6 #include "exec/exec-all.h"
7 #include "exec/cpu_ldst.h"
11 #endif /* DEBUG_REMAP */
13 #include "exec/user/abitypes.h"
15 #include "exec/user/thunk.h"
16 #include "syscall_defs.h"
17 #include "target_syscall.h"
18 #include "exec/gdbstub.h"
20 /* This is the size of the host kernel's sigset_t, needed where we make
21 * direct system calls that take a sigset_t pointer and a size.
23 #define SIGSET_T_SIZE (_NSIG / 8)
25 /* This struct is used to hold certain information about the image.
26 * Basically, it replicates in user space what would be certain
27 * task_struct fields in the kernel
38 abi_ulong reserve_brk
;
40 abi_ulong start_stack
;
41 abi_ulong stack_limit
;
43 abi_ulong code_offset
;
44 abi_ulong data_offset
;
49 abi_ulong arg_strings
;
50 abi_ulong env_strings
;
51 abi_ulong file_string
;
56 /* The fields below are used in FDPIC mode. */
57 abi_ulong loadmap_addr
;
60 abi_ulong pt_dynamic_addr
;
61 abi_ulong interpreter_loadmap_addr
;
62 abi_ulong interpreter_pt_dynamic_addr
;
63 struct image_info
*other_info
;
71 /* Information about the current linux thread */
72 struct vm86_saved_state
{
73 uint32_t eax
; /* return code */
83 uint16_t cs
, ss
, ds
, es
, fs
, gs
;
87 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
89 #include "nwfpe/fpa11.h"
92 #define MAX_SIGQUEUE_SIZE 1024
94 struct emulated_sigtable
{
95 int pending
; /* true if signal is pending */
96 target_siginfo_t info
;
99 /* NOTE: we force a big alignment so that the stack stored after is
101 typedef struct TaskState
{
102 pid_t ts_tid
; /* tid (or pid) of this task */
110 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
111 abi_ulong target_v86
;
112 struct vm86_saved_state vm86_saved_regs
;
113 struct target_vm86plus_struct vm86plus
;
117 abi_ulong child_tidptr
;
121 #if defined(TARGET_ARM) || defined(TARGET_M68K)
122 /* Extra fields for semihosted binaries. */
124 abi_ulong heap_limit
;
126 abi_ulong stack_base
;
127 int used
; /* non zero if used */
128 struct image_info
*info
;
129 struct linux_binprm
*bprm
;
131 struct emulated_sigtable sync_signal
;
132 struct emulated_sigtable sigtab
[TARGET_NSIG
];
133 /* This thread's signal mask, as requested by the guest program.
134 * The actual signal mask of this thread may differ:
135 * + we don't let SIGSEGV and SIGBUS be blocked while running guest code
136 * + sometimes we block all signals to avoid races
138 sigset_t signal_mask
;
139 /* The signal mask imposed by a guest sigsuspend syscall, if we are
140 * currently in the middle of such a syscall
142 sigset_t sigsuspend_mask
;
143 /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */
146 /* Nonzero if process_pending_signals() needs to do something (either
147 * handle a pending signal or unblock signals).
148 * This flag is written from a signal handler so should be accessed via
149 * the atomic_read() and atomic_set() functions. (It is not accessed
150 * from multiple threads.)
154 /* This thread's sigaltstack, if it has one */
155 struct target_sigaltstack sigaltstack_used
;
156 } __attribute__((aligned(16))) TaskState
;
158 extern char *exec_path
;
159 void init_task_state(TaskState
*ts
);
160 void task_settid(TaskState
*);
161 void stop_all_tasks(void);
162 extern const char *qemu_uname_release
;
163 extern unsigned long mmap_min_addr
;
165 /* ??? See if we can avoid exposing so much of the loader internals. */
167 /* Read a good amount of data initially, to hopefully get all the
168 program headers loaded. */
169 #define BPRM_BUF_SIZE 1024
172 * This structure is used to hold the arguments that are
173 * used when loading binaries.
