qcow2: Process QCOW2_CLUSTER_ZERO_ALLOC clusters in handle_copied()
[qemu/armbru.git] / linux-user / qemu.h
blob5c964389c101ce00fcffe206bc69fb8b571634bc
1 #ifndef QEMU_H
2 #define QEMU_H
4 #include "hostdep.h"
5 #include "cpu.h"
6 #include "exec/exec-all.h"
7 #include "exec/cpu_ldst.h"
9 #undef DEBUG_REMAP
10 #ifdef DEBUG_REMAP
11 #endif /* DEBUG_REMAP */
13 #include "exec/user/abitypes.h"
15 #include "exec/user/thunk.h"
16 #include "syscall_defs.h"
17 #include "target_syscall.h"
18 #include "exec/gdbstub.h"
20 /* This is the size of the host kernel's sigset_t, needed where we make
21 * direct system calls that take a sigset_t pointer and a size.
23 #define SIGSET_T_SIZE (_NSIG / 8)
25 /* This struct is used to hold certain information about the image.
26 * Basically, it replicates in user space what would be certain
27 * task_struct fields in the kernel
29 struct image_info {
30 abi_ulong load_bias;
31 abi_ulong load_addr;
32 abi_ulong start_code;
33 abi_ulong end_code;
34 abi_ulong start_data;
35 abi_ulong end_data;
36 abi_ulong start_brk;
37 abi_ulong brk;
38 abi_ulong reserve_brk;
39 abi_ulong start_mmap;
40 abi_ulong start_stack;
41 abi_ulong stack_limit;
42 abi_ulong entry;
43 abi_ulong code_offset;
44 abi_ulong data_offset;
45 abi_ulong saved_auxv;
46 abi_ulong auxv_len;
47 abi_ulong arg_start;
48 abi_ulong arg_end;
49 abi_ulong arg_strings;
50 abi_ulong env_strings;
51 abi_ulong file_string;
52 uint32_t elf_flags;
53 int personality;
54 abi_ulong alignment;
56 /* The fields below are used in FDPIC mode. */
57 abi_ulong loadmap_addr;
58 uint16_t nsegs;
59 void *loadsegs;
60 abi_ulong pt_dynamic_addr;
61 abi_ulong interpreter_loadmap_addr;
62 abi_ulong interpreter_pt_dynamic_addr;
63 struct image_info *other_info;
64 #ifdef TARGET_MIPS
65 int fp_abi;
66 int interp_fp_abi;
67 #endif
70 #ifdef TARGET_I386
71 /* Information about the current linux thread */
72 struct vm86_saved_state {
73 uint32_t eax; /* return code */
74 uint32_t ebx;
75 uint32_t ecx;
76 uint32_t edx;
77 uint32_t esi;
78 uint32_t edi;
79 uint32_t ebp;
80 uint32_t esp;
81 uint32_t eflags;
82 uint32_t eip;
83 uint16_t cs, ss, ds, es, fs, gs;
85 #endif
87 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
88 /* FPU emulator */
89 #include "nwfpe/fpa11.h"
90 #endif
92 #define MAX_SIGQUEUE_SIZE 1024
94 struct emulated_sigtable {
95 int pending; /* true if signal is pending */
96 target_siginfo_t info;
99 /* NOTE: we force a big alignment so that the stack stored after is
100 aligned too */
101 typedef struct TaskState {
102 pid_t ts_tid; /* tid (or pid) of this task */
103 #ifdef TARGET_ARM
104 # ifdef TARGET_ABI32
105 /* FPA state */
106 FPA11 fpa;
107 # endif
108 int swi_errno;
109 #endif
110 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
111 abi_ulong target_v86;
112 struct vm86_saved_state vm86_saved_regs;
113 struct target_vm86plus_struct vm86plus;
114 uint32_t v86flags;
115 uint32_t v86mask;
116 #endif
117 abi_ulong child_tidptr;
118 #ifdef TARGET_M68K
119 abi_ulong tp_value;
120 #endif
121 #if defined(TARGET_ARM) || defined(TARGET_M68K)
122 /* Extra fields for semihosted binaries. */
123 abi_ulong heap_base;
124 abi_ulong heap_limit;
125 #endif
126 abi_ulong stack_base;
127 int used; /* non zero if used */
128 struct image_info *info;
129 struct linux_binprm *bprm;
131 struct emulated_sigtable sync_signal;
132 struct emulated_sigtable sigtab[TARGET_NSIG];
133 /* This thread's signal mask, as requested by the guest program.
