hw/ide: drop iov field from IDEBufferedRequest
[qemu/armbru.git] / block / qed.c
blobc5e6d6ad41599f74539d6e5d60804acfdf763847
1 /*
2 * QEMU Enhanced Disk Format
4 * Copyright IBM, Corp. 2010
6 * Authors:
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "block/qdict.h"
17 #include "qapi/error.h"
18 #include "qemu/timer.h"
19 #include "qemu/bswap.h"
20 #include "qemu/option.h"
21 #include "trace.h"
22 #include "qed.h"
23 #include "sysemu/block-backend.h"
24 #include "qapi/qmp/qdict.h"
25 #include "qapi/qobject-input-visitor.h"
26 #include "qapi/qapi-visit-block-core.h"
28 static QemuOptsList qed_create_opts;
30 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
31 const char *filename)
33 const QEDHeader *header = (const QEDHeader *)buf;
35 if (buf_size < sizeof(*header)) {
36 return 0;
38 if (le32_to_cpu(header->magic) != QED_MAGIC) {
39 return 0;
41 return 100;
44 /**
45 * Check whether an image format is raw
47 * @fmt: Backing file format, may be NULL
49 static bool qed_fmt_is_raw(const char *fmt)
51 return fmt && strcmp(fmt, "raw") == 0;
54 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
56 cpu->magic = le32_to_cpu(le->magic);
57 cpu->cluster_size = le32_to_cpu(le->cluster_size);
58 cpu->table_size = le32_to_cpu(le->table_size);
59 cpu->header_size = le32_to_cpu(le->header_size);
60 cpu->features = le64_to_cpu(le->features);
61 cpu->compat_features = le64_to_cpu(le->compat_features);
62 cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
63 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
64 cpu->image_size = le64_to_cpu(le->image_size);
65 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
66 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
69 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
71 le->magic = cpu_to_le32(cpu->magic);
72 le->cluster_size = cpu_to_le32(cpu->cluster_size);
73 le->table_size = cpu_to_le32(cpu->table_size);
74 le->header_size = cpu_to_le32(cpu->header_size);
75 le->features = cpu_to_le64(cpu->features);
76 le->compat_features = cpu_to_le64(cpu->compat_features);
77 le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
78 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
79 le->image_size = cpu_to_le64(cpu->image_size);
80 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
81 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
84 int qed_write_header_sync(BDRVQEDState *s)
86 QEDHeader le;
87 int ret;
89 qed_header_cpu_to_le(&s->header, &le);
90 ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
91 if (ret != sizeof(le)) {
92 return ret;
94 return 0;
97 /**
98 * Update header in-place (does not rewrite backing filename or other strings)
100 * This function only updates known header fields in-place and does not affect
101 * extra data after the QED header.
103 * No new allocating reqs can start while this function runs.
105 static int coroutine_fn qed_write_header(BDRVQEDState *s)
107 /* We must write full sectors for O_DIRECT but cannot necessarily generate
108 * the data following the header if an unrecognized compat feature is
109 * active. Therefore, first read the sectors containing the header, update
110 * them, and write back.
113 int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
114 size_t len = nsectors * BDRV_SECTOR_SIZE;
115 uint8_t *buf;
116 QEMUIOVector qiov;
117 int ret;
119 assert(s->allocating_acb || s->allocating_write_reqs_plugged);
121 buf = qemu_blockalign(s->bs, len);
122 qemu_iovec_init_buf(&qiov, buf, len);
124 ret = bdrv_co_preadv(s->bs->file, 0, qiov.size, &qiov, 0);
125 if (ret < 0) {
126 goto out;
129 /* Update header */
130 qed_header_cpu_to_le(&s->header, (QEDHeader *) buf);
132 ret = bdrv_co_pwritev(s->bs->file, 0, qiov.size, &qiov, 0);
133 if (ret < 0) {
134 goto out;
137 ret = 0;
138 out:
139 qemu_vfree(buf);
140 return ret;
143 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
145 uint64_t table_entries;
146 uint64_t l2_size;
148 table_entries = (table_size * cluster_size) / sizeof(uint64_t);
149 l2_size = table_entries * cluster_size;
151 return l2_size * table_entries;
154 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
156 if (cluster_size < QED_MIN_CLUSTER_SIZE ||
157 cluster_size > QED_MAX_CLUSTER_SIZE) {
158 return false;
160 if (cluster_size & (cluster_size - 1)) {
161 return false; /* not power of 2 */
163 return true;
166 static bool qed_is_table_size_valid(uint32_t table_size)
168 if (table_size < QED_MIN_TABLE_SIZE ||
169 table_size > QED_MAX_TABLE_SIZE) {
170 return false;
172 if (table_size & (table_size - 1)) {
173 return false; /* not power of 2 */
175 return true;
178 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
179 uint32_t table_size)
181 if (image_size % BDRV_SECTOR_SIZE != 0) {
182 return false; /* not multiple of sector size */
184 if (image_size > qed_max_image_size(cluster_size, table_size)) {
185 return false; /* image is too large */
187 return true;
191 * Read a string of known length from the image file
193 * @file: Image file
194 * @offset: File offset to start of string, in bytes
195 * @n: String length in bytes
196 * @buf: Destination buffer
197 * @buflen: Destination buffer length in bytes
198 * @ret: 0 on success, -errno on failure
200 * The string is NUL-terminated.
202 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n,
203 char *buf, size_t buflen)
205 int ret;
206 if (n >= buflen) {
207 return -EINVAL;
209 ret = bdrv_pread(file, offset, buf, n);
210 if (ret < 0) {
211 return ret;
213 buf[n] = '\0';
214 return 0;
218 * Allocate new clusters
220 * @s: QED state
221 * @n: Number of contiguous clusters to allocate
222 * @ret: Offset of first allocated cluster
224 * This function only produces the offset where the new clusters should be
225 * written. It updates BDRVQEDState but does not make any changes to the image
226 * file.
228 * Called with table_lock held.