175 struct linux_binprm
{
176 char buf
[BPRM_BUF_SIZE
] __attribute__((aligned
));
183 char * filename
; /* Name of binary */
184 int (*core_dump
)(int, const CPUArchState
*); /* coredump routine */
187 typedef struct IOCTLEntry IOCTLEntry
;
189 typedef abi_long
do_ioctl_fn(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
190 int fd
, int cmd
, abi_long arg
);
194 unsigned int host_cmd
;
197 do_ioctl_fn
*do_ioctl
;
198 const argtype arg_type
[5];
201 extern IOCTLEntry ioctl_entries
[];
205 #define IOC_RW (IOC_R | IOC_W)
207 void do_init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
);
208 abi_ulong
loader_build_argptr(int envc
, int argc
, abi_ulong sp
,
209 abi_ulong stringp
, int push_ptr
);
210 int loader_exec(int fdexec
, const char *filename
, char **argv
, char **envp
,
211 struct target_pt_regs
* regs
, struct image_info
*infop
,
212 struct linux_binprm
*);
214 /* Returns true if the image uses the FDPIC ABI. If this is the case,
215 * we have to provide some information (loadmap, pt_dynamic_info) such
216 * that the program can be relocated adequately. This is also useful
217 * when handling signals.
219 int info_is_fdpic(struct image_info
*info
);
221 uint32_t get_elf_eflags(int fd
);
222 int load_elf_binary(struct linux_binprm
*bprm
, struct image_info
*info
);
223 int load_flt_binary(struct linux_binprm
*bprm
, struct image_info
*info
);
225 abi_long
memcpy_to_target(abi_ulong dest
, const void *src
,
227 void target_set_brk(abi_ulong new_brk
);
228 abi_long
do_brk(abi_ulong new_brk
);
229 void syscall_init(void);
230 abi_long
do_syscall(void *cpu_env
, int num
, abi_long arg1
,
231 abi_long arg2
, abi_long arg3
, abi_long arg4
,
232 abi_long arg5
, abi_long arg6
, abi_long arg7
,
234 extern __thread CPUState
*thread_cpu
;
235 void cpu_loop(CPUArchState
*env
);
236 const char *target_strerror(int err
);
237 int get_osversion(void);
238 void init_qemu_uname_release(void);
239 void fork_start(void);
240 void fork_end(int child
);
244 * @image_name: the executable being loaded
245 * @loaddr: the lowest fixed address in the executable
246 * @hiaddr: the highest fixed address in the executable
248 * Creates the initial guest address space in the host memory space.
250 * If @loaddr == 0, then no address in the executable is fixed,
251 * i.e. it is fully relocatable. In that case @hiaddr is the size
254 * This function will not return if a valid value for guest_base
255 * cannot be chosen. On return, the executable loader can expect
257 * target_mmap(loaddr, hiaddr - loaddr, ...)
261 void probe_guest_base(const char *image_name
,
262 abi_ulong loaddr
, abi_ulong hiaddr
);
264 #include "qemu/log.h"
270 * @int number: number of system call to make
271 * ...: arguments to the system call
273 * Call a system call if guest signal not pending.
274 * This has the same API as the libc syscall() function, except that it
275 * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending.
277 * Returns: the system call result, or -1 with an error code in errno
278 * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing
279 * with any of the host errno values.)
282 /* A guide to using safe_syscall() to handle interactions between guest
283 * syscalls and guest signals:
285 * Guest syscalls come in two flavours:
287 * (1) Non-interruptible syscalls
289 * These are guest syscalls that never get interrupted by signals and
290 * so never return EINTR. They can be implemented straightforwardly in
291 * QEMU: just make sure that if the implementation code has to make any
292 * blocking calls that those calls are retried if they return EINTR.
293 * It's also OK to implement these with safe_syscall, though it will be
294 * a little less efficient if a signal is delivered at the 'wrong' moment.
296 * Some non-interruptible syscalls need to be handled using block_signals()
297 * to block signals for the duration of the syscall. This mainly applies
298 * to code which needs to modify the data structures used by the
299 * host_signal_handler() function and the functions it calls, including
300 * all syscalls which change the thread's signal mask.
302 * (2) Interruptible syscalls
304 * These are guest syscalls that can be interrupted by signals and
305 * for which we need to either return EINTR or arrange for the guest
306 * syscall to be restarted. This category includes both syscalls which
307 * always restart (and in the kernel return -ERESTARTNOINTR), ones
308 * which only restart if there is no handler (kernel returns -ERESTARTNOHAND
309 * or -ERESTART_RESTARTBLOCK), and the most common kind which restart
310 * if the handler was registered with SA_RESTART (kernel returns
311 * -ERESTARTSYS). System calls which are only interruptible in some
312 * situations (like 'open') also need to be handled this way.
314 * Here it is important that the host syscall is made
315 * via this safe_syscall() function, and *not* via the host libc.
316 * If the host libc is used then the implementation will appear to work
317 * most of the time, but there will be a race condition where a
318 * signal could arrive just before we make the host syscall inside libc,
319 * and then then guest syscall will not correctly be interrupted.
