target/arm: Define CNTPCTSS_EL0 and CNTVCTSS_EL0
[qemu/armbru.git] / target / arm / helper.c
blob68b5d6a4cb06c6105867bfef275116833da8daee
1 /*
2 * ARM generic helpers.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "trace.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "cpu-features.h"
15 #include "exec/helper-proto.h"
16 #include "qemu/main-loop.h"
17 #include "qemu/timer.h"
18 #include "qemu/bitops.h"
19 #include "qemu/crc32c.h"
20 #include "qemu/qemu-print.h"
21 #include "exec/exec-all.h"
22 #include <zlib.h> /* For crc32 */
23 #include "hw/irq.h"
24 #include "sysemu/cpu-timers.h"
25 #include "sysemu/kvm.h"
26 #include "sysemu/tcg.h"
27 #include "qapi/error.h"
28 #include "qemu/guest-random.h"
29 #ifdef CONFIG_TCG
30 #include "semihosting/common-semi.h"
31 #endif
32 #include "cpregs.h"
33 #include "target/arm/gtimer.h"
35 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
37 static void switch_mode(CPUARMState *env, int mode);
39 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
41 assert(ri->fieldoffset);
42 if (cpreg_field_is_64bit(ri)) {
43 return CPREG_FIELD64(env, ri);
44 } else {
45 return CPREG_FIELD32(env, ri);
49 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
51 assert(ri->fieldoffset);
52 if (cpreg_field_is_64bit(ri)) {
53 CPREG_FIELD64(env, ri) = value;
54 } else {
55 CPREG_FIELD32(env, ri) = value;
59 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
61 return (char *)env + ri->fieldoffset;
64 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
66 /* Raw read of a coprocessor register (as needed for migration, etc). */
67 if (ri->type & ARM_CP_CONST) {
68 return ri->resetvalue;
69 } else if (ri->raw_readfn) {
70 return ri->raw_readfn(env, ri);
71 } else if (ri->readfn) {
72 return ri->readfn(env, ri);
73 } else {
74 return raw_read(env, ri);
78 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
79 uint64_t v)
82 * Raw write of a coprocessor register (as needed for migration, etc).
83 * Note that constant registers are treated as write-ignored; the
84 * caller should check for success by whether a readback gives the
85 * value written.
87 if (ri->type & ARM_CP_CONST) {
88 return;
89 } else if (ri->raw_writefn) {
90 ri->raw_writefn(env, ri, v);
91 } else if (ri->writefn) {
92 ri->writefn(env, ri, v);
93 } else {
94 raw_write(env, ri, v);
98 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
101 * Return true if the regdef would cause an assertion if you called
102 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
103 * program bug for it not to have the NO_RAW flag).
104 * NB that returning false here doesn't necessarily mean that calling
105 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
106 * read/write access functions which are safe for raw use" from "has
107 * read/write access functions which have side effects but has forgotten
108 * to provide raw access functions".
109 * The tests here line up with the conditions in read/write_raw_cp_reg()
110 * and assertions in raw_read()/raw_write().
112 if ((ri->type & ARM_CP_CONST) ||
113 ri->fieldoffset ||
114 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
115 return false;
117 return true;
120 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
122 /* Write the coprocessor state from cpu->env to the (index,value) list. */
123 int i;
124 bool ok = true;
126 for (i = 0; i < cpu->cpreg_array_len; i++) {
127 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
128 const ARMCPRegInfo *ri;
129 uint64_t newval;
131 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
132 if (!ri) {
133 ok = false;
134 continue;
136 if (ri->type & ARM_CP_NO_RAW) {
137 continue;
140 newval = read_raw_cp_reg(&cpu->env, ri);
141 if (kvm_sync) {
143 * Only sync if the previous list->cpustate sync succeeded.
144 * Rather than tracking the success/failure state for every
145 * item in the list, we just recheck "does the raw write we must
146 * have made in write_list_to_cpustate() read back OK" here.
148 uint64_t oldval = cpu->cpreg_values[i];
150 if (oldval == newval) {
151 continue;
154 write_raw_cp_reg(&cpu->env, ri, oldval);
155 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
156 continue;
159 write_raw_cp_reg(&cpu->env, ri, newval);
161 cpu->cpreg_values[i] = newval;
163 return ok;
166 bool write_list_to_cpustate(ARMCPU *cpu)
168 int i;
169 bool ok = true;
171 for (i = 0; i < cpu->cpreg_array_len; i++) {
172 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
173 uint64_t v = cpu->cpreg_values[i];
174 const ARMCPRegInfo *ri;
176 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
177 if (!ri) {
178 ok = false;
179 continue;
181 if (ri->type & ARM_CP_NO_RAW) {
182 continue;
185 * Write value and confirm it reads back as written
186 * (to catch read-only registers and partially read-only
187 * registers where the incoming migration value doesn't match)
189 write_raw_cp_reg(&cpu->env, ri, v);
190 if (read_raw_cp_reg(&cpu->env, ri) != v) {
191 ok = false;
194 return ok;
197 static void add_cpreg_to_list(gpointer key, gpointer opaque)
199 ARMCPU *cpu = opaque;
200 uint32_t regidx = (uintptr_t)key;
201 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
203 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
204 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
205 /* The value array need not be initialized at this point */
206 cpu->cpreg_array_len++;
210 static void count_cpreg(gpointer key, gpointer opaque)
212 ARMCPU *cpu = opaque;
213 const ARMCPRegInfo *ri;
215 ri = g_hash_table_lookup(cpu->cp_regs, key);
217 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
218 cpu->cpreg_array_len++;
222 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
224 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
225 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
227 if (aidx > bidx) {
228 return 1;
230 if (aidx < bidx) {
231 return -1;
233 return 0;
236 void init_cpreg_list(ARMCPU *cpu)
239 * Initialise the cpreg_tuples[] array based on the cp_regs hash.
240 * Note that we require cpreg_tuples[] to be sorted by key ID.
242 GList *keys;
243 int arraylen;
245 keys = g_hash_table_get_keys(cpu->cp_regs);
246 keys = g_list_sort(keys, cpreg_key_compare);
248 cpu->cpreg_array_len = 0;
250 g_list_foreach(keys, count_cpreg, cpu);
252 arraylen = cpu->cpreg_array_len;
253 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
254 cpu->cpreg_values = g_new(uint64_t, arraylen);
255 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
256 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
257 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
258 cpu->cpreg_array_len = 0;
260 g_list_foreach(keys, add_cpreg_to_list, cpu);
262 assert(cpu->cpreg_array_len == arraylen);
264 g_list_free(keys);
267 static bool arm_pan_enabled(CPUARMState *env)
269 if (is_a64(env)) {
270 if ((arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1)) {
271 return false;
273 return env->pstate & PSTATE_PAN;
274 } else {
275 return env->uncached_cpsr & CPSR_PAN;
280 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
282 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
283 const ARMCPRegInfo *ri,
284 bool isread)
286 if (!is_a64(env) && arm_current_el(env) == 3 &&
287 arm_is_secure_below_el3(env)) {
288 return CP_ACCESS_TRAP_UNCATEGORIZED;
290 return CP_ACCESS_OK;
294 * Some secure-only AArch32 registers trap to EL3 if used from
295 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
296 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
297 * We assume that the .access field is set to PL1_RW.
299 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
300 const ARMCPRegInfo *ri,
301 bool isread)
303 if (arm_current_el(env) == 3) {
304 return CP_ACCESS_OK;
306 if (arm_is_secure_below_el3(env)) {
307 if (env->cp15.scr_el3 & SCR_EEL2) {
308 return CP_ACCESS_TRAP_EL2;
310 return CP_ACCESS_TRAP_EL3;
312 /* This will be EL1 NS and EL2 NS, which just UNDEF */
313 return CP_ACCESS_TRAP_UNCATEGORIZED;
317 * Check for traps to performance monitor registers, which are controlled
318 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
320 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
321 bool isread)
323 int el = arm_current_el(env);
324 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
326 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
327 return CP_ACCESS_TRAP_EL2;
329 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
330 return CP_ACCESS_TRAP_EL3;
332 return CP_ACCESS_OK;
335 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
336 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
337 bool isread)
339 if (arm_current_el(env) == 1) {
340 uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
341 if (arm_hcr_el2_eff(env) & trap) {
342 return CP_ACCESS_TRAP_EL2;
345 return CP_ACCESS_OK;
348 /* Check for traps from EL1 due to HCR_EL2.TSW. */
349 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
350 bool isread)
352 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
353 return CP_ACCESS_TRAP_EL2;
355 return CP_ACCESS_OK;
358 /* Check for traps from EL1 due to HCR_EL2.TACR. */
359 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
360 bool isread)
362 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
363 return CP_ACCESS_TRAP_EL2;
365 return CP_ACCESS_OK;
368 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
369 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
370 bool isread)
372 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
373 return CP_ACCESS_TRAP_EL2;
375 return CP_ACCESS_OK;
378 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
379 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
380 bool isread)
382 if (arm_current_el(env) == 1 &&
383 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
384 return CP_ACCESS_TRAP_EL2;
386 return CP_ACCESS_OK;
389 #ifdef TARGET_AARCH64
390 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
391 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
392 bool isread)
394 if (arm_current_el(env) == 1 &&
395 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
396 return CP_ACCESS_TRAP_EL2;
398 return CP_ACCESS_OK;
400 #endif
402 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
404 ARMCPU *cpu = env_archcpu(env);
406 raw_write(env, ri, value);
407 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
410 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
412 ARMCPU *cpu = env_archcpu(env);
414 if (raw_read(env, ri) != value) {
416 * Unlike real hardware the qemu TLB uses virtual addresses,
417 * not modified virtual addresses, so this causes a TLB flush.
419 tlb_flush(CPU(cpu));
420 raw_write(env, ri, value);
424 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
425 uint64_t value)
427 ARMCPU *cpu = env_archcpu(env);
429 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
430 && !extended_addresses_enabled(env)) {
432 * For VMSA (when not using the LPAE long descriptor page table
433 * format) this register includes the ASID, so do a TLB flush.
434 * For PMSA it is purely a process ID and no action is needed.