230 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
232 uint64_t offset = s->file_size;
233 s->file_size += n * s->header.cluster_size;
234 return offset;
237 QEDTable *qed_alloc_table(BDRVQEDState *s)
239 /* Honor O_DIRECT memory alignment requirements */
240 return qemu_blockalign(s->bs,
241 s->header.cluster_size * s->header.table_size);
245 * Allocate a new zeroed L2 table
247 * Called with table_lock held.
249 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
251 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
253 l2_table->table = qed_alloc_table(s);
254 l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
256 memset(l2_table->table->offsets, 0,
257 s->header.cluster_size * s->header.table_size);
258 return l2_table;
261 static bool qed_plug_allocating_write_reqs(BDRVQEDState *s)
263 qemu_co_mutex_lock(&s->table_lock);
265 /* No reentrancy is allowed. */
266 assert(!s->allocating_write_reqs_plugged);
267 if (s->allocating_acb != NULL) {
268 /* Another allocating write came concurrently. This cannot happen
269 * from bdrv_qed_co_drain_begin, but it can happen when the timer runs.
271 qemu_co_mutex_unlock(&s->table_lock);
272 return false;
275 s->allocating_write_reqs_plugged = true;
276 qemu_co_mutex_unlock(&s->table_lock);
277 return true;
280 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
282 qemu_co_mutex_lock(&s->table_lock);
283 assert(s->allocating_write_reqs_plugged);
284 s->allocating_write_reqs_plugged = false;
285 qemu_co_queue_next(&s->allocating_write_reqs);
286 qemu_co_mutex_unlock(&s->table_lock);
289 static void coroutine_fn qed_need_check_timer_entry(void *opaque)
291 BDRVQEDState *s = opaque;
292 int ret;
294 trace_qed_need_check_timer_cb(s);
296 if (!qed_plug_allocating_write_reqs(s)) {
297 return;
300 /* Ensure writes are on disk before clearing flag */
301 ret = bdrv_co_flush(s->bs->file->bs);
302 if (ret < 0) {
303 qed_unplug_allocating_write_reqs(s);
304 return;
307 s->header.features &= ~QED_F_NEED_CHECK;
308 ret = qed_write_header(s);
309 (void) ret;
311 qed_unplug_allocating_write_reqs(s);
313 ret = bdrv_co_flush(s->bs);
314 (void) ret;
317 static void qed_need_check_timer_cb(void *opaque)
319 Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque);
320 qemu_coroutine_enter(co);
323 static void qed_start_need_check_timer(BDRVQEDState *s)
325 trace_qed_start_need_check_timer(s);
327 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
328 * migration.
330 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
331 NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
334 /* It's okay to call this multiple times or when no timer is started */
335 static void qed_cancel_need_check_timer(BDRVQEDState *s)
337 trace_qed_cancel_need_check_timer(s);
338 timer_del(s->need_check_timer);
341 static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
343 BDRVQEDState *s = bs->opaque;
345 qed_cancel_need_check_timer(s);
346 timer_free(s->need_check_timer);
349 static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
350 AioContext *new_context)
352 BDRVQEDState *s = bs->opaque;
354 s->need_check_timer = aio_timer_new(new_context,
355 QEMU_CLOCK_VIRTUAL, SCALE_NS,
356 qed_need_check_timer_cb, s);
357 if (s->header.features & QED_F_NEED_CHECK) {
358 qed_start_need_check_timer(s);
362 static void coroutine_fn bdrv_qed_co_drain_begin(BlockDriverState *bs)
364 BDRVQEDState *s = bs->opaque;
366 /* Fire the timer immediately in order to start doing I/O as soon as the
367 * header is flushed.
369 if (s->need_check_timer && timer_pending(s->need_check_timer)) {
370 qed_cancel_need_check_timer(s);
371 qed_need_check_timer_entry(s);
375 static void bdrv_qed_init_state(BlockDriverState *bs)
377 BDRVQEDState *s = bs->opaque;
379 memset(s, 0, sizeof(BDRVQEDState));
380 s->bs = bs;
381 qemu_co_mutex_init(&s->table_lock);
382 qemu_co_queue_init(&s->allocating_write_reqs);
385 /* Called with table_lock held. */
386 static int coroutine_fn bdrv_qed_do_open(BlockDriverState *bs, QDict *options,
387 int flags, Error **errp)
389 BDRVQEDState *s = bs->opaque;
390 QEDHeader le_header;
391 int64_t file_size;
392 int ret;
394 ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
395 if (ret < 0) {
396 return ret;
398 qed_header_le_to_cpu(&le_header, &s->header);
400 if (s->header.magic != QED_MAGIC) {
401 error_setg(errp, "Image not in QED format");
402 return -EINVAL;
404 if (s->header.features & ~QED_FEATURE_MASK) {
405 /* image uses unsupported feature bits */
406 error_setg(errp, "Unsupported QED features: %" PRIx64,
407 s->header.features & ~QED_FEATURE_MASK);
408 return -ENOTSUP;
410 if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
411 return -EINVAL;
414 /* Round down file size to the last cluster */
415 file_size = bdrv_getlength(bs->file->bs);
416 if (file_size < 0) {
417 return file_size;
419 s->file_size = qed_start_of_cluster(s, file_size);
421 if (!qed_is_table_size_valid(s->header.table_size)) {
422 return -EINVAL;
424 if (!qed_is_image_size_valid(s->header.image_size,
425 s->header.cluster_size,
426 s->header.table_size)) {
427 return -EINVAL;
429 if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
430 return -EINVAL;
433 s->table_nelems = (s->header.cluster_size * s->header.table_size) /
434 sizeof(uint64_t);
435 s->l2_shift = ctz32(s->header.cluster_size);
436 s->l2_mask = s->table_nelems - 1;
437 s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
439 /* Header size calculation must not overflow uint32_t */
440 if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
441 return -EINVAL;
444 if ((s->header.features & QED_F_BACKING_FILE)) {
445 if ((uint64_t)s->header.backing_filename_offset +
446 s->header.backing_filename_size >
447 s->header.cluster_size * s->header.header_size) {
448 return -EINVAL;
451 ret = qed_read_string(bs->file, s->header.backing_filename_offset,
452 s->header.backing_filename_size, bs->backing_file,
453 sizeof(bs->backing_file));
454 if (ret < 0) {
455 return ret;
458 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
459 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
463 /* Reset unknown autoclear feature bits. This is a backwards
464 * compatibility mechanism that allows images to be opened by older
465 * programs, which "knock out" unknown feature bits. When an image is
466 * opened by a newer program again it can detect that the autoclear
467 * feature is no longer valid.