134 * The actual signal mask of this thread may differ:
135 * + we don't let SIGSEGV and SIGBUS be blocked while running guest code
136 * + sometimes we block all signals to avoid races
138 sigset_t signal_mask;
139 /* The signal mask imposed by a guest sigsuspend syscall, if we are
140 * currently in the middle of such a syscall
142 sigset_t sigsuspend_mask;
143 /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */
144 int in_sigsuspend;
146 /* Nonzero if process_pending_signals() needs to do something (either
147 * handle a pending signal or unblock signals).
148 * This flag is written from a signal handler so should be accessed via
149 * the atomic_read() and atomic_set() functions. (It is not accessed
150 * from multiple threads.)
152 int signal_pending;
154 /* This thread's sigaltstack, if it has one */
155 struct target_sigaltstack sigaltstack_used;
156 } __attribute__((aligned(16))) TaskState;
158 extern char *exec_path;
159 void init_task_state(TaskState *ts);
160 void task_settid(TaskState *);
161 void stop_all_tasks(void);
162 extern const char *qemu_uname_release;
163 extern unsigned long mmap_min_addr;
165 /* ??? See if we can avoid exposing so much of the loader internals. */
167 /* Read a good amount of data initially, to hopefully get all the
168 program headers loaded. */
169 #define BPRM_BUF_SIZE 1024
172 * This structure is used to hold the arguments that are
173 * used when loading binaries.
175 struct linux_binprm {
176 char buf[BPRM_BUF_SIZE] __attribute__((aligned));
177 abi_ulong p;
178 int fd;
179 int e_uid, e_gid;
180 int argc, envc;
181 char **argv;
182 char **envp;
183 char * filename; /* Name of binary */
184 int (*core_dump)(int, const CPUArchState *); /* coredump routine */
187 typedef struct IOCTLEntry IOCTLEntry;
189 typedef abi_long do_ioctl_fn(const IOCTLEntry *ie, uint8_t *buf_temp,
190 int fd, int cmd, abi_long arg);
192 struct IOCTLEntry {
193 int target_cmd;
194 unsigned int host_cmd;
195 const char *name;
196 int access;
197 do_ioctl_fn *do_ioctl;
198 const argtype arg_type[5];
201 extern IOCTLEntry ioctl_entries[];
203 #define IOC_R 0x0001
204 #define IOC_W 0x0002
205 #define IOC_RW (IOC_R | IOC_W)
207 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
208 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
209 abi_ulong stringp, int push_ptr);
210 int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
211 struct target_pt_regs * regs, struct image_info *infop,
212 struct linux_binprm *);
214 /* Returns true if the image uses the FDPIC ABI. If this is the case,
215 * we have to provide some information (loadmap, pt_dynamic_info) such
216 * that the program can be relocated adequately. This is also useful
217 * when handling signals.
219 int info_is_fdpic(struct image_info *info);
221 uint32_t get_elf_eflags(int fd);
222 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info);
223 int load_flt_binary(struct linux_binprm *bprm, struct image_info *info);
225 abi_long memcpy_to_target(abi_ulong dest, const void *src,
226 unsigned long len);
227 void target_set_brk(abi_ulong new_brk);
228 abi_long do_brk(abi_ulong new_brk);
229 void syscall_init(void);
230 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
231 abi_long arg2, abi_long arg3, abi_long arg4,
232 abi_long arg5, abi_long arg6, abi_long arg7,
233 abi_long arg8);
234 extern __thread CPUState *thread_cpu;
235 void cpu_loop(CPUArchState *env);
236 const char *target_strerror(int err);
237 int get_osversion(void);
238 void init_qemu_uname_release(void);
239 void fork_start(void);
240 void fork_end(int child);
243 * probe_guest_base:
244 * @image_name: the executable being loaded
245 * @loaddr: the lowest fixed address in the executable
246 * @hiaddr: the highest fixed address in the executable
248 * Creates the initial guest address space in the host memory space.
