2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
5 * Copyright Red Hat, Inc. 2015-2016
8 * Michael R. Hines <mrhines@us.ibm.com>
9 * Jiuxing Liu <jl@us.ibm.com>
10 * Daniel P. Berrange <berrange@redhat.com>
12 * This work is licensed under the terms of the GNU GPL, version 2 or
13 * later. See the COPYING file in the top-level directory.
17 #include "qemu/osdep.h"
18 #include "qapi/error.h"
19 #include "qemu/cutils.h"
20 #include "exec/target_page.h"
22 #include "migration.h"
23 #include "migration-stats.h"
24 #include "qemu-file.h"
26 #include "qemu/error-report.h"
27 #include "qemu/main-loop.h"
28 #include "qemu/module.h"
30 #include "qemu/sockets.h"
31 #include "qemu/bitmap.h"
32 #include "qemu/coroutine.h"
33 #include "exec/memory.h"
34 #include <sys/socket.h>
36 #include <arpa/inet.h>
37 #include <rdma/rdma_cma.h>
39 #include "qom/object.h"
44 * Print and error on both the Monitor and the Log file.
46 #define ERROR(errp, fmt, ...) \
48 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
49 if (errp && (*(errp) == NULL)) { \
50 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
54 #define RDMA_RESOLVE_TIMEOUT_MS 10000
56 /* Do not merge data if larger than this. */
57 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
58 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
60 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
63 * This is only for non-live state being migrated.
64 * Instead of RDMA_WRITE messages, we use RDMA_SEND
65 * messages for that state, which requires a different
66 * delivery design than main memory.
68 #define RDMA_SEND_INCREMENT 32768
71 * Maximum size infiniband SEND message
73 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
74 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
76 #define RDMA_CONTROL_VERSION_CURRENT 1
78 * Capabilities for negotiation.
80 #define RDMA_CAPABILITY_PIN_ALL 0x01
83 * Add the other flags above to this list of known capabilities
84 * as they are introduced.
86 static uint32_t known_capabilities
= RDMA_CAPABILITY_PIN_ALL
;
89 * A work request ID is 64-bits and we split up these bits
92 * bits 0-15 : type of control message, 2^16
93 * bits 16-29: ram block index, 2^14
94 * bits 30-63: ram block chunk number, 2^34
96 * The last two bit ranges are only used for RDMA writes,
97 * in order to track their completion and potentially
98 * also track unregistration status of the message.
100 #define RDMA_WRID_TYPE_SHIFT 0UL
101 #define RDMA_WRID_BLOCK_SHIFT 16UL
102 #define RDMA_WRID_CHUNK_SHIFT 30UL
104 #define RDMA_WRID_TYPE_MASK \
105 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
107 #define RDMA_WRID_BLOCK_MASK \
108 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
110 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
113 * RDMA migration protocol:
114 * 1. RDMA Writes (data messages, i.e. RAM)
115 * 2. IB Send/Recv (control channel messages)
119 RDMA_WRID_RDMA_WRITE
= 1,
120 RDMA_WRID_SEND_CONTROL
= 2000,
121 RDMA_WRID_RECV_CONTROL
= 4000,
125 * Work request IDs for IB SEND messages only (not RDMA writes).
126 * This is used by the migration protocol to transmit
127 * control messages (such as device state and registration commands)
129 * We could use more WRs, but we have enough for now.
139 * SEND/RECV IB Control Messages.
142 RDMA_CONTROL_NONE
= 0,
144 RDMA_CONTROL_READY
, /* ready to receive */
145 RDMA_CONTROL_QEMU_FILE
, /* QEMUFile-transmitted bytes */
146 RDMA_CONTROL_RAM_BLOCKS_REQUEST
, /* RAMBlock synchronization */
147 RDMA_CONTROL_RAM_BLOCKS_RESULT
, /* RAMBlock synchronization */
148 RDMA_CONTROL_COMPRESS
, /* page contains repeat values */
149 RDMA_CONTROL_REGISTER_REQUEST
, /* dynamic page registration */
150 RDMA_CONTROL_REGISTER_RESULT
, /* key to use after registration */
151 RDMA_CONTROL_REGISTER_FINISHED
, /* current iteration finished */
152 RDMA_CONTROL_UNREGISTER_REQUEST
, /* dynamic UN-registration */
153 RDMA_CONTROL_UNREGISTER_FINISHED
, /* unpinning finished */
158 * Memory and MR structures used to represent an IB Send/Recv work request.
159 * This is *not* used for RDMA writes, only IB Send/Recv.
162 uint8_t control
[RDMA_CONTROL_MAX_BUFFER
]; /* actual buffer to register */
163 struct ibv_mr
*control_mr
; /* registration metadata */
164 size_t control_len
; /* length of the message */
165 uint8_t *control_curr
; /* start of unconsumed bytes */
166 } RDMAWorkRequestData
;
169 * Negotiate RDMA capabilities during connection-setup time.
176 static void caps_to_network(RDMACapabilities
*cap
)
178 cap
->version
= htonl(cap
->version
);
179 cap
->flags
= htonl(cap
->flags
);
182 static void network_to_caps(RDMACapabilities
*cap
)
184 cap
->version
= ntohl(cap
->version
);
185 cap
->flags
= ntohl(cap
->flags
);
189 * Representation of a RAMBlock from an RDMA perspective.
190 * This is not transmitted, only local.
191 * This and subsequent structures cannot be linked lists
192 * because we're using a single IB message to transmit
193 * the information. It's small anyway, so a list is overkill.
195 typedef struct RDMALocalBlock
{
197 uint8_t *local_host_addr
; /* local virtual address */
198 uint64_t remote_host_addr
; /* remote virtual address */
201 struct ibv_mr
**pmr
; /* MRs for chunk-level registration */
202 struct ibv_mr
*mr
; /* MR for non-chunk-level registration */
203 uint32_t *remote_keys
; /* rkeys for chunk-level registration */
204 uint32_t remote_rkey
; /* rkeys for non-chunk-level registration */
205 int index
; /* which block are we */
206 unsigned int src_index
; /* (Only used on dest) */
209 unsigned long *transit_bitmap
;
210 unsigned long *unregister_bitmap
;
214 * Also represents a RAMblock, but only on the dest.
215 * This gets transmitted by the dest during connection-time
216 * to the source VM and then is used to populate the
217 * corresponding RDMALocalBlock with
218 * the information needed to perform the actual RDMA.
220 typedef struct QEMU_PACKED RDMADestBlock
{
221 uint64_t remote_host_addr
;
224 uint32_t remote_rkey
;
228 static const char *control_desc(unsigned int rdma_control
)
230 static const char *strs
[] = {
231 [RDMA_CONTROL_NONE
] = "NONE",
232 [RDMA_CONTROL_ERROR
] = "ERROR",
233 [RDMA_CONTROL_READY
] = "READY",
234 [RDMA_CONTROL_QEMU_FILE
] = "QEMU FILE",
235 [RDMA_CONTROL_RAM_BLOCKS_REQUEST
] = "RAM BLOCKS REQUEST",
236 [RDMA_CONTROL_RAM_BLOCKS_RESULT
] = "RAM BLOCKS RESULT",
237 [RDMA_CONTROL_COMPRESS
] = "COMPRESS",
238 [RDMA_CONTROL_REGISTER_REQUEST
] = "REGISTER REQUEST",
239 [RDMA_CONTROL_REGISTER_RESULT
] = "REGISTER RESULT",
240 [RDMA_CONTROL_REGISTER_FINISHED
] = "REGISTER FINISHED",
241 [RDMA_CONTROL_UNREGISTER_REQUEST
] = "UNREGISTER REQUEST",
242 [RDMA_CONTROL_UNREGISTER_FINISHED
] = "UNREGISTER FINISHED",
245 if (rdma_control
> RDMA_CONTROL_UNREGISTER_FINISHED
) {
246 return "??BAD CONTROL VALUE??";
249 return strs
[rdma_control
];
252 static uint64_t htonll(uint64_t v
)
254 union { uint32_t lv
[2]; uint64_t llv
; } u
;
255 u
.lv
[0] = htonl(v
>> 32);
256 u
.lv
[1] = htonl(v
& 0xFFFFFFFFULL
);
260 static uint64_t ntohll(uint64_t v
)
262 union { uint32_t lv
[2]; uint64_t llv
; } u
;
264 return ((uint64_t)ntohl(u
.lv
[0]) << 32) | (uint64_t) ntohl(u
.lv
[1]);
267 static void dest_block_to_network(RDMADestBlock
*db
)
269 db
->remote_host_addr
= htonll(db
->remote_host_addr
);
270 db
->offset
= htonll(db
->offset
);
271 db
->length
= htonll(db
->length
);
272 db
->remote_rkey
= htonl(db
->remote_rkey
);
275 static void network_to_dest_block(RDMADestBlock
*db
)
277 db
->remote_host_addr
= ntohll(db
->remote_host_addr
);
278 db
->offset
= ntohll(db
->offset
);
279 db
->length
= ntohll(db
->length
);
280 db
->remote_rkey
= ntohl(db
->remote_rkey
);
284 * Virtual address of the above structures used for transmitting
285 * the RAMBlock descriptions at connection-time.
286 * This structure is *not* transmitted.
288 typedef struct RDMALocalBlocks
{
290 bool init
; /* main memory init complete */
291 RDMALocalBlock
*block
;
295 * Main data structure for RDMA state.
296 * While there is only one copy of this structure being allocated right now,
297 * this is the place where one would start if you wanted to consider
298 * having more than one RDMA connection open at the same time.
300 typedef struct RDMAContext
{
305 RDMAWorkRequestData wr_data
[RDMA_WRID_MAX
];
308 * This is used by *_exchange_send() to figure out whether or not
309 * the initial "READY" message has already been received or not.
310 * This is because other functions may potentially poll() and detect
311 * the READY message before send() does, in which case we need to
312 * know if it completed.
314 int control_ready_expected
;
316 /* number of outstanding writes */
319 /* store info about current buffer so that we can
320 merge it with future sends */
321 uint64_t current_addr
;
322 uint64_t current_length
;
323 /* index of ram block the current buffer belongs to */
325 /* index of the chunk in the current ram block */
331 * infiniband-specific variables for opening the device
332 * and maintaining connection state and so forth.
334 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
335 * cm_id->verbs, cm_id->channel, and cm_id->qp.
337 struct rdma_cm_id
*cm_id
; /* connection manager ID */
338 struct rdma_cm_id
*listen_id
;
341 struct ibv_context
*verbs
;
342 struct rdma_event_channel
*channel
;
343 struct ibv_qp
*qp
; /* queue pair */
344 struct ibv_comp_channel
*recv_comp_channel
; /* recv completion channel */
345 struct ibv_comp_channel
*send_comp_channel
; /* send completion channel */
346 struct ibv_pd
*pd
; /* protection domain */
347 struct ibv_cq
*recv_cq
; /* recvieve completion queue */
348 struct ibv_cq
*send_cq
; /* send completion queue */
351 * If a previous write failed (perhaps because of a failed
352 * memory registration, then do not attempt any future work
353 * and remember the error state.
360 * Description of ram blocks used throughout the code.
362 RDMALocalBlocks local_ram_blocks
;
363 RDMADestBlock
*dest_blocks
;
365 /* Index of the next RAMBlock received during block registration */
366 unsigned int next_src_index
;
369 * Migration on *destination* started.
370 * Then use coroutine yield function.
371 * Source runs in a thread, so we don't care.
373 int migration_started_on_destination
;
375 int total_registrations
;
378 int unregister_current
, unregister_next
;
379 uint64_t unregistrations
[RDMA_SIGNALED_SEND_MAX
];
381 GHashTable
*blockmap
;
383 /* the RDMAContext for return path */
384 struct RDMAContext
*return_path
;
388 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
389 OBJECT_DECLARE_SIMPLE_TYPE(QIOChannelRDMA
, QIO_CHANNEL_RDMA
)
393 struct QIOChannelRDMA
{
396 RDMAContext
*rdmaout
;
398 bool blocking
; /* XXX we don't actually honour this yet */
402 * Main structure for IB Send/Recv control messages.
403 * This gets prepended at the beginning of every Send/Recv.
405 typedef struct QEMU_PACKED
{
406 uint32_t len
; /* Total length of data portion */
407 uint32_t type
; /* which control command to perform */
408 uint32_t repeat
; /* number of commands in data portion of same type */
412 static void control_to_network(RDMAControlHeader
*control
)
414 control
->type
= htonl(control
->type
);
415 control
->len
= htonl(control
->len
);
416 control
->repeat
= htonl(control
->repeat
);
419 static void network_to_control(RDMAControlHeader
*control
)
421 control
->type
= ntohl(control
->type
);
422 control
->len
= ntohl(control
->len
);
423 control
->repeat
= ntohl(control
->repeat
);
427 * Register a single Chunk.
428 * Information sent by the source VM to inform the dest
429 * to register an single chunk of memory before we can perform
430 * the actual RDMA operation.
432 typedef struct QEMU_PACKED
{
434 uint64_t current_addr
; /* offset into the ram_addr_t space */
435 uint64_t chunk
; /* chunk to lookup if unregistering */
437 uint32_t current_index
; /* which ramblock the chunk belongs to */
439 uint64_t chunks
; /* how many sequential chunks to register */
442 static bool rdma_errored(RDMAContext
*rdma
)
444 if (rdma
->errored
&& !rdma
->error_reported
) {
445 error_report("RDMA is in an error state waiting migration"
447 rdma
->error_reported
= true;
449 return rdma
->errored
;
452 static void register_to_network(RDMAContext
*rdma
, RDMARegister
*reg
)
454 RDMALocalBlock
*local_block
;
455 local_block
= &rdma
->local_ram_blocks
.block
[reg
->current_index
];
457 if (local_block
->is_ram_block
) {
459 * current_addr as passed in is an address in the local ram_addr_t
460 * space, we need to translate this for the destination
462 reg
->key
.current_addr
-= local_block
->offset
;
463 reg
->key
.current_addr
+= rdma
->dest_blocks
[reg
->current_index
].offset
;
465 reg
->key
.current_addr
= htonll(reg
->key
.current_addr
);
466 reg
->current_index
= htonl(reg
->current_index
);
467 reg
->chunks
= htonll(reg
->chunks
);
470 static void network_to_register(RDMARegister
*reg
)
472 reg
->key
.current_addr
= ntohll(reg
->key
.current_addr
);
473 reg
->current_index
= ntohl(reg
->current_index
);
474 reg
->chunks
= ntohll(reg
->chunks
);
477 typedef struct QEMU_PACKED
{
478 uint32_t value
; /* if zero, we will madvise() */
479 uint32_t block_idx
; /* which ram block index */
480 uint64_t offset
; /* Address in remote ram_addr_t space */
481 uint64_t length
; /* length of the chunk */
484 static void compress_to_network(RDMAContext
*rdma
, RDMACompress
*comp
)
486 comp
->value
= htonl(comp
->value
);
488 * comp->offset as passed in is an address in the local ram_addr_t
489 * space, we need to translate this for the destination
491 comp
->offset
-= rdma
->local_ram_blocks
.block
[comp
->block_idx
].offset
;
492 comp
->offset
+= rdma
->dest_blocks
[comp
->block_idx
].offset
;
493 comp
->block_idx
= htonl(comp
->block_idx
);
494 comp
->offset
= htonll(comp
->offset
);
495 comp
->length
= htonll(comp
->length
);
498 static void network_to_compress(RDMACompress
*comp
)
500 comp
->value
= ntohl(comp
->value
);
501 comp
->block_idx
= ntohl(comp
->block_idx
);
502 comp
->offset
= ntohll(comp
->offset
);
503 comp
->length
= ntohll(comp
->length
);
507 * The result of the dest's memory registration produces an "rkey"
508 * which the source VM must reference in order to perform
509 * the RDMA operation.