469 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
470 !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
471 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
473 ret = qed_write_header_sync(s);
474 if (ret) {
475 return ret;
478 /* From here on only known autoclear feature bits are valid */
479 bdrv_flush(bs->file->bs);
482 s->l1_table = qed_alloc_table(s);
483 qed_init_l2_cache(&s->l2_cache);
485 ret = qed_read_l1_table_sync(s);
486 if (ret) {
487 goto out;
490 /* If image was not closed cleanly, check consistency */
491 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
492 /* Read-only images cannot be fixed. There is no risk of corruption
493 * since write operations are not possible. Therefore, allow
494 * potentially inconsistent images to be opened read-only. This can
495 * aid data recovery from an otherwise inconsistent image.
497 if (!bdrv_is_read_only(bs->file->bs) &&
498 !(flags & BDRV_O_INACTIVE)) {
499 BdrvCheckResult result = {0};
501 ret = qed_check(s, &result, true);
502 if (ret) {
503 goto out;
508 bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
510 out:
511 if (ret) {
512 qed_free_l2_cache(&s->l2_cache);
513 qemu_vfree(s->l1_table);
515 return ret;
518 typedef struct QEDOpenCo {
519 BlockDriverState *bs;
520 QDict *options;
521 int flags;
522 Error **errp;
523 int ret;
524 } QEDOpenCo;
526 static void coroutine_fn bdrv_qed_open_entry(void *opaque)
528 QEDOpenCo *qoc = opaque;
529 BDRVQEDState *s = qoc->bs->opaque;
531 qemu_co_mutex_lock(&s->table_lock);
532 qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp);
533 qemu_co_mutex_unlock(&s->table_lock);
536 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
537 Error **errp)
539 QEDOpenCo qoc = {
540 .bs = bs,
541 .options = options,
542 .flags = flags,
543 .errp = errp,
544 .ret = -EINPROGRESS
547 bs->file = bdrv_open_child(NULL, options, "file", bs, &child_file,
548 false, errp);
549 if (!bs->file) {
550 return -EINVAL;
553 bdrv_qed_init_state(bs);
554 if (qemu_in_coroutine()) {
555 bdrv_qed_open_entry(&qoc);
556 } else {
557 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
558 qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc));
559 BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
561 BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
562 return qoc.ret;
565 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
567 BDRVQEDState *s = bs->opaque;
569 bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
572 /* We have nothing to do for QED reopen, stubs just return
573 * success */
574 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
575 BlockReopenQueue *queue, Error **errp)
577 return 0;
580 static void bdrv_qed_close(BlockDriverState *bs)
582 BDRVQEDState *s = bs->opaque;
584 bdrv_qed_detach_aio_context(bs);
586 /* Ensure writes reach stable storage */
587 bdrv_flush(bs->file->bs);
589 /* Clean shutdown, no check required on next open */
590 if (s->header.features & QED_F_NEED_CHECK) {
591 s->header.features &= ~QED_F_NEED_CHECK;
592 qed_write_header_sync(s);
595 qed_free_l2_cache(&s->l2_cache);
596 qemu_vfree(s->l1_table);
599 static int coroutine_fn bdrv_qed_co_create(BlockdevCreateOptions *opts,
600 Error **errp)
602 BlockdevCreateOptionsQed *qed_opts;
603 BlockBackend *blk = NULL;
604 BlockDriverState *bs = NULL;
606 QEDHeader header;
607 QEDHeader le_header;
608 uint8_t *l1_table = NULL;
609 size_t l1_size;
610 int ret = 0;
612 assert(opts->driver == BLOCKDEV_DRIVER_QED);
613 qed_opts = &opts->u.qed;
615 /* Validate options and set default values */
616 if (!qed_opts->has_cluster_size) {
617 qed_opts->cluster_size = QED_DEFAULT_CLUSTER_SIZE;
619 if (!qed_opts->has_table_size) {
620 qed_opts->table_size = QED_DEFAULT_TABLE_SIZE;
623 if (!qed_is_cluster_size_valid(qed_opts->cluster_size)) {
624 error_setg(errp, "QED cluster size must be within range [%u, %u] "
625 "and power of 2",
626 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
627 return -EINVAL;
629 if (!qed_is_table_size_valid(qed_opts->table_size)) {
630 error_setg(errp, "QED table size must be within range [%u, %u] "
631 "and power of 2",
632 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
633 return -EINVAL;
635 if (!qed_is_image_size_valid(qed_opts->size, qed_opts->cluster_size,
636 qed_opts->table_size))
638 error_setg(errp, "QED image size must be a non-zero multiple of "
639 "cluster size and less than %" PRIu64 " bytes",
640 qed_max_image_size(qed_opts->cluster_size,
641 qed_opts->table_size));
642 return -EINVAL;
645 /* Create BlockBackend to write to the image */
646 bs = bdrv_open_blockdev_ref(qed_opts->file, errp);
647 if (bs == NULL) {
648 return -EIO;
651 blk = blk_new(BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL);
652 ret = blk_insert_bs(blk, bs, errp);
653 if (ret < 0) {
654 goto out;
656 blk_set_allow_write_beyond_eof(blk, true);
658 /* Prepare image format */
659 header = (QEDHeader) {
660 .magic = QED_MAGIC,
661 .cluster_size = qed_opts->cluster_size,
662 .table_size = qed_opts->table_size,
663 .header_size = 1,
664 .features = 0,