250 * If @loaddr == 0, then no address in the executable is fixed,
251 * i.e. it is fully relocatable. In that case @hiaddr is the size
252 * of the executable.
254 * This function will not return if a valid value for guest_base
255 * cannot be chosen. On return, the executable loader can expect
257 * target_mmap(loaddr, hiaddr - loaddr, ...)
259 * to succeed.
261 void probe_guest_base(const char *image_name,
262 abi_ulong loaddr, abi_ulong hiaddr);
264 #include "qemu/log.h"
266 /* safe_syscall.S */
269 * safe_syscall:
270 * @int number: number of system call to make
271 * ...: arguments to the system call
273 * Call a system call if guest signal not pending.
274 * This has the same API as the libc syscall() function, except that it
275 * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending.
277 * Returns: the system call result, or -1 with an error code in errno
278 * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing
279 * with any of the host errno values.)
282 /* A guide to using safe_syscall() to handle interactions between guest
283 * syscalls and guest signals:
285 * Guest syscalls come in two flavours:
287 * (1) Non-interruptible syscalls
289 * These are guest syscalls that never get interrupted by signals and
290 * so never return EINTR. They can be implemented straightforwardly in
291 * QEMU: just make sure that if the implementation code has to make any
292 * blocking calls that those calls are retried if they return EINTR.
293 * It's also OK to implement these with safe_syscall, though it will be
294 * a little less efficient if a signal is delivered at the 'wrong' moment.
296 * Some non-interruptible syscalls need to be handled using block_signals()
297 * to block signals for the duration of the syscall. This mainly applies
298 * to code which needs to modify the data structures used by the
299 * host_signal_handler() function and the functions it calls, including
300 * all syscalls which change the thread's signal mask.
302 * (2) Interruptible syscalls
304 * These are guest syscalls that can be interrupted by signals and
305 * for which we need to either return EINTR or arrange for the guest
306 * syscall to be restarted. This category includes both syscalls which
307 * always restart (and in the kernel return -ERESTARTNOINTR), ones
308 * which only restart if there is no handler (kernel returns -ERESTARTNOHAND
309 * or -ERESTART_RESTARTBLOCK), and the most common kind which restart
310 * if the handler was registered with SA_RESTART (kernel returns
311 * -ERESTARTSYS). System calls which are only interruptible in some
312 * situations (like 'open') also need to be handled this way.
314 * Here it is important that the host syscall is made
315 * via this safe_syscall() function, and *not* via the host libc.
316 * If the host libc is used then the implementation will appear to work
317 * most of the time, but there will be a race condition where a
318 * signal could arrive just before we make the host syscall inside libc,
319 * and then then guest syscall will not correctly be interrupted.
320 * Instead the implementation of the guest syscall can use the safe_syscall
321 * function but otherwise just return the result or errno in the usual
322 * way; the main loop code will take care of restarting the syscall
323 * if appropriate.
325 * (If the implementation needs to make multiple host syscalls this is
326 * OK; any which might really block must be via safe_syscall(); for those
327 * which are only technically blocking (ie which we know in practice won't
328 * stay in the host kernel indefinitely) it's OK to use libc if necessary.
329 * You must be able to cope with backing out correctly if some safe_syscall
330 * you make in the implementation returns either -TARGET_ERESTARTSYS or
331 * EINTR though.)
333 * block_signals() cannot be used for interruptible syscalls.
336 * How and why the safe_syscall implementation works:
338 * The basic setup is that we make the host syscall via a known
339 * section of host native assembly. If a signal occurs, our signal
340 * handler checks the interrupted host PC against the addresse of that
341 * known section. If the PC is before or at the address of the syscall
342 * instruction then we change the PC to point at a "return
343 * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler
344 * (causing the safe_syscall() call to immediately return that value).
345 * Then in the main.c loop if we see this magic return value we adjust
346 * the guest PC to wind it back to before the system call, and invoke
347 * the guest signal handler as usual.