511 typedef struct QEMU_PACKED
{
515 } RDMARegisterResult
;
517 static void result_to_network(RDMARegisterResult
*result
)
519 result
->rkey
= htonl(result
->rkey
);
520 result
->host_addr
= htonll(result
->host_addr
);
523 static void network_to_result(RDMARegisterResult
*result
)
525 result
->rkey
= ntohl(result
->rkey
);
526 result
->host_addr
= ntohll(result
->host_addr
);
529 static int qemu_rdma_exchange_send(RDMAContext
*rdma
, RDMAControlHeader
*head
,
530 uint8_t *data
, RDMAControlHeader
*resp
,
532 int (*callback
)(RDMAContext
*rdma
));
534 static inline uint64_t ram_chunk_index(const uint8_t *start
,
537 return ((uintptr_t) host
- (uintptr_t) start
) >> RDMA_REG_CHUNK_SHIFT
;
540 static inline uint8_t *ram_chunk_start(const RDMALocalBlock
*rdma_ram_block
,
543 return (uint8_t *)(uintptr_t)(rdma_ram_block
->local_host_addr
+
544 (i
<< RDMA_REG_CHUNK_SHIFT
));
547 static inline uint8_t *ram_chunk_end(const RDMALocalBlock
*rdma_ram_block
,
550 uint8_t *result
= ram_chunk_start(rdma_ram_block
, i
) +
551 (1UL << RDMA_REG_CHUNK_SHIFT
);
553 if (result
> (rdma_ram_block
->local_host_addr
+ rdma_ram_block
->length
)) {
554 result
= rdma_ram_block
->local_host_addr
+ rdma_ram_block
->length
;
560 static void rdma_add_block(RDMAContext
*rdma
, const char *block_name
,
562 ram_addr_t block_offset
, uint64_t length
)
564 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
565 RDMALocalBlock
*block
;
566 RDMALocalBlock
*old
= local
->block
;
568 local
->block
= g_new0(RDMALocalBlock
, local
->nb_blocks
+ 1);
570 if (local
->nb_blocks
) {
573 if (rdma
->blockmap
) {
574 for (x
= 0; x
< local
->nb_blocks
; x
++) {
575 g_hash_table_remove(rdma
->blockmap
,
576 (void *)(uintptr_t)old
[x
].offset
);
577 g_hash_table_insert(rdma
->blockmap
,
578 (void *)(uintptr_t)old
[x
].offset
,
582 memcpy(local
->block
, old
, sizeof(RDMALocalBlock
) * local
->nb_blocks
);
586 block
= &local
->block
[local
->nb_blocks
];
588 block
->block_name
= g_strdup(block_name
);
589 block
->local_host_addr
= host_addr
;
590 block
->offset
= block_offset
;
591 block
->length
= length
;
592 block
->index
= local
->nb_blocks
;
593 block
->src_index
= ~0U; /* Filled in by the receipt of the block list */
594 block
->nb_chunks
= ram_chunk_index(host_addr
, host_addr
+ length
) + 1UL;
595 block
->transit_bitmap
= bitmap_new(block
->nb_chunks
);
596 bitmap_clear(block
->transit_bitmap
, 0, block
->nb_chunks
);
597 block
->unregister_bitmap
= bitmap_new(block
->nb_chunks
);
598 bitmap_clear(block
->unregister_bitmap
, 0, block
->nb_chunks
);
599 block
->remote_keys
= g_new0(uint32_t, block
->nb_chunks
);
601 block
->is_ram_block
= local
->init
? false : true;
603 if (rdma
->blockmap
) {
604 g_hash_table_insert(rdma
->blockmap
, (void *)(uintptr_t)block_offset
, block
);
607 trace_rdma_add_block(block_name
, local
->nb_blocks
,
608 (uintptr_t) block
->local_host_addr
,
609 block
->offset
, block
->length
,
610 (uintptr_t) (block
->local_host_addr
+ block
->length
),
611 BITS_TO_LONGS(block
->nb_chunks
) *
612 sizeof(unsigned long) * 8,
619 * Memory regions need to be registered with the device and queue pairs setup
620 * in advanced before the migration starts. This tells us where the RAM blocks
621 * are so that we can register them individually.
623 static int qemu_rdma_init_one_block(RAMBlock
*rb
, void *opaque
)
625 const char *block_name
= qemu_ram_get_idstr(rb
);
626 void *host_addr
= qemu_ram_get_host_addr(rb
);
627 ram_addr_t block_offset
= qemu_ram_get_offset(rb
);
628 ram_addr_t length
= qemu_ram_get_used_length(rb
);
629 rdma_add_block(opaque
, block_name
, host_addr
, block_offset
, length
);
634 * Identify the RAMBlocks and their quantity. They will be references to
635 * identify chunk boundaries inside each RAMBlock and also be referenced
636 * during dynamic page registration.
638 static void qemu_rdma_init_ram_blocks(RDMAContext
*rdma
)
640 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
643 assert(rdma
->blockmap
== NULL
);
644 memset(local
, 0, sizeof *local
);
645 ret
= foreach_not_ignored_block(qemu_rdma_init_one_block
, rdma
);
647 trace_qemu_rdma_init_ram_blocks(local
->nb_blocks
);
648 rdma
->dest_blocks
= g_new0(RDMADestBlock
,
649 rdma
->local_ram_blocks
.nb_blocks
);
654 * Note: If used outside of cleanup, the caller must ensure that the destination
655 * block structures are also updated
657 static void rdma_delete_block(RDMAContext
*rdma
, RDMALocalBlock
*block
)
659 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
660 RDMALocalBlock
*old
= local
->block
;
663 if (rdma
->blockmap
) {
664 g_hash_table_remove(rdma
->blockmap
, (void *)(uintptr_t)block
->offset
);
669 for (j
= 0; j
< block
->nb_chunks
; j
++) {
670 if (!block
->pmr
[j
]) {
673 ibv_dereg_mr(block
->pmr
[j
]);
674 rdma
->total_registrations
--;
681 ibv_dereg_mr(block
->mr
);
682 rdma
->total_registrations
--;
686 g_free(block
->transit_bitmap
);
687 block
->transit_bitmap
= NULL
;
689 g_free(block
->unregister_bitmap
);
690 block
->unregister_bitmap
= NULL
;
692 g_free(block
->remote_keys
);
693 block
->remote_keys
= NULL
;
695 g_free(block
->block_name
);
696 block
->block_name
= NULL
;
698 if (rdma
->blockmap
) {
699 for (x
= 0; x
< local
->nb_blocks
; x
++) {
700 g_hash_table_remove(rdma
->blockmap
,
701 (void *)(uintptr_t)old
[x
].offset
);
705 if (local
->nb_blocks
> 1) {
707 local
->block
= g_new0(RDMALocalBlock
, local
->nb_blocks
- 1);
710 memcpy(local
->block
, old
, sizeof(RDMALocalBlock
) * block
->index
);
713 if (block
->index
< (local
->nb_blocks
- 1)) {
714 memcpy(local
->block
+ block
->index
, old
+ (block
->index
+ 1),
715 sizeof(RDMALocalBlock
) *
716 (local
->nb_blocks
- (block
->index
+ 1)));
717 for (x
= block
->index
; x
< local
->nb_blocks
- 1; x
++) {
718 local
->block
[x
].index
--;
722 assert(block
== local
->block
);
726 trace_rdma_delete_block(block
, (uintptr_t)block
->local_host_addr
,
727 block
->offset
, block
->length
,
728 (uintptr_t)(block
->local_host_addr
+ block
->length
),
729 BITS_TO_LONGS(block
->nb_chunks
) *
730 sizeof(unsigned long) * 8, block
->nb_chunks
);
736 if (local
->nb_blocks
&& rdma
->blockmap
) {
737 for (x
= 0; x
< local
->nb_blocks
; x
++) {
738 g_hash_table_insert(rdma
->blockmap
,
739 (void *)(uintptr_t)local
->block
[x
].offset
,
746 * Put in the log file which RDMA device was opened and the details
747 * associated with that device.
749 static void qemu_rdma_dump_id(const char *who
, struct ibv_context
*verbs
)
751 struct ibv_port_attr port
;
753 if (ibv_query_port(verbs
, 1, &port
)) {
754 error_report("Failed to query port information");
758 printf("%s RDMA Device opened: kernel name %s "
759 "uverbs device name %s, "
760 "infiniband_verbs class device path %s, "
761 "infiniband class device path %s, "
762 "transport: (%d) %s\n",
765 verbs
->device
->dev_name
,
766 verbs
->device
->dev_path
,
767 verbs
->device
->ibdev_path
,
769 (port
.link_layer
== IBV_LINK_LAYER_INFINIBAND
) ? "Infiniband" :
770 ((port
.link_layer
== IBV_LINK_LAYER_ETHERNET
)
771 ? "Ethernet" : "Unknown"));
775 * Put in the log file the RDMA gid addressing information,
776 * useful for folks who have trouble understanding the
777 * RDMA device hierarchy in the kernel.
779 static void qemu_rdma_dump_gid(const char *who
, struct rdma_cm_id
*id
)
783 inet_ntop(AF_INET6
, &id
->route
.addr
.addr
.ibaddr
.sgid
, sgid
, sizeof sgid
);
784 inet_ntop(AF_INET6
, &id
->route
.addr
.addr
.ibaddr
.dgid
, dgid
, sizeof dgid
);
785 trace_qemu_rdma_dump_gid(who
, sgid
, dgid
);
789 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
790 * We will try the next addrinfo struct, and fail if there are
791 * no other valid addresses to bind against.
793 * If user is listening on '[::]', then we will not have a opened a device
794 * yet and have no way of verifying if the device is RoCE or not.
796 * In this case, the source VM will throw an error for ALL types of
797 * connections (both IPv4 and IPv6) if the destination machine does not have
798 * a regular infiniband network available for use.
800 * The only way to guarantee that an error is thrown for broken kernels is
801 * for the management software to choose a *specific* interface at bind time
802 * and validate what time of hardware it is.
804 * Unfortunately, this puts the user in a fix:
806 * If the source VM connects with an IPv4 address without knowing that the
807 * destination has bound to '[::]' the migration will unconditionally fail
808 * unless the management software is explicitly listening on the IPv4
809 * address while using a RoCE-based device.
811 * If the source VM connects with an IPv6 address, then we're OK because we can
812 * throw an error on the source (and similarly on the destination).
814 * But in mixed environments, this will be broken for a while until it is fixed
817 * We do provide a *tiny* bit of help in this function: We can list all of the
818 * devices in the system and check to see if all the devices are RoCE or
821 * If we detect that we have a *pure* RoCE environment, then we can safely
822 * thrown an error even if the management software has specified '[::]' as the
825 * However, if there is are multiple hetergeneous devices, then we cannot make
826 * this assumption and the user just has to be sure they know what they are
829 * Patches are being reviewed on linux-rdma.
831 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context
*verbs
, Error
**errp
)
833 /* This bug only exists in linux, to our knowledge. */
835 struct ibv_port_attr port_attr
;
838 * Verbs are only NULL if management has bound to '[::]'.
840 * Let's iterate through all the devices and see if there any pure IB
841 * devices (non-ethernet).
843 * If not, then we can safely proceed with the migration.
844 * Otherwise, there are no guarantees until the bug is fixed in linux.
848 struct ibv_device
**dev_list
= ibv_get_device_list(&num_devices
);
849 bool roce_found
= false;
850 bool ib_found
= false;
852 for (x
= 0; x
< num_devices
; x
++) {
853 verbs
= ibv_open_device(dev_list
[x
]);
855 * ibv_open_device() is not documented to set errno. If
856 * it does, it's somebody else's doc bug. If it doesn't,
857 * the use of errno below is wrong.
858 * TODO Find out whether ibv_open_device() sets errno.
861 if (errno
== EPERM
) {
864 error_setg_errno(errp
, errno
,
865 "could not open RDMA device context");
870 if (ibv_query_port(verbs
, 1, &port_attr
)) {
871 ibv_close_device(verbs
);
872 ERROR(errp
, "Could not query initial IB port");
876 if (port_attr
.link_layer
== IBV_LINK_LAYER_INFINIBAND
) {
878 } else if (port_attr
.link_layer
== IBV_LINK_LAYER_ETHERNET
) {
882 ibv_close_device(verbs
);
888 fprintf(stderr
, "WARN: migrations may fail:"
889 " IPv6 over RoCE / iWARP in linux"
890 " is broken. But since you appear to have a"
891 " mixed RoCE / IB environment, be sure to only"
892 " migrate over the IB fabric until the kernel "
893 " fixes the bug.\n");
895 ERROR(errp
, "You only have RoCE / iWARP devices in your systems"
896 " and your management software has specified '[::]'"
897 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
906 * If we have a verbs context, that means that some other than '[::]' was
907 * used by the management software for binding. In which case we can
908 * actually warn the user about a potentially broken kernel.
911 /* IB ports start with 1, not 0 */
912 if (ibv_query_port(verbs
, 1, &port_attr
)) {
913 ERROR(errp
, "Could not query initial IB port");
917 if (port_attr
.link_layer
== IBV_LINK_LAYER_ETHERNET
) {
918 ERROR(errp
, "Linux kernel's RoCE / iWARP does not support IPv6 "
919 "(but patches on linux-rdma in progress)");
929 * Figure out which RDMA device corresponds to the requested IP hostname
930 * Also create the initial connection manager identifiers for opening
933 static int qemu_rdma_resolve_host(RDMAContext
*rdma
, Error
**errp
)
936 struct rdma_addrinfo
*res
;
938 struct rdma_cm_event
*cm_event
;
939 char ip
[40] = "unknown";
940 struct rdma_addrinfo
*e
;
942 if (rdma
->host
== NULL
|| !strcmp(rdma
->host
, "")) {
943 ERROR(errp
, "RDMA hostname has not been set");
947 /* create CM channel */
948 rdma
->channel
= rdma_create_event_channel();
949 if (!rdma
->channel
) {
950 ERROR(errp
, "could not create CM channel");
955 ret
= rdma_create_id(rdma
->channel
, &rdma
->cm_id
, NULL
, RDMA_PS_TCP
);
957 ERROR(errp
, "could not create channel id");
958 goto err_resolve_create_id
;
961 snprintf(port_str
, 16, "%d", rdma
->port
);
964 ret
= rdma_getaddrinfo(rdma
->host
, port_str
, NULL
, &res
);
966 ERROR(errp
, "could not rdma_getaddrinfo address %s", rdma
->host
);
967 goto err_resolve_get_addr
;
970 for (e
= res
; e
!= NULL
; e
= e
->ai_next
) {
971 inet_ntop(e
->ai_family
,
972 &((struct sockaddr_in
*) e
->ai_dst_addr
)->sin_addr
, ip
, sizeof ip
);
973 trace_qemu_rdma_resolve_host_trying(rdma
->host
, ip
);
975 ret
= rdma_resolve_addr(rdma
->cm_id
, NULL
, e
->ai_dst_addr
,
976 RDMA_RESOLVE_TIMEOUT_MS
);
978 if (e
->ai_family
== AF_INET6
) {
979 ret
= qemu_rdma_broken_ipv6_kernel(rdma
->cm_id
->verbs
, errp
);
988 rdma_freeaddrinfo(res
);
989 ERROR(errp
, "could not resolve address %s", rdma
->host
);
990 goto err_resolve_get_addr
;
993 rdma_freeaddrinfo(res
);
994 qemu_rdma_dump_gid("source_resolve_addr", rdma
->cm_id
);
996 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
998 ERROR(errp
, "could not perform event_addr_resolved");
999 goto err_resolve_get_addr
;
1002 if (cm_event
->event
!= RDMA_CM_EVENT_ADDR_RESOLVED
) {
1003 ERROR(errp
, "result not equal to event_addr_resolved %s",
1004 rdma_event_str(cm_event
->event
));
1005 error_report("rdma_resolve_addr");
1006 rdma_ack_cm_event(cm_event
);
1007 goto err_resolve_get_addr
;
1009 rdma_ack_cm_event(cm_event
);
1012 ret
= rdma_resolve_route(rdma
->cm_id
, RDMA_RESOLVE_TIMEOUT_MS
);
1014 ERROR(errp
, "could not resolve rdma route");
1015 goto err_resolve_get_addr
;
1018 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
1020 ERROR(errp
, "could not perform event_route_resolved");
1021 goto err_resolve_get_addr
;
1023 if (cm_event
->event
!= RDMA_CM_EVENT_ROUTE_RESOLVED
) {
1024 ERROR(errp
, "result not equal to event_route_resolved: %s",
1025 rdma_event_str(cm_event
->event
));
1026 rdma_ack_cm_event(cm_event
);
1027 goto err_resolve_get_addr
;
1029 rdma_ack_cm_event(cm_event
);
1030 rdma
->verbs
= rdma
->cm_id
->verbs
;
1031 qemu_rdma_dump_id("source_resolve_host", rdma
->cm_id
->verbs
);
1032 qemu_rdma_dump_gid("source_resolve_host", rdma
->cm_id
);
1035 err_resolve_get_addr
:
1036 rdma_destroy_id(rdma
->cm_id
);
1038 err_resolve_create_id
:
1039 rdma_destroy_event_channel(rdma
->channel
);
1040 rdma
->channel
= NULL
;
1045 * Create protection domain and completion queues
1047 static int qemu_rdma_alloc_pd_cq(RDMAContext
*rdma
)
1050 rdma
->pd
= ibv_alloc_pd(rdma
->verbs
);
1052 error_report("failed to allocate protection domain");
1056 /* create receive completion channel */
1057 rdma
->recv_comp_channel
= ibv_create_comp_channel(rdma
->verbs
);
1058 if (!rdma
->recv_comp_channel
) {
1059 error_report("failed to allocate receive completion channel");
1060 goto err_alloc_pd_cq
;
1064 * Completion queue can be filled by read work requests.
