tests/acpi: virt: allow VIOT acpi table changes
[qemu/armbru.git] / hw / nvram / fw_cfg.c
blobd605f3f45a4bb4ceb37d86e624a69fb7450630fd
1 /*
2 * QEMU Firmware configuration device emulation
4 * Copyright (c) 2008 Gleb Natapov
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "qemu/datadir.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/dma.h"
29 #include "sysemu/reset.h"
30 #include "hw/boards.h"
31 #include "hw/nvram/fw_cfg.h"
32 #include "hw/qdev-properties.h"
33 #include "hw/sysbus.h"
34 #include "migration/qemu-file-types.h"
35 #include "migration/vmstate.h"
36 #include "trace.h"
37 #include "qemu/error-report.h"
38 #include "qemu/option.h"
39 #include "qemu/config-file.h"
40 #include "qemu/cutils.h"
41 #include "qapi/error.h"
42 #include "hw/acpi/aml-build.h"
43 #include "hw/pci/pci_bus.h"
45 #define FW_CFG_FILE_SLOTS_DFLT 0x20
47 /* FW_CFG_VERSION bits */
48 #define FW_CFG_VERSION 0x01
49 #define FW_CFG_VERSION_DMA 0x02
51 /* FW_CFG_DMA_CONTROL bits */
52 #define FW_CFG_DMA_CTL_ERROR 0x01
53 #define FW_CFG_DMA_CTL_READ 0x02
54 #define FW_CFG_DMA_CTL_SKIP 0x04
55 #define FW_CFG_DMA_CTL_SELECT 0x08
56 #define FW_CFG_DMA_CTL_WRITE 0x10
58 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */
60 struct FWCfgEntry {
61 uint32_t len;
62 bool allow_write;
63 uint8_t *data;
64 void *callback_opaque;
65 FWCfgCallback select_cb;
66 FWCfgWriteCallback write_cb;
69 /**
70 * key_name:
72 * @key: The uint16 selector key.
74 * Returns: The stringified name if the selector refers to a well-known
75 * numerically defined item, or NULL on key lookup failure.
77 static const char *key_name(uint16_t key)
79 static const char *fw_cfg_wellknown_keys[FW_CFG_FILE_FIRST] = {
80 [FW_CFG_SIGNATURE] = "signature",
81 [FW_CFG_ID] = "id",
82 [FW_CFG_UUID] = "uuid",
83 [FW_CFG_RAM_SIZE] = "ram_size",
84 [FW_CFG_NOGRAPHIC] = "nographic",
85 [FW_CFG_NB_CPUS] = "nb_cpus",
86 [FW_CFG_MACHINE_ID] = "machine_id",
87 [FW_CFG_KERNEL_ADDR] = "kernel_addr",
88 [FW_CFG_KERNEL_SIZE] = "kernel_size",
89 [FW_CFG_KERNEL_CMDLINE] = "kernel_cmdline",
90 [FW_CFG_INITRD_ADDR] = "initrd_addr",
91 [FW_CFG_INITRD_SIZE] = "initdr_size",
92 [FW_CFG_BOOT_DEVICE] = "boot_device",
93 [FW_CFG_NUMA] = "numa",
94 [FW_CFG_BOOT_MENU] = "boot_menu",
95 [FW_CFG_MAX_CPUS] = "max_cpus",
96 [FW_CFG_KERNEL_ENTRY] = "kernel_entry",
97 [FW_CFG_KERNEL_DATA] = "kernel_data",
98 [FW_CFG_INITRD_DATA] = "initrd_data",
99 [FW_CFG_CMDLINE_ADDR] = "cmdline_addr",
100 [FW_CFG_CMDLINE_SIZE] = "cmdline_size",
101 [FW_CFG_CMDLINE_DATA] = "cmdline_data",
102 [FW_CFG_SETUP_ADDR] = "setup_addr",
103 [FW_CFG_SETUP_SIZE] = "setup_size",
104 [FW_CFG_SETUP_DATA] = "setup_data",
105 [FW_CFG_FILE_DIR] = "file_dir",
108 if (key & FW_CFG_ARCH_LOCAL) {
109 return fw_cfg_arch_key_name(key);
111 if (key < FW_CFG_FILE_FIRST) {
112 return fw_cfg_wellknown_keys[key];
115 return NULL;
118 static inline const char *trace_key_name(uint16_t key)
120 const char *name = key_name(key);
122 return name ? name : "unknown";
125 #define JPG_FILE 0
126 #define BMP_FILE 1
128 static char *read_splashfile(char *filename, gsize *file_sizep,
129 int *file_typep)
131 GError *err = NULL;
132 gchar *content;
133 int file_type;
134 unsigned int filehead;
135 int bmp_bpp;
137 if (!g_file_get_contents(filename, &content, file_sizep, &err)) {
138 error_report("failed to read splash file '%s': %s",
139 filename, err->message);
140 g_error_free(err);
141 return NULL;
144 /* check file size */
145 if (*file_sizep < 30) {
146 goto error;
149 /* check magic ID */
150 filehead = lduw_le_p(content);
151 if (filehead == 0xd8ff) {
152 file_type = JPG_FILE;
153 } else if (filehead == 0x4d42) {
154 file_type = BMP_FILE;
155 } else {
156 goto error;
159 /* check BMP bpp */
160 if (file_type == BMP_FILE) {
161 bmp_bpp = lduw_le_p(&content[28]);
162 if (bmp_bpp != 24) {
163 goto error;
167 /* return values */
168 *file_typep = file_type;
170 return content;
172 error:
173 error_report("splash file '%s' format not recognized; must be JPEG "
174 "or 24 bit BMP", filename);
