tap: Remove qemu_using_vnet_hdr()
[qemu/armbru.git] / bsd-user / signal.c
blob8b6654b91dacd5e3a059b64a136916eaae1a0834
1 /*
2 * Emulation of BSD signals
4 * Copyright (c) 2003 - 2008 Fabrice Bellard
5 * Copyright (c) 2013 Stacey Son
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu/osdep.h"
22 #include "qemu/log.h"
23 #include "qemu.h"
24 #include "exec/page-protection.h"
25 #include "user/tswap-target.h"
26 #include "gdbstub/user.h"
27 #include "signal-common.h"
28 #include "trace.h"
29 #include "hw/core/tcg-cpu-ops.h"
30 #include "host-signal.h"
32 /* target_siginfo_t must fit in gdbstub's siginfo save area. */
33 QEMU_BUILD_BUG_ON(sizeof(target_siginfo_t) > MAX_SIGINFO_LENGTH);
35 static struct target_sigaction sigact_table[TARGET_NSIG];
36 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc);
37 static void target_to_host_sigset_internal(sigset_t *d,
38 const target_sigset_t *s);
40 static inline int on_sig_stack(TaskState *ts, unsigned long sp)
42 return sp - ts->sigaltstack_used.ss_sp < ts->sigaltstack_used.ss_size;
45 static inline int sas_ss_flags(TaskState *ts, unsigned long sp)
47 return ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE :
48 on_sig_stack(ts, sp) ? SS_ONSTACK : 0;
52 * The BSD ABIs use the same signal numbers across all the CPU architectures, so
53 * (unlike Linux) these functions are just the identity mapping. This might not
54 * be true for XyzBSD running on AbcBSD, which doesn't currently work.
56 int host_to_target_signal(int sig)
58 return sig;
61 int target_to_host_signal(int sig)
63 return sig;
66 static inline void target_sigemptyset(target_sigset_t *set)
68 memset(set, 0, sizeof(*set));
71 static inline void target_sigaddset(target_sigset_t *set, int signum)
73 signum--;
74 uint32_t mask = (uint32_t)1 << (signum % TARGET_NSIG_BPW);
75 set->__bits[signum / TARGET_NSIG_BPW] |= mask;
78 static inline int target_sigismember(const target_sigset_t *set, int signum)
80 signum--;
81 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
82 return (set->__bits[signum / TARGET_NSIG_BPW] & mask) != 0;
85 /* Adjust the signal context to rewind out of safe-syscall if we're in it */
86 static inline void rewind_if_in_safe_syscall(void *puc)
88 ucontext_t *uc = (ucontext_t *)puc;
89 uintptr_t pcreg = host_signal_pc(uc);
91 if (pcreg > (uintptr_t)safe_syscall_start
92 && pcreg < (uintptr_t)safe_syscall_end) {
93 host_signal_set_pc(uc, (uintptr_t)safe_syscall_start);
98 * Note: The following take advantage of the BSD signal property that all
99 * signals are available on all architectures.
101 static void host_to_target_sigset_internal(target_sigset_t *d,
102 const sigset_t *s)
104 int i;
106 target_sigemptyset(d);
107 for (i = 1; i <= NSIG; i++) {
108 if (sigismember(s, i)) {
109 target_sigaddset(d, host_to_target_signal(i));
114 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
116 target_sigset_t d1;
117 int i;
119 host_to_target_sigset_internal(&d1, s);
120 for (i = 0; i < _SIG_WORDS; i++) {
121 d->__bits[i] = tswap32(d1.__bits[i]);
125 static void target_to_host_sigset_internal(sigset_t *d,
126 const target_sigset_t *s)
128 int i;
130 sigemptyset(d);
131 for (i = 1; i <= TARGET_NSIG; i++) {
132 if (target_sigismember(s, i)) {
133 sigaddset(d, target_to_host_signal(i));
138 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
140 target_sigset_t s1;
141 int i;
143 for (i = 0; i < TARGET_NSIG_WORDS; i++) {
144 s1.__bits[i] = tswap32(s->__bits[i]);
146 target_to_host_sigset_internal(d, &s1);
149 static bool has_trapno(int tsig)
151 return tsig == TARGET_SIGILL ||
152 tsig == TARGET_SIGFPE ||
153 tsig == TARGET_SIGSEGV ||
154 tsig == TARGET_SIGBUS ||
155 tsig == TARGET_SIGTRAP;
158 /* Siginfo conversion. */
161 * Populate tinfo w/o swapping based on guessing which fields are valid.
