head < bytes ||
1622 SIZE_MAX - pad->head - bytes < pad->tail)
1624 return -EINVAL;
1627 /* Length of the resulting IOV if we just concatenated everything */
1628 padded_niov = !!pad->head + niov + !!pad->tail;
1630 qemu_iovec_init(&pad->local_qiov, MIN(padded_niov, IOV_MAX));
1632 if (pad->head) {
1633 qemu_iovec_add(&pad->local_qiov, pad->buf, pad->head);
1637 * If padded_niov > IOV_MAX, we cannot just concatenate everything.
1638 * Instead, merge the first two or three elements of @iov to reduce the
1639 * number of vector elements as necessary.
1641 if (padded_niov > IOV_MAX) {
1643 * Only head and tail can have lead to the number of entries exceeding
1644 * IOV_MAX, so we can exceed it by the head and tail at most. We need
1645 * to reduce the number of elements by `surplus_count`, so we merge that
1646 * many elements plus one into one element.
1648 surplus_count = padded_niov - IOV_MAX;
1649 assert(surplus_count <= !!pad->head + !!pad->tail);
1650 collapse_count = surplus_count + 1;
1653 * Move the elements to collapse into `pad->pre_collapse_qiov`, then
1654 * advance `iov` (and associated variables) by those elements.
1656 qemu_iovec_init(&pad->pre_collapse_qiov, collapse_count);
1657 qemu_iovec_concat_iov(&pad->pre_collapse_qiov, iov,
1658 collapse_count, iov_offset, SIZE_MAX);
1659 iov += collapse_count;
1660 iov_offset = 0;
1661 niov -= collapse_count;
1662 bytes -= pad->pre_collapse_qiov.size;
1665 * Construct the bounce buffer to match the length of the to-collapse
1666 * vector elements, and for write requests, initialize it with the data
1667 * from those elements. Then add it to `pad->local_qiov`.
1669 pad->collapse_len = pad->pre_collapse_qiov.size;
1670 pad->collapse_bounce_buf = qemu_blockalign(bs, pad->collapse_len);
1671 if (pad->write) {
1672 qemu_iovec_to_buf(&pad->pre_collapse_qiov, 0,
1673 pad->collapse_bounce_buf, pad->collapse_len);
1675 qemu_iovec_add(&pad->local_qiov,
1676 pad->collapse_bounce_buf, pad->collapse_len);
1679 qemu_iovec_concat_iov(&pad->local_qiov, iov, niov, iov_offset, bytes);
1681 if (pad->tail) {
1682 qemu_iovec_add(&pad->local_qiov,
1683 pad->buf + pad->buf_len - pad->tail, pad->tail);
1686 assert(pad->local_qiov.niov == MIN(padded_niov, IOV_MAX));
1687 return 0;
1691 * bdrv_pad_request
1693 * Exchange request parameters with padded request if needed. Don't include RMW
1694 * read of padding, bdrv_padding_rmw_read() should be called separately if
1695 * needed.
1697 * @write is true for write requests, false for read requests.
1699 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out:
1700 * - on function start they represent original request
1701 * - on failure or when padding is not needed they are unchanged
1702 * - on success when padding is needed they represent padded request
1704 static int bdrv_pad_request(BlockDriverState *bs,
1705 QEMUIOVector **qiov, size_t *qiov_offset,
1706 int64_t *offset, int64_t *bytes,
1707 bool write,
1708 BdrvRequestPadding *pad, bool *padded,
1709 BdrvRequestFlags *flags)
1711 int ret;
1712 struct iovec *sliced_iov;
1713 int sliced_niov;
1714 size_t sliced_head, sliced_tail;
1716 /* Should have been checked by the caller already */
1717 ret = bdrv_check_request32(*offset, *bytes, *qiov, *qiov_offset);
1718 if (ret < 0) {
1719 return ret;
1722 if (!bdrv_init_padding(bs, *offset, *bytes, write, pad)) {
1723 if (padded) {
1724 *padded = false;
1726 return 0;
1730 * For prefetching in stream_populate(), no qiov is passed along, because
1731 * only copy-on-read matters.
1733 if (*qiov) {
1734 sliced_iov = qemu_iovec_slice(*qiov, *qiov_offset, *bytes,
1735 &sliced_head, &sliced_tail,
1736 &sliced_niov);
1738 /* Guaranteed by bdrv_check_request32() */
1739 assert(*bytes <= SIZE_MAX);
1740 ret = bdrv_create_padded_qiov(bs, pad, sliced_iov, sliced_niov,
1741 sliced_head, *bytes);
1742 if (ret < 0) {
1743 bdrv_padding_finalize(pad);
1744 return ret;
1746 *qiov = &pad->local_qiov;
1747 *qiov_offset = 0;
1750 *bytes += pad->head + pad->tail;
1751 *offset -= pad->head;
1752 if (padded) {
1753 *padded = true;
1755 if (flags) {
1756 /* Can't use optimization hint with bounce buffer */
1757 *flags &= ~BDRV_REQ_REGISTERED_BUF;
1760 return 0;
1763 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1764 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1765 BdrvRequestFlags flags)
1767 IO_CODE();
1768 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1771 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1772 int64_t offset, int64_t bytes,
1773 QEMUIOVector *qiov, size_t qiov_offset,
1774 BdrvRequestFlags flags)
1776 BlockDriverState *bs = child->bs;
1777 BdrvTrackedRequest req;
1778 BdrvRequestPadding pad;
1779 int ret;
1780 IO_CODE();
1782 trace_bdrv_co_preadv_part(bs, offset, bytes, flags);
1784 if (!bdrv_co_is_inserted(bs)) {
1785 return -ENOMEDIUM;
1788 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
1789 if (ret < 0) {
1790 return ret;
1793 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1795 * Aligning zero request is nonsense. Even if driver has special meaning
1796 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1797 * it to driver due to request_alignment.
1799 * Still, no reason to return an error if someone do unaligned
1800 * zero-length read occasionally.
1802 return 0;
1805 bdrv_inc_in_flight(bs);
1807 /* Don't do copy-on-read if we read data before write operation */
1808 if (qatomic_read(&bs->copy_on_read)) {
1809 flags |= BDRV_REQ_COPY_ON_READ;
1812 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, false,
1813 &pad, NULL, &flags);
1814 if (ret < 0) {
1815 goto fail;
1818 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1819 ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1820 bs->bl.request_alignment,
1821 qiov, qiov_offset, flags);
1822 tracked_request_end(&req);
1823 bdrv_padding_finalize(&pad);
1825 fail:
1826 bdrv_dec_in_flight(bs);
1828 return ret;
1831 static int coroutine_fn GRAPH_RDLOCK
1832 bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes,
1833 BdrvRequestFlags flags)
1835 BlockDriver *drv = bs->drv;
1836 QEMUIOVector qiov;
1837 void *buf = NULL;
1838 int ret = 0;
1839 bool need_flush = false;
1840 int head = 0;
1841 int tail = 0;
1843 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes,
1844 INT64_MAX);
1845 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1846 bs->bl.request_alignment);
1847 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1849 assert_bdrv_graph_readable();
1850 bdrv_check_request(offset, bytes, &error_abort);
1852 if (!drv) {
1853 return -ENOMEDIUM;
1856 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1857 return -ENOTSUP;
1860 /* By definition there is no user buffer so this flag doesn't make sense */
1861 if (flags & BDRV_REQ_REGISTERED_BUF) {
1862 return -EINVAL;
1865 /* Invalidate the cached block-status data range if this write overlaps */
1866 bdrv_bsc_invalidate_range(bs, offset, bytes);
1868 assert(alignment % bs->bl.request_alignment == 0);
1869 head = offset % alignment;
1870 tail = (offset + bytes) % alignment;
1871 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1872 assert(max_write_zeroes >= bs->bl.request_alignment);
1874 while (bytes > 0 && !ret) {
1875 int64_t num = bytes;
1877 /* Align request. Block drivers can expect the "bulk" of the request
1878 * to be aligned, and that unaligned requests do not cross cluster
1879 * boundaries.