175 g_free(content);
176 return NULL;
179 static void fw_cfg_bootsplash(FWCfgState *s)
181 char *filename, *file_data;
182 gsize file_size;
183 int file_type;
185 /* insert splash time if user configurated */
186 if (current_machine->boot_config.has_splash_time) {
187 int64_t bst_val = current_machine->boot_config.splash_time;
188 uint16_t bst_le16;
190 /* validate the input */
191 if (bst_val < 0 || bst_val > 0xffff) {
192 error_report("splash-time is invalid,"
193 "it should be a value between 0 and 65535");
194 exit(1);
196 /* use little endian format */
197 bst_le16 = cpu_to_le16(bst_val);
198 fw_cfg_add_file(s, "etc/boot-menu-wait",
199 g_memdup(&bst_le16, sizeof bst_le16), sizeof bst_le16);
202 /* insert splash file if user configurated */
203 if (current_machine->boot_config.has_splash) {
204 const char *boot_splash_filename = current_machine->boot_config.splash;
205 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename);
206 if (filename == NULL) {
207 error_report("failed to find file '%s'", boot_splash_filename);
208 return;
211 /* loading file data */
212 file_data = read_splashfile(filename, &file_size, &file_type);
213 if (file_data == NULL) {
214 g_free(filename);
215 return;
217 g_free(boot_splash_filedata);
218 boot_splash_filedata = (uint8_t *)file_data;
220 /* insert data */
221 if (file_type == JPG_FILE) {
222 fw_cfg_add_file(s, "bootsplash.jpg",
223 boot_splash_filedata, file_size);
224 } else {
225 fw_cfg_add_file(s, "bootsplash.bmp",
226 boot_splash_filedata, file_size);
228 g_free(filename);
232 static void fw_cfg_reboot(FWCfgState *s)
234 uint64_t rt_val = -1;
235 uint32_t rt_le32;
237 if (current_machine->boot_config.has_reboot_timeout) {
238 rt_val = current_machine->boot_config.reboot_timeout;
240 /* validate the input */
241 if (rt_val > 0xffff && rt_val != (uint64_t)-1) {
242 error_report("reboot timeout is invalid,"
243 "it should be a value between -1 and 65535");
244 exit(1);
248 rt_le32 = cpu_to_le32(rt_val);
249 fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&rt_le32, 4), 4);
252 static void fw_cfg_write(FWCfgState *s, uint8_t value)
254 /* nothing, write support removed in QEMU v2.4+ */
257 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s)
259 return s->file_slots;
262 /* Note: this function returns an exclusive limit. */
263 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s)
265 return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s);
268 static int fw_cfg_select(FWCfgState *s, uint16_t key)
270 int arch, ret;
271 FWCfgEntry *e;
273 s->cur_offset = 0;
274 if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) {
275 s->cur_entry = FW_CFG_INVALID;
276 ret = 0;
277 } else {
278 s->cur_entry = key;
279 ret = 1;
280 /* entry successfully selected, now run callback if present */
281 arch = !!(key & FW_CFG_ARCH_LOCAL);
282 e = &s->entries[arch][key & FW_CFG_ENTRY_MASK];
283 if (e->select_cb) {
284 e->select_cb(e->callback_opaque);
288 trace_fw_cfg_select(s, key, trace_key_name(key), ret);
289 return ret;
292 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size)
294 FWCfgState *s = opaque;
295 int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
296 FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
297 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
298 uint64_t value = 0;
300 assert(size > 0 && size <= sizeof(value));
301 if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) {
302 /* The least significant 'size' bytes of the return value are
303 * expected to contain a string preserving portion of the item
304 * data, padded with zeros on the right in case we run out early.
305 * In technical terms, we're composing the host-endian representation
306 * of the big endian interpretation of the fw_cfg string.
308 do {
309 value = (value << 8) | e->data[s->cur_offset++];
310 } while (--size && s->cur_offset < e->len);
311 /* If size is still not zero, we *did* run out early, so continue
312 * left-shifting, to add the appropriate number of padding zeros
313 * on the right.
