migration/rdma: Convert qemu_rdma_write_one() to Error
[qemu/armbru.git] / migration / rdma.c
blob369d30c89583fcd3a129dce6c6fd29f51284ea45
1 /*
2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
5 * Copyright Red Hat, Inc. 2015-2016
7 * Authors:
8 * Michael R. Hines <mrhines@us.ibm.com>
9 * Jiuxing Liu <jl@us.ibm.com>
10 * Daniel P. Berrange <berrange@redhat.com>
12 * This work is licensed under the terms of the GNU GPL, version 2 or
13 * later. See the COPYING file in the top-level directory.
17 #include "qemu/osdep.h"
18 #include "qapi/error.h"
19 #include "qemu/cutils.h"
20 #include "exec/target_page.h"
21 #include "rdma.h"
22 #include "migration.h"
23 #include "migration-stats.h"
24 #include "qemu-file.h"
25 #include "ram.h"
26 #include "qemu/error-report.h"
27 #include "qemu/main-loop.h"
28 #include "qemu/module.h"
29 #include "qemu/rcu.h"
30 #include "qemu/sockets.h"
31 #include "qemu/bitmap.h"
32 #include "qemu/coroutine.h"
33 #include "exec/memory.h"
34 #include <sys/socket.h>
35 #include <netdb.h>
36 #include <arpa/inet.h>
37 #include <rdma/rdma_cma.h>
38 #include "trace.h"
39 #include "qom/object.h"
40 #include "options.h"
41 #include <poll.h>
43 #define RDMA_RESOLVE_TIMEOUT_MS 10000
45 /* Do not merge data if larger than this. */
46 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
47 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
49 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
52 * This is only for non-live state being migrated.
53 * Instead of RDMA_WRITE messages, we use RDMA_SEND
54 * messages for that state, which requires a different
55 * delivery design than main memory.
57 #define RDMA_SEND_INCREMENT 32768
60 * Maximum size infiniband SEND message
62 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
63 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
65 #define RDMA_CONTROL_VERSION_CURRENT 1
67 * Capabilities for negotiation.
69 #define RDMA_CAPABILITY_PIN_ALL 0x01
72 * Add the other flags above to this list of known capabilities
73 * as they are introduced.
75 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
78 * A work request ID is 64-bits and we split up these bits
79 * into 3 parts:
81 * bits 0-15 : type of control message, 2^16
82 * bits 16-29: ram block index, 2^14
83 * bits 30-63: ram block chunk number, 2^34
85 * The last two bit ranges are only used for RDMA writes,
86 * in order to track their completion and potentially
87 * also track unregistration status of the message.
89 #define RDMA_WRID_TYPE_SHIFT 0UL
90 #define RDMA_WRID_BLOCK_SHIFT 16UL
91 #define RDMA_WRID_CHUNK_SHIFT 30UL
93 #define RDMA_WRID_TYPE_MASK \
94 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
96 #define RDMA_WRID_BLOCK_MASK \
97 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
99 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
102 * RDMA migration protocol:
103 * 1. RDMA Writes (data messages, i.e. RAM)
104 * 2. IB Send/Recv (control channel messages)
106 enum {
107 RDMA_WRID_NONE = 0,
108 RDMA_WRID_RDMA_WRITE = 1,
109 RDMA_WRID_SEND_CONTROL = 2000,
110 RDMA_WRID_RECV_CONTROL = 4000,
114 * Work request IDs for IB SEND messages only (not RDMA writes).
115 * This is used by the migration protocol to transmit
116 * control messages (such as device state and registration commands)
118 * We could use more WRs, but we have enough for now.
120 enum {
121 RDMA_WRID_READY = 0,
122 RDMA_WRID_DATA,
123 RDMA_WRID_CONTROL,
124 RDMA_WRID_MAX,
128 * SEND/RECV IB Control Messages.
130 enum {
131 RDMA_CONTROL_NONE = 0,
132 RDMA_CONTROL_ERROR,
133 RDMA_CONTROL_READY, /* ready to receive */
134 RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */
135 RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */
136 RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */
137 RDMA_CONTROL_COMPRESS, /* page contains repeat values */
138 RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */
139 RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */
140 RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */
141 RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */
142 RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
147 * Memory and MR structures used to represent an IB Send/Recv work request.
148 * This is *not* used for RDMA writes, only IB Send/Recv.
150 typedef struct {
151 uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
152 struct ibv_mr *control_mr; /* registration metadata */
153 size_t control_len; /* length of the message */
154 uint8_t *control_curr; /* start of unconsumed bytes */
155 } RDMAWorkRequestData;
158 * Negotiate RDMA capabilities during connection-setup time.
160 typedef struct {
161 uint32_t version;
162 uint32_t flags;
163 } RDMACapabilities;
165 static void caps_to_network(RDMACapabilities *cap)
167 cap->version = htonl(cap->version);
168 cap->flags = htonl(cap->flags);
171 static void network_to_caps(RDMACapabilities *cap)
173 cap->version = ntohl(cap->version);
174 cap->flags = ntohl(cap->flags);
178 * Representation of a RAMBlock from an RDMA perspective.
179 * This is not transmitted, only local.
180 * This and subsequent structures cannot be linked lists
181 * because we're using a single IB message to transmit
182 * the information. It's small anyway, so a list is overkill.
184 typedef struct RDMALocalBlock {
185 char *block_name;
186 uint8_t *local_host_addr; /* local virtual address */
187 uint64_t remote_host_addr; /* remote virtual address */
188 uint64_t offset;
189 uint64_t length;
190 struct ibv_mr **pmr; /* MRs for chunk-level registration */
191 struct ibv_mr *mr; /* MR for non-chunk-level registration */
192 uint32_t *remote_keys; /* rkeys for chunk-level registration */
193 uint32_t remote_rkey; /* rkeys for non-chunk-level registration */
194 int index; /* which block are we */
195 unsigned int src_index; /* (Only used on dest) */
196 bool is_ram_block;
197 int nb_chunks;
198 unsigned long *transit_bitmap;
199 unsigned long *unregister_bitmap;
200 } RDMALocalBlock;
203 * Also represents a RAMblock, but only on the dest.
204 * This gets transmitted by the dest during connection-time
205 * to the source VM and then is used to populate the
206 * corresponding RDMALocalBlock with
207 * the information needed to perform the actual RDMA.
209 typedef struct QEMU_PACKED RDMADestBlock {
210 uint64_t remote_host_addr;
211 uint64_t offset;
212 uint64_t length;
213 uint32_t remote_rkey;
214 uint32_t padding;
215 } RDMADestBlock;
217 static const char *control_desc(unsigned int rdma_control)
219 static const char *strs[] = {
220 [RDMA_CONTROL_NONE] = "NONE",
221 [RDMA_CONTROL_ERROR] = "ERROR",
222 [RDMA_CONTROL_READY] = "READY",
223 [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
224 [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
225 [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
226 [RDMA_CONTROL_COMPRESS] = "COMPRESS",
227 [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
228 [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
229 [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
230 [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
231 [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
234 if (rdma_control > RDMA_CONTROL_UNREGISTER_FINISHED) {
235 return "??BAD CONTROL VALUE??";
238 return strs[rdma_control];
241 static uint64_t htonll(uint64_t v)
243 union { uint32_t lv[2]; uint64_t llv; } u;
244 u.lv[0] = htonl(v >> 32);
245 u.lv[1] = htonl(v & 0xFFFFFFFFULL);
246 return u.llv;
249 static uint64_t ntohll(uint64_t v)
251 union { uint32_t lv[2]; uint64_t llv; } u;
252 u.llv = v;
253 return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
256 static void dest_block_to_network(RDMADestBlock *db)
258 db->remote_host_addr = htonll(db->remote_host_addr);
259 db->offset = htonll(db->offset);
260 db->length = htonll(db->length);
261 db->remote_rkey = htonl(db->remote_rkey);
264 static void network_to_dest_block(RDMADestBlock *db)
266 db->remote_host_addr = ntohll(db->remote_host_addr);
267 db->offset = ntohll(db->offset);
268 db->length = ntohll(db->length);
269 db->remote_rkey = ntohl(db->remote_rkey);
273 * Virtual address of the above structures used for transmitting
274 * the RAMBlock descriptions at connection-time.
275 * This structure is *not* transmitted.
277 typedef struct RDMALocalBlocks {
278 int nb_blocks;
279 bool init; /* main memory init complete */
280 RDMALocalBlock *block;
281 } RDMALocalBlocks;
284 * Main data structure for RDMA state.
285 * While there is only one copy of this structure being allocated right now,
286 * this is the place where one would start if you wanted to consider
287 * having more than one RDMA connection open at the same time.
289 typedef struct RDMAContext {
290 char *host;
291 int port;
292 char *host_port;
294 RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
297 * This is used by *_exchange_send() to figure out whether or not
298 * the initial "READY" message has already been received or not.
299 * This is because other functions may potentially poll() and detect
300 * the READY message before send() does, in which case we need to
301 * know if it completed.
303 int control_ready_expected;
305 /* number of outstanding writes */
306 int nb_sent;
308 /* store info about current buffer so that we can
309 merge it with future sends */
310 uint64_t current_addr;
311 uint64_t current_length;
312 /* index of ram block the current buffer belongs to */
313 int current_index;
314 /* index of the chunk in the current ram block */
315 int current_chunk;
317 bool pin_all;
320 * infiniband-specific variables for opening the device
321 * and maintaining connection state and so forth.
323 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
324 * cm_id->verbs, cm_id->channel, and cm_id->qp.
326 struct rdma_cm_id *cm_id; /* connection manager ID */
327 struct rdma_cm_id *listen_id;
328 bool connected;
330 struct ibv_context *verbs;
331 struct rdma_event_channel *channel;
332 struct ibv_qp *qp; /* queue pair */
333 struct ibv_comp_channel *recv_comp_channel; /* recv completion channel */
334 struct ibv_comp_channel *send_comp_channel; /* send completion channel */
335 struct ibv_pd *pd; /* protection domain */
336 struct ibv_cq *recv_cq; /* recvieve completion queue */
337 struct ibv_cq *send_cq; /* send completion queue */
340 * If a previous write failed (perhaps because of a failed
341 * memory registration, then do not attempt any future work
342 * and remember the error state.
344 bool errored;
345 bool error_reported;
346 bool received_error;
349 * Description of ram blocks used throughout the code.
351 RDMALocalBlocks local_ram_blocks;
352 RDMADestBlock *dest_blocks;
354 /* Index of the next RAMBlock received during block registration */
355 unsigned int next_src_index;
358 * Migration on *destination* started.
359 * Then use coroutine yield function.
360 * Source runs in a thread, so we don't care.
362 int migration_started_on_destination;
364 int total_registrations;
365 int total_writes;
367 int unregister_current, unregister_next;
368 uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
370 GHashTable *blockmap;
372 /* the RDMAContext for return path */
373 struct RDMAContext *return_path;
374 bool is_return_path;
375 } RDMAContext;
377 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
378 OBJECT_DECLARE_SIMPLE_TYPE(QIOChannelRDMA, QIO_CHANNEL_RDMA)
382 struct QIOChannelRDMA {
383 QIOChannel parent;
384 RDMAContext *rdmain;
385 RDMAContext *rdmaout;
386 QEMUFile *file;
387 bool blocking; /* XXX we don't actually honour this yet */
391 * Main structure for IB Send/Recv control messages.
392 * This gets prepended at the beginning of every Send/Recv.
394 typedef struct QEMU_PACKED {
395 uint32_t len; /* Total length of data portion */
396 uint32_t type; /* which control command to perform */
397 uint32_t repeat; /* number of commands in data portion of same type */
398 uint32_t padding;
399 } RDMAControlHeader;
401 static void control_to_network(RDMAControlHeader *control)
403 control->type = htonl(control->type);
404 control->len = htonl(control->len);
405 control->repeat = htonl(control->repeat);
408 static void network_to_control(RDMAControlHeader *control)
410 control->type = ntohl(control->type);
411 control->len = ntohl(control->len);
412 control->repeat = ntohl(control->repeat);
416 * Register a single Chunk.
417 * Information sent by the source VM to inform the dest
418 * to register an single chunk of memory before we can perform
419 * the actual RDMA operation.
421 typedef struct QEMU_PACKED {
422 union QEMU_PACKED {
423 uint64_t current_addr; /* offset into the ram_addr_t space */
424 uint64_t chunk; /* chunk to lookup if unregistering */
425 } key;
426 uint32_t current_index; /* which ramblock the chunk belongs to */
427 uint32_t padding;
428 uint64_t chunks; /* how many sequential chunks to register */
429 } RDMARegister;
431 static bool rdma_errored(RDMAContext *rdma)
433 if (rdma->errored && !rdma->error_reported) {
434 error_report("RDMA is in an error state waiting migration"
435 " to abort!");
436 rdma->error_reported = true;
438 return rdma->errored;
441 static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
443 RDMALocalBlock *local_block;
444 local_block = &rdma->local_ram_blocks.block[reg->current_index];
446 if (local_block->is_ram_block) {
448 * current_addr as passed in is an address in the local ram_addr_t
449 * space, we need to translate this for the destination
451 reg->key.current_addr -= local_block->offset;
452 reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
454 reg->key.current_addr = htonll(reg->key.current_addr);
455 reg->current_index = htonl(reg->current_index);
456 reg->chunks = htonll(reg->chunks);
459 static void network_to_register(RDMARegister *reg)
461 reg->key.current_addr = ntohll(reg->key.current_addr);
462 reg->current_index = ntohl(reg->current_index);
463 reg->chunks = ntohll(reg->chunks);
466 typedef struct QEMU_PACKED {
467 uint32_t value; /* if zero, we will madvise() */
468 uint32_t block_idx; /* which ram block index */
469 uint64_t offset; /* Address in remote ram_addr_t space */
470 uint64_t length; /* length of the chunk */
471 } RDMACompress;
473 static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
475 comp->value = htonl(comp->value);
477 * comp->offset as passed in is an address in the local ram_addr_t
478 * space, we need to translate this for the destination
480 comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
481 comp->offset += rdma->dest_blocks[comp->block_idx].offset;
482 comp->block_idx = htonl(comp->block_idx);
483 comp->offset = htonll(comp->offset);
484 comp->length = htonll(comp->length);
487 static void network_to_compress(RDMACompress *comp)
489 comp->value = ntohl(comp->value);
490 comp->block_idx = ntohl(comp->block_idx);
491 comp->offset = ntohll(comp->offset);
492 comp->length = ntohll(comp->length);
496 * The result of the dest's memory registration produces an "rkey"
497 * which the source VM must reference in order to perform
498 * the RDMA operation.