665 .compat_features = 0,
666 .l1_table_offset = qed_opts->cluster_size,
667 .image_size = qed_opts->size,
670 l1_size = header.cluster_size * header.table_size;
672 /* File must start empty and grow, check truncate is supported */
673 ret = blk_truncate(blk, 0, PREALLOC_MODE_OFF, errp);
674 if (ret < 0) {
675 goto out;
678 if (qed_opts->has_backing_file) {
679 header.features |= QED_F_BACKING_FILE;
680 header.backing_filename_offset = sizeof(le_header);
681 header.backing_filename_size = strlen(qed_opts->backing_file);
683 if (qed_opts->has_backing_fmt) {
684 const char *backing_fmt = BlockdevDriver_str(qed_opts->backing_fmt);
685 if (qed_fmt_is_raw(backing_fmt)) {
686 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
691 qed_header_cpu_to_le(&header, &le_header);
692 ret = blk_pwrite(blk, 0, &le_header, sizeof(le_header), 0);
693 if (ret < 0) {
694 goto out;
696 ret = blk_pwrite(blk, sizeof(le_header), qed_opts->backing_file,
697 header.backing_filename_size, 0);
698 if (ret < 0) {
699 goto out;
702 l1_table = g_malloc0(l1_size);
703 ret = blk_pwrite(blk, header.l1_table_offset, l1_table, l1_size, 0);
704 if (ret < 0) {
705 goto out;
708 ret = 0; /* success */
709 out:
710 g_free(l1_table);
711 blk_unref(blk);
712 bdrv_unref(bs);
713 return ret;
716 static int coroutine_fn bdrv_qed_co_create_opts(const char *filename,
717 QemuOpts *opts,
718 Error **errp)
720 BlockdevCreateOptions *create_options = NULL;
721 QDict *qdict;
722 Visitor *v;
723 BlockDriverState *bs = NULL;
724 Error *local_err = NULL;
725 int ret;
727 static const QDictRenames opt_renames[] = {
728 { BLOCK_OPT_BACKING_FILE, "backing-file" },
729 { BLOCK_OPT_BACKING_FMT, "backing-fmt" },
730 { BLOCK_OPT_CLUSTER_SIZE, "cluster-size" },
731 { BLOCK_OPT_TABLE_SIZE, "table-size" },
732 { NULL, NULL },
735 /* Parse options and convert legacy syntax */
736 qdict = qemu_opts_to_qdict_filtered(opts, NULL, &qed_create_opts, true);
738 if (!qdict_rename_keys(qdict, opt_renames, errp)) {
739 ret = -EINVAL;
740 goto fail;
743 /* Create and open the file (protocol layer) */
744 ret = bdrv_create_file(filename, opts, &local_err);
745 if (ret < 0) {
746 error_propagate(errp, local_err);
747 goto fail;
750 bs = bdrv_open(filename, NULL, NULL,
751 BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp);
752 if (bs == NULL) {
753 ret = -EIO;
754 goto fail;
757 /* Now get the QAPI type BlockdevCreateOptions */
758 qdict_put_str(qdict, "driver", "qed");
759 qdict_put_str(qdict, "file", bs->node_name);
761 v = qobject_input_visitor_new_flat_confused(qdict, errp);
762 if (!v) {
763 ret = -EINVAL;
764 goto fail;
767 visit_type_BlockdevCreateOptions(v, NULL, &create_options, &local_err);
768 visit_free(v);
770 if (local_err) {
771 error_propagate(errp, local_err);
772 ret = -EINVAL;
773 goto fail;
776 /* Silently round up size */
777 assert(create_options->driver == BLOCKDEV_DRIVER_QED);
778 create_options->u.qed.size =
779 ROUND_UP(create_options->u.qed.size, BDRV_SECTOR_SIZE);
781 /* Create the qed image (format layer) */
782 ret = bdrv_qed_co_create(create_options, errp);
784 fail:
785 qobject_unref(qdict);
786 bdrv_unref(bs);
787 qapi_free_BlockdevCreateOptions(create_options);
788 return ret;
791 static int coroutine_fn bdrv_qed_co_block_status(BlockDriverState *bs,
792 bool want_zero,
793 int64_t pos, int64_t bytes,
794 int64_t *pnum, int64_t *map,
795 BlockDriverState **file)
797 BDRVQEDState *s = bs->opaque;
798 size_t len = MIN(bytes, SIZE_MAX);
799 int status;
800 QEDRequest request = { .l2_table = NULL };
801 uint64_t offset;
802 int ret;
804 qemu_co_mutex_lock(&s->table_lock);
805 ret = qed_find_cluster(s, &request, pos, &len, &offset);
807 *pnum = len;
808 switch (ret) {
809 case QED_CLUSTER_FOUND:
810 *map = offset | qed_offset_into_cluster(s, pos);
811 status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
812 *file = bs->file->bs;
813 break;
814 case QED_CLUSTER_ZERO:
815 status = BDRV_BLOCK_ZERO;
816 break;
817 case QED_CLUSTER_L2:
818 case QED_CLUSTER_L1:
819 status = 0;
820 break;
821 default:
822 assert(ret < 0);
823 status = ret;
824 break;
827 qed_unref_l2_cache_entry(request.l2_table);
828 qemu_co_mutex_unlock(&s->table_lock);
830 return status;
833 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
835 return acb->bs->opaque;
839 * Read from the backing file or zero-fill if no backing file
841 * @s: QED state
842 * @pos: Byte position in device
843 * @qiov: Destination I/O vector
844 * @backing_qiov: Possibly shortened copy of qiov, to be allocated here
845 * @cb: Completion function
846 * @opaque: User data for completion function
848 * This function reads qiov->size bytes starting at pos from the backing file.
849 * If there is no backing file then zeroes are read.
851 static int coroutine_fn qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
852 QEMUIOVector *qiov,
853 QEMUIOVector **backing_qiov)
855 uint64_t backing_length = 0;
856 size_t size;
857 int ret;
859 /* If there is a backing file, get its length. Treat the absence of a
860 * backing file like a zero length backing file.