1881 if (head) {
1882 /* Make a small request up to the first aligned sector. For
1883 * convenience, limit this request to max_transfer even if
1884 * we don't need to fall back to writes. */
1885 num = MIN(MIN(bytes, max_transfer), alignment - head);
1886 head = (head + num) % alignment;
1887 assert(num < max_write_zeroes);
1888 } else if (tail && num > alignment) {
1889 /* Shorten the request to the last aligned sector. */
1890 num -= tail;
1893 /* limit request size */
1894 if (num > max_write_zeroes) {
1895 num = max_write_zeroes;
1898 ret = -ENOTSUP;
1899 /* First try the efficient write zeroes operation */
1900 if (drv->bdrv_co_pwrite_zeroes) {
1901 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1902 flags & bs->supported_zero_flags);
1903 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1904 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1905 need_flush = true;
1907 } else {
1908 assert(!bs->supported_zero_flags);
1911 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1912 /* Fall back to bounce buffer if write zeroes is unsupported */
1913 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1915 if ((flags & BDRV_REQ_FUA) &&
1916 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1917 /* No need for bdrv_driver_pwrite() to do a fallback
1918 * flush on each chunk; use just one at the end */
1919 write_flags &= ~BDRV_REQ_FUA;
1920 need_flush = true;
1922 num = MIN(num, max_transfer);
1923 if (buf == NULL) {
1924 buf = qemu_try_blockalign0(bs, num);
1925 if (buf == NULL) {
1926 ret = -ENOMEM;
1927 goto fail;
1930 qemu_iovec_init_buf(&qiov, buf, num);
1932 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1934 /* Keep bounce buffer around if it is big enough for all
1935 * all future requests.
1937 if (num < max_transfer) {
1938 qemu_vfree(buf);
1939 buf = NULL;
1943 offset += num;
1944 bytes -= num;
1947 fail:
1948 if (ret == 0 && need_flush) {
1949 ret = bdrv_co_flush(bs);
1951 qemu_vfree(buf);
1952 return ret;
1955 static inline int coroutine_fn GRAPH_RDLOCK
1956 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes,
1957 BdrvTrackedRequest *req, int flags)
1959 BlockDriverState *bs = child->bs;
1961 bdrv_check_request(offset, bytes, &error_abort);
1963 if (bdrv_is_read_only(bs)) {
1964 return -EPERM;
1967 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1968 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1969 assert(!(flags & ~BDRV_REQ_MASK));
1970 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
1972 if (flags & BDRV_REQ_SERIALISING) {
1973 QEMU_LOCK_GUARD(&bs->reqs_lock);
1975 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
1977 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
1978 return -EBUSY;
1981 bdrv_wait_serialising_requests_locked(req);
1982 } else {
1983 bdrv_wait_serialising_requests(req);
1986 assert(req->overlap_offset <= offset);
1987 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1988 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE ||
1989 child->perm & BLK_PERM_RESIZE);
1991 switch (req->type) {
1992 case BDRV_TRACKED_WRITE:
1993 case BDRV_TRACKED_DISCARD:
1994 if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1995 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1996 } else {
1997 assert(child->perm & BLK_PERM_WRITE);
1999 bdrv_write_threshold_check_write(bs, offset, bytes);
2000 return 0;
2001 case BDRV_TRACKED_TRUNCATE:
2002 assert(child->perm & BLK_PERM_RESIZE);
2003 return 0;
2004 default:
2005 abort();
2009 static inline void coroutine_fn GRAPH_RDLOCK
2010 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes,
2011 BdrvTrackedRequest *req, int ret)
2013 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
2014 BlockDriverState *bs = child->bs;
2016 bdrv_check_request(offset, bytes, &error_abort);
2018 qatomic_inc(&bs->write_gen);
2021 * Discard cannot extend the image, but in error handling cases, such as
2022 * when reverting a qcow2 cluster allocation, the discarded range can pass
2023 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
2024 * here. Instead, just skip it, since semantically a discard request
2025 * beyond EOF cannot expand the image anyway.
2027 if (ret == 0 &&
2028 (req->type == BDRV_TRACKED_TRUNCATE ||
2029 end_sector > bs->total_sectors) &&
2030 req->type != BDRV_TRACKED_DISCARD) {
2031 bs->total_sectors = end_sector;
2032 bdrv_parent_cb_resize(bs);
2033 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
2035 if (req->bytes) {
2036 switch (req->type) {
2037 case BDRV_TRACKED_WRITE:
2038 stat64_max(&bs->wr_highest_offset, offset + bytes);
2039 /* fall through, to set dirty bits */
2040 case BDRV_TRACKED_DISCARD:
2041 bdrv_set_dirty(bs, offset, bytes);
2042 break;
2043 default:
2044 break;
2050 * Forwards an already correctly aligned write request to the BlockDriver,
2051 * after possibly fragmenting it.