315 value <<= 8 * size;
318 trace_fw_cfg_read(s, value);
319 return value;
322 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr,
323 uint64_t value, unsigned size)
325 FWCfgState *s = opaque;
326 unsigned i = size;
328 do {
329 fw_cfg_write(s, value >> (8 * --i));
330 } while (i);
333 static void fw_cfg_dma_transfer(FWCfgState *s)
335 dma_addr_t len;
336 FWCfgDmaAccess dma;
337 int arch;
338 FWCfgEntry *e;
339 int read = 0, write = 0;
340 dma_addr_t dma_addr;
342 /* Reset the address before the next access */
343 dma_addr = s->dma_addr;
344 s->dma_addr = 0;
346 if (dma_memory_read(s->dma_as, dma_addr,
347 &dma, sizeof(dma), MEMTXATTRS_UNSPECIFIED)) {
348 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
349 FW_CFG_DMA_CTL_ERROR, MEMTXATTRS_UNSPECIFIED);
350 return;
353 dma.address = be64_to_cpu(dma.address);
354 dma.length = be32_to_cpu(dma.length);
355 dma.control = be32_to_cpu(dma.control);
357 if (dma.control & FW_CFG_DMA_CTL_SELECT) {
358 fw_cfg_select(s, dma.control >> 16);
361 arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
362 e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
363 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
365 if (dma.control & FW_CFG_DMA_CTL_READ) {
366 read = 1;
367 write = 0;
368 } else if (dma.control & FW_CFG_DMA_CTL_WRITE) {
369 read = 0;
370 write = 1;
371 } else if (dma.control & FW_CFG_DMA_CTL_SKIP) {
372 read = 0;
373 write = 0;
374 } else {
375 dma.length = 0;
378 dma.control = 0;
380 while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) {
381 if (s->cur_entry == FW_CFG_INVALID || !e->data ||
382 s->cur_offset >= e->len) {
383 len = dma.length;
385 /* If the access is not a read access, it will be a skip access,
386 * tested before.
388 if (read) {
389 if (dma_memory_set(s->dma_as, dma.address, 0, len,
390 MEMTXATTRS_UNSPECIFIED)) {
391 dma.control |= FW_CFG_DMA_CTL_ERROR;
394 if (write) {
395 dma.control |= FW_CFG_DMA_CTL_ERROR;
397 } else {
398 if (dma.length <= (e->len - s->cur_offset)) {
399 len = dma.length;
400 } else {
401 len = (e->len - s->cur_offset);
404 /* If the access is not a read access, it will be a skip access,
405 * tested before.
407 if (read) {
408 if (dma_memory_write(s->dma_as, dma.address,
409 &e->data[s->cur_offset], len,
410 MEMTXATTRS_UNSPECIFIED)) {
411 dma.control |= FW_CFG_DMA_CTL_ERROR;
414 if (write) {
415 if (!e->allow_write ||
416 len != dma.length ||
417 dma_memory_read(s->dma_as, dma.address,
418 &e->data[s->cur_offset], len,
419 MEMTXATTRS_UNSPECIFIED)) {
420 dma.control |= FW_CFG_DMA_CTL_ERROR;
421 } else if (e->write_cb) {
422 e->write_cb(e->callback_opaque, s->cur_offset, len);
426 s->cur_offset += len;
429 dma.address += len;
430 dma.length -= len;
434 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
435 dma.control, MEMTXATTRS_UNSPECIFIED);
437 trace_fw_cfg_read(s, 0);
440 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr,
441 unsigned size)
443 /* Return a signature value (and handle various read sizes) */
444 return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8);
447 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr,
448 uint64_t value, unsigned size)
450 FWCfgState *s = opaque;
452 if (size == 4) {
453 if (addr == 0) {
454 /* FWCfgDmaAccess high address */
455 s->dma_addr = value << 32;
456 } else if (addr == 4) {
457 /* FWCfgDmaAccess low address */
458 s->dma_addr |= value;
459 fw_cfg_dma_transfer(s);
461 } else if (size == 8 && addr == 0) {
462 s->dma_addr = value;
463 fw_cfg_dma_transfer(s);
467 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr,
468 unsigned size, bool is_write,
469 MemTxAttrs attrs)
471 return !is_write || ((size == 4 && (addr == 0 || addr == 4)) ||
472 (size == 8 && addr == 0));
475 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr,
476 unsigned size, bool is_write,
477 MemTxAttrs attrs)
479 return addr == 0;
482 static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size)
484 return 0;
487 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr,
488 uint64_t value, unsigned size)
490 fw_cfg_select(opaque, (uint16_t)value);
493 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr,
494 unsigned size, bool is_write,
495 MemTxAttrs attrs)
497 return is_write && size == 2;
500 static void fw_cfg_comb_write(void *opaque, hwaddr addr,
501 uint64_t value, unsigned size)
503 switch (size) {
504 case 1:
505 fw_cfg_write(opaque, (uint8_t)value);
506 break;
507 case 2:
508 fw_cfg_select(opaque, (uint16_t)value);
509 break;
513 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr,
514 unsigned size, bool is_write,
515 MemTxAttrs attrs)
517 return (size == 1) || (is_write && size == 2);
520 static const MemoryRegionOps fw_cfg_ctl_mem_ops = {
521 .read = fw_cfg_ctl_mem_read,
522 .write = fw_cfg_ctl_mem_write,
523 .endianness = DEVICE_BIG_ENDIAN,
524 .valid.accepts = fw_cfg_ctl_mem_valid,
527 static const MemoryRegionOps fw_cfg_data_mem_ops = {
528 .read = fw_cfg_data_read,
529 .write = fw_cfg_data_mem_write,
530 .endianness = DEVICE_BIG_ENDIAN,
531 .valid = {
532 .min_access_size = 1,
533 .max_access_size = 1,
534 .accepts = fw_cfg_data_mem_valid,
538 static const MemoryRegionOps fw_cfg_comb_mem_ops = {
539 .read = fw_cfg_data_read,
540 .write = fw_cfg_comb_write,
541 .endianness = DEVICE_LITTLE_ENDIAN,
542 .valid.accepts = fw_cfg_comb_valid,
545 static const MemoryRegionOps fw_cfg_dma_mem_ops = {
546 .read = fw_cfg_dma_mem_read,
547 .write = fw_cfg_dma_mem_write,
548 .endianness = DEVICE_BIG_ENDIAN,
549 .valid.accepts = fw_cfg_dma_mem_valid,
550 .valid.max_access_size = 8,
551 .impl.max_access_size = 8,
554 static void fw_cfg_reset(DeviceState *d)
556 FWCfgState *s = FW_CFG(d);
558 /* we never register a read callback for FW_CFG_SIGNATURE */
559 fw_cfg_select(s, FW_CFG_SIGNATURE);