1066 rdma
->recv_cq
= ibv_create_cq(rdma
->verbs
, (RDMA_SIGNALED_SEND_MAX
* 3),
1067 NULL
, rdma
->recv_comp_channel
, 0);
1068 if (!rdma
->recv_cq
) {
1069 error_report("failed to allocate receive completion queue");
1070 goto err_alloc_pd_cq
;
1073 /* create send completion channel */
1074 rdma
->send_comp_channel
= ibv_create_comp_channel(rdma
->verbs
);
1075 if (!rdma
->send_comp_channel
) {
1076 error_report("failed to allocate send completion channel");
1077 goto err_alloc_pd_cq
;
1080 rdma
->send_cq
= ibv_create_cq(rdma
->verbs
, (RDMA_SIGNALED_SEND_MAX
* 3),
1081 NULL
, rdma
->send_comp_channel
, 0);
1082 if (!rdma
->send_cq
) {
1083 error_report("failed to allocate send completion queue");
1084 goto err_alloc_pd_cq
;
1091 ibv_dealloc_pd(rdma
->pd
);
1093 if (rdma
->recv_comp_channel
) {
1094 ibv_destroy_comp_channel(rdma
->recv_comp_channel
);
1096 if (rdma
->send_comp_channel
) {
1097 ibv_destroy_comp_channel(rdma
->send_comp_channel
);
1099 if (rdma
->recv_cq
) {
1100 ibv_destroy_cq(rdma
->recv_cq
);
1101 rdma
->recv_cq
= NULL
;
1104 rdma
->recv_comp_channel
= NULL
;
1105 rdma
->send_comp_channel
= NULL
;
1111 * Create queue pairs.
1113 static int qemu_rdma_alloc_qp(RDMAContext
*rdma
)
1115 struct ibv_qp_init_attr attr
= { 0 };
1118 attr
.cap
.max_send_wr
= RDMA_SIGNALED_SEND_MAX
;
1119 attr
.cap
.max_recv_wr
= 3;
1120 attr
.cap
.max_send_sge
= 1;
1121 attr
.cap
.max_recv_sge
= 1;
1122 attr
.send_cq
= rdma
->send_cq
;
1123 attr
.recv_cq
= rdma
->recv_cq
;
1124 attr
.qp_type
= IBV_QPT_RC
;
1126 ret
= rdma_create_qp(rdma
->cm_id
, rdma
->pd
, &attr
);
1131 rdma
->qp
= rdma
->cm_id
->qp
;
1135 /* Check whether On-Demand Paging is supported by RDAM device */
1136 static bool rdma_support_odp(struct ibv_context
*dev
)
1138 struct ibv_device_attr_ex attr
= {0};
1139 int ret
= ibv_query_device_ex(dev
, NULL
, &attr
);
1144 if (attr
.odp_caps
.general_caps
& IBV_ODP_SUPPORT
) {
1152 * ibv_advise_mr to avoid RNR NAK error as far as possible.
1153 * The responder mr registering with ODP will sent RNR NAK back to
1154 * the requester in the face of the page fault.
1156 static void qemu_rdma_advise_prefetch_mr(struct ibv_pd
*pd
, uint64_t addr
,
1157 uint32_t len
, uint32_t lkey
,
1158 const char *name
, bool wr
)
1160 #ifdef HAVE_IBV_ADVISE_MR
1162 int advice
= wr
? IBV_ADVISE_MR_ADVICE_PREFETCH_WRITE
:
1163 IBV_ADVISE_MR_ADVICE_PREFETCH
;
1164 struct ibv_sge sg_list
= {.lkey
= lkey
, .addr
= addr
, .length
= len
};
1166 ret
= ibv_advise_mr(pd
, advice
,
1167 IBV_ADVISE_MR_FLAG_FLUSH
, &sg_list
, 1);
1168 /* ignore the error */
1169 trace_qemu_rdma_advise_mr(name
, len
, addr
, strerror(ret
));
1173 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext
*rdma
)
1176 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
1178 for (i
= 0; i
< local
->nb_blocks
; i
++) {
1179 int access
= IBV_ACCESS_LOCAL_WRITE
| IBV_ACCESS_REMOTE_WRITE
;
1181 local
->block
[i
].mr
=
1182 ibv_reg_mr(rdma
->pd
,
1183 local
->block
[i
].local_host_addr
,
1184 local
->block
[i
].length
, access
1187 * ibv_reg_mr() is not documented to set errno. If it does,
1188 * it's somebody else's doc bug. If it doesn't, the use of
1189 * errno below is wrong.
1190 * TODO Find out whether ibv_reg_mr() sets errno.
1192 if (!local
->block
[i
].mr
&&
1193 errno
== ENOTSUP
&& rdma_support_odp(rdma
->verbs
)) {
1194 access
|= IBV_ACCESS_ON_DEMAND
;
1195 /* register ODP mr */
1196 local
->block
[i
].mr
=
1197 ibv_reg_mr(rdma
->pd
,
1198 local
->block
[i
].local_host_addr
,
1199 local
->block
[i
].length
, access
);
1200 trace_qemu_rdma_register_odp_mr(local
->block
[i
].block_name
);
1202 if (local
->block
[i
].mr
) {
1203 qemu_rdma_advise_prefetch_mr(rdma
->pd
,
1204 (uintptr_t)local
->block
[i
].local_host_addr
,
1205 local
->block
[i
].length
,
1206 local
->block
[i
].mr
->lkey
,
1207 local
->block
[i
].block_name
,
1212 if (!local
->block
[i
].mr
) {
1213 perror("Failed to register local dest ram block!");
1216 rdma
->total_registrations
++;
1219 if (i
>= local
->nb_blocks
) {
1223 for (i
--; i
>= 0; i
--) {
1224 ibv_dereg_mr(local
->block
[i
].mr
);
1225 local
->block
[i
].mr
= NULL
;
1226 rdma
->total_registrations
--;
1234 * Find the ram block that corresponds to the page requested to be
1235 * transmitted by QEMU.
1237 * Once the block is found, also identify which 'chunk' within that
1238 * block that the page belongs to.
1240 static void qemu_rdma_search_ram_block(RDMAContext
*rdma
,
1241 uintptr_t block_offset
,
1244 uint64_t *block_index
,
1245 uint64_t *chunk_index
)
1247 uint64_t current_addr
= block_offset
+ offset
;
1248 RDMALocalBlock
*block
= g_hash_table_lookup(rdma
->blockmap
,
1249 (void *) block_offset
);
1251 assert(current_addr
>= block
->offset
);
1252 assert((current_addr
+ length
) <= (block
->offset
+ block
->length
));
1254 *block_index
= block
->index
;
1255 *chunk_index
= ram_chunk_index(block
->local_host_addr
,
1256 block
->local_host_addr
+ (current_addr
- block
->offset
));
1260 * Register a chunk with IB. If the chunk was already registered
1261 * previously, then skip.
1263 * Also return the keys associated with the registration needed
1264 * to perform the actual RDMA operation.
1266 static int qemu_rdma_register_and_get_keys(RDMAContext
*rdma
,
1267 RDMALocalBlock
*block
, uintptr_t host_addr
,
1268 uint32_t *lkey
, uint32_t *rkey
, int chunk
,
1269 uint8_t *chunk_start
, uint8_t *chunk_end
)
1273 *lkey
= block
->mr
->lkey
;
1276 *rkey
= block
->mr
->rkey
;
1281 /* allocate memory to store chunk MRs */
1283 block
->pmr
= g_new0(struct ibv_mr
*, block
->nb_chunks
);
1287 * If 'rkey', then we're the destination, so grant access to the source.
1289 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1291 if (!block
->pmr
[chunk
]) {
1292 uint64_t len
= chunk_end
- chunk_start
;
1293 int access
= rkey
? IBV_ACCESS_LOCAL_WRITE
| IBV_ACCESS_REMOTE_WRITE
:
1296 trace_qemu_rdma_register_and_get_keys(len
, chunk_start
);
1298 block
->pmr
[chunk
] = ibv_reg_mr(rdma
->pd
, chunk_start
, len
, access
);
1300 * ibv_reg_mr() is not documented to set errno. If it does,
1301 * it's somebody else's doc bug. If it doesn't, the use of
1302 * errno below is wrong.
1303 * TODO Find out whether ibv_reg_mr() sets errno.
1305 if (!block
->pmr
[chunk
] &&
1306 errno
== ENOTSUP
&& rdma_support_odp(rdma
->verbs
)) {
1307 access
|= IBV_ACCESS_ON_DEMAND
;
1308 /* register ODP mr */
1309 block
->pmr
[chunk
] = ibv_reg_mr(rdma
->pd
, chunk_start
, len
, access
);
1310 trace_qemu_rdma_register_odp_mr(block
->block_name
);
1312 if (block
->pmr
[chunk
]) {
1313 qemu_rdma_advise_prefetch_mr(rdma
->pd
, (uintptr_t)chunk_start
,
1314 len
, block
->pmr
[chunk
]->lkey
,
1315 block
->block_name
, rkey
);
1320 if (!block
->pmr
[chunk
]) {
1321 perror("Failed to register chunk!");
1322 fprintf(stderr
, "Chunk details: block: %d chunk index %d"
1323 " start %" PRIuPTR
" end %" PRIuPTR
1325 " local %" PRIuPTR
" registrations: %d\n",
1326 block
->index
, chunk
, (uintptr_t)chunk_start
,
1327 (uintptr_t)chunk_end
, host_addr
,
1328 (uintptr_t)block
->local_host_addr
,
1329 rdma
->total_registrations
);
1332 rdma
->total_registrations
++;
1335 *lkey
= block
->pmr
[chunk
]->lkey
;
1338 *rkey
= block
->pmr
[chunk
]->rkey
;
1344 * Register (at connection time) the memory used for control
1347 static int qemu_rdma_reg_control(RDMAContext
*rdma
, int idx
)
1349 rdma
->wr_data
[idx
].control_mr
= ibv_reg_mr(rdma
->pd
,
1350 rdma
->wr_data
[idx
].control
, RDMA_CONTROL_MAX_BUFFER
,
1351 IBV_ACCESS_LOCAL_WRITE
| IBV_ACCESS_REMOTE_WRITE
);
1352 if (rdma
->wr_data
[idx
].control_mr
) {
1353 rdma
->total_registrations
++;
1356 error_report("qemu_rdma_reg_control failed");
1361 * Perform a non-optimized memory unregistration after every transfer
1362 * for demonstration purposes, only if pin-all is not requested.
1364 * Potential optimizations:
1365 * 1. Start a new thread to run this function continuously
1367 - and for receipt of unregister messages
1369 * 3. Use workload hints.
1371 static int qemu_rdma_unregister_waiting(RDMAContext
*rdma
)
1373 while (rdma
->unregistrations
[rdma
->unregister_current
]) {
1375 uint64_t wr_id
= rdma
->unregistrations
[rdma
->unregister_current
];
1377 (wr_id
& RDMA_WRID_CHUNK_MASK
) >> RDMA_WRID_CHUNK_SHIFT
;
1379 (wr_id
& RDMA_WRID_BLOCK_MASK
) >> RDMA_WRID_BLOCK_SHIFT
;
1380 RDMALocalBlock
*block
=
1381 &(rdma
->local_ram_blocks
.block
[index
]);
1382 RDMARegister reg
= { .current_index
= index
};
1383 RDMAControlHeader resp
= { .type
= RDMA_CONTROL_UNREGISTER_FINISHED
,
1385 RDMAControlHeader head
= { .len
= sizeof(RDMARegister
),
1386 .type
= RDMA_CONTROL_UNREGISTER_REQUEST
,
1390 trace_qemu_rdma_unregister_waiting_proc(chunk
,
1391 rdma
->unregister_current
);
1393 rdma
->unregistrations
[rdma
->unregister_current
] = 0;
1394 rdma
->unregister_current
++;
1396 if (rdma
->unregister_current
== RDMA_SIGNALED_SEND_MAX
) {
1397 rdma
->unregister_current
= 0;
1402 * Unregistration is speculative (because migration is single-threaded
1403 * and we cannot break the protocol's inifinband message ordering).
1404 * Thus, if the memory is currently being used for transmission,
1405 * then abort the attempt to unregister and try again
1406 * later the next time a completion is received for this memory.
1408 clear_bit(chunk
, block
->unregister_bitmap
);
1410 if (test_bit(chunk
, block
->transit_bitmap
)) {
1411 trace_qemu_rdma_unregister_waiting_inflight(chunk
);
1415 trace_qemu_rdma_unregister_waiting_send(chunk
);
1417 ret
= ibv_dereg_mr(block
->pmr
[chunk
]);
1418 block
->pmr
[chunk
] = NULL
;
1419 block
->remote_keys
[chunk
] = 0;
1423 * FIXME perror() is problematic, bcause ibv_dereg_mr() is
1424 * not documented to set errno. Will go away later in
1427 perror("unregistration chunk failed");
1430 rdma
->total_registrations
--;
1432 reg
.key
.chunk
= chunk
;
1433 register_to_network(rdma
, ®
);
1434 ret
= qemu_rdma_exchange_send(rdma
, &head
, (uint8_t *) ®
,
1440 trace_qemu_rdma_unregister_waiting_complete(chunk
);
1446 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id
, uint64_t index
,
1449 uint64_t result
= wr_id
& RDMA_WRID_TYPE_MASK
;
1451 result
|= (index
<< RDMA_WRID_BLOCK_SHIFT
);
1452 result
|= (chunk
<< RDMA_WRID_CHUNK_SHIFT
);
1458 * Consult the connection manager to see a work request
1459 * (of any kind) has completed.
1460 * Return the work request ID that completed.