862 if (s->bs->backing) {
863 int64_t l = bdrv_getlength(s->bs->backing->bs);
864 if (l < 0) {
865 return l;
867 backing_length = l;
870 /* Zero all sectors if reading beyond the end of the backing file */
871 if (pos >= backing_length ||
872 pos + qiov->size > backing_length) {
873 qemu_iovec_memset(qiov, 0, 0, qiov->size);
876 /* Complete now if there are no backing file sectors to read */
877 if (pos >= backing_length) {
878 return 0;
881 /* If the read straddles the end of the backing file, shorten it */
882 size = MIN((uint64_t)backing_length - pos, qiov->size);
884 assert(*backing_qiov == NULL);
885 *backing_qiov = g_new(QEMUIOVector, 1);
886 qemu_iovec_init(*backing_qiov, qiov->niov);
887 qemu_iovec_concat(*backing_qiov, qiov, 0, size);
889 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
890 ret = bdrv_co_preadv(s->bs->backing, pos, size, *backing_qiov, 0);
891 if (ret < 0) {
892 return ret;
894 return 0;
898 * Copy data from backing file into the image
900 * @s: QED state
901 * @pos: Byte position in device
902 * @len: Number of bytes
903 * @offset: Byte offset in image file
905 static int coroutine_fn qed_copy_from_backing_file(BDRVQEDState *s,
906 uint64_t pos, uint64_t len,
907 uint64_t offset)
909 QEMUIOVector qiov;
910 QEMUIOVector *backing_qiov = NULL;
911 int ret;
913 /* Skip copy entirely if there is no work to do */
914 if (len == 0) {
915 return 0;
918 qemu_iovec_init_buf(&qiov, qemu_blockalign(s->bs, len), len);
920 ret = qed_read_backing_file(s, pos, &qiov, &backing_qiov);
922 if (backing_qiov) {
923 qemu_iovec_destroy(backing_qiov);
924 g_free(backing_qiov);
925 backing_qiov = NULL;
928 if (ret) {
929 goto out;
932 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
933 ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0);
934 if (ret < 0) {
935 goto out;
937 ret = 0;
938 out:
939 qemu_vfree(qemu_iovec_buf(&qiov));
940 return ret;
944 * Link one or more contiguous clusters into a table
946 * @s: QED state
947 * @table: L2 table
948 * @index: First cluster index
949 * @n: Number of contiguous clusters
950 * @cluster: First cluster offset
952 * The cluster offset may be an allocated byte offset in the image file, the
953 * zero cluster marker, or the unallocated cluster marker.
955 * Called with table_lock held.
957 static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table,
958 int index, unsigned int n,
959 uint64_t cluster)
961 int i;
962 for (i = index; i < index + n; i++) {
963 table->offsets[i] = cluster;
964 if (!qed_offset_is_unalloc_cluster(cluster) &&
965 !qed_offset_is_zero_cluster(cluster)) {
966 cluster += s->header.cluster_size;
971 /* Called with table_lock held. */
972 static void coroutine_fn qed_aio_complete(QEDAIOCB *acb)
974 BDRVQEDState *s = acb_to_s(acb);
976 /* Free resources */
977 qemu_iovec_destroy(&acb->cur_qiov);
978 qed_unref_l2_cache_entry(acb->request.l2_table);
980 /* Free the buffer we may have allocated for zero writes */
981 if (acb->flags & QED_AIOCB_ZERO) {
982 qemu_vfree(acb->qiov->iov[0].iov_base);
983 acb->qiov->iov[0].iov_base = NULL;
986 /* Start next allocating write request waiting behind this one. Note that
987 * requests enqueue themselves when they first hit an unallocated cluster
988 * but they wait until the entire request is finished before waking up the
989 * next request in the queue. This ensures that we don't cycle through
990 * requests multiple times but rather finish one at a time completely.
992 if (acb == s->allocating_acb) {
993 s->allocating_acb = NULL;
994 if (!qemu_co_queue_empty(&s->allocating_write_reqs)) {
995 qemu_co_queue_next(&s->allocating_write_reqs);
996 } else if (s->header.features & QED_F_NEED_CHECK) {
997 qed_start_need_check_timer(s);
1003 * Update L1 table with new L2 table offset and write it out
1005 * Called with table_lock held.
1007 static int coroutine_fn qed_aio_write_l1_update(QEDAIOCB *acb)
1009 BDRVQEDState *s = acb_to_s(acb);
1010 CachedL2Table *l2_table = acb->request.l2_table;
1011 uint64_t l2_offset = l2_table->offset;
1012 int index, ret;
1014 index = qed_l1_index(s, acb->cur_pos);
1015 s->l1_table->offsets[index] = l2_table->offset;
1017 ret = qed_write_l1_table(s, index, 1);
1019 /* Commit the current L2 table to the cache */
1020 qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
1022 /* This is guaranteed to succeed because we just committed the entry to the
1023 * cache.
1025 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
1026 assert(acb->request.l2_table != NULL);
1028 return ret;
1033 * Update L2 table with new cluster offsets and write them out
1035 * Called with table_lock held.
1037 static int coroutine_fn qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset)
1039 BDRVQEDState *s = acb_to_s(acb);
1040 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
1041 int index, ret;
1043 if (need_alloc) {
1044 qed_unref_l2_cache_entry(acb->request.l2_table);
1045 acb->request.l2_table = qed_new_l2_table(s);
1048 index = qed_l2_index(s, acb->cur_pos);
1049 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1050 offset);
1052 if (need_alloc) {
1053 /* Write out the whole new L2 table */
1054 ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true);
1055 if (ret) {
1056 return ret;
1058 return qed_aio_write_l1_update(acb);
1059 } else {
1060 /* Write out only the updated part of the L2 table */
1061 ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters,
1062 false);
1063 if (ret) {
1064 return ret;
1067 return 0;
1071 * Write data to the image file
1073 * Called with table_lock *not* held.