562 /* Save restore 32 bit int as uint16_t
563 This is a Big hack, but it is how the old state did it.
564 Or we broke compatibility in the state, or we can't use struct tm
567 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size,
568 const VMStateField *field)
570 uint32_t *v = pv;
571 *v = qemu_get_be16(f);
572 return 0;
575 static int put_unused(QEMUFile *f, void *pv, size_t size,
576 const VMStateField *field, JSONWriter *vmdesc)
578 fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n");
579 fprintf(stderr, "This functions shouldn't be called.\n");
581 return 0;
584 static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
585 .name = "int32_as_uint16",
586 .get = get_uint32_as_uint16,
587 .put = put_unused,
590 #define VMSTATE_UINT16_HACK(_f, _s, _t) \
591 VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
594 static bool is_version_1(void *opaque, int version_id)
596 return version_id == 1;
599 bool fw_cfg_dma_enabled(void *opaque)
601 FWCfgState *s = opaque;
603 return s->dma_enabled;
606 static bool fw_cfg_acpi_mr_restore(void *opaque)
608 FWCfgState *s = opaque;
609 bool mr_aligned;
611 mr_aligned = QEMU_IS_ALIGNED(s->table_mr_size, qemu_real_host_page_size()) &&
612 QEMU_IS_ALIGNED(s->linker_mr_size, qemu_real_host_page_size()) &&
613 QEMU_IS_ALIGNED(s->rsdp_mr_size, qemu_real_host_page_size());
614 return s->acpi_mr_restore && !mr_aligned;
617 static void fw_cfg_update_mr(FWCfgState *s, uint16_t key, size_t size)
619 MemoryRegion *mr;
620 ram_addr_t offset;
621 int arch = !!(key & FW_CFG_ARCH_LOCAL);
622 void *ptr;
624 key &= FW_CFG_ENTRY_MASK;
625 assert(key < fw_cfg_max_entry(s));
627 ptr = s->entries[arch][key].data;
628 mr = memory_region_from_host(ptr, &offset);
630 memory_region_ram_resize(mr, size, &error_abort);
633 static int fw_cfg_acpi_mr_restore_post_load(void *opaque, int version_id)
635 FWCfgState *s = opaque;
636 int i, index;
638 assert(s->files);
640 index = be32_to_cpu(s->files->count);
642 for (i = 0; i < index; i++) {
643 if (!strcmp(s->files->f[i].name, ACPI_BUILD_TABLE_FILE)) {
644 fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->table_mr_size);
645 } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_LOADER_FILE)) {
646 fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->linker_mr_size);
647 } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_RSDP_FILE)) {
648 fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->rsdp_mr_size);
652 return 0;
655 static const VMStateDescription vmstate_fw_cfg_dma = {
656 .name = "fw_cfg/dma",
657 .needed = fw_cfg_dma_enabled,
658 .fields = (VMStateField[]) {
659 VMSTATE_UINT64(dma_addr, FWCfgState),
660 VMSTATE_END_OF_LIST()
664 static const VMStateDescription vmstate_fw_cfg_acpi_mr = {
665 .name = "fw_cfg/acpi_mr",
666 .version_id = 1,
667 .minimum_version_id = 1,
668 .needed = fw_cfg_acpi_mr_restore,
669 .post_load = fw_cfg_acpi_mr_restore_post_load,
670 .fields = (VMStateField[]) {
671 VMSTATE_UINT64(table_mr_size, FWCfgState),
672 VMSTATE_UINT64(linker_mr_size, FWCfgState),
673 VMSTATE_UINT64(rsdp_mr_size, FWCfgState),
674 VMSTATE_END_OF_LIST()
678 static const VMStateDescription vmstate_fw_cfg = {
679 .name = "fw_cfg",
680 .version_id = 2,
681 .minimum_version_id = 1,
682 .fields = (VMStateField[]) {
683 VMSTATE_UINT16(cur_entry, FWCfgState),
684 VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
685 VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
686 VMSTATE_END_OF_LIST()
688 .subsections = (const VMStateDescription*[]) {
689 &vmstate_fw_cfg_dma,
690 &vmstate_fw_cfg_acpi_mr,
691 NULL,
695 static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key,
696 FWCfgCallback select_cb,
697 FWCfgWriteCallback write_cb,
698 void *callback_opaque,
699 void *data, size_t len,
700 bool read_only)
702 int arch = !!(key & FW_CFG_ARCH_LOCAL);
704 key &= FW_CFG_ENTRY_MASK;
706 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
707 assert(s->entries[arch][key].data == NULL); /* avoid key conflict */
709 s->entries[arch][key].data = data;
710 s->entries[arch][key].len = (uint32_t)len;
711 s->entries[arch][key].select_cb = select_cb;
712 s->entries[arch][key].write_cb = write_cb;
713 s->entries[arch][key].callback_opaque = callback_opaque;
714 s->entries[arch][key].allow_write = !read_only;
717 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key,
718 void *data, size_t len)
720 void *ptr;
721 int arch = !!(key & FW_CFG_ARCH_LOCAL);
723 key &= FW_CFG_ENTRY_MASK;