1462 static int qemu_rdma_poll(RDMAContext
*rdma
, struct ibv_cq
*cq
,
1463 uint64_t *wr_id_out
, uint32_t *byte_len
)
1469 ret
= ibv_poll_cq(cq
, 1, &wc
);
1472 *wr_id_out
= RDMA_WRID_NONE
;
1477 error_report("ibv_poll_cq failed");
1481 wr_id
= wc
.wr_id
& RDMA_WRID_TYPE_MASK
;
1483 if (wc
.status
!= IBV_WC_SUCCESS
) {
1484 fprintf(stderr
, "ibv_poll_cq wc.status=%d %s!\n",
1485 wc
.status
, ibv_wc_status_str(wc
.status
));
1486 fprintf(stderr
, "ibv_poll_cq wrid=%" PRIu64
"!\n", wr_id
);
1491 if (rdma
->control_ready_expected
&&
1492 (wr_id
>= RDMA_WRID_RECV_CONTROL
)) {
1493 trace_qemu_rdma_poll_recv(wr_id
- RDMA_WRID_RECV_CONTROL
, wr_id
,
1495 rdma
->control_ready_expected
= 0;
1498 if (wr_id
== RDMA_WRID_RDMA_WRITE
) {
1500 (wc
.wr_id
& RDMA_WRID_CHUNK_MASK
) >> RDMA_WRID_CHUNK_SHIFT
;
1502 (wc
.wr_id
& RDMA_WRID_BLOCK_MASK
) >> RDMA_WRID_BLOCK_SHIFT
;
1503 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[index
]);
1505 trace_qemu_rdma_poll_write(wr_id
, rdma
->nb_sent
,
1506 index
, chunk
, block
->local_host_addr
,
1507 (void *)(uintptr_t)block
->remote_host_addr
);
1509 clear_bit(chunk
, block
->transit_bitmap
);
1511 if (rdma
->nb_sent
> 0) {
1515 trace_qemu_rdma_poll_other(wr_id
, rdma
->nb_sent
);
1518 *wr_id_out
= wc
.wr_id
;
1520 *byte_len
= wc
.byte_len
;
1526 /* Wait for activity on the completion channel.
1527 * Returns 0 on success, none-0 on error.
1529 static int qemu_rdma_wait_comp_channel(RDMAContext
*rdma
,
1530 struct ibv_comp_channel
*comp_channel
)
1532 struct rdma_cm_event
*cm_event
;
1536 * Coroutine doesn't start until migration_fd_process_incoming()
1537 * so don't yield unless we know we're running inside of a coroutine.
1539 if (rdma
->migration_started_on_destination
&&
1540 migration_incoming_get_current()->state
== MIGRATION_STATUS_ACTIVE
) {
1541 yield_until_fd_readable(comp_channel
->fd
);
1543 /* This is the source side, we're in a separate thread
1544 * or destination prior to migration_fd_process_incoming()
1545 * after postcopy, the destination also in a separate thread.
1546 * we can't yield; so we have to poll the fd.
1547 * But we need to be able to handle 'cancel' or an error
1548 * without hanging forever.
1550 while (!rdma
->errored
&& !rdma
->received_error
) {
1552 pfds
[0].fd
= comp_channel
->fd
;
1553 pfds
[0].events
= G_IO_IN
| G_IO_HUP
| G_IO_ERR
;
1554 pfds
[0].revents
= 0;
1556 pfds
[1].fd
= rdma
->channel
->fd
;
1557 pfds
[1].events
= G_IO_IN
| G_IO_HUP
| G_IO_ERR
;
1558 pfds
[1].revents
= 0;
1560 /* 0.1s timeout, should be fine for a 'cancel' */
1561 switch (qemu_poll_ns(pfds
, 2, 100 * 1000 * 1000)) {
1563 case 1: /* fd active */
1564 if (pfds
[0].revents
) {
1568 if (pfds
[1].revents
) {
1569 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
1571 error_report("failed to get cm event while wait "
1572 "completion channel");
1576 error_report("receive cm event while wait comp channel,"
1577 "cm event is %d", cm_event
->event
);
1578 if (cm_event
->event
== RDMA_CM_EVENT_DISCONNECTED
||
1579 cm_event
->event
== RDMA_CM_EVENT_DEVICE_REMOVAL
) {
1580 rdma_ack_cm_event(cm_event
);
1583 rdma_ack_cm_event(cm_event
);
1587 case 0: /* Timeout, go around again */
1590 default: /* Error of some type -
1591 * I don't trust errno from qemu_poll_ns
1593 error_report("%s: poll failed", __func__
);
1597 if (migrate_get_current()->state
== MIGRATION_STATUS_CANCELLING
) {
1598 /* Bail out and let the cancellation happen */
1604 if (rdma
->received_error
) {
1607 return -rdma
->errored
;
1610 static struct ibv_comp_channel
*to_channel(RDMAContext
*rdma
, uint64_t wrid
)
1612 return wrid
< RDMA_WRID_RECV_CONTROL
? rdma
->send_comp_channel
:
1613 rdma
->recv_comp_channel
;
1616 static struct ibv_cq
*to_cq(RDMAContext
*rdma
, uint64_t wrid
)
1618 return wrid
< RDMA_WRID_RECV_CONTROL
? rdma
->send_cq
: rdma
->recv_cq
;
1622 * Block until the next work request has completed.
1624 * First poll to see if a work request has already completed,
1627 * If we encounter completed work requests for IDs other than
1628 * the one we're interested in, then that's generally an error.
1630 * The only exception is actual RDMA Write completions. These
1631 * completions only need to be recorded, but do not actually
1632 * need further processing.
1634 static int qemu_rdma_block_for_wrid(RDMAContext
*rdma
,
1635 uint64_t wrid_requested
,
1638 int num_cq_events
= 0, ret
;
1641 uint64_t wr_id
= RDMA_WRID_NONE
, wr_id_in
;
1642 struct ibv_comp_channel
*ch
= to_channel(rdma
, wrid_requested
);
1643 struct ibv_cq
*poll_cq
= to_cq(rdma
, wrid_requested
);
1645 if (ibv_req_notify_cq(poll_cq
, 0)) {
1649 while (wr_id
!= wrid_requested
) {
1650 ret
= qemu_rdma_poll(rdma
, poll_cq
, &wr_id_in
, byte_len
);
1655 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
1657 if (wr_id
== RDMA_WRID_NONE
) {
1660 if (wr_id
!= wrid_requested
) {
1661 trace_qemu_rdma_block_for_wrid_miss(wrid_requested
, wr_id
);
1665 if (wr_id
== wrid_requested
) {
1670 ret
= qemu_rdma_wait_comp_channel(rdma
, ch
);
1672 goto err_block_for_wrid
;
1675 ret
= ibv_get_cq_event(ch
, &cq
, &cq_ctx
);
1678 * FIXME perror() is problematic, because ibv_reg_mr() is
1679 * not documented to set errno. Will go away later in
1682 perror("ibv_get_cq_event");
1683 goto err_block_for_wrid
;
1688 if (ibv_req_notify_cq(cq
, 0)) {
1689 goto err_block_for_wrid
;
1692 while (wr_id
!= wrid_requested
) {
1693 ret
= qemu_rdma_poll(rdma
, poll_cq
, &wr_id_in
, byte_len
);
1695 goto err_block_for_wrid
;
1698 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
1700 if (wr_id
== RDMA_WRID_NONE
) {
1703 if (wr_id
!= wrid_requested
) {
1704 trace_qemu_rdma_block_for_wrid_miss(wrid_requested
, wr_id
);
1708 if (wr_id
== wrid_requested
) {
1709 goto success_block_for_wrid
;
1713 success_block_for_wrid
:
1714 if (num_cq_events
) {
1715 ibv_ack_cq_events(cq
, num_cq_events
);
1720 if (num_cq_events
) {
1721 ibv_ack_cq_events(cq
, num_cq_events
);
1724 rdma
->errored
= true;
1729 * Post a SEND message work request for the control channel
1730 * containing some data and block until the post completes.
1732 static int qemu_rdma_post_send_control(RDMAContext
*rdma
, uint8_t *buf
,
1733 RDMAControlHeader
*head
)
1736 RDMAWorkRequestData
*wr
= &rdma
->wr_data
[RDMA_WRID_CONTROL
];
1737 struct ibv_send_wr
*bad_wr
;
1738 struct ibv_sge sge
= {
1739 .addr
= (uintptr_t)(wr
->control
),
1740 .length
= head
->len
+ sizeof(RDMAControlHeader
),
1741 .lkey
= wr
->control_mr
->lkey
,
1743 struct ibv_send_wr send_wr
= {
1744 .wr_id
= RDMA_WRID_SEND_CONTROL
,
1745 .opcode
= IBV_WR_SEND
,
1746 .send_flags
= IBV_SEND_SIGNALED
,
1751 trace_qemu_rdma_post_send_control(control_desc(head
->type
));
1754 * We don't actually need to do a memcpy() in here if we used
1755 * the "sge" properly, but since we're only sending control messages
1756 * (not RAM in a performance-critical path), then its OK for now.
1758 * The copy makes the RDMAControlHeader simpler to manipulate
1759 * for the time being.
1761 assert(head
->len
<= RDMA_CONTROL_MAX_BUFFER
- sizeof(*head
));
1762 memcpy(wr
->control
, head
, sizeof(RDMAControlHeader
));
1763 control_to_network((void *) wr
->control
);
1766 memcpy(wr
->control
+ sizeof(RDMAControlHeader
), buf
, head
->len
);
1770 ret
= ibv_post_send(rdma
->qp
, &send_wr
, &bad_wr
);
1773 error_report("Failed to use post IB SEND for control");
1777 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_SEND_CONTROL
, NULL
);
1779 error_report("rdma migration: send polling control error");
1787 * Post a RECV work request in anticipation of some future receipt
1788 * of data on the control channel.
1790 static int qemu_rdma_post_recv_control(RDMAContext
*rdma
, int idx
)
1792 struct ibv_recv_wr
*bad_wr
;
1793 struct ibv_sge sge
= {
1794 .addr
= (uintptr_t)(rdma
->wr_data
[idx
].control
),
1795 .length
= RDMA_CONTROL_MAX_BUFFER
,
1796 .lkey
= rdma
->wr_data
[idx
].control_mr
->lkey
,
1799 struct ibv_recv_wr recv_wr
= {
1800 .wr_id
= RDMA_WRID_RECV_CONTROL
+ idx
,
1806 if (ibv_post_recv(rdma
->qp
, &recv_wr
, &bad_wr
)) {
1814 * Block and wait for a RECV control channel message to arrive.
1816 static int qemu_rdma_exchange_get_response(RDMAContext
*rdma
,
1817 RDMAControlHeader
*head
, uint32_t expecting
, int idx
)
1820 int ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RECV_CONTROL
+ idx
,
1824 error_report("rdma migration: recv polling control error!");
1828 network_to_control((void *) rdma
->wr_data
[idx
].control
);
1829 memcpy(head
, rdma
->wr_data
[idx
].control
, sizeof(RDMAControlHeader
));
1831 trace_qemu_rdma_exchange_get_response_start(control_desc(expecting
));
1833 if (expecting
== RDMA_CONTROL_NONE
) {
1834 trace_qemu_rdma_exchange_get_response_none(control_desc(head
->type
),
1836 } else if (head
->type
!= expecting
|| head
->type
== RDMA_CONTROL_ERROR
) {
1837 error_report("Was expecting a %s (%d) control message"
1838 ", but got: %s (%d), length: %d",
1839 control_desc(expecting
), expecting
,
1840 control_desc(head
->type
), head
->type
, head
->len
);
1841 if (head
->type
== RDMA_CONTROL_ERROR
) {
1842 rdma
->received_error
= true;
1846 if (head
->len
> RDMA_CONTROL_MAX_BUFFER
- sizeof(*head
)) {
1847 error_report("too long length: %d", head
->len
);
1850 if (sizeof(*head
) + head
->len
!= byte_len
) {
1851 error_report("Malformed length: %d byte_len %d", head
->len
, byte_len
);
1859 * When a RECV work request has completed, the work request's
1860 * buffer is pointed at the header.
1862 * This will advance the pointer to the data portion
1863 * of the control message of the work request's buffer that
1864 * was populated after the work request finished.
1866 static void qemu_rdma_move_header(RDMAContext
*rdma
, int idx
,
1867 RDMAControlHeader
*head
)
1869 rdma
->wr_data
[idx
].control_len
= head
->len
;
1870 rdma
->wr_data
[idx
].control_curr
=
1871 rdma
->wr_data
[idx
].control
+ sizeof(RDMAControlHeader
);
1875 * This is an 'atomic' high-level operation to deliver a single, unified
1876 * control-channel message.
1878 * Additionally, if the user is expecting some kind of reply to this message,
1879 * they can request a 'resp' response message be filled in by posting an
1880 * additional work request on behalf of the user and waiting for an additional
1883 * The extra (optional) response is used during registration to us from having
1884 * to perform an *additional* exchange of message just to provide a response by
1885 * instead piggy-backing on the acknowledgement.
1887 static int qemu_rdma_exchange_send(RDMAContext
*rdma
, RDMAControlHeader
*head
,
1888 uint8_t *data
, RDMAControlHeader
*resp
,
1890 int (*callback
)(RDMAContext
*rdma
))
1895 * Wait until the dest is ready before attempting to deliver the message
1896 * by waiting for a READY message.
1898 if (rdma
->control_ready_expected
) {
1899 RDMAControlHeader resp_ignored
;
1901 ret
= qemu_rdma_exchange_get_response(rdma
, &resp_ignored
,
1910 * If the user is expecting a response, post a WR in anticipation of it.
1913 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_DATA
);
1915 error_report("rdma migration: error posting"
1916 " extra control recv for anticipated result!");
1922 * Post a WR to replace the one we just consumed for the READY message.
1924 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
1926 error_report("rdma migration: error posting first control recv!");
1931 * Deliver the control message that was requested.
1933 ret
= qemu_rdma_post_send_control(rdma
, data
, head
);
1936 error_report("Failed to send control buffer!");
1941 * If we're expecting a response, block and wait for it.
1945 trace_qemu_rdma_exchange_send_issue_callback();
1946 ret
= callback(rdma
);
1952 trace_qemu_rdma_exchange_send_waiting(control_desc(resp
->type
));
1953 ret
= qemu_rdma_exchange_get_response(rdma
, resp
,
1954 resp
->type
, RDMA_WRID_DATA
);
1960 qemu_rdma_move_header(rdma
, RDMA_WRID_DATA
, resp
);
1962 *resp_idx
= RDMA_WRID_DATA
;
1964 trace_qemu_rdma_exchange_send_received(control_desc(resp
->type
));
1967 rdma
->control_ready_expected
= 1;
1973 * This is an 'atomic' high-level operation to receive a single, unified
1974 * control-channel message.
1976 static int qemu_rdma_exchange_recv(RDMAContext
*rdma
, RDMAControlHeader
*head
,
1979 RDMAControlHeader ready
= {
1981 .type
= RDMA_CONTROL_READY
,
1987 * Inform the source that we're ready to receive a message.
1989 ret
= qemu_rdma_post_send_control(rdma
, NULL
, &ready
);
1992 error_report("Failed to send control buffer!");
1997 * Block and wait for the message.
1999 ret
= qemu_rdma_exchange_get_response(rdma
, head
,
2000 expecting
, RDMA_WRID_READY
);
2006 qemu_rdma_move_header(rdma
, RDMA_WRID_READY
, head
);
2009 * Post a new RECV work request to replace the one we just consumed.
2011 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
2013 error_report("rdma migration: error posting second control recv!");
2021 * Write an actual chunk of memory using RDMA.
2023 * If we're using dynamic registration on the dest-side, we have to
2024 * send a registration command first.