436 tlb_flush(CPU(cpu));
438 raw_write(env, ri, value);
441 static int alle1_tlbmask(CPUARMState *env)
444 * Note that the 'ALL' scope must invalidate both stage 1 and
445 * stage 2 translations, whereas most other scopes only invalidate
446 * stage 1 translations.
448 return (ARMMMUIdxBit_E10_1 |
449 ARMMMUIdxBit_E10_1_PAN |
450 ARMMMUIdxBit_E10_0 |
451 ARMMMUIdxBit_Stage2 |
452 ARMMMUIdxBit_Stage2_S);
456 /* IS variants of TLB operations must affect all cores */
457 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
458 uint64_t value)
460 CPUState *cs = env_cpu(env);
462 tlb_flush_all_cpus_synced(cs);
465 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
466 uint64_t value)
468 CPUState *cs = env_cpu(env);
470 tlb_flush_all_cpus_synced(cs);
473 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
474 uint64_t value)
476 CPUState *cs = env_cpu(env);
478 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
481 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
482 uint64_t value)
484 CPUState *cs = env_cpu(env);
486 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
490 * Non-IS variants of TLB operations are upgraded to
491 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
492 * force broadcast of these operations.
494 static bool tlb_force_broadcast(CPUARMState *env)
496 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
499 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
500 uint64_t value)
502 /* Invalidate all (TLBIALL) */
503 CPUState *cs = env_cpu(env);
505 if (tlb_force_broadcast(env)) {
506 tlb_flush_all_cpus_synced(cs);
507 } else {
508 tlb_flush(cs);
512 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
513 uint64_t value)
515 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
516 CPUState *cs = env_cpu(env);
518 value &= TARGET_PAGE_MASK;
519 if (tlb_force_broadcast(env)) {
520 tlb_flush_page_all_cpus_synced(cs, value);
521 } else {
522 tlb_flush_page(cs, value);
526 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
527 uint64_t value)
529 /* Invalidate by ASID (TLBIASID) */
530 CPUState *cs = env_cpu(env);
532 if (tlb_force_broadcast(env)) {
533 tlb_flush_all_cpus_synced(cs);
534 } else {
535 tlb_flush(cs);
539 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
540 uint64_t value)
542 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
543 CPUState *cs = env_cpu(env);
545 value &= TARGET_PAGE_MASK;
546 if (tlb_force_broadcast(env)) {
547 tlb_flush_page_all_cpus_synced(cs, value);
548 } else {
549 tlb_flush_page(cs, value);
553 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
554 uint64_t value)
556 CPUState *cs = env_cpu(env);
558 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
561 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
562 uint64_t value)
564 CPUState *cs = env_cpu(env);
566 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
570 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
571 uint64_t value)
573 CPUState *cs = env_cpu(env);
575 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
578 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
579 uint64_t value)
581 CPUState *cs = env_cpu(env);
583 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
586 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
587 uint64_t value)
589 CPUState *cs = env_cpu(env);
590 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
592 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
595 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
596 uint64_t value)
598 CPUState *cs = env_cpu(env);
599 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
601 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
602 ARMMMUIdxBit_E2);
605 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
606 uint64_t value)
608 CPUState *cs = env_cpu(env);
609 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
611 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
614 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
615 uint64_t value)
617 CPUState *cs = env_cpu(env);
618 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
620 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
623 static const ARMCPRegInfo cp_reginfo[] = {
625 * Define the secure and non-secure FCSE identifier CP registers
626 * separately because there is no secure bank in V8 (no _EL3). This allows
627 * the secure register to be properly reset and migrated. There is also no
628 * v8 EL1 version of the register so the non-secure instance stands alone.
630 { .name = "FCSEIDR",
631 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
632 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
633 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
634 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
635 { .name = "FCSEIDR_S",
636 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
637 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
638 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
639 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
641 * Define the secure and non-secure context identifier CP registers
642 * separately because there is no secure bank in V8 (no _EL3). This allows
643 * the secure register to be properly reset and migrated. In the
644 * non-secure case, the 32-bit register will have reset and migration
645 * disabled during registration as it is handled by the 64-bit instance.
647 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
648 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
649 .access = PL1_RW, .accessfn = access_tvm_trvm,
650 .fgt = FGT_CONTEXTIDR_EL1,
651 .nv2_redirect_offset = 0x108 | NV2_REDIR_NV1,
652 .secure = ARM_CP_SECSTATE_NS,
653 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
654 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
655 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
656 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
657 .access = PL1_RW, .accessfn = access_tvm_trvm,
658 .secure = ARM_CP_SECSTATE_S,
659 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
660 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
663 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
665 * NB: Some of these registers exist in v8 but with more precise
666 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
668 /* MMU Domain access control / MPU write buffer control */
669 { .name = "DACR",
670 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
671 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
672 .writefn = dacr_write, .raw_writefn = raw_write,
673 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
674 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
676 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
677 * For v6 and v5, these mappings are overly broad.
679 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
680 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
681 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
682 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
683 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
684 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
685 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
686 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
687 /* Cache maintenance ops; some of this space may be overridden later. */
688 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
689 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
690 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
693 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
695 * Not all pre-v6 cores implemented this WFI, so this is slightly
696 * over-broad.
698 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
699 .access = PL1_W, .type = ARM_CP_WFI },
702 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
704 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
705 * is UNPREDICTABLE; we choose to NOP as most implementations do).
707 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
708 .access = PL1_W, .type = ARM_CP_WFI },
710 * L1 cache lockdown. Not architectural in v6 and earlier but in practice
711 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
712 * OMAPCP will override this space.
714 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
715 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
716 .resetvalue = 0 },
717 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
718 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
719 .resetvalue = 0 },
720 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
721 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
722 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
723 .resetvalue = 0 },
725 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
726 * implementing it as RAZ means the "debug architecture version" bits
727 * will read as a reserved value, which should cause Linux to not try
728 * to use the debug hardware.
730 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
731 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
733 * MMU TLB control. Note that the wildcarding means we cover not just
734 * the unified TLB ops but also the dside/iside/inner-shareable variants.
736 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
737 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
738 .type = ARM_CP_NO_RAW },
739 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
740 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
741 .type = ARM_CP_NO_RAW },
742 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
743 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
744 .type = ARM_CP_NO_RAW },
745 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
746 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
747 .type = ARM_CP_NO_RAW },
748 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
749 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
750 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
751 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
754 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
755 uint64_t value)
757 uint32_t mask = 0;
759 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
760 if (!arm_feature(env, ARM_FEATURE_V8)) {
762 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
763 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
764 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
766 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
767 /* VFP coprocessor: cp10 & cp11 [23:20] */
768 mask |= R_CPACR_ASEDIS_MASK |
769 R_CPACR_D32DIS_MASK |
770 R_CPACR_CP11_MASK |
771 R_CPACR_CP10_MASK;
773 if (!arm_feature(env, ARM_FEATURE_NEON)) {
774 /* ASEDIS [31] bit is RAO/WI */
775 value |= R_CPACR_ASEDIS_MASK;
779 * VFPv3 and upwards with NEON implement 32 double precision
780 * registers (D0-D31).
782 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
783 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
784 value |= R_CPACR_D32DIS_MASK;
787 value &= mask;
791 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
792 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
794 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
795 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
796 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
797 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
800 env->cp15.cpacr_el1 = value;
803 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
806 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
807 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
809 uint64_t value = env->cp15.cpacr_el1;
811 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
812 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
813 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
815 return value;
819 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
822 * Call cpacr_write() so that we reset with the correct RAO bits set
823 * for our CPU features.
825 cpacr_write(env, ri, 0);
828 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
829 bool isread)
831 if (arm_feature(env, ARM_FEATURE_V8)) {
832 /* Check if CPACR accesses are to be trapped to EL2 */
833 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
834 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
835 return CP_ACCESS_TRAP_EL2;
836 /* Check if CPACR accesses are to be trapped to EL3 */
837 } else if (arm_current_el(env) < 3 &&
838 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
839 return CP_ACCESS_TRAP_EL3;
843 return CP_ACCESS_OK;
846 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
847 bool isread)
849 /* Check if CPTR accesses are set to trap to EL3 */
850 if (arm_current_el(env) == 2 &&
851 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
852 return CP_ACCESS_TRAP_EL3;
855 return CP_ACCESS_OK;
858 static const ARMCPRegInfo v6_cp_reginfo[] = {
859 /* prefetch by MVA in v6, NOP in v7 */
860 { .name = "MVA_prefetch",
861 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
862 .access = PL1_W, .type = ARM_CP_NOP },
864 * We need to break the TB after ISB to execute self-modifying code
865 * correctly and also to take any pending interrupts immediately.
866 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
868 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
869 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
870 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
871 .access = PL0_W, .type = ARM_CP_NOP },
872 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
873 .access = PL0_W, .type = ARM_CP_NOP },
874 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
875 .access = PL1_RW, .accessfn = access_tvm_trvm,
876 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
877 offsetof(CPUARMState, cp15.ifar_ns) },
878 .resetvalue = 0, },
880 * Watchpoint Fault Address Register : should actually only be present
881 * for 1136, 1176, 11MPCore.
883 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
884 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
885 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
886 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
887 .fgt = FGT_CPACR_EL1,
888 .nv2_redirect_offset = 0x100 | NV2_REDIR_NV1,
889 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
890 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
893 typedef struct pm_event {
894 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
895 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
896 bool (*supported)(CPUARMState *);
898 * Retrieve the current count of the underlying event. The programmed
899 * counters hold a difference from the return value from this function
901 uint64_t (*get_count)(CPUARMState *);
903 * Return how many nanoseconds it will take (at a minimum) for count events
904 * to occur. A negative value indicates the counter will never overflow, or
905 * that the counter has otherwise arranged for the overflow bit to be set
906 * and the PMU interrupt to be raised on overflow.