725 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
727 /* return the old data to the function caller, avoid memory leak */
728 ptr = s->entries[arch][key].data;
729 s->entries[arch][key].data = data;
730 s->entries[arch][key].len = len;
731 s->entries[arch][key].callback_opaque = NULL;
732 s->entries[arch][key].allow_write = false;
734 return ptr;
737 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len)
739 trace_fw_cfg_add_bytes(key, trace_key_name(key), len);
740 fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true);
743 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value)
745 size_t sz = strlen(value) + 1;
747 trace_fw_cfg_add_string(key, trace_key_name(key), value);
748 fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz);
751 void fw_cfg_modify_string(FWCfgState *s, uint16_t key, const char *value)
753 size_t sz = strlen(value) + 1;
754 char *old;
756 old = fw_cfg_modify_bytes_read(s, key, g_memdup(value, sz), sz);
757 g_free(old);
760 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
762 uint16_t *copy;
764 copy = g_malloc(sizeof(value));
765 *copy = cpu_to_le16(value);
766 trace_fw_cfg_add_i16(key, trace_key_name(key), value);
767 fw_cfg_add_bytes(s, key, copy, sizeof(value));
770 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value)
772 uint16_t *copy, *old;
774 copy = g_malloc(sizeof(value));
775 *copy = cpu_to_le16(value);
776 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
777 g_free(old);
780 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
782 uint32_t *copy;
784 copy = g_malloc(sizeof(value));
785 *copy = cpu_to_le32(value);
786 trace_fw_cfg_add_i32(key, trace_key_name(key), value);
787 fw_cfg_add_bytes(s, key, copy, sizeof(value));
790 void fw_cfg_modify_i32(FWCfgState *s, uint16_t key, uint32_t value)
792 uint32_t *copy, *old;
794 copy = g_malloc(sizeof(value));
795 *copy = cpu_to_le32(value);
796 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
797 g_free(old);
800 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
802 uint64_t *copy;
804 copy = g_malloc(sizeof(value));
805 *copy = cpu_to_le64(value);
806 trace_fw_cfg_add_i64(key, trace_key_name(key), value);
807 fw_cfg_add_bytes(s, key, copy, sizeof(value));
810 void fw_cfg_modify_i64(FWCfgState *s, uint16_t key, uint64_t value)
812 uint64_t *copy, *old;
814 copy = g_malloc(sizeof(value));
815 *copy = cpu_to_le64(value);
816 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
817 g_free(old);
820 void fw_cfg_set_order_override(FWCfgState *s, int order)
822 assert(s->fw_cfg_order_override == 0);
823 s->fw_cfg_order_override = order;
826 void fw_cfg_reset_order_override(FWCfgState *s)
828 assert(s->fw_cfg_order_override != 0);
829 s->fw_cfg_order_override = 0;
833 * This is the legacy order list. For legacy systems, files are in
834 * the fw_cfg in the order defined below, by the "order" value. Note
835 * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a
836 * specific area, but there may be more than one and they occur in the
837 * order that the user specifies them on the command line. Those are
838 * handled in a special manner, using the order override above.
840 * For non-legacy, the files are sorted by filename to avoid this kind
841 * of complexity in the future.
843 * This is only for x86, other arches don't implement versioning so
844 * they won't set legacy mode.
846 static struct {
847 const char *name;
848 int order;
849 } fw_cfg_order[] = {
850 { "etc/boot-menu-wait", 10 },
851 { "bootsplash.jpg", 11 },
852 { "bootsplash.bmp", 12 },
853 { "etc/boot-fail-wait", 15 },
854 { "etc/smbios/smbios-tables", 20 },
855 { "etc/smbios/smbios-anchor", 30 },
856 { "etc/e820", 40 },
857 { "etc/reserved-memory-end", 50 },
858 { "genroms/kvmvapic.bin", 55 },
859 { "genroms/linuxboot.bin", 60 },
860 { }, /* VGA ROMs from pc_vga_init come here, 70. */
861 { }, /* NIC option ROMs from pc_nic_init come here, 80. */
862 { "etc/system-states", 90 },
863 { }, /* User ROMs come here, 100. */
864 { }, /* Device FW comes here, 110. */
865 { "etc/extra-pci-roots", 120 },
866 { "etc/acpi/tables", 130 },
867 { "etc/table-loader", 140 },
868 { "etc/tpm/log", 150 },
869 { "etc/acpi/rsdp", 160 },
870 { "bootorder", 170 },
871 { "etc/msr_feature_control", 180 },
873 #define FW_CFG_ORDER_OVERRIDE_LAST 200
877 * Any sub-page size update to these table MRs will be lost during migration,
878 * as we use aligned size in ram_load_precopy() -> qemu_ram_resize() path.