500 typedef struct QEMU_PACKED {
501 uint32_t rkey;
502 uint32_t padding;
503 uint64_t host_addr;
504 } RDMARegisterResult;
506 static void result_to_network(RDMARegisterResult *result)
508 result->rkey = htonl(result->rkey);
509 result->host_addr = htonll(result->host_addr);
512 static void network_to_result(RDMARegisterResult *result)
514 result->rkey = ntohl(result->rkey);
515 result->host_addr = ntohll(result->host_addr);
518 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
519 uint8_t *data, RDMAControlHeader *resp,
520 int *resp_idx,
521 int (*callback)(RDMAContext *rdma,
522 Error **errp),
523 Error **errp);
525 static inline uint64_t ram_chunk_index(const uint8_t *start,
526 const uint8_t *host)
528 return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
531 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
532 uint64_t i)
534 return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
535 (i << RDMA_REG_CHUNK_SHIFT));
538 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
539 uint64_t i)
541 uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
542 (1UL << RDMA_REG_CHUNK_SHIFT);
544 if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
545 result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
548 return result;
551 static void rdma_add_block(RDMAContext *rdma, const char *block_name,
552 void *host_addr,
553 ram_addr_t block_offset, uint64_t length)
555 RDMALocalBlocks *local = &rdma->local_ram_blocks;
556 RDMALocalBlock *block;
557 RDMALocalBlock *old = local->block;
559 local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1);
561 if (local->nb_blocks) {
562 int x;
564 if (rdma->blockmap) {
565 for (x = 0; x < local->nb_blocks; x++) {
566 g_hash_table_remove(rdma->blockmap,
567 (void *)(uintptr_t)old[x].offset);
568 g_hash_table_insert(rdma->blockmap,
569 (void *)(uintptr_t)old[x].offset,
570 &local->block[x]);
573 memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
574 g_free(old);
577 block = &local->block[local->nb_blocks];
579 block->block_name = g_strdup(block_name);
580 block->local_host_addr = host_addr;
581 block->offset = block_offset;
582 block->length = length;
583 block->index = local->nb_blocks;
584 block->src_index = ~0U; /* Filled in by the receipt of the block list */
585 block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
586 block->transit_bitmap = bitmap_new(block->nb_chunks);
587 bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
588 block->unregister_bitmap = bitmap_new(block->nb_chunks);
589 bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
590 block->remote_keys = g_new0(uint32_t, block->nb_chunks);
592 block->is_ram_block = local->init ? false : true;
594 if (rdma->blockmap) {
595 g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block);
598 trace_rdma_add_block(block_name, local->nb_blocks,
599 (uintptr_t) block->local_host_addr,
600 block->offset, block->length,
601 (uintptr_t) (block->local_host_addr + block->length),
602 BITS_TO_LONGS(block->nb_chunks) *
603 sizeof(unsigned long) * 8,
604 block->nb_chunks);
606 local->nb_blocks++;
610 * Memory regions need to be registered with the device and queue pairs setup
611 * in advanced before the migration starts. This tells us where the RAM blocks
612 * are so that we can register them individually.
614 static int qemu_rdma_init_one_block(RAMBlock *rb, void *opaque)
616 const char *block_name = qemu_ram_get_idstr(rb);
617 void *host_addr = qemu_ram_get_host_addr(rb);
618 ram_addr_t block_offset = qemu_ram_get_offset(rb);
619 ram_addr_t length = qemu_ram_get_used_length(rb);
620 rdma_add_block(opaque, block_name, host_addr, block_offset, length);
621 return 0;
625 * Identify the RAMBlocks and their quantity. They will be references to
626 * identify chunk boundaries inside each RAMBlock and also be referenced
627 * during dynamic page registration.
629 static void qemu_rdma_init_ram_blocks(RDMAContext *rdma)
631 RDMALocalBlocks *local = &rdma->local_ram_blocks;
632 int ret;
634 assert(rdma->blockmap == NULL);
635 memset(local, 0, sizeof *local);
636 ret = foreach_not_ignored_block(qemu_rdma_init_one_block, rdma);
637 assert(!ret);
638 trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
639 rdma->dest_blocks = g_new0(RDMADestBlock,
640 rdma->local_ram_blocks.nb_blocks);
641 local->init = true;
645 * Note: If used outside of cleanup, the caller must ensure that the destination
646 * block structures are also updated
648 static void rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
650 RDMALocalBlocks *local = &rdma->local_ram_blocks;
651 RDMALocalBlock *old = local->block;
652 int x;
654 if (rdma->blockmap) {
655 g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
657 if (block->pmr) {
658 int j;
660 for (j = 0; j < block->nb_chunks; j++) {
661 if (!block->pmr[j]) {
662 continue;
664 ibv_dereg_mr(block->pmr[j]);
665 rdma->total_registrations--;
667 g_free(block->pmr);
668 block->pmr = NULL;
671 if (block->mr) {
672 ibv_dereg_mr(block->mr);
673 rdma->total_registrations--;
674 block->mr = NULL;
677 g_free(block->transit_bitmap);
678 block->transit_bitmap = NULL;
680 g_free(block->unregister_bitmap);
681 block->unregister_bitmap = NULL;
683 g_free(block->remote_keys);
684 block->remote_keys = NULL;
686 g_free(block->block_name);
687 block->block_name = NULL;
689 if (rdma->blockmap) {
690 for (x = 0; x < local->nb_blocks; x++) {
691 g_hash_table_remove(rdma->blockmap,
692 (void *)(uintptr_t)old[x].offset);
696 if (local->nb_blocks > 1) {
698 local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1);
700 if (block->index) {
701 memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
704 if (block->index < (local->nb_blocks - 1)) {
705 memcpy(local->block + block->index, old + (block->index + 1),
706 sizeof(RDMALocalBlock) *
707 (local->nb_blocks - (block->index + 1)));
708 for (x = block->index; x < local->nb_blocks - 1; x++) {
709 local->block[x].index--;
712 } else {
713 assert(block == local->block);
714 local->block = NULL;
717 trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
718 block->offset, block->length,
719 (uintptr_t)(block->local_host_addr + block->length),
720 BITS_TO_LONGS(block->nb_chunks) *
721 sizeof(unsigned long) * 8, block->nb_chunks);
723 g_free(old);
725 local->nb_blocks--;
727 if (local->nb_blocks && rdma->blockmap) {
728 for (x = 0; x < local->nb_blocks; x++) {
729 g_hash_table_insert(rdma->blockmap,
730 (void *)(uintptr_t)local->block[x].offset,
731 &local->block[x]);
737 * Put in the log file which RDMA device was opened and the details
738 * associated with that device.
740 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
742 struct ibv_port_attr port;
744 if (ibv_query_port(verbs, 1, &port)) {
745 error_report("Failed to query port information");
746 return;
749 printf("%s RDMA Device opened: kernel name %s "
750 "uverbs device name %s, "
751 "infiniband_verbs class device path %s, "
752 "infiniband class device path %s, "
753 "transport: (%d) %s\n",
754 who,
755 verbs->device->name,
756 verbs->device->dev_name,
757 verbs->device->dev_path,
758 verbs->device->ibdev_path,
759 port.link_layer,
760 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
761 ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
762 ? "Ethernet" : "Unknown"));
766 * Put in the log file the RDMA gid addressing information,
767 * useful for folks who have trouble understanding the
768 * RDMA device hierarchy in the kernel.
770 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
772 char sgid[33];
773 char dgid[33];
774 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
775 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
776 trace_qemu_rdma_dump_gid(who, sgid, dgid);
780 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
781 * We will try the next addrinfo struct, and fail if there are
782 * no other valid addresses to bind against.
784 * If user is listening on '[::]', then we will not have a opened a device
785 * yet and have no way of verifying if the device is RoCE or not.
787 * In this case, the source VM will throw an error for ALL types of
788 * connections (both IPv4 and IPv6) if the destination machine does not have
789 * a regular infiniband network available for use.
791 * The only way to guarantee that an error is thrown for broken kernels is
792 * for the management software to choose a *specific* interface at bind time
793 * and validate what time of hardware it is.
795 * Unfortunately, this puts the user in a fix:
797 * If the source VM connects with an IPv4 address without knowing that the
798 * destination has bound to '[::]' the migration will unconditionally fail
799 * unless the management software is explicitly listening on the IPv4
800 * address while using a RoCE-based device.
802 * If the source VM connects with an IPv6 address, then we're OK because we can
803 * throw an error on the source (and similarly on the destination).
805 * But in mixed environments, this will be broken for a while until it is fixed
806 * inside linux.
808 * We do provide a *tiny* bit of help in this function: We can list all of the
809 * devices in the system and check to see if all the devices are RoCE or
810 * Infiniband.
812 * If we detect that we have a *pure* RoCE environment, then we can safely
813 * thrown an error even if the management software has specified '[::]' as the
814 * bind address.
816 * However, if there is are multiple hetergeneous devices, then we cannot make
817 * this assumption and the user just has to be sure they know what they are
818 * doing.
820 * Patches are being reviewed on linux-rdma.
822 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context *verbs, Error **errp)
824 /* This bug only exists in linux, to our knowledge. */
825 #ifdef CONFIG_LINUX
826 struct ibv_port_attr port_attr;
829 * Verbs are only NULL if management has bound to '[::]'.
831 * Let's iterate through all the devices and see if there any pure IB
832 * devices (non-ethernet).
834 * If not, then we can safely proceed with the migration.
835 * Otherwise, there are no guarantees until the bug is fixed in linux.
837 if (!verbs) {
838 int num_devices, x;
839 struct ibv_device **dev_list = ibv_get_device_list(&num_devices);
840 bool roce_found = false;
841 bool ib_found = false;
843 for (x = 0; x < num_devices; x++) {
844 verbs = ibv_open_device(dev_list[x]);
846 * ibv_open_device() is not documented to set errno. If
847 * it does, it's somebody else's doc bug. If it doesn't,
848 * the use of errno below is wrong.
849 * TODO Find out whether ibv_open_device() sets errno.
851 if (!verbs) {
852 if (errno == EPERM) {
853 continue;
854 } else {
855 error_setg_errno(errp, errno,
856 "could not open RDMA device context");
857 return -1;
861 if (ibv_query_port(verbs, 1, &port_attr)) {
862 ibv_close_device(verbs);
863 error_setg(errp,
864 "RDMA ERROR: Could not query initial IB port");
865 return -1;
868 if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
869 ib_found = true;
870 } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
871 roce_found = true;
874 ibv_close_device(verbs);
878 if (roce_found) {
879 if (ib_found) {
880 fprintf(stderr, "WARN: migrations may fail:"
881 " IPv6 over RoCE / iWARP in linux"
882 " is broken. But since you appear to have a"
883 " mixed RoCE / IB environment, be sure to only"
884 " migrate over the IB fabric until the kernel "
885 " fixes the bug.\n");
886 } else {
887 error_setg(errp, "RDMA ERROR: "
888 "You only have RoCE / iWARP devices in your systems"
889 " and your management software has specified '[::]'"
890 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
891 return -1;
895 return 0;
899 * If we have a verbs context, that means that some other than '[::]' was
900 * used by the management software for binding. In which case we can
901 * actually warn the user about a potentially broken kernel.
904 /* IB ports start with 1, not 0 */
905 if (ibv_query_port(verbs, 1, &port_attr)) {
906 error_setg(errp, "RDMA ERROR: Could not query initial IB port");
907 return -1;
910 if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
911 error_setg(errp, "RDMA ERROR: "
912 "Linux kernel's RoCE / iWARP does not support IPv6 "
913 "(but patches on linux-rdma in progress)");
914 return -1;
917 #endif
919 return 0;
923 * Figure out which RDMA device corresponds to the requested IP hostname
924 * Also create the initial connection manager identifiers for opening
925 * the connection.
927 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
929 Error *err = NULL;
930 int ret;
931 struct rdma_addrinfo *res;
932 char port_str[16];
933 struct rdma_cm_event *cm_event;
934 char ip[40] = "unknown";
935 struct rdma_addrinfo *e;
937 if (rdma->host == NULL || !strcmp(rdma->host, "")) {
938 error_setg(errp, "RDMA ERROR: RDMA hostname has not been set");
939 return -1;
942 /* create CM channel */
943 rdma->channel = rdma_create_event_channel();
944 if (!rdma->channel) {
945 error_setg(errp, "RDMA ERROR: could not create CM channel");
946 return -1;
949 /* create CM id */
950 ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
951 if (ret < 0) {
952 error_setg(errp, "RDMA ERROR: could not create channel id");
953 goto err_resolve_create_id;
956 snprintf(port_str, 16, "%d", rdma->port);
957 port_str[15] = '\0';
959 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
960 if (ret) {
961 error_setg(errp, "RDMA ERROR: could not rdma_getaddrinfo address %s",
962 rdma->host);
963 goto err_resolve_get_addr;
966 /* Try all addresses, saving the first error in @err */
967 for (e = res; e != NULL; e = e->ai_next) {
968 Error **local_errp = err ? NULL : &err;
970 inet_ntop(e->ai_family,
971 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
972 trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
974 ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
975 RDMA_RESOLVE_TIMEOUT_MS);
976 if (ret >= 0) {
977 if (e->ai_family == AF_INET6) {
978 ret = qemu_rdma_broken_ipv6_kernel(rdma->cm_id->verbs,
979 local_errp);
980 if (ret < 0) {
981 continue;
984 error_free(err);
985 goto route;
989 rdma_freeaddrinfo(res);
990 if (err) {
991 error_propagate(errp, err);
992 } else {
993 error_setg(errp, "RDMA ERROR: could not resolve address %s",
994 rdma->host);
996 goto err_resolve_get_addr;
998 route:
999 rdma_freeaddrinfo(res);
1000 qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
1002 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1003 if (ret < 0) {
1004 error_setg(errp, "RDMA ERROR: could not perform event_addr_resolved");
1005 goto err_resolve_get_addr;
1008 if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
1009 error_setg(errp,
1010 "RDMA ERROR: result not equal to event_addr_resolved %s",
1011 rdma_event_str(cm_event->event));
1012 error_report("rdma_resolve_addr");
1013 rdma_ack_cm_event(cm_event);
1014 goto err_resolve_get_addr;
1016 rdma_ack_cm_event(cm_event);
1018 /* resolve route */
1019 ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
1020 if (ret < 0) {
1021 error_setg(errp, "RDMA ERROR: could not resolve rdma route");
1022 goto err_resolve_get_addr;
1025 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1026 if (ret < 0) {
1027 error_setg(errp, "RDMA ERROR: could not perform event_route_resolved");
1028 goto err_resolve_get_addr;
1030 if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
1031 error_setg(errp, "RDMA ERROR: "
1032 "result not equal to event_route_resolved: %s",
1033 rdma_event_str(cm_event->event));
1034 rdma_ack_cm_event(cm_event);
1035 goto err_resolve_get_addr;
1037 rdma_ack_cm_event(cm_event);
1038 rdma->verbs = rdma->cm_id->verbs;
1039 qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
1040 qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
1041 return 0;
1043 err_resolve_get_addr:
1044 rdma_destroy_id(rdma->cm_id);
1045 rdma->cm_id = NULL;
1046 err_resolve_create_id:
1047 rdma_destroy_event_channel(rdma->channel);
1048 rdma->channel = NULL;
1049 return -1;
1053 * Create protection domain and completion queues
1055 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
1057 /* allocate pd */
1058 rdma->pd = ibv_alloc_pd(rdma->verbs);
1059 if (!rdma->pd) {
1060 error_report("failed to allocate protection domain");
1061 return -1;
1064 /* create receive completion channel */
1065 rdma->recv_comp_channel = ibv_create_comp_channel(rdma->verbs);
1066 if (!rdma->recv_comp_channel) {
1067 error_report("failed to allocate receive completion channel");
1068 goto err_alloc_pd_cq;
1072 * Completion queue can be filled by read work requests.
