tests/unit/test-qmp-event: Simplify event emission check
[qemu/armbru.git] / bsd-user / signal.c
blobca31470772fe42c6a9510bdee8e091b5310a2475
1 /*
2 * Emulation of BSD signals
4 * Copyright (c) 2003 - 2008 Fabrice Bellard
5 * Copyright (c) 2013 Stacey Son
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu/osdep.h"
22 #include "qemu/log.h"
23 #include "qemu.h"
24 #include "gdbstub/user.h"
25 #include "signal-common.h"
26 #include "trace.h"
27 #include "hw/core/tcg-cpu-ops.h"
28 #include "host-signal.h"
30 static struct target_sigaction sigact_table[TARGET_NSIG];
31 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc);
32 static void target_to_host_sigset_internal(sigset_t *d,
33 const target_sigset_t *s);
35 static inline int on_sig_stack(TaskState *ts, unsigned long sp)
37 return sp - ts->sigaltstack_used.ss_sp < ts->sigaltstack_used.ss_size;
40 static inline int sas_ss_flags(TaskState *ts, unsigned long sp)
42 return ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE :
43 on_sig_stack(ts, sp) ? SS_ONSTACK : 0;
47 * The BSD ABIs use the same signal numbers across all the CPU architectures, so
48 * (unlike Linux) these functions are just the identity mapping. This might not
49 * be true for XyzBSD running on AbcBSD, which doesn't currently work.
51 int host_to_target_signal(int sig)
53 return sig;
56 int target_to_host_signal(int sig)
58 return sig;
61 static inline void target_sigemptyset(target_sigset_t *set)
63 memset(set, 0, sizeof(*set));
66 static inline void target_sigaddset(target_sigset_t *set, int signum)
68 signum--;
69 uint32_t mask = (uint32_t)1 << (signum % TARGET_NSIG_BPW);
70 set->__bits[signum / TARGET_NSIG_BPW] |= mask;
73 static inline int target_sigismember(const target_sigset_t *set, int signum)
75 signum--;
76 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
77 return (set->__bits[signum / TARGET_NSIG_BPW] & mask) != 0;
80 /* Adjust the signal context to rewind out of safe-syscall if we're in it */
81 static inline void rewind_if_in_safe_syscall(void *puc)
83 ucontext_t *uc = (ucontext_t *)puc;
84 uintptr_t pcreg = host_signal_pc(uc);
86 if (pcreg > (uintptr_t)safe_syscall_start
87 && pcreg < (uintptr_t)safe_syscall_end) {
88 host_signal_set_pc(uc, (uintptr_t)safe_syscall_start);
93 * Note: The following take advantage of the BSD signal property that all
94 * signals are available on all architectures.
96 static void host_to_target_sigset_internal(target_sigset_t *d,
97 const sigset_t *s)
99 int i;
101 target_sigemptyset(d);
102 for (i = 1; i <= NSIG; i++) {
103 if (sigismember(s, i)) {
104 target_sigaddset(d, host_to_target_signal(i));
109 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
111 target_sigset_t d1;
112 int i;
114 host_to_target_sigset_internal(&d1, s);
115 for (i = 0; i < _SIG_WORDS; i++) {
116 d->__bits[i] = tswap32(d1.__bits[i]);
120 static void target_to_host_sigset_internal(sigset_t *d,
121 const target_sigset_t *s)
123 int i;
125 sigemptyset(d);
126 for (i = 1; i <= TARGET_NSIG; i++) {
127 if (target_sigismember(s, i)) {
128 sigaddset(d, target_to_host_signal(i));
133 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
135 target_sigset_t s1;
136 int i;
138 for (i = 0; i < TARGET_NSIG_WORDS; i++) {
139 s1.__bits[i] = tswap32(s->__bits[i]);
141 target_to_host_sigset_internal(d, &s1);
144 static bool has_trapno(int tsig)
146 return tsig == TARGET_SIGILL ||
147 tsig == TARGET_SIGFPE ||
148 tsig == TARGET_SIGSEGV ||
149 tsig == TARGET_SIGBUS ||
150 tsig == TARGET_SIGTRAP;
153 /* Siginfo conversion. */
156 * Populate tinfo w/o swapping based on guessing which fields are valid.