879 * In order to avoid the inconsistency in sizes save them seperately and
880 * migrate over in vmstate post_load().
882 static void fw_cfg_acpi_mr_save(FWCfgState *s, const char *filename, size_t len)
884 if (!strcmp(filename, ACPI_BUILD_TABLE_FILE)) {
885 s->table_mr_size = len;
886 } else if (!strcmp(filename, ACPI_BUILD_LOADER_FILE)) {
887 s->linker_mr_size = len;
888 } else if (!strcmp(filename, ACPI_BUILD_RSDP_FILE)) {
889 s->rsdp_mr_size = len;
893 static int get_fw_cfg_order(FWCfgState *s, const char *name)
895 int i;
897 if (s->fw_cfg_order_override > 0) {
898 return s->fw_cfg_order_override;
901 for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) {
902 if (fw_cfg_order[i].name == NULL) {
903 continue;
906 if (strcmp(name, fw_cfg_order[i].name) == 0) {
907 return fw_cfg_order[i].order;
911 /* Stick unknown stuff at the end. */
912 warn_report("Unknown firmware file in legacy mode: %s", name);
913 return FW_CFG_ORDER_OVERRIDE_LAST;
916 void fw_cfg_add_file_callback(FWCfgState *s, const char *filename,
917 FWCfgCallback select_cb,
918 FWCfgWriteCallback write_cb,
919 void *callback_opaque,
920 void *data, size_t len, bool read_only)
922 int i, index, count;
923 size_t dsize;
924 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
925 int order = 0;
927 if (!s->files) {
928 dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s);
929 s->files = g_malloc0(dsize);
930 fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize);
933 count = be32_to_cpu(s->files->count);
934 assert(count < fw_cfg_file_slots(s));
936 /* Find the insertion point. */
937 if (mc->legacy_fw_cfg_order) {
939 * Sort by order. For files with the same order, we keep them
940 * in the sequence in which they were added.
942 order = get_fw_cfg_order(s, filename);
943 for (index = count;
944 index > 0 && order < s->entry_order[index - 1];
945 index--);
946 } else {
947 /* Sort by file name. */
948 for (index = count;
949 index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0;
950 index--);
954 * Move all the entries from the index point and after down one
955 * to create a slot for the new entry. Because calculations are
956 * being done with the index, make it so that "i" is the current
957 * index and "i - 1" is the one being copied from, thus the
958 * unusual start and end in the for statement.
960 for (i = count; i > index; i--) {
961 s->files->f[i] = s->files->f[i - 1];
962 s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i);
963 s->entries[0][FW_CFG_FILE_FIRST + i] =
964 s->entries[0][FW_CFG_FILE_FIRST + i - 1];
965 s->entry_order[i] = s->entry_order[i - 1];
968 memset(&s->files->f[index], 0, sizeof(FWCfgFile));
969 memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry));
971 pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename);
972 for (i = 0; i <= count; i++) {
973 if (i != index &&
974 strcmp(s->files->f[index].name, s->files->f[i].name) == 0) {
975 error_report("duplicate fw_cfg file name: %s",
976 s->files->f[index].name);
977 exit(1);
981 fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index,
982 select_cb, write_cb,
983 callback_opaque, data, len,
984 read_only);
986 s->files->f[index].size = cpu_to_be32(len);
987 s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index);
988 s->entry_order[index] = order;
989 trace_fw_cfg_add_file(s, index, s->files->f[index].name, len);
991 s->files->count = cpu_to_be32(count+1);
992 fw_cfg_acpi_mr_save(s, filename, len);
995 void fw_cfg_add_file(FWCfgState *s, const char *filename,
996 void *data, size_t len)
998 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
1001 void *fw_cfg_modify_file(FWCfgState *s, const char *filename,
1002 void *data, size_t len)
1004 int i, index;
1005 void *ptr = NULL;
1007 assert(s->files);
1009 index = be32_to_cpu(s->files->count);
1011 for (i = 0; i < index; i++) {
1012 if (strcmp(filename, s->files->f[i].name) == 0) {
1013 ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i,
1014 data, len);
1015 s->files->f[i].size = cpu_to_be32(len);
1016 fw_cfg_acpi_mr_save(s, filename, len);
1017 return ptr;
1021 assert(index < fw_cfg_file_slots(s));
1023 /* add new one */
1024 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
1025 return NULL;
1028 bool fw_cfg_add_from_generator(FWCfgState *s, const char *filename,
1029 const char *gen_id, Error **errp)
1031 FWCfgDataGeneratorClass *klass;
1032 GByteArray *array;
1033 Object *obj;
1034 gsize size;
1036 obj = object_resolve_path_component(object_get_objects_root(), gen_id);
1037 if (!obj) {
1038 error_setg(errp, "Cannot find object ID '%s'", gen_id);
1039 return false;
1041 if (!object_dynamic_cast(obj, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE)) {