1074 rdma->recv_cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1075 NULL, rdma->recv_comp_channel, 0);
1076 if (!rdma->recv_cq) {
1077 error_report("failed to allocate receive completion queue");
1078 goto err_alloc_pd_cq;
1081 /* create send completion channel */
1082 rdma->send_comp_channel = ibv_create_comp_channel(rdma->verbs);
1083 if (!rdma->send_comp_channel) {
1084 error_report("failed to allocate send completion channel");
1085 goto err_alloc_pd_cq;
1088 rdma->send_cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1089 NULL, rdma->send_comp_channel, 0);
1090 if (!rdma->send_cq) {
1091 error_report("failed to allocate send completion queue");
1092 goto err_alloc_pd_cq;
1095 return 0;
1097 err_alloc_pd_cq:
1098 if (rdma->pd) {
1099 ibv_dealloc_pd(rdma->pd);
1101 if (rdma->recv_comp_channel) {
1102 ibv_destroy_comp_channel(rdma->recv_comp_channel);
1104 if (rdma->send_comp_channel) {
1105 ibv_destroy_comp_channel(rdma->send_comp_channel);
1107 if (rdma->recv_cq) {
1108 ibv_destroy_cq(rdma->recv_cq);
1109 rdma->recv_cq = NULL;
1111 rdma->pd = NULL;
1112 rdma->recv_comp_channel = NULL;
1113 rdma->send_comp_channel = NULL;
1114 return -1;
1119 * Create queue pairs.
1121 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1123 struct ibv_qp_init_attr attr = { 0 };
1124 int ret;
1126 attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1127 attr.cap.max_recv_wr = 3;
1128 attr.cap.max_send_sge = 1;
1129 attr.cap.max_recv_sge = 1;
1130 attr.send_cq = rdma->send_cq;
1131 attr.recv_cq = rdma->recv_cq;
1132 attr.qp_type = IBV_QPT_RC;
1134 ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1135 if (ret < 0) {
1136 return -1;
1139 rdma->qp = rdma->cm_id->qp;
1140 return 0;
1143 /* Check whether On-Demand Paging is supported by RDAM device */
1144 static bool rdma_support_odp(struct ibv_context *dev)
1146 struct ibv_device_attr_ex attr = {0};
1147 int ret = ibv_query_device_ex(dev, NULL, &attr);
1148 if (ret) {
1149 return false;
1152 if (attr.odp_caps.general_caps & IBV_ODP_SUPPORT) {
1153 return true;
1156 return false;
1160 * ibv_advise_mr to avoid RNR NAK error as far as possible.
1161 * The responder mr registering with ODP will sent RNR NAK back to
1162 * the requester in the face of the page fault.
1164 static void qemu_rdma_advise_prefetch_mr(struct ibv_pd *pd, uint64_t addr,
1165 uint32_t len, uint32_t lkey,
1166 const char *name, bool wr)
1168 #ifdef HAVE_IBV_ADVISE_MR
1169 int ret;
1170 int advice = wr ? IBV_ADVISE_MR_ADVICE_PREFETCH_WRITE :
1171 IBV_ADVISE_MR_ADVICE_PREFETCH;
1172 struct ibv_sge sg_list = {.lkey = lkey, .addr = addr, .length = len};
1174 ret = ibv_advise_mr(pd, advice,
1175 IBV_ADVISE_MR_FLAG_FLUSH, &sg_list, 1);
1176 /* ignore the error */
1177 trace_qemu_rdma_advise_mr(name, len, addr, strerror(ret));
1178 #endif
1181 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma, Error **errp)
1183 int i;
1184 RDMALocalBlocks *local = &rdma->local_ram_blocks;
1186 for (i = 0; i < local->nb_blocks; i++) {
1187 int access = IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE;
1189 local->block[i].mr =
1190 ibv_reg_mr(rdma->pd,
1191 local->block[i].local_host_addr,
1192 local->block[i].length, access
1195 * ibv_reg_mr() is not documented to set errno. If it does,
1196 * it's somebody else's doc bug. If it doesn't, the use of
1197 * errno below is wrong.
1198 * TODO Find out whether ibv_reg_mr() sets errno.
1200 if (!local->block[i].mr &&
1201 errno == ENOTSUP && rdma_support_odp(rdma->verbs)) {
1202 access |= IBV_ACCESS_ON_DEMAND;
1203 /* register ODP mr */
1204 local->block[i].mr =
1205 ibv_reg_mr(rdma->pd,
1206 local->block[i].local_host_addr,
1207 local->block[i].length, access);
1208 trace_qemu_rdma_register_odp_mr(local->block[i].block_name);
1210 if (local->block[i].mr) {
1211 qemu_rdma_advise_prefetch_mr(rdma->pd,
1212 (uintptr_t)local->block[i].local_host_addr,
1213 local->block[i].length,
1214 local->block[i].mr->lkey,
1215 local->block[i].block_name,
1216 true);
1220 if (!local->block[i].mr) {
1221 error_setg_errno(errp, errno,
1222 "Failed to register local dest ram block!");
1223 goto err;
1225 rdma->total_registrations++;
1228 return 0;
1230 err:
1231 for (i--; i >= 0; i--) {
1232 ibv_dereg_mr(local->block[i].mr);
1233 local->block[i].mr = NULL;
1234 rdma->total_registrations--;
1237 return -1;
1242 * Find the ram block that corresponds to the page requested to be
1243 * transmitted by QEMU.
1245 * Once the block is found, also identify which 'chunk' within that
1246 * block that the page belongs to.
1248 static void qemu_rdma_search_ram_block(RDMAContext *rdma,
1249 uintptr_t block_offset,
1250 uint64_t offset,
1251 uint64_t length,
1252 uint64_t *block_index,
1253 uint64_t *chunk_index)
1255 uint64_t current_addr = block_offset + offset;
1256 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1257 (void *) block_offset);
1258 assert(block);
1259 assert(current_addr >= block->offset);
1260 assert((current_addr + length) <= (block->offset + block->length));
1262 *block_index = block->index;
1263 *chunk_index = ram_chunk_index(block->local_host_addr,
1264 block->local_host_addr + (current_addr - block->offset));
1268 * Register a chunk with IB. If the chunk was already registered
1269 * previously, then skip.
1271 * Also return the keys associated with the registration needed
1272 * to perform the actual RDMA operation.
1274 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1275 RDMALocalBlock *block, uintptr_t host_addr,
1276 uint32_t *lkey, uint32_t *rkey, int chunk,
1277 uint8_t *chunk_start, uint8_t *chunk_end)
1279 if (block->mr) {
1280 if (lkey) {
1281 *lkey = block->mr->lkey;
1283 if (rkey) {
1284 *rkey = block->mr->rkey;
1286 return 0;
1289 /* allocate memory to store chunk MRs */
1290 if (!block->pmr) {
1291 block->pmr = g_new0(struct ibv_mr *, block->nb_chunks);
1295 * If 'rkey', then we're the destination, so grant access to the source.
1297 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1299 if (!block->pmr[chunk]) {
1300 uint64_t len = chunk_end - chunk_start;
1301 int access = rkey ? IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE :
1304 trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1306 block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access);
1308 * ibv_reg_mr() is not documented to set errno. If it does,
1309 * it's somebody else's doc bug. If it doesn't, the use of
1310 * errno below is wrong.
1311 * TODO Find out whether ibv_reg_mr() sets errno.
1313 if (!block->pmr[chunk] &&
1314 errno == ENOTSUP && rdma_support_odp(rdma->verbs)) {
1315 access |= IBV_ACCESS_ON_DEMAND;
1316 /* register ODP mr */
1317 block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access);
1318 trace_qemu_rdma_register_odp_mr(block->block_name);
1320 if (block->pmr[chunk]) {
1321 qemu_rdma_advise_prefetch_mr(rdma->pd, (uintptr_t)chunk_start,
1322 len, block->pmr[chunk]->lkey,
1323 block->block_name, rkey);
1328 if (!block->pmr[chunk]) {
1329 perror("Failed to register chunk!");
1330 fprintf(stderr, "Chunk details: block: %d chunk index %d"
1331 " start %" PRIuPTR " end %" PRIuPTR
1332 " host %" PRIuPTR
1333 " local %" PRIuPTR " registrations: %d\n",
1334 block->index, chunk, (uintptr_t)chunk_start,
1335 (uintptr_t)chunk_end, host_addr,
1336 (uintptr_t)block->local_host_addr,
1337 rdma->total_registrations);
1338 return -1;
1340 rdma->total_registrations++;
1342 if (lkey) {
1343 *lkey = block->pmr[chunk]->lkey;
1345 if (rkey) {
1346 *rkey = block->pmr[chunk]->rkey;
1348 return 0;
1352 * Register (at connection time) the memory used for control
1353 * channel messages.
1355 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1357 rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1358 rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1359 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1360 if (rdma->wr_data[idx].control_mr) {
1361 rdma->total_registrations++;
1362 return 0;
1364 error_report("qemu_rdma_reg_control failed");
1365 return -1;
1369 * Perform a non-optimized memory unregistration after every transfer
1370 * for demonstration purposes, only if pin-all is not requested.
1372 * Potential optimizations:
1373 * 1. Start a new thread to run this function continuously
1374 - for bit clearing
1375 - and for receipt of unregister messages
1376 * 2. Use an LRU.
1377 * 3. Use workload hints.
1379 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1381 Error *err = NULL;
1383 while (rdma->unregistrations[rdma->unregister_current]) {
1384 int ret;
1385 uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1386 uint64_t chunk =
1387 (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1388 uint64_t index =
1389 (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1390 RDMALocalBlock *block =
1391 &(rdma->local_ram_blocks.block[index]);
1392 RDMARegister reg = { .current_index = index };
1393 RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1395 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1396 .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1397 .repeat = 1,
1400 trace_qemu_rdma_unregister_waiting_proc(chunk,
1401 rdma->unregister_current);
1403 rdma->unregistrations[rdma->unregister_current] = 0;
1404 rdma->unregister_current++;
1406 if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1407 rdma->unregister_current = 0;
1412 * Unregistration is speculative (because migration is single-threaded
1413 * and we cannot break the protocol's inifinband message ordering).
1414 * Thus, if the memory is currently being used for transmission,
1415 * then abort the attempt to unregister and try again
1416 * later the next time a completion is received for this memory.
1418 clear_bit(chunk, block->unregister_bitmap);
1420 if (test_bit(chunk, block->transit_bitmap)) {
1421 trace_qemu_rdma_unregister_waiting_inflight(chunk);
1422 continue;
1425 trace_qemu_rdma_unregister_waiting_send(chunk);
1427 ret = ibv_dereg_mr(block->pmr[chunk]);
1428 block->pmr[chunk] = NULL;
1429 block->remote_keys[chunk] = 0;
1431 if (ret != 0) {
1433 * FIXME perror() is problematic, bcause ibv_dereg_mr() is
1434 * not documented to set errno. Will go away later in
1435 * this series.
1437 perror("unregistration chunk failed");
1438 return -1;
1440 rdma->total_registrations--;
1442 reg.key.chunk = chunk;
1443 register_to_network(rdma, &reg);
1444 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1445 &resp, NULL, NULL, &err);
1446 if (ret < 0) {
1447 error_report_err(err);
1448 return -1;
1451 trace_qemu_rdma_unregister_waiting_complete(chunk);
1454 return 0;
1457 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1458 uint64_t chunk)
1460 uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1462 result |= (index << RDMA_WRID_BLOCK_SHIFT);
1463 result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1465 return result;
1469 * Consult the connection manager to see a work request
1470 * (of any kind) has completed.
1471 * Return the work request ID that completed.
1473 static int qemu_rdma_poll(RDMAContext *rdma, struct ibv_cq *cq,
1474 uint64_t *wr_id_out, uint32_t *byte_len)
1476 int ret;
1477 struct ibv_wc wc;
1478 uint64_t wr_id;
1480 ret = ibv_poll_cq(cq, 1, &wc);
1482 if (!ret) {
1483 *wr_id_out = RDMA_WRID_NONE;
1484 return 0;
1487 if (ret < 0) {
1488 error_report("ibv_poll_cq failed");
1489 return -1;
1492 wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1494 if (wc.status != IBV_WC_SUCCESS) {
1495 fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1496 wc.status, ibv_wc_status_str(wc.status));
1497 fprintf(stderr, "ibv_poll_cq wrid=%" PRIu64 "!\n", wr_id);
1499 return -1;
1502 if (rdma->control_ready_expected &&
1503 (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1504 trace_qemu_rdma_poll_recv(wr_id - RDMA_WRID_RECV_CONTROL, wr_id,
1505 rdma->nb_sent);
1506 rdma->control_ready_expected = 0;
1509 if (wr_id == RDMA_WRID_RDMA_WRITE) {
1510 uint64_t chunk =
1511 (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1512 uint64_t index =
1513 (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1514 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1516 trace_qemu_rdma_poll_write(wr_id, rdma->nb_sent,
1517 index, chunk, block->local_host_addr,
1518 (void *)(uintptr_t)block->remote_host_addr);
1520 clear_bit(chunk, block->transit_bitmap);
1522 if (rdma->nb_sent > 0) {
1523 rdma->nb_sent--;
1525 } else {
1526 trace_qemu_rdma_poll_other(wr_id, rdma->nb_sent);
1529 *wr_id_out = wc.wr_id;
1530 if (byte_len) {
1531 *byte_len = wc.byte_len;
1534 return 0;
1537 /* Wait for activity on the completion channel.
1538 * Returns 0 on success, none-0 on error.
1540 static int qemu_rdma_wait_comp_channel(RDMAContext *rdma,
1541 struct ibv_comp_channel *comp_channel)
1543 struct rdma_cm_event *cm_event;
1544 int ret;
1547 * Coroutine doesn't start until migration_fd_process_incoming()
1548 * so don't yield unless we know we're running inside of a coroutine.
1550 if (rdma->migration_started_on_destination &&
1551 migration_incoming_get_current()->state == MIGRATION_STATUS_ACTIVE) {
1552 yield_until_fd_readable(comp_channel->fd);
1553 } else {
1554 /* This is the source side, we're in a separate thread
1555 * or destination prior to migration_fd_process_incoming()
1556 * after postcopy, the destination also in a separate thread.
1557 * we can't yield; so we have to poll the fd.
1558 * But we need to be able to handle 'cancel' or an error
1559 * without hanging forever.