908 int64_t (*ns_per_count)(uint64_t);
909 } pm_event;
911 static bool event_always_supported(CPUARMState *env)
913 return true;
916 static uint64_t swinc_get_count(CPUARMState *env)
919 * SW_INCR events are written directly to the pmevcntr's by writes to
920 * PMSWINC, so there is no underlying count maintained by the PMU itself
922 return 0;
925 static int64_t swinc_ns_per(uint64_t ignored)
927 return -1;
931 * Return the underlying cycle count for the PMU cycle counters. If we're in
932 * usermode, simply return 0.
934 static uint64_t cycles_get_count(CPUARMState *env)
936 #ifndef CONFIG_USER_ONLY
937 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
938 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
939 #else
940 return cpu_get_host_ticks();
941 #endif
944 #ifndef CONFIG_USER_ONLY
945 static int64_t cycles_ns_per(uint64_t cycles)
947 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
950 static bool instructions_supported(CPUARMState *env)
952 /* Precise instruction counting */
953 return icount_enabled() == ICOUNT_PRECISE;
956 static uint64_t instructions_get_count(CPUARMState *env)
958 assert(icount_enabled() == ICOUNT_PRECISE);
959 return (uint64_t)icount_get_raw();
962 static int64_t instructions_ns_per(uint64_t icount)
964 assert(icount_enabled() == ICOUNT_PRECISE);
965 return icount_to_ns((int64_t)icount);
967 #endif
969 static bool pmuv3p1_events_supported(CPUARMState *env)
971 /* For events which are supported in any v8.1 PMU */
972 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
975 static bool pmuv3p4_events_supported(CPUARMState *env)
977 /* For events which are supported in any v8.1 PMU */
978 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
981 static uint64_t zero_event_get_count(CPUARMState *env)
983 /* For events which on QEMU never fire, so their count is always zero */
984 return 0;
987 static int64_t zero_event_ns_per(uint64_t cycles)
989 /* An event which never fires can never overflow */
990 return -1;
993 static const pm_event pm_events[] = {
994 { .number = 0x000, /* SW_INCR */
995 .supported = event_always_supported,
996 .get_count = swinc_get_count,
997 .ns_per_count = swinc_ns_per,
999 #ifndef CONFIG_USER_ONLY
1000 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1001 .supported = instructions_supported,
1002 .get_count = instructions_get_count,
1003 .ns_per_count = instructions_ns_per,
1005 { .number = 0x011, /* CPU_CYCLES, Cycle */
1006 .supported = event_always_supported,
1007 .get_count = cycles_get_count,
1008 .ns_per_count = cycles_ns_per,
1010 #endif
1011 { .number = 0x023, /* STALL_FRONTEND */
1012 .supported = pmuv3p1_events_supported,
1013 .get_count = zero_event_get_count,
1014 .ns_per_count = zero_event_ns_per,
1016 { .number = 0x024, /* STALL_BACKEND */
1017 .supported = pmuv3p1_events_supported,
1018 .get_count = zero_event_get_count,
1019 .ns_per_count = zero_event_ns_per,
1021 { .number = 0x03c, /* STALL */
1022 .supported = pmuv3p4_events_supported,
1023 .get_count = zero_event_get_count,
1024 .ns_per_count = zero_event_ns_per,
1029 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1030 * events (i.e. the statistical profiling extension), this implementation
1031 * should first be updated to something sparse instead of the current
1032 * supported_event_map[] array.
1034 #define MAX_EVENT_ID 0x3c
1035 #define UNSUPPORTED_EVENT UINT16_MAX
1036 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1039 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1040 * of ARM event numbers to indices in our pm_events array.
1042 * Note: Events in the 0x40XX range are not currently supported.
1044 void pmu_init(ARMCPU *cpu)
1046 unsigned int i;
1049 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1050 * events to them
1052 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1053 supported_event_map[i] = UNSUPPORTED_EVENT;
1055 cpu->pmceid0 = 0;
1056 cpu->pmceid1 = 0;
1058 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1059 const pm_event *cnt = &pm_events[i];
1060 assert(cnt->number <= MAX_EVENT_ID);
1061 /* We do not currently support events in the 0x40xx range */
1062 assert(cnt->number <= 0x3f);
1064 if (cnt->supported(&cpu->env)) {
1065 supported_event_map[cnt->number] = i;
1066 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1067 if (cnt->number & 0x20) {
1068 cpu->pmceid1 |= event_mask;
1069 } else {
1070 cpu->pmceid0 |= event_mask;
1077 * Check at runtime whether a PMU event is supported for the current machine
1079 static bool event_supported(uint16_t number)
1081 if (number > MAX_EVENT_ID) {
1082 return false;
1084 return supported_event_map[number] != UNSUPPORTED_EVENT;
1087 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1088 bool isread)
1091 * Performance monitor registers user accessibility is controlled
1092 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1093 * trapping to EL2 or EL3 for other accesses.
1095 int el = arm_current_el(env);
1096 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1098 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1099 return CP_ACCESS_TRAP;
1101 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1102 return CP_ACCESS_TRAP_EL2;
1104 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1105 return CP_ACCESS_TRAP_EL3;
1108 return CP_ACCESS_OK;
1111 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1112 const ARMCPRegInfo *ri,
1113 bool isread)
1115 /* ER: event counter read trap control */
1116 if (arm_feature(env, ARM_FEATURE_V8)
1117 && arm_current_el(env) == 0
1118 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1119 && isread) {
1120 return CP_ACCESS_OK;
1123 return pmreg_access(env, ri, isread);
1126 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1127 const ARMCPRegInfo *ri,
1128 bool isread)
1130 /* SW: software increment write trap control */
1131 if (arm_feature(env, ARM_FEATURE_V8)
1132 && arm_current_el(env) == 0
1133 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1134 && !isread) {
1135 return CP_ACCESS_OK;
1138 return pmreg_access(env, ri, isread);
1141 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1142 const ARMCPRegInfo *ri,
1143 bool isread)
1145 /* ER: event counter read trap control */
1146 if (arm_feature(env, ARM_FEATURE_V8)
1147 && arm_current_el(env) == 0
1148 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1149 return CP_ACCESS_OK;
1152 return pmreg_access(env, ri, isread);
1155 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1156 const ARMCPRegInfo *ri,
1157 bool isread)
1159 /* CR: cycle counter read trap control */
1160 if (arm_feature(env, ARM_FEATURE_V8)
1161 && arm_current_el(env) == 0
1162 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1163 && isread) {
1164 return CP_ACCESS_OK;
1167 return pmreg_access(env, ri, isread);
1171 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1172 * We use these to decide whether we need to wrap a write to MDCR_EL2
1173 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1175 #define MDCR_EL2_PMU_ENABLE_BITS \
1176 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
1177 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
1180 * Returns true if the counter (pass 31 for PMCCNTR) should count events using
1181 * the current EL, security state, and register configuration.
1183 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1185 uint64_t filter;
1186 bool e, p, u, nsk, nsu, nsh, m;
1187 bool enabled, prohibited = false, filtered;
1188 bool secure = arm_is_secure(env);
1189 int el = arm_current_el(env);
1190 uint64_t mdcr_el2;
1191 uint8_t hpmn;
1194 * We might be called for M-profile cores where MDCR_EL2 doesn't
1195 * exist and arm_mdcr_el2_eff() will assert, so this early-exit check
1196 * must be before we read that value.
1198 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1199 return false;
1202 mdcr_el2 = arm_mdcr_el2_eff(env);
1203 hpmn = mdcr_el2 & MDCR_HPMN;
1205 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1206 (counter < hpmn || counter == 31)) {
1207 e = env->cp15.c9_pmcr & PMCRE;
1208 } else {
1209 e = mdcr_el2 & MDCR_HPME;
1211 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1213 /* Is event counting prohibited? */
1214 if (el == 2 && (counter < hpmn || counter == 31)) {
1215 prohibited = mdcr_el2 & MDCR_HPMD;
1217 if (secure) {
1218 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
1221 if (counter == 31) {
1223 * The cycle counter defaults to running. PMCR.DP says "disable
1224 * the cycle counter when event counting is prohibited".
1225 * Some MDCR bits disable the cycle counter specifically.
1227 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1228 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1229 if (secure) {
1230 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1232 if (el == 2) {
1233 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1238 if (counter == 31) {
1239 filter = env->cp15.pmccfiltr_el0;
1240 } else {
1241 filter = env->cp15.c14_pmevtyper[counter];
1244 p = filter & PMXEVTYPER_P;
1245 u = filter & PMXEVTYPER_U;
1246 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1247 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1248 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1249 m = arm_el_is_aa64(env, 1) &&
1250 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1252 if (el == 0) {
1253 filtered = secure ? u : u != nsu;
1254 } else if (el == 1) {
1255 filtered = secure ? p : p != nsk;
1256 } else if (el == 2) {
1257 filtered = !nsh;
1258 } else { /* EL3 */
1259 filtered = m != p;
1262 if (counter != 31) {
1264 * If not checking PMCCNTR, ensure the counter is setup to an event we
1265 * support
1267 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1268 if (!event_supported(event)) {
1269 return false;
1273 return enabled && !prohibited && !filtered;
1276 static void pmu_update_irq(CPUARMState *env)
1278 ARMCPU *cpu = env_archcpu(env);
1279 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1280 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1283 static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1286 * Return true if the clock divider is enabled and the cycle counter
1287 * is supposed to tick only once every 64 clock cycles. This is
1288 * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1289 * (64-bit) cycle counter PMCR.D has no effect.
1291 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1294 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1296 /* Return true if the specified event counter is configured to be 64 bit */
1298 /* This isn't intended to be used with the cycle counter */
1299 assert(counter < 31);
1301 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1302 return false;
1305 if (arm_feature(env, ARM_FEATURE_EL2)) {
1307 * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1308 * current security state, so we don't use arm_mdcr_el2_eff() here.
1310 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1311 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1313 if (counter >= hpmn) {
1314 return hlp;
1317 return env->cp15.c9_pmcr & PMCRLP;
1321 * Ensure c15_ccnt is the guest-visible count so that operations such as
1322 * enabling/disabling the counter or filtering, modifying the count itself,
1323 * etc. can be done logically. This is essentially a no-op if the counter is
1324 * not enabled at the time of the call.