1042 error_setg(errp, "Object ID '%s' is not a '%s' subclass",
1043 gen_id, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE);
1044 return false;
1046 klass = FW_CFG_DATA_GENERATOR_GET_CLASS(obj);
1047 array = klass->get_data(obj, errp);
1048 if (!array) {
1049 return false;
1051 size = array->len;
1052 fw_cfg_add_file(s, filename, g_byte_array_free(array, FALSE), size);
1054 return true;
1057 void fw_cfg_add_extra_pci_roots(PCIBus *bus, FWCfgState *s)
1059 int extra_hosts = 0;
1061 if (!bus) {
1062 return;
1065 QLIST_FOREACH(bus, &bus->child, sibling) {
1066 /* look for expander root buses */
1067 if (pci_bus_is_root(bus)) {
1068 extra_hosts++;
1072 if (extra_hosts && s) {
1073 uint64_t *val = g_malloc(sizeof(*val));
1074 *val = cpu_to_le64(extra_hosts);
1075 fw_cfg_add_file(s, "etc/extra-pci-roots", val, sizeof(*val));
1079 static void fw_cfg_machine_reset(void *opaque)
1081 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1082 FWCfgState *s = opaque;
1083 void *ptr;
1084 size_t len;
1085 char *buf;
1087 buf = get_boot_devices_list(&len);
1088 ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)buf, len);
1089 g_free(ptr);
1091 if (!mc->legacy_fw_cfg_order) {
1092 buf = get_boot_devices_lchs_list(&len);
1093 ptr = fw_cfg_modify_file(s, "bios-geometry", (uint8_t *)buf, len);
1094 g_free(ptr);
1098 static void fw_cfg_machine_ready(struct Notifier *n, void *data)
1100 FWCfgState *s = container_of(n, FWCfgState, machine_ready);
1101 qemu_register_reset(fw_cfg_machine_reset, s);
1104 static Property fw_cfg_properties[] = {
1105 DEFINE_PROP_BOOL("acpi-mr-restore", FWCfgState, acpi_mr_restore, true),
1106 DEFINE_PROP_END_OF_LIST(),
1109 static void fw_cfg_common_realize(DeviceState *dev, Error **errp)
1111 FWCfgState *s = FW_CFG(dev);
1112 MachineState *machine = MACHINE(qdev_get_machine());
1113 uint32_t version = FW_CFG_VERSION;
1115 if (!fw_cfg_find()) {
1116 error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG);
1117 return;
1120 fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4);
1121 fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16);
1122 fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics);
1123 fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)(machine->boot_config.has_menu && machine->boot_config.menu));
1124 fw_cfg_bootsplash(s);
1125 fw_cfg_reboot(s);
1127 if (s->dma_enabled) {
1128 version |= FW_CFG_VERSION_DMA;
1131 fw_cfg_add_i32(s, FW_CFG_ID, version);
1133 s->machine_ready.notify = fw_cfg_machine_ready;
1134 qemu_add_machine_init_done_notifier(&s->machine_ready);
1137 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase,
1138 AddressSpace *dma_as)
1140 DeviceState *dev;
1141 SysBusDevice *sbd;
1142 FWCfgIoState *ios;
1143 FWCfgState *s;
1144 bool dma_requested = dma_iobase && dma_as;
1146 dev = qdev_new(TYPE_FW_CFG_IO);
1147 if (!dma_requested) {
1148 qdev_prop_set_bit(dev, "dma_enabled", false);
1151 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1152 OBJECT(dev));
1154 sbd = SYS_BUS_DEVICE(dev);
1155 sysbus_realize_and_unref(sbd, &error_fatal);
1156 ios = FW_CFG_IO(dev);
1157 sysbus_add_io(sbd, iobase, &ios->comb_iomem);
1159 s = FW_CFG(dev);
1161 if (s->dma_enabled) {
1162 /* 64 bits for the address field */
1163 s->dma_as = dma_as;
1164 s->dma_addr = 0;
1165 sysbus_add_io(sbd, dma_iobase, &s->dma_iomem);
1168 return s;
1171 FWCfgState *fw_cfg_init_io(uint32_t iobase)
1173 return fw_cfg_init_io_dma(iobase, 0, NULL);
1176 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr,
1177 hwaddr data_addr, uint32_t data_width,
1178 hwaddr dma_addr, AddressSpace *dma_as)
1180 DeviceState *dev;
1181 SysBusDevice *sbd;
1182 FWCfgState *s;
1183 bool dma_requested = dma_addr && dma_as;
1185 dev = qdev_new(TYPE_FW_CFG_MEM);
1186 qdev_prop_set_uint32(dev, "data_width", data_width);
1187 if (!dma_requested) {
1188 qdev_prop_set_bit(dev, "dma_enabled", false);
1191 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1192 OBJECT(dev));
1194 sbd = SYS_BUS_DEVICE(dev);
1195 sysbus_realize_and_unref(sbd, &error_fatal);
1196 sysbus_mmio_map(sbd, 0, ctl_addr);
1197 sysbus_mmio_map(sbd, 1, data_addr);
1199 s = FW_CFG(dev);
1201 if (s->dma_enabled) {
1202 s->dma_as = dma_as;
1203 s->dma_addr = 0;
1204 sysbus_mmio_map(sbd, 2, dma_addr);
1207 return s;
1210 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr)
1212 return fw_cfg_init_mem_wide(ctl_addr, data_addr,
1213 fw_cfg_data_mem_ops.valid.max_access_size,
1214 0, NULL);
1218 FWCfgState *fw_cfg_find(void)
1220 /* Returns NULL unless there is exactly one fw_cfg device */
1221 return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL));
1225 static void fw_cfg_class_init(ObjectClass *klass, void *data)