1561 while (!rdma->errored && !rdma->received_error) {
1562 GPollFD pfds[2];
1563 pfds[0].fd = comp_channel->fd;
1564 pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1565 pfds[0].revents = 0;
1567 pfds[1].fd = rdma->channel->fd;
1568 pfds[1].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1569 pfds[1].revents = 0;
1571 /* 0.1s timeout, should be fine for a 'cancel' */
1572 switch (qemu_poll_ns(pfds, 2, 100 * 1000 * 1000)) {
1573 case 2:
1574 case 1: /* fd active */
1575 if (pfds[0].revents) {
1576 return 0;
1579 if (pfds[1].revents) {
1580 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1581 if (ret < 0) {
1582 error_report("failed to get cm event while wait "
1583 "completion channel");
1584 return -1;
1587 error_report("receive cm event while wait comp channel,"
1588 "cm event is %d", cm_event->event);
1589 if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
1590 cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
1591 rdma_ack_cm_event(cm_event);
1592 return -1;
1594 rdma_ack_cm_event(cm_event);
1596 break;
1598 case 0: /* Timeout, go around again */
1599 break;
1601 default: /* Error of some type -
1602 * I don't trust errno from qemu_poll_ns
1604 error_report("%s: poll failed", __func__);
1605 return -1;
1608 if (migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) {
1609 /* Bail out and let the cancellation happen */
1610 return -1;
1615 if (rdma->received_error) {
1616 return -1;
1618 return -rdma->errored;
1621 static struct ibv_comp_channel *to_channel(RDMAContext *rdma, uint64_t wrid)
1623 return wrid < RDMA_WRID_RECV_CONTROL ? rdma->send_comp_channel :
1624 rdma->recv_comp_channel;
1627 static struct ibv_cq *to_cq(RDMAContext *rdma, uint64_t wrid)
1629 return wrid < RDMA_WRID_RECV_CONTROL ? rdma->send_cq : rdma->recv_cq;
1633 * Block until the next work request has completed.
1635 * First poll to see if a work request has already completed,
1636 * otherwise block.
1638 * If we encounter completed work requests for IDs other than
1639 * the one we're interested in, then that's generally an error.
1641 * The only exception is actual RDMA Write completions. These
1642 * completions only need to be recorded, but do not actually
1643 * need further processing.
1645 static int qemu_rdma_block_for_wrid(RDMAContext *rdma,
1646 uint64_t wrid_requested,
1647 uint32_t *byte_len)
1649 int num_cq_events = 0, ret;
1650 struct ibv_cq *cq;
1651 void *cq_ctx;
1652 uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1653 struct ibv_comp_channel *ch = to_channel(rdma, wrid_requested);
1654 struct ibv_cq *poll_cq = to_cq(rdma, wrid_requested);
1656 if (ibv_req_notify_cq(poll_cq, 0)) {
1657 return -1;
1659 /* poll cq first */
1660 while (wr_id != wrid_requested) {
1661 ret = qemu_rdma_poll(rdma, poll_cq, &wr_id_in, byte_len);
1662 if (ret < 0) {
1663 return -1;
1666 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1668 if (wr_id == RDMA_WRID_NONE) {
1669 break;
1671 if (wr_id != wrid_requested) {
1672 trace_qemu_rdma_block_for_wrid_miss(wrid_requested, wr_id);
1676 if (wr_id == wrid_requested) {
1677 return 0;
1680 while (1) {
1681 ret = qemu_rdma_wait_comp_channel(rdma, ch);
1682 if (ret < 0) {
1683 goto err_block_for_wrid;
1686 ret = ibv_get_cq_event(ch, &cq, &cq_ctx);
1687 if (ret < 0) {
1689 * FIXME perror() is problematic, because ibv_reg_mr() is
1690 * not documented to set errno. Will go away later in
1691 * this series.
1693 perror("ibv_get_cq_event");
1694 goto err_block_for_wrid;
1697 num_cq_events++;
1699 if (ibv_req_notify_cq(cq, 0)) {
1700 goto err_block_for_wrid;
1703 while (wr_id != wrid_requested) {
1704 ret = qemu_rdma_poll(rdma, poll_cq, &wr_id_in, byte_len);
1705 if (ret < 0) {
1706 goto err_block_for_wrid;
1709 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1711 if (wr_id == RDMA_WRID_NONE) {
1712 break;
1714 if (wr_id != wrid_requested) {
1715 trace_qemu_rdma_block_for_wrid_miss(wrid_requested, wr_id);
1719 if (wr_id == wrid_requested) {
1720 goto success_block_for_wrid;
1724 success_block_for_wrid:
1725 if (num_cq_events) {
1726 ibv_ack_cq_events(cq, num_cq_events);
1728 return 0;
1730 err_block_for_wrid:
1731 if (num_cq_events) {
1732 ibv_ack_cq_events(cq, num_cq_events);
1735 rdma->errored = true;
1736 return -1;
1740 * Post a SEND message work request for the control channel
1741 * containing some data and block until the post completes.
1743 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1744 RDMAControlHeader *head)
1746 int ret;
1747 RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1748 struct ibv_send_wr *bad_wr;
1749 struct ibv_sge sge = {
1750 .addr = (uintptr_t)(wr->control),
1751 .length = head->len + sizeof(RDMAControlHeader),
1752 .lkey = wr->control_mr->lkey,
1754 struct ibv_send_wr send_wr = {
1755 .wr_id = RDMA_WRID_SEND_CONTROL,
1756 .opcode = IBV_WR_SEND,
1757 .send_flags = IBV_SEND_SIGNALED,
1758 .sg_list = &sge,
1759 .num_sge = 1,
1762 trace_qemu_rdma_post_send_control(control_desc(head->type));
1765 * We don't actually need to do a memcpy() in here if we used
1766 * the "sge" properly, but since we're only sending control messages
1767 * (not RAM in a performance-critical path), then its OK for now.
1769 * The copy makes the RDMAControlHeader simpler to manipulate
1770 * for the time being.
1772 assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1773 memcpy(wr->control, head, sizeof(RDMAControlHeader));
1774 control_to_network((void *) wr->control);
1776 if (buf) {
1777 memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1781 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1783 if (ret > 0) {
1784 error_report("Failed to use post IB SEND for control");
1785 return -1;
1788 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1789 if (ret < 0) {
1790 error_report("rdma migration: send polling control error");
1791 return -1;
1794 return 0;
1798 * Post a RECV work request in anticipation of some future receipt
1799 * of data on the control channel.
1801 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1803 struct ibv_recv_wr *bad_wr;
1804 struct ibv_sge sge = {
1805 .addr = (uintptr_t)(rdma->wr_data[idx].control),
1806 .length = RDMA_CONTROL_MAX_BUFFER,
1807 .lkey = rdma->wr_data[idx].control_mr->lkey,
1810 struct ibv_recv_wr recv_wr = {
1811 .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1812 .sg_list = &sge,
1813 .num_sge = 1,
1817 if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1818 return -1;
1821 return 0;
1825 * Block and wait for a RECV control channel message to arrive.
1827 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1828 RDMAControlHeader *head, uint32_t expecting, int idx,
1829 Error **errp)
1831 uint32_t byte_len;
1832 int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1833 &byte_len);
1835 if (ret < 0) {
1836 error_setg(errp, "rdma migration: recv polling control error!");
1837 return -1;
1840 network_to_control((void *) rdma->wr_data[idx].control);
1841 memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1843 trace_qemu_rdma_exchange_get_response_start(control_desc(expecting));
1845 if (expecting == RDMA_CONTROL_NONE) {
1846 trace_qemu_rdma_exchange_get_response_none(control_desc(head->type),
1847 head->type);
1848 } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1849 error_setg(errp, "Was expecting a %s (%d) control message"
1850 ", but got: %s (%d), length: %d",
1851 control_desc(expecting), expecting,
1852 control_desc(head->type), head->type, head->len);
1853 if (head->type == RDMA_CONTROL_ERROR) {
1854 rdma->received_error = true;
1856 return -1;
1858 if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1859 error_setg(errp, "too long length: %d", head->len);
1860 return -1;
1862 if (sizeof(*head) + head->len != byte_len) {
1863 error_setg(errp, "Malformed length: %d byte_len %d",
1864 head->len, byte_len);
1865 return -1;
1868 return 0;
1872 * When a RECV work request has completed, the work request's
1873 * buffer is pointed at the header.
1875 * This will advance the pointer to the data portion
1876 * of the control message of the work request's buffer that
1877 * was populated after the work request finished.
1879 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1880 RDMAControlHeader *head)
1882 rdma->wr_data[idx].control_len = head->len;
1883 rdma->wr_data[idx].control_curr =
1884 rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1888 * This is an 'atomic' high-level operation to deliver a single, unified
1889 * control-channel message.
1891 * Additionally, if the user is expecting some kind of reply to this message,
1892 * they can request a 'resp' response message be filled in by posting an
1893 * additional work request on behalf of the user and waiting for an additional
1894 * completion.
1896 * The extra (optional) response is used during registration to us from having
1897 * to perform an *additional* exchange of message just to provide a response by
1898 * instead piggy-backing on the acknowledgement.
1900 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1901 uint8_t *data, RDMAControlHeader *resp,
1902 int *resp_idx,
1903 int (*callback)(RDMAContext *rdma,
1904 Error **errp),
1905 Error **errp)
1907 int ret;
1910 * Wait until the dest is ready before attempting to deliver the message
1911 * by waiting for a READY message.
1913 if (rdma->control_ready_expected) {
1914 RDMAControlHeader resp_ignored;
1916 ret = qemu_rdma_exchange_get_response(rdma, &resp_ignored,
1917 RDMA_CONTROL_READY,
1918 RDMA_WRID_READY, errp);
1919 if (ret < 0) {
1920 return -1;
1925 * If the user is expecting a response, post a WR in anticipation of it.
1927 if (resp) {
1928 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1929 if (ret < 0) {
1930 error_setg(errp, "rdma migration: error posting"
1931 " extra control recv for anticipated result!");
1932 return -1;
1937 * Post a WR to replace the one we just consumed for the READY message.
1939 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1940 if (ret < 0) {
1941 error_setg(errp, "rdma migration: error posting first control recv!");
1942 return -1;
1946 * Deliver the control message that was requested.
1948 ret = qemu_rdma_post_send_control(rdma, data, head);
1950 if (ret < 0) {
1951 error_setg(errp, "Failed to send control buffer!");
1952 return -1;
1956 * If we're expecting a response, block and wait for it.
1958 if (resp) {
1959 if (callback) {
1960 trace_qemu_rdma_exchange_send_issue_callback();
1961 ret = callback(rdma, errp);
1962 if (ret < 0) {
1963 return -1;
1967 trace_qemu_rdma_exchange_send_waiting(control_desc(resp->type));
1968 ret = qemu_rdma_exchange_get_response(rdma, resp,
1969 resp->type, RDMA_WRID_DATA,
1970 errp);
1972 if (ret < 0) {
1973 return -1;
1976 qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1977 if (resp_idx) {
1978 *resp_idx = RDMA_WRID_DATA;
1980 trace_qemu_rdma_exchange_send_received(control_desc(resp->type));
1983 rdma->control_ready_expected = 1;
1985 return 0;
1989 * This is an 'atomic' high-level operation to receive a single, unified
1990 * control-channel message.
1992 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1993 uint32_t expecting, Error **errp)
1995 RDMAControlHeader ready = {
1996 .len = 0,
1997 .type = RDMA_CONTROL_READY,
1998 .repeat = 1,
2000 int ret;
2003 * Inform the source that we're ready to receive a message.
2005 ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
2007 if (ret < 0) {
2008 error_setg(errp, "Failed to send control buffer!");
2009 return -1;
2013 * Block and wait for the message.
2015 ret = qemu_rdma_exchange_get_response(rdma, head,
2016 expecting, RDMA_WRID_READY, errp);
2018 if (ret < 0) {
2019 return -1;
2022 qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
2025 * Post a new RECV work request to replace the one we just consumed.
2027 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2028 if (ret < 0) {
2029 error_setg(errp, "rdma migration: error posting second control recv!");
2030 return -1;
2033 return 0;
2037 * Write an actual chunk of memory using RDMA.
2039 * If we're using dynamic registration on the dest-side, we have to
2040 * send a registration command first.
2042 static int qemu_rdma_write_one(RDMAContext *rdma,
2043 int current_index, uint64_t current_addr,
2044 uint64_t length, Error **errp)
2046 struct ibv_sge sge;
2047 struct ibv_send_wr send_wr = { 0 };
2048 struct ibv_send_wr *bad_wr;
2049 int reg_result_idx, ret, count = 0;
2050 uint64_t chunk, chunks;
2051 uint8_t *chunk_start, *chunk_end;
2052 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
2053 RDMARegister reg;
2054 RDMARegisterResult *reg_result;
2055 RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
2056 RDMAControlHeader head = { .len = sizeof(RDMARegister),
2057 .type = RDMA_CONTROL_REGISTER_REQUEST,
2058 .repeat = 1,
2061 retry:
2062 sge.addr = (uintptr_t)(block->local_host_addr +
2063 (current_addr - block->offset));
2064 sge.length = length;
2066 chunk = ram_chunk_index(block->local_host_addr,
2067 (uint8_t *)(uintptr_t)sge.addr);
2068 chunk_start = ram_chunk_start(block, chunk);
2070 if (block->is_ram_block) {
2071 chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
2073 if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2074 chunks--;
2076 } else {
2077 chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
2079 if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2080 chunks--;
2084 trace_qemu_rdma_write_one_top(chunks + 1,
2085 (chunks + 1) *
2086 (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
2088 chunk_end = ram_chunk_end(block, chunk + chunks);
2091 while (test_bit(chunk, block->transit_bitmap)) {
2092 (void)count;
2093 trace_qemu_rdma_write_one_block(count++, current_index, chunk,
2094 sge.addr, length, rdma->nb_sent, block->nb_chunks);
2096 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2098 if (ret < 0) {
2099 error_setg(errp, "Failed to Wait for previous write to complete "
2100 "block %d chunk %" PRIu64
2101 " current %" PRIu64 " len %" PRIu64 " %d",
2102 current_index, chunk, sge.addr, length, rdma->nb_sent);
2103 return -1;
2107 if (!rdma->pin_all || !block->is_ram_block) {
2108 if (!block->remote_keys[chunk]) {
2110 * This chunk has not yet been registered, so first check to see
2111 * if the entire chunk is zero. If so, tell the other size to
2112 * memset() + madvise() the entire chunk without RDMA.
2115 if (buffer_is_zero((void *)(uintptr_t)sge.addr, length)) {
2116 RDMACompress comp = {
2117 .offset = current_addr,
2118 .value = 0,
2119 .block_idx = current_index,
2120 .length = length,
2123 head.len = sizeof(comp);
2124 head.type = RDMA_CONTROL_COMPRESS;
2126 trace_qemu_rdma_write_one_zero(chunk, sge.length,
2127 current_index, current_addr);
2129 compress_to_network(rdma, &comp);
2130 ret = qemu_rdma_exchange_send(rdma, &head,
2131 (uint8_t *) &comp, NULL, NULL, NULL, errp);
2133 if (ret < 0) {
2134 return -1;
2138 * TODO: Here we are sending something, but we are not
2139 * accounting for anything transferred. The following is wrong:
2141 * stat64_add(&mig_stats.rdma_bytes, sge.length);
2143 * because we are using some kind of compression. I
2144 * would think that head.len would be the more similar
2145 * thing to a correct value.
