2 * NVMe block driver based on vfio
4 * Copyright 2016 - 2018 Red Hat, Inc.
7 * Fam Zheng <famz@redhat.com>
8 * Paolo Bonzini <pbonzini@redhat.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
14 #include "qemu/osdep.h"
15 #include <linux/vfio.h>
16 #include "qapi/error.h"
17 #include "qapi/qmp/qdict.h"
18 #include "qapi/qmp/qstring.h"
19 #include "qemu/error-report.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/module.h"
22 #include "qemu/cutils.h"
23 #include "qemu/option.h"
24 #include "qemu/vfio-helpers.h"
25 #include "block/block_int.h"
26 #include "sysemu/replay.h"
29 #include "block/nvme.h"
31 #define NVME_SQ_ENTRY_BYTES 64
32 #define NVME_CQ_ENTRY_BYTES 16
33 #define NVME_QUEUE_SIZE 128
34 #define NVME_DOORBELL_SIZE 4096
37 * We have to leave one slot empty as that is the full queue case where
40 #define NVME_NUM_REQS (NVME_QUEUE_SIZE - 1)
42 typedef struct BDRVNVMeState BDRVNVMeState
;
44 /* Same index is used for queues and IRQs */
46 #define INDEX_IO(n) (1 + n)
48 /* This driver shares a single MSIX IRQ for the admin and I/O queues */
50 MSIX_SHARED_IRQ_IDX
= 0,
58 /* Hardware MMIO register */
59 volatile uint32_t *doorbell
;
63 BlockCompletionFunc
*cb
;
67 uint64_t prp_list_iova
;
68 int free_req_next
; /* q->reqs[] index of next free req */
74 /* Read from I/O code path, initialized under BQL */
78 /* Fields protected by BQL */
79 uint8_t *prp_list_pages
;
81 /* Fields protected by @lock */
82 CoQueue free_req_queue
;
86 NVMeRequest reqs
[NVME_NUM_REQS
];
90 /* Thread-safe, no lock necessary */
91 QEMUBH
*completion_bh
;
94 struct BDRVNVMeState
{
95 AioContext
*aio_context
;
98 /* Memory mapped registers */
103 /* The submission/completion queue pairs.
107 NVMeQueuePair
**queues
;
108 unsigned queue_count
;
110 /* How many uint32_t elements does each doorbell entry take. */
111 size_t doorbell_scale
;
112 bool write_cache_supported
;
113 EventNotifier irq_notifier
[MSIX_IRQ_COUNT
];
115 uint64_t nsze
; /* Namespace size reported by identify command */
116 int nsid
; /* The namespace id to read/write data. */
119 uint64_t max_transfer
;
122 bool supports_write_zeroes
;
123 bool supports_discard
;
125 CoMutex dma_map_lock
;
126 CoQueue dma_flush_queue
;
128 /* Total size of mapped qiov, accessed under dma_map_lock */
131 /* PCI address (required for nvme_refresh_filename()) */
135 uint64_t completion_errors
;
136 uint64_t aligned_accesses
;
137 uint64_t unaligned_accesses
;
141 #define NVME_BLOCK_OPT_DEVICE "device"
142 #define NVME_BLOCK_OPT_NAMESPACE "namespace"
144 static void nvme_process_completion_bh(void *opaque
);
146 static QemuOptsList runtime_opts
= {
148 .head
= QTAILQ_HEAD_INITIALIZER(runtime_opts
.head
),
151 .name
= NVME_BLOCK_OPT_DEVICE
,
152 .type
= QEMU_OPT_STRING
,
153 .help
= "NVMe PCI device address",
156 .name
= NVME_BLOCK_OPT_NAMESPACE
,
157 .type
= QEMU_OPT_NUMBER
,
158 .help
= "NVMe namespace",
160 { /* end of list */ }
164 /* Returns true on success, false on failure. */
165 static bool nvme_init_queue(BDRVNVMeState
*s
, NVMeQueue
*q
,
166 unsigned nentries
, size_t entry_bytes
, Error
**errp
)
171 bytes
= ROUND_UP(nentries
* entry_bytes
, qemu_real_host_page_size
);
172 q
->head
= q
->tail
= 0;
173 q
->queue
= qemu_try_memalign(qemu_real_host_page_size
, bytes
);
175 error_setg(errp
, "Cannot allocate queue");
178 memset(q
->queue
, 0, bytes
);
179 r
= qemu_vfio_dma_map(s
->vfio
, q
->queue
, bytes
, false, &q
->iova
, errp
);
181 error_prepend(errp
, "Cannot map queue: ");
186 static void nvme_free_queue_pair(NVMeQueuePair
*q
)
188 trace_nvme_free_queue_pair(q
->index
, q
);
189 if (q
->completion_bh
) {
190 qemu_bh_delete(q
->completion_bh
);
192 qemu_vfree(q
->prp_list_pages
);
193 qemu_vfree(q
->sq
.queue
);
194 qemu_vfree(q
->cq
.queue
);
195 qemu_mutex_destroy(&q
->lock
);
199 static void nvme_free_req_queue_cb(void *opaque
)
201 NVMeQueuePair
*q
= opaque
;
203 qemu_mutex_lock(&q
->lock
);
204 while (qemu_co_enter_next(&q
->free_req_queue
, &q
->lock
)) {
205 /* Retry all pending requests */
207 qemu_mutex_unlock(&q
->lock
);
210 static NVMeQueuePair
*nvme_create_queue_pair(BDRVNVMeState
*s
,
211 AioContext
*aio_context
,
212 unsigned idx
, size_t size
,
217 uint64_t prp_list_iova
;
220 q
= g_try_new0(NVMeQueuePair
, 1);
222 error_setg(errp
, "Cannot allocate queue pair");
225 trace_nvme_create_queue_pair(idx
, q
, size
, aio_context
,
226 event_notifier_get_fd(s
->irq_notifier
));
227 bytes
= QEMU_ALIGN_UP(s
->page_size
* NVME_NUM_REQS
,
228 qemu_real_host_page_size
);
229 q
->prp_list_pages
= qemu_try_memalign(qemu_real_host_page_size
, bytes
);
230 if (!q
->prp_list_pages
) {
231 error_setg(errp
, "Cannot allocate PRP page list");
234 memset(q
->prp_list_pages
, 0, bytes
);
235 qemu_mutex_init(&q
->lock
);
238 qemu_co_queue_init(&q