2053 static int coroutine_fn GRAPH_RDLOCK
2054 bdrv_aligned_pwritev(BdrvChild *child, BdrvTrackedRequest *req,
2055 int64_t offset, int64_t bytes, int64_t align,
2056 QEMUIOVector *qiov, size_t qiov_offset,
2057 BdrvRequestFlags flags)
2059 BlockDriverState *bs = child->bs;
2060 BlockDriver *drv = bs->drv;
2061 int ret;
2063 int64_t bytes_remaining = bytes;
2064 int max_transfer;
2066 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
2068 if (!drv) {
2069 return -ENOMEDIUM;
2072 if (bdrv_has_readonly_bitmaps(bs)) {
2073 return -EPERM;
2076 assert(is_power_of_2(align));
2077 assert((offset & (align - 1)) == 0);
2078 assert((bytes & (align - 1)) == 0);
2079 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
2080 align);
2082 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
2084 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
2085 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
2086 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
2087 flags |= BDRV_REQ_ZERO_WRITE;
2088 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
2089 flags |= BDRV_REQ_MAY_UNMAP;
2092 /* Can't use optimization hint with bufferless zero write */
2093 flags &= ~BDRV_REQ_REGISTERED_BUF;
2096 if (ret < 0) {
2097 /* Do nothing, write notifier decided to fail this request */
2098 } else if (flags & BDRV_REQ_ZERO_WRITE) {
2099 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_ZERO);
2100 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
2101 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
2102 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
2103 qiov, qiov_offset);
2104 } else if (bytes <= max_transfer) {
2105 bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
2106 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
2107 } else {
2108 bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
2109 while (bytes_remaining) {
2110 int num = MIN(bytes_remaining, max_transfer);
2111 int local_flags = flags;
2113 assert(num);
2114 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
2115 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
2116 /* If FUA is going to be emulated by flush, we only
2117 * need to flush on the last iteration */
2118 local_flags &= ~BDRV_REQ_FUA;
2121 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
2122 num, qiov,
2123 qiov_offset + bytes - bytes_remaining,
2124 local_flags);
2125 if (ret < 0) {
2126 break;
2128 bytes_remaining -= num;
2131 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_DONE);
2133 if (ret >= 0) {
2134 ret = 0;
2136 bdrv_co_write_req_finish(child, offset, bytes, req, ret);
2138 return ret;
2141 static int coroutine_fn GRAPH_RDLOCK
2142 bdrv_co_do_zero_pwritev(BdrvChild *child, int64_t offset, int64_t bytes,
2143 BdrvRequestFlags flags, BdrvTrackedRequest *req)
2145 BlockDriverState *bs = child->bs;
2146 QEMUIOVector local_qiov;
2147 uint64_t align = bs->bl.request_alignment;
2148 int ret = 0;
2149 bool padding;
2150 BdrvRequestPadding pad;
2152 /* This flag doesn't make sense for padding or zero writes */
2153 flags &= ~BDRV_REQ_REGISTERED_BUF;
2155 padding = bdrv_init_padding(bs, offset, bytes, true, &pad);
2156 if (padding) {
2157 assert(!(flags & BDRV_REQ_NO_WAIT));
2158 bdrv_make_request_serialising(req, align);
2160 bdrv_padding_rmw_read(child, req, &pad, true);
2162 if (pad.head || pad.merge_reads) {
2163 int64_t aligned_offset = offset & ~(align - 1);
2164 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2166 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2167 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2168 align, &local_qiov, 0,
2169 flags & ~BDRV_REQ_ZERO_WRITE);
2170 if (ret < 0 || pad.merge_reads) {
2171 /* Error or all work is done */
2172 goto out;
2174 offset += write_bytes - pad.head;
2175 bytes -= write_bytes - pad.head;
2179 assert(!bytes || (offset & (align - 1)) == 0);
2180 if (bytes >= align) {
2181 /* Write the aligned part in the middle. */
2182 int64_t aligned_bytes = bytes & ~(align - 1);
2183 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2184 NULL, 0, flags);
2185 if (ret < 0) {
2186 goto out;
2188 bytes -= aligned_bytes;
2189 offset += aligned_bytes;
2192 assert(!bytes || (offset & (align - 1)) == 0);
2193 if (bytes) {
2194 assert(align == pad.tail + bytes);
2196 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2197 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2198 &local_qiov, 0,
2199 flags & ~BDRV_REQ_ZERO_WRITE);
2202 out:
2203 bdrv_padding_finalize(&pad);
2205 return ret;
2209 * Handle a write request in coroutine context
2211 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2212 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
2213 BdrvRequestFlags flags)
2215 IO_CODE();
2216 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2219 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2220 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset,
2221 BdrvRequestFlags flags)
2223 BlockDriverState *bs = child->bs;
2224 BdrvTrackedRequest req;
2225 uint64_t align = bs->bl.request_alignment;
2226 BdrvRequestPadding pad;
2227 int ret;
2228 bool padded = false;
2229 IO_CODE();
2231 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags);
2233 if (!bdrv_co_is_inserted(bs)) {
2234 return -ENOMEDIUM;
2237 if (flags & BDRV_REQ_ZERO_WRITE) {
2238 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
2239 } else {
2240 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
2242 if (ret < 0) {
2243 return ret;
2246 /* If the request is misaligned then we can't make it efficient */
2247 if ((flags & BDRV_REQ_NO_FALLBACK) &&
2248 !QEMU_IS_ALIGNED(offset | bytes, align))
2250 return -ENOTSUP;
2253 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2255 * Aligning zero request is nonsense. Even if driver has special meaning
2256 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2257 * it to driver due to request_alignment.
2259 * Still, no reason to return an error if someone do unaligned
2260 * zero-length write occasionally.
2262 return 0;
2265 if (!(flags & BDRV_REQ_ZERO_WRITE)) {
2267 * Pad request for following read-modify-write cycle.
2268 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do
2269 * alignment only if there is no ZERO flag.
2271 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, true,
2272 &pad, &padded, &flags);
2273 if (ret < 0) {
2274 return ret;
2278 bdrv_inc_in_flight(bs);
2279 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2281 if (flags & BDRV_REQ_ZERO_WRITE) {
2282 assert(!padded);
2283 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2284 goto out;
2287 if (padded) {
2289 * Request was unaligned to request_alignment and therefore
2290 * padded. We are going to do read-modify-write, and must
2291 * serialize the request to prevent interactions of the
2292 * widened region with other transactions.
2294 assert(!(flags & BDRV_REQ_NO_WAIT));
2295 bdrv_make_request_serialising(&req, align);
2296 bdrv_padding_rmw_read(child, &req, &pad, false);
2299 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2300 qiov, qiov_offset, flags);
2302 bdrv_padding_finalize(&pad);
2304 out:
2305 tracked_request_end(&req);
2306 bdrv_dec_in_flight(bs);
2308 return ret;
2311 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2312 int64_t bytes, BdrvRequestFlags flags)
2314 IO_CODE();
2315 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2316 assert_bdrv_graph_readable();
2318 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2319 flags &= ~BDRV_REQ_MAY_UNMAP;
2322 return bdrv_co_pwritev(child, offset, bytes, NULL,
2323 BDRV_REQ_ZERO_WRITE | flags);
2327 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2329 int bdrv_flush_all(void)
2331 BdrvNextIterator it;
2332 BlockDriverState *bs = NULL;
2333 int result = 0;
2335 GLOBAL_STATE_CODE();
2336 GRAPH_RDLOCK_GUARD_MAINLOOP();
2339 * bdrv queue is managed by record/replay,
2340 * creating new flush request for stopping
2341 * the VM may break the determinism
2343 if (replay_events_enabled()) {
2344 return result;
2347 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2348 int ret = bdrv_flush(bs);
2349 if (ret < 0 && !result) {
2350 result = ret;
2354 return result;
2358 * Returns the allocation status of the specified sectors.
2359 * Drivers not implementing the functionality are assumed to not support
2360 * backing files, hence all their sectors are reported as allocated.
2362 * If 'want_zero' is true, the caller is querying for mapping
2363 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2364 * _ZERO where possible; otherwise, the result favors larger 'pnum',
2365 * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2367 * If 'offset' is beyond the end of the disk image the return value is
2368 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2370 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
2371 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2372 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2374 * 'pnum' is set to the number of bytes (including and immediately
2375 * following the specified offset) that are easily known to be in the
2376 * same allocated/unallocated state. Note that a second call starting
2377 * at the original offset plus returned pnum may have the same status.
2378 * The returned value is non-zero on success except at end-of-file.
2380 * Returns negative errno on failure. Otherwise, if the
2381 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2382 * set to the host mapping and BDS corresponding to the guest offset.