2026 static int qemu_rdma_write_one(RDMAContext
*rdma
,
2027 int current_index
, uint64_t current_addr
,
2031 struct ibv_send_wr send_wr
= { 0 };
2032 struct ibv_send_wr
*bad_wr
;
2033 int reg_result_idx
, ret
, count
= 0;
2034 uint64_t chunk
, chunks
;
2035 uint8_t *chunk_start
, *chunk_end
;
2036 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[current_index
]);
2038 RDMARegisterResult
*reg_result
;
2039 RDMAControlHeader resp
= { .type
= RDMA_CONTROL_REGISTER_RESULT
};
2040 RDMAControlHeader head
= { .len
= sizeof(RDMARegister
),
2041 .type
= RDMA_CONTROL_REGISTER_REQUEST
,
2046 sge
.addr
= (uintptr_t)(block
->local_host_addr
+
2047 (current_addr
- block
->offset
));
2048 sge
.length
= length
;
2050 chunk
= ram_chunk_index(block
->local_host_addr
,
2051 (uint8_t *)(uintptr_t)sge
.addr
);
2052 chunk_start
= ram_chunk_start(block
, chunk
);
2054 if (block
->is_ram_block
) {
2055 chunks
= length
/ (1UL << RDMA_REG_CHUNK_SHIFT
);
2057 if (chunks
&& ((length
% (1UL << RDMA_REG_CHUNK_SHIFT
)) == 0)) {
2061 chunks
= block
->length
/ (1UL << RDMA_REG_CHUNK_SHIFT
);
2063 if (chunks
&& ((block
->length
% (1UL << RDMA_REG_CHUNK_SHIFT
)) == 0)) {
2068 trace_qemu_rdma_write_one_top(chunks
+ 1,
2070 (1UL << RDMA_REG_CHUNK_SHIFT
) / 1024 / 1024);
2072 chunk_end
= ram_chunk_end(block
, chunk
+ chunks
);
2075 while (test_bit(chunk
, block
->transit_bitmap
)) {
2077 trace_qemu_rdma_write_one_block(count
++, current_index
, chunk
,
2078 sge
.addr
, length
, rdma
->nb_sent
, block
->nb_chunks
);
2080 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
2083 error_report("Failed to Wait for previous write to complete "
2084 "block %d chunk %" PRIu64
2085 " current %" PRIu64
" len %" PRIu64
" %d",
2086 current_index
, chunk
, sge
.addr
, length
, rdma
->nb_sent
);
2091 if (!rdma
->pin_all
|| !block
->is_ram_block
) {
2092 if (!block
->remote_keys
[chunk
]) {
2094 * This chunk has not yet been registered, so first check to see
2095 * if the entire chunk is zero. If so, tell the other size to
2096 * memset() + madvise() the entire chunk without RDMA.
2099 if (buffer_is_zero((void *)(uintptr_t)sge
.addr
, length
)) {
2100 RDMACompress comp
= {
2101 .offset
= current_addr
,
2103 .block_idx
= current_index
,
2107 head
.len
= sizeof(comp
);
2108 head
.type
= RDMA_CONTROL_COMPRESS
;
2110 trace_qemu_rdma_write_one_zero(chunk
, sge
.length
,
2111 current_index
, current_addr
);
2113 compress_to_network(rdma
, &comp
);
2114 ret
= qemu_rdma_exchange_send(rdma
, &head
,
2115 (uint8_t *) &comp
, NULL
, NULL
, NULL
);
2122 * TODO: Here we are sending something, but we are not
2123 * accounting for anything transferred. The following is wrong:
2125 * stat64_add(&mig_stats.rdma_bytes, sge.length);
2127 * because we are using some kind of compression. I
2128 * would think that head.len would be the more similar
2129 * thing to a correct value.
2131 stat64_add(&mig_stats
.zero_pages
,
2132 sge
.length
/ qemu_target_page_size());
2137 * Otherwise, tell other side to register.
2139 reg
.current_index
= current_index
;
2140 if (block
->is_ram_block
) {
2141 reg
.key
.current_addr
= current_addr
;
2143 reg
.key
.chunk
= chunk
;
2145 reg
.chunks
= chunks
;
2147 trace_qemu_rdma_write_one_sendreg(chunk
, sge
.length
, current_index
,
2150 register_to_network(rdma
, ®
);
2151 ret
= qemu_rdma_exchange_send(rdma
, &head
, (uint8_t *) ®
,
2152 &resp
, ®_result_idx
, NULL
);
2157 /* try to overlap this single registration with the one we sent. */
2158 if (qemu_rdma_register_and_get_keys(rdma
, block
, sge
.addr
,
2159 &sge
.lkey
, NULL
, chunk
,
2160 chunk_start
, chunk_end
)) {
2161 error_report("cannot get lkey");
2165 reg_result
= (RDMARegisterResult
*)
2166 rdma
->wr_data
[reg_result_idx
].control_curr
;
2168 network_to_result(reg_result
);
2170 trace_qemu_rdma_write_one_recvregres(block
->remote_keys
[chunk
],
2171 reg_result
->rkey
, chunk
);
2173 block
->remote_keys
[chunk
] = reg_result
->rkey
;
2174 block
->remote_host_addr
= reg_result
->host_addr
;
2176 /* already registered before */
2177 if (qemu_rdma_register_and_get_keys(rdma
, block
, sge
.addr
,
2178 &sge
.lkey
, NULL
, chunk
,
2179 chunk_start
, chunk_end
)) {
2180 error_report("cannot get lkey!");
2185 send_wr
.wr
.rdma
.rkey
= block
->remote_keys
[chunk
];
2187 send_wr
.wr
.rdma
.rkey
= block
->remote_rkey
;
2189 if (qemu_rdma_register_and_get_keys(rdma
, block
, sge
.addr
,
2190 &sge
.lkey
, NULL
, chunk
,
2191 chunk_start
, chunk_end
)) {
2192 error_report("cannot get lkey!");
2198 * Encode the ram block index and chunk within this wrid.
2199 * We will use this information at the time of completion
2200 * to figure out which bitmap to check against and then which
2201 * chunk in the bitmap to look for.
2203 send_wr
.wr_id
= qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE
,
2204 current_index
, chunk
);
2206 send_wr
.opcode
= IBV_WR_RDMA_WRITE
;
2207 send_wr
.send_flags
= IBV_SEND_SIGNALED
;
2208 send_wr
.sg_list
= &sge
;
2209 send_wr
.num_sge
= 1;
2210 send_wr
.wr
.rdma
.remote_addr
= block
->remote_host_addr
+
2211 (current_addr
- block
->offset
);
2213 trace_qemu_rdma_write_one_post(chunk
, sge
.addr
, send_wr
.wr
.rdma
.remote_addr
,
2217 * ibv_post_send() does not return negative error numbers,
2218 * per the specification they are positive - no idea why.
2220 ret
= ibv_post_send(rdma
->qp
, &send_wr
, &bad_wr
);
2222 if (ret
== ENOMEM
) {
2223 trace_qemu_rdma_write_one_queue_full();
2224 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
2226 error_report("rdma migration: failed to make "
2227 "room in full send queue!");
2233 } else if (ret
> 0) {
2235 * FIXME perror() is problematic, because whether
2236 * ibv_post_send() sets errno is unclear. Will go away later
2239 perror("rdma migration: post rdma write failed");
2243 set_bit(chunk
, block
->transit_bitmap
);
2244 stat64_add(&mig_stats
.normal_pages
, sge
.length
/ qemu_target_page_size());
2246 * We are adding to transferred the amount of data written, but no
2247 * overhead at all. I will asume that RDMA is magicaly and don't
2248 * need to transfer (at least) the addresses where it wants to
2249 * write the pages. Here it looks like it should be something
2251 * sizeof(send_wr) + sge.length
2252 * but this being RDMA, who knows.
2254 stat64_add(&mig_stats
.rdma_bytes
, sge
.length
);
2255 ram_transferred_add(sge
.length
);
2256 rdma
->total_writes
++;
2262 * Push out any unwritten RDMA operations.
2264 * We support sending out multiple chunks at the same time.
2265 * Not all of them need to get signaled in the completion queue.
2267 static int qemu_rdma_write_flush(RDMAContext
*rdma
)
2271 if (!rdma
->current_length
) {
2275 ret
= qemu_rdma_write_one(rdma
,
2276 rdma
->current_index
, rdma
->current_addr
, rdma
->current_length
);
2284 trace_qemu_rdma_write_flush(rdma
->nb_sent
);
2287 rdma
->current_length
= 0;
2288 rdma
->current_addr
= 0;
2293 static inline bool qemu_rdma_buffer_mergeable(RDMAContext
*rdma
,
2294 uint64_t offset
, uint64_t len
)
2296 RDMALocalBlock
*block
;
2300 if (rdma
->current_index
< 0) {
2304 if (rdma
->current_chunk
< 0) {
2308 block
= &(rdma
->local_ram_blocks
.block
[rdma
->current_index
]);
2309 host_addr
= block
->local_host_addr
+ (offset
- block
->offset
);
2310 chunk_end
= ram_chunk_end(block
, rdma
->current_chunk
);
2312 if (rdma
->current_length
== 0) {
2317 * Only merge into chunk sequentially.
2319 if (offset
!= (rdma
->current_addr
+ rdma
->current_length
)) {
2323 if (offset
< block
->offset
) {
2327 if ((offset
+ len
) > (block
->offset
+ block
->length
)) {
2331 if ((host_addr
+ len
) > chunk_end
) {
2339 * We're not actually writing here, but doing three things:
2341 * 1. Identify the chunk the buffer belongs to.
2342 * 2. If the chunk is full or the buffer doesn't belong to the current
2343 * chunk, then start a new chunk and flush() the old chunk.
2344 * 3. To keep the hardware busy, we also group chunks into batches
2345 * and only require that a batch gets acknowledged in the completion
2346 * queue instead of each individual chunk.
2348 static int qemu_rdma_write(RDMAContext
*rdma
,
2349 uint64_t block_offset
, uint64_t offset
,
2352 uint64_t current_addr
= block_offset
+ offset
;
2353 uint64_t index
= rdma
->current_index
;
2354 uint64_t chunk
= rdma
->current_chunk
;
2357 /* If we cannot merge it, we flush the current buffer first. */
2358 if (!qemu_rdma_buffer_mergeable(rdma
, current_addr
, len
)) {
2359 ret
= qemu_rdma_write_flush(rdma
);
2363 rdma
->current_length
= 0;
2364 rdma
->current_addr
= current_addr
;
2366 qemu_rdma_search_ram_block(rdma
, block_offset
,
2367 offset
, len
, &index
, &chunk
);
2368 rdma
->current_index
= index
;
2369 rdma
->current_chunk
= chunk
;
2373 rdma
->current_length
+= len
;
2375 /* flush it if buffer is too large */
2376 if (rdma
->current_length
>= RDMA_MERGE_MAX
) {
2377 return qemu_rdma_write_flush(rdma
);
2383 static void qemu_rdma_cleanup(RDMAContext
*rdma
)
2387 if (rdma
->cm_id
&& rdma
->connected
) {
2388 if ((rdma
->errored
||
2389 migrate_get_current()->state
== MIGRATION_STATUS_CANCELLING
) &&
2390 !rdma
->received_error
) {
2391 RDMAControlHeader head
= { .len
= 0,
2392 .type
= RDMA_CONTROL_ERROR
,
2395 error_report("Early error. Sending error.");
2396 qemu_rdma_post_send_control(rdma
, NULL
, &head
);
2399 rdma_disconnect(rdma
->cm_id
);
2400 trace_qemu_rdma_cleanup_disconnect();
2401 rdma
->connected
= false;
2404 if (rdma
->channel
) {
2405 qemu_set_fd_handler(rdma
->channel
->fd
, NULL
, NULL
, NULL
);
2407 g_free(rdma
->dest_blocks
);
2408 rdma
->dest_blocks
= NULL
;
2410 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2411 if (rdma
->wr_data
[idx
].control_mr
) {
2412 rdma
->total_registrations
--;
2413 ibv_dereg_mr(rdma
->wr_data
[idx
].control_mr
);
2415 rdma
->wr_data
[idx
].control_mr
= NULL
;
2418 if (rdma
->local_ram_blocks
.block
) {
2419 while (rdma
->local_ram_blocks
.nb_blocks
) {
2420 rdma_delete_block(rdma
, &rdma
->local_ram_blocks
.block
[0]);
2425 rdma_destroy_qp(rdma
->cm_id
);
2428 if (rdma
->recv_cq
) {
2429 ibv_destroy_cq(rdma
->recv_cq
);
2430 rdma
->recv_cq
= NULL
;
2432 if (rdma
->send_cq
) {
2433 ibv_destroy_cq(rdma
->send_cq
);
2434 rdma
->send_cq
= NULL
;
2436 if (rdma
->recv_comp_channel
) {
2437 ibv_destroy_comp_channel(rdma
->recv_comp_channel
);
2438 rdma
->recv_comp_channel
= NULL
;
2440 if (rdma
->send_comp_channel
) {
2441 ibv_destroy_comp_channel(rdma
->send_comp_channel
);
2442 rdma
->send_comp_channel
= NULL
;
2445 ibv_dealloc_pd(rdma
->pd
);
2449 rdma_destroy_id(rdma
->cm_id
);
2453 /* the destination side, listen_id and channel is shared */
2454 if (rdma
->listen_id
) {
2455 if (!rdma
->is_return_path
) {
2456 rdma_destroy_id(rdma
->listen_id
);
2458 rdma
->listen_id
= NULL
;
2460 if (rdma
->channel
) {
2461 if (!rdma
->is_return_path
) {
2462 rdma_destroy_event_channel(rdma
->channel
);
2464 rdma
->channel
= NULL
;
2468 if (rdma
->channel
) {
2469 rdma_destroy_event_channel(rdma
->channel
);
2470 rdma
->channel
= NULL
;
2473 g_free(rdma
->host_port
);
2475 rdma
->host_port
= NULL
;
2479 static int qemu_rdma_source_init(RDMAContext
*rdma
, bool pin_all
, Error
**errp
)
2484 * Will be validated against destination's actual capabilities
2485 * after the connect() completes.
2487 rdma
->pin_all
= pin_all
;
2489 ret
= qemu_rdma_resolve_host(rdma
, errp
);
2491 goto err_rdma_source_init
;
2494 ret
= qemu_rdma_alloc_pd_cq(rdma
);
2496 ERROR(errp
, "rdma migration: error allocating pd and cq! Your mlock()"
2497 " limits may be too low. Please check $ ulimit -a # and "
2498 "search for 'ulimit -l' in the output");
2499 goto err_rdma_source_init
;
2502 ret
= qemu_rdma_alloc_qp(rdma
);
2504 ERROR(errp
, "rdma migration: error allocating qp!");
2505 goto err_rdma_source_init
;
2508 qemu_rdma_init_ram_blocks(rdma
);
2510 /* Build the hash that maps from offset to RAMBlock */
2511 rdma
->blockmap
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
2512 for (idx
= 0; idx
< rdma
->local_ram_blocks
.nb_blocks
; idx
++) {
2513 g_hash_table_insert(rdma
->blockmap
,
2514 (void *)(uintptr_t)rdma
->local_ram_blocks
.block
[idx
].offset
,
2515 &rdma
->local_ram_blocks
.block
[idx
]);
2518 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2519 ret
= qemu_rdma_reg_control(rdma
, idx
);
2521 ERROR(errp
, "rdma migration: error registering %d control!",
2523 goto err_rdma_source_init
;
2529 err_rdma_source_init
:
2530 qemu_rdma_cleanup(rdma
);
2534 static int qemu_get_cm_event_timeout(RDMAContext
*rdma
,
2535 struct rdma_cm_event
**cm_event
,
2536 long msec
, Error
**errp
)
2539 struct pollfd poll_fd
= {
2540 .fd
= rdma
->channel
->fd
,
2546 ret
= poll(&poll_fd
, 1, msec
);
2547 } while (ret
< 0 && errno
== EINTR
);
2550 ERROR(errp
, "poll cm event timeout");
2552 } else if (ret
< 0) {
2553 ERROR(errp
, "failed to poll cm event, errno=%i", errno
);
2555 } else if (poll_fd
.revents
& POLLIN
) {
2556 if (rdma_get_cm_event(rdma
->channel
, cm_event
) < 0) {
2557 ERROR(errp
, "failed to get cm event");
2562 ERROR(errp
, "no POLLIN event, revent=%x", poll_fd
.revents
);
2567 static int qemu_rdma_connect(RDMAContext
*rdma
, bool return_path
,
2570 RDMACapabilities cap
= {
2571 .version
= RDMA_CONTROL_VERSION_CURRENT
,
2574 struct rdma_conn_param conn_param
= { .initiator_depth
= 2,
2576 .private_data
= &cap
,
2577 .private_data_len
= sizeof(cap
),
2579 struct rdma_cm_event
*cm_event
;
2583 * Only negotiate the capability with destination if the user
2584 * on the source first requested the capability.