->free_req_queue
);
239 q
->completion_bh
= aio_bh_new(aio_context
, nvme_process_completion_bh
, q
);
240 r
= qemu_vfio_dma_map(s
->vfio
, q
->prp_list_pages
, bytes
,
241 false, &prp_list_iova
, errp
);
243 error_prepend(errp
, "Cannot map buffer for DMA: ");
246 q
->free_req_head
= -1;
247 for (i
= 0; i
< NVME_NUM_REQS
; i
++) {
248 NVMeRequest
*req
= &q
->reqs
[i
];
250 req
->free_req_next
= q
->free_req_head
;
251 q
->free_req_head
= i
;
252 req
->prp_list_page
= q
->prp_list_pages
+ i
* s
->page_size
;
253 req
->prp_list_iova
= prp_list_iova
+ i
* s
->page_size
;
256 if (!nvme_init_queue(s
, &q
->sq
, size
, NVME_SQ_ENTRY_BYTES
, errp
)) {
259 q
->sq
.doorbell
= &s
->doorbells
[idx
* s
->doorbell_scale
].sq_tail
;
261 if (!nvme_init_queue(s
, &q
->cq
, size
, NVME_CQ_ENTRY_BYTES
, errp
)) {
264 q
->cq
.doorbell
= &s
->doorbells
[idx
* s
->doorbell_scale
].cq_head
;
268 nvme_free_queue_pair(q
);
273 static void nvme_kick(NVMeQueuePair
*q
)
275 BDRVNVMeState
*s
= q
->s
;
277 if (s
->plugged
|| !q
->need_kick
) {
280 trace_nvme_kick(s
, q
->index
);
281 assert(!(q
->sq
.tail
& 0xFF00));
282 /* Fence the write to submission queue entry before notifying the device. */
284 *q
->sq
.doorbell
= cpu_to_le32(q
->sq
.tail
);
285 q
->inflight
+= q
->need_kick
;
289 /* Find a free request element if any, otherwise:
290 * a) if in coroutine context, try to wait for one to become available;
291 * b) if not in coroutine, return NULL;
293 static NVMeRequest
*nvme_get_free_req(NVMeQueuePair
*q
)
297 qemu_mutex_lock(&q
->lock
);
299 while (q
->free_req_head
== -1) {
300 if (qemu_in_coroutine()) {
301 trace_nvme_free_req_queue_wait(q
->s
, q
->index
);
302 qemu_co_queue_wait(&q
->free_req_queue
, &q
->lock
);
304 qemu_mutex_unlock(&q
->lock
);
309 req
= &q
->reqs
[q
->free_req_head
];
310 q
->free_req_head
= req
->free_req_next
;
311 req
->free_req_next
= -1;
313 qemu_mutex_unlock(&q
->lock
);
318 static void nvme_put_free_req_locked(NVMeQueuePair
*q
, NVMeRequest
*req
)
320 req
->free_req_next
= q
->free_req_head
;
321 q
->free_req_head
= req
- q
->reqs
;
325 static void nvme_wake_free_req_locked(NVMeQueuePair
*q
)
327 if (!qemu_co_queue_empty(&q
->free_req_queue
)) {
328 replay_bh_schedule_oneshot_event(q
->s
->aio_context
,
329 nvme_free_req_queue_cb
, q
);
333 /* Insert a request in the freelist and wake waiters */
334 static void nvme_put_free_req_and_wake(NVMeQueuePair
*q
, NVMeRequest
*req
)
336 qemu_mutex_lock(&q
->lock
);
337 nvme_put_free_req_locked(q
, req
);
338 nvme_wake_free_req_locked(q
);
339 qemu_mutex_unlock(&q
->lock
);
342 static inline int nvme_translate_error(const NvmeCqe
*c
)
344 uint16_t status
= (le16_to_cpu(c
->status
) >> 1) & 0xFF;
346 trace_nvme_error(le32_to_cpu(c
->result
),
347 le16_to_cpu(c
->sq_head
),
348 le16_to_cpu(c
->sq_id
),
350 le16_to_cpu(status
));
365 static bool nvme_process_completion(NVMeQueuePair
*q
)
367 BDRVNVMeState
*s
= q
->s
;
368 bool progress
= false;
373 trace_nvme_process_completion(s
, q
->index
, q
->inflight
);
375 trace_nvme_process_completion_queue_plugged(s
, q
->index
);
380 * Support re-entrancy when a request cb() function invokes aio_poll().
381 * Pending completions must be visible to aio_poll() so that a cb()
382 * function can wait for the completion of another request.
384 * The aio_poll() loop will execute our BH and we'll resume completion
387 qemu_bh_schedule(q
->completion_bh
);
389 assert(q
->inflight
>= 0);
390 while (q
->inflight
) {
394 c
= (NvmeCqe
*)&q
->cq
.queue
[q
->cq
.head
* NVME_CQ_ENTRY_BYTES
];
395 if ((le16_to_cpu(c
->status
) & 0x1) == q
->cq_phase
) {
398 ret
= nvme_translate_error(c
);
400 s
->stats
.completion_errors
++;
402 q
->cq
.head
= (q
->cq
.head
+ 1) % NVME_QUEUE_SIZE
;
404 q
->cq_phase
= !q
->cq_phase
;
406 cid
= le16_to_cpu(c
->cid
);
407 if (cid
== 0 || cid
> NVME_QUEUE_SIZE
) {
408 warn_report("NVMe: Unexpected CID in completion queue: %"PRIu32
", "
409 "queue size: %u", cid
, NVME_QUEUE_SIZE
);
412 trace_nvme_complete_command(s
, q
->index
, cid
);
413 preq
= &q
->reqs
[cid
- 1];
415 assert(req
.cid
== cid
);
417 nvme_put_free_req_locked(q
, preq
);
418 preq
->cb
= preq
->opaque
= NULL
;
420 qemu_mutex_unlock(&q
->lock
);
421 req
.cb(req
.opaque
, ret
);
422 qemu_mutex_lock(&q
->lock
);
426 /* Notify the device so it can post more completions. */
428 *q
->cq
.doorbell
= cpu_to_le32(q
->cq
.head
);
429 nvme_wake_free_req_locked(q
);
432 qemu_bh_cancel(q
->completion_bh
);
437 static void nvme_process_completion_bh(void *opaque
)
439 NVMeQueuePair
*q
= opaque
;
442 * We're being invoked because a nvme_process_completion() cb() function
443 * called aio_poll(). The callback may be waiting for further completions
444 * so notify the device that it has space to fill in more completions now.