1326 static void pmccntr_op_start(CPUARMState *env)
1328 uint64_t cycles = cycles_get_count(env);
1330 if (pmu_counter_enabled(env, 31)) {
1331 uint64_t eff_cycles = cycles;
1332 if (pmccntr_clockdiv_enabled(env)) {
1333 eff_cycles /= 64;
1336 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1338 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1339 1ull << 63 : 1ull << 31;
1340 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1341 env->cp15.c9_pmovsr |= (1ULL << 31);
1342 pmu_update_irq(env);
1345 env->cp15.c15_ccnt = new_pmccntr;
1347 env->cp15.c15_ccnt_delta = cycles;
1351 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1352 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1353 * pmccntr_op_start.
1355 static void pmccntr_op_finish(CPUARMState *env)
1357 if (pmu_counter_enabled(env, 31)) {
1358 #ifndef CONFIG_USER_ONLY
1359 /* Calculate when the counter will next overflow */
1360 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1361 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1362 remaining_cycles = (uint32_t)remaining_cycles;
1364 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1366 if (overflow_in > 0) {
1367 int64_t overflow_at;
1369 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1370 overflow_in, &overflow_at)) {
1371 ARMCPU *cpu = env_archcpu(env);
1372 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1375 #endif
1377 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1378 if (pmccntr_clockdiv_enabled(env)) {
1379 prev_cycles /= 64;
1381 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1385 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1388 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1389 uint64_t count = 0;
1390 if (event_supported(event)) {
1391 uint16_t event_idx = supported_event_map[event];
1392 count = pm_events[event_idx].get_count(env);
1395 if (pmu_counter_enabled(env, counter)) {
1396 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1397 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1398 1ULL << 63 : 1ULL << 31;
1400 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
1401 env->cp15.c9_pmovsr |= (1 << counter);
1402 pmu_update_irq(env);
1404 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1406 env->cp15.c14_pmevcntr_delta[counter] = count;
1409 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1411 if (pmu_counter_enabled(env, counter)) {
1412 #ifndef CONFIG_USER_ONLY
1413 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1414 uint16_t event_idx = supported_event_map[event];
1415 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1416 int64_t overflow_in;
1418 if (!pmevcntr_is_64_bit(env, counter)) {
1419 delta = (uint32_t)delta;
1421 overflow_in = pm_events[event_idx].ns_per_count(delta);
1423 if (overflow_in > 0) {
1424 int64_t overflow_at;
1426 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1427 overflow_in, &overflow_at)) {
1428 ARMCPU *cpu = env_archcpu(env);
1429 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1432 #endif
1434 env->cp15.c14_pmevcntr_delta[counter] -=
1435 env->cp15.c14_pmevcntr[counter];
1439 void pmu_op_start(CPUARMState *env)
1441 unsigned int i;
1442 pmccntr_op_start(env);
1443 for (i = 0; i < pmu_num_counters(env); i++) {
1444 pmevcntr_op_start(env, i);
1448 void pmu_op_finish(CPUARMState *env)
1450 unsigned int i;
1451 pmccntr_op_finish(env);
1452 for (i = 0; i < pmu_num_counters(env); i++) {
1453 pmevcntr_op_finish(env, i);
1457 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1459 pmu_op_start(&cpu->env);
1462 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1464 pmu_op_finish(&cpu->env);
1467 void arm_pmu_timer_cb(void *opaque)
1469 ARMCPU *cpu = opaque;
1472 * Update all the counter values based on the current underlying counts,
1473 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1474 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1475 * counter may expire.
1477 pmu_op_start(&cpu->env);
1478 pmu_op_finish(&cpu->env);
1481 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1482 uint64_t value)
1484 pmu_op_start(env);
1486 if (value & PMCRC) {
1487 /* The counter has been reset */
1488 env->cp15.c15_ccnt = 0;
1491 if (value & PMCRP) {
1492 unsigned int i;
1493 for (i = 0; i < pmu_num_counters(env); i++) {
1494 env->cp15.c14_pmevcntr[i] = 0;
1498 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1499 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1501 pmu_op_finish(env);
1504 static uint64_t pmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1506 uint64_t pmcr = env->cp15.c9_pmcr;
1509 * If EL2 is implemented and enabled for the current security state, reads
1510 * of PMCR.N from EL1 or EL0 return the value of MDCR_EL2.HPMN or HDCR.HPMN.
1512 if (arm_current_el(env) <= 1 && arm_is_el2_enabled(env)) {
1513 pmcr &= ~PMCRN_MASK;
1514 pmcr |= (env->cp15.mdcr_el2 & MDCR_HPMN) << PMCRN_SHIFT;
1517 return pmcr;
1520 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1521 uint64_t value)
1523 unsigned int i;
1524 uint64_t overflow_mask, new_pmswinc;
1526 for (i = 0; i < pmu_num_counters(env); i++) {
1527 /* Increment a counter's count iff: */
1528 if ((value & (1 << i)) && /* counter's bit is set */
1529 /* counter is enabled and not filtered */
1530 pmu_counter_enabled(env, i) &&
1531 /* counter is SW_INCR */
1532 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1533 pmevcntr_op_start(env, i);
1536 * Detect if this write causes an overflow since we can't predict
1537 * PMSWINC overflows like we can for other events
1539 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1541 overflow_mask = pmevcntr_is_64_bit(env, i) ?
1542 1ULL << 63 : 1ULL << 31;
1544 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
1545 env->cp15.c9_pmovsr |= (1 << i);
1546 pmu_update_irq(env);
1549 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1551 pmevcntr_op_finish(env, i);
1556 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1558 uint64_t ret;
1559 pmccntr_op_start(env);
1560 ret = env->cp15.c15_ccnt;
1561 pmccntr_op_finish(env);
1562 return ret;
1565 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1566 uint64_t value)
1569 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1570 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1571 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1572 * accessed.
1574 env->cp15.c9_pmselr = value & 0x1f;
1577 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1578 uint64_t value)
1580 pmccntr_op_start(env);
1581 env->cp15.c15_ccnt = value;
1582 pmccntr_op_finish(env);
1585 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1586 uint64_t value)
1588 uint64_t cur_val = pmccntr_read(env, NULL);
1590 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1593 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1594 uint64_t value)
1596 pmccntr_op_start(env);
1597 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1598 pmccntr_op_finish(env);
1601 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1602 uint64_t value)
1604 pmccntr_op_start(env);
1605 /* M is not accessible from AArch32 */
1606 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1607 (value & PMCCFILTR);
1608 pmccntr_op_finish(env);
1611 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1613 /* M is not visible in AArch32 */
1614 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1617 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1618 uint64_t value)
1620 pmu_op_start(env);
1621 value &= pmu_counter_mask(env);
1622 env->cp15.c9_pmcnten |= value;
1623 pmu_op_finish(env);
1626 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1627 uint64_t value)
1629 pmu_op_start(env);
1630 value &= pmu_counter_mask(env);
1631 env->cp15.c9_pmcnten &= ~value;
1632 pmu_op_finish(env);
1635 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1636 uint64_t value)
1638 value &= pmu_counter_mask(env);
1639 env->cp15.c9_pmovsr &= ~value;
1640 pmu_update_irq(env);
1643 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1644 uint64_t value)
1646 value &= pmu_counter_mask(env);
1647 env->cp15.c9_pmovsr |= value;
1648 pmu_update_irq(env);
1651 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1652 uint64_t value, const uint8_t counter)
1654 if (counter == 31) {
1655 pmccfiltr_write(env, ri, value);
1656 } else if (counter < pmu_num_counters(env)) {
1657 pmevcntr_op_start(env, counter);
1660 * If this counter's event type is changing, store the current
1661 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1662 * pmevcntr_op_finish has the correct baseline when it converts back to
1663 * a delta.
1665 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1666 PMXEVTYPER_EVTCOUNT;
1667 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1668 if (old_event != new_event) {
1669 uint64_t count = 0;
1670 if (event_supported(new_event)) {
1671 uint16_t event_idx = supported_event_map[new_event];
1672 count = pm_events[event_idx].get_count(env);
1674 env->cp15.c14_pmevcntr_delta[counter] = count;
1677 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1678 pmevcntr_op_finish(env, counter);
1681 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1682 * PMSELR value is equal to or greater than the number of implemented
1683 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1687 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1688 const uint8_t counter)
1690 if (counter == 31) {
1691 return env->cp15.pmccfiltr_el0;
1692 } else if (counter < pmu_num_counters(env)) {
1693 return env->cp15.c14_pmevtyper[counter];
1694 } else {
1696 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1697 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1699 return 0;
1703 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1704 uint64_t value)
1706 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1707 pmevtyper_write(env, ri, value, counter);
1710 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1711 uint64_t value)
1713 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1714 env->cp15.c14_pmevtyper[counter] = value;
1717 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1718 * pmu_op_finish calls when loading saved state for a migration. Because
1719 * we're potentially updating the type of event here, the value written to
1720 * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a
1721 * different counter type. Therefore, we need to set this value to the
1722 * current count for the counter type we're writing so that pmu_op_finish
1723 * has the correct count for its calculation.
1725 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1726 if (event_supported(event)) {
1727 uint16_t event_idx = supported_event_map[event];
1728 env->cp15.c14_pmevcntr_delta[counter] =
1729 pm_events[event_idx].get_count(env);
1733 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1735 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1736 return pmevtyper_read(env, ri, counter);
1739 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1740 uint64_t value)
1742 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1745 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1747 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1750 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1751 uint64_t value, uint8_t counter)
1753 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1754 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1755 value &= MAKE_64BIT_MASK(0, 32);
1757 if (counter < pmu_num_counters(env)) {
1758 pmevcntr_op_start(env, counter);
1759 env->cp15.c14_pmevcntr[counter] = value;
1760 pmevcntr_op_finish(env, counter);
1763 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1764 * are CONSTRAINED UNPREDICTABLE.
1768 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1769 uint8_t counter)
1771 if (counter < pmu_num_counters(env)) {
1772 uint64_t ret;
1773 pmevcntr_op_start(env, counter);
1774 ret = env->cp15.c14_pmevcntr[counter];
1775 pmevcntr_op_finish(env, counter);
1776 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1777 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1778 ret &= MAKE_64BIT_MASK(0, 32);
1780 return ret;
1781 } else {
1783 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1784 * are CONSTRAINED UNPREDICTABLE.