163 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
164 const siginfo_t *info)
166 int sig = host_to_target_signal(info->si_signo);
167 int si_code = info->si_code;
168 int si_type;
171 * Make sure we that the variable portion of the target siginfo is zeroed
172 * out so we don't leak anything into that.
174 memset(&tinfo->_reason, 0, sizeof(tinfo->_reason));
177 * This is awkward, because we have to use a combination of the si_code and
178 * si_signo to figure out which of the union's members are valid.o We
179 * therefore make our best guess.
181 * Once we have made our guess, we record it in the top 16 bits of
182 * the si_code, so that tswap_siginfo() later can use it.
183 * tswap_siginfo() will strip these top bits out before writing
184 * si_code to the guest (sign-extending the lower bits).
186 tinfo->si_signo = sig;
187 tinfo->si_errno = info->si_errno;
188 tinfo->si_code = info->si_code;
189 tinfo->si_pid = info->si_pid;
190 tinfo->si_uid = info->si_uid;
191 tinfo->si_status = info->si_status;
192 tinfo->si_addr = (abi_ulong)(unsigned long)info->si_addr;
194 * si_value is opaque to kernel. On all FreeBSD platforms,
195 * sizeof(sival_ptr) >= sizeof(sival_int) so the following
196 * always will copy the larger element.
198 tinfo->si_value.sival_ptr =
199 (abi_ulong)(unsigned long)info->si_value.sival_ptr;
201 switch (si_code) {
203 * All the SI_xxx codes that are defined here are global to
204 * all the signals (they have values that none of the other,
205 * more specific signal info will set).
207 case SI_USER:
208 case SI_LWP:
209 case SI_KERNEL:
210 case SI_QUEUE:
211 case SI_ASYNCIO:
213 * Only the fixed parts are valid (though FreeBSD doesn't always
214 * set all the fields to non-zero values.
216 si_type = QEMU_SI_NOINFO;
217 break;
218 case SI_TIMER:
219 tinfo->_reason._timer._timerid = info->_reason._timer._timerid;
220 tinfo->_reason._timer._overrun = info->_reason._timer._overrun;
221 si_type = QEMU_SI_TIMER;
222 break;
223 case SI_MESGQ:
224 tinfo->_reason._mesgq._mqd = info->_reason._mesgq._mqd;
225 si_type = QEMU_SI_MESGQ;
226 break;
227 default:
229 * We have to go based on the signal number now to figure out
230 * what's valid.
232 si_type = QEMU_SI_NOINFO;
233 if (has_trapno(sig)) {
234 tinfo->_reason._fault._trapno = info->_reason._fault._trapno;
235 si_type = QEMU_SI_FAULT;
237 #ifdef TARGET_SIGPOLL
239 * FreeBSD never had SIGPOLL, but emulates it for Linux so there's
240 * a chance it may popup in the future.
242 if (sig == TARGET_SIGPOLL) {
243 tinfo->_reason._poll._band = info->_reason._poll._band;
244 si_type = QEMU_SI_POLL;
246 #endif
248 * Unsure that this can actually be generated, and our support for
249 * capsicum is somewhere between weak and non-existent, but if we get
250 * one, then we know what to save.
252 #ifdef QEMU_SI_CAPSICUM
253 if (sig == TARGET_SIGTRAP) {
254 tinfo->_reason._capsicum._syscall =
255 info->_reason._capsicum._syscall;
256 si_type = QEMU_SI_CAPSICUM;
258 #endif
259 break;
261 tinfo->si_code = deposit32(si_code, 24, 8, si_type);
264 static void tswap_siginfo(target_siginfo_t *tinfo, const target_siginfo_t *info)
266 int si_type = extract32(info->si_code, 24, 8);
267 int si_code = sextract32(info->si_code, 0, 24);
269 __put_user(info->si_signo, &tinfo->si_signo);
270 __put_user(info->si_errno, &tinfo->si_errno);
271 __put_user(si_code, &tinfo->si_code); /* Zero out si_type, it's internal */
272 __put_user(info->si_pid, &tinfo->si_pid);
273 __put_user(info->si_uid, &tinfo->si_uid);
274 __put_user(info->si_status, &tinfo->si_status);
275 __put_user(info->si_addr, &tinfo->si_addr);
277 * Unswapped, because we passed it through mostly untouched. si_value is
278 * opaque to the kernel, so we didn't bother with potentially wasting cycles
279 * to swap it into host byte order.