158 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
159 const siginfo_t *info)
161 int sig = host_to_target_signal(info->si_signo);
162 int si_code = info->si_code;
163 int si_type;
166 * Make sure we that the variable portion of the target siginfo is zeroed
167 * out so we don't leak anything into that.
169 memset(&tinfo->_reason, 0, sizeof(tinfo->_reason));
172 * This is awkward, because we have to use a combination of the si_code and
173 * si_signo to figure out which of the union's members are valid.o We
174 * therefore make our best guess.
176 * Once we have made our guess, we record it in the top 16 bits of
177 * the si_code, so that tswap_siginfo() later can use it.
178 * tswap_siginfo() will strip these top bits out before writing
179 * si_code to the guest (sign-extending the lower bits).
181 tinfo->si_signo = sig;
182 tinfo->si_errno = info->si_errno;
183 tinfo->si_code = info->si_code;
184 tinfo->si_pid = info->si_pid;
185 tinfo->si_uid = info->si_uid;
186 tinfo->si_status = info->si_status;
187 tinfo->si_addr = (abi_ulong)(unsigned long)info->si_addr;
189 * si_value is opaque to kernel. On all FreeBSD platforms,
190 * sizeof(sival_ptr) >= sizeof(sival_int) so the following
191 * always will copy the larger element.
193 tinfo->si_value.sival_ptr =
194 (abi_ulong)(unsigned long)info->si_value.sival_ptr;
196 switch (si_code) {
198 * All the SI_xxx codes that are defined here are global to
199 * all the signals (they have values that none of the other,
200 * more specific signal info will set).
202 case SI_USER:
203 case SI_LWP:
204 case SI_KERNEL:
205 case SI_QUEUE:
206 case SI_ASYNCIO:
208 * Only the fixed parts are valid (though FreeBSD doesn't always
209 * set all the fields to non-zero values.
211 si_type = QEMU_SI_NOINFO;
212 break;
213 case SI_TIMER:
214 tinfo->_reason._timer._timerid = info->_reason._timer._timerid;
215 tinfo->_reason._timer._overrun = info->_reason._timer._overrun;
216 si_type = QEMU_SI_TIMER;
217 break;
218 case SI_MESGQ:
219 tinfo->_reason._mesgq._mqd = info->_reason._mesgq._mqd;
220 si_type = QEMU_SI_MESGQ;
221 break;
222 default:
224 * We have to go based on the signal number now to figure out
225 * what's valid.
227 si_type = QEMU_SI_NOINFO;
228 if (has_trapno(sig)) {
229 tinfo->_reason._fault._trapno = info->_reason._fault._trapno;
230 si_type = QEMU_SI_FAULT;
232 #ifdef TARGET_SIGPOLL
234 * FreeBSD never had SIGPOLL, but emulates it for Linux so there's
235 * a chance it may popup in the future.
237 if (sig == TARGET_SIGPOLL) {
238 tinfo->_reason._poll._band = info->_reason._poll._band;
239 si_type = QEMU_SI_POLL;
241 #endif
243 * Unsure that this can actually be generated, and our support for
244 * capsicum is somewhere between weak and non-existent, but if we get
245 * one, then we know what to save.
247 #ifdef QEMU_SI_CAPSICUM
248 if (sig == TARGET_SIGTRAP) {
249 tinfo->_reason._capsicum._syscall =
250 info->_reason._capsicum._syscall;
251 si_type = QEMU_SI_CAPSICUM;
253 #endif
254 break;
256 tinfo->si_code = deposit32(si_code, 24, 8, si_type);
259 static void tswap_siginfo(target_siginfo_t *tinfo, const target_siginfo_t *info)
261 int si_type = extract32(info->si_code, 24, 8);
262 int si_code = sextract32(info->si_code, 0, 24);
264 __put_user(info->si_signo, &tinfo->si_signo);
265 __put_user(info->si_errno, &tinfo->si_errno);
266 __put_user(si_code, &tinfo->si_code); /* Zero out si_type, it's internal */
267 __put_user(info->si_pid, &tinfo->si_pid);
268 __put_user(info->si_uid, &tinfo->si_uid);
269 __put_user(info->si_status, &tinfo->si_status);
270 __put_user(info->si_addr, &tinfo->si_addr);
272 * Unswapped, because we passed it through mostly untouched. si_value is
273 * opaque to the kernel, so we didn't bother with potentially wasting cycles
274 * to swap it into host byte order.