1075 static int coroutine_fn qed_aio_write_main(QEDAIOCB *acb)
1077 BDRVQEDState *s = acb_to_s(acb);
1078 uint64_t offset = acb->cur_cluster +
1079 qed_offset_into_cluster(s, acb->cur_pos);
1081 trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size);
1083 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1084 return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size,
1085 &acb->cur_qiov, 0);
1089 * Populate untouched regions of new data cluster
1091 * Called with table_lock held.
1093 static int coroutine_fn qed_aio_write_cow(QEDAIOCB *acb)
1095 BDRVQEDState *s = acb_to_s(acb);
1096 uint64_t start, len, offset;
1097 int ret;
1099 qemu_co_mutex_unlock(&s->table_lock);
1101 /* Populate front untouched region of new data cluster */
1102 start = qed_start_of_cluster(s, acb->cur_pos);
1103 len = qed_offset_into_cluster(s, acb->cur_pos);
1105 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1106 ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster);
1107 if (ret < 0) {
1108 goto out;
1111 /* Populate back untouched region of new data cluster */
1112 start = acb->cur_pos + acb->cur_qiov.size;
1113 len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1114 offset = acb->cur_cluster +
1115 qed_offset_into_cluster(s, acb->cur_pos) +
1116 acb->cur_qiov.size;
1118 trace_qed_aio_write_postfill(s, acb, start, len, offset);
1119 ret = qed_copy_from_backing_file(s, start, len, offset);
1120 if (ret < 0) {
1121 goto out;
1124 ret = qed_aio_write_main(acb);
1125 if (ret < 0) {
1126 goto out;
1129 if (s->bs->backing) {
1131 * Flush new data clusters before updating the L2 table
1133 * This flush is necessary when a backing file is in use. A crash
1134 * during an allocating write could result in empty clusters in the
1135 * image. If the write only touched a subregion of the cluster,
1136 * then backing image sectors have been lost in the untouched
1137 * region. The solution is to flush after writing a new data
1138 * cluster and before updating the L2 table.
1140 ret = bdrv_co_flush(s->bs->file->bs);
1143 out:
1144 qemu_co_mutex_lock(&s->table_lock);
1145 return ret;
1149 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1151 static bool qed_should_set_need_check(BDRVQEDState *s)
1153 /* The flush before L2 update path ensures consistency */
1154 if (s->bs->backing) {
1155 return false;
1158 return !(s->header.features & QED_F_NEED_CHECK);
1162 * Write new data cluster
1164 * @acb: Write request
1165 * @len: Length in bytes
1167 * This path is taken when writing to previously unallocated clusters.
1169 * Called with table_lock held.
1171 static int coroutine_fn qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1173 BDRVQEDState *s = acb_to_s(acb);
1174 int ret;
1176 /* Cancel timer when the first allocating request comes in */
1177 if (s->allocating_acb == NULL) {
1178 qed_cancel_need_check_timer(s);
1181 /* Freeze this request if another allocating write is in progress */
1182 if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) {
1183 if (s->allocating_acb != NULL) {
1184 qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock);
1185 assert(s->allocating_acb == NULL);
1187 s->allocating_acb = acb;
1188 return -EAGAIN; /* start over with looking up table entries */
1191 acb->cur_nclusters = qed_bytes_to_clusters(s,
1192 qed_offset_into_cluster(s, acb->cur_pos) + len);
1193 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1195 if (acb->flags & QED_AIOCB_ZERO) {
1196 /* Skip ahead if the clusters are already zero */
1197 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1198 return 0;
1200 acb->cur_cluster = 1;
1201 } else {
1202 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1205 if (qed_should_set_need_check(s)) {
1206 s->header.features |= QED_F_NEED_CHECK;
1207 ret = qed_write_header(s);
1208 if (ret < 0) {
1209 return ret;
1213 if (!(acb->flags & QED_AIOCB_ZERO)) {
1214 ret = qed_aio_write_cow(acb);
1215 if (ret < 0) {
1216 return ret;
1220 return qed_aio_write_l2_update(acb, acb->cur_cluster);
1224 * Write data cluster in place
1226 * @acb: Write request
1227 * @offset: Cluster offset in bytes
1228 * @len: Length in bytes
1230 * This path is taken when writing to already allocated clusters.
1232 * Called with table_lock held.
1234 static int coroutine_fn qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset,
1235 size_t len)
1237 BDRVQEDState *s = acb_to_s(acb);
1238 int r;
1240 qemu_co_mutex_unlock(&s->table_lock);
1242 /* Allocate buffer for zero writes */
1243 if (acb->flags & QED_AIOCB_ZERO) {
1244 struct iovec *iov = acb->qiov->iov;
1246 if (!iov->iov_base) {
1247 iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len);
1248 if (iov->iov_base == NULL) {
1249 r = -ENOMEM;
1250 goto out;
1252 memset(iov->iov_base, 0, iov->iov_len);
1256 /* Calculate the I/O vector */
1257 acb->cur_cluster = offset;
1258 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1260 /* Do the actual write. */
1261 r = qed_aio_write_main(acb);
1262 out:
1263 qemu_co_mutex_lock(&s->table_lock);
1264 return r;
1268 * Write data cluster
1270 * @opaque: Write request
1271 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1272 * @offset: Cluster offset in bytes
1273 * @len: Length in bytes
1275 * Called with table_lock held.
1277 static int coroutine_fn qed_aio_write_data(void *opaque, int ret,
1278 uint64_t offset, size_t len)
1280 QEDAIOCB *acb = opaque;
1282 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1284 acb->find_cluster_ret = ret;
1286 switch (ret) {
1287 case QED_CLUSTER_FOUND:
1288 return qed_aio_write_inplace(acb, offset, len);
1290 case QED_CLUSTER_L2:
1291 case QED_CLUSTER_L1:
1292 case QED_CLUSTER_ZERO:
1293 return qed_aio_write_alloc(acb, len);
1295 default:
1296 g_assert_not_reached();
1301 * Read data cluster
1303 * @opaque: Read request
1304 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1305 * @offset: Cluster offset in bytes
1306 * @len: Length in bytes
1308 * Called with table_lock held.