281 tinfo->si_value.sival_ptr = info->si_value.sival_ptr;
284 * We can use our internal marker of which fields in the structure
285 * are valid, rather than duplicating the guesswork of
286 * host_to_target_siginfo_noswap() here.
288 switch (si_type) {
289 case QEMU_SI_NOINFO: /* No additional info */
290 break;
291 case QEMU_SI_FAULT:
292 __put_user(info->_reason._fault._trapno,
293 &tinfo->_reason._fault._trapno);
294 break;
295 case QEMU_SI_TIMER:
296 __put_user(info->_reason._timer._timerid,
297 &tinfo->_reason._timer._timerid);
298 __put_user(info->_reason._timer._overrun,
299 &tinfo->_reason._timer._overrun);
300 break;
301 case QEMU_SI_MESGQ:
302 __put_user(info->_reason._mesgq._mqd, &tinfo->_reason._mesgq._mqd);
303 break;
304 case QEMU_SI_POLL:
305 /* Note: Not generated on FreeBSD */
306 __put_user(info->_reason._poll._band, &tinfo->_reason._poll._band);
307 break;
308 #ifdef QEMU_SI_CAPSICUM
309 case QEMU_SI_CAPSICUM:
310 __put_user(info->_reason._capsicum._syscall,
311 &tinfo->_reason._capsicum._syscall);
312 break;
313 #endif
314 default:
315 g_assert_not_reached();
319 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info)
321 host_to_target_siginfo_noswap(tinfo, info);
322 tswap_siginfo(tinfo, tinfo);
325 int block_signals(void)
327 TaskState *ts = get_task_state(thread_cpu);
328 sigset_t set;
331 * It's OK to block everything including SIGSEGV, because we won't run any
332 * further guest code before unblocking signals in
333 * process_pending_signals(). We depend on the FreeBSD behavior here where
334 * this will only affect this thread's signal mask. We don't use
335 * pthread_sigmask which might seem more correct because that routine also
336 * does odd things with SIGCANCEL to implement pthread_cancel().
338 sigfillset(&set);
339 sigprocmask(SIG_SETMASK, &set, 0);
341 return qatomic_xchg(&ts->signal_pending, 1);
344 /* Returns 1 if given signal should dump core if not handled. */
345 static int core_dump_signal(int sig)
347 switch (sig) {
348 case TARGET_SIGABRT:
349 case TARGET_SIGFPE:
350 case TARGET_SIGILL:
351 case TARGET_SIGQUIT:
352 case TARGET_SIGSEGV:
353 case TARGET_SIGTRAP:
354 case TARGET_SIGBUS:
355 return 1;
356 default:
357 return 0;
361 /* Abort execution with signal. */
362 static G_NORETURN
363 void dump_core_and_abort(int target_sig)
365 CPUState *cpu = thread_cpu;
366 CPUArchState *env = cpu_env(cpu);
367 TaskState *ts = get_task_state(cpu);
368 int core_dumped = 0;
369 int host_sig;
370 struct sigaction act;
372 host_sig = target_to_host_signal(target_sig);
373 gdb_signalled(env, target_sig);
375 /* Dump core if supported by target binary format */
376 if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) {
377 stop_all_tasks();
378 core_dumped =
379 ((*ts->bprm->core_dump)(target_sig, env) == 0);
381 if (core_dumped) {
382 struct rlimit nodump;
385 * We already dumped the core of target process, we don't want
386 * a coredump of qemu itself.
388 getrlimit(RLIMIT_CORE, &nodump);
389 nodump.rlim_cur = 0;
390 setrlimit(RLIMIT_CORE, &nodump);
391 (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) "
392 "- %s\n", target_sig, strsignal(host_sig), "core dumped");
396 * The proper exit code for dying from an uncaught signal is
397 * -<signal>. The kernel doesn't allow exit() or _exit() to pass
398 * a negative value. To get the proper exit code we need to
399 * actually die from an uncaught signal. Here the default signal
400 * handler is installed, we send ourself a signal and we wait for
401 * it to arrive.