276 tinfo->si_value.sival_ptr = info->si_value.sival_ptr;
279 * We can use our internal marker of which fields in the structure
280 * are valid, rather than duplicating the guesswork of
281 * host_to_target_siginfo_noswap() here.
283 switch (si_type) {
284 case QEMU_SI_NOINFO: /* No additional info */
285 break;
286 case QEMU_SI_FAULT:
287 __put_user(info->_reason._fault._trapno,
288 &tinfo->_reason._fault._trapno);
289 break;
290 case QEMU_SI_TIMER:
291 __put_user(info->_reason._timer._timerid,
292 &tinfo->_reason._timer._timerid);
293 __put_user(info->_reason._timer._overrun,
294 &tinfo->_reason._timer._overrun);
295 break;
296 case QEMU_SI_MESGQ:
297 __put_user(info->_reason._mesgq._mqd, &tinfo->_reason._mesgq._mqd);
298 break;
299 case QEMU_SI_POLL:
300 /* Note: Not generated on FreeBSD */
301 __put_user(info->_reason._poll._band, &tinfo->_reason._poll._band);
302 break;
303 #ifdef QEMU_SI_CAPSICUM
304 case QEMU_SI_CAPSICUM:
305 __put_user(info->_reason._capsicum._syscall,
306 &tinfo->_reason._capsicum._syscall);
307 break;
308 #endif
309 default:
310 g_assert_not_reached();
314 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info)
316 host_to_target_siginfo_noswap(tinfo, info);
317 tswap_siginfo(tinfo, tinfo);
320 int block_signals(void)
322 TaskState *ts = (TaskState *)thread_cpu->opaque;
323 sigset_t set;
326 * It's OK to block everything including SIGSEGV, because we won't run any
327 * further guest code before unblocking signals in
328 * process_pending_signals(). We depend on the FreeBSD behavior here where
329 * this will only affect this thread's signal mask. We don't use
330 * pthread_sigmask which might seem more correct because that routine also
331 * does odd things with SIGCANCEL to implement pthread_cancel().
333 sigfillset(&set);
334 sigprocmask(SIG_SETMASK, &set, 0);
336 return qatomic_xchg(&ts->signal_pending, 1);
339 /* Returns 1 if given signal should dump core if not handled. */
340 static int core_dump_signal(int sig)
342 switch (sig) {
343 case TARGET_SIGABRT:
344 case TARGET_SIGFPE:
345 case TARGET_SIGILL:
346 case TARGET_SIGQUIT:
347 case TARGET_SIGSEGV:
348 case TARGET_SIGTRAP:
349 case TARGET_SIGBUS:
350 return 1;
351 default:
352 return 0;
356 /* Abort execution with signal. */
357 static G_NORETURN
358 void dump_core_and_abort(int target_sig)
360 CPUState *cpu = thread_cpu;
361 CPUArchState *env = cpu_env(cpu);
362 TaskState *ts = cpu->opaque;
363 int core_dumped = 0;
364 int host_sig;
365 struct sigaction act;
367 host_sig = target_to_host_signal(target_sig);
368 gdb_signalled(env, target_sig);
370 /* Dump core if supported by target binary format */
371 if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) {
372 stop_all_tasks();
373 core_dumped =
374 ((*ts->bprm->core_dump)(target_sig, env) == 0);
376 if (core_dumped) {
377 struct rlimit nodump;
380 * We already dumped the core of target process, we don't want
381 * a coredump of qemu itself.
383 getrlimit(RLIMIT_CORE, &nodump);
384 nodump.rlim_cur = 0;
385 setrlimit(RLIMIT_CORE, &nodump);
386 (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) "
387 "- %s\n", target_sig, strsignal(host_sig), "core dumped");
391 * The proper exit code for dying from an uncaught signal is
392 * -<signal>. The kernel doesn't allow exit() or _exit() to pass
393 * a negative value. To get the proper exit code we need to
394 * actually die from an uncaught signal. Here the default signal
395 * handler is installed, we send ourself a signal and we wait for
396 * it to arrive.