2147 stat64_add(&mig_stats.zero_pages,
2148 sge.length / qemu_target_page_size());
2149 return 1;
2153 * Otherwise, tell other side to register.
2155 reg.current_index = current_index;
2156 if (block->is_ram_block) {
2157 reg.key.current_addr = current_addr;
2158 } else {
2159 reg.key.chunk = chunk;
2161 reg.chunks = chunks;
2163 trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
2164 current_addr);
2166 register_to_network(rdma, &reg);
2167 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
2168 &resp, &reg_result_idx, NULL, errp);
2169 if (ret < 0) {
2170 return -1;
2173 /* try to overlap this single registration with the one we sent. */
2174 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2175 &sge.lkey, NULL, chunk,
2176 chunk_start, chunk_end)) {
2177 error_setg(errp, "cannot get lkey");
2178 return -1;
2181 reg_result = (RDMARegisterResult *)
2182 rdma->wr_data[reg_result_idx].control_curr;
2184 network_to_result(reg_result);
2186 trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
2187 reg_result->rkey, chunk);
2189 block->remote_keys[chunk] = reg_result->rkey;
2190 block->remote_host_addr = reg_result->host_addr;
2191 } else {
2192 /* already registered before */
2193 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2194 &sge.lkey, NULL, chunk,
2195 chunk_start, chunk_end)) {
2196 error_setg(errp, "cannot get lkey!");
2197 return -1;
2201 send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2202 } else {
2203 send_wr.wr.rdma.rkey = block->remote_rkey;
2205 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2206 &sge.lkey, NULL, chunk,
2207 chunk_start, chunk_end)) {
2208 error_setg(errp, "cannot get lkey!");
2209 return -1;
2214 * Encode the ram block index and chunk within this wrid.
2215 * We will use this information at the time of completion
2216 * to figure out which bitmap to check against and then which
2217 * chunk in the bitmap to look for.
2219 send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2220 current_index, chunk);
2222 send_wr.opcode = IBV_WR_RDMA_WRITE;
2223 send_wr.send_flags = IBV_SEND_SIGNALED;
2224 send_wr.sg_list = &sge;
2225 send_wr.num_sge = 1;
2226 send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2227 (current_addr - block->offset);
2229 trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2230 sge.length);
2233 * ibv_post_send() does not return negative error numbers,
2234 * per the specification they are positive - no idea why.
2236 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2238 if (ret == ENOMEM) {
2239 trace_qemu_rdma_write_one_queue_full();
2240 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2241 if (ret < 0) {
2242 error_setg(errp, "rdma migration: failed to make "
2243 "room in full send queue!");
2244 return -1;
2247 goto retry;
2249 } else if (ret > 0) {
2250 error_setg_errno(errp, ret,
2251 "rdma migration: post rdma write failed");
2252 return -1;
2255 set_bit(chunk, block->transit_bitmap);
2256 stat64_add(&mig_stats.normal_pages, sge.length / qemu_target_page_size());
2258 * We are adding to transferred the amount of data written, but no
2259 * overhead at all. I will asume that RDMA is magicaly and don't
2260 * need to transfer (at least) the addresses where it wants to
2261 * write the pages. Here it looks like it should be something
2262 * like:
2263 * sizeof(send_wr) + sge.length
2264 * but this being RDMA, who knows.
2266 stat64_add(&mig_stats.rdma_bytes, sge.length);
2267 ram_transferred_add(sge.length);
2268 rdma->total_writes++;
2270 return 0;
2274 * Push out any unwritten RDMA operations.
2276 * We support sending out multiple chunks at the same time.
2277 * Not all of them need to get signaled in the completion queue.
2279 static int qemu_rdma_write_flush(RDMAContext *rdma, Error **errp)
2281 int ret;
2283 if (!rdma->current_length) {
2284 return 0;
2287 ret = qemu_rdma_write_one(rdma, rdma->current_index, rdma->current_addr,
2288 rdma->current_length, errp);
2290 if (ret < 0) {
2291 return -1;
2294 if (ret == 0) {
2295 rdma->nb_sent++;
2296 trace_qemu_rdma_write_flush(rdma->nb_sent);
2299 rdma->current_length = 0;
2300 rdma->current_addr = 0;
2302 return 0;
2305 static inline bool qemu_rdma_buffer_mergeable(RDMAContext *rdma,
2306 uint64_t offset, uint64_t len)
2308 RDMALocalBlock *block;
2309 uint8_t *host_addr;
2310 uint8_t *chunk_end;
2312 if (rdma->current_index < 0) {
2313 return false;
2316 if (rdma->current_chunk < 0) {
2317 return false;
2320 block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2321 host_addr = block->local_host_addr + (offset - block->offset);
2322 chunk_end = ram_chunk_end(block, rdma->current_chunk);
2324 if (rdma->current_length == 0) {
2325 return false;
2329 * Only merge into chunk sequentially.
2331 if (offset != (rdma->current_addr + rdma->current_length)) {
2332 return false;
2335 if (offset < block->offset) {
2336 return false;
2339 if ((offset + len) > (block->offset + block->length)) {
2340 return false;
2343 if ((host_addr + len) > chunk_end) {
2344 return false;
2347 return true;
2351 * We're not actually writing here, but doing three things:
2353 * 1. Identify the chunk the buffer belongs to.
2354 * 2. If the chunk is full or the buffer doesn't belong to the current
2355 * chunk, then start a new chunk and flush() the old chunk.
2356 * 3. To keep the hardware busy, we also group chunks into batches
2357 * and only require that a batch gets acknowledged in the completion
2358 * queue instead of each individual chunk.
2360 static int qemu_rdma_write(RDMAContext *rdma,
2361 uint64_t block_offset, uint64_t offset,
2362 uint64_t len)
2364 Error *err = NULL;
2365 uint64_t current_addr = block_offset + offset;
2366 uint64_t index = rdma->current_index;
2367 uint64_t chunk = rdma->current_chunk;
2368 int ret;
2370 /* If we cannot merge it, we flush the current buffer first. */
2371 if (!qemu_rdma_buffer_mergeable(rdma, current_addr, len)) {
2372 ret = qemu_rdma_write_flush(rdma, &err);
2373 if (ret < 0) {
2374 error_report_err(err);
2375 return -1;
2377 rdma->current_length = 0;
2378 rdma->current_addr = current_addr;
2380 qemu_rdma_search_ram_block(rdma, block_offset,
2381 offset, len, &index, &chunk);
2382 rdma->current_index = index;
2383 rdma->current_chunk = chunk;
2386 /* merge it */
2387 rdma->current_length += len;
2389 /* flush it if buffer is too large */
2390 if (rdma->current_length >= RDMA_MERGE_MAX) {
2391 if (qemu_rdma_write_flush(rdma, &err) < 0) {
2392 error_report_err(err);
2393 return -1;
2397 return 0;
2400 static void qemu_rdma_cleanup(RDMAContext *rdma)
2402 int idx;
2404 if (rdma->cm_id && rdma->connected) {
2405 if ((rdma->errored ||
2406 migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) &&
2407 !rdma->received_error) {
2408 RDMAControlHeader head = { .len = 0,
2409 .type = RDMA_CONTROL_ERROR,
2410 .repeat = 1,
2412 error_report("Early error. Sending error.");
2413 qemu_rdma_post_send_control(rdma, NULL, &head);
2416 rdma_disconnect(rdma->cm_id);
2417 trace_qemu_rdma_cleanup_disconnect();
2418 rdma->connected = false;
2421 if (rdma->channel) {
2422 qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
2424 g_free(rdma->dest_blocks);
2425 rdma->dest_blocks = NULL;
2427 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2428 if (rdma->wr_data[idx].control_mr) {
2429 rdma->total_registrations--;
2430 ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2432 rdma->wr_data[idx].control_mr = NULL;
2435 if (rdma->local_ram_blocks.block) {
2436 while (rdma->local_ram_blocks.nb_blocks) {
2437 rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2441 if (rdma->qp) {
2442 rdma_destroy_qp(rdma->cm_id);
2443 rdma->qp = NULL;
2445 if (rdma->recv_cq) {
2446 ibv_destroy_cq(rdma->recv_cq);
2447 rdma->recv_cq = NULL;
2449 if (rdma->send_cq) {
2450 ibv_destroy_cq(rdma->send_cq);
2451 rdma->send_cq = NULL;
2453 if (rdma->recv_comp_channel) {
2454 ibv_destroy_comp_channel(rdma->recv_comp_channel);
2455 rdma->recv_comp_channel = NULL;
2457 if (rdma->send_comp_channel) {
2458 ibv_destroy_comp_channel(rdma->send_comp_channel);
2459 rdma->send_comp_channel = NULL;
2461 if (rdma->pd) {
2462 ibv_dealloc_pd(rdma->pd);
2463 rdma->pd = NULL;
2465 if (rdma->cm_id) {
2466 rdma_destroy_id(rdma->cm_id);
2467 rdma->cm_id = NULL;
2470 /* the destination side, listen_id and channel is shared */
2471 if (rdma->listen_id) {
2472 if (!rdma->is_return_path) {
2473 rdma_destroy_id(rdma->listen_id);
2475 rdma->listen_id = NULL;
2477 if (rdma->channel) {
2478 if (!rdma->is_return_path) {
2479 rdma_destroy_event_channel(rdma->channel);
2481 rdma->channel = NULL;
2485 if (rdma->channel) {
2486 rdma_destroy_event_channel(rdma->channel);
2487 rdma->channel = NULL;
2489 g_free(rdma->host);
2490 g_free(rdma->host_port);
2491 rdma->host = NULL;
2492 rdma->host_port = NULL;
2496 static int qemu_rdma_source_init(RDMAContext *rdma, bool pin_all, Error **errp)
2498 int ret, idx;
2501 * Will be validated against destination's actual capabilities
2502 * after the connect() completes.
2504 rdma->pin_all = pin_all;
2506 ret = qemu_rdma_resolve_host(rdma, errp);
2507 if (ret < 0) {
2508 goto err_rdma_source_init;
2511 ret = qemu_rdma_alloc_pd_cq(rdma);
2512 if (ret < 0) {
2513 error_setg(errp, "RDMA ERROR: "
2514 "rdma migration: error allocating pd and cq! Your mlock()"
2515 " limits may be too low. Please check $ ulimit -a # and "
2516 "search for 'ulimit -l' in the output");
2517 goto err_rdma_source_init;
2520 ret = qemu_rdma_alloc_qp(rdma);
2521 if (ret < 0) {
2522 error_setg(errp, "RDMA ERROR: rdma migration: error allocating qp!");
2523 goto err_rdma_source_init;
2526 qemu_rdma_init_ram_blocks(rdma);
2528 /* Build the hash that maps from offset to RAMBlock */
2529 rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2530 for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) {
2531 g_hash_table_insert(rdma->blockmap,
2532 (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset,
2533 &rdma->local_ram_blocks.block[idx]);
2536 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2537 ret = qemu_rdma_reg_control(rdma, idx);
2538 if (ret < 0) {
2539 error_setg(errp,
2540 "RDMA ERROR: rdma migration: error registering %d control!",
2541 idx);
2542 goto err_rdma_source_init;
2546 return 0;
2548 err_rdma_source_init:
2549 qemu_rdma_cleanup(rdma);
2550 return -1;
2553 static int qemu_get_cm_event_timeout(RDMAContext *rdma,
2554 struct rdma_cm_event **cm_event,
2555 long msec, Error **errp)
2557 int ret;
2558 struct pollfd poll_fd = {
2559 .fd = rdma->channel->fd,
2560 .events = POLLIN,
2561 .revents = 0
2564 do {
2565 ret = poll(&poll_fd, 1, msec);
2566 } while (ret < 0 && errno == EINTR);
2568 if (ret == 0) {
2569 error_setg(errp, "RDMA ERROR: poll cm event timeout");
2570 return -1;
2571 } else if (ret < 0) {
2572 error_setg(errp, "RDMA ERROR: failed to poll cm event, errno=%i",
2573 errno);
2574 return -1;
2575 } else if (poll_fd.revents & POLLIN) {
2576 if (rdma_get_cm_event(rdma->channel, cm_event) < 0) {
2577 error_setg(errp, "RDMA ERROR: failed to get cm event");
2578 return -1;
2580 return 0;
2581 } else {
2582 error_setg(errp, "RDMA ERROR: no POLLIN event, revent=%x",
2583 poll_fd.revents);
2584 return -1;
2588 static int qemu_rdma_connect(RDMAContext *rdma, bool return_path,
2589 Error **errp)
2591 RDMACapabilities cap = {
2592 .version = RDMA_CONTROL_VERSION_CURRENT,
2593 .flags = 0,
2595 struct rdma_conn_param conn_param = { .initiator_depth = 2,
2596 .retry_count = 5,
2597 .private_data = &cap,
2598 .private_data_len = sizeof(cap),
2600 struct rdma_cm_event *cm_event;
2601 int ret;
2604 * Only negotiate the capability with destination if the user
2605 * on the source first requested the capability.
2607 if (rdma->pin_all) {
2608 trace_qemu_rdma_connect_pin_all_requested();
2609 cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2612 caps_to_network(&cap);
2614 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2615 if (ret < 0) {
2616 error_setg(errp, "RDMA ERROR: posting second control recv");
2617 goto err_rdma_source_connect;
2620 ret = rdma_connect(rdma->cm_id, &conn_param);
2621 if (ret < 0) {
2622 perror("rdma_connect");
2623 error_setg(errp, "RDMA ERROR: connecting to destination!");
2624 goto err_rdma_source_connect;
2627 if (return_path) {
2628 ret = qemu_get_cm_event_timeout(rdma, &cm_event, 5000, errp);
2629 } else {
2630 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2631 if (ret < 0) {
2632 error_setg(errp, "RDMA ERROR: failed to get cm event");
2635 if (ret < 0) {
2637 * FIXME perror() is wrong, because
2638 * qemu_get_cm_event_timeout() can fail without setting errno.
2639 * Will go away later in this series.
2641 perror("rdma_get_cm_event after rdma_connect");
2642 goto err_rdma_source_connect;
2645 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2646 error_report("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2647 error_setg(errp, "RDMA ERROR: connecting to destination!");
2648 rdma_ack_cm_event(cm_event);
2649 goto err_rdma_source_connect;
2651 rdma->connected = true;
2653 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2654 network_to_caps(&cap);
2657 * Verify that the *requested* capabilities are supported by the destination
2658 * and disable them otherwise.