447 *q
->cq
.doorbell
= cpu_to_le32(q
->cq
.head
);
448 nvme_wake_free_req_locked(q
);
450 nvme_process_completion(q
);
453 static void nvme_trace_command(const NvmeCmd
*cmd
)
457 if (!trace_event_get_state_backends(TRACE_NVME_SUBMIT_COMMAND_RAW
)) {
460 for (i
= 0; i
< 8; ++i
) {
461 uint8_t *cmdp
= (uint8_t *)cmd
+ i
* 8;
462 trace_nvme_submit_command_raw(cmdp
[0], cmdp
[1], cmdp
[2], cmdp
[3],
463 cmdp
[4], cmdp
[5], cmdp
[6], cmdp
[7]);
467 static void nvme_submit_command(NVMeQueuePair
*q
, NVMeRequest
*req
,
468 NvmeCmd
*cmd
, BlockCompletionFunc cb
,
473 req
->opaque
= opaque
;
474 cmd
->cid
= cpu_to_le16(req
->cid
);
476 trace_nvme_submit_command(q
->s
, q
->index
, req
->cid
);
477 nvme_trace_command(cmd
);
478 qemu_mutex_lock(&q
->lock
);
479 memcpy((uint8_t *)q
->sq
.queue
+
480 q
->sq
.tail
* NVME_SQ_ENTRY_BYTES
, cmd
, sizeof(*cmd
));
481 q
->sq
.tail
= (q
->sq
.tail
+ 1) % NVME_QUEUE_SIZE
;
484 nvme_process_completion(q
);
485 qemu_mutex_unlock(&q
->lock
);
488 static void nvme_admin_cmd_sync_cb(void *opaque
, int ret
)
495 static int nvme_admin_cmd_sync(BlockDriverState
*bs
, NvmeCmd
*cmd
)
497 BDRVNVMeState
*s
= bs
->opaque
;
498 NVMeQueuePair
*q
= s
->queues
[INDEX_ADMIN
];
499 AioContext
*aio_context
= bdrv_get_aio_context(bs
);
501 int ret
= -EINPROGRESS
;
502 req
= nvme_get_free_req(q
);
506 nvme_submit_command(q
, req
, cmd
, nvme_admin_cmd_sync_cb
, &ret
);
508 AIO_WAIT_WHILE(aio_context
, ret
== -EINPROGRESS
);
512 /* Returns true on success, false on failure. */
513 static bool nvme_identify(BlockDriverState
*bs
, int namespace, Error
**errp
)
515 BDRVNVMeState
*s
= bs
->opaque
;
526 .opcode
= NVME_ADM_CMD_IDENTIFY
,
527 .cdw10
= cpu_to_le32(0x1),
529 size_t id_size
= QEMU_ALIGN_UP(sizeof(*id
), qemu_real_host_page_size
);
531 id
= qemu_try_memalign(qemu_real_host_page_size
, id_size
);
533 error_setg(errp
, "Cannot allocate buffer for identify response");
536 r
= qemu_vfio_dma_map(s
->vfio
, id
, id_size
, true, &iova
, errp
);
538 error_prepend(errp
, "Cannot map buffer for DMA: ");
542 memset(id
, 0, id_size
);
543 cmd
.dptr
.prp1
= cpu_to_le64(iova
);
544 if (nvme_admin_cmd_sync(bs
, &cmd
)) {
545 error_setg(errp
, "Failed to identify controller");
549 if (le32_to_cpu(id
->ctrl
.nn
) < namespace) {
550 error_setg(errp
, "Invalid namespace");
553 s
->write_cache_supported
= le32_to_cpu(id
->ctrl
.vwc
) & 0x1;
554 s
->max_transfer
= (id
->ctrl
.mdts
? 1 << id
->ctrl
.mdts
: 0) * s
->page_size
;
555 /* For now the page list buffer per command is one page, to hold at most
556 * s->page_size / sizeof(uint64_t) entries. */
557 s
->max_transfer
= MIN_NON_ZERO(s
->max_transfer
,
558 s
->page_size
/ sizeof(uint64_t) * s
->page_size
);
560 oncs
= le16_to_cpu(id
->ctrl
.oncs
);
561 s
->supports_write_zeroes
= !!(oncs
& NVME_ONCS_WRITE_ZEROES
);
562 s
->supports_discard
= !!(oncs
& NVME_ONCS_DSM
);
564 memset(id
, 0, id_size
);
566 cmd
.nsid
= cpu_to_le32(namespace);
567 if (nvme_admin_cmd_sync(bs
, &cmd
)) {
568 error_setg(errp
, "Failed to identify namespace");
572 s
->nsze
= le64_to_cpu(id
->ns
.nsze
);
573 lbaf
= &id
->ns
.lbaf
[NVME_ID_NS_FLBAS_INDEX(id
->ns
.flbas
)];
575 if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(id
->ns
.dlfeat
) &&
576 NVME_ID_NS_DLFEAT_READ_BEHAVIOR(id
->ns
.dlfeat
) ==
577 NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES
) {
578 bs
->supported_write_flags
|= BDRV_REQ_MAY_UNMAP
;
582 error_setg(errp
, "Namespaces with metadata are not yet supported");
586 if (lbaf
->ds
< BDRV_SECTOR_BITS
|| lbaf
->ds
> 12 ||
587 (1 << lbaf
->ds
) > s
->page_size
)
589 error_setg(errp
, "Namespace has unsupported block size (2^%d)",
595 s
->blkshift
= lbaf
->ds
;
597 qemu_vfio_dma_unmap(s
->vfio
, id
);
603 static bool nvme_poll_queue(NVMeQueuePair
*q
)
605 bool progress
= false;
607 const size_t cqe_offset
= q
->cq
.head
* NVME_CQ_ENTRY_BYTES
;
608 NvmeCqe
*cqe
= (NvmeCqe
*)&q
->cq
.queue
[cqe_offset
];
610 trace_nvme_poll_queue(q
->s
, q
->index
);
612 * Do an early check for completions. q->lock isn't needed because
613 * nvme_process_completion() only runs in the event loop thread and
614 * cannot race with itself.