398 memset(&act, 0, sizeof(act));
399 sigfillset(&act.sa_mask);
400 act.sa_handler = SIG_DFL;
401 sigaction(host_sig, &act, NULL);
403 kill(getpid(), host_sig);
406 * Make sure the signal isn't masked (just reuse the mask inside
407 * of act).
409 sigdelset(&act.sa_mask, host_sig);
410 sigsuspend(&act.sa_mask);
412 /* unreachable */
413 abort();
417 * Queue a signal so that it will be send to the virtual CPU as soon as
418 * possible.
420 void queue_signal(CPUArchState *env, int sig, int si_type,
421 target_siginfo_t *info)
423 CPUState *cpu = env_cpu(env);
424 TaskState *ts = cpu->opaque;
426 trace_user_queue_signal(env, sig);
428 info->si_code = deposit32(info->si_code, 24, 8, si_type);
430 ts->sync_signal.info = *info;
431 ts->sync_signal.pending = sig;
432 /* Signal that a new signal is pending. */
433 qatomic_set(&ts->signal_pending, 1);
434 return;
437 static int fatal_signal(int sig)
440 switch (sig) {
441 case TARGET_SIGCHLD:
442 case TARGET_SIGURG:
443 case TARGET_SIGWINCH:
444 case TARGET_SIGINFO:
445 /* Ignored by default. */
446 return 0;
447 case TARGET_SIGCONT:
448 case TARGET_SIGSTOP:
449 case TARGET_SIGTSTP:
450 case TARGET_SIGTTIN:
451 case TARGET_SIGTTOU:
452 /* Job control signals. */
453 return 0;
454 default:
455 return 1;
460 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
461 * 'force' part is handled in process_pending_signals().
463 void force_sig_fault(int sig, int code, abi_ulong addr)
465 CPUState *cpu = thread_cpu;
466 CPUArchState *env = cpu_env(cpu);
467 target_siginfo_t info = {};
469 info.si_signo = sig;
470 info.si_errno = 0;
471 info.si_code = code;
472 info.si_addr = addr;
473 queue_signal(env, sig, QEMU_SI_FAULT, &info);
476 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
478 CPUState *cpu = thread_cpu;
479 TaskState *ts = cpu->opaque;
480 target_siginfo_t tinfo;
481 ucontext_t *uc = puc;
482 struct emulated_sigtable *k;
483 int guest_sig;
484 uintptr_t pc = 0;
485 bool sync_sig = false;
488 * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
489 * handling wrt signal blocking and unwinding.
491 if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) {
492 MMUAccessType access_type;
493 uintptr_t host_addr;
494 abi_ptr guest_addr;
495 bool is_write;
497 host_addr = (uintptr_t)info->si_addr;
500 * Convert forcefully to guest address space: addresses outside
501 * reserved_va are still valid to report via SEGV_MAPERR.
503 guest_addr = h2g_nocheck(host_addr);
505 pc = host_signal_pc(uc);
506 is_write = host_signal_write(info, uc);
507 access_type = adjust_signal_pc(&pc, is_write);
509 if (host_sig == SIGSEGV) {
510 bool maperr = true;
512 if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) {
513 /* If this was a write to a TB protected page, restart. */
514 if (is_write &&
515 handle_sigsegv_accerr_write(cpu, &uc->uc_sigmask,
516 pc, guest_addr)) {
517 return;
521 * With reserved_va, the whole address space is PROT_NONE,
522 * which means that we may get ACCERR when we want MAPERR.
524 if (page_get_flags(guest_addr) & PAGE_VALID) {
525 maperr = false;
526 } else {
527 info->si_code = SEGV_MAPERR;
531 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
532 cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
533 } else {
534 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
535 if (info->si_code == BUS_ADRALN) {
536 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
540 sync_sig = true;
543 /* Get the target signal number. */
544 guest_sig = host_to_target_signal(host_sig);
545 if (guest_sig < 1 || guest_sig > TARGET_NSIG) {
546 return;
548 trace_user_host_signal(cpu, host_sig, guest_sig);
550 host_to_target_siginfo_noswap(&tinfo, info);
552 k = &ts->sigtab[guest_sig - 1];
553 k->info = tinfo;
554 k->pending = guest_sig;
555 ts->signal_pending = 1;
558 * For synchronous signals, unwind the cpu state to the faulting
559 * insn and then exit back to the main loop so that the signal
560 * is delivered immediately.