2384 static int coroutine_fn GRAPH_RDLOCK
2385 bdrv_co_do_block_status(BlockDriverState *bs, bool want_zero,
2386 int64_t offset, int64_t bytes,
2387 int64_t *pnum, int64_t *map, BlockDriverState **file)
2389 int64_t total_size;
2390 int64_t n; /* bytes */
2391 int ret;
2392 int64_t local_map = 0;
2393 BlockDriverState *local_file = NULL;
2394 int64_t aligned_offset, aligned_bytes;
2395 uint32_t align;
2396 bool has_filtered_child;
2398 assert(pnum);
2399 assert_bdrv_graph_readable();
2400 *pnum = 0;
2401 total_size = bdrv_co_getlength(bs);
2402 if (total_size < 0) {
2403 ret = total_size;
2404 goto early_out;
2407 if (offset >= total_size) {
2408 ret = BDRV_BLOCK_EOF;
2409 goto early_out;
2411 if (!bytes) {
2412 ret = 0;
2413 goto early_out;
2416 n = total_size - offset;
2417 if (n < bytes) {
2418 bytes = n;
2421 /* Must be non-NULL or bdrv_co_getlength() would have failed */
2422 assert(bs->drv);
2423 has_filtered_child = bdrv_filter_child(bs);
2424 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2425 *pnum = bytes;
2426 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2427 if (offset + bytes == total_size) {
2428 ret |= BDRV_BLOCK_EOF;
2430 if (bs->drv->protocol_name) {
2431 ret |= BDRV_BLOCK_OFFSET_VALID;
2432 local_map = offset;
2433 local_file = bs;
2435 goto early_out;
2438 bdrv_inc_in_flight(bs);
2440 /* Round out to request_alignment boundaries */
2441 align = bs->bl.request_alignment;
2442 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2443 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2445 if (bs->drv->bdrv_co_block_status) {
2447 * Use the block-status cache only for protocol nodes: Format
2448 * drivers are generally quick to inquire the status, but protocol
2449 * drivers often need to get information from outside of qemu, so
2450 * we do not have control over the actual implementation. There
2451 * have been cases where inquiring the status took an unreasonably
2452 * long time, and we can do nothing in qemu to fix it.
2453 * This is especially problematic for images with large data areas,
2454 * because finding the few holes in them and giving them special
2455 * treatment does not gain much performance. Therefore, we try to
2456 * cache the last-identified data region.
2458 * Second, limiting ourselves to protocol nodes allows us to assume
2459 * the block status for data regions to be DATA | OFFSET_VALID, and
2460 * that the host offset is the same as the guest offset.
2462 * Note that it is possible that external writers zero parts of
2463 * the cached regions without the cache being invalidated, and so
2464 * we may report zeroes as data. This is not catastrophic,
2465 * however, because reporting zeroes as data is fine.
2467 if (QLIST_EMPTY(&bs->children) &&
2468 bdrv_bsc_is_data(bs, aligned_offset, pnum))
2470 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
2471 local_file = bs;
2472 local_map = aligned_offset;
2473 } else {
2474 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2475 aligned_bytes, pnum, &local_map,
2476 &local_file);
2479 * Note that checking QLIST_EMPTY(&bs->children) is also done when
2480 * the cache is queried above. Technically, we do not need to check
2481 * it here; the worst that can happen is that we fill the cache for
2482 * non-protocol nodes, and then it is never used. However, filling
2483 * the cache requires an RCU update, so double check here to avoid
2484 * such an update if possible.
2486 * Check want_zero, because we only want to update the cache when we
2487 * have accurate information about what is zero and what is data.
2489 if (want_zero &&
2490 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) &&
2491 QLIST_EMPTY(&bs->children))
2494 * When a protocol driver reports BLOCK_OFFSET_VALID, the
2495 * returned local_map value must be the same as the offset we
2496 * have passed (aligned_offset), and local_bs must be the node
2497 * itself.
2498 * Assert this, because we follow this rule when reading from
2499 * the cache (see the `local_file = bs` and
2500 * `local_map = aligned_offset` assignments above), and the
2501 * result the cache delivers must be the same as the driver
2502 * would deliver.
2504 assert(local_file == bs);
2505 assert(local_map == aligned_offset);
2506 bdrv_bsc_fill(bs, aligned_offset, *pnum);
2509 } else {
2510 /* Default code for filters */
2512 local_file = bdrv_filter_bs(bs);
2513 assert(local_file);
2515 *pnum = aligned_bytes;
2516 local_map = aligned_offset;
2517 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2519 if (ret < 0) {
2520 *pnum = 0;
2521 goto out;
2525 * The driver's result must be a non-zero multiple of request_alignment.
2526 * Clamp pnum and adjust map to original request.
2528 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2529 align > offset - aligned_offset);
2530 if (ret & BDRV_BLOCK_RECURSE) {
2531 assert(ret & BDRV_BLOCK_DATA);
2532 assert(ret & BDRV_BLOCK_OFFSET_VALID);
2533 assert(!(ret & BDRV_BLOCK_ZERO));
2536 *pnum -= offset - aligned_offset;
2537 if (*pnum > bytes) {
2538 *pnum = bytes;
2540 if (ret & BDRV_BLOCK_OFFSET_VALID) {
2541 local_map += offset - aligned_offset;
2544 if (ret & BDRV_BLOCK_RAW) {
2545 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2546 ret = bdrv_co_do_block_status(local_file, want_zero, local_map,
2547 *pnum, pnum, &local_map, &local_file);
2548 goto out;
2551 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2552 ret |= BDRV_BLOCK_ALLOCATED;
2553 } else if (bs->drv->supports_backing) {
2554 BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2556 if (!cow_bs) {
2557 ret |= BDRV_BLOCK_ZERO;
2558 } else if (want_zero) {
2559 int64_t size2 = bdrv_co_getlength(cow_bs);
2561 if (size2 >= 0 && offset >= size2) {
2562 ret |= BDRV_BLOCK_ZERO;
2567 if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2568 local_file && local_file != bs &&
2569 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2570 (ret & BDRV_BLOCK_OFFSET_VALID)) {
2571 int64_t file_pnum;
2572 int ret2;
2574 ret2 = bdrv_co_do_block_status(local_file, want_zero, local_map,
2575 *pnum, &file_pnum, NULL, NULL);
2576 if (ret2 >= 0) {
2577 /* Ignore errors. This is just providing extra information, it
2578 * is useful but not necessary.
2580 if (ret2 & BDRV_BLOCK_EOF &&
2581 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2583 * It is valid for the format block driver to read
2584 * beyond the end of the underlying file's current
2585 * size; such areas read as zero.
2587 ret |= BDRV_BLOCK_ZERO;
2588 } else {
2589 /* Limit request to the range reported by the protocol driver */
2590 *pnum = file_pnum;
2591 ret |= (ret2 & BDRV_BLOCK_ZERO);
2596 * Now that the recursive search was done, clear the flag. Otherwise,
2597 * with more complicated block graphs like snapshot-access ->
2598 * copy-before-write -> qcow2, where the return value will be propagated
2599 * further up to a parent bdrv_co_do_block_status() call, both the
2600 * BDRV_BLOCK_RECURSE and BDRV_BLOCK_ZERO flags would be set, which is
2601 * not allowed.
2603 ret &= ~BDRV_BLOCK_RECURSE;
2606 out:
2607 bdrv_dec_in_flight(bs);
2608 if (ret >= 0 && offset + *pnum == total_size) {
2609 ret |= BDRV_BLOCK_EOF;
2611 early_out:
2612 if (file) {
2613 *file = local_file;
2615 if (map) {
2616 *map = local_map;
2618 return ret;
2621 int coroutine_fn
2622 bdrv_co_common_block_status_above(BlockDriverState *bs,
2623 BlockDriverState *base,
2624 bool include_base,
2625 bool want_zero,
2626 int64_t offset,
2627 int64_t bytes,
2628 int64_t *pnum,
2629 int64_t *map,
2630 BlockDriverState **file,
2631 int *depth)
2633 int ret;
2634 BlockDriverState *p;
2635 int64_t eof = 0;
2636 int dummy;
2637 IO_CODE();
2639 assert(!include_base || base); /* Can't include NULL base */
2640 assert_bdrv_graph_readable();
2642 if (!depth) {
2643 depth = &dummy;
2645 *depth = 0;
2647 if (!include_base && bs == base) {
2648 *pnum = bytes;
2649 return 0;
2652 ret = bdrv_co_do_block_status(bs, want_zero, offset, bytes, pnum,
2653 map, file);
2654 ++*depth;
2655 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2656 return ret;
2659 if (ret & BDRV_BLOCK_EOF) {
2660 eof = offset + *pnum;
2663 assert(*pnum <= bytes);
2664 bytes = *pnum;
2666 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2667 p = bdrv_filter_or_cow_bs(p))
2669 ret = bdrv_co_do_block_status(p, want_zero, offset, bytes, pnum,
2670 map, file);
2671 ++*depth;
2672 if (ret < 0) {
2673 return ret;
2675 if (*pnum == 0) {
2677 * The top layer deferred to this layer, and because this layer is
2678 * short, any zeroes that we synthesize beyond EOF behave as if they
2679 * were allocated at this layer.