616 if ((le16_to_cpu(cqe
->status
) & 0x1) == q
->cq_phase
) {
620 qemu_mutex_lock(&q
->lock
);
621 while (nvme_process_completion(q
)) {
625 qemu_mutex_unlock(&q
->lock
);
630 static bool nvme_poll_queues(BDRVNVMeState
*s
)
632 bool progress
= false;
635 for (i
= 0; i
< s
->queue_count
; i
++) {
636 if (nvme_poll_queue(s
->queues
[i
])) {
643 static void nvme_handle_event(EventNotifier
*n
)
645 BDRVNVMeState
*s
= container_of(n
, BDRVNVMeState
,
646 irq_notifier
[MSIX_SHARED_IRQ_IDX
]);
648 trace_nvme_handle_event(s
);
649 event_notifier_test_and_clear(n
);
653 static bool nvme_add_io_queue(BlockDriverState
*bs
, Error
**errp
)
655 BDRVNVMeState
*s
= bs
->opaque
;
656 unsigned n
= s
->queue_count
;
659 unsigned queue_size
= NVME_QUEUE_SIZE
;
661 assert(n
<= UINT16_MAX
);
662 q
= nvme_create_queue_pair(s
, bdrv_get_aio_context(bs
),
663 n
, queue_size
, errp
);
668 .opcode
= NVME_ADM_CMD_CREATE_CQ
,
669 .dptr
.prp1
= cpu_to_le64(q
->cq
.iova
),
670 .cdw10
= cpu_to_le32(((queue_size
- 1) << 16) | n
),
671 .cdw11
= cpu_to_le32(NVME_CQ_IEN
| NVME_CQ_PC
),
673 if (nvme_admin_cmd_sync(bs
, &cmd
)) {
674 error_setg(errp
, "Failed to create CQ io queue [%u]", n
);
678 .opcode
= NVME_ADM_CMD_CREATE_SQ
,
679 .dptr
.prp1
= cpu_to_le64(q
->sq
.iova
),
680 .cdw10
= cpu_to_le32(((queue_size
- 1) << 16) | n
),
681 .cdw11
= cpu_to_le32(NVME_SQ_PC
| (n
<< 16)),
683 if (nvme_admin_cmd_sync(bs
, &cmd
)) {
684 error_setg(errp
, "Failed to create SQ io queue [%u]", n
);
687 s
->queues
= g_renew(NVMeQueuePair
*, s
->queues
, n
+ 1);
692 nvme_free_queue_pair(q
);
696 static bool nvme_poll_cb(void *opaque
)
698 EventNotifier
*e
= opaque
;
699 BDRVNVMeState
*s
= container_of(e
, BDRVNVMeState
,
700 irq_notifier
[MSIX_SHARED_IRQ_IDX
]);
702 return nvme_poll_queues(s
);
705 static int nvme_init(BlockDriverState
*bs
, const char *device
, int namespace,
708 BDRVNVMeState
*s
= bs
->opaque
;
710 AioContext
*aio_context
= bdrv_get_aio_context(bs
);
715 uint64_t deadline
, now
;
716 volatile NvmeBar
*regs
= NULL
;
718 qemu_co_mutex_init(&s
->dma_map_lock
);
719 qemu_co_queue_init(&s
->dma_flush_queue
);
720 s
->device
= g_strdup(device
);
722 s
->aio_context
= bdrv_get_aio_context(bs
);
723 ret
= event_notifier_init(&s
->irq_notifier
[MSIX_SHARED_IRQ_IDX
], 0);
725 error_setg(errp
, "Failed to init event notifier");
729 s
->vfio
= qemu_vfio_open_pci(device
, errp
);
735 regs
= qemu_vfio_pci_map_bar(s
->vfio
, 0, 0, sizeof(NvmeBar
),
736 PROT_READ
| PROT_WRITE
, errp
);
741 /* Perform initialize sequence as described in NVMe spec "7.6.1
742 * Initialization". */
744 cap
= le64_to_cpu(regs
->cap
);
745 trace_nvme_controller_capability_raw(cap
);
746 trace_nvme_controller_capability("Maximum Queue Entries Supported",
747 1 + NVME_CAP_MQES(cap
));
748 trace_nvme_controller_capability("Contiguous Queues Required",
750 trace_nvme_controller_capability("Doorbell Stride",
751 1 << (2 + NVME_CAP_DSTRD(cap
)));
752 trace_nvme_controller_capability("Subsystem Reset Supported",
753 NVME_CAP_NSSRS(cap
));
754 trace_nvme_controller_capability("Memory Page Size Minimum",
755 1 << (12 + NVME_CAP_MPSMIN(cap
)));
756 trace_nvme_controller_capability("Memory Page Size Maximum",
757 1 << (12 + NVME_CAP_MPSMAX(cap
)));
758 if (!NVME_CAP_CSS(cap
)) {
759 error_setg(errp
, "Device doesn't support NVMe command set");
764 s
->page_size
= 1u << (12 + NVME_CAP_MPSMIN(cap
));
765 s
->doorbell_scale
= (4 << NVME_CAP_DSTRD(cap
)) / sizeof(uint32_t);
766 bs
->bl
.opt_mem_alignment
= s
->page_size
;
767 bs
->bl
.request_alignment
= s
->page_size
;
768 timeout_ms
= MIN(500 * NVME_CAP_TO(cap
), 30000);
770 ver
= le32_to_cpu(regs
->vs
);
771 trace_nvme_controller_spec_version(extract32(ver
, 16, 16),
772 extract32(ver
, 8, 8),
773 extract32(ver
, 0, 8));
775 /* Reset device to get a clean state. */
776 regs
->cc
= cpu_to_le32(le32_to_cpu(regs
->cc
) & 0xFE);
777 /* Wait for CSTS.RDY = 0. */
778 deadline
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) + timeout_ms
* SCALE_MS
;
779 while (NVME_CSTS_RDY(le32_to_cpu(regs
->csts
))) {
780 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) > deadline
) {
781 error_setg(errp
, "Timeout while waiting for device to reset (%"
789 s
->bar0_wo_map
= qemu_vfio_pci_map_bar(s
->vfio
, 0, 0,
790 sizeof(NvmeBar
) + NVME_DOORBELL_SIZE
,
792 s
->doorbells
= (void *)((uintptr_t)s
->bar0_wo_map
+ sizeof(NvmeBar
));
798 /* Set up admin queue. */
799 s
->queues
= g_new(NVMeQueuePair
*, 1);
800 q
= nvme_create_queue_pair(s
, aio_context
, 0, NVME_QUEUE_SIZE
, errp
);
805 s
->queues
[INDEX_ADMIN
] = q
;
807 QEMU_BUILD_BUG_ON((NVME_QUEUE_SIZE
- 1) & 0xF000);
808 regs
->aqa
= cpu_to_le32(((NVME_QUEUE_SIZE
- 1) << AQA_ACQS_SHIFT
) |
809 ((NVME_QUEUE_SIZE
- 1) << AQA_ASQS_SHIFT
));
810 regs
->asq
= cpu_to_le64(q
->sq
.iova
);
811 regs
->acq
= cpu_to_le64(q
->cq
.iova
);
813 /* After setting up all control registers we can enable device now. */
814 regs
->cc
= cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES
) << CC_IOCQES_SHIFT
) |
815 (ctz32(NVME_SQ_ENTRY_BYTES
) << CC_IOSQES_SHIFT
) |
817 /* Wait for CSTS.RDY = 1. */
818 now
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
819 deadline
= now
+ timeout_ms
* SCALE_MS
;
820 while (!NVME_CSTS_RDY(le32_to_cpu(regs
->csts
))) {
821 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) > deadline
) {
822 error_setg(errp
, "Timeout while waiting for device to start (%"
830 ret
= qemu_vfio_pci_init_irq(s
->vfio
, s
->irq_notifier
,
831 VFIO_PCI_MSIX_IRQ_INDEX
, errp
);