1786 return 0;
1790 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1791 uint64_t value)
1793 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1794 pmevcntr_write(env, ri, value, counter);
1797 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1799 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1800 return pmevcntr_read(env, ri, counter);
1803 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1804 uint64_t value)
1806 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1807 assert(counter < pmu_num_counters(env));
1808 env->cp15.c14_pmevcntr[counter] = value;
1809 pmevcntr_write(env, ri, value, counter);
1812 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1814 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1815 assert(counter < pmu_num_counters(env));
1816 return env->cp15.c14_pmevcntr[counter];
1819 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1820 uint64_t value)
1822 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1825 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1827 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1830 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1831 uint64_t value)
1833 if (arm_feature(env, ARM_FEATURE_V8)) {
1834 env->cp15.c9_pmuserenr = value & 0xf;
1835 } else {
1836 env->cp15.c9_pmuserenr = value & 1;
1840 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1841 uint64_t value)
1843 /* We have no event counters so only the C bit can be changed */
1844 value &= pmu_counter_mask(env);
1845 env->cp15.c9_pminten |= value;
1846 pmu_update_irq(env);
1849 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1850 uint64_t value)
1852 value &= pmu_counter_mask(env);
1853 env->cp15.c9_pminten &= ~value;
1854 pmu_update_irq(env);
1857 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1858 uint64_t value)
1861 * Note that even though the AArch64 view of this register has bits
1862 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1863 * architectural requirements for bits which are RES0 only in some
1864 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1865 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1867 raw_write(env, ri, value & ~0x1FULL);
1870 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1872 /* Begin with base v8.0 state. */
1873 uint64_t valid_mask = 0x3fff;
1874 ARMCPU *cpu = env_archcpu(env);
1875 uint64_t changed;
1878 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1879 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1880 * Instead, choose the format based on the mode of EL3.
1882 if (arm_el_is_aa64(env, 3)) {
1883 value |= SCR_FW | SCR_AW; /* RES1 */
1884 valid_mask &= ~SCR_NET; /* RES0 */
1886 if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1887 !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1888 value |= SCR_RW; /* RAO/WI */
1890 if (cpu_isar_feature(aa64_ras, cpu)) {
1891 valid_mask |= SCR_TERR;
1893 if (cpu_isar_feature(aa64_lor, cpu)) {
1894 valid_mask |= SCR_TLOR;
1896 if (cpu_isar_feature(aa64_pauth, cpu)) {
1897 valid_mask |= SCR_API | SCR_APK;
1899 if (cpu_isar_feature(aa64_sel2, cpu)) {
1900 valid_mask |= SCR_EEL2;
1901 } else if (cpu_isar_feature(aa64_rme, cpu)) {
1902 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */
1903 value |= SCR_NS;
1905 if (cpu_isar_feature(aa64_mte, cpu)) {
1906 valid_mask |= SCR_ATA;
1908 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1909 valid_mask |= SCR_ENSCXT;
1911 if (cpu_isar_feature(aa64_doublefault, cpu)) {
1912 valid_mask |= SCR_EASE | SCR_NMEA;
1914 if (cpu_isar_feature(aa64_sme, cpu)) {
1915 valid_mask |= SCR_ENTP2;
1917 if (cpu_isar_feature(aa64_hcx, cpu)) {
1918 valid_mask |= SCR_HXEN;
1920 if (cpu_isar_feature(aa64_fgt, cpu)) {
1921 valid_mask |= SCR_FGTEN;
1923 if (cpu_isar_feature(aa64_rme, cpu)) {
1924 valid_mask |= SCR_NSE | SCR_GPF;
1926 } else {
1927 valid_mask &= ~(SCR_RW | SCR_ST);
1928 if (cpu_isar_feature(aa32_ras, cpu)) {
1929 valid_mask |= SCR_TERR;
1933 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1934 valid_mask &= ~SCR_HCE;
1937 * On ARMv7, SMD (or SCD as it is called in v7) is only
1938 * supported if EL2 exists. The bit is UNK/SBZP when
1939 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1940 * when EL2 is unavailable.
1941 * On ARMv8, this bit is always available.
1943 if (arm_feature(env, ARM_FEATURE_V7) &&
1944 !arm_feature(env, ARM_FEATURE_V8)) {
1945 valid_mask &= ~SCR_SMD;
1949 /* Clear all-context RES0 bits. */
1950 value &= valid_mask;
1951 changed = env->cp15.scr_el3 ^ value;
1952 env->cp15.scr_el3 = value;
1955 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state,
1956 * we must invalidate all TLBs below EL3.
1958 if (changed & (SCR_NS | SCR_NSE)) {
1959 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
1960 ARMMMUIdxBit_E20_0 |
1961 ARMMMUIdxBit_E10_1 |
1962 ARMMMUIdxBit_E20_2 |
1963 ARMMMUIdxBit_E10_1_PAN |
1964 ARMMMUIdxBit_E20_2_PAN |
1965 ARMMMUIdxBit_E2));
1969 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1972 * scr_write will set the RES1 bits on an AArch64-only CPU.
1973 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1975 scr_write(env, ri, 0);
1978 static CPAccessResult access_tid4(CPUARMState *env,
1979 const ARMCPRegInfo *ri,
1980 bool isread)
1982 if (arm_current_el(env) == 1 &&
1983 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
1984 return CP_ACCESS_TRAP_EL2;
1987 return CP_ACCESS_OK;
1990 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1992 ARMCPU *cpu = env_archcpu(env);
1995 * Acquire the CSSELR index from the bank corresponding to the CCSIDR
1996 * bank
1998 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1999 ri->secure & ARM_CP_SECSTATE_S);
2001 return cpu->ccsidr[index];
2004 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2005 uint64_t value)
2007 raw_write(env, ri, value & 0xf);
2010 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2012 CPUState *cs = env_cpu(env);
2013 bool el1 = arm_current_el(env) == 1;
2014 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
2015 uint64_t ret = 0;
2017 if (hcr_el2 & HCR_IMO) {
2018 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
2019 ret |= CPSR_I;
2021 } else {
2022 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
2023 ret |= CPSR_I;
2027 if (hcr_el2 & HCR_FMO) {
2028 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
2029 ret |= CPSR_F;
2031 } else {
2032 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
2033 ret |= CPSR_F;
2037 if (hcr_el2 & HCR_AMO) {
2038 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
2039 ret |= CPSR_A;
2043 return ret;
2046 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2047 bool isread)
2049 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2050 return CP_ACCESS_TRAP_EL2;
2053 return CP_ACCESS_OK;
2056 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2057 bool isread)
2059 if (arm_feature(env, ARM_FEATURE_V8)) {
2060 return access_aa64_tid1(env, ri, isread);
2063 return CP_ACCESS_OK;
2066 static const ARMCPRegInfo v7_cp_reginfo[] = {
2067 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2068 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2069 .access = PL1_W, .type = ARM_CP_NOP },
2071 * Performance monitors are implementation defined in v7,
2072 * but with an ARM recommended set of registers, which we
2073 * follow.