403 memset(&act, 0, sizeof(act));
404 sigfillset(&act.sa_mask);
405 act.sa_handler = SIG_DFL;
406 sigaction(host_sig, &act, NULL);
408 kill(getpid(), host_sig);
411 * Make sure the signal isn't masked (just reuse the mask inside
412 * of act).
414 sigdelset(&act.sa_mask, host_sig);
415 sigsuspend(&act.sa_mask);
417 /* unreachable */
418 abort();
422 * Queue a signal so that it will be send to the virtual CPU as soon as
423 * possible.
425 void queue_signal(CPUArchState *env, int sig, int si_type,
426 target_siginfo_t *info)
428 CPUState *cpu = env_cpu(env);
429 TaskState *ts = get_task_state(cpu);
431 trace_user_queue_signal(env, sig);
433 info->si_code = deposit32(info->si_code, 24, 8, si_type);
435 ts->sync_signal.info = *info;
436 ts->sync_signal.pending = sig;
437 /* Signal that a new signal is pending. */
438 qatomic_set(&ts->signal_pending, 1);
439 return;
442 static int fatal_signal(int sig)
445 switch (sig) {
446 case TARGET_SIGCHLD:
447 case TARGET_SIGURG:
448 case TARGET_SIGWINCH:
449 case TARGET_SIGINFO:
450 /* Ignored by default. */
451 return 0;
452 case TARGET_SIGCONT:
453 case TARGET_SIGSTOP:
454 case TARGET_SIGTSTP:
455 case TARGET_SIGTTIN:
456 case TARGET_SIGTTOU:
457 /* Job control signals. */
458 return 0;
459 default:
460 return 1;
465 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
466 * 'force' part is handled in process_pending_signals().
468 void force_sig_fault(int sig, int code, abi_ulong addr)
470 CPUState *cpu = thread_cpu;
471 target_siginfo_t info = {};
473 info.si_signo = sig;
474 info.si_errno = 0;
475 info.si_code = code;
476 info.si_addr = addr;
477 queue_signal(cpu_env(cpu), sig, QEMU_SI_FAULT, &info);
480 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
482 CPUState *cpu = thread_cpu;
483 TaskState *ts = get_task_state(cpu);
484 target_siginfo_t tinfo;
485 ucontext_t *uc = puc;
486 struct emulated_sigtable *k;
487 int guest_sig;
488 uintptr_t pc = 0;
489 bool sync_sig = false;
492 * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
493 * handling wrt signal blocking and unwinding.
495 if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) {
496 MMUAccessType access_type;
497 uintptr_t host_addr;
498 abi_ptr guest_addr;
499 bool is_write;
501 host_addr = (uintptr_t)info->si_addr;
504 * Convert forcefully to guest address space: addresses outside
505 * reserved_va are still valid to report via SEGV_MAPERR.
507 guest_addr = h2g_nocheck(host_addr);
509 pc = host_signal_pc(uc);
510 is_write = host_signal_write(info, uc);
511 access_type = adjust_signal_pc(&pc, is_write);
513 if (host_sig == SIGSEGV) {
514 bool maperr = true;
516 if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) {
517 /* If this was a write to a TB protected page, restart. */
518 if (is_write &&
519 handle_sigsegv_accerr_write(cpu, &uc->uc_sigmask,
520 pc, guest_addr)) {
521 return;
525 * With reserved_va, the whole address space is PROT_NONE,
526 * which means that we may get ACCERR when we want MAPERR.
528 if (page_get_flags(guest_addr) & PAGE_VALID) {
529 maperr = false;
530 } else {
531 info->si_code = SEGV_MAPERR;
535 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
536 cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
537 } else {
538 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
539 if (info->si_code == BUS_ADRALN) {
540 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
544 sync_sig = true;
547 /* Get the target signal number. */
548 guest_sig = host_to_target_signal(host_sig);
549 if (guest_sig < 1 || guest_sig > TARGET_NSIG) {
550 return;
552 trace_user_host_signal(cpu, host_sig, guest_sig);
554 host_to_target_siginfo_noswap(&tinfo, info);
556 k = &ts->sigtab[guest_sig - 1];
557 k->info = tinfo;
558 k->pending = guest_sig;
559 ts->signal_pending = 1;
562 * For synchronous signals, unwind the cpu state to the faulting
563 * insn and then exit back to the main loop so that the signal
564 * is delivered immediately.