562 if (sync_sig) {
563 cpu->exception_index = EXCP_INTERRUPT;
564 cpu_loop_exit_restore(cpu, pc);
567 rewind_if_in_safe_syscall(puc);
570 * Block host signals until target signal handler entered. We
571 * can't block SIGSEGV or SIGBUS while we're executing guest
572 * code in case the guest code provokes one in the window between
573 * now and it getting out to the main loop. Signals will be
574 * unblocked again in process_pending_signals().
576 sigfillset(&uc->uc_sigmask);
577 sigdelset(&uc->uc_sigmask, SIGSEGV);
578 sigdelset(&uc->uc_sigmask, SIGBUS);
580 /* Interrupt the virtual CPU as soon as possible. */
581 cpu_exit(thread_cpu);
584 /* do_sigaltstack() returns target values and errnos. */
585 /* compare to kern/kern_sig.c sys_sigaltstack() and kern_sigaltstack() */
586 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp)
588 TaskState *ts = (TaskState *)thread_cpu->opaque;
589 int ret;
590 target_stack_t oss;
592 if (uoss_addr) {
593 /* Save current signal stack params */
594 oss.ss_sp = tswapl(ts->sigaltstack_used.ss_sp);
595 oss.ss_size = tswapl(ts->sigaltstack_used.ss_size);
596 oss.ss_flags = tswapl(sas_ss_flags(ts, sp));
599 if (uss_addr) {
600 target_stack_t *uss;
601 target_stack_t ss;
602 size_t minstacksize = TARGET_MINSIGSTKSZ;
604 ret = -TARGET_EFAULT;
605 if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) {
606 goto out;
608 __get_user(ss.ss_sp, &uss->ss_sp);
609 __get_user(ss.ss_size, &uss->ss_size);
610 __get_user(ss.ss_flags, &uss->ss_flags);
611 unlock_user_struct(uss, uss_addr, 0);
613 ret = -TARGET_EPERM;
614 if (on_sig_stack(ts, sp)) {
615 goto out;
618 ret = -TARGET_EINVAL;
619 if (ss.ss_flags != TARGET_SS_DISABLE
620 && ss.ss_flags != TARGET_SS_ONSTACK
621 && ss.ss_flags != 0) {
622 goto out;
625 if (ss.ss_flags == TARGET_SS_DISABLE) {
626 ss.ss_size = 0;
627 ss.ss_sp = 0;
628 } else {
629 ret = -TARGET_ENOMEM;
630 if (ss.ss_size < minstacksize) {
631 goto out;
635 ts->sigaltstack_used.ss_sp = ss.ss_sp;
636 ts->sigaltstack_used.ss_size = ss.ss_size;
639 if (uoss_addr) {
640 ret = -TARGET_EFAULT;
641 if (copy_to_user(uoss_addr, &oss, sizeof(oss))) {
642 goto out;
646 ret = 0;
647 out:
648 return ret;
651 /* do_sigaction() return host values and errnos */
652 int do_sigaction(int sig, const struct target_sigaction *act,
653 struct target_sigaction *oact)
655 struct target_sigaction *k;
656 struct sigaction act1;
657 int host_sig;
658 int ret = 0;
660 if (sig < 1 || sig > TARGET_NSIG) {
661 return -TARGET_EINVAL;
664 if ((sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP) &&
665 act != NULL && act->_sa_handler != TARGET_SIG_DFL) {
666 return -TARGET_EINVAL;
669 if (block_signals()) {
670 return -TARGET_ERESTART;
673 k = &sigact_table[sig - 1];
674 if (oact) {
675 oact->_sa_handler = tswapal(k->_sa_handler);
676 oact->sa_flags = tswap32(k->sa_flags);
677 oact->sa_mask = k->sa_mask;
679 if (act) {
680 k->_sa_handler = tswapal(act->_sa_handler);
681 k->sa_flags = tswap32(act->sa_flags);
682 k->sa_mask = act->sa_mask;
684 /* Update the host signal state. */
685 host_sig = target_to_host_signal(sig);
686 if (host_sig != SIGSEGV && host_sig != SIGBUS) {
687 memset(&act1, 0, sizeof(struct sigaction));
688 sigfillset(&act1.sa_mask);
689 act1.sa_flags = SA_SIGINFO;
690 if (k->sa_flags & TARGET_SA_RESTART) {
691 act1.sa_flags |= SA_RESTART;
694 * Note: It is important to update the host kernel signal mask to
695 * avoid getting unexpected interrupted system calls.