349 * This winding-back will happen in two cases:
350 * (1) signal came in just before we took the host syscall (a race);
351 * in this case we'll take the guest signal and have another go
352 * at the syscall afterwards, and this is indistinguishable for the
353 * guest from the timing having been different such that the guest
354 * signal really did win the race
355 * (2) signal came in while the host syscall was blocking, and the
356 * host kernel decided the syscall should be restarted;
357 * in this case we want to restart the guest syscall also, and so
358 * rewinding is the right thing. (Note that "restart" semantics mean
359 * "first call the signal handler, then reattempt the syscall".)
360 * The other situation to consider is when a signal came in while the
361 * host syscall was blocking, and the host kernel decided that the syscall
362 * should not be restarted; in this case QEMU's host signal handler will
363 * be invoked with the PC pointing just after the syscall instruction,
364 * with registers indicating an EINTR return; the special code in the
365 * handler will not kick in, and we will return EINTR to the guest as
366 * we should.
368 * Notice that we can leave the host kernel to make the decision for
369 * us about whether to do a restart of the syscall or not; we do not
370 * need to check SA_RESTART flags in QEMU or distinguish the various
371 * kinds of restartability.
373 #ifdef HAVE_SAFE_SYSCALL
374 /* The core part of this function is implemented in assembly */
375 extern long safe_syscall_base(int *pending, long number, ...);
377 #define safe_syscall(...) \
378 ({ \
379 long ret_; \
380 int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \
381 ret_ = safe_syscall_base(psp_, __VA_ARGS__); \
382 if (is_error(ret_)) { \
383 errno = -ret_; \
384 ret_ = -1; \
386 ret_; \
389 #else
391 /* Fallback for architectures which don't yet provide a safe-syscall assembly
392 * fragment; note that this is racy!
393 * This should go away when all host architectures have been updated.
395 #define safe_syscall syscall
397 #endif
399 /* syscall.c */
400 int host_to_target_waitstatus(int status);
402 /* strace.c */
403 void print_syscall(int num,
404 abi_long arg1, abi_long arg2, abi_long arg3,
405 abi_long arg4, abi_long arg5, abi_long arg6);
406 void print_syscall_ret(int num, abi_long ret,
407 abi_long arg1, abi_long arg2, abi_long arg3,
408 abi_long arg4, abi_long arg5, abi_long arg6);
410 * print_taken_signal:
411 * @target_signum: target signal being taken
412 * @tinfo: target_siginfo_t which will be passed to the guest for the signal
414 * Print strace output indicating that this signal is being taken by the guest,
415 * in a format similar to:
416 * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} ---
418 void print_taken_signal(int target_signum, const target_siginfo_t *tinfo);
420 /* signal.c */
421 void process_pending_signals(CPUArchState *cpu_env);
422 void signal_init(void);
423 int queue_signal(CPUArchState *env, int sig, int si_type,
424 target_siginfo_t *info);
425 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
426 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
427 int target_to_host_signal(int sig);
428 int host_to_target_signal(int sig);
429 long do_sigreturn(CPUArchState *env);
430 long do_rt_sigreturn(CPUArchState *env);
431 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
432 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
433 abi_long do_swapcontext(CPUArchState *env, abi_ulong uold_ctx,
434 abi_ulong unew_ctx, abi_long ctx_size);
436 * block_signals: block all signals while handling this guest syscall
438 * Block all signals, and arrange that the signal mask is returned to
439 * its correct value for the guest before we resume execution of guest code.
440 * If this function returns non-zero, then the caller should immediately
441 * return -TARGET_ERESTARTSYS to the main loop, which will take the pending
442 * signal and restart execution of the syscall.
443 * If block_signals() returns zero, then the caller can continue with
444 * emulation of the system call knowing that no signals can be taken
445 * (and therefore that no race conditions will result).
446 * This should only be called once, because if it is called a second time
447 * it will always return non-zero. (Think of it like a mutex that can't
448 * be recursively locked.)
449 * Signals will be unblocked again by process_pending_signals().
451 * Return value: non-zero if there was a pending signal, zero if not.