2586 if (rdma
->pin_all
) {
2587 trace_qemu_rdma_connect_pin_all_requested();
2588 cap
.flags
|= RDMA_CAPABILITY_PIN_ALL
;
2591 caps_to_network(&cap
);
2593 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
2595 ERROR(errp
, "posting second control recv");
2596 goto err_rdma_source_connect
;
2599 ret
= rdma_connect(rdma
->cm_id
, &conn_param
);
2601 perror("rdma_connect");
2602 ERROR(errp
, "connecting to destination!");
2603 goto err_rdma_source_connect
;
2607 ret
= qemu_get_cm_event_timeout(rdma
, &cm_event
, 5000, errp
);
2609 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
2611 ERROR(errp
, "failed to get cm event");
2616 * FIXME perror() is wrong, because
2617 * qemu_get_cm_event_timeout() can fail without setting errno.
2618 * Will go away later in this series.
2620 perror("rdma_get_cm_event after rdma_connect");
2621 goto err_rdma_source_connect
;
2624 if (cm_event
->event
!= RDMA_CM_EVENT_ESTABLISHED
) {
2625 error_report("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2626 ERROR(errp
, "connecting to destination!");
2627 rdma_ack_cm_event(cm_event
);
2628 goto err_rdma_source_connect
;
2630 rdma
->connected
= true;
2632 memcpy(&cap
, cm_event
->param
.conn
.private_data
, sizeof(cap
));
2633 network_to_caps(&cap
);
2636 * Verify that the *requested* capabilities are supported by the destination
2637 * and disable them otherwise.
2639 if (rdma
->pin_all
&& !(cap
.flags
& RDMA_CAPABILITY_PIN_ALL
)) {
2640 ERROR(errp
, "Server cannot support pinning all memory. "
2641 "Will register memory dynamically.");
2642 rdma
->pin_all
= false;
2645 trace_qemu_rdma_connect_pin_all_outcome(rdma
->pin_all
);
2647 rdma_ack_cm_event(cm_event
);
2649 rdma
->control_ready_expected
= 1;
2653 err_rdma_source_connect
:
2654 qemu_rdma_cleanup(rdma
);
2658 static int qemu_rdma_dest_init(RDMAContext
*rdma
, Error
**errp
)
2661 struct rdma_cm_id
*listen_id
;
2662 char ip
[40] = "unknown";
2663 struct rdma_addrinfo
*res
, *e
;
2667 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2668 rdma
->wr_data
[idx
].control_len
= 0;
2669 rdma
->wr_data
[idx
].control_curr
= NULL
;
2672 if (!rdma
->host
|| !rdma
->host
[0]) {
2673 ERROR(errp
, "RDMA host is not set!");
2674 rdma
->errored
= true;
2677 /* create CM channel */
2678 rdma
->channel
= rdma_create_event_channel();
2679 if (!rdma
->channel
) {
2680 ERROR(errp
, "could not create rdma event channel");
2681 rdma
->errored
= true;
2686 ret
= rdma_create_id(rdma
->channel
, &listen_id
, NULL
, RDMA_PS_TCP
);
2688 ERROR(errp
, "could not create cm_id!");
2689 goto err_dest_init_create_listen_id
;
2692 snprintf(port_str
, 16, "%d", rdma
->port
);
2693 port_str
[15] = '\0';
2695 ret
= rdma_getaddrinfo(rdma
->host
, port_str
, NULL
, &res
);
2697 ERROR(errp
, "could not rdma_getaddrinfo address %s", rdma
->host
);
2698 goto err_dest_init_bind_addr
;
2701 ret
= rdma_set_option(listen_id
, RDMA_OPTION_ID
, RDMA_OPTION_ID_REUSEADDR
,
2702 &reuse
, sizeof reuse
);
2704 ERROR(errp
, "Error: could not set REUSEADDR option");
2705 goto err_dest_init_bind_addr
;
2707 for (e
= res
; e
!= NULL
; e
= e
->ai_next
) {
2708 inet_ntop(e
->ai_family
,
2709 &((struct sockaddr_in
*) e
->ai_dst_addr
)->sin_addr
, ip
, sizeof ip
);
2710 trace_qemu_rdma_dest_init_trying(rdma
->host
, ip
);
2711 ret
= rdma_bind_addr(listen_id
, e
->ai_dst_addr
);
2715 if (e
->ai_family
== AF_INET6
) {
2716 ret
= qemu_rdma_broken_ipv6_kernel(listen_id
->verbs
, errp
);
2724 rdma_freeaddrinfo(res
);
2726 ERROR(errp
, "Error: could not rdma_bind_addr!");
2727 goto err_dest_init_bind_addr
;
2730 rdma
->listen_id
= listen_id
;
2731 qemu_rdma_dump_gid("dest_init", listen_id
);
2734 err_dest_init_bind_addr
:
2735 rdma_destroy_id(listen_id
);
2736 err_dest_init_create_listen_id
:
2737 rdma_destroy_event_channel(rdma
->channel
);
2738 rdma
->channel
= NULL
;
2739 rdma
->errored
= true;
2744 static void qemu_rdma_return_path_dest_init(RDMAContext
*rdma_return_path
,
2749 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2750 rdma_return_path
->wr_data
[idx
].control_len
= 0;
2751 rdma_return_path
->wr_data
[idx
].control_curr
= NULL
;
2754 /*the CM channel and CM id is shared*/
2755 rdma_return_path
->channel
= rdma
->channel
;
2756 rdma_return_path
->listen_id
= rdma
->listen_id
;
2758 rdma
->return_path
= rdma_return_path
;
2759 rdma_return_path
->return_path
= rdma
;
2760 rdma_return_path
->is_return_path
= true;
2763 static RDMAContext
*qemu_rdma_data_init(const char *host_port
, Error
**errp
)
2765 RDMAContext
*rdma
= NULL
;
2766 InetSocketAddress
*addr
;
2768 rdma
= g_new0(RDMAContext
, 1);
2769 rdma
->current_index
= -1;
2770 rdma
->current_chunk
= -1;
2772 addr
= g_new(InetSocketAddress
, 1);
2773 if (!inet_parse(addr
, host_port
, NULL
)) {
2774 rdma
->port
= atoi(addr
->port
);
2775 rdma
->host
= g_strdup(addr
->host
);
2776 rdma
->host_port
= g_strdup(host_port
);
2778 ERROR(errp
, "bad RDMA migration address '%s'", host_port
);
2783 qapi_free_InetSocketAddress(addr
);
2788 * QEMUFile interface to the control channel.
2789 * SEND messages for control only.
2790 * VM's ram is handled with regular RDMA messages.
2792 static ssize_t
qio_channel_rdma_writev(QIOChannel
*ioc
,
2793 const struct iovec
*iov
,
2800 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2806 RCU_READ_LOCK_GUARD();
2807 rdma
= qatomic_rcu_read(&rioc
->rdmaout
);
2810 error_setg(errp
, "RDMA control channel output is not set");
2814 if (rdma
->errored
) {
2816 "RDMA is in an error state waiting migration to abort!");
2821 * Push out any writes that
2822 * we're queued up for VM's ram.
2824 ret
= qemu_rdma_write_flush(rdma
);
2826 rdma
->errored
= true;
2827 error_setg(errp
, "qemu_rdma_write_flush failed");
2831 for (i
= 0; i
< niov
; i
++) {
2832 size_t remaining
= iov
[i
].iov_len
;
2833 uint8_t * data
= (void *)iov
[i
].iov_base
;
2835 RDMAControlHeader head
= {};
2837 len
= MIN(remaining
, RDMA_SEND_INCREMENT
);
2841 head
.type
= RDMA_CONTROL_QEMU_FILE
;
2843 ret
= qemu_rdma_exchange_send(rdma
, &head
, data
, NULL
, NULL
, NULL
);
2846 rdma
->errored
= true;
2847 error_setg(errp
, "qemu_rdma_exchange_send failed");
2859 static size_t qemu_rdma_fill(RDMAContext
*rdma
, uint8_t *buf
,
2860 size_t size
, int idx
)
2864 if (rdma
->wr_data
[idx
].control_len
) {
2865 trace_qemu_rdma_fill(rdma
->wr_data
[idx
].control_len
, size
);
2867 len
= MIN(size
, rdma
->wr_data
[idx
].control_len
);
2868 memcpy(buf
, rdma
->wr_data
[idx
].control_curr
, len
);
2869 rdma
->wr_data
[idx
].control_curr
+= len
;
2870 rdma
->wr_data
[idx
].control_len
-= len
;
2877 * QEMUFile interface to the control channel.
2878 * RDMA links don't use bytestreams, so we have to
2879 * return bytes to QEMUFile opportunistically.
2881 static ssize_t
qio_channel_rdma_readv(QIOChannel
*ioc
,
2882 const struct iovec
*iov
,
2889 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2891 RDMAControlHeader head
;
2896 RCU_READ_LOCK_GUARD();
2897 rdma
= qatomic_rcu_read(&rioc
->rdmain
);
2900 error_setg(errp
, "RDMA control channel input is not set");
2904 if (rdma
->errored
) {
2906 "RDMA is in an error state waiting migration to abort!");
2910 for (i
= 0; i
< niov
; i
++) {
2911 size_t want
= iov
[i
].iov_len
;
2912 uint8_t *data
= (void *)iov
[i
].iov_base
;
2915 * First, we hold on to the last SEND message we
2916 * were given and dish out the bytes until we run
2919 len
= qemu_rdma_fill(rdma
, data
, want
, 0);
2922 /* Got what we needed, so go to next iovec */
2927 /* If we got any data so far, then don't wait
2928 * for more, just return what we have */
2934 /* We've got nothing at all, so lets wait for
2937 ret
= qemu_rdma_exchange_recv(rdma
, &head
, RDMA_CONTROL_QEMU_FILE
);
2940 rdma
->errored
= true;
2941 error_setg(errp
, "qemu_rdma_exchange_recv failed");
2946 * SEND was received with new bytes, now try again.
2948 len
= qemu_rdma_fill(rdma
, data
, want
, 0);
2952 /* Still didn't get enough, so lets just return */
2955 return QIO_CHANNEL_ERR_BLOCK
;
2965 * Block until all the outstanding chunks have been delivered by the hardware.
2967 static int qemu_rdma_drain_cq(RDMAContext
*rdma
)
2971 if (qemu_rdma_write_flush(rdma
) < 0) {
2975 while (rdma
->nb_sent
) {
2976 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
2978 error_report("rdma migration: complete polling error!");
2983 qemu_rdma_unregister_waiting(rdma
);
2989 static int qio_channel_rdma_set_blocking(QIOChannel
*ioc
,
2993 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2994 /* XXX we should make readv/writev actually honour this :-) */
2995 rioc
->blocking
= blocking
;
3000 typedef struct QIOChannelRDMASource QIOChannelRDMASource
;
3001 struct QIOChannelRDMASource
{
3003 QIOChannelRDMA
*rioc
;
3004 GIOCondition condition
;
3008 qio_channel_rdma_source_prepare(GSource
*source
,
3011 QIOChannelRDMASource
*rsource
= (QIOChannelRDMASource
*)source
;
3013 GIOCondition cond
= 0;
3016 RCU_READ_LOCK_GUARD();
3017 if (rsource
->condition
== G_IO_IN
) {
3018 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmain
);
3020 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmaout
);
3024 error_report("RDMAContext is NULL when prepare Gsource");
3028 if (rdma
->wr_data
[0].control_len
) {
3033 return cond
& rsource
->condition
;
3037 qio_channel_rdma_source_check(GSource
*source
)
3039 QIOChannelRDMASource
*rsource
= (QIOChannelRDMASource
*)source
;
3041 GIOCondition cond
= 0;
3043 RCU_READ_LOCK_GUARD();
3044 if (rsource
->condition
== G_IO_IN
) {
3045 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmain
);
3047 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmaout
);
3051 error_report("RDMAContext is NULL when check Gsource");
3055 if (rdma
->wr_data
[0].control_len
) {
3060 return cond
& rsource
->condition
;
3064 qio_channel_rdma_source_dispatch(GSource
*source
,
3065 GSourceFunc callback
,
3068 QIOChannelFunc func
= (QIOChannelFunc
)callback
;
3069 QIOChannelRDMASource
*rsource
= (QIOChannelRDMASource
*)source
;
3071 GIOCondition cond
= 0;
3073 RCU_READ_LOCK_GUARD();
3074 if (rsource
->condition
== G_IO_IN
) {
3075 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmain
);
3077 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmaout
);
3081 error_report("RDMAContext is NULL when dispatch Gsource");
3085 if (rdma
->wr_data
[0].control_len
) {
3090 return (*func
)(QIO_CHANNEL(rsource
->rioc
),
3091 (cond
& rsource
->condition
),
3096 qio_channel_rdma_source_finalize(GSource
*source
)
3098 QIOChannelRDMASource
*ssource
= (QIOChannelRDMASource
*)source
;
3100 object_unref(OBJECT(ssource
->rioc
));
3103 static GSourceFuncs qio_channel_rdma_source_funcs
= {
3104 qio_channel_rdma_source_prepare
,
3105 qio_channel_rdma_source_check
,
3106 qio_channel_rdma_source_dispatch
,
3107 qio_channel_rdma_source_finalize
3110 static GSource
*qio_channel_rdma_create_watch(QIOChannel
*ioc
,
3111 GIOCondition condition
)
3113 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
3114 QIOChannelRDMASource
*ssource
;
3117 source
= g_source_new(&qio_channel_rdma_source_funcs
,
3118 sizeof(QIOChannelRDMASource
));
3119 ssource
= (QIOChannelRDMASource
*)source
;
3121 ssource
->rioc
= rioc
;
3122 object_ref(OBJECT(rioc
));
3124 ssource
->condition
= condition
;
3129 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel
*ioc
,
3130 AioContext
*read_ctx
,
3132 AioContext
*write_ctx
,
3133 IOHandler
*io_write
,
3136 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
3138 aio_set_fd_handler(read_ctx
, rioc
->rdmain
->recv_comp_channel
->fd
,
3139 io_read
, io_write
, NULL
, NULL
, opaque
);
3140 aio_set_fd_handler(read_ctx
, rioc
->rdmain
->send_comp_channel
->fd
,
3141 io_read
, io_write
, NULL
, NULL
, opaque
);
3143 aio_set_fd_handler(write_ctx
, rioc
->rdmaout
->recv_comp_channel
->fd
,
3144 io_read
, io_write
, NULL
, NULL
, opaque
);
3145 aio_set_fd_handler(write_ctx
, rioc
->rdmaout
->send_comp_channel
->fd
,
3146 io_read
, io_write
, NULL
, NULL
, opaque
);
3150 struct rdma_close_rcu
{
3151 struct rcu_head rcu
;
3152 RDMAContext
*rdmain
;
3153 RDMAContext
*rdmaout
;
3156 /* callback from qio_channel_rdma_close via call_rcu */
3157 static void qio_channel_rdma_close_rcu(struct rdma_close_rcu
*rcu
)
3160 qemu_rdma_cleanup(rcu
->rdmain
);
3164 qemu_rdma_cleanup(rcu
->rdmaout
);
3167 g_free(rcu
->rdmain
);
3168 g_free(rcu
->rdmaout
);
3172 static int qio_channel_rdma_close(QIOChannel
*ioc
,
3175 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
3176 RDMAContext
*rdmain
, *rdmaout
;
3177 struct rdma_close_rcu
*rcu
= g_new(struct rdma_close_rcu
, 1);
3179 trace_qemu_rdma_close();
3181 rdmain
= rioc
->rdmain
;
3183 qatomic_rcu_set(&rioc
->rdmain
, NULL
);
3186 rdmaout
= rioc
->rdmaout
;
3188 qatomic_rcu_set(&rioc
->rdmaout
, NULL
);
3191 rcu
->rdmain
= rdmain
;
3192 rcu
->rdmaout
= rdmaout
;
3193 call_rcu(rcu
, qio_channel_rdma_close_rcu
, rcu
);
3199 qio_channel_rdma_shutdown(QIOChannel
*ioc
,
3200 QIOChannelShutdown how
,
3203 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
3204 RDMAContext
*rdmain
, *rdmaout
;
3206 RCU_READ_LOCK_GUARD();
3208 rdmain
= qatomic_rcu_read(&rioc
->rdmain
);
3209 rdmaout
= qatomic_rcu_read(&rioc
->rdmain
);
3212 case QIO_CHANNEL_SHUTDOWN_READ
:
3214 rdmain
->errored
= true;
3217 case QIO_CHANNEL_SHUTDOWN_WRITE
:
3219 rdmaout
->errored
= true;
3222 case QIO_CHANNEL_SHUTDOWN_BOTH
:
3225 rdmain
->errored
= true;
3228 rdmaout
->errored
= true;
3239 * This means that 'block_offset' is a full virtual address that does not
3240 * belong to a RAMBlock of the virtual machine and instead
3241 * represents a private malloc'd memory area that the caller wishes to
3245 * Offset is an offset to be added to block_offset and used
3246 * to also lookup the corresponding RAMBlock.