2075 * Performance registers fall into three categories:
2076 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2077 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2078 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2079 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2080 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2082 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2083 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
2084 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2085 .writefn = pmcntenset_write,
2086 .accessfn = pmreg_access,
2087 .fgt = FGT_PMCNTEN,
2088 .raw_writefn = raw_write },
2089 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
2090 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2091 .access = PL0_RW, .accessfn = pmreg_access,
2092 .fgt = FGT_PMCNTEN,
2093 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2094 .writefn = pmcntenset_write, .raw_writefn = raw_write },
2095 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2096 .access = PL0_RW,
2097 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2098 .accessfn = pmreg_access,
2099 .fgt = FGT_PMCNTEN,
2100 .writefn = pmcntenclr_write,
2101 .type = ARM_CP_ALIAS | ARM_CP_IO },
2102 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2103 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2104 .access = PL0_RW, .accessfn = pmreg_access,
2105 .fgt = FGT_PMCNTEN,
2106 .type = ARM_CP_ALIAS | ARM_CP_IO,
2107 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2108 .writefn = pmcntenclr_write },
2109 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2110 .access = PL0_RW, .type = ARM_CP_IO,
2111 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2112 .accessfn = pmreg_access,
2113 .fgt = FGT_PMOVS,
2114 .writefn = pmovsr_write,
2115 .raw_writefn = raw_write },
2116 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2117 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2118 .access = PL0_RW, .accessfn = pmreg_access,
2119 .fgt = FGT_PMOVS,
2120 .type = ARM_CP_ALIAS | ARM_CP_IO,
2121 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2122 .writefn = pmovsr_write,
2123 .raw_writefn = raw_write },
2124 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2125 .access = PL0_W, .accessfn = pmreg_access_swinc,
2126 .fgt = FGT_PMSWINC_EL0,
2127 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2128 .writefn = pmswinc_write },
2129 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2130 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2131 .access = PL0_W, .accessfn = pmreg_access_swinc,
2132 .fgt = FGT_PMSWINC_EL0,
2133 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2134 .writefn = pmswinc_write },
2135 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2136 .access = PL0_RW, .type = ARM_CP_ALIAS,
2137 .fgt = FGT_PMSELR_EL0,
2138 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2139 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2140 .raw_writefn = raw_write},
2141 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2142 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2143 .access = PL0_RW, .accessfn = pmreg_access_selr,
2144 .fgt = FGT_PMSELR_EL0,
2145 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2146 .writefn = pmselr_write, .raw_writefn = raw_write, },
2147 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2148 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2149 .fgt = FGT_PMCCNTR_EL0,
2150 .readfn = pmccntr_read, .writefn = pmccntr_write32,
2151 .accessfn = pmreg_access_ccntr },
2152 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2153 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2154 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2155 .fgt = FGT_PMCCNTR_EL0,
2156 .type = ARM_CP_IO,
2157 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2158 .readfn = pmccntr_read, .writefn = pmccntr_write,
2159 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2160 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2161 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2162 .access = PL0_RW, .accessfn = pmreg_access,
2163 .fgt = FGT_PMCCFILTR_EL0,
2164 .type = ARM_CP_ALIAS | ARM_CP_IO,
2165 .resetvalue = 0, },
2166 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2167 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2168 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2169 .access = PL0_RW, .accessfn = pmreg_access,
2170 .fgt = FGT_PMCCFILTR_EL0,
2171 .type = ARM_CP_IO,
2172 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2173 .resetvalue = 0, },
2174 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2175 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2176 .accessfn = pmreg_access,
2177 .fgt = FGT_PMEVTYPERN_EL0,
2178 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2179 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2180 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2181 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2182 .accessfn = pmreg_access,
2183 .fgt = FGT_PMEVTYPERN_EL0,
2184 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2185 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2186 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2187 .accessfn = pmreg_access_xevcntr,
2188 .fgt = FGT_PMEVCNTRN_EL0,
2189 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2190 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2191 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2192 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2193 .accessfn = pmreg_access_xevcntr,
2194 .fgt = FGT_PMEVCNTRN_EL0,
2195 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2196 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2197 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2198 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2199 .resetvalue = 0,
2200 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2201 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2202 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2203 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2204 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2205 .resetvalue = 0,
2206 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2207 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2208 .access = PL1_RW, .accessfn = access_tpm,
2209 .fgt = FGT_PMINTEN,
2210 .type = ARM_CP_ALIAS | ARM_CP_IO,
2211 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2212 .resetvalue = 0,
2213 .writefn = pmintenset_write, .raw_writefn = raw_write },
2214 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2215 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2216 .access = PL1_RW, .accessfn = access_tpm,
2217 .fgt = FGT_PMINTEN,
2218 .type = ARM_CP_IO,
2219 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2220 .writefn = pmintenset_write, .raw_writefn = raw_write,
2221 .resetvalue = 0x0 },
2222 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2223 .access = PL1_RW, .accessfn = access_tpm,
2224 .fgt = FGT_PMINTEN,
2225 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2226 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2227 .writefn = pmintenclr_write, },
2228 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2229 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2230 .access = PL1_RW, .accessfn = access_tpm,
2231 .fgt = FGT_PMINTEN,
2232 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2233 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2234 .writefn = pmintenclr_write },
2235 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2236 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2237 .access = PL1_R,
2238 .accessfn = access_tid4,
2239 .fgt = FGT_CCSIDR_EL1,
2240 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2241 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2242 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2243 .access = PL1_RW,
2244 .accessfn = access_tid4,
2245 .fgt = FGT_CSSELR_EL1,
2246 .writefn = csselr_write, .resetvalue = 0,
2247 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2248 offsetof(CPUARMState, cp15.csselr_ns) } },
2250 * Auxiliary ID register: this actually has an IMPDEF value but for now
2251 * just RAZ for all cores:
2253 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2254 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2255 .access = PL1_R, .type = ARM_CP_CONST,
2256 .accessfn = access_aa64_tid1,
2257 .fgt = FGT_AIDR_EL1,
2258 .resetvalue = 0 },
2260 * Auxiliary fault status registers: these also are IMPDEF, and we
2261 * choose to RAZ/WI for all cores.
2263 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2264 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2265 .access = PL1_RW, .accessfn = access_tvm_trvm,
2266 .fgt = FGT_AFSR0_EL1,
2267 .nv2_redirect_offset = 0x128 | NV2_REDIR_NV1,
2268 .type = ARM_CP_CONST, .resetvalue = 0 },
2269 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2270 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2271 .access = PL1_RW, .accessfn = access_tvm_trvm,
2272 .fgt = FGT_AFSR1_EL1,
2273 .nv2_redirect_offset = 0x130 | NV2_REDIR_NV1,
2274 .type = ARM_CP_CONST, .resetvalue = 0 },
2276 * MAIR can just read-as-written because we don't implement caches
2277 * and so don't need to care about memory attributes.
2279 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2280 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2281 .access = PL1_RW, .accessfn = access_tvm_trvm,
2282 .fgt = FGT_MAIR_EL1,
2283 .nv2_redirect_offset = 0x140 | NV2_REDIR_NV1,
2284 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2285 .resetvalue = 0 },
2286 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2287 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2288 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2289 .resetvalue = 0 },
2291 * For non-long-descriptor page tables these are PRRR and NMRR;
2292 * regardless they still act as reads-as-written for QEMU.
2295 * MAIR0/1 are defined separately from their 64-bit counterpart which
2296 * allows them to assign the correct fieldoffset based on the endianness
2297 * handled in the field definitions.
2299 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2300 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2301 .access = PL1_RW, .accessfn = access_tvm_trvm,
2302 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2303 offsetof(CPUARMState, cp15.mair0_ns) },
2304 .resetfn = arm_cp_reset_ignore },
2305 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2306 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2307 .access = PL1_RW, .accessfn = access_tvm_trvm,
2308 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2309 offsetof(CPUARMState, cp15.mair1_ns) },
2310 .resetfn = arm_cp_reset_ignore },
2311 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2312 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2313 .fgt = FGT_ISR_EL1,
2314 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2315 /* 32 bit ITLB invalidates */
2316 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2317 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2318 .writefn = tlbiall_write },
2319 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2320 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2321 .writefn = tlbimva_write },
2322 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2323 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2324 .writefn = tlbiasid_write },
2325 /* 32 bit DTLB invalidates */
2326 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2327 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2328 .writefn = tlbiall_write },
2329 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2330 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2331 .writefn = tlbimva_write },
2332 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2333 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2334 .writefn = tlbiasid_write },
2335 /* 32 bit TLB invalidates */
2336 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2337 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2338 .writefn = tlbiall_write },
2339 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2340 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2341 .writefn = tlbimva_write },
2342 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2343 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2344 .writefn = tlbiasid_write },
2345 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2346 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2347 .writefn = tlbimvaa_write },
2350 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2351 /* 32 bit TLB invalidates, Inner Shareable */
2352 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2353 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2354 .writefn = tlbiall_is_write },
2355 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2356 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2357 .writefn = tlbimva_is_write },
2358 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2359 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2360 .writefn = tlbiasid_is_write },
2361 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2362 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2363 .writefn = tlbimvaa_is_write },
2366 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2367 /* PMOVSSET is not implemented in v7 before v7ve */
2368 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2369 .access = PL0_RW, .accessfn = pmreg_access,
2370 .fgt = FGT_PMOVS,
2371 .type = ARM_CP_ALIAS | ARM_CP_IO,
2372 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2373 .writefn = pmovsset_write,
2374 .raw_writefn = raw_write },
2375 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2376 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2377 .access = PL0_RW, .accessfn = pmreg_access,
2378 .fgt = FGT_PMOVS,
2379 .type = ARM_CP_ALIAS | ARM_CP_IO,
2380 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2381 .writefn = pmovsset_write,
2382 .raw_writefn = raw_write },
2385 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2386 uint64_t value)
2388 value &= 1;
2389 env->teecr = value;
2392 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2393 bool isread)
2396 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2397 * at all, so we don't need to check whether we're v8A.
2399 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2400 (env->cp15.hstr_el2 & HSTR_TTEE)) {
2401 return CP_ACCESS_TRAP_EL2;
2403 return CP_ACCESS_OK;
2406 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2407 bool isread)
2409 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2410 return CP_ACCESS_TRAP;
2412 return teecr_access(env, ri, isread);
2415 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2416 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2417 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2418 .resetvalue = 0,
2419 .writefn = teecr_write, .accessfn = teecr_access },
2420 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2421 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2422 .accessfn = teehbr_access, .resetvalue = 0 },
2425 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2426 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2427 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2428 .access = PL0_RW,
2429 .fgt = FGT_TPIDR_EL0,
2430 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2431 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2432 .access = PL0_RW,
2433 .fgt = FGT_TPIDR_EL0,
2434 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2435 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2436 .resetfn = arm_cp_reset_ignore },
2437 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2438 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2439 .access = PL0_R | PL1_W,
2440 .fgt = FGT_TPIDRRO_EL0,
2441 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2442 .resetvalue = 0},
2443 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2444 .access = PL0_R | PL1_W,
2445 .fgt = FGT_TPIDRRO_EL0,
2446 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2447 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2448 .resetfn = arm_cp_reset_ignore },
2449 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2450 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2451 .access = PL1_RW,
2452 .fgt = FGT_TPIDR_EL1,
2453 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2454 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2455 .access = PL1_RW,
2456 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2457 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2458 .resetvalue = 0 },
2461 #ifndef CONFIG_USER_ONLY
2463 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2464 bool isread)
2467 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2468 * Writable only at the highest implemented exception level.
2470 int el = arm_current_el(env);
2471 uint64_t hcr;
2472 uint32_t cntkctl;
2474 switch (el) {
2475 case 0:
2476 hcr = arm_hcr_el2_eff(env);
2477 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2478 cntkctl = env->cp15.cnthctl_el2;
2479 } else {
2480 cntkctl = env->cp15.c14_cntkctl;
2482 if (!extract32(cntkctl, 0, 2)) {
2483 return CP_ACCESS_TRAP;
2485 break;
2486 case 1:
2487 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2488 arm_is_secure_below_el3(env)) {
2489 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2490 return CP_ACCESS_TRAP_UNCATEGORIZED;
2492 break;
2493 case 2:
2494 case 3:
2495 break;
2498 if (!isread && el < arm_highest_el(env)) {
2499 return CP_ACCESS_TRAP_UNCATEGORIZED;
2502 return CP_ACCESS_OK;
2505 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2506 bool isread)
2508 unsigned int cur_el = arm_current_el(env);
2509 bool has_el2 = arm_is_el2_enabled(env);
2510 uint64_t hcr = arm_hcr_el2_eff(env);
2512 switch (cur_el) {
2513 case 0:
2514 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2515 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2516 return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2517 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2520 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2521 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2522 return CP_ACCESS_TRAP;
2524 /* fall through */
2525 case 1:
2526 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2527 if (has_el2 && timeridx == GTIMER_PHYS &&
2528 (hcr & HCR_E2H
2529 ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2530 : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2531 return CP_ACCESS_TRAP_EL2;
2533 if (has_el2 && timeridx == GTIMER_VIRT) {
2534 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVCT)) {
2535 return CP_ACCESS_TRAP_EL2;
2538 break;
2540 return CP_ACCESS_OK;
2543 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2544 bool isread)
2546 unsigned int cur_el = arm_current_el(env);
2547 bool has_el2 = arm_is_el2_enabled(env);
2548 uint64_t hcr = arm_hcr_el2_eff(env);
2550 switch (cur_el) {
2551 case 0:
2552 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2553 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2554 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2555 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2559 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2560 * EL0 if EL0[PV]TEN is zero.