320 * Instead the implementation of the guest syscall can use the safe_syscall
321 * function but otherwise just return the result or errno in the usual
322 * way; the main loop code will take care of restarting the syscall
325 * (If the implementation needs to make multiple host syscalls this is
326 * OK; any which might really block must be via safe_syscall(); for those
327 * which are only technically blocking (ie which we know in practice won't
328 * stay in the host kernel indefinitely) it's OK to use libc if necessary.
329 * You must be able to cope with backing out correctly if some safe_syscall
330 * you make in the implementation returns either -TARGET_ERESTARTSYS or
333 * block_signals() cannot be used for interruptible syscalls.
336 * How and why the safe_syscall implementation works:
338 * The basic setup is that we make the host syscall via a known
339 * section of host native assembly. If a signal occurs, our signal
340 * handler checks the interrupted host PC against the addresse of that
341 * known section. If the PC is before or at the address of the syscall
342 * instruction then we change the PC to point at a "return
343 * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler
344 * (causing the safe_syscall() call to immediately return that value).
345 * Then in the main.c loop if we see this magic return value we adjust
346 * the guest PC to wind it back to before the system call, and invoke
347 * the guest signal handler as usual.
349 * This winding-back will happen in two cases:
350 * (1) signal came in just before we took the host syscall (a race);
351 * in this case we'll take the guest signal and have another go
352 * at the syscall afterwards, and this is indistinguishable for the
353 * guest from the timing having been different such that the guest
354 * signal really did win the race
355 * (2) signal came in while the host syscall was blocking, and the
356 * host kernel decided the syscall should be restarted;
357 * in this case we want to restart the guest syscall also, and so
358 * rewinding is the right thing. (Note that "restart" semantics mean
359 * "first call the signal handler, then reattempt the syscall".)
360 * The other situation to consider is when a signal came in while the
361 * host syscall was blocking, and the host kernel decided that the syscall
362 * should not be restarted; in this case QEMU's host signal handler will
363 * be invoked with the PC pointing just after the syscall instruction,
364 * with registers indicating an EINTR return; the special code in the
365 * handler will not kick in, and we will return EINTR to the guest as
368 * Notice that we can leave the host kernel to make the decision for
369 * us about whether to do a restart of the syscall or not; we do not
370 * need to check SA_RESTART flags in QEMU or distinguish the various
371 * kinds of restartability.
373 #ifdef HAVE_SAFE_SYSCALL
374 /* The core part of this function is implemented in assembly */
375 extern long safe_syscall_base(int *pending
, long number
, ...);
377 #define safe_syscall(...) \
380 int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \
381 ret_ = safe_syscall_base(psp_, __VA_ARGS__); \
382 if (is_error(ret_)) { \
391 /* Fallback for architectures which don't yet provide a safe-syscall assembly
392 * fragment; note that this is racy!
393 * This should go away when all host architectures have been updated.
395 #define safe_syscall syscall
400 int host_to_target_waitstatus(int status
);
403 void print_syscall(int num
,
404 abi_long arg1
, abi_long arg2
, abi_long arg3
,
405 abi_long arg4
, abi_long arg5
, abi_long arg6
);
406 void print_syscall_ret(int num
, abi_long ret
,
407 abi_long arg1
, abi_long arg2
, abi_long arg3
,
408 abi_long arg4
, abi_long arg5
, abi_long arg6
);
410 * print_taken_signal:
411 * @target_signum: target signal being taken
412 * @tinfo: target_siginfo_t which will be passed to the guest for the signal
414 * Print strace output indicating that this signal is being taken by the guest,
415 * in a format similar to:
416 * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} ---
418 void print_taken_signal(int target_signum
, const target_siginfo_t
*tinfo
);
421 void process_pending_signals(CPUArchState
*cpu_env
);
422 void signal_init(void);
423 int queue_signal(CPUArchState
*env
, int sig
, int si_type
,
424 target_siginfo_t
*info
);
425 void host_to_target_siginfo(target_siginfo_t
*tinfo
, const siginfo_t
*info
);
426 void target_to_host_siginfo(siginfo_t
*info
, const target_siginfo_t
*tinfo
);
427 int target_to_host_signal(int sig
);
428 int host_to_target_signal(int sig
);
429 long do_sigreturn(CPUArchState
*env
);
430 long do_rt_sigreturn(CPUArchState
*env
);
431 abi_long
do_sigaltstack(abi_ulong uss_addr
, abi_ulong uoss_addr
, abi_ulong sp
);
432 int do_sigprocmask(int how
, const sigset_t
*set
, sigset_t
*oldset
);
433 abi_long
do_swapcontext(CPUArchState
*env
, abi_ulong uold_ctx
,
434 abi_ulong unew_ctx
, abi_long ctx_size
);
436 * block_signals: block all signals while handling this guest syscall
438 * Block all signals, and arrange that the signal mask is returned to
439 * its correct value for the guest before we resume execution of guest code.