566 if (sync_sig) {
567 cpu->exception_index = EXCP_INTERRUPT;
568 cpu_loop_exit_restore(cpu, pc);
571 rewind_if_in_safe_syscall(puc);
574 * Block host signals until target signal handler entered. We
575 * can't block SIGSEGV or SIGBUS while we're executing guest
576 * code in case the guest code provokes one in the window between
577 * now and it getting out to the main loop. Signals will be
578 * unblocked again in process_pending_signals().
580 sigfillset(&uc->uc_sigmask);
581 sigdelset(&uc->uc_sigmask, SIGSEGV);
582 sigdelset(&uc->uc_sigmask, SIGBUS);
584 /* Interrupt the virtual CPU as soon as possible. */
585 cpu_exit(thread_cpu);
588 /* do_sigaltstack() returns target values and errnos. */
589 /* compare to kern/kern_sig.c sys_sigaltstack() and kern_sigaltstack() */
590 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp)
592 TaskState *ts = get_task_state(thread_cpu);
593 int ret;
594 target_stack_t oss;
596 if (uoss_addr) {
597 /* Save current signal stack params */
598 oss.ss_sp = tswapl(ts->sigaltstack_used.ss_sp);
599 oss.ss_size = tswapl(ts->sigaltstack_used.ss_size);
600 oss.ss_flags = tswapl(sas_ss_flags(ts, sp));
603 if (uss_addr) {
604 target_stack_t *uss;
605 target_stack_t ss;
606 size_t minstacksize = TARGET_MINSIGSTKSZ;
608 ret = -TARGET_EFAULT;
609 if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) {
610 goto out;
612 __get_user(ss.ss_sp, &uss->ss_sp);
613 __get_user(ss.ss_size, &uss->ss_size);
614 __get_user(ss.ss_flags, &uss->ss_flags);
615 unlock_user_struct(uss, uss_addr, 0);
617 ret = -TARGET_EPERM;
618 if (on_sig_stack(ts, sp)) {
619 goto out;
622 ret = -TARGET_EINVAL;
623 if (ss.ss_flags != TARGET_SS_DISABLE
624 && ss.ss_flags != TARGET_SS_ONSTACK
625 && ss.ss_flags != 0) {
626 goto out;
629 if (ss.ss_flags == TARGET_SS_DISABLE) {
630 ss.ss_size = 0;
631 ss.ss_sp = 0;
632 } else {
633 ret = -TARGET_ENOMEM;
634 if (ss.ss_size < minstacksize) {
635 goto out;
639 ts->sigaltstack_used.ss_sp = ss.ss_sp;
640 ts->sigaltstack_used.ss_size = ss.ss_size;
643 if (uoss_addr) {
644 ret = -TARGET_EFAULT;
645 if (copy_to_user(uoss_addr, &oss, sizeof(oss))) {
646 goto out;
650 ret = 0;
651 out:
652 return ret;
655 /* do_sigaction() return host values and errnos */
656 int do_sigaction(int sig, const struct target_sigaction *act,
657 struct target_sigaction *oact)
659 struct target_sigaction *k;
660 struct sigaction act1;
661 int host_sig;
662 int ret = 0;
664 if (sig < 1 || sig > TARGET_NSIG) {
665 return -TARGET_EINVAL;
668 if ((sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP) &&
669 act != NULL && act->_sa_handler != TARGET_SIG_DFL) {
670 return -TARGET_EINVAL;
673 if (block_signals()) {
674 return -TARGET_ERESTART;
677 k = &sigact_table[sig - 1];
678 if (oact) {
679 oact->_sa_handler = tswapal(k->_sa_handler);
680 oact->sa_flags = tswap32(k->sa_flags);
681 oact->sa_mask = k->sa_mask;
683 if (act) {
684 k->_sa_handler = tswapal(act->_sa_handler);
685 k->sa_flags = tswap32(act->sa_flags);
686 k->sa_mask = act->sa_mask;
688 /* Update the host signal state. */
689 host_sig = target_to_host_signal(sig);
690 if (host_sig != SIGSEGV && host_sig != SIGBUS) {
691 memset(&act1, 0, sizeof(struct sigaction));
692 sigfillset(&act1.sa_mask);
693 act1.sa_flags = SA_SIGINFO;
694 if (k->sa_flags & TARGET_SA_RESTART) {
695 act1.sa_flags |= SA_RESTART;
698 * Note: It is important to update the host kernel signal mask to
699 * avoid getting unexpected interrupted system calls.