2681 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2682 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2683 * below.
2685 assert(ret & BDRV_BLOCK_EOF);
2686 *pnum = bytes;
2687 if (file) {
2688 *file = p;
2690 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2691 break;
2693 if (ret & BDRV_BLOCK_ALLOCATED) {
2695 * We've found the node and the status, we must break.
2697 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2698 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2699 * below.
2701 ret &= ~BDRV_BLOCK_EOF;
2702 break;
2705 if (p == base) {
2706 assert(include_base);
2707 break;
2711 * OK, [offset, offset + *pnum) region is unallocated on this layer,
2712 * let's continue the diving.
2714 assert(*pnum <= bytes);
2715 bytes = *pnum;
2718 if (offset + *pnum == eof) {
2719 ret |= BDRV_BLOCK_EOF;
2722 return ret;
2725 int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2726 BlockDriverState *base,
2727 int64_t offset, int64_t bytes,
2728 int64_t *pnum, int64_t *map,
2729 BlockDriverState **file)
2731 IO_CODE();
2732 return bdrv_co_common_block_status_above(bs, base, false, true, offset,
2733 bytes, pnum, map, file, NULL);
2736 int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, int64_t offset,
2737 int64_t bytes, int64_t *pnum,
2738 int64_t *map, BlockDriverState **file)
2740 IO_CODE();
2741 return bdrv_co_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2742 offset, bytes, pnum, map, file);
2746 * Check @bs (and its backing chain) to see if the range defined
2747 * by @offset and @bytes is known to read as zeroes.
2748 * Return 1 if that is the case, 0 otherwise and -errno on error.
2749 * This test is meant to be fast rather than accurate so returning 0
2750 * does not guarantee non-zero data.
2752 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2753 int64_t bytes)
2755 int ret;
2756 int64_t pnum = bytes;
2757 IO_CODE();
2759 if (!bytes) {
2760 return 1;
2763 ret = bdrv_co_common_block_status_above(bs, NULL, false, false, offset,
2764 bytes, &pnum, NULL, NULL, NULL);
2766 if (ret < 0) {
2767 return ret;
2770 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2773 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t offset,
2774 int64_t bytes, int64_t *pnum)
2776 int ret;
2777 int64_t dummy;
2778 IO_CODE();
2780 ret = bdrv_co_common_block_status_above(bs, bs, true, false, offset,
2781 bytes, pnum ? pnum : &dummy, NULL,
2782 NULL, NULL);
2783 if (ret < 0) {
2784 return ret;
2786 return !!(ret & BDRV_BLOCK_ALLOCATED);
2790 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2792 * Return a positive depth if (a prefix of) the given range is allocated
2793 * in any image between BASE and TOP (BASE is only included if include_base
2794 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth.
2795 * BASE can be NULL to check if the given offset is allocated in any
2796 * image of the chain. Return 0 otherwise, or negative errno on
2797 * failure.
2799 * 'pnum' is set to the number of bytes (including and immediately
2800 * following the specified offset) that are known to be in the same
2801 * allocated/unallocated state. Note that a subsequent call starting
2802 * at 'offset + *pnum' may return the same allocation status (in other
2803 * words, the result is not necessarily the maximum possible range);
2804 * but 'pnum' will only be 0 when end of file is reached.
2806 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *bs,
2807 BlockDriverState *base,
2808 bool include_base, int64_t offset,
2809 int64_t bytes, int64_t *pnum)
2811 int depth;
2812 int ret;
2813 IO_CODE();
2815 ret = bdrv_co_common_block_status_above(bs, base, include_base, false,
2816 offset, bytes, pnum, NULL, NULL,
2817 &depth);
2818 if (ret < 0) {
2819 return ret;
2822 if (ret & BDRV_BLOCK_ALLOCATED) {
2823 return depth;
2825 return 0;
2828 int coroutine_fn
2829 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2831 BlockDriver *drv = bs->drv;
2832 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2833 int ret;
2834 IO_CODE();
2835 assert_bdrv_graph_readable();
2837 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2838 if (ret < 0) {
2839 return ret;
2842 if (!drv) {
2843 return -ENOMEDIUM;
2846 bdrv_inc_in_flight(bs);
2848 if (drv->bdrv_co_load_vmstate) {
2849 ret = drv->bdrv_co_load_vmstate(bs, qiov, pos);
2850 } else if (child_bs) {
2851 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2852 } else {
2853 ret = -ENOTSUP;
2856 bdrv_dec_in_flight(bs);
2858 return ret;
2861 int coroutine_fn
2862 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2864 BlockDriver *drv = bs->drv;
2865 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2866 int ret;
2867 IO_CODE();
2868 assert_bdrv_graph_readable();
2870 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2871 if (ret < 0) {
2872 return ret;
2875 if (!drv) {
2876 return -ENOMEDIUM;
2879 bdrv_inc_in_flight(bs);
2881 if (drv->bdrv_co_save_vmstate) {
2882 ret = drv->bdrv_co_save_vmstate(bs, qiov, pos);
2883 } else if (child_bs) {
2884 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2885 } else {
2886 ret = -ENOTSUP;
2889 bdrv_dec_in_flight(bs);
2891 return ret;
2894 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2895 int64_t pos, int size)
2897 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2898 int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2899 IO_CODE();
2901 return ret < 0 ? ret : size;
2904 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2905 int64_t pos, int size)
2907 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2908 int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2909 IO_CODE();
2911 return ret < 0 ? ret : size;
2914 /**************************************************************/
2915 /* async I/Os */
2918 * Synchronously cancels an acb. Must be called with the BQL held and the acb
2919 * must be processed with the BQL held too (IOThreads are not allowed).
2921 * Use bdrv_aio_cancel_async() instead when possible.
2923 void bdrv_aio_cancel(BlockAIOCB *acb)
2925 GLOBAL_STATE_CODE();
2926 qemu_aio_ref(acb);
2927 bdrv_aio_cancel_async(acb);
2928 AIO_WAIT_WHILE_UNLOCKED(NULL, acb->refcnt > 1);
2929 qemu_aio_unref(acb);
2932 /* Async version of aio cancel. The caller is not blocked if the acb implements
2933 * cancel_async, otherwise we do nothing and let the request normally complete.