2562 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2563 return CP_ACCESS_TRAP;
2565 /* fall through */
2567 case 1:
2568 if (has_el2 && timeridx == GTIMER_PHYS) {
2569 if (hcr & HCR_E2H) {
2570 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2571 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2572 return CP_ACCESS_TRAP_EL2;
2574 } else {
2575 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2576 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2577 return CP_ACCESS_TRAP_EL2;
2581 if (has_el2 && timeridx == GTIMER_VIRT) {
2582 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVT)) {
2583 return CP_ACCESS_TRAP_EL2;
2586 break;
2588 return CP_ACCESS_OK;
2591 static CPAccessResult gt_pct_access(CPUARMState *env,
2592 const ARMCPRegInfo *ri,
2593 bool isread)
2595 return gt_counter_access(env, GTIMER_PHYS, isread);
2598 static CPAccessResult gt_vct_access(CPUARMState *env,
2599 const ARMCPRegInfo *ri,
2600 bool isread)
2602 return gt_counter_access(env, GTIMER_VIRT, isread);
2605 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2606 bool isread)
2608 return gt_timer_access(env, GTIMER_PHYS, isread);
2611 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2612 bool isread)
2614 return gt_timer_access(env, GTIMER_VIRT, isread);
2617 static CPAccessResult gt_stimer_access(CPUARMState *env,
2618 const ARMCPRegInfo *ri,
2619 bool isread)
2622 * The AArch64 register view of the secure physical timer is
2623 * always accessible from EL3, and configurably accessible from
2624 * Secure EL1.
2626 switch (arm_current_el(env)) {
2627 case 1:
2628 if (!arm_is_secure(env)) {
2629 return CP_ACCESS_TRAP;
2631 if (!(env->cp15.scr_el3 & SCR_ST)) {
2632 return CP_ACCESS_TRAP_EL3;
2634 return CP_ACCESS_OK;
2635 case 0:
2636 case 2:
2637 return CP_ACCESS_TRAP;
2638 case 3:
2639 return CP_ACCESS_OK;
2640 default:
2641 g_assert_not_reached();
2645 static uint64_t gt_get_countervalue(CPUARMState *env)
2647 ARMCPU *cpu = env_archcpu(env);
2649 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2652 static void gt_update_irq(ARMCPU *cpu, int timeridx)
2654 CPUARMState *env = &cpu->env;
2655 uint64_t cnthctl = env->cp15.cnthctl_el2;
2656 ARMSecuritySpace ss = arm_security_space(env);
2657 /* ISTATUS && !IMASK */
2658 int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4;
2661 * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK.
2662 * It is RES0 in Secure and NonSecure state.
2664 if ((ss == ARMSS_Root || ss == ARMSS_Realm) &&
2665 ((timeridx == GTIMER_VIRT && (cnthctl & R_CNTHCTL_CNTVMASK_MASK)) ||
2666 (timeridx == GTIMER_PHYS && (cnthctl & R_CNTHCTL_CNTPMASK_MASK)))) {
2667 irqstate = 0;
2670 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2671 trace_arm_gt_update_irq(timeridx, irqstate);
2674 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored)
2677 * Changing security state between Root and Secure/NonSecure, which may
2678 * happen when switching EL, can change the effective value of CNTHCTL_EL2
2679 * mask bits. Update the IRQ state accordingly.
2681 gt_update_irq(cpu, GTIMER_VIRT);
2682 gt_update_irq(cpu, GTIMER_PHYS);
2685 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2687 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2689 if (gt->ctl & 1) {
2691 * Timer enabled: calculate and set current ISTATUS, irq, and
2692 * reset timer to when ISTATUS next has to change
2694 uint64_t offset = timeridx == GTIMER_VIRT ?
2695 cpu->env.cp15.cntvoff_el2 : 0;
2696 uint64_t count = gt_get_countervalue(&cpu->env);
2697 /* Note that this must be unsigned 64 bit arithmetic: */
2698 int istatus = count - offset >= gt->cval;
2699 uint64_t nexttick;
2701 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2703 if (istatus) {
2705 * Next transition is when (count - offset) rolls back over to 0.
2706 * If offset > count then this is when count == offset;
2707 * if offset <= count then this is when count == offset + 2^64
2708 * For the latter case we set nexttick to an "as far in future
2709 * as possible" value and let the code below handle it.
2711 if (offset > count) {
2712 nexttick = offset;
2713 } else {
2714 nexttick = UINT64_MAX;
2716 } else {
2718 * Next transition is when (count - offset) == cval, i.e.
2719 * when count == (cval + offset).
2720 * If that would overflow, then again we set up the next interrupt
2721 * for "as far in the future as possible" for the code below.
2723 if (uadd64_overflow(gt->cval, offset, &nexttick)) {
2724 nexttick = UINT64_MAX;
2728 * Note that the desired next expiry time might be beyond the
2729 * signed-64-bit range of a QEMUTimer -- in this case we just
2730 * set the timer for as far in the future as possible. When the
2731 * timer expires we will reset the timer for any remaining period.
2733 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2734 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2735 } else {
2736 timer_mod(cpu->gt_timer[timeridx], nexttick);
2738 trace_arm_gt_recalc(timeridx, nexttick);
2739 } else {
2740 /* Timer disabled: ISTATUS and timer output always clear */
2741 gt->ctl &= ~4;
2742 timer_del(cpu->gt_timer[timeridx]);
2743 trace_arm_gt_recalc_disabled(timeridx);
2745 gt_update_irq(cpu, timeridx);
2748 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2749 int timeridx)
2751 ARMCPU *cpu = env_archcpu(env);
2753 timer_del(cpu->gt_timer[timeridx]);
2756 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2758 return gt_get_countervalue(env);
2761 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2763 uint64_t hcr;
2765 switch (arm_current_el(env)) {
2766 case 2:
2767 hcr = arm_hcr_el2_eff(env);
2768 if (hcr & HCR_E2H) {
2769 return 0;
2771 break;
2772 case 0:
2773 hcr = arm_hcr_el2_eff(env);
2774 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2775 return 0;
2777 break;
2780 return env->cp15.cntvoff_el2;
2783 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2785 return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2788 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2789 int timeridx,
2790 uint64_t value)
2792 trace_arm_gt_cval_write(timeridx, value);
2793 env->cp15.c14_timer[timeridx].cval = value;
2794 gt_recalc_timer(env_archcpu(env), timeridx);
2797 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2798 int timeridx)
2800 uint64_t offset = 0;
2802 switch (timeridx) {
2803 case GTIMER_VIRT:
2804 case GTIMER_HYPVIRT:
2805 offset = gt_virt_cnt_offset(env);
2806 break;
2809 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2810 (gt_get_countervalue(env) - offset));
2813 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2814 int timeridx,
2815 uint64_t value)
2817 uint64_t offset = 0;
2819 switch (timeridx) {
2820 case GTIMER_VIRT:
2821 case GTIMER_HYPVIRT:
2822 offset = gt_virt_cnt_offset(env);
2823 break;
2826 trace_arm_gt_tval_write(timeridx, value);
2827 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2828 sextract64(value, 0, 32);
2829 gt_recalc_timer(env_archcpu(env), timeridx);
2832 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2833 int timeridx,
2834 uint64_t value)
2836 ARMCPU *cpu = env_archcpu(env);
2837 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2839 trace_arm_gt_ctl_write(timeridx, value);
2840 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2841 if ((oldval ^ value) & 1) {
2842 /* Enable toggled */
2843 gt_recalc_timer(cpu, timeridx);
2844 } else if ((oldval ^ value) & 2) {
2846 * IMASK toggled: don't need to recalculate,
2847 * just set the interrupt line based on ISTATUS
2849 trace_arm_gt_imask_toggle(timeridx);
2850 gt_update_irq(cpu, timeridx);
2854 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2856 gt_timer_reset(env, ri, GTIMER_PHYS);
2859 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2860 uint64_t value)
2862 gt_cval_write(env, ri, GTIMER_PHYS, value);
2865 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2867 return gt_tval_read(env, ri, GTIMER_PHYS);
2870 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2871 uint64_t value)
2873 gt_tval_write(env, ri, GTIMER_PHYS, value);
2876 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2877 uint64_t value)
2879 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2882 static int gt_phys_redir_timeridx(CPUARMState *env)
2884 switch (arm_mmu_idx(env)) {
2885 case ARMMMUIdx_E20_0:
2886 case ARMMMUIdx_E20_2:
2887 case ARMMMUIdx_E20_2_PAN:
2888 return GTIMER_HYP;
2889 default:
2890 return GTIMER_PHYS;
2894 static int gt_virt_redir_timeridx(CPUARMState *env)
2896 switch (arm_mmu_idx(env)) {
2897 case ARMMMUIdx_E20_0:
2898 case ARMMMUIdx_E20_2:
2899 case ARMMMUIdx_E20_2_PAN:
2900 return GTIMER_HYPVIRT;
2901 default:
2902 return GTIMER_VIRT;
2906 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2907 const ARMCPRegInfo *ri)
2909 int timeridx = gt_phys_redir_timeridx(env);
2910 return env->cp15.c14_timer[timeridx].cval;
2913 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2914 uint64_t value)
2916 int timeridx = gt_phys_redir_timeridx(env);
2917 gt_cval_write(env, ri, timeridx, value);
2920 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2921 const ARMCPRegInfo *ri)
2923 int timeridx = gt_phys_redir_timeridx(env);
2924 return gt_tval_read(env, ri, timeridx);
2927 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2928 uint64_t value)
2930 int timeridx = gt_phys_redir_timeridx(env);
2931 gt_tval_write(env, ri, timeridx, value);
2934 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2935 const ARMCPRegInfo *ri)
2937 int timeridx = gt_phys_redir_timeridx(env);
2938 return env->cp15.c14_timer[timeridx].ctl;
2941 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2942 uint64_t value)
2944 int timeridx = gt_phys_redir_timeridx(env);
2945 gt_ctl_write(env, ri, timeridx, value);
2948 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2950 gt_timer_reset(env, ri, GTIMER_VIRT);
2953 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2954 uint64_t value)
2956 gt_cval_write(env, ri, GTIMER_VIRT, value);
2959 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2961 return gt_tval_read(env, ri, GTIMER_VIRT);
2964 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2965 uint64_t value)
2967 gt_tval_write(env, ri, GTIMER_VIRT, value);
2970 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2971 uint64_t value)
2973 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2976 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2977 uint64_t value)
2979 ARMCPU *cpu = env_archcpu(env);
2980 uint32_t oldval = env->cp15.cnthctl_el2;
2981 uint32_t valid_mask =
2982 R_CNTHCTL_EL0PCTEN_E2H1_MASK |
2983 R_CNTHCTL_EL0VCTEN_E2H1_MASK |
2984 R_CNTHCTL_EVNTEN_MASK |
2985 R_CNTHCTL_EVNTDIR_MASK |
2986 R_CNTHCTL_EVNTI_MASK |
2987 R_CNTHCTL_EL0VTEN_MASK |
2988 R_CNTHCTL_EL0PTEN_MASK |
2989 R_CNTHCTL_EL1PCTEN_E2H1_MASK |
2990 R_CNTHCTL_EL1PTEN_MASK;
2992 if (cpu_isar_feature(aa64_rme, cpu)) {
2993 valid_mask |= R_CNTHCTL_CNTVMASK_MASK | R_CNTHCTL_CNTPMASK_MASK;
2995 if (cpu_isar_feature(aa64_ecv_traps, cpu)) {
2996 valid_mask |=
2997 R_CNTHCTL_EL1TVT_MASK |
2998 R_CNTHCTL_EL1TVCT_MASK |
2999 R_CNTHCTL_EL1NVPCT_MASK |
3000 R_CNTHCTL_EL1NVVCT_MASK |
3001 R_CNTHCTL_EVNTIS_MASK;
3004 /* Clear RES0 bits */
3005 value &= valid_mask;
3007 raw_write(env, ri, value);