2660 if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2661 warn_report("RDMA: Server cannot support pinning all memory. "
2662 "Will register memory dynamically.");
2663 rdma->pin_all = false;
2666 trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2668 rdma_ack_cm_event(cm_event);
2670 rdma->control_ready_expected = 1;
2671 rdma->nb_sent = 0;
2672 return 0;
2674 err_rdma_source_connect:
2675 qemu_rdma_cleanup(rdma);
2676 return -1;
2679 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2681 Error *err = NULL;
2682 int ret, idx;
2683 struct rdma_cm_id *listen_id;
2684 char ip[40] = "unknown";
2685 struct rdma_addrinfo *res, *e;
2686 char port_str[16];
2687 int reuse = 1;
2689 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2690 rdma->wr_data[idx].control_len = 0;
2691 rdma->wr_data[idx].control_curr = NULL;
2694 if (!rdma->host || !rdma->host[0]) {
2695 error_setg(errp, "RDMA ERROR: RDMA host is not set!");
2696 rdma->errored = true;
2697 return -1;
2699 /* create CM channel */
2700 rdma->channel = rdma_create_event_channel();
2701 if (!rdma->channel) {
2702 error_setg(errp, "RDMA ERROR: could not create rdma event channel");
2703 rdma->errored = true;
2704 return -1;
2707 /* create CM id */
2708 ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2709 if (ret < 0) {
2710 error_setg(errp, "RDMA ERROR: could not create cm_id!");
2711 goto err_dest_init_create_listen_id;
2714 snprintf(port_str, 16, "%d", rdma->port);
2715 port_str[15] = '\0';
2717 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2718 if (ret) {
2719 error_setg(errp, "RDMA ERROR: could not rdma_getaddrinfo address %s",
2720 rdma->host);
2721 goto err_dest_init_bind_addr;
2724 ret = rdma_set_option(listen_id, RDMA_OPTION_ID, RDMA_OPTION_ID_REUSEADDR,
2725 &reuse, sizeof reuse);
2726 if (ret < 0) {
2727 error_setg(errp, "RDMA ERROR: Error: could not set REUSEADDR option");
2728 goto err_dest_init_bind_addr;
2731 /* Try all addresses, saving the first error in @err */
2732 for (e = res; e != NULL; e = e->ai_next) {
2733 Error **local_errp = err ? NULL : &err;
2735 inet_ntop(e->ai_family,
2736 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2737 trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2738 ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2739 if (ret < 0) {
2740 continue;
2742 if (e->ai_family == AF_INET6) {
2743 ret = qemu_rdma_broken_ipv6_kernel(listen_id->verbs,
2744 local_errp);
2745 if (ret < 0) {
2746 continue;
2749 error_free(err);
2750 break;
2753 rdma_freeaddrinfo(res);
2754 if (!e) {
2755 if (err) {
2756 error_propagate(errp, err);
2757 } else {
2758 error_setg(errp, "RDMA ERROR: Error: could not rdma_bind_addr!");
2760 goto err_dest_init_bind_addr;
2763 rdma->listen_id = listen_id;
2764 qemu_rdma_dump_gid("dest_init", listen_id);
2765 return 0;
2767 err_dest_init_bind_addr:
2768 rdma_destroy_id(listen_id);
2769 err_dest_init_create_listen_id:
2770 rdma_destroy_event_channel(rdma->channel);
2771 rdma->channel = NULL;
2772 rdma->errored = true;
2773 return -1;
2777 static void qemu_rdma_return_path_dest_init(RDMAContext *rdma_return_path,
2778 RDMAContext *rdma)
2780 int idx;
2782 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2783 rdma_return_path->wr_data[idx].control_len = 0;
2784 rdma_return_path->wr_data[idx].control_curr = NULL;
2787 /*the CM channel and CM id is shared*/
2788 rdma_return_path->channel = rdma->channel;
2789 rdma_return_path->listen_id = rdma->listen_id;
2791 rdma->return_path = rdma_return_path;
2792 rdma_return_path->return_path = rdma;
2793 rdma_return_path->is_return_path = true;
2796 static RDMAContext *qemu_rdma_data_init(const char *host_port, Error **errp)
2798 RDMAContext *rdma = NULL;
2799 InetSocketAddress *addr;
2801 rdma = g_new0(RDMAContext, 1);
2802 rdma->current_index = -1;
2803 rdma->current_chunk = -1;
2805 addr = g_new(InetSocketAddress, 1);
2806 if (!inet_parse(addr, host_port, NULL)) {
2807 rdma->port = atoi(addr->port);
2808 rdma->host = g_strdup(addr->host);
2809 rdma->host_port = g_strdup(host_port);
2810 } else {
2811 error_setg(errp, "RDMA ERROR: bad RDMA migration address '%s'",
2812 host_port);
2813 g_free(rdma);
2814 rdma = NULL;
2817 qapi_free_InetSocketAddress(addr);
2818 return rdma;
2822 * QEMUFile interface to the control channel.
2823 * SEND messages for control only.
2824 * VM's ram is handled with regular RDMA messages.
2826 static ssize_t qio_channel_rdma_writev(QIOChannel *ioc,
2827 const struct iovec *iov,
2828 size_t niov,
2829 int *fds,
2830 size_t nfds,
2831 int flags,
2832 Error **errp)
2834 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2835 RDMAContext *rdma;
2836 int ret;
2837 ssize_t done = 0;
2838 size_t i, len;
2840 RCU_READ_LOCK_GUARD();
2841 rdma = qatomic_rcu_read(&rioc->rdmaout);
2843 if (!rdma) {
2844 error_setg(errp, "RDMA control channel output is not set");
2845 return -1;
2848 if (rdma->errored) {
2849 error_setg(errp,
2850 "RDMA is in an error state waiting migration to abort!");
2851 return -1;
2855 * Push out any writes that
2856 * we're queued up for VM's ram.
2858 ret = qemu_rdma_write_flush(rdma, errp);
2859 if (ret < 0) {
2860 rdma->errored = true;
2861 return -1;
2864 for (i = 0; i < niov; i++) {
2865 size_t remaining = iov[i].iov_len;
2866 uint8_t * data = (void *)iov[i].iov_base;
2867 while (remaining) {
2868 RDMAControlHeader head = {};
2870 len = MIN(remaining, RDMA_SEND_INCREMENT);
2871 remaining -= len;
2873 head.len = len;
2874 head.type = RDMA_CONTROL_QEMU_FILE;
2876 ret = qemu_rdma_exchange_send(rdma, &head,
2877 data, NULL, NULL, NULL, errp);
2879 if (ret < 0) {
2880 rdma->errored = true;
2881 return -1;
2884 data += len;
2885 done += len;
2889 return done;
2892 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2893 size_t size, int idx)
2895 size_t len = 0;
2897 if (rdma->wr_data[idx].control_len) {
2898 trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2900 len = MIN(size, rdma->wr_data[idx].control_len);
2901 memcpy(buf, rdma->wr_data[idx].control_curr, len);
2902 rdma->wr_data[idx].control_curr += len;
2903 rdma->wr_data[idx].control_len -= len;
2906 return len;
2910 * QEMUFile interface to the control channel.
2911 * RDMA links don't use bytestreams, so we have to
2912 * return bytes to QEMUFile opportunistically.
2914 static ssize_t qio_channel_rdma_readv(QIOChannel *ioc,
2915 const struct iovec *iov,
2916 size_t niov,
2917 int **fds,
2918 size_t *nfds,
2919 int flags,
2920 Error **errp)
2922 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2923 RDMAContext *rdma;
2924 RDMAControlHeader head;
2925 int ret;
2926 ssize_t done = 0;
2927 size_t i, len;
2929 RCU_READ_LOCK_GUARD();
2930 rdma = qatomic_rcu_read(&rioc->rdmain);
2932 if (!rdma) {
2933 error_setg(errp, "RDMA control channel input is not set");
2934 return -1;
2937 if (rdma->errored) {
2938 error_setg(errp,
2939 "RDMA is in an error state waiting migration to abort!");
2940 return -1;
2943 for (i = 0; i < niov; i++) {
2944 size_t want = iov[i].iov_len;
2945 uint8_t *data = (void *)iov[i].iov_base;
2948 * First, we hold on to the last SEND message we
2949 * were given and dish out the bytes until we run
2950 * out of bytes.
2952 len = qemu_rdma_fill(rdma, data, want, 0);
2953 done += len;
2954 want -= len;
2955 /* Got what we needed, so go to next iovec */
2956 if (want == 0) {
2957 continue;
2960 /* If we got any data so far, then don't wait
2961 * for more, just return what we have */
2962 if (done > 0) {
2963 break;
2967 /* We've got nothing at all, so lets wait for
2968 * more to arrive
2970 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE,
2971 errp);
2973 if (ret < 0) {
2974 rdma->errored = true;
2975 return -1;
2979 * SEND was received with new bytes, now try again.
2981 len = qemu_rdma_fill(rdma, data, want, 0);
2982 done += len;
2983 want -= len;
2985 /* Still didn't get enough, so lets just return */
2986 if (want) {
2987 if (done == 0) {
2988 return QIO_CHANNEL_ERR_BLOCK;
2989 } else {
2990 break;
2994 return done;
2998 * Block until all the outstanding chunks have been delivered by the hardware.
3000 static int qemu_rdma_drain_cq(RDMAContext *rdma)
3002 Error *err = NULL;
3003 int ret;
3005 if (qemu_rdma_write_flush(rdma, &err) < 0) {
3006 error_report_err(err);
3007 return -1;
3010 while (rdma->nb_sent) {
3011 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
3012 if (ret < 0) {
3013 error_report("rdma migration: complete polling error!");
3014 return -1;
3018 qemu_rdma_unregister_waiting(rdma);
3020 return 0;
3024 static int qio_channel_rdma_set_blocking(QIOChannel *ioc,
3025 bool blocking,
3026 Error **errp)
3028 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3029 /* XXX we should make readv/writev actually honour this :-) */
3030 rioc->blocking = blocking;
3031 return 0;
3035 typedef struct QIOChannelRDMASource QIOChannelRDMASource;
3036 struct QIOChannelRDMASource {
3037 GSource parent;
3038 QIOChannelRDMA *rioc;
3039 GIOCondition condition;
3042 static gboolean
3043 qio_channel_rdma_source_prepare(GSource *source,
3044 gint *timeout)
3046 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3047 RDMAContext *rdma;
3048 GIOCondition cond = 0;
3049 *timeout = -1;
3051 RCU_READ_LOCK_GUARD();
3052 if (rsource->condition == G_IO_IN) {
3053 rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3054 } else {
3055 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3058 if (!rdma) {
3059 error_report("RDMAContext is NULL when prepare Gsource");
3060 return FALSE;
3063 if (rdma->wr_data[0].control_len) {
3064 cond |= G_IO_IN;
3066 cond |= G_IO_OUT;
3068 return cond & rsource->condition;
3071 static gboolean
3072 qio_channel_rdma_source_check(GSource *source)
3074 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3075 RDMAContext *rdma;
3076 GIOCondition cond = 0;
3078 RCU_READ_LOCK_GUARD();
3079 if (rsource->condition == G_IO_IN) {
3080 rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3081 } else {
3082 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3085 if (!rdma) {
3086 error_report("RDMAContext is NULL when check Gsource");
3087 return FALSE;
3090 if (rdma->wr_data[0].control_len) {
3091 cond |= G_IO_IN;
3093 cond |= G_IO_OUT;
3095 return cond & rsource->condition;
3098 static gboolean
3099 qio_channel_rdma_source_dispatch(GSource *source,
3100 GSourceFunc callback,
3101 gpointer user_data)
3103 QIOChannelFunc func = (QIOChannelFunc)callback;
3104 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3105 RDMAContext *rdma;
3106 GIOCondition cond = 0;
3108 RCU_READ_LOCK_GUARD();
3109 if (rsource->condition == G_IO_IN) {
3110 rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3111 } else {
3112 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3115 if (!rdma) {
3116 error_report("RDMAContext is NULL when dispatch Gsource");
3117 return FALSE;
3120 if (rdma->wr_data[0].control_len) {
3121 cond |= G_IO_IN;
3123 cond |= G_IO_OUT;
3125 return (*func)(QIO_CHANNEL(rsource->rioc),
3126 (cond & rsource->condition),
3127 user_data);
3130 static void
3131 qio_channel_rdma_source_finalize(GSource *source)
3133 QIOChannelRDMASource *ssource = (QIOChannelRDMASource *)source;
3135 object_unref(OBJECT(ssource->rioc));
3138 static GSourceFuncs qio_channel_rdma_source_funcs = {
3139 qio_channel_rdma_source_prepare,
3140 qio_channel_rdma_source_check,
3141 qio_channel_rdma_source_dispatch,
3142 qio_channel_rdma_source_finalize
3145 static GSource *qio_channel_rdma_create_watch(QIOChannel *ioc,
3146 GIOCondition condition)
3148 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3149 QIOChannelRDMASource *ssource;
3150 GSource *source;
3152 source = g_source_new(&qio_channel_rdma_source_funcs,
3153 sizeof(QIOChannelRDMASource));
3154 ssource = (QIOChannelRDMASource *)source;
3156 ssource->rioc = rioc;
3157 object_ref(OBJECT(rioc));
3159 ssource->condition = condition;
3161 return source;
3164 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel *ioc,
3165 AioContext *read_ctx,
3166 IOHandler *io_read,
3167 AioContext *write_ctx,
3168 IOHandler *io_write,
3169 void *opaque)
3171 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3172 if (io_read) {
3173 aio_set_fd_handler(read_ctx, rioc->rdmain->recv_comp_channel->fd,
3174 io_read, io_write, NULL, NULL, opaque);
3175 aio_set_fd_handler(read_ctx, rioc->rdmain->send_comp_channel->fd,
3176 io_read, io_write, NULL, NULL, opaque);
3177 } else {
3178 aio_set_fd_handler(write_ctx, rioc->rdmaout->recv_comp_channel->fd,
3179 io_read, io_write, NULL, NULL, opaque);
3180 aio_set_fd_handler(write_ctx, rioc->rdmaout->send_comp_channel->fd,
3181 io_read, io_write, NULL, NULL, opaque);
3185 struct rdma_close_rcu {
3186 struct rcu_head rcu;
3187 RDMAContext *rdmain;
3188 RDMAContext *rdmaout;
3191 /* callback from qio_channel_rdma_close via call_rcu */
3192 static void qio_channel_rdma_close_rcu(struct rdma_close_rcu *rcu)
3194 if (rcu->rdmain) {
3195 qemu_rdma_cleanup(rcu->rdmain);
3198 if (rcu->rdmaout) {
3199 qemu_rdma_cleanup(rcu->rdmaout);
3202 g_free(rcu->rdmain);
3203 g_free(rcu->rdmaout);
3204 g_free(rcu);
3207 static int qio_channel_rdma_close(QIOChannel *ioc,
3208 Error **errp)
3210 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3211 RDMAContext *rdmain, *rdmaout;
3212 struct rdma_close_rcu *rcu = g_new(struct rdma_close_rcu, 1);
3214 trace_qemu_rdma_close();
3216 rdmain = rioc->rdmain;
3217 if (rdmain) {
3218 qatomic_rcu_set(&rioc->rdmain, NULL);
3221 rdmaout = rioc->rdmaout;
3222 if (rdmaout) {
3223 qatomic_rcu_set(&rioc->rdmaout, NULL);
3226 rcu->rdmain = rdmain;
3227 rcu->rdmaout = rdmaout;
3228 call_rcu(rcu, qio_channel_rdma_close_rcu, rcu);
3230 return 0;
3233 static int
3234 qio_channel_rdma_shutdown(QIOChannel *ioc,
3235 QIOChannelShutdown how,
3236 Error **errp)
3238 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3239 RDMAContext *rdmain, *rdmaout;
3241 RCU_READ_LOCK_GUARD();
3243 rdmain = qatomic_rcu_read(&rioc->rdmain);
3244 rdmaout = qatomic_rcu_read(&rioc->rdmain);
3246 switch (how) {
3247 case QIO_CHANNEL_SHUTDOWN_READ:
3248 if (rdmain) {
3249 rdmain->errored = true;
3251 break;
3252 case QIO_CHANNEL_SHUTDOWN_WRITE:
3253 if (rdmaout) {
3254 rdmaout->errored = true;
3256 break;
3257 case QIO_CHANNEL_SHUTDOWN_BOTH:
3258 default:
3259 if (rdmain) {
3260 rdmain->errored = true;
3262 if (rdmaout) {
3263 rdmaout->errored = true;
3265 break;
3268 return 0;
3272 * Parameters:
3273 * @offset == 0 :
3274 * This means that 'block_offset' is a full virtual address that does not
3275 * belong to a RAMBlock of the virtual machine and instead
3276 * represents a private malloc'd memory area that the caller wishes to
3277 * transfer.