835 aio_set_event_notifier(bdrv_get_aio_context(bs
),
836 &s
->irq_notifier
[MSIX_SHARED_IRQ_IDX
],
837 false, nvme_handle_event
, nvme_poll_cb
);
839 if (!nvme_identify(bs
, namespace, errp
)) {
844 /* Set up command queues. */
845 if (!nvme_add_io_queue(bs
, errp
)) {
850 qemu_vfio_pci_unmap_bar(s
->vfio
, 0, (void *)regs
, 0, sizeof(NvmeBar
));
853 /* Cleaning up is done in nvme_file_open() upon error. */
857 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
859 * nvme://0000:44:00.0/1
861 * where the "nvme://" is a fixed form of the protocol prefix, the middle part
862 * is the PCI address, and the last part is the namespace number starting from
863 * 1 according to the NVMe spec. */
864 static void nvme_parse_filename(const char *filename
, QDict
*options
,
867 int pref
= strlen("nvme://");
869 if (strlen(filename
) > pref
&& !strncmp(filename
, "nvme://", pref
)) {
870 const char *tmp
= filename
+ pref
;
872 const char *namespace;
874 const char *slash
= strchr(tmp
, '/');
876 qdict_put_str(options
, NVME_BLOCK_OPT_DEVICE
, tmp
);
879 device
= g_strndup(tmp
, slash
- tmp
);
880 qdict_put_str(options
, NVME_BLOCK_OPT_DEVICE
, device
);
882 namespace = slash
+ 1;
883 if (*namespace && qemu_strtoul(namespace, NULL
, 10, &ns
)) {
884 error_setg(errp
, "Invalid namespace '%s', positive number expected",
888 qdict_put_str(options
, NVME_BLOCK_OPT_NAMESPACE
,
889 *namespace ? namespace : "1");
893 static int nvme_enable_disable_write_cache(BlockDriverState
*bs
, bool enable
,
897 BDRVNVMeState
*s
= bs
->opaque
;
899 .opcode
= NVME_ADM_CMD_SET_FEATURES
,
900 .nsid
= cpu_to_le32(s
->nsid
),
901 .cdw10
= cpu_to_le32(0x06),
902 .cdw11
= cpu_to_le32(enable
? 0x01 : 0x00),
905 ret
= nvme_admin_cmd_sync(bs
, &cmd
);
907 error_setg(errp
, "Failed to configure NVMe write cache");
912 static void nvme_close(BlockDriverState
*bs
)
914 BDRVNVMeState
*s
= bs
->opaque
;
916 for (unsigned i
= 0; i
< s
->queue_count
; ++i
) {
917 nvme_free_queue_pair(s
->queues
[i
]);
920 aio_set_event_notifier(bdrv_get_aio_context(bs
),
921 &s
->irq_notifier
[MSIX_SHARED_IRQ_IDX
],
923 event_notifier_cleanup(&s
->irq_notifier
[MSIX_SHARED_IRQ_IDX
]);
924 qemu_vfio_pci_unmap_bar(s
->vfio
, 0, s
->bar0_wo_map
,
925 0, sizeof(NvmeBar
) + NVME_DOORBELL_SIZE
);
926 qemu_vfio_close(s
->vfio
);
931 static int nvme_file_open(BlockDriverState
*bs
, QDict
*options
, int flags
,
938 BDRVNVMeState
*s
= bs
->opaque
;
940 bs
->supported_write_flags
= BDRV_REQ_FUA
;
942 opts
= qemu_opts_create(&runtime_opts
, NULL
, 0, &error_abort
);
943 qemu_opts_absorb_qdict(opts
, options
, &error_abort
);
944 device
= qemu_opt_get(opts
, NVME_BLOCK_OPT_DEVICE
);
946 error_setg(errp
, "'" NVME_BLOCK_OPT_DEVICE
"' option is required");
951 namespace = qemu_opt_get_number(opts
, NVME_BLOCK_OPT_NAMESPACE
, 1);
952 ret
= nvme_init(bs
, device
, namespace, errp
);
957 if (flags
& BDRV_O_NOCACHE
) {
958 if (!s
->write_cache_supported
) {
960 "NVMe controller doesn't support write cache configuration");
963 ret
= nvme_enable_disable_write_cache(bs
, !(flags
& BDRV_O_NOCACHE
),
976 static int64_t nvme_getlength(BlockDriverState
*bs
)
978 BDRVNVMeState
*s
= bs
->opaque
;
979 return s
->nsze
<< s
->blkshift
;
982 static uint32_t nvme_get_blocksize(BlockDriverState
*bs
)
984 BDRVNVMeState
*s
= bs
->opaque
;
985 assert(s
->blkshift
>= BDRV_SECTOR_BITS
&& s
->blkshift
<= 12);
986 return UINT32_C(1) << s
->blkshift
;
989 static int nvme_probe_blocksizes(BlockDriverState
*bs
, BlockSizes
*bsz
)
991 uint32_t blocksize
= nvme_get_blocksize(bs
);
992 bsz
->phys
= blocksize
;
993 bsz
->log
= blocksize
;
997 /* Called with s->dma_map_lock */
998 static coroutine_fn
int nvme_cmd_unmap_qiov(BlockDriverState
*bs
,
1002 BDRVNVMeState
*s
= bs
->opaque
;
1004 s
->dma_map_count
-= qiov
->size
;
1005 if (!s
->dma_map_count
&& !qemu_co_queue_empty(&s
->dma_flush_queue
)) {
1006 r
= qemu_vfio_dma_reset_temporary(s
->vfio
);
1008 qemu_co_queue_restart_all(&s
->dma_flush_queue
);
1014 /* Called with s->dma_map_lock */
1015 static coroutine_fn
int nvme_cmd_map_qiov(BlockDriverState
*bs
, NvmeCmd
*cmd
,
1016 NVMeRequest
*req
, QEMUIOVector
*qiov
)
1018 BDRVNVMeState
*s
= bs
->opaque
;
1019 uint64_t *pagelist
= req
->prp_list_page
;
1022 Error
*local_err
= NULL
, **errp
= NULL
;
1025 assert(QEMU_IS_ALIGNED(qiov
->size
, s
->page_size
));
1026 assert(qiov
->size
/ s
->page_size
<= s
->page_size
/ sizeof(uint64_t));
1027 for (i
= 0; i
< qiov
->niov
; ++i
) {
1030 size_t len
= QEMU_ALIGN_UP(qiov
->iov
[i
].iov_len
,
1031 qemu_real_host_page_size
);
1033 r
= qemu_vfio_dma_map(s
->vfio
,
1034 qiov
->iov
[i
].iov_base
,
1035 len
, true, &iova
, errp
);
1038 * In addition to the -ENOMEM error, the VFIO_IOMMU_MAP_DMA
1039 * ioctl returns -ENOSPC to signal the user exhausted the DMA
1040 * mappings available for a container since Linux kernel commit
1041 * 492855939bdb ("vfio/type1: Limit DMA mappings per container",
1042 * April 2019, see CVE-2019-3882).
1044 * This block driver already handles this error path by checking
1045 * for the -ENOMEM error, so we directly replace -ENOSPC by
1046 * -ENOMEM. Beside, -ENOSPC has a specific meaning for blockdev
1047 * coroutines: it triggers BLOCKDEV_ON_ERROR_ENOSPC and
1048 * BLOCK_ERROR_ACTION_STOP which stops the VM, asking the operator
1049 * to add more storage to the blockdev. Not something we can do
1050 * easily with an IOMMU :)
1054 if (r
== -ENOMEM
&& retry
) {
1056 * We exhausted the DMA mappings available for our container:
1057 * recycle the volatile IOVA mappings.