453 int block_signals(void); /* Returns non zero if signal pending */
455 #ifdef TARGET_I386
456 /* vm86.c */
457 void save_v86_state(CPUX86State *env);
458 void handle_vm86_trap(CPUX86State *env, int trapno);
459 void handle_vm86_fault(CPUX86State *env);
460 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
461 #elif defined(TARGET_SPARC64)
462 void sparc64_set_context(CPUSPARCState *env);
463 void sparc64_get_context(CPUSPARCState *env);
464 #endif
466 /* mmap.c */
467 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
468 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
469 int flags, int fd, abi_ulong offset);
470 int target_munmap(abi_ulong start, abi_ulong len);
471 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
472 abi_ulong new_size, unsigned long flags,
473 abi_ulong new_addr);
474 extern unsigned long last_brk;
475 extern abi_ulong mmap_next_start;
476 abi_ulong mmap_find_vma(abi_ulong, abi_ulong, abi_ulong);
477 void mmap_fork_start(void);
478 void mmap_fork_end(int child);
480 /* main.c */
481 extern unsigned long guest_stack_size;
483 /* user access */
485 #define VERIFY_READ 0
486 #define VERIFY_WRITE 1 /* implies read access */
488 static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
490 return guest_addr_valid(addr) &&
491 (size == 0 || guest_addr_valid(addr + size - 1)) &&
492 page_check_range((target_ulong)addr, size,
493 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
496 /* NOTE __get_user and __put_user use host pointers and don't check access.
497 These are usually used to access struct data members once the struct has
498 been locked - usually with lock_user_struct. */
501 * Tricky points:
502 * - Use __builtin_choose_expr to avoid type promotion from ?:,
503 * - Invalid sizes result in a compile time error stemming from
504 * the fact that abort has no parameters.
505 * - It's easier to use the endian-specific unaligned load/store
506 * functions than host-endian unaligned load/store plus tswapN.
507 * - The pragmas are necessary only to silence a clang false-positive
508 * warning: see https://bugs.llvm.org/show_bug.cgi?id=39113 .
509 * - gcc has bugs in its _Pragma() support in some versions, eg
510 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83256 -- so we only
511 * include the warning-suppression pragmas for clang
513 #if defined(__clang__) && __has_warning("-Waddress-of-packed-member")
514 #define PRAGMA_DISABLE_PACKED_WARNING \
515 _Pragma("GCC diagnostic push"); \
516 _Pragma("GCC diagnostic ignored \"-Waddress-of-packed-member\"")
518 #define PRAGMA_REENABLE_PACKED_WARNING \
519 _Pragma("GCC diagnostic pop")
521 #else
522 #define PRAGMA_DISABLE_PACKED_WARNING
523 #define PRAGMA_REENABLE_PACKED_WARNING
524 #endif
526 #define __put_user_e(x, hptr, e) \
527 do { \
528 PRAGMA_DISABLE_PACKED_WARNING; \
529 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \
530 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \
531 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \
532 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \
533 ((hptr), (x)), (void)0); \
534 PRAGMA_REENABLE_PACKED_WARNING; \
535 } while (0)
537 #define __get_user_e(x, hptr, e) \
538 do { \
539 PRAGMA_DISABLE_PACKED_WARNING; \
540 ((x) = (typeof(*hptr))( \
541 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \
542 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \
543 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \
544 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \
545 (hptr)), (void)0); \
546 PRAGMA_REENABLE_PACKED_WARNING; \
547 } while (0)
550 #ifdef TARGET_WORDS_BIGENDIAN
551 # define __put_user(x, hptr) __put_user_e(x, hptr, be)
552 # define __get_user(x, hptr) __get_user_e(x, hptr, be)
553 #else
554 # define __put_user(x, hptr) __put_user_e(x, hptr, le)
555 # define __get_user(x, hptr) __get_user_e(x, hptr, le)
556 #endif
558 /* put_user()/get_user() take a guest address and check access */
559 /* These are usually used to access an atomic data type, such as an int,
560 * that has been passed by address. These internally perform locking
561 * and unlocking on the data type.