697 if (k->_sa_handler == TARGET_SIG_IGN) {
698 act1.sa_sigaction = (void *)SIG_IGN;
699 } else if (k->_sa_handler == TARGET_SIG_DFL) {
700 if (fatal_signal(sig)) {
701 act1.sa_sigaction = host_signal_handler;
702 } else {
703 act1.sa_sigaction = (void *)SIG_DFL;
705 } else {
706 act1.sa_sigaction = host_signal_handler;
708 ret = sigaction(host_sig, &act1, NULL);
711 return ret;
714 static inline abi_ulong get_sigframe(struct target_sigaction *ka,
715 CPUArchState *env, size_t frame_size)
717 TaskState *ts = (TaskState *)thread_cpu->opaque;
718 abi_ulong sp;
720 /* Use default user stack */
721 sp = get_sp_from_cpustate(env);
723 if ((ka->sa_flags & TARGET_SA_ONSTACK) && sas_ss_flags(ts, sp) == 0) {
724 sp = ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size;
727 /* TODO: make this a target_arch function / define */
728 #if defined(TARGET_ARM)
729 return (sp - frame_size) & ~7;
730 #elif defined(TARGET_AARCH64)
731 return (sp - frame_size) & ~15;
732 #else
733 return sp - frame_size;
734 #endif
737 /* compare to $M/$M/exec_machdep.c sendsig and sys/kern/kern_sig.c sigexit */
739 static void setup_frame(int sig, int code, struct target_sigaction *ka,
740 target_sigset_t *set, target_siginfo_t *tinfo, CPUArchState *env)
742 struct target_sigframe *frame;
743 abi_ulong frame_addr;
744 int i;
746 frame_addr = get_sigframe(ka, env, sizeof(*frame));
747 trace_user_setup_frame(env, frame_addr);
748 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) {
749 unlock_user_struct(frame, frame_addr, 1);
750 dump_core_and_abort(TARGET_SIGILL);
751 return;
754 memset(frame, 0, sizeof(*frame));
755 setup_sigframe_arch(env, frame_addr, frame, 0);
757 for (i = 0; i < TARGET_NSIG_WORDS; i++) {
758 __put_user(set->__bits[i], &frame->sf_uc.uc_sigmask.__bits[i]);
761 if (tinfo) {
762 frame->sf_si.si_signo = tinfo->si_signo;
763 frame->sf_si.si_errno = tinfo->si_errno;
764 frame->sf_si.si_code = tinfo->si_code;
765 frame->sf_si.si_pid = tinfo->si_pid;
766 frame->sf_si.si_uid = tinfo->si_uid;
767 frame->sf_si.si_status = tinfo->si_status;
768 frame->sf_si.si_addr = tinfo->si_addr;
769 /* see host_to_target_siginfo_noswap() for more details */
770 frame->sf_si.si_value.sival_ptr = tinfo->si_value.sival_ptr;
772 * At this point, whatever is in the _reason union is complete
773 * and in target order, so just copy the whole thing over, even
774 * if it's too large for this specific signal.
775 * host_to_target_siginfo_noswap() and tswap_siginfo() have ensured
776 * that's so.