1060 trace_nvme_dma_flush_queue_wait(s
);
1061 if (s
->dma_map_count
) {
1062 trace_nvme_dma_map_flush(s
);
1063 qemu_co_queue_wait(&s
->dma_flush_queue
, &s
->dma_map_lock
);
1065 r
= qemu_vfio_dma_reset_temporary(s
->vfio
);
1078 for (j
= 0; j
< qiov
->iov
[i
].iov_len
/ s
->page_size
; j
++) {
1079 pagelist
[entries
++] = cpu_to_le64(iova
+ j
* s
->page_size
);
1081 trace_nvme_cmd_map_qiov_iov(s
, i
, qiov
->iov
[i
].iov_base
,
1082 qiov
->iov
[i
].iov_len
/ s
->page_size
);
1085 s
->dma_map_count
+= qiov
->size
;
1087 assert(entries
<= s
->page_size
/ sizeof(uint64_t));
1092 cmd
->dptr
.prp1
= pagelist
[0];
1096 cmd
->dptr
.prp1
= pagelist
[0];
1097 cmd
->dptr
.prp2
= pagelist
[1];
1100 cmd
->dptr
.prp1
= pagelist
[0];
1101 cmd
->dptr
.prp2
= cpu_to_le64(req
->prp_list_iova
+ sizeof(uint64_t));
1104 trace_nvme_cmd_map_qiov(s
, cmd
, req
, qiov
, entries
);
1105 for (i
= 0; i
< entries
; ++i
) {
1106 trace_nvme_cmd_map_qiov_pages(s
, i
, pagelist
[i
]);
1110 /* No need to unmap [0 - i) iovs even if we've failed, since we don't
1111 * increment s->dma_map_count. This is okay for fixed mapping memory areas
1112 * because they are already mapped before calling this function; for
1113 * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
1114 * calling qemu_vfio_dma_reset_temporary when necessary. */
1116 error_reportf_err(local_err
, "Cannot map buffer for DMA: ");
1127 static void nvme_rw_cb_bh(void *opaque
)
1129 NVMeCoData
*data
= opaque
;
1130 qemu_coroutine_enter(data
->co
);
1133 static void nvme_rw_cb(void *opaque
, int ret
)
1135 NVMeCoData
*data
= opaque
;
1138 /* The rw coroutine hasn't yielded, don't try to enter. */
1141 replay_bh_schedule_oneshot_event(data
->ctx
, nvme_rw_cb_bh
, data
);
1144 static coroutine_fn
int nvme_co_prw_aligned(BlockDriverState
*bs
,
1145 uint64_t offset
, uint64_t bytes
,
1151 BDRVNVMeState
*s
= bs
->opaque
;
1152 NVMeQueuePair
*ioq
= s
->queues
[INDEX_IO(0)];
1155 uint32_t cdw12
= (((bytes
>> s
->blkshift
) - 1) & 0xFFFF) |
1156 (flags
& BDRV_REQ_FUA
? 1 << 30 : 0);
1158 .opcode
= is_write
? NVME_CMD_WRITE
: NVME_CMD_READ
,
1159 .nsid
= cpu_to_le32(s
->nsid
),
1160 .cdw10
= cpu_to_le32((offset
>> s
->blkshift
) & 0xFFFFFFFF),
1161 .cdw11
= cpu_to_le32(((offset
>> s
->blkshift
) >> 32) & 0xFFFFFFFF),
1162 .cdw12
= cpu_to_le32(cdw12
),
1165 .ctx
= bdrv_get_aio_context(bs
),
1166 .ret
= -EINPROGRESS
,
1169 trace_nvme_prw_aligned(s
, is_write
, offset
, bytes
, flags
, qiov
->niov
);
1170 assert(s
->queue_count
> 1);
1171 req
= nvme_get_free_req(ioq
);
1174 qemu_co_mutex_lock(&s
->dma_map_lock
);
1175 r
= nvme_cmd_map_qiov(bs
, &cmd
, req
, qiov
);
1176 qemu_co_mutex_unlock(&s
->dma_map_lock
);
1178 nvme_put_free_req_and_wake(ioq
, req
);
1181 nvme_submit_command(ioq
, req
, &cmd
, nvme_rw_cb
, &data
);
1183 data
.co
= qemu_coroutine_self();
1184 while (data
.ret
== -EINPROGRESS
) {
1185 qemu_coroutine_yield();
1188 qemu_co_mutex_lock(&s
->dma_map_lock
);
1189 r
= nvme_cmd_unmap_qiov(bs
, qiov
);
1190 qemu_co_mutex_unlock(&s
->dma_map_lock
);
1195 trace_nvme_rw_done(s
, is_write
, offset
, bytes
, data
.ret
);
1199 static inline bool nvme_qiov_aligned(BlockDriverState
*bs
,
1200 const QEMUIOVector
*qiov
)
1203 BDRVNVMeState
*s
= bs
->opaque
;
1205 for (i
= 0; i
< qiov
->niov
; ++i
) {
1206 if (!QEMU_PTR_IS_ALIGNED(qiov
->iov
[i
].iov_base
,
1207 qemu_real_host_page_size
) ||
1208 !QEMU_IS_ALIGNED(qiov
->iov
[i
].iov_len
, qemu_real_host_page_size
)) {
1209 trace_nvme_qiov_unaligned(qiov
, i
, qiov
->iov
[i
].iov_base
,
1210 qiov
->iov
[i
].iov_len
, s
->page_size
);
1217 static int nvme_co_prw(BlockDriverState
*bs
, uint64_t offset
, uint64_t bytes
,
1218 QEMUIOVector
*qiov
, bool is_write
, int flags
)
1220 BDRVNVMeState
*s
= bs
->opaque
;
1222 uint8_t *buf
= NULL
;
1223 QEMUIOVector local_qiov
;
1224 size_t len
= QEMU_ALIGN_UP(bytes
, qemu_real_host_page_size
);
1225 assert(QEMU_IS_ALIGNED(offset
, s
->page_size
));
1226 assert(QEMU_IS_ALIGNED(bytes
, s
->page_size
));
1227 assert(bytes
<= s
->max_transfer
);
1228 if (nvme_qiov_aligned(bs
, qiov
)) {
1229 s
->stats
.aligned_accesses
++;
1230 return nvme_co_prw_aligned(bs
, offset
, bytes
, qiov
, is_write
, flags
);
1232 s
->stats
.unaligned_accesses
++;
1233 trace_nvme_prw_buffered(s
, offset
, bytes
, qiov
->niov
, is_write
);
1234 buf
= qemu_try_memalign(qemu_real_host_page_size
, len
);
1239 qemu_iovec_init(&local_qiov
, 1);
1241 qemu_iovec_to_buf(qiov
, 0, buf
, bytes
);
1243 qemu_iovec_add(&local_qiov
, buf
, bytes
);
1244 r
= nvme_co_prw_aligned(bs
, offset
, bytes
, &local_qiov
, is_write
, flags
);
1245 qemu_iovec_destroy(&local_qiov
);
1246 if (!r
&& !is_write
) {
1247 qemu_iovec_from_buf(qiov
, 0, buf
, bytes
);
1253 static coroutine_fn
int nvme_co_preadv(BlockDriverState
*bs
,
1254 int64_t offset
, int64_t bytes
,
1256 BdrvRequestFlags flags
)
1258 return nvme_co_prw(bs
, offset
, bytes
, qiov
, false, flags
);
1261 static coroutine_fn
int nvme_co_pwritev(BlockDriverState
*bs
,
1262 int64_t offset
, int64_t bytes
,
1264 BdrvRequestFlags flags
)
1266 return nvme_co_prw(bs
, offset
, bytes
, qiov
, true, flags
);
1269 static coroutine_fn
int nvme_co_flush(BlockDriverState
*bs
)
1271 BDRVNVMeState
*s
= bs
->opaque
;
1272 NVMeQueuePair
*ioq
= s
->queues
[INDEX_IO(0)];
1275 .opcode
= NVME_CMD_FLUSH
,
1276 .nsid
= cpu_to_le32(s
->nsid
),
1279 .ctx
= bdrv_get_aio_context(bs
),
1280 .ret
= -EINPROGRESS
,
1283 assert(s
->queue_count
> 1);
1284 req
= nvme_get_free_req(ioq
);
1286 nvme_submit_command(ioq
, req
, &cmd
, nvme_rw_cb
, &data
);
1288 data
.co
= qemu_coroutine_self();
1289 if (data
.ret
== -EINPROGRESS
) {
1290 qemu_coroutine_yield();
1297 static coroutine_fn
int nvme_co_pwrite_zeroes(BlockDriverState
*bs
,
1300 BdrvRequestFlags flags
)
1302 BDRVNVMeState
*s
= bs
->opaque
;
1303 NVMeQueuePair
*ioq
= s
->queues
[INDEX_IO(0)];
1307 if (!s
->supports_write_zeroes
) {
1315 cdw12
= ((bytes
>> s
->blkshift
) - 1) & 0xFFFF;
1317 * We should not lose information. pwrite_zeroes_alignment and
1318 * max_pwrite_zeroes guarantees it.