1310 static int coroutine_fn qed_aio_read_data(void *opaque, int ret,
1311 uint64_t offset, size_t len)
1313 QEDAIOCB *acb = opaque;
1314 BDRVQEDState *s = acb_to_s(acb);
1315 BlockDriverState *bs = acb->bs;
1316 int r;
1318 qemu_co_mutex_unlock(&s->table_lock);
1320 /* Adjust offset into cluster */
1321 offset += qed_offset_into_cluster(s, acb->cur_pos);
1323 trace_qed_aio_read_data(s, acb, ret, offset, len);
1325 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1327 /* Handle zero cluster and backing file reads, otherwise read
1328 * data cluster directly.
1330 if (ret == QED_CLUSTER_ZERO) {
1331 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1332 r = 0;
1333 } else if (ret != QED_CLUSTER_FOUND) {
1334 r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1335 &acb->backing_qiov);
1336 } else {
1337 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1338 r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size,
1339 &acb->cur_qiov, 0);
1342 qemu_co_mutex_lock(&s->table_lock);
1343 return r;
1347 * Begin next I/O or complete the request
1349 static int coroutine_fn qed_aio_next_io(QEDAIOCB *acb)
1351 BDRVQEDState *s = acb_to_s(acb);
1352 uint64_t offset;
1353 size_t len;
1354 int ret;
1356 qemu_co_mutex_lock(&s->table_lock);
1357 while (1) {
1358 trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size);
1360 if (acb->backing_qiov) {
1361 qemu_iovec_destroy(acb->backing_qiov);
1362 g_free(acb->backing_qiov);
1363 acb->backing_qiov = NULL;
1366 acb->qiov_offset += acb->cur_qiov.size;
1367 acb->cur_pos += acb->cur_qiov.size;
1368 qemu_iovec_reset(&acb->cur_qiov);
1370 /* Complete request */
1371 if (acb->cur_pos >= acb->end_pos) {
1372 ret = 0;
1373 break;
1376 /* Find next cluster and start I/O */
1377 len = acb->end_pos - acb->cur_pos;
1378 ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset);
1379 if (ret < 0) {
1380 break;
1383 if (acb->flags & QED_AIOCB_WRITE) {
1384 ret = qed_aio_write_data(acb, ret, offset, len);
1385 } else {
1386 ret = qed_aio_read_data(acb, ret, offset, len);
1389 if (ret < 0 && ret != -EAGAIN) {
1390 break;
1394 trace_qed_aio_complete(s, acb, ret);
1395 qed_aio_complete(acb);
1396 qemu_co_mutex_unlock(&s->table_lock);
1397 return ret;
1400 static int coroutine_fn qed_co_request(BlockDriverState *bs, int64_t sector_num,
1401 QEMUIOVector *qiov, int nb_sectors,
1402 int flags)
1404 QEDAIOCB acb = {
1405 .bs = bs,
1406 .cur_pos = (uint64_t) sector_num * BDRV_SECTOR_SIZE,
1407 .end_pos = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE,
1408 .qiov = qiov,
1409 .flags = flags,
1411 qemu_iovec_init(&acb.cur_qiov, qiov->niov);
1413 trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags);
1415 /* Start request */
1416 return qed_aio_next_io(&acb);
1419 static int coroutine_fn bdrv_qed_co_readv(BlockDriverState *bs,
1420 int64_t sector_num, int nb_sectors,
1421 QEMUIOVector *qiov)
1423 return qed_co_request(bs, sector_num, qiov, nb_sectors, 0);
1426 static int coroutine_fn bdrv_qed_co_writev(BlockDriverState *bs,
1427 int64_t sector_num, int nb_sectors,
1428 QEMUIOVector *qiov, int flags)
1430 assert(!flags);
1431 return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE);
1434 static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs,
1435 int64_t offset,
1436 int bytes,
1437 BdrvRequestFlags flags)
1439 BDRVQEDState *s = bs->opaque;
1442 * Zero writes start without an I/O buffer. If a buffer becomes necessary
1443 * then it will be allocated during request processing.
1445 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
1447 /* Fall back if the request is not aligned */
1448 if (qed_offset_into_cluster(s, offset) ||
1449 qed_offset_into_cluster(s, bytes)) {
1450 return -ENOTSUP;
1453 return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1454 bytes >> BDRV_SECTOR_BITS,
1455 QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1458 static int coroutine_fn bdrv_qed_co_truncate(BlockDriverState *bs,
1459 int64_t offset,
1460 PreallocMode prealloc,
1461 Error **errp)
1463 BDRVQEDState *s = bs->opaque;
1464 uint64_t old_image_size;
1465 int ret;
1467 if (prealloc != PREALLOC_MODE_OFF) {
1468 error_setg(errp, "Unsupported preallocation mode '%s'",
1469 PreallocMode_str(prealloc));
1470 return -ENOTSUP;
1473 if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1474 s->header.table_size)) {
1475 error_setg(errp, "Invalid image size specified");
1476 return -EINVAL;
1479 if ((uint64_t)offset < s->header.image_size) {
1480 error_setg(errp, "Shrinking images is currently not supported");
1481 return -ENOTSUP;
1484 old_image_size = s->header.image_size;
1485 s->header.image_size = offset;
1486 ret = qed_write_header_sync(s);
1487 if (ret < 0) {
1488 s->header.image_size = old_image_size;
1489 error_setg_errno(errp, -ret, "Failed to update the image size");
1491 return ret;
1494 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1496 BDRVQEDState *s = bs->opaque;
1497 return s->header.image_size;
1500 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1502 BDRVQEDState *s = bs->opaque;
1504 memset(bdi, 0, sizeof(*bdi));
1505 bdi->cluster_size = s->header.cluster_size;
1506 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1507 bdi->unallocated_blocks_are_zero = true;
1508 return 0;
1511 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1512 const char *backing_file,
1513 const char *backing_fmt)
1515 BDRVQEDState *s = bs->opaque;
1516 QEDHeader new_header, le_header;
1517 void *buffer;
1518 size_t buffer_len, backing_file_len;
1519 int ret;
1521 /* Refuse to set backing filename if unknown compat feature bits are
1522 * active. If the image uses an unknown compat feature then we may not
1523 * know the layout of data following the header structure and cannot safely
1524 * add a new string.