778 memcpy(&frame->sf_si._reason, &tinfo->_reason,
779 sizeof(tinfo->_reason));
782 set_sigtramp_args(env, sig, frame, frame_addr, ka);
784 unlock_user_struct(frame, frame_addr, 1);
787 static int reset_signal_mask(target_ucontext_t *ucontext)
789 int i;
790 sigset_t blocked;
791 target_sigset_t target_set;
792 TaskState *ts = (TaskState *)thread_cpu->opaque;
794 for (i = 0; i < TARGET_NSIG_WORDS; i++) {
795 __get_user(target_set.__bits[i], &ucontext->uc_sigmask.__bits[i]);
797 target_to_host_sigset_internal(&blocked, &target_set);
798 ts->signal_mask = blocked;
800 return 0;
803 /* See sys/$M/$M/exec_machdep.c sigreturn() */
804 long do_sigreturn(CPUArchState *env, abi_ulong addr)
806 long ret;
807 abi_ulong target_ucontext;
808 target_ucontext_t *ucontext = NULL;
810 /* Get the target ucontext address from the stack frame */
811 ret = get_ucontext_sigreturn(env, addr, &target_ucontext);
812 if (is_error(ret)) {
813 return ret;
815 trace_user_do_sigreturn(env, addr);
816 if (!lock_user_struct(VERIFY_READ, ucontext, target_ucontext, 0)) {
817 goto badframe;
820 /* Set the register state back to before the signal. */
821 if (set_mcontext(env, &ucontext->uc_mcontext, 1)) {
822 goto badframe;
825 /* And reset the signal mask. */
826 if (reset_signal_mask(ucontext)) {
827 goto badframe;
830 unlock_user_struct(ucontext, target_ucontext, 0);
831 return -TARGET_EJUSTRETURN;
833 badframe:
834 if (ucontext != NULL) {
835 unlock_user_struct(ucontext, target_ucontext, 0);
837 return -TARGET_EFAULT;
840 void signal_init(void)
842 TaskState *ts = (TaskState *)thread_cpu->opaque;
843 struct sigaction act;
844 struct sigaction oact;
845 int i;
846 int host_sig;
848 /* Set the signal mask from the host mask. */
849 sigprocmask(0, 0, &ts->signal_mask);
851 sigfillset(&act.sa_mask);
852 act.sa_sigaction = host_signal_handler;
853 act.sa_flags = SA_SIGINFO;
855 for (i = 1; i <= TARGET_NSIG; i++) {
856 host_sig = target_to_host_signal(i);
857 sigaction(host_sig, NULL, &oact);
858 if (oact.sa_sigaction == (void *)SIG_IGN) {
859 sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN;
860 } else if (oact.sa_sigaction == (void *)SIG_DFL) {
861 sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL;
864 * If there's already a handler installed then something has
865 * gone horribly wrong, so don't even try to handle that case.
866 * Install some handlers for our own use. We need at least
867 * SIGSEGV and SIGBUS, to detect exceptions. We can not just
868 * trap all signals because it affects syscall interrupt
869 * behavior. But do trap all default-fatal signals.
871 if (fatal_signal(i)) {
872 sigaction(host_sig, &act, NULL);
877 static void handle_pending_signal(CPUArchState *env, int sig,
878 struct emulated_sigtable *k)
880 CPUState *cpu = env_cpu(env);
881 TaskState *ts = cpu->opaque;
882 struct target_sigaction *sa;
883 int code;
884 sigset_t set;
885 abi_ulong handler;
886 target_siginfo_t tinfo;
887 target_sigset_t target_old_set;
889 trace_user_handle_signal(env, sig);
891 k->pending = 0;
893 sig = gdb_handlesig(cpu, sig);
894 if (!sig) {
895 sa = NULL;
896 handler = TARGET_SIG_IGN;
897 } else {
898 sa = &sigact_table[sig - 1];
899 handler = sa->_sa_handler;
902 if (do_strace) {
903 print_taken_signal(sig, &k->info);
906 if (handler == TARGET_SIG_DFL) {
908 * default handler : ignore some signal. The other are job
909 * control or fatal.
911 if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN ||
912 sig == TARGET_SIGTTOU) {
913 kill(getpid(), SIGSTOP);
914 } else if (sig != TARGET_SIGCHLD && sig != TARGET_SIGURG &&
915 sig != TARGET_SIGINFO && sig != TARGET_SIGWINCH &&
916 sig != TARGET_SIGCONT) {
917 dump_core_and_abort(sig);
919 } else if (handler == TARGET_SIG_IGN) {
920 /* ignore sig */
921 } else if (handler == TARGET_SIG_ERR) {
922 dump_core_and_abort(sig);
923 } else {
924 /* compute the blocked signals during the handler execution */
925 sigset_t *blocked_set;
927 target_to_host_sigset(&set, &sa->sa_mask);
929 * SA_NODEFER indicates that the current signal should not be
930 * blocked during the handler.