2934 * In either case the completion callback must be called. */
2935 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2937 IO_CODE();
2938 if (acb->aiocb_info->cancel_async) {
2939 acb->aiocb_info->cancel_async(acb);
2943 /**************************************************************/
2944 /* Coroutine block device emulation */
2946 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2948 BdrvChild *primary_child = bdrv_primary_child(bs);
2949 BdrvChild *child;
2950 int current_gen;
2951 int ret = 0;
2952 IO_CODE();
2954 assert_bdrv_graph_readable();
2955 bdrv_inc_in_flight(bs);
2957 if (!bdrv_co_is_inserted(bs) || bdrv_is_read_only(bs) ||
2958 bdrv_is_sg(bs)) {
2959 goto early_exit;
2962 qemu_mutex_lock(&bs->reqs_lock);
2963 current_gen = qatomic_read(&bs->write_gen);
2965 /* Wait until any previous flushes are completed */
2966 while (bs->active_flush_req) {
2967 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2970 /* Flushes reach this point in nondecreasing current_gen order. */
2971 bs->active_flush_req = true;
2972 qemu_mutex_unlock(&bs->reqs_lock);
2974 /* Write back all layers by calling one driver function */
2975 if (bs->drv->bdrv_co_flush) {
2976 ret = bs->drv->bdrv_co_flush(bs);
2977 goto out;
2980 /* Write back cached data to the OS even with cache=unsafe */
2981 BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
2982 if (bs->drv->bdrv_co_flush_to_os) {
2983 ret = bs->drv->bdrv_co_flush_to_os(bs);
2984 if (ret < 0) {
2985 goto out;
2989 /* But don't actually force it to the disk with cache=unsafe */
2990 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2991 goto flush_children;
2994 /* Check if we really need to flush anything */
2995 if (bs->flushed_gen == current_gen) {
2996 goto flush_children;
2999 BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
3000 if (!bs->drv) {
3001 /* bs->drv->bdrv_co_flush() might have ejected the BDS
3002 * (even in case of apparent success) */
3003 ret = -ENOMEDIUM;
3004 goto out;
3006 if (bs->drv->bdrv_co_flush_to_disk) {
3007 ret = bs->drv->bdrv_co_flush_to_disk(bs);
3008 } else if (bs->drv->bdrv_aio_flush) {
3009 BlockAIOCB *acb;
3010 CoroutineIOCompletion co = {
3011 .coroutine = qemu_coroutine_self(),
3014 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
3015 if (acb == NULL) {
3016 ret = -EIO;
3017 } else {
3018 qemu_coroutine_yield();
3019 ret = co.ret;
3021 } else {
3023 * Some block drivers always operate in either writethrough or unsafe
3024 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
3025 * know how the server works (because the behaviour is hardcoded or
3026 * depends on server-side configuration), so we can't ensure that
3027 * everything is safe on disk. Returning an error doesn't work because
3028 * that would break guests even if the server operates in writethrough
3029 * mode.
3031 * Let's hope the user knows what he's doing.
3033 ret = 0;
3036 if (ret < 0) {
3037 goto out;
3040 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
3041 * in the case of cache=unsafe, so there are no useless flushes.
3043 flush_children:
3044 ret = 0;
3045 QLIST_FOREACH(child, &bs->children, next) {
3046 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
3047 int this_child_ret = bdrv_co_flush(child->bs);
3048 if (!ret) {
3049 ret = this_child_ret;
3054 out:
3055 /* Notify any pending flushes that we have completed */
3056 if (ret == 0) {
3057 bs->flushed_gen = current_gen;
3060 qemu_mutex_lock(&bs->reqs_lock);
3061 bs->active_flush_req = false;
3062 /* Return value is ignored - it's ok if wait queue is empty */
3063 qemu_co_queue_next(&bs->flush_queue);
3064 qemu_mutex_unlock(&bs->reqs_lock);
3066 early_exit:
3067 bdrv_dec_in_flight(bs);
3068 return ret;
3071 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
3072 int64_t bytes)
3074 BdrvTrackedRequest req;
3075 int ret;
3076 int64_t max_pdiscard;
3077 int head, tail, align;
3078 BlockDriverState *bs = child->bs;
3079 IO_CODE();
3080 assert_bdrv_graph_readable();
3082 if (!bs || !bs->drv || !bdrv_co_is_inserted(bs)) {
3083 return -ENOMEDIUM;
3086 if (bdrv_has_readonly_bitmaps(bs)) {
3087 return -EPERM;
3090 ret = bdrv_check_request(offset, bytes, NULL);
3091 if (ret < 0) {
3092 return ret;
3095 /* Do nothing if disabled. */
3096 if (!(bs->open_flags & BDRV_O_UNMAP)) {
3097 return 0;
3100 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
3101 return 0;
3104 /* Invalidate the cached block-status data range if this discard overlaps */
3105 bdrv_bsc_invalidate_range(bs, offset, bytes);
3107 /* Discard is advisory, but some devices track and coalesce
3108 * unaligned requests, so we must pass everything down rather than
3109 * round here. Still, most devices will just silently ignore
3110 * unaligned requests (by returning -ENOTSUP), so we must fragment
3111 * the request accordingly. */
3112 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
3113 assert(align % bs->bl.request_alignment == 0);
3114 head = offset % align;
3115 tail = (offset + bytes) % align;
3117 bdrv_inc_in_flight(bs);
3118 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
3120 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
3121 if (ret < 0) {
3122 goto out;
3125 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX),
3126 align);
3127 assert(max_pdiscard >= bs->bl.request_alignment);
3129 while (bytes > 0) {
3130 int64_t num = bytes;
3132 if (head) {
3133 /* Make small requests to get to alignment boundaries. */
3134 num = MIN(bytes, align - head);
3135 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
3136 num %= bs->bl.request_alignment;
3138 head = (head + num) % align;
3139 assert(num < max_pdiscard);
3140 } else if (tail) {
3141 if (num > align) {
3142 /* Shorten the request to the last aligned cluster. */
3143 num -= tail;
3144 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
3145 tail > bs->bl.request_alignment) {
3146 tail %= bs->bl.request_alignment;
3147 num -= tail;
3150 /* limit request size */
3151 if (num > max_pdiscard) {
3152 num = max_pdiscard;
3155 if (!bs->drv) {
3156 ret = -ENOMEDIUM;
3157 goto out;
3159 if (bs->drv->bdrv_co_pdiscard) {
3160 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
3161 } else {
3162 BlockAIOCB *acb;
3163 CoroutineIOCompletion co = {
3164 .coroutine = qemu_coroutine_self(),
3167 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
3168 bdrv_co_io_em_complete, &co);
3169 if (acb == NULL) {
3170 ret = -EIO;
3171 goto out;
3172 } else {
3173 qemu_coroutine_yield();
3174 ret = co.ret;
3177 if (ret && ret != -ENOTSUP) {
3178 goto out;
3181 offset += num;
3182 bytes -= num;
3184 ret = 0;
3185 out:
3186 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3187 tracked_request_end(&req);
3188 bdrv_dec_in_flight(bs);
3189 return ret;
3192 int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3194 BlockDriver *drv = bs->drv;
3195 CoroutineIOCompletion co = {
3196 .coroutine = qemu_coroutine_self(),
3198 BlockAIOCB *acb;
3199 IO_CODE();
3200 assert_bdrv_graph_readable();
3202 bdrv_inc_in_flight(bs);
3203 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3204 co.ret = -ENOTSUP;