1227 DeviceClass *dc = DEVICE_CLASS(klass);
1229 dc->reset = fw_cfg_reset;
1230 dc->vmsd = &vmstate_fw_cfg;
1232 device_class_set_props(dc, fw_cfg_properties);
1235 static const TypeInfo fw_cfg_info = {
1236 .name = TYPE_FW_CFG,
1237 .parent = TYPE_SYS_BUS_DEVICE,
1238 .abstract = true,
1239 .instance_size = sizeof(FWCfgState),
1240 .class_init = fw_cfg_class_init,
1243 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp)
1245 uint16_t file_slots_max;
1247 if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) {
1248 error_setg(errp, "\"file_slots\" must be at least 0x%x",
1249 FW_CFG_FILE_SLOTS_MIN);
1250 return;
1253 /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value
1254 * that we permit. The actual (exclusive) value coming from the
1255 * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */
1256 file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1;
1257 if (fw_cfg_file_slots(s) > file_slots_max) {
1258 error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16,
1259 file_slots_max);
1260 return;
1263 s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1264 s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1265 s->entry_order = g_new0(int, fw_cfg_max_entry(s));
1268 static Property fw_cfg_io_properties[] = {
1269 DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled,
1270 true),
1271 DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots,
1272 FW_CFG_FILE_SLOTS_DFLT),
1273 DEFINE_PROP_END_OF_LIST(),
1276 static void fw_cfg_io_realize(DeviceState *dev, Error **errp)
1278 ERRP_GUARD();
1279 FWCfgIoState *s = FW_CFG_IO(dev);
1281 fw_cfg_file_slots_allocate(FW_CFG(s), errp);
1282 if (*errp) {
1283 return;
1286 /* when using port i/o, the 8-bit data register ALWAYS overlaps
1287 * with half of the 16-bit control register. Hence, the total size
1288 * of the i/o region used is FW_CFG_CTL_SIZE */
1289 memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops,
1290 FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE);
1292 if (FW_CFG(s)->dma_enabled) {
1293 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1294 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1295 sizeof(dma_addr_t));
1298 fw_cfg_common_realize(dev, errp);
1301 static void fw_cfg_io_class_init(ObjectClass *klass, void *data)
1303 DeviceClass *dc = DEVICE_CLASS(klass);
1305 dc->realize = fw_cfg_io_realize;
1306 device_class_set_props(dc, fw_cfg_io_properties);
1309 static const TypeInfo fw_cfg_io_info = {
1310 .name = TYPE_FW_CFG_IO,
1311 .parent = TYPE_FW_CFG,
1312 .instance_size = sizeof(FWCfgIoState),
1313 .class_init = fw_cfg_io_class_init,
1317 static Property fw_cfg_mem_properties[] = {
1318 DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1),
1319 DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled,
1320 true),
1321 DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots,
1322 FW_CFG_FILE_SLOTS_DFLT),
1323 DEFINE_PROP_END_OF_LIST(),
1326 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp)
1328 ERRP_GUARD();
1329 FWCfgMemState *s = FW_CFG_MEM(dev);
1330 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1331 const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops;
1333 fw_cfg_file_slots_allocate(FW_CFG(s), errp);
1334 if (*errp) {
1335 return;
1338 memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops,
1339 FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE);
1340 sysbus_init_mmio(sbd, &s->ctl_iomem);
1342 if (s->data_width > data_ops->valid.max_access_size) {
1343 s->wide_data_ops = *data_ops;
1345 s->wide_data_ops.valid.max_access_size = s->data_width;
1346 s->wide_data_ops.impl.max_access_size = s->data_width;
1347 data_ops = &s->wide_data_ops;
1349 memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s),
1350 "fwcfg.data", data_ops->valid.max_access_size);
1351 sysbus_init_mmio(sbd, &s->data_iomem);
1353 if (FW_CFG(s)->dma_enabled) {
1354 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1355 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1356 sizeof(dma_addr_t));
1357 sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem);
1360 fw_cfg_common_realize(dev, errp);
1363 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data)
1365 DeviceClass *dc = DEVICE_CLASS(klass);
1367 dc->realize = fw_cfg_mem_realize;
1368 device_class_set_props(dc, fw_cfg_mem_properties);
1371 static const TypeInfo fw_cfg_mem_info = {
1372 .name = TYPE_FW_CFG_MEM,
1373 .parent = TYPE_FW_CFG,
1374 .instance_size = sizeof(FWCfgMemState),
1375 .class_init = fw_cfg_mem_class_init,
1378 static void fw_cfg_register_types(void)
1380 type_register_static(&fw_cfg_info);
1381 type_register_static(&fw_cfg_io_info);
1382 type_register_static(&fw_cfg_mem_info);
1385 type_init(fw_cfg_register_types)