3279 * @offset != 0 :
3280 * Offset is an offset to be added to block_offset and used
3281 * to also lookup the corresponding RAMBlock.
3283 * @size : Number of bytes to transfer
3285 * @pages_sent : User-specificed pointer to indicate how many pages were
3286 * sent. Usually, this will not be more than a few bytes of
3287 * the protocol because most transfers are sent asynchronously.
3289 static int qemu_rdma_save_page(QEMUFile *f, ram_addr_t block_offset,
3290 ram_addr_t offset, size_t size)
3292 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3293 RDMAContext *rdma;
3294 int ret;
3296 if (migration_in_postcopy()) {
3297 return RAM_SAVE_CONTROL_NOT_SUPP;
3300 RCU_READ_LOCK_GUARD();
3301 rdma = qatomic_rcu_read(&rioc->rdmaout);
3303 if (!rdma) {
3304 return -1;
3307 if (rdma_errored(rdma)) {
3308 return -1;
3311 qemu_fflush(f);
3314 * Add this page to the current 'chunk'. If the chunk
3315 * is full, or the page doesn't belong to the current chunk,
3316 * an actual RDMA write will occur and a new chunk will be formed.
3318 ret = qemu_rdma_write(rdma, block_offset, offset, size);
3319 if (ret < 0) {
3320 error_report("rdma migration: write error");
3321 goto err;
3325 * Drain the Completion Queue if possible, but do not block,
3326 * just poll.
3328 * If nothing to poll, the end of the iteration will do this
3329 * again to make sure we don't overflow the request queue.
3331 while (1) {
3332 uint64_t wr_id, wr_id_in;
3333 ret = qemu_rdma_poll(rdma, rdma->recv_cq, &wr_id_in, NULL);
3335 if (ret < 0) {
3336 error_report("rdma migration: polling error");
3337 goto err;
3340 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3342 if (wr_id == RDMA_WRID_NONE) {
3343 break;
3347 while (1) {
3348 uint64_t wr_id, wr_id_in;
3349 ret = qemu_rdma_poll(rdma, rdma->send_cq, &wr_id_in, NULL);
3351 if (ret < 0) {
3352 error_report("rdma migration: polling error");
3353 goto err;
3356 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3358 if (wr_id == RDMA_WRID_NONE) {
3359 break;
3363 return RAM_SAVE_CONTROL_DELAYED;
3365 err:
3366 rdma->errored = true;
3367 return -1;
3370 static void rdma_accept_incoming_migration(void *opaque);
3372 static void rdma_cm_poll_handler(void *opaque)
3374 RDMAContext *rdma = opaque;
3375 int ret;
3376 struct rdma_cm_event *cm_event;
3377 MigrationIncomingState *mis = migration_incoming_get_current();
3379 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3380 if (ret < 0) {
3381 error_report("get_cm_event failed %d", errno);
3382 return;
3385 if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
3386 cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
3387 if (!rdma->errored &&
3388 migration_incoming_get_current()->state !=
3389 MIGRATION_STATUS_COMPLETED) {
3390 error_report("receive cm event, cm event is %d", cm_event->event);
3391 rdma->errored = true;
3392 if (rdma->return_path) {
3393 rdma->return_path->errored = true;
3396 rdma_ack_cm_event(cm_event);
3397 if (mis->loadvm_co) {
3398 qemu_coroutine_enter(mis->loadvm_co);
3400 return;
3402 rdma_ack_cm_event(cm_event);
3405 static int qemu_rdma_accept(RDMAContext *rdma)
3407 RDMACapabilities cap;
3408 struct rdma_conn_param conn_param = {
3409 .responder_resources = 2,
3410 .private_data = &cap,
3411 .private_data_len = sizeof(cap),
3413 RDMAContext *rdma_return_path = NULL;
3414 struct rdma_cm_event *cm_event;
3415 struct ibv_context *verbs;
3416 int ret;
3417 int idx;
3419 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3420 if (ret < 0) {
3421 goto err_rdma_dest_wait;
3424 if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
3425 rdma_ack_cm_event(cm_event);
3426 goto err_rdma_dest_wait;
3430 * initialize the RDMAContext for return path for postcopy after first
3431 * connection request reached.
3433 if ((migrate_postcopy() || migrate_return_path())
3434 && !rdma->is_return_path) {
3435 rdma_return_path = qemu_rdma_data_init(rdma->host_port, NULL);
3436 if (rdma_return_path == NULL) {
3437 rdma_ack_cm_event(cm_event);
3438 goto err_rdma_dest_wait;
3441 qemu_rdma_return_path_dest_init(rdma_return_path, rdma);
3444 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
3446 network_to_caps(&cap);
3448 if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
3449 error_report("Unknown source RDMA version: %d, bailing...",
3450 cap.version);
3451 rdma_ack_cm_event(cm_event);
3452 goto err_rdma_dest_wait;
3456 * Respond with only the capabilities this version of QEMU knows about.
3458 cap.flags &= known_capabilities;
3461 * Enable the ones that we do know about.
3462 * Add other checks here as new ones are introduced.
3464 if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
3465 rdma->pin_all = true;
3468 rdma->cm_id = cm_event->id;
3469 verbs = cm_event->id->verbs;
3471 rdma_ack_cm_event(cm_event);
3473 trace_qemu_rdma_accept_pin_state(rdma->pin_all);
3475 caps_to_network(&cap);
3477 trace_qemu_rdma_accept_pin_verbsc(verbs);
3479 if (!rdma->verbs) {
3480 rdma->verbs = verbs;
3481 } else if (rdma->verbs != verbs) {
3482 error_report("ibv context not matching %p, %p!", rdma->verbs,
3483 verbs);
3484 goto err_rdma_dest_wait;
3487 qemu_rdma_dump_id("dest_init", verbs);
3489 ret = qemu_rdma_alloc_pd_cq(rdma);
3490 if (ret < 0) {
3491 error_report("rdma migration: error allocating pd and cq!");
3492 goto err_rdma_dest_wait;
3495 ret = qemu_rdma_alloc_qp(rdma);
3496 if (ret < 0) {
3497 error_report("rdma migration: error allocating qp!");
3498 goto err_rdma_dest_wait;
3501 qemu_rdma_init_ram_blocks(rdma);
3503 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
3504 ret = qemu_rdma_reg_control(rdma, idx);
3505 if (ret < 0) {
3506 error_report("rdma: error registering %d control", idx);
3507 goto err_rdma_dest_wait;
3511 /* Accept the second connection request for return path */
3512 if ((migrate_postcopy() || migrate_return_path())
3513 && !rdma->is_return_path) {
3514 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3515 NULL,
3516 (void *)(intptr_t)rdma->return_path);
3517 } else {
3518 qemu_set_fd_handler(rdma->channel->fd, rdma_cm_poll_handler,
3519 NULL, rdma);
3522 ret = rdma_accept(rdma->cm_id, &conn_param);
3523 if (ret < 0) {
3524 error_report("rdma_accept failed");
3525 goto err_rdma_dest_wait;
3528 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3529 if (ret < 0) {
3530 error_report("rdma_accept get_cm_event failed");
3531 goto err_rdma_dest_wait;
3534 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
3535 error_report("rdma_accept not event established");
3536 rdma_ack_cm_event(cm_event);
3537 goto err_rdma_dest_wait;
3540 rdma_ack_cm_event(cm_event);
3541 rdma->connected = true;
3543 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
3544 if (ret < 0) {
3545 error_report("rdma migration: error posting second control recv");
3546 goto err_rdma_dest_wait;
3549 qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
3551 return 0;
3553 err_rdma_dest_wait:
3554 rdma->errored = true;
3555 qemu_rdma_cleanup(rdma);
3556 g_free(rdma_return_path);
3557 return -1;
3560 static int dest_ram_sort_func(const void *a, const void *b)
3562 unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
3563 unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
3565 return (a_index < b_index) ? -1 : (a_index != b_index);
3569 * During each iteration of the migration, we listen for instructions
3570 * by the source VM to perform dynamic page registrations before they
3571 * can perform RDMA operations.
3573 * We respond with the 'rkey'.
3575 * Keep doing this until the source tells us to stop.
3577 static int qemu_rdma_registration_handle(QEMUFile *f)
3579 RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
3580 .type = RDMA_CONTROL_REGISTER_RESULT,
3581 .repeat = 0,
3583 RDMAControlHeader unreg_resp = { .len = 0,
3584 .type = RDMA_CONTROL_UNREGISTER_FINISHED,
3585 .repeat = 0,
3587 RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
3588 .repeat = 1 };
3589 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3590 Error *err = NULL;
3591 RDMAContext *rdma;
3592 RDMALocalBlocks *local;
3593 RDMAControlHeader head;
3594 RDMARegister *reg, *registers;
3595 RDMACompress *comp;
3596 RDMARegisterResult *reg_result;
3597 static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
3598 RDMALocalBlock *block;
3599 void *host_addr;
3600 int ret;
3601 int idx = 0;
3602 int count = 0;
3603 int i = 0;
3605 RCU_READ_LOCK_GUARD();
3606 rdma = qatomic_rcu_read(&rioc->rdmain);
3608 if (!rdma) {
3609 return -1;
3612 if (rdma_errored(rdma)) {
3613 return -1;
3616 local = &rdma->local_ram_blocks;
3617 do {
3618 trace_qemu_rdma_registration_handle_wait();
3620 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE, &err);
3622 if (ret < 0) {
3623 error_report_err(err);
3624 break;
3627 if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
3628 error_report("rdma: Too many requests in this message (%d)."
3629 "Bailing.", head.repeat);
3630 break;
3633 switch (head.type) {
3634 case RDMA_CONTROL_COMPRESS:
3635 comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
3636 network_to_compress(comp);
3638 trace_qemu_rdma_registration_handle_compress(comp->length,
3639 comp->block_idx,
3640 comp->offset);
3641 if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
3642 error_report("rdma: 'compress' bad block index %u (vs %d)",
3643 (unsigned int)comp->block_idx,
3644 rdma->local_ram_blocks.nb_blocks);
3645 goto err;
3647 block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3649 host_addr = block->local_host_addr +
3650 (comp->offset - block->offset);
3652 ram_handle_compressed(host_addr, comp->value, comp->length);
3653 break;
3655 case RDMA_CONTROL_REGISTER_FINISHED:
3656 trace_qemu_rdma_registration_handle_finished();
3657 return 0;
3659 case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3660 trace_qemu_rdma_registration_handle_ram_blocks();
3662 /* Sort our local RAM Block list so it's the same as the source,
3663 * we can do this since we've filled in a src_index in the list
3664 * as we received the RAMBlock list earlier.
3666 qsort(rdma->local_ram_blocks.block,
3667 rdma->local_ram_blocks.nb_blocks,
3668 sizeof(RDMALocalBlock), dest_ram_sort_func);
3669 for (i = 0; i < local->nb_blocks; i++) {
3670 local->block[i].index = i;
3673 if (rdma->pin_all) {
3674 ret = qemu_rdma_reg_whole_ram_blocks(rdma, &err);
3675 if (ret < 0) {
3676 error_report_err(err);
3677 goto err;
3682 * Dest uses this to prepare to transmit the RAMBlock descriptions
3683 * to the source VM after connection setup.
3684 * Both sides use the "remote" structure to communicate and update
3685 * their "local" descriptions with what was sent.
3687 for (i = 0; i < local->nb_blocks; i++) {
3688 rdma->dest_blocks[i].remote_host_addr =
3689 (uintptr_t)(local->block[i].local_host_addr);
3691 if (rdma->pin_all) {
3692 rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3695 rdma->dest_blocks[i].offset = local->block[i].offset;
3696 rdma->dest_blocks[i].length = local->block[i].length;
3698 dest_block_to_network(&rdma->dest_blocks[i]);
3699 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3700 local->block[i].block_name,
3701 local->block[i].offset,
3702 local->block[i].length,
3703 local->block[i].local_host_addr,
3704 local->block[i].src_index);
3707 blocks.len = rdma->local_ram_blocks.nb_blocks
3708 * sizeof(RDMADestBlock);
3711 ret = qemu_rdma_post_send_control(rdma,
3712 (uint8_t *) rdma->dest_blocks, &blocks);
3714 if (ret < 0) {
3715 error_report("rdma migration: error sending remote info");
3716 goto err;
3719 break;
3720 case RDMA_CONTROL_REGISTER_REQUEST:
3721 trace_qemu_rdma_registration_handle_register(head.repeat);
3723 reg_resp.repeat = head.repeat;
3724 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3726 for (count = 0; count < head.repeat; count++) {
3727 uint64_t chunk;
3728 uint8_t *chunk_start, *chunk_end;
3730 reg = &registers[count];
3731 network_to_register(reg);
3733 reg_result = &results[count];
3735 trace_qemu_rdma_registration_handle_register_loop(count,
3736 reg->current_index, reg->key.current_addr, reg->chunks);
3738 if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3739 error_report("rdma: 'register' bad block index %u (vs %d)",
3740 (unsigned int)reg->current_index,
3741 rdma->local_ram_blocks.nb_blocks);
3742 goto err;
3744 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3745 if (block->is_ram_block) {
3746 if (block->offset > reg->key.current_addr) {
3747 error_report("rdma: bad register address for block %s"
3748 " offset: %" PRIx64 " current_addr: %" PRIx64,
3749 block->block_name, block->offset,
3750 reg->key.current_addr);
3751 goto err;
3753 host_addr = (block->local_host_addr +
3754 (reg->key.current_addr - block->offset));
3755 chunk = ram_chunk_index(block->local_host_addr,
3756 (uint8_t *) host_addr);
3757 } else {
3758 chunk = reg->key.chunk;
3759 host_addr = block->local_host_addr +
3760 (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3761 /* Check for particularly bad chunk value */
3762 if (host_addr < (void *)block->local_host_addr) {
3763 error_report("rdma: bad chunk for block %s"
3764 " chunk: %" PRIx64,
3765 block->block_name, reg->key.chunk);
3766 goto err;
3769 chunk_start = ram_chunk_start(block, chunk);
3770 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3771 /* avoid "-Waddress-of-packed-member" warning */
3772 uint32_t tmp_rkey = 0;
3773 if (qemu_rdma_register_and_get_keys(rdma, block,
3774 (uintptr_t)host_addr, NULL, &tmp_rkey,
3775 chunk, chunk_start, chunk_end)) {
3776 error_report("cannot get rkey");
3777 goto err;
3779 reg_result->rkey = tmp_rkey;
3781 reg_result->host_addr = (uintptr_t)block->local_host_addr;
3783 trace_qemu_rdma_registration_handle_register_rkey(
3784 reg_result->rkey);
3786 result_to_network(reg_result);
3789 ret = qemu_rdma_post_send_control(rdma,
3790 (uint8_t *) results, &reg_resp);
3792 if (ret < 0) {
3793 error_report("Failed to send control buffer");
3794 goto err;
3796 break;
3797 case RDMA_CONTROL_UNREGISTER_REQUEST:
3798 trace_qemu_rdma_registration_handle_unregister(head.repeat);
3799 unreg_resp.repeat = head.repeat;
3800 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3802 for (count = 0; count < head.repeat; count++) {
3803 reg = &registers[count];
3804 network_to_register(reg);
3806 trace_qemu_rdma_registration_handle_unregister_loop(count,
3807 reg->current_index, reg->key.chunk);
3809 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3811 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3812 block->pmr[reg->key.chunk] = NULL;
3814 if (ret != 0) {
3815 perror("rdma unregistration chunk failed");
3816 goto err;
3819 rdma->total_registrations--;
3821 trace_qemu_rdma_registration_handle_unregister_success(
3822 reg->key.chunk);
3825 ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3827 if (ret < 0) {
3828 error_report("Failed to send control buffer");
3829 goto err;
3831 break;
3832 case RDMA_CONTROL_REGISTER_RESULT:
3833 error_report("Invalid RESULT message at dest.");
3834 goto err;
3835 default:
3836 error_report("Unknown control message %s", control_desc(head.type));
3837 goto err;
3839 } while (1);
3841 err:
3842 rdma->errored = true;
3843 return -1;
3846 /* Destination:
3847 * Called via a ram_control_load_hook during the initial RAM load section which
3848 * lists the RAMBlocks by name. This lets us know the order of the RAMBlocks
3849 * on the source.