3248 * @size : Number of bytes to transfer
3250 * @pages_sent : User-specificed pointer to indicate how many pages were
3251 * sent. Usually, this will not be more than a few bytes of
3252 * the protocol because most transfers are sent asynchronously.
3254 static int qemu_rdma_save_page(QEMUFile
*f
, ram_addr_t block_offset
,
3255 ram_addr_t offset
, size_t size
)
3257 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(qemu_file_get_ioc(f
));
3261 if (migration_in_postcopy()) {
3262 return RAM_SAVE_CONTROL_NOT_SUPP
;
3265 RCU_READ_LOCK_GUARD();
3266 rdma
= qatomic_rcu_read(&rioc
->rdmaout
);
3272 if (rdma_errored(rdma
)) {
3279 * Add this page to the current 'chunk'. If the chunk
3280 * is full, or the page doesn't belong to the current chunk,
3281 * an actual RDMA write will occur and a new chunk will be formed.
3283 ret
= qemu_rdma_write(rdma
, block_offset
, offset
, size
);
3285 error_report("rdma migration: write error");
3290 * Drain the Completion Queue if possible, but do not block,
3293 * If nothing to poll, the end of the iteration will do this
3294 * again to make sure we don't overflow the request queue.
3297 uint64_t wr_id
, wr_id_in
;
3298 ret
= qemu_rdma_poll(rdma
, rdma
->recv_cq
, &wr_id_in
, NULL
);
3301 error_report("rdma migration: polling error");
3305 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
3307 if (wr_id
== RDMA_WRID_NONE
) {
3313 uint64_t wr_id
, wr_id_in
;
3314 ret
= qemu_rdma_poll(rdma
, rdma
->send_cq
, &wr_id_in
, NULL
);
3317 error_report("rdma migration: polling error");
3321 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
3323 if (wr_id
== RDMA_WRID_NONE
) {
3328 return RAM_SAVE_CONTROL_DELAYED
;
3331 rdma
->errored
= true;
3335 static void rdma_accept_incoming_migration(void *opaque
);
3337 static void rdma_cm_poll_handler(void *opaque
)
3339 RDMAContext
*rdma
= opaque
;
3341 struct rdma_cm_event
*cm_event
;
3342 MigrationIncomingState
*mis
= migration_incoming_get_current();
3344 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
3346 error_report("get_cm_event failed %d", errno
);
3350 if (cm_event
->event
== RDMA_CM_EVENT_DISCONNECTED
||
3351 cm_event
->event
== RDMA_CM_EVENT_DEVICE_REMOVAL
) {
3352 if (!rdma
->errored
&&
3353 migration_incoming_get_current()->state
!=
3354 MIGRATION_STATUS_COMPLETED
) {
3355 error_report("receive cm event, cm event is %d", cm_event
->event
);
3356 rdma
->errored
= true;
3357 if (rdma
->return_path
) {
3358 rdma
->return_path
->errored
= true;
3361 rdma_ack_cm_event(cm_event
);
3362 if (mis
->loadvm_co
) {
3363 qemu_coroutine_enter(mis
->loadvm_co
);
3367 rdma_ack_cm_event(cm_event
);
3370 static int qemu_rdma_accept(RDMAContext
*rdma
)
3372 RDMACapabilities cap
;
3373 struct rdma_conn_param conn_param
= {
3374 .responder_resources
= 2,
3375 .private_data
= &cap
,
3376 .private_data_len
= sizeof(cap
),
3378 RDMAContext
*rdma_return_path
= NULL
;
3379 struct rdma_cm_event
*cm_event
;
3380 struct ibv_context
*verbs
;
3384 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
3386 goto err_rdma_dest_wait
;
3389 if (cm_event
->event
!= RDMA_CM_EVENT_CONNECT_REQUEST
) {
3390 rdma_ack_cm_event(cm_event
);
3391 goto err_rdma_dest_wait
;
3395 * initialize the RDMAContext for return path for postcopy after first
3396 * connection request reached.
3398 if ((migrate_postcopy() || migrate_return_path())
3399 && !rdma
->is_return_path
) {
3400 rdma_return_path
= qemu_rdma_data_init(rdma
->host_port
, NULL
);
3401 if (rdma_return_path
== NULL
) {
3402 rdma_ack_cm_event(cm_event
);
3403 goto err_rdma_dest_wait
;
3406 qemu_rdma_return_path_dest_init(rdma_return_path
, rdma
);
3409 memcpy(&cap
, cm_event
->param
.conn
.private_data
, sizeof(cap
));
3411 network_to_caps(&cap
);
3413 if (cap
.version
< 1 || cap
.version
> RDMA_CONTROL_VERSION_CURRENT
) {
3414 error_report("Unknown source RDMA version: %d, bailing...",
3416 rdma_ack_cm_event(cm_event
);
3417 goto err_rdma_dest_wait
;
3421 * Respond with only the capabilities this version of QEMU knows about.
3423 cap
.flags
&= known_capabilities
;
3426 * Enable the ones that we do know about.
3427 * Add other checks here as new ones are introduced.
3429 if (cap
.flags
& RDMA_CAPABILITY_PIN_ALL
) {
3430 rdma
->pin_all
= true;
3433 rdma
->cm_id
= cm_event
->id
;
3434 verbs
= cm_event
->id
->verbs
;
3436 rdma_ack_cm_event(cm_event
);
3438 trace_qemu_rdma_accept_pin_state(rdma
->pin_all
);
3440 caps_to_network(&cap
);
3442 trace_qemu_rdma_accept_pin_verbsc(verbs
);
3445 rdma
->verbs
= verbs
;
3446 } else if (rdma
->verbs
!= verbs
) {
3447 error_report("ibv context not matching %p, %p!", rdma
->verbs
,
3449 goto err_rdma_dest_wait
;
3452 qemu_rdma_dump_id("dest_init", verbs
);
3454 ret
= qemu_rdma_alloc_pd_cq(rdma
);
3456 error_report("rdma migration: error allocating pd and cq!");
3457 goto err_rdma_dest_wait
;
3460 ret
= qemu_rdma_alloc_qp(rdma
);
3462 error_report("rdma migration: error allocating qp!");
3463 goto err_rdma_dest_wait
;
3466 qemu_rdma_init_ram_blocks(rdma
);
3468 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
3469 ret
= qemu_rdma_reg_control(rdma
, idx
);
3471 error_report("rdma: error registering %d control", idx
);
3472 goto err_rdma_dest_wait
;
3476 /* Accept the second connection request for return path */
3477 if ((migrate_postcopy() || migrate_return_path())
3478 && !rdma
->is_return_path
) {
3479 qemu_set_fd_handler(rdma
->channel
->fd
, rdma_accept_incoming_migration
,
3481 (void *)(intptr_t)rdma
->return_path
);
3483 qemu_set_fd_handler(rdma
->channel
->fd
, rdma_cm_poll_handler
,
3487 ret
= rdma_accept(rdma
->cm_id
, &conn_param
);
3489 error_report("rdma_accept failed");
3490 goto err_rdma_dest_wait
;
3493 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
3495 error_report("rdma_accept get_cm_event failed");
3496 goto err_rdma_dest_wait
;
3499 if (cm_event
->event
!= RDMA_CM_EVENT_ESTABLISHED
) {
3500 error_report("rdma_accept not event established");
3501 rdma_ack_cm_event(cm_event
);
3502 goto err_rdma_dest_wait
;
3505 rdma_ack_cm_event(cm_event
);
3506 rdma
->connected
= true;
3508 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
3510 error_report("rdma migration: error posting second control recv");
3511 goto err_rdma_dest_wait
;
3514 qemu_rdma_dump_gid("dest_connect", rdma
->cm_id
);
3519 rdma
->errored
= true;
3520 qemu_rdma_cleanup(rdma
);
3521 g_free(rdma_return_path
);
3525 static int dest_ram_sort_func(const void *a
, const void *b
)
3527 unsigned int a_index
= ((const RDMALocalBlock
*)a
)->src_index
;
3528 unsigned int b_index
= ((const RDMALocalBlock
*)b
)->src_index
;
3530 return (a_index
< b_index
) ? -1 : (a_index
!= b_index
);
3534 * During each iteration of the migration, we listen for instructions
3535 * by the source VM to perform dynamic page registrations before they
3536 * can perform RDMA operations.
3538 * We respond with the 'rkey'.
3540 * Keep doing this until the source tells us to stop.
3542 static int qemu_rdma_registration_handle(QEMUFile
*f
)
3544 RDMAControlHeader reg_resp
= { .len
= sizeof(RDMARegisterResult
),
3545 .type
= RDMA_CONTROL_REGISTER_RESULT
,
3548 RDMAControlHeader unreg_resp
= { .len
= 0,
3549 .type
= RDMA_CONTROL_UNREGISTER_FINISHED
,
3552 RDMAControlHeader blocks
= { .type
= RDMA_CONTROL_RAM_BLOCKS_RESULT
,
3554 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(qemu_file_get_ioc(f
));
3556 RDMALocalBlocks
*local
;
3557 RDMAControlHeader head
;
3558 RDMARegister
*reg
, *registers
;
3560 RDMARegisterResult
*reg_result
;
3561 static RDMARegisterResult results
[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE
];
3562 RDMALocalBlock
*block
;
3569 RCU_READ_LOCK_GUARD();
3570 rdma
= qatomic_rcu_read(&rioc
->rdmain
);
3576 if (rdma_errored(rdma
)) {
3580 local
= &rdma
->local_ram_blocks
;
3582 trace_qemu_rdma_registration_handle_wait();
3584 ret
= qemu_rdma_exchange_recv(rdma
, &head
, RDMA_CONTROL_NONE
);
3590 if (head
.repeat
> RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE
) {
3591 error_report("rdma: Too many requests in this message (%d)."
3592 "Bailing.", head
.repeat
);
3596 switch (head
.type
) {
3597 case RDMA_CONTROL_COMPRESS
:
3598 comp
= (RDMACompress
*) rdma
->wr_data
[idx
].control_curr
;
3599 network_to_compress(comp
);
3601 trace_qemu_rdma_registration_handle_compress(comp
->length
,
3604 if (comp
->block_idx
>= rdma
->local_ram_blocks
.nb_blocks
) {
3605 error_report("rdma: 'compress' bad block index %u (vs %d)",
3606 (unsigned int)comp
->block_idx
,
3607 rdma
->local_ram_blocks
.nb_blocks
);
3610 block
= &(rdma
->local_ram_blocks
.block
[comp
->block_idx
]);
3612 host_addr
= block
->local_host_addr
+
3613 (comp
->offset
- block
->offset
);
3615 ram_handle_compressed(host_addr
, comp
->value
, comp
->length
);
3618 case RDMA_CONTROL_REGISTER_FINISHED
:
3619 trace_qemu_rdma_registration_handle_finished();
3622 case RDMA_CONTROL_RAM_BLOCKS_REQUEST
:
3623 trace_qemu_rdma_registration_handle_ram_blocks();
3625 /* Sort our local RAM Block list so it's the same as the source,
3626 * we can do this since we've filled in a src_index in the list
3627 * as we received the RAMBlock list earlier.
3629 qsort(rdma
->local_ram_blocks
.block
,
3630 rdma
->local_ram_blocks
.nb_blocks
,
3631 sizeof(RDMALocalBlock
), dest_ram_sort_func
);
3632 for (i
= 0; i
< local
->nb_blocks
; i
++) {
3633 local
->block
[i
].index
= i
;
3636 if (rdma
->pin_all
) {
3637 ret
= qemu_rdma_reg_whole_ram_blocks(rdma
);
3639 error_report("rdma migration: error dest "
3640 "registering ram blocks");
3646 * Dest uses this to prepare to transmit the RAMBlock descriptions
3647 * to the source VM after connection setup.
3648 * Both sides use the "remote" structure to communicate and update
3649 * their "local" descriptions with what was sent.