701 if (k->_sa_handler == TARGET_SIG_IGN) {
702 act1.sa_sigaction = (void *)SIG_IGN;
703 } else if (k->_sa_handler == TARGET_SIG_DFL) {
704 if (fatal_signal(sig)) {
705 act1.sa_sigaction = host_signal_handler;
706 } else {
707 act1.sa_sigaction = (void *)SIG_DFL;
709 } else {
710 act1.sa_sigaction = host_signal_handler;
712 ret = sigaction(host_sig, &act1, NULL);
715 return ret;
718 static inline abi_ulong get_sigframe(struct target_sigaction *ka,
719 CPUArchState *env, size_t frame_size)
721 TaskState *ts = get_task_state(thread_cpu);
722 abi_ulong sp;
724 /* Use default user stack */
725 sp = get_sp_from_cpustate(env);
727 if ((ka->sa_flags & TARGET_SA_ONSTACK) && sas_ss_flags(ts, sp) == 0) {
728 sp = ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size;
731 /* TODO: make this a target_arch function / define */
732 #if defined(TARGET_ARM)
733 return (sp - frame_size) & ~7;
734 #elif defined(TARGET_AARCH64)
735 return (sp - frame_size) & ~15;
736 #else
737 return sp - frame_size;
738 #endif
741 /* compare to $M/$M/exec_machdep.c sendsig and sys/kern/kern_sig.c sigexit */
743 static void setup_frame(int sig, int code, struct target_sigaction *ka,
744 target_sigset_t *set, target_siginfo_t *tinfo, CPUArchState *env)
746 struct target_sigframe *frame;
747 abi_ulong frame_addr;
748 int i;
750 frame_addr = get_sigframe(ka, env, sizeof(*frame));
751 trace_user_setup_frame(env, frame_addr);
752 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) {
753 unlock_user_struct(frame, frame_addr, 1);
754 dump_core_and_abort(TARGET_SIGILL);
755 return;
758 memset(frame, 0, sizeof(*frame));
759 setup_sigframe_arch(env, frame_addr, frame, 0);
761 for (i = 0; i < TARGET_NSIG_WORDS; i++) {
762 __put_user(set->__bits[i], &frame->sf_uc.uc_sigmask.__bits[i]);
765 if (tinfo) {
766 frame->sf_si.si_signo = tinfo->si_signo;
767 frame->sf_si.si_errno = tinfo->si_errno;
768 frame->sf_si.si_code = tinfo->si_code;
769 frame->sf_si.si_pid = tinfo->si_pid;
770 frame->sf_si.si_uid = tinfo->si_uid;
771 frame->sf_si.si_status = tinfo->si_status;
772 frame->sf_si.si_addr = tinfo->si_addr;
773 /* see host_to_target_siginfo_noswap() for more details */
774 frame->sf_si.si_value.sival_ptr = tinfo->si_value.sival_ptr;
776 * At this point, whatever is in the _reason union is complete
777 * and in target order, so just copy the whole thing over, even
778 * if it's too large for this specific signal.
779 * host_to_target_siginfo_noswap() and tswap_siginfo() have ensured
780 * that's so.