563 #define put_user(x, gaddr, target_type) \
564 ({ \
565 abi_ulong __gaddr = (gaddr); \
566 target_type *__hptr; \
567 abi_long __ret = 0; \
568 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
569 __put_user((x), __hptr); \
570 unlock_user(__hptr, __gaddr, sizeof(target_type)); \
571 } else \
572 __ret = -TARGET_EFAULT; \
573 __ret; \
576 #define get_user(x, gaddr, target_type) \
577 ({ \
578 abi_ulong __gaddr = (gaddr); \
579 target_type *__hptr; \
580 abi_long __ret = 0; \
581 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
582 __get_user((x), __hptr); \
583 unlock_user(__hptr, __gaddr, 0); \
584 } else { \
585 /* avoid warning */ \
586 (x) = 0; \
587 __ret = -TARGET_EFAULT; \
589 __ret; \
592 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
593 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
594 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
595 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
596 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
597 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
598 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
599 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
600 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
601 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
603 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
604 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
605 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
606 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
607 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
608 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
609 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
610 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
611 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
612 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
614 /* copy_from_user() and copy_to_user() are usually used to copy data
615 * buffers between the target and host. These internally perform
616 * locking/unlocking of the memory.
618 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
619 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
621 /* Functions for accessing guest memory. The tget and tput functions
622 read/write single values, byteswapping as necessary. The lock_user function
623 gets a pointer to a contiguous area of guest memory, but does not perform
624 any byteswapping. lock_user may return either a pointer to the guest
625 memory, or a temporary buffer. */
627 /* Lock an area of guest memory into the host. If copy is true then the
628 host area will have the same contents as the guest. */
629 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
631 if (!access_ok(type, guest_addr, len))
632 return NULL;
633 #ifdef DEBUG_REMAP
635 void *addr;
636 addr = g_malloc(len);
637 if (copy)
638 memcpy(addr, g2h(guest_addr), len);
639 else
640 memset(addr, 0, len);
641 return addr;
643 #else
644 return g2h(guest_addr);
645 #endif
648 /* Unlock an area of guest memory. The first LEN bytes must be
649 flushed back to guest memory. host_ptr = NULL is explicitly
650 allowed and does nothing. */
651 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
652 long len)
655 #ifdef DEBUG_REMAP
656 if (!host_ptr)
657 return;
658 if (host_ptr == g2h(guest_addr))
659 return;
660 if (len > 0)
661 memcpy(g2h(guest_addr), host_ptr, len);
662 g_free(host_ptr);
663 #endif
666 /* Return the length of a string in target memory or -TARGET_EFAULT if
667 access error. */
668 abi_long target_strlen(abi_ulong gaddr);
670 /* Like lock_user but for null terminated strings. */
671 static inline void *lock_user_string(abi_ulong guest_addr)
673 abi_long len;
674 len = target_strlen(guest_addr);
675 if (len < 0)
676 return NULL;
677 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
680 /* Helper macros for locking/unlocking a target struct. */
681 #define lock_user_struct(type, host_ptr, guest_addr, copy) \
682 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
683 #define unlock_user_struct(host_ptr, guest_addr, copy) \
684 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
686 #include <pthread.h>
688 static inline int is_error(abi_long ret)
690 return (abi_ulong)ret >= (abi_ulong)(-4096);
693 #if TARGET_ABI_BITS == 32
694 static inline uint64_t target_offset64(uint32_t word0, uint32_t word1)
696 #ifdef TARGET_WORDS_BIGENDIAN
697 return ((uint64_t)word0 << 32) | word1;
698 #else
699 return ((uint64_t)word1 << 32) | word0;
700 #endif
702 #else /* TARGET_ABI_BITS == 32 */
703 static inline uint64_t target_offset64(uint64_t word0, uint64_t word1)
705 return word0;
707 #endif /* TARGET_ABI_BITS != 32 */
710 * preexit_cleanup: housekeeping before the guest exits
712 * env: the CPU state
713 * code: the exit code
715 void preexit_cleanup(CPUArchState *env, int code);
717 /* Include target-specific struct and function definitions;
718 * they may need access to the target-independent structures
719 * above, so include them last.
721 #include "target_cpu.h"
722 #include "target_structs.h"
724 #endif /* QEMU_H */