1320 assert(((cdw12
+ 1) << s
->blkshift
) == bytes
);
1323 .opcode
= NVME_CMD_WRITE_ZEROES
,
1324 .nsid
= cpu_to_le32(s
->nsid
),
1325 .cdw10
= cpu_to_le32((offset
>> s
->blkshift
) & 0xFFFFFFFF),
1326 .cdw11
= cpu_to_le32(((offset
>> s
->blkshift
) >> 32) & 0xFFFFFFFF),
1330 .ctx
= bdrv_get_aio_context(bs
),
1331 .ret
= -EINPROGRESS
,
1334 if (flags
& BDRV_REQ_MAY_UNMAP
) {
1338 if (flags
& BDRV_REQ_FUA
) {
1342 cmd
.cdw12
= cpu_to_le32(cdw12
);
1344 trace_nvme_write_zeroes(s
, offset
, bytes
, flags
);
1345 assert(s
->queue_count
> 1);
1346 req
= nvme_get_free_req(ioq
);
1349 nvme_submit_command(ioq
, req
, &cmd
, nvme_rw_cb
, &data
);
1351 data
.co
= qemu_coroutine_self();
1352 while (data
.ret
== -EINPROGRESS
) {
1353 qemu_coroutine_yield();
1356 trace_nvme_rw_done(s
, true, offset
, bytes
, data
.ret
);
1361 static int coroutine_fn
nvme_co_pdiscard(BlockDriverState
*bs
,
1365 BDRVNVMeState
*s
= bs
->opaque
;
1366 NVMeQueuePair
*ioq
= s
->queues
[INDEX_IO(0)];
1369 QEMUIOVector local_qiov
;
1373 .opcode
= NVME_CMD_DSM
,
1374 .nsid
= cpu_to_le32(s
->nsid
),
1375 .cdw10
= cpu_to_le32(0), /*number of ranges - 0 based*/
1376 .cdw11
= cpu_to_le32(1 << 2), /*deallocate bit*/
1380 .ctx
= bdrv_get_aio_context(bs
),
1381 .ret
= -EINPROGRESS
,
1384 if (!s
->supports_discard
) {
1388 assert(s
->queue_count
> 1);
1391 * Filling the @buf requires @offset and @bytes to satisfy restrictions
1392 * defined in nvme_refresh_limits().
1394 assert(QEMU_IS_ALIGNED(bytes
, 1UL << s
->blkshift
));
1395 assert(QEMU_IS_ALIGNED(offset
, 1UL << s
->blkshift
));
1396 assert((bytes
>> s
->blkshift
) <= UINT32_MAX
);
1398 buf
= qemu_try_memalign(s
->page_size
, s
->page_size
);
1402 memset(buf
, 0, s
->page_size
);
1403 buf
->nlb
= cpu_to_le32(bytes
>> s
->blkshift
);
1404 buf
->slba
= cpu_to_le64(offset
>> s
->blkshift
);
1407 qemu_iovec_init(&local_qiov
, 1);
1408 qemu_iovec_add(&local_qiov
, buf
, 4096);
1410 req
= nvme_get_free_req(ioq
);
1413 qemu_co_mutex_lock(&s
->dma_map_lock
);
1414 ret
= nvme_cmd_map_qiov(bs
, &cmd
, req
, &local_qiov
);
1415 qemu_co_mutex_unlock(&s
->dma_map_lock
);
1418 nvme_put_free_req_and_wake(ioq
, req
);
1422 trace_nvme_dsm(s
, offset
, bytes
);
1424 nvme_submit_command(ioq
, req
, &cmd
, nvme_rw_cb
, &data
);
1426 data
.co
= qemu_coroutine_self();
1427 while (data
.ret
== -EINPROGRESS
) {
1428 qemu_coroutine_yield();
1431 qemu_co_mutex_lock(&s
->dma_map_lock
);
1432 ret
= nvme_cmd_unmap_qiov(bs
, &local_qiov
);
1433 qemu_co_mutex_unlock(&s
->dma_map_lock
);
1440 trace_nvme_dsm_done(s
, offset
, bytes
, ret
);
1442 qemu_iovec_destroy(&local_qiov
);
1448 static int coroutine_fn
nvme_co_truncate(BlockDriverState
*bs
, int64_t offset
,
1449 bool exact
, PreallocMode prealloc
,
1450 BdrvRequestFlags flags
, Error
**errp
)
1454 if (prealloc
!= PREALLOC_MODE_OFF
) {
1455 error_setg(errp
, "Unsupported preallocation mode '%s'",
1456 PreallocMode_str(prealloc
));
1460 cur_length
= nvme_getlength(bs
);
1461 if (offset
!= cur_length
&& exact
) {
1462 error_setg(errp
, "Cannot resize NVMe devices");
1464 } else if (offset
> cur_length
) {
1465 error_setg(errp
, "Cannot grow NVMe devices");
1472 static int nvme_reopen_prepare(BDRVReopenState
*reopen_state
,
1473 BlockReopenQueue
*queue
, Error
**errp
)
1478 static void nvme_refresh_filename(BlockDriverState
*bs
)
1480 BDRVNVMeState
*s
= bs
->opaque
;
1482 snprintf(bs
->exact_filename
, sizeof(bs
->exact_filename
), "nvme://%s/%i",
1483 s
->device
, s
->nsid
);
1486 static void nvme_refresh_limits(BlockDriverState
*bs
, Error
**errp
)
1488 BDRVNVMeState
*s
= bs
->opaque
;
1490 bs
->bl
.opt_mem_alignment
= s
->page_size
;
1491 bs
->bl
.request_alignment
= s
->page_size
;
1492 bs
->bl
.max_transfer
= s
->max_transfer
;
1495 * Look at nvme_co_pwrite_zeroes: after shift and decrement we should get
1498 bs
->bl
.max_pwrite_zeroes
= 1ULL << (s
->blkshift
+ 16);
1499 bs
->bl
.pwrite_zeroes_alignment
= MAX(bs
->bl
.request_alignment
,
1500 1UL << s
->blkshift
);
1502 bs
->bl
.max_pdiscard