3205 goto out;
3208 if (drv->bdrv_co_ioctl) {
3209 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3210 } else {
3211 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3212 if (!acb) {
3213 co.ret = -ENOTSUP;
3214 goto out;
3216 qemu_coroutine_yield();
3218 out:
3219 bdrv_dec_in_flight(bs);
3220 return co.ret;
3223 int coroutine_fn bdrv_co_zone_report(BlockDriverState *bs, int64_t offset,
3224 unsigned int *nr_zones,
3225 BlockZoneDescriptor *zones)
3227 BlockDriver *drv = bs->drv;
3228 CoroutineIOCompletion co = {
3229 .coroutine = qemu_coroutine_self(),
3231 IO_CODE();
3233 bdrv_inc_in_flight(bs);
3234 if (!drv || !drv->bdrv_co_zone_report || bs->bl.zoned == BLK_Z_NONE) {
3235 co.ret = -ENOTSUP;
3236 goto out;
3238 co.ret = drv->bdrv_co_zone_report(bs, offset, nr_zones, zones);
3239 out:
3240 bdrv_dec_in_flight(bs);
3241 return co.ret;
3244 int coroutine_fn bdrv_co_zone_mgmt(BlockDriverState *bs, BlockZoneOp op,
3245 int64_t offset, int64_t len)
3247 BlockDriver *drv = bs->drv;
3248 CoroutineIOCompletion co = {
3249 .coroutine = qemu_coroutine_self(),
3251 IO_CODE();
3253 bdrv_inc_in_flight(bs);
3254 if (!drv || !drv->bdrv_co_zone_mgmt || bs->bl.zoned == BLK_Z_NONE) {
3255 co.ret = -ENOTSUP;
3256 goto out;
3258 co.ret = drv->bdrv_co_zone_mgmt(bs, op, offset, len);
3259 out:
3260 bdrv_dec_in_flight(bs);
3261 return co.ret;
3264 int coroutine_fn bdrv_co_zone_append(BlockDriverState *bs, int64_t *offset,
3265 QEMUIOVector *qiov,
3266 BdrvRequestFlags flags)
3268 int ret;
3269 BlockDriver *drv = bs->drv;
3270 CoroutineIOCompletion co = {
3271 .coroutine = qemu_coroutine_self(),
3273 IO_CODE();
3275 ret = bdrv_check_qiov_request(*offset, qiov->size, qiov, 0, NULL);
3276 if (ret < 0) {
3277 return ret;
3280 bdrv_inc_in_flight(bs);
3281 if (!drv || !drv->bdrv_co_zone_append || bs->bl.zoned == BLK_Z_NONE) {
3282 co.ret = -ENOTSUP;
3283 goto out;
3285 co.ret = drv->bdrv_co_zone_append(bs, offset, qiov, flags);
3286 out:
3287 bdrv_dec_in_flight(bs);
3288 return co.ret;
3291 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3293 IO_CODE();
3294 return qemu_memalign(bdrv_opt_mem_align(bs), size);
3297 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3299 IO_CODE();
3300 return memset(qemu_blockalign(bs, size), 0, size);
3303 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3305 size_t align = bdrv_opt_mem_align(bs);
3306 IO_CODE();
3308 /* Ensure that NULL is never returned on success */
3309 assert(align > 0);
3310 if (size == 0) {
3311 size = align;
3314 return qemu_try_memalign(align, size);
3317 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3319 void *mem = qemu_try_blockalign(bs, size);
3320 IO_CODE();
3322 if (mem) {
3323 memset(mem, 0, size);
3326 return mem;
3329 /* Helper that undoes bdrv_register_buf() when it fails partway through */
3330 static void GRAPH_RDLOCK
3331 bdrv_register_buf_rollback(BlockDriverState *bs, void *host, size_t size,
3332 BdrvChild *final_child)
3334 BdrvChild *child;
3336 GLOBAL_STATE_CODE();
3337 assert_bdrv_graph_readable();
3339 QLIST_FOREACH(child, &bs->children, next) {
3340 if (child == final_child) {
3341 break;
3344 bdrv_unregister_buf(child->bs, host, size);
3347 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3348 bs->drv->bdrv_unregister_buf(bs, host, size);
3352 bool bdrv_register_buf(BlockDriverState *bs, void *host, size_t size,
3353 Error **errp)
3355 BdrvChild *child;
3357 GLOBAL_STATE_CODE();
3358 GRAPH_RDLOCK_GUARD_MAINLOOP();
3360 if (bs->drv && bs->drv->bdrv_register_buf) {
3361 if (!bs->drv->bdrv_register_buf(bs, host, size, errp)) {
3362 return false;
3365 QLIST_FOREACH(child, &bs->children, next) {
3366 if (!bdrv_register_buf(child->bs, host, size, errp)) {
3367 bdrv_register_buf_rollback(bs, host, size, child);
3368 return false;
3371 return true;
3374 void bdrv_unregister_buf(BlockDriverState *bs, void *host, size_t size)
3376 BdrvChild *child;
3378 GLOBAL_STATE_CODE();
3379 GRAPH_RDLOCK_GUARD_MAINLOOP();
3381 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3382 bs->drv->bdrv_unregister_buf(bs, host, size);
3384 QLIST_FOREACH(child, &bs->children, next) {
3385 bdrv_unregister_buf(child->bs, host, size);
3389 static int coroutine_fn GRAPH_RDLOCK bdrv_co_copy_range_internal(
3390 BdrvChild *src, int64_t src_offset, BdrvChild *dst,
3391 int64_t dst_offset, int64_t bytes,
3392 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3393 bool recurse_src)
3395 BdrvTrackedRequest req;
3396 int ret;
3397 assert_bdrv_graph_readable();
3399 /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3400 assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3401 assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3402 assert(!(read_flags & BDRV_REQ_NO_WAIT));
3403 assert(!(write_flags & BDRV_REQ_NO_WAIT));
3405 if (!dst || !dst->bs || !bdrv_co_is_inserted(dst->bs)) {
3406 return -ENOMEDIUM;
3408 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0);
3409 if (ret) {
3410 return ret;
3412 if (write_flags & BDRV_REQ_ZERO_WRITE) {
3413 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3416 if (!src || !src->bs || !bdrv_co_is_inserted(src->bs)) {
3417 return -ENOMEDIUM;
3419 ret = bdrv_check_request32(src_offset, bytes, NULL, 0);
3420 if (ret) {
3421 return ret;
3424 if (!src->bs->drv->bdrv_co_copy_range_from
3425 || !dst->bs->drv->bdrv_co_copy_range_to
3426 || src->bs->encrypted || dst->bs->encrypted) {
3427 return -ENOTSUP;
3430 if (recurse_src) {
3431 bdrv_inc_in_flight(src->bs);
3432 tracked_request_begin(&req, src->bs, src_offset, bytes,
3433 BDRV_TRACKED_READ);
3435 /* BDRV_REQ_SERIALISING is only for write operation */
3436 assert(!(read_flags & BDRV_REQ_SERIALISING));
3437 bdrv_wait_serialising_requests(&req);
3439 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3440 src, src_offset,
3441 dst, dst_offset,
3442 bytes,
3443 read_flags, write_flags);
3445 tracked_request_end(&req);
3446 bdrv_dec_in_flight(src->bs);
3447 } else {
3448 bdrv_inc_in_flight(dst->bs);
3449 tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3450 BDRV_TRACKED_WRITE);
3451 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3452 write_flags);
3453 if (!ret) {
3454 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3455 src, src_offset,
3456 dst, dst_offset,
3457 bytes,
3458 read_flags, write_flags);
3460 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3461 tracked_request_end(&req);
3462 bdrv_dec_in_flight(dst->bs);
3465 return ret;
3468 /* Copy range from @src to @dst.
3470 * See the comment of bdrv_co_copy_range for the parameter and return value
3471 * semantics. */
3472 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset,
3473 BdrvChild *dst, int64_t dst_offset,
3474 int64_t bytes,
3475 BdrvRequestFlags read_flags,
3476 BdrvRequestFlags write_flags)
3478 IO_CODE();
3479 assert_bdrv_graph_readable();
3480 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3481 read_flags, write_flags);
3482 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3483 bytes, read_flags, write_flags, true);
3486 /* Copy range from @src to @dst.