440 * If this function returns non-zero, then the caller should immediately
441 * return -TARGET_ERESTARTSYS to the main loop, which will take the pending
442 * signal and restart execution of the syscall.
443 * If block_signals() returns zero, then the caller can continue with
444 * emulation of the system call knowing that no signals can be taken
445 * (and therefore that no race conditions will result).
446 * This should only be called once, because if it is called a second time
447 * it will always return non-zero. (Think of it like a mutex that can't
448 * be recursively locked.)
449 * Signals will be unblocked again by process_pending_signals().
451 * Return value: non-zero if there was a pending signal, zero if not.
453 int block_signals(void); /* Returns non zero if signal pending */
457 void save_v86_state(CPUX86State
*env
);
458 void handle_vm86_trap(CPUX86State
*env
, int trapno
);
459 void handle_vm86_fault(CPUX86State
*env
);
460 int do_vm86(CPUX86State
*env
, long subfunction
, abi_ulong v86_addr
);
461 #elif defined(TARGET_SPARC64)
462 void sparc64_set_context(CPUSPARCState
*env
);
463 void sparc64_get_context(CPUSPARCState
*env
);
467 int target_mprotect(abi_ulong start
, abi_ulong len
, int prot
);
468 abi_long
target_mmap(abi_ulong start
, abi_ulong len
, int prot
,
469 int flags
, int fd
, abi_ulong offset
);
470 int target_munmap(abi_ulong start
, abi_ulong len
);
471 abi_long
target_mremap(abi_ulong old_addr
, abi_ulong old_size
,
472 abi_ulong new_size
, unsigned long flags
,
474 extern unsigned long last_brk
;
475 extern abi_ulong mmap_next_start
;
476 abi_ulong
mmap_find_vma(abi_ulong
, abi_ulong
, abi_ulong
);
477 void mmap_fork_start(void);
478 void mmap_fork_end(int child
);
481 extern unsigned long guest_stack_size
;
485 #define VERIFY_READ 0
486 #define VERIFY_WRITE 1 /* implies read access */
488 static inline int access_ok(int type
, abi_ulong addr
, abi_ulong size
)
490 return guest_addr_valid(addr
) &&
491 (size
== 0 || guest_addr_valid(addr
+ size
- 1)) &&
492 page_check_range((target_ulong
)addr
, size
,
493 (type
== VERIFY_READ
) ? PAGE_READ
: (PAGE_READ
| PAGE_WRITE
)) == 0;
496 /* NOTE __get_user and __put_user use host pointers and don't check access.
497 These are usually used to access struct data members once the struct has
498 been locked - usually with lock_user_struct. */
502 * - Use __builtin_choose_expr to avoid type promotion from ?:,
503 * - Invalid sizes result in a compile time error stemming from
504 * the fact that abort has no parameters.
505 * - It's easier to use the endian-specific unaligned load/store
506 * functions than host-endian unaligned load/store plus tswapN.
507 * - The pragmas are necessary only to silence a clang false-positive
508 * warning: see https://bugs.llvm.org/show_bug.cgi?id=39113 .
509 * - gcc has bugs in its _Pragma() support in some versions, eg
510 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83256 -- so we only
511 * include the warning-suppression pragmas for clang
513 #if defined(__clang__) && __has_warning("-Waddress-of-packed-member")
514 #define PRAGMA_DISABLE_PACKED_WARNING \
515 _Pragma("GCC diagnostic push"); \
516 _Pragma("GCC diagnostic ignored \"-Waddress-of-packed-member\"")
518 #define PRAGMA_REENABLE_PACKED_WARNING \
519 _Pragma("GCC diagnostic pop")
522 #define PRAGMA_DISABLE_PACKED_WARNING
523 #define PRAGMA_REENABLE_PACKED_WARNING
526 #define __put_user_e(x, hptr, e) \
528 PRAGMA_DISABLE_PACKED_WARNING; \
529 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \
530 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \
531 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \
532 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \
533 ((hptr), (x)), (void)0); \
534 PRAGMA_REENABLE_PACKED_WARNING; \
537 #define __get_user_e(x, hptr, e) \
539 PRAGMA_DISABLE_PACKED_WARNING; \
540 ((x) = (typeof(*hptr))( \
541 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \
542 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \
543 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \
544 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \
546 PRAGMA_REENABLE_PACKED_WARNING; \
550 #ifdef TARGET_WORDS_BIGENDIAN
551 # define __put_user(x, hptr) __put_user_e(x, hptr, be)
552 # define __get_user(x, hptr) __get_user_e(x, hptr, be)
554 # define __put_user(x, hptr) __put_user_e(x, hptr, le)
555 # define __get_user(x, hptr) __get_user_e(x, hptr, le)
558 /* put_user()/get_user() take a guest address and check access */
559 /* These are usually used to access an atomic data type, such as an int,
560 * that has been passed by address. These internally perform locking
561 * and unlocking on the data type.