932 if (!(sa->sa_flags & TARGET_SA_NODEFER)) {
933 sigaddset(&set, target_to_host_signal(sig));
937 * Save the previous blocked signal state to restore it at the
938 * end of the signal execution (see do_sigreturn).
940 host_to_target_sigset_internal(&target_old_set, &ts->signal_mask);
942 blocked_set = ts->in_sigsuspend ?
943 &ts->sigsuspend_mask : &ts->signal_mask;
944 sigorset(&ts->signal_mask, blocked_set, &set);
945 ts->in_sigsuspend = false;
946 sigprocmask(SIG_SETMASK, &ts->signal_mask, NULL);
948 /* XXX VM86 on x86 ??? */
950 code = k->info.si_code; /* From host, so no si_type */
951 /* prepare the stack frame of the virtual CPU */
952 if (sa->sa_flags & TARGET_SA_SIGINFO) {
953 tswap_siginfo(&tinfo, &k->info);
954 setup_frame(sig, code, sa, &target_old_set, &tinfo, env);
955 } else {
956 setup_frame(sig, code, sa, &target_old_set, NULL, env);
958 if (sa->sa_flags & TARGET_SA_RESETHAND) {
959 sa->_sa_handler = TARGET_SIG_DFL;
964 void process_pending_signals(CPUArchState *env)
966 CPUState *cpu = env_cpu(env);
967 int sig;
968 sigset_t *blocked_set, set;
969 struct emulated_sigtable *k;
970 TaskState *ts = cpu->opaque;
972 while (qatomic_read(&ts->signal_pending)) {
973 sigfillset(&set);
974 sigprocmask(SIG_SETMASK, &set, 0);
976 restart_scan:
977 sig = ts->sync_signal.pending;
978 if (sig) {
980 * Synchronous signals are forced by the emulated CPU in some way.
981 * If they are set to ignore, restore the default handler (see
982 * sys/kern_sig.c trapsignal() and execsigs() for this behavior)
983 * though maybe this is done only when forcing exit for non SIGCHLD.
985 if (sigismember(&ts->signal_mask, target_to_host_signal(sig)) ||
986 sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) {
987 sigdelset(&ts->signal_mask, target_to_host_signal(sig));
988 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL;
990 handle_pending_signal(env, sig, &ts->sync_signal);
993 k = ts->sigtab;
994 for (sig = 1; sig <= TARGET_NSIG; sig++, k++) {
995 blocked_set = ts->in_sigsuspend ?
996 &ts->sigsuspend_mask : &ts->signal_mask;
997 if (k->pending &&
998 !sigismember(blocked_set, target_to_host_signal(sig))) {
999 handle_pending_signal(env, sig, k);
1001 * Restart scan from the beginning, as handle_pending_signal
1002 * might have resulted in a new synchronous signal (eg SIGSEGV).
1004 goto restart_scan;
1009 * Unblock signals and check one more time. Unblocking signals may cause
1010 * us to take another host signal, which will set signal_pending again.
1012 qatomic_set(&ts->signal_pending, 0);
1013 ts->in_sigsuspend = false;
1014 set = ts->signal_mask;
1015 sigdelset(&set, SIGSEGV);
1016 sigdelset(&set, SIGBUS);
1017 sigprocmask(SIG_SETMASK, &set, 0);
1019 ts->in_sigsuspend = false;
1022 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
1023 MMUAccessType access_type, bool maperr, uintptr_t ra)
1025 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
1027 if (tcg_ops->record_sigsegv) {
1028 tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra);
1031 force_sig_fault(TARGET_SIGSEGV,
1032 maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR,
1033 addr);
1034 cpu->exception_index = EXCP_INTERRUPT;
1035 cpu_loop_exit_restore(cpu, ra);
1038 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
1039 MMUAccessType access_type, uintptr_t ra)
1041 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
1043 if (tcg_ops->record_sigbus) {
1044 tcg_ops->record_sigbus(cpu, addr, access_type, ra);
1047 force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr);
1048 cpu->exception_index = EXCP_INTERRUPT;
1049 cpu_loop_exit_restore(cpu, ra);