3488 * See the comment of bdrv_co_copy_range for the parameter and return value
3489 * semantics. */
3490 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset,
3491 BdrvChild *dst, int64_t dst_offset,
3492 int64_t bytes,
3493 BdrvRequestFlags read_flags,
3494 BdrvRequestFlags write_flags)
3496 IO_CODE();
3497 assert_bdrv_graph_readable();
3498 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3499 read_flags, write_flags);
3500 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3501 bytes, read_flags, write_flags, false);
3504 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
3505 BdrvChild *dst, int64_t dst_offset,
3506 int64_t bytes, BdrvRequestFlags read_flags,
3507 BdrvRequestFlags write_flags)
3509 IO_CODE();
3510 assert_bdrv_graph_readable();
3512 return bdrv_co_copy_range_from(src, src_offset,
3513 dst, dst_offset,
3514 bytes, read_flags, write_flags);
3517 static void coroutine_fn GRAPH_RDLOCK
3518 bdrv_parent_cb_resize(BlockDriverState *bs)
3520 BdrvChild *c;
3522 assert_bdrv_graph_readable();
3524 QLIST_FOREACH(c, &bs->parents, next_parent) {
3525 if (c->klass->resize) {
3526 c->klass->resize(c);
3532 * Truncate file to 'offset' bytes (needed only for file protocols)
3534 * If 'exact' is true, the file must be resized to exactly the given
3535 * 'offset'. Otherwise, it is sufficient for the node to be at least
3536 * 'offset' bytes in length.
3538 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3539 PreallocMode prealloc, BdrvRequestFlags flags,
3540 Error **errp)
3542 BlockDriverState *bs = child->bs;
3543 BdrvChild *filtered, *backing;
3544 BlockDriver *drv = bs->drv;
3545 BdrvTrackedRequest req;
3546 int64_t old_size, new_bytes;
3547 int ret;
3548 IO_CODE();
3549 assert_bdrv_graph_readable();
3551 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3552 if (!drv) {
3553 error_setg(errp, "No medium inserted");
3554 return -ENOMEDIUM;
3556 if (offset < 0) {
3557 error_setg(errp, "Image size cannot be negative");
3558 return -EINVAL;
3561 ret = bdrv_check_request(offset, 0, errp);
3562 if (ret < 0) {
3563 return ret;
3566 old_size = bdrv_co_getlength(bs);
3567 if (old_size < 0) {
3568 error_setg_errno(errp, -old_size, "Failed to get old image size");
3569 return old_size;
3572 if (bdrv_is_read_only(bs)) {
3573 error_setg(errp, "Image is read-only");
3574 return -EACCES;
3577 if (offset > old_size) {
3578 new_bytes = offset - old_size;
3579 } else {
3580 new_bytes = 0;
3583 bdrv_inc_in_flight(bs);
3584 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3585 BDRV_TRACKED_TRUNCATE);
3587 /* If we are growing the image and potentially using preallocation for the
3588 * new area, we need to make sure that no write requests are made to it
3589 * concurrently or they might be overwritten by preallocation. */
3590 if (new_bytes) {
3591 bdrv_make_request_serialising(&req, 1);
3593 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3595 if (ret < 0) {
3596 error_setg_errno(errp, -ret,
3597 "Failed to prepare request for truncation");
3598 goto out;
3601 filtered = bdrv_filter_child(bs);
3602 backing = bdrv_cow_child(bs);
3605 * If the image has a backing file that is large enough that it would
3606 * provide data for the new area, we cannot leave it unallocated because
3607 * then the backing file content would become visible. Instead, zero-fill
3608 * the new area.
3610 * Note that if the image has a backing file, but was opened without the
3611 * backing file, taking care of keeping things consistent with that backing
3612 * file is the user's responsibility.
3614 if (new_bytes && backing) {
3615 int64_t backing_len;
3617 backing_len = bdrv_co_getlength(backing->bs);
3618 if (backing_len < 0) {
3619 ret = backing_len;
3620 error_setg_errno(errp, -ret, "Could not get backing file size");
3621 goto out;
3624 if (backing_len > old_size) {
3625 flags |= BDRV_REQ_ZERO_WRITE;
3629 if (drv->bdrv_co_truncate) {
3630 if (flags & ~bs->supported_truncate_flags) {
3631 error_setg(errp, "Block driver does not support requested flags");
3632 ret = -ENOTSUP;
3633 goto out;
3635 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3636 } else if (filtered) {
3637 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3638 } else {
3639 error_setg(errp, "Image format driver does not support resize");
3640 ret = -ENOTSUP;
3641 goto out;
3643 if (ret < 0) {
3644 goto out;
3647 ret = bdrv_co_refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3648 if (ret < 0) {
3649 error_setg_errno(errp, -ret, "Could not refresh total sector count");
3650 } else {
3651 offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3654 * It's possible that truncation succeeded but bdrv_refresh_total_sectors
3655 * failed, but the latter doesn't affect how we should finish the request.
3656 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled.
3658 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3660 out:
3661 tracked_request_end(&req);
3662 bdrv_dec_in_flight(bs);
3664 return ret;
3667 void bdrv_cancel_in_flight(BlockDriverState *bs)
3669 GLOBAL_STATE_CODE();
3670 GRAPH_RDLOCK_GUARD_MAINLOOP();
3672 if (!bs || !bs->drv) {
3673 return;
3676 if (bs->drv->bdrv_cancel_in_flight) {
3677 bs->drv->bdrv_cancel_in_flight(bs);
3681 int coroutine_fn
3682 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes,
3683 QEMUIOVector *qiov, size_t qiov_offset)
3685 BlockDriverState *bs = child->bs;
3686 BlockDriver *drv = bs->drv;
3687 int ret;
3688 IO_CODE();
3689 assert_bdrv_graph_readable();
3691 if (!drv) {
3692 return -ENOMEDIUM;
3695 if (!drv->bdrv_co_preadv_snapshot) {
3696 return -ENOTSUP;
3699 bdrv_inc_in_flight(bs);
3700 ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset);
3701 bdrv_dec_in_flight(bs);
3703 return ret;
3706 int coroutine_fn
3707 bdrv_co_snapshot_block_status(BlockDriverState *bs,
3708 bool want_zero, int64_t offset, int64_t bytes,
3709 int64_t *pnum, int64_t *map,
3710 BlockDriverState **file)
3712 BlockDriver *drv = bs->drv;
3713 int ret;
3714 IO_CODE();
3715 assert_bdrv_graph_readable();
3717 if (!drv) {
3718 return -ENOMEDIUM;
3721 if (!drv->bdrv_co_snapshot_block_status) {
3722 return -ENOTSUP;
3725 bdrv_inc_in_flight(bs);
3726 ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes,
3727 pnum, map, file);
3728 bdrv_dec_in_flight(bs);
3730 return ret;
3733 int coroutine_fn
3734 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes)
3736 BlockDriver *drv = bs->drv;
3737 int ret;
3738 IO_CODE();
3739 assert_bdrv_graph_readable();
3741 if (!drv) {
3742 return -ENOMEDIUM;
3745 if (!drv->bdrv_co_pdiscard_snapshot) {
3746 return -ENOTSUP;
3749 bdrv_inc_in_flight(bs);
3750 ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes);
3751 bdrv_dec_in_flight(bs);
3753 return ret;