3850 * We've already built our local RAMBlock list, but not yet sent the list to
3851 * the source.
3853 static int
3854 rdma_block_notification_handle(QEMUFile *f, const char *name)
3856 RDMAContext *rdma;
3857 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3858 int curr;
3859 int found = -1;
3861 RCU_READ_LOCK_GUARD();
3862 rdma = qatomic_rcu_read(&rioc->rdmain);
3864 if (!rdma) {
3865 return -1;
3868 /* Find the matching RAMBlock in our local list */
3869 for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3870 if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3871 found = curr;
3872 break;
3876 if (found == -1) {
3877 error_report("RAMBlock '%s' not found on destination", name);
3878 return -1;
3881 rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3882 trace_rdma_block_notification_handle(name, rdma->next_src_index);
3883 rdma->next_src_index++;
3885 return 0;
3888 static int rdma_load_hook(QEMUFile *f, uint64_t flags, void *data)
3890 switch (flags) {
3891 case RAM_CONTROL_BLOCK_REG:
3892 return rdma_block_notification_handle(f, data);
3894 case RAM_CONTROL_HOOK:
3895 return qemu_rdma_registration_handle(f);
3897 default:
3898 /* Shouldn't be called with any other values */
3899 abort();
3903 static int qemu_rdma_registration_start(QEMUFile *f,
3904 uint64_t flags, void *data)
3906 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3907 RDMAContext *rdma;
3909 if (migration_in_postcopy()) {
3910 return 0;
3913 RCU_READ_LOCK_GUARD();
3914 rdma = qatomic_rcu_read(&rioc->rdmaout);
3915 if (!rdma) {
3916 return -1;
3919 if (rdma_errored(rdma)) {
3920 return -1;
3923 trace_qemu_rdma_registration_start(flags);
3924 qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3925 qemu_fflush(f);
3927 return 0;
3931 * Inform dest that dynamic registrations are done for now.
3932 * First, flush writes, if any.
3934 static int qemu_rdma_registration_stop(QEMUFile *f,
3935 uint64_t flags, void *data)
3937 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3938 Error *err = NULL;
3939 RDMAContext *rdma;
3940 RDMAControlHeader head = { .len = 0, .repeat = 1 };
3941 int ret;
3943 if (migration_in_postcopy()) {
3944 return 0;
3947 RCU_READ_LOCK_GUARD();
3948 rdma = qatomic_rcu_read(&rioc->rdmaout);
3949 if (!rdma) {
3950 return -1;
3953 if (rdma_errored(rdma)) {
3954 return -1;
3957 qemu_fflush(f);
3958 ret = qemu_rdma_drain_cq(rdma);
3960 if (ret < 0) {
3961 goto err;
3964 if (flags == RAM_CONTROL_SETUP) {
3965 RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3966 RDMALocalBlocks *local = &rdma->local_ram_blocks;
3967 int reg_result_idx, i, nb_dest_blocks;
3969 head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3970 trace_qemu_rdma_registration_stop_ram();
3973 * Make sure that we parallelize the pinning on both sides.
3974 * For very large guests, doing this serially takes a really
3975 * long time, so we have to 'interleave' the pinning locally
3976 * with the control messages by performing the pinning on this
3977 * side before we receive the control response from the other
3978 * side that the pinning has completed.
3980 ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3981 &reg_result_idx, rdma->pin_all ?
3982 qemu_rdma_reg_whole_ram_blocks : NULL,
3983 &err);
3984 if (ret < 0) {
3985 error_report_err(err);
3986 return -1;
3989 nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
3992 * The protocol uses two different sets of rkeys (mutually exclusive):
3993 * 1. One key to represent the virtual address of the entire ram block.
3994 * (dynamic chunk registration disabled - pin everything with one rkey.)
3995 * 2. One to represent individual chunks within a ram block.
3996 * (dynamic chunk registration enabled - pin individual chunks.)
3998 * Once the capability is successfully negotiated, the destination transmits
3999 * the keys to use (or sends them later) including the virtual addresses
4000 * and then propagates the remote ram block descriptions to his local copy.
4003 if (local->nb_blocks != nb_dest_blocks) {
4004 fprintf(stderr, "ram blocks mismatch (Number of blocks %d vs %d) "
4005 "Your QEMU command line parameters are probably "
4006 "not identical on both the source and destination.",
4007 local->nb_blocks, nb_dest_blocks);
4008 rdma->errored = true;
4009 return -1;
4012 qemu_rdma_move_header(rdma, reg_result_idx, &resp);
4013 memcpy(rdma->dest_blocks,
4014 rdma->wr_data[reg_result_idx].control_curr, resp.len);
4015 for (i = 0; i < nb_dest_blocks; i++) {
4016 network_to_dest_block(&rdma->dest_blocks[i]);
4018 /* We require that the blocks are in the same order */
4019 if (rdma->dest_blocks[i].length != local->block[i].length) {
4020 fprintf(stderr, "Block %s/%d has a different length %" PRIu64
4021 "vs %" PRIu64, local->block[i].block_name, i,
4022 local->block[i].length,
4023 rdma->dest_blocks[i].length);
4024 rdma->errored = true;
4025 return -1;
4027 local->block[i].remote_host_addr =
4028 rdma->dest_blocks[i].remote_host_addr;
4029 local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
4033 trace_qemu_rdma_registration_stop(flags);
4035 head.type = RDMA_CONTROL_REGISTER_FINISHED;
4036 ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL, &err);
4038 if (ret < 0) {
4039 error_report_err(err);
4040 goto err;
4043 return 0;
4044 err:
4045 rdma->errored = true;
4046 return -1;
4049 static const QEMUFileHooks rdma_read_hooks = {
4050 .hook_ram_load = rdma_load_hook,
4053 static const QEMUFileHooks rdma_write_hooks = {
4054 .before_ram_iterate = qemu_rdma_registration_start,
4055 .after_ram_iterate = qemu_rdma_registration_stop,
4056 .save_page = qemu_rdma_save_page,
4060 static void qio_channel_rdma_finalize(Object *obj)
4062 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(obj);
4063 if (rioc->rdmain) {
4064 qemu_rdma_cleanup(rioc->rdmain);
4065 g_free(rioc->rdmain);
4066 rioc->rdmain = NULL;
4068 if (rioc->rdmaout) {
4069 qemu_rdma_cleanup(rioc->rdmaout);
4070 g_free(rioc->rdmaout);
4071 rioc->rdmaout = NULL;
4075 static void qio_channel_rdma_class_init(ObjectClass *klass,
4076 void *class_data G_GNUC_UNUSED)
4078 QIOChannelClass *ioc_klass = QIO_CHANNEL_CLASS(klass);
4080 ioc_klass->io_writev = qio_channel_rdma_writev;
4081 ioc_klass->io_readv = qio_channel_rdma_readv;
4082 ioc_klass->io_set_blocking = qio_channel_rdma_set_blocking;
4083 ioc_klass->io_close = qio_channel_rdma_close;
4084 ioc_klass->io_create_watch = qio_channel_rdma_create_watch;
4085 ioc_klass->io_set_aio_fd_handler = qio_channel_rdma_set_aio_fd_handler;
4086 ioc_klass->io_shutdown = qio_channel_rdma_shutdown;
4089 static const TypeInfo qio_channel_rdma_info = {
4090 .parent = TYPE_QIO_CHANNEL,
4091 .name = TYPE_QIO_CHANNEL_RDMA,
4092 .instance_size = sizeof(QIOChannelRDMA),
4093 .instance_finalize = qio_channel_rdma_finalize,
4094 .class_init = qio_channel_rdma_class_init,
4097 static void qio_channel_rdma_register_types(void)
4099 type_register_static(&qio_channel_rdma_info);
4102 type_init(qio_channel_rdma_register_types);
4104 static QEMUFile *rdma_new_input(RDMAContext *rdma)
4106 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
4108 rioc->file = qemu_file_new_input(QIO_CHANNEL(rioc));
4109 rioc->rdmain = rdma;
4110 rioc->rdmaout = rdma->return_path;
4111 qemu_file_set_hooks(rioc->file, &rdma_read_hooks);
4113 return rioc->file;
4116 static QEMUFile *rdma_new_output(RDMAContext *rdma)
4118 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
4120 rioc->file = qemu_file_new_output(QIO_CHANNEL(rioc));
4121 rioc->rdmaout = rdma;
4122 rioc->rdmain = rdma->return_path;
4123 qemu_file_set_hooks(rioc->file, &rdma_write_hooks);
4125 return rioc->file;
4128 static void rdma_accept_incoming_migration(void *opaque)
4130 RDMAContext *rdma = opaque;
4131 int ret;
4132 QEMUFile *f;
4133 Error *local_err = NULL;
4135 trace_qemu_rdma_accept_incoming_migration();
4136 ret = qemu_rdma_accept(rdma);
4138 if (ret < 0) {
4139 fprintf(stderr, "RDMA ERROR: Migration initialization failed\n");
4140 return;
4143 trace_qemu_rdma_accept_incoming_migration_accepted();
4145 if (rdma->is_return_path) {
4146 return;
4149 f = rdma_new_input(rdma);
4150 if (f == NULL) {
4151 fprintf(stderr, "RDMA ERROR: could not open RDMA for input\n");
4152 qemu_rdma_cleanup(rdma);
4153 return;
4156 rdma->migration_started_on_destination = 1;
4157 migration_fd_process_incoming(f, &local_err);
4158 if (local_err) {
4159 error_reportf_err(local_err, "RDMA ERROR:");
4163 void rdma_start_incoming_migration(const char *host_port, Error **errp)
4165 int ret;
4166 RDMAContext *rdma;
4168 trace_rdma_start_incoming_migration();
4170 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4171 if (ram_block_discard_is_required()) {
4172 error_setg(errp, "RDMA: cannot disable RAM discard");
4173 return;
4176 rdma = qemu_rdma_data_init(host_port, errp);
4177 if (rdma == NULL) {
4178 goto err;
4181 ret = qemu_rdma_dest_init(rdma, errp);
4182 if (ret < 0) {
4183 goto err;
4186 trace_rdma_start_incoming_migration_after_dest_init();
4188 ret = rdma_listen(rdma->listen_id, 5);
4190 if (ret < 0) {
4191 error_setg(errp, "RDMA ERROR: listening on socket!");
4192 goto cleanup_rdma;
4195 trace_rdma_start_incoming_migration_after_rdma_listen();
4197 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
4198 NULL, (void *)(intptr_t)rdma);
4199 return;
4201 cleanup_rdma:
4202 qemu_rdma_cleanup(rdma);
4203 err:
4204 if (rdma) {
4205 g_free(rdma->host);
4206 g_free(rdma->host_port);
4208 g_free(rdma);
4211 void rdma_start_outgoing_migration(void *opaque,
4212 const char *host_port, Error **errp)
4214 MigrationState *s = opaque;
4215 RDMAContext *rdma_return_path = NULL;
4216 RDMAContext *rdma;
4217 int ret;
4219 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4220 if (ram_block_discard_is_required()) {
4221 error_setg(errp, "RDMA: cannot disable RAM discard");
4222 return;
4225 rdma = qemu_rdma_data_init(host_port, errp);
4226 if (rdma == NULL) {
4227 goto err;
4230 ret = qemu_rdma_source_init(rdma, migrate_rdma_pin_all(), errp);
4232 if (ret < 0) {
4233 goto err;
4236 trace_rdma_start_outgoing_migration_after_rdma_source_init();
4237 ret = qemu_rdma_connect(rdma, false, errp);
4239 if (ret < 0) {
4240 goto err;
4243 /* RDMA postcopy need a separate queue pair for return path */
4244 if (migrate_postcopy() || migrate_return_path()) {
4245 rdma_return_path = qemu_rdma_data_init(host_port, errp);
4247 if (rdma_return_path == NULL) {
4248 goto return_path_err;
4251 ret = qemu_rdma_source_init(rdma_return_path,
4252 migrate_rdma_pin_all(), errp);
4254 if (ret < 0) {
4255 goto return_path_err;
4258 ret = qemu_rdma_connect(rdma_return_path, true, errp);
4260 if (ret < 0) {
4261 goto return_path_err;
4264 rdma->return_path = rdma_return_path;
4265 rdma_return_path->return_path = rdma;
4266 rdma_return_path->is_return_path = true;
4269 trace_rdma_start_outgoing_migration_after_rdma_connect();
4271 s->to_dst_file = rdma_new_output(rdma);
4272 migrate_fd_connect(s, NULL);
4273 return;
4274 return_path_err:
4275 qemu_rdma_cleanup(rdma);
4276 err:
4277 g_free(rdma);
4278 g_free(rdma_return_path);