3651 for (i
= 0; i
< local
->nb_blocks
; i
++) {
3652 rdma
->dest_blocks
[i
].remote_host_addr
=
3653 (uintptr_t)(local
->block
[i
].local_host_addr
);
3655 if (rdma
->pin_all
) {
3656 rdma
->dest_blocks
[i
].remote_rkey
= local
->block
[i
].mr
->rkey
;
3659 rdma
->dest_blocks
[i
].offset
= local
->block
[i
].offset
;
3660 rdma
->dest_blocks
[i
].length
= local
->block
[i
].length
;
3662 dest_block_to_network(&rdma
->dest_blocks
[i
]);
3663 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3664 local
->block
[i
].block_name
,
3665 local
->block
[i
].offset
,
3666 local
->block
[i
].length
,
3667 local
->block
[i
].local_host_addr
,
3668 local
->block
[i
].src_index
);
3671 blocks
.len
= rdma
->local_ram_blocks
.nb_blocks
3672 * sizeof(RDMADestBlock
);
3675 ret
= qemu_rdma_post_send_control(rdma
,
3676 (uint8_t *) rdma
->dest_blocks
, &blocks
);
3679 error_report("rdma migration: error sending remote info");
3684 case RDMA_CONTROL_REGISTER_REQUEST
:
3685 trace_qemu_rdma_registration_handle_register(head
.repeat
);
3687 reg_resp
.repeat
= head
.repeat
;
3688 registers
= (RDMARegister
*) rdma
->wr_data
[idx
].control_curr
;
3690 for (count
= 0; count
< head
.repeat
; count
++) {
3692 uint8_t *chunk_start
, *chunk_end
;
3694 reg
= ®isters
[count
];
3695 network_to_register(reg
);
3697 reg_result
= &results
[count
];
3699 trace_qemu_rdma_registration_handle_register_loop(count
,
3700 reg
->current_index
, reg
->key
.current_addr
, reg
->chunks
);
3702 if (reg
->current_index
>= rdma
->local_ram_blocks
.nb_blocks
) {
3703 error_report("rdma: 'register' bad block index %u (vs %d)",
3704 (unsigned int)reg
->current_index
,
3705 rdma
->local_ram_blocks
.nb_blocks
);
3708 block
= &(rdma
->local_ram_blocks
.block
[reg
->current_index
]);
3709 if (block
->is_ram_block
) {
3710 if (block
->offset
> reg
->key
.current_addr
) {
3711 error_report("rdma: bad register address for block %s"
3712 " offset: %" PRIx64
" current_addr: %" PRIx64
,
3713 block
->block_name
, block
->offset
,
3714 reg
->key
.current_addr
);
3717 host_addr
= (block
->local_host_addr
+
3718 (reg
->key
.current_addr
- block
->offset
));
3719 chunk
= ram_chunk_index(block
->local_host_addr
,
3720 (uint8_t *) host_addr
);
3722 chunk
= reg
->key
.chunk
;
3723 host_addr
= block
->local_host_addr
+
3724 (reg
->key
.chunk
* (1UL << RDMA_REG_CHUNK_SHIFT
));
3725 /* Check for particularly bad chunk value */
3726 if (host_addr
< (void *)block
->local_host_addr
) {
3727 error_report("rdma: bad chunk for block %s"
3729 block
->block_name
, reg
->key
.chunk
);
3733 chunk_start
= ram_chunk_start(block
, chunk
);
3734 chunk_end
= ram_chunk_end(block
, chunk
+ reg
->chunks
);
3735 /* avoid "-Waddress-of-packed-member" warning */
3736 uint32_t tmp_rkey
= 0;
3737 if (qemu_rdma_register_and_get_keys(rdma
, block
,
3738 (uintptr_t)host_addr
, NULL
, &tmp_rkey
,
3739 chunk
, chunk_start
, chunk_end
)) {
3740 error_report("cannot get rkey");
3743 reg_result
->rkey
= tmp_rkey
;
3745 reg_result
->host_addr
= (uintptr_t)block
->local_host_addr
;
3747 trace_qemu_rdma_registration_handle_register_rkey(
3750 result_to_network(reg_result
);
3753 ret
= qemu_rdma_post_send_control(rdma
,
3754 (uint8_t *) results
, ®_resp
);
3757 error_report("Failed to send control buffer");
3761 case RDMA_CONTROL_UNREGISTER_REQUEST
:
3762 trace_qemu_rdma_registration_handle_unregister(head
.repeat
);
3763 unreg_resp
.repeat
= head
.repeat
;
3764 registers
= (RDMARegister
*) rdma
->wr_data
[idx
].control_curr
;
3766 for (count
= 0; count
< head
.repeat
; count
++) {
3767 reg
= ®isters
[count
];
3768 network_to_register(reg
);
3770 trace_qemu_rdma_registration_handle_unregister_loop(count
,
3771 reg
->current_index
, reg
->key
.chunk
);
3773 block
= &(rdma
->local_ram_blocks
.block
[reg
->current_index
]);
3775 ret
= ibv_dereg_mr(block
->pmr
[reg
->key
.chunk
]);
3776 block
->pmr
[reg
->key
.chunk
] = NULL
;
3779 perror("rdma unregistration chunk failed");
3783 rdma
->total_registrations
--;
3785 trace_qemu_rdma_registration_handle_unregister_success(
3789 ret
= qemu_rdma_post_send_control(rdma
, NULL
, &unreg_resp
);
3792 error_report("Failed to send control buffer");
3796 case RDMA_CONTROL_REGISTER_RESULT
:
3797 error_report("Invalid RESULT message at dest.");
3800 error_report("Unknown control message %s", control_desc(head
.type
));
3806 rdma
->errored
= true;
3811 * Called via a ram_control_load_hook during the initial RAM load section which
3812 * lists the RAMBlocks by name. This lets us know the order of the RAMBlocks
3814 * We've already built our local RAMBlock list, but not yet sent the list to
3818 rdma_block_notification_handle(QEMUFile
*f
, const char *name
)
3821 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(qemu_file_get_ioc(f
));
3825 RCU_READ_LOCK_GUARD();
3826 rdma
= qatomic_rcu_read(&rioc
->rdmain
);
3832 /* Find the matching RAMBlock in our local list */
3833 for (curr
= 0; curr
< rdma
->local_ram_blocks
.nb_blocks
; curr
++) {
3834 if (!strcmp(rdma
->local_ram_blocks
.block
[curr
].block_name
, name
)) {
3841 error_report("RAMBlock '%s' not found on destination", name
);
3845 rdma
->local_ram_blocks
.block
[curr
].src_index
= rdma
->next_src_index
;
3846 trace_rdma_block_notification_handle(name
, rdma
->next_src_index
);
3847 rdma
->next_src_index
++;
3852 static int rdma_load_hook(QEMUFile
*f
, uint64_t flags
, void *data
)
3855 case RAM_CONTROL_BLOCK_REG
:
3856 return rdma_block_notification_handle(f
, data
);
3858 case RAM_CONTROL_HOOK
:
3859 return qemu_rdma_registration_handle(f
);
3862 /* Shouldn't be called with any other values */
3867 static int qemu_rdma_registration_start(QEMUFile
*f
,
3868 uint64_t flags
, void *data
)
3870 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(qemu_file_get_ioc(f
));
3873 if (migration_in_postcopy()) {
3877 RCU_READ_LOCK_GUARD();
3878 rdma
= qatomic_rcu_read(&rioc
->rdmaout
);
3883 if (rdma_errored(rdma
)) {
3887 trace_qemu_rdma_registration_start(flags
);
3888 qemu_put_be64(f
, RAM_SAVE_FLAG_HOOK
);
3895 * Inform dest that dynamic registrations are done for now.
3896 * First, flush writes, if any.
3898 static int qemu_rdma_registration_stop(QEMUFile
*f
,
3899 uint64_t flags
, void *data
)
3901 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(qemu_file_get_ioc(f
));
3903 RDMAControlHeader head
= { .len
= 0, .repeat
= 1 };
3906 if (migration_in_postcopy()) {
3910 RCU_READ_LOCK_GUARD();
3911 rdma
= qatomic_rcu_read(&rioc
->rdmaout
);
3916 if (rdma_errored(rdma
)) {
3921 ret
= qemu_rdma_drain_cq(rdma
);
3927 if (flags
== RAM_CONTROL_SETUP
) {
3928 RDMAControlHeader resp
= {.type
= RDMA_CONTROL_RAM_BLOCKS_RESULT
};
3929 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
3930 int reg_result_idx
, i
, nb_dest_blocks
;
3932 head
.type
= RDMA_CONTROL_RAM_BLOCKS_REQUEST
;
3933 trace_qemu_rdma_registration_stop_ram();
3936 * Make sure that we parallelize the pinning on both sides.
3937 * For very large guests, doing this serially takes a really
3938 * long time, so we have to 'interleave' the pinning locally
3939 * with the control messages by performing the pinning on this
3940 * side before we receive the control response from the other
3941 * side that the pinning has completed.
3943 ret
= qemu_rdma_exchange_send(rdma
, &head
, NULL
, &resp
,
3944 ®_result_idx
, rdma
->pin_all
?
3945 qemu_rdma_reg_whole_ram_blocks
: NULL
);
3947 fprintf(stderr
, "receiving remote info!");
3951 nb_dest_blocks
= resp
.len
/ sizeof(RDMADestBlock
);
3954 * The protocol uses two different sets of rkeys (mutually exclusive):
3955 * 1. One key to represent the virtual address of the entire ram block.
3956 * (dynamic chunk registration disabled - pin everything with one rkey.)
3957 * 2. One to represent individual chunks within a ram block.
3958 * (dynamic chunk registration enabled - pin individual chunks.)
3960 * Once the capability is successfully negotiated, the destination transmits
3961 * the keys to use (or sends them later) including the virtual addresses
3962 * and then propagates the remote ram block descriptions to his local copy.
3965 if (local
->nb_blocks
!= nb_dest_blocks
) {
3966 fprintf(stderr
, "ram blocks mismatch (Number of blocks %d vs %d) "
3967 "Your QEMU command line parameters are probably "
3968 "not identical on both the source and destination.",
3969 local
->nb_blocks
, nb_dest_blocks
);
3970 rdma
->errored
= true;
3974 qemu_rdma_move_header(rdma
, reg_result_idx
, &resp
);
3975 memcpy(rdma
->dest_blocks
,
3976 rdma
->wr_data
[reg_result_idx
].control_curr
, resp
.len
);
3977 for (i
= 0; i
< nb_dest_blocks
; i
++) {
3978 network_to_dest_block(&rdma
->dest_blocks
[i
]);
3980 /* We require that the blocks are in the same order */
3981 if (rdma
->dest_blocks
[i
].length
!= local
->block
[i
].length
) {
3982 fprintf(stderr
, "Block %s/%d has a different length %" PRIu64
3983 "vs %" PRIu64
, local
->block
[i
].block_name
, i
,
3984 local
->block
[i
].length
,
3985 rdma
->dest_blocks
[i
].length
);
3986 rdma
->errored
= true;
3989 local
->block
[i
].remote_host_addr
=
3990 rdma
->dest_blocks
[i
].remote_host_addr
;
3991 local
->block
[i
].remote_rkey
= rdma
->dest_blocks
[i
].remote_rkey
;
3995 trace_qemu_rdma_registration_stop(flags
);
3997 head
.type
= RDMA_CONTROL_REGISTER_FINISHED
;
3998 ret
= qemu_rdma_exchange_send(rdma
, &head
, NULL
, NULL
, NULL
, NULL
);
4006 rdma
->errored
= true;
4010 static const QEMUFileHooks rdma_read_hooks
= {
4011 .hook_ram_load
= rdma_load_hook
,
4014 static const QEMUFileHooks rdma_write_hooks
= {
4015 .before_ram_iterate
= qemu_rdma_registration_start
,
4016 .after_ram_iterate
= qemu_rdma_registration_stop
,
4017 .save_page
= qemu_rdma_save_page
,
4021 static void qio_channel_rdma_finalize(Object
*obj
)
4023 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(obj
);
4025 qemu_rdma_cleanup(rioc
->rdmain
);
4026 g_free(rioc
->rdmain
);
4027 rioc
->rdmain
= NULL
;
4029 if (rioc
->rdmaout
) {
4030 qemu_rdma_cleanup(rioc
->rdmaout
);
4031 g_free(rioc
->rdmaout
);
4032 rioc
->rdmaout
= NULL
;
4036 static void qio_channel_rdma_class_init(ObjectClass
*klass
,
4037 void *class_data G_GNUC_UNUSED
)
4039 QIOChannelClass
*ioc_klass
= QIO_CHANNEL_CLASS(klass
);
4041 ioc_klass
->io_writev
= qio_channel_rdma_writev
;
4042 ioc_klass
->io_readv
= qio_channel_rdma_readv
;
4043 ioc_klass
->io_set_blocking
= qio_channel_rdma_set_blocking
;
4044 ioc_klass
->io_close
= qio_channel_rdma_close
;
4045 ioc_klass
->io_create_watch
= qio_channel_rdma_create_watch
;
4046 ioc_klass
->io_set_aio_fd_handler
= qio_channel_rdma_set_aio_fd_handler
;
4047 ioc_klass
->io_shutdown
= qio_channel_rdma_shutdown
;
4050 static const TypeInfo qio_channel_rdma_info
= {
4051 .parent
= TYPE_QIO_CHANNEL
,
4052 .name
= TYPE_QIO_CHANNEL_RDMA
,
4053 .instance_size
= sizeof(QIOChannelRDMA
),
4054 .instance_finalize
= qio_channel_rdma_finalize
,
4055 .class_init
= qio_channel_rdma_class_init
,
4058 static void qio_channel_rdma_register_types(void)
4060 type_register_static(&qio_channel_rdma_info
);
4063 type_init(qio_channel_rdma_register_types
);
4065 static QEMUFile
*rdma_new_input(RDMAContext
*rdma
)
4067 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA
));
4069 rioc
->file
= qemu_file_new_input(QIO_CHANNEL(rioc
));
4070 rioc
->rdmain
= rdma
;
4071 rioc
->rdmaout
= rdma
->return_path
;
4072 qemu_file_set_hooks(rioc
->file
, &rdma_read_hooks
);
4077 static QEMUFile
*rdma_new_output(RDMAContext
*rdma
)
4079 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA
));
4081 rioc
->file
= qemu_file_new_output(QIO_CHANNEL(rioc
));
4082 rioc
->rdmaout
= rdma
;
4083 rioc
->rdmain
= rdma
->return_path
;
4084 qemu_file_set_hooks(rioc
->file
, &rdma_write_hooks
);
4089 static void rdma_accept_incoming_migration(void *opaque
)
4091 RDMAContext
*rdma
= opaque
;
4094 Error
*local_err
= NULL
;
4096 trace_qemu_rdma_accept_incoming_migration();
4097 ret
= qemu_rdma_accept(rdma
);
4100 fprintf(stderr
, "RDMA ERROR: Migration initialization failed\n");
4104 trace_qemu_rdma_accept_incoming_migration_accepted();
4106 if (rdma
->is_return_path
) {
4110 f
= rdma_new_input(rdma
);
4112 fprintf(stderr
, "RDMA ERROR: could not open RDMA for input\n");
4113 qemu_rdma_cleanup(rdma
);
4117 rdma
->migration_started_on_destination
= 1;
4118 migration_fd_process_incoming(f
, &local_err
);
4120 error_reportf_err(local_err
, "RDMA ERROR:");
4124 void rdma_start_incoming_migration(const char *host_port
, Error
**errp
)
4129 trace_rdma_start_incoming_migration();
4131 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4132 if (ram_block_discard_is_required()) {
4133 error_setg(errp
, "RDMA: cannot disable RAM discard");
4137 rdma
= qemu_rdma_data_init(host_port
, errp
);
4142 ret
= qemu_rdma_dest_init(rdma
, errp
);
4147 trace_rdma_start_incoming_migration_after_dest_init();
4149 ret
= rdma_listen(rdma
->listen_id
, 5);
4152 ERROR(errp
, "listening on socket!");
4156 trace_rdma_start_incoming_migration_after_rdma_listen();
4158 qemu_set_fd_handler(rdma
->channel
->fd
, rdma_accept_incoming_migration
,
4159 NULL
, (void *)(intptr_t)rdma
);
4163 qemu_rdma_cleanup(rdma
);
4167 g_free(rdma
->host_port
);
4172 void rdma_start_outgoing_migration(void *opaque
,
4173 const char *host_port
, Error
**errp
)
4175 MigrationState
*s
= opaque
;
4176 RDMAContext
*rdma_return_path
= NULL
;
4180 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4181 if (ram_block_discard_is_required()) {
4182 error_setg(errp
, "RDMA: cannot disable RAM discard");
4186 rdma
= qemu_rdma_data_init(host_port
, errp
);
4191 ret
= qemu_rdma_source_init(rdma
, migrate_rdma_pin_all(), errp
);
4197 trace_rdma_start_outgoing_migration_after_rdma_source_init();
4198 ret
= qemu_rdma_connect(rdma
, false, errp
);
4204 /* RDMA postcopy need a separate queue pair for return path */
4205 if (migrate_postcopy() || migrate_return_path()) {
4206 rdma_return_path
= qemu_rdma_data_init(host_port
, errp
);
4208 if (rdma_return_path
== NULL
) {
4209 goto return_path_err
;
4212 ret
= qemu_rdma_source_init(rdma_return_path
,
4213 migrate_rdma_pin_all(), errp
);
4216 goto return_path_err
;
4219 ret
= qemu_rdma_connect(rdma_return_path
, true, errp
);
4222 goto return_path_err
;
4225 rdma
->return_path
= rdma_return_path
;
4226 rdma_return_path
->return_path
= rdma
;
4227 rdma_return_path
->is_return_path
= true;
4230 trace_rdma_start_outgoing_migration_after_rdma_connect();
4232 s
->to_dst_file
= rdma_new_output(rdma
);
4233 migrate_fd_connect(s
, NULL
);
4236 qemu_rdma_cleanup(rdma
);
4239 g_free(rdma_return_path
);