1526 if (backing_file && (s->header.compat_features &
1527 ~QED_COMPAT_FEATURE_MASK)) {
1528 return -ENOTSUP;
1531 memcpy(&new_header, &s->header, sizeof(new_header));
1533 new_header.features &= ~(QED_F_BACKING_FILE |
1534 QED_F_BACKING_FORMAT_NO_PROBE);
1536 /* Adjust feature flags */
1537 if (backing_file) {
1538 new_header.features |= QED_F_BACKING_FILE;
1540 if (qed_fmt_is_raw(backing_fmt)) {
1541 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1545 /* Calculate new header size */
1546 backing_file_len = 0;
1548 if (backing_file) {
1549 backing_file_len = strlen(backing_file);
1552 buffer_len = sizeof(new_header);
1553 new_header.backing_filename_offset = buffer_len;
1554 new_header.backing_filename_size = backing_file_len;
1555 buffer_len += backing_file_len;
1557 /* Make sure we can rewrite header without failing */
1558 if (buffer_len > new_header.header_size * new_header.cluster_size) {
1559 return -ENOSPC;
1562 /* Prepare new header */
1563 buffer = g_malloc(buffer_len);
1565 qed_header_cpu_to_le(&new_header, &le_header);
1566 memcpy(buffer, &le_header, sizeof(le_header));
1567 buffer_len = sizeof(le_header);
1569 if (backing_file) {
1570 memcpy(buffer + buffer_len, backing_file, backing_file_len);
1571 buffer_len += backing_file_len;
1574 /* Write new header */
1575 ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1576 g_free(buffer);
1577 if (ret == 0) {
1578 memcpy(&s->header, &new_header, sizeof(new_header));
1580 return ret;
1583 static void coroutine_fn bdrv_qed_co_invalidate_cache(BlockDriverState *bs,
1584 Error **errp)
1586 BDRVQEDState *s = bs->opaque;
1587 Error *local_err = NULL;
1588 int ret;
1590 bdrv_qed_close(bs);
1592 bdrv_qed_init_state(bs);
1593 qemu_co_mutex_lock(&s->table_lock);
1594 ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, &local_err);
1595 qemu_co_mutex_unlock(&s->table_lock);
1596 if (local_err) {
1597 error_propagate_prepend(errp, local_err,
1598 "Could not reopen qed layer: ");
1599 return;
1600 } else if (ret < 0) {
1601 error_setg_errno(errp, -ret, "Could not reopen qed layer");
1602 return;
1606 static int bdrv_qed_co_check(BlockDriverState *bs, BdrvCheckResult *result,
1607 BdrvCheckMode fix)
1609 BDRVQEDState *s = bs->opaque;
1610 int ret;
1612 qemu_co_mutex_lock(&s->table_lock);
1613 ret = qed_check(s, result, !!fix);
1614 qemu_co_mutex_unlock(&s->table_lock);
1616 return ret;
1619 static QemuOptsList qed_create_opts = {
1620 .name = "qed-create-opts",
1621 .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1622 .desc = {
1624 .name = BLOCK_OPT_SIZE,
1625 .type = QEMU_OPT_SIZE,
1626 .help = "Virtual disk size"
1629 .name = BLOCK_OPT_BACKING_FILE,
1630 .type = QEMU_OPT_STRING,
1631 .help = "File name of a base image"
1634 .name = BLOCK_OPT_BACKING_FMT,
1635 .type = QEMU_OPT_STRING,
1636 .help = "Image format of the base image"
1639 .name = BLOCK_OPT_CLUSTER_SIZE,
1640 .type = QEMU_OPT_SIZE,
1641 .help = "Cluster size (in bytes)",
1642 .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1645 .name = BLOCK_OPT_TABLE_SIZE,
1646 .type = QEMU_OPT_SIZE,
1647 .help = "L1/L2 table size (in clusters)"
1649 { /* end of list */ }
1653 static BlockDriver bdrv_qed = {
1654 .format_name = "qed",
1655 .instance_size = sizeof(BDRVQEDState),
1656 .create_opts = &qed_create_opts,
1657 .supports_backing = true,
1659 .bdrv_probe = bdrv_qed_probe,
1660 .bdrv_open = bdrv_qed_open,
1661 .bdrv_close = bdrv_qed_close,
1662 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare,
1663 .bdrv_child_perm = bdrv_format_default_perms,
1664 .bdrv_co_create = bdrv_qed_co_create,
1665 .bdrv_co_create_opts = bdrv_qed_co_create_opts,
1666 .bdrv_has_zero_init = bdrv_has_zero_init_1,
1667 .bdrv_co_block_status = bdrv_qed_co_block_status,
1668 .bdrv_co_readv = bdrv_qed_co_readv,
1669 .bdrv_co_writev = bdrv_qed_co_writev,
1670 .bdrv_co_pwrite_zeroes = bdrv_qed_co_pwrite_zeroes,
1671 .bdrv_co_truncate = bdrv_qed_co_truncate,
1672 .bdrv_getlength = bdrv_qed_getlength,
1673 .bdrv_get_info = bdrv_qed_get_info,
1674 .bdrv_refresh_limits = bdrv_qed_refresh_limits,
1675 .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1676 .bdrv_co_invalidate_cache = bdrv_qed_co_invalidate_cache,
1677 .bdrv_co_check = bdrv_qed_co_check,
1678 .bdrv_detach_aio_context = bdrv_qed_detach_aio_context,
1679 .bdrv_attach_aio_context = bdrv_qed_attach_aio_context,
1680 .bdrv_co_drain_begin = bdrv_qed_co_drain_begin,
1683 static void bdrv_qed_init(void)
1685 bdrv_register(&bdrv_qed);
1688 block_init(bdrv_qed_init);