782 memcpy(&frame->sf_si._reason, &tinfo->_reason,
783 sizeof(tinfo->_reason));
786 set_sigtramp_args(env, sig, frame, frame_addr, ka);
788 unlock_user_struct(frame, frame_addr, 1);
791 static int reset_signal_mask(target_ucontext_t *ucontext)
793 int i;
794 sigset_t blocked;
795 target_sigset_t target_set;
796 TaskState *ts = get_task_state(thread_cpu);
798 for (i = 0; i < TARGET_NSIG_WORDS; i++) {
799 __get_user(target_set.__bits[i], &ucontext->uc_sigmask.__bits[i]);
801 target_to_host_sigset_internal(&blocked, &target_set);
802 ts->signal_mask = blocked;
804 return 0;
807 /* See sys/$M/$M/exec_machdep.c sigreturn() */
808 long do_sigreturn(CPUArchState *env, abi_ulong addr)
810 long ret;
811 abi_ulong target_ucontext;
812 target_ucontext_t *ucontext = NULL;
814 /* Get the target ucontext address from the stack frame */
815 ret = get_ucontext_sigreturn(env, addr, &target_ucontext);
816 if (is_error(ret)) {
817 return ret;
819 trace_user_do_sigreturn(env, addr);
820 if (!lock_user_struct(VERIFY_READ, ucontext, target_ucontext, 0)) {
821 goto badframe;
824 /* Set the register state back to before the signal. */
825 if (set_mcontext(env, &ucontext->uc_mcontext, 1)) {
826 goto badframe;
829 /* And reset the signal mask. */
830 if (reset_signal_mask(ucontext)) {
831 goto badframe;
834 unlock_user_struct(ucontext, target_ucontext, 0);
835 return -TARGET_EJUSTRETURN;
837 badframe:
838 if (ucontext != NULL) {
839 unlock_user_struct(ucontext, target_ucontext, 0);
841 return -TARGET_EFAULT;
844 void signal_init(void)
846 TaskState *ts = get_task_state(thread_cpu);
847 struct sigaction act;
848 struct sigaction oact;
849 int i;
850 int host_sig;
852 /* Set the signal mask from the host mask. */
853 sigprocmask(0, 0, &ts->signal_mask);
855 sigfillset(&act.sa_mask);
856 act.sa_sigaction = host_signal_handler;
857 act.sa_flags = SA_SIGINFO;
859 for (i = 1; i <= TARGET_NSIG; i++) {
860 host_sig = target_to_host_signal(i);
861 sigaction(host_sig, NULL, &oact);
862 if (oact.sa_sigaction == (void *)SIG_IGN) {
863 sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN;
864 } else if (oact.sa_sigaction == (void *)SIG_DFL) {
865 sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL;
868 * If there's already a handler installed then something has
869 * gone horribly wrong, so don't even try to handle that case.
870 * Install some handlers for our own use. We need at least
871 * SIGSEGV and SIGBUS, to detect exceptions. We can not just
872 * trap all signals because it affects syscall interrupt
873 * behavior. But do trap all default-fatal signals.
875 if (fatal_signal(i)) {
876 sigaction(host_sig, &act, NULL);
881 static void handle_pending_signal(CPUArchState *env, int sig,
882 struct emulated_sigtable *k)
884 CPUState *cpu = env_cpu(env);
885 TaskState *ts = get_task_state(cpu);
886 struct target_sigaction *sa;
887 int code;
888 sigset_t set;
889 abi_ulong handler;
890 target_siginfo_t tinfo;
891 target_sigset_t target_old_set;
893 trace_user_handle_signal(env, sig);
895 k->pending = 0;
897 sig = gdb_handlesig(cpu, sig, NULL, &k->info, sizeof(k->info));
898 if (!sig) {
899 sa = NULL;
900 handler = TARGET_SIG_IGN;
901 } else {
902 sa = &sigact_table[sig - 1];
903 handler = sa->_sa_handler;
906 if (do_strace) {
907 print_taken_signal(sig, &k->info);
910 if (handler == TARGET_SIG_DFL) {
912 * default handler : ignore some signal. The other are job
913 * control or fatal.
915 if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN ||
916 sig == TARGET_SIGTTOU) {
917 kill(getpid(), SIGSTOP);
918 } else if (sig != TARGET_SIGCHLD && sig != TARGET_SIGURG &&
919 sig != TARGET_SIGINFO && sig != TARGET_SIGWINCH &&
920 sig != TARGET_SIGCONT) {
921 dump_core_and_abort(sig);
923 } else if (handler == TARGET_SIG_IGN) {
924 /* ignore sig */
925 } else if (handler == TARGET_SIG_ERR) {
926 dump_core_and_abort(sig);
927 } else {
928 /* compute the blocked signals during the handler execution */
929 sigset_t *blocked_set;
931 target_to_host_sigset(&set, &sa->sa_mask);
933 * SA_NODEFER indicates that the current signal should not be
934 * blocked during the handler.