563 #define put_user(x, gaddr, target_type) \
565 abi_ulong __gaddr = (gaddr); \
566 target_type *__hptr; \
567 abi_long __ret = 0; \
568 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
569 __put_user((x), __hptr); \
570 unlock_user(__hptr, __gaddr, sizeof(target_type)); \
572 __ret = -TARGET_EFAULT; \
576 #define get_user(x, gaddr, target_type) \
578 abi_ulong __gaddr = (gaddr); \
579 target_type *__hptr; \
580 abi_long __ret = 0; \
581 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
582 __get_user((x), __hptr); \
583 unlock_user(__hptr, __gaddr, 0); \
585 /* avoid warning */ \
587 __ret = -TARGET_EFAULT; \
592 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
593 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
594 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
595 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
596 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
597 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
598 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
599 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
600 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
601 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
603 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
604 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
605 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
606 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
607 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
608 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
609 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
610 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
611 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
612 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
614 /* copy_from_user() and copy_to_user() are usually used to copy data
615 * buffers between the target and host. These internally perform
616 * locking/unlocking of the memory.
618 abi_long
copy_from_user(void *hptr
, abi_ulong gaddr
, size_t len
);
619 abi_long
copy_to_user(abi_ulong gaddr
, void *hptr
, size_t len
);
621 /* Functions for accessing guest memory. The tget and tput functions
622 read/write single values, byteswapping as necessary. The lock_user function
623 gets a pointer to a contiguous area of guest memory, but does not perform
624 any byteswapping. lock_user may return either a pointer to the guest
625 memory, or a temporary buffer. */
627 /* Lock an area of guest memory into the host. If copy is true then the
628 host area will have the same contents as the guest. */
629 static inline void *lock_user(int type
, abi_ulong guest_addr
, long len
, int copy
)
631 if (!access_ok(type
, guest_addr
, len
))
636 addr
= g_malloc(len
);
638 memcpy(addr
, g2h(guest_addr
), len
);
640 memset(addr
, 0, len
);
644 return g2h(guest_addr
);
648 /* Unlock an area of guest memory. The first LEN bytes must be
649 flushed back to guest memory. host_ptr = NULL is explicitly
650 allowed and does nothing. */
651 static inline void unlock_user(void *host_ptr
, abi_ulong guest_addr
,
658 if (host_ptr
== g2h(guest_addr
))
661 memcpy(g2h(guest_addr
), host_ptr
, len
);
666 /* Return the length of a string in target memory or -TARGET_EFAULT if
668 abi_long
target_strlen(abi_ulong gaddr
);
670 /* Like lock_user but for null terminated strings. */
671 static inline void *lock_user_string(abi_ulong guest_addr
)
674 len
= target_strlen(guest_addr
);
677 return lock_user(VERIFY_READ
, guest_addr
, (long)(len
+ 1), 1);
680 /* Helper macros for locking/unlocking a target struct. */
681 #define lock_user_struct(type, host_ptr, guest_addr, copy) \
682 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
683 #define unlock_user_struct(host_ptr, guest_addr, copy) \
684 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
688 static inline int is_error(abi_long ret
)
690 return (abi_ulong
)ret
>= (abi_ulong
)(-4096);
693 #if TARGET_ABI_BITS == 32
694 static inline uint64_t target_offset64(uint32_t word0
, uint32_t word1
)
696 #ifdef TARGET_WORDS_BIGENDIAN
697 return ((uint64_t)word0
<< 32) | word1
;
699 return ((uint64_t)word1
<< 32) | word0
;
702 #else /* TARGET_ABI_BITS == 32 */
703 static inline uint64_t target_offset64(uint64_t word0
, uint64_t word1
)
707 #endif /* TARGET_ABI_BITS != 32 */
710 * preexit_cleanup: housekeeping before the guest exits
713 * code: the exit code
715 void preexit_cleanup(CPUArchState
*env
, int code
);
717 /* Include target-specific struct and function definitions;
718 * they may need access to the target-independent structures
719 * above, so include them last.
721 #include "target_cpu.h"
722 #include "target_structs.h"