= (uint64_t)UINT32_MAX
<< s
->blkshift
;
1503 bs
->bl
.pdiscard_alignment
= MAX(bs
->bl
.request_alignment
,
1504 1UL << s
->blkshift
);
1507 static void nvme_detach_aio_context(BlockDriverState
*bs
)
1509 BDRVNVMeState
*s
= bs
->opaque
;
1511 for (unsigned i
= 0; i
< s
->queue_count
; i
++) {
1512 NVMeQueuePair
*q
= s
->queues
[i
];
1514 qemu_bh_delete(q
->completion_bh
);
1515 q
->completion_bh
= NULL
;
1518 aio_set_event_notifier(bdrv_get_aio_context(bs
),
1519 &s
->irq_notifier
[MSIX_SHARED_IRQ_IDX
],
1523 static void nvme_attach_aio_context(BlockDriverState
*bs
,
1524 AioContext
*new_context
)
1526 BDRVNVMeState
*s
= bs
->opaque
;
1528 s
->aio_context
= new_context
;
1529 aio_set_event_notifier(new_context
, &s
->irq_notifier
[MSIX_SHARED_IRQ_IDX
],
1530 false, nvme_handle_event
, nvme_poll_cb
);
1532 for (unsigned i
= 0; i
< s
->queue_count
; i
++) {
1533 NVMeQueuePair
*q
= s
->queues
[i
];
1536 aio_bh_new(new_context
, nvme_process_completion_bh
, q
);
1540 static void nvme_aio_plug(BlockDriverState
*bs
)
1542 BDRVNVMeState
*s
= bs
->opaque
;
1543 assert(!s
->plugged
);
1547 static void nvme_aio_unplug(BlockDriverState
*bs
)
1549 BDRVNVMeState
*s
= bs
->opaque
;
1552 for (unsigned i
= INDEX_IO(0); i
< s
->queue_count
; i
++) {
1553 NVMeQueuePair
*q
= s
->queues
[i
];
1554 qemu_mutex_lock(&q
->lock
);
1556 nvme_process_completion(q
);
1557 qemu_mutex_unlock(&q
->lock
);
1561 static void nvme_register_buf(BlockDriverState
*bs
, void *host
, size_t size
)
1564 Error
*local_err
= NULL
;
1565 BDRVNVMeState
*s
= bs
->opaque
;
1567 ret
= qemu_vfio_dma_map(s
->vfio
, host
, size
, false, NULL
, &local_err
);
1569 /* FIXME: we may run out of IOVA addresses after repeated
1570 * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1571 * doesn't reclaim addresses for fixed mappings. */
1572 error_reportf_err(local_err
, "nvme_register_buf failed: ");
1576 static void nvme_unregister_buf(BlockDriverState
*bs
, void *host
)
1578 BDRVNVMeState
*s
= bs
->opaque
;
1580 qemu_vfio_dma_unmap(s
->vfio
, host
);
1583 static BlockStatsSpecific
*nvme_get_specific_stats(BlockDriverState
*bs
)
1585 BlockStatsSpecific
*stats
= g_new(BlockStatsSpecific
, 1);
1586 BDRVNVMeState
*s
= bs
->opaque
;
1588 stats
->driver
= BLOCKDEV_DRIVER_NVME
;
1589 stats
->u
.nvme
= (BlockStatsSpecificNvme
) {
1590 .completion_errors
= s
->stats
.completion_errors
,
1591 .aligned_accesses
= s
->stats
.aligned_accesses
,
1592 .unaligned_accesses
= s
->stats
.unaligned_accesses
,
1598 static const char *const nvme_strong_runtime_opts
[] = {
1599 NVME_BLOCK_OPT_DEVICE
,
1600 NVME_BLOCK_OPT_NAMESPACE
,
1605 static BlockDriver bdrv_nvme
= {
1606 .format_name
= "nvme",
1607 .protocol_name
= "nvme",
1608 .instance_size
= sizeof(BDRVNVMeState
),
1610 .bdrv_co_create_opts
= bdrv_co_create_opts_simple
,
1611 .create_opts
= &bdrv_create_opts_simple
,
1613 .bdrv_parse_filename
= nvme_parse_filename
,
1614 .bdrv_file_open
= nvme_file_open
,
1615 .bdrv_close
= nvme_close
,
1616 .bdrv_getlength
= nvme_getlength
,
1617 .bdrv_probe_blocksizes
= nvme_probe_blocksizes
,
1618 .bdrv_co_truncate
= nvme_co_truncate
,
1620 .bdrv_co_preadv
= nvme_co_preadv
,
1621 .bdrv_co_pwritev
= nvme_co_pwritev
,
1623 .bdrv_co_pwrite_zeroes
= nvme_co_pwrite_zeroes
,
1624 .bdrv_co_pdiscard
= nvme_co_pdiscard
,
1626 .bdrv_co_flush_to_disk
= nvme_co_flush
,
1627 .bdrv_reopen_prepare
= nvme_reopen_prepare
,
1629 .bdrv_refresh_filename
= nvme_refresh_filename
,
1630 .bdrv_refresh_limits
= nvme_refresh_limits
,
1631 .strong_runtime_opts
= nvme_strong_runtime_opts
,
1632 .bdrv_get_specific_stats
= nvme_get_specific_stats
,
1634 .bdrv_detach_aio_context
= nvme_detach_aio_context
,
1635 .bdrv_attach_aio_context
= nvme_attach_aio_context
,
1637 .bdrv_io_plug
= nvme_aio_plug
,
1638 .bdrv_io_unplug
= nvme_aio_unplug
,
1640 .bdrv_register_buf
= nvme_register_buf
,
1641 .bdrv_unregister_buf
= nvme_unregister_buf
,
1644 static void bdrv_nvme_init(void)
1646 bdrv_register(&bdrv_nvme
);
1649 block_init(bdrv_nvme_init
);