936 if (!(sa->sa_flags & TARGET_SA_NODEFER)) {
937 sigaddset(&set, target_to_host_signal(sig));
941 * Save the previous blocked signal state to restore it at the
942 * end of the signal execution (see do_sigreturn).
944 host_to_target_sigset_internal(&target_old_set, &ts->signal_mask);
946 blocked_set = ts->in_sigsuspend ?
947 &ts->sigsuspend_mask : &ts->signal_mask;
948 sigorset(&ts->signal_mask, blocked_set, &set);
949 ts->in_sigsuspend = false;
950 sigprocmask(SIG_SETMASK, &ts->signal_mask, NULL);
952 /* XXX VM86 on x86 ??? */
954 code = k->info.si_code; /* From host, so no si_type */
955 /* prepare the stack frame of the virtual CPU */
956 if (sa->sa_flags & TARGET_SA_SIGINFO) {
957 tswap_siginfo(&tinfo, &k->info);
958 setup_frame(sig, code, sa, &target_old_set, &tinfo, env);
959 } else {
960 setup_frame(sig, code, sa, &target_old_set, NULL, env);
962 if (sa->sa_flags & TARGET_SA_RESETHAND) {
963 sa->_sa_handler = TARGET_SIG_DFL;
968 void process_pending_signals(CPUArchState *env)
970 CPUState *cpu = env_cpu(env);
971 int sig;
972 sigset_t *blocked_set, set;
973 struct emulated_sigtable *k;
974 TaskState *ts = get_task_state(cpu);
976 while (qatomic_read(&ts->signal_pending)) {
977 sigfillset(&set);
978 sigprocmask(SIG_SETMASK, &set, 0);
980 restart_scan:
981 sig = ts->sync_signal.pending;
982 if (sig) {
984 * Synchronous signals are forced by the emulated CPU in some way.
985 * If they are set to ignore, restore the default handler (see
986 * sys/kern_sig.c trapsignal() and execsigs() for this behavior)
987 * though maybe this is done only when forcing exit for non SIGCHLD.
989 if (sigismember(&ts->signal_mask, target_to_host_signal(sig)) ||
990 sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) {
991 sigdelset(&ts->signal_mask, target_to_host_signal(sig));
992 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL;
994 handle_pending_signal(env, sig, &ts->sync_signal);
997 k = ts->sigtab;
998 for (sig = 1; sig <= TARGET_NSIG; sig++, k++) {
999 blocked_set = ts->in_sigsuspend ?
1000 &ts->sigsuspend_mask : &ts->signal_mask;
1001 if (k->pending &&
1002 !sigismember(blocked_set, target_to_host_signal(sig))) {
1003 handle_pending_signal(env, sig, k);
1005 * Restart scan from the beginning, as handle_pending_signal
1006 * might have resulted in a new synchronous signal (eg SIGSEGV).
1008 goto restart_scan;
1013 * Unblock signals and check one more time. Unblocking signals may cause
1014 * us to take another host signal, which will set signal_pending again.
1016 qatomic_set(&ts->signal_pending, 0);
1017 ts->in_sigsuspend = false;
1018 set = ts->signal_mask;
1019 sigdelset(&set, SIGSEGV);
1020 sigdelset(&set, SIGBUS);
1021 sigprocmask(SIG_SETMASK, &set, 0);
1023 ts->in_sigsuspend = false;
1026 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
1027 MMUAccessType access_type, bool maperr, uintptr_t ra)
1029 const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
1031 if (tcg_ops->record_sigsegv) {
1032 tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra);
1035 force_sig_fault(TARGET_SIGSEGV,
1036 maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR,
1037 addr);
1038 cpu->exception_index = EXCP_INTERRUPT;
1039 cpu_loop_exit_restore(cpu, ra);
1042 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
1043 MMUAccessType access_type, uintptr_t ra)
1045 const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
1047 if (tcg_ops->record_sigbus) {
1048 tcg_ops->record_sigbus(cpu, addr, access_type, ra);
1051 force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr);
1052 cpu->exception_index = EXCP_INTERRUPT;
1053 cpu_loop_exit_restore(cpu, ra);