3009 if ((oldval ^ value) & R_CNTHCTL_CNTVMASK_MASK) {
3010 gt_update_irq(cpu, GTIMER_VIRT);
3011 } else if ((oldval ^ value) & R_CNTHCTL_CNTPMASK_MASK) {
3012 gt_update_irq(cpu, GTIMER_PHYS);
3016 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
3017 uint64_t value)
3019 ARMCPU *cpu = env_archcpu(env);
3021 trace_arm_gt_cntvoff_write(value);
3022 raw_write(env, ri, value);
3023 gt_recalc_timer(cpu, GTIMER_VIRT);
3026 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
3027 const ARMCPRegInfo *ri)
3029 int timeridx = gt_virt_redir_timeridx(env);
3030 return env->cp15.c14_timer[timeridx].cval;
3033 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3034 uint64_t value)
3036 int timeridx = gt_virt_redir_timeridx(env);
3037 gt_cval_write(env, ri, timeridx, value);
3040 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
3041 const ARMCPRegInfo *ri)
3043 int timeridx = gt_virt_redir_timeridx(env);
3044 return gt_tval_read(env, ri, timeridx);
3047 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3048 uint64_t value)
3050 int timeridx = gt_virt_redir_timeridx(env);
3051 gt_tval_write(env, ri, timeridx, value);
3054 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
3055 const ARMCPRegInfo *ri)
3057 int timeridx = gt_virt_redir_timeridx(env);
3058 return env->cp15.c14_timer[timeridx].ctl;
3061 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3062 uint64_t value)
3064 int timeridx = gt_virt_redir_timeridx(env);
3065 gt_ctl_write(env, ri, timeridx, value);
3068 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3070 gt_timer_reset(env, ri, GTIMER_HYP);
3073 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3074 uint64_t value)
3076 gt_cval_write(env, ri, GTIMER_HYP, value);
3079 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3081 return gt_tval_read(env, ri, GTIMER_HYP);
3084 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3085 uint64_t value)
3087 gt_tval_write(env, ri, GTIMER_HYP, value);
3090 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3091 uint64_t value)
3093 gt_ctl_write(env, ri, GTIMER_HYP, value);
3096 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3098 gt_timer_reset(env, ri, GTIMER_SEC);
3101 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3102 uint64_t value)
3104 gt_cval_write(env, ri, GTIMER_SEC, value);
3107 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3109 return gt_tval_read(env, ri, GTIMER_SEC);
3112 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3113 uint64_t value)
3115 gt_tval_write(env, ri, GTIMER_SEC, value);
3118 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3119 uint64_t value)
3121 gt_ctl_write(env, ri, GTIMER_SEC, value);
3124 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3126 gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3129 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3130 uint64_t value)
3132 gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3135 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3137 return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3140 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3141 uint64_t value)
3143 gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3146 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3147 uint64_t value)
3149 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3152 void arm_gt_ptimer_cb(void *opaque)
3154 ARMCPU *cpu = opaque;
3156 gt_recalc_timer(cpu, GTIMER_PHYS);
3159 void arm_gt_vtimer_cb(void *opaque)
3161 ARMCPU *cpu = opaque;
3163 gt_recalc_timer(cpu, GTIMER_VIRT);
3166 void arm_gt_htimer_cb(void *opaque)
3168 ARMCPU *cpu = opaque;
3170 gt_recalc_timer(cpu, GTIMER_HYP);
3173 void arm_gt_stimer_cb(void *opaque)
3175 ARMCPU *cpu = opaque;
3177 gt_recalc_timer(cpu, GTIMER_SEC);
3180 void arm_gt_hvtimer_cb(void *opaque)
3182 ARMCPU *cpu = opaque;
3184 gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3187 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3189 ARMCPU *cpu = env_archcpu(env);
3191 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3194 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3196 * Note that CNTFRQ is purely reads-as-written for the benefit
3197 * of software; writing it doesn't actually change the timer frequency.
3198 * Our reset value matches the fixed frequency we implement the timer at.
3200 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3201 .type = ARM_CP_ALIAS,
3202 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3203 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3205 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3206 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3207 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3208 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3209 .resetfn = arm_gt_cntfrq_reset,
3211 /* overall control: mostly access permissions */
3212 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3213 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3214 .access = PL1_RW,
3215 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3216 .resetvalue = 0,
3218 /* per-timer control */
3219 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3220 .secure = ARM_CP_SECSTATE_NS,
3221 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3222 .accessfn = gt_ptimer_access,
3223 .fieldoffset = offsetoflow32(CPUARMState,
3224 cp15.c14_timer[GTIMER_PHYS].ctl),
3225 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3226 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3228 { .name = "CNTP_CTL_S",
3229 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3230 .secure = ARM_CP_SECSTATE_S,
3231 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3232 .accessfn = gt_ptimer_access,
3233 .fieldoffset = offsetoflow32(CPUARMState,
3234 cp15.c14_timer[GTIMER_SEC].ctl),
3235 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3237 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3238 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3239 .type = ARM_CP_IO, .access = PL0_RW,
3240 .accessfn = gt_ptimer_access,
3241 .nv2_redirect_offset = 0x180 | NV2_REDIR_NV1,
3242 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3243 .resetvalue = 0,
3244 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3245 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3247 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3248 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3249 .accessfn = gt_vtimer_access,
3250 .fieldoffset = offsetoflow32(CPUARMState,
3251 cp15.c14_timer[GTIMER_VIRT].ctl),
3252 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3253 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3255 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3256 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3257 .type = ARM_CP_IO, .access = PL0_RW,
3258 .accessfn = gt_vtimer_access,
3259 .nv2_redirect_offset = 0x170 | NV2_REDIR_NV1,
3260 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3261 .resetvalue = 0,
3262 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3263 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3265 /* TimerValue views: a 32 bit downcounting view of the underlying state */
3266 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3267 .secure = ARM_CP_SECSTATE_NS,
3268 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3269 .accessfn = gt_ptimer_access,
3270 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3272 { .name = "CNTP_TVAL_S",
3273 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3274 .secure = ARM_CP_SECSTATE_S,
3275 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3276 .accessfn = gt_ptimer_access,
3277 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3279 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3280 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3281 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3282 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3283 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3285 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3286 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3287 .accessfn = gt_vtimer_access,
3288 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3290 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3291 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3292 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3293 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3294 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3296 /* The counter itself */
3297 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3298 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3299 .accessfn = gt_pct_access,
3300 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3302 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3303 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3304 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3305 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3307 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3308 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3309 .accessfn = gt_vct_access,
3310 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3312 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3313 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3314 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3315 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3317 /* Comparison value, indicating when the timer goes off */
3318 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3319 .secure = ARM_CP_SECSTATE_NS,
3320 .access = PL0_RW,
3321 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3322 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3323 .accessfn = gt_ptimer_access,
3324 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3325 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3327 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3328 .secure = ARM_CP_SECSTATE_S,
3329 .access = PL0_RW,
3330 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3331 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3332 .accessfn = gt_ptimer_access,
3333 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3335 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3336 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3337 .access = PL0_RW,
3338 .type = ARM_CP_IO,
3339 .nv2_redirect_offset = 0x178 | NV2_REDIR_NV1,
3340 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3341 .resetvalue = 0, .accessfn = gt_ptimer_access,
3342 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3343 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3345 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3346 .access = PL0_RW,
3347 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3348 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3349 .accessfn = gt_vtimer_access,
3350 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3351 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3353 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3354 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3355 .access = PL0_RW,
3356 .type = ARM_CP_IO,
3357 .nv2_redirect_offset = 0x168 | NV2_REDIR_NV1,
3358 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3359 .resetvalue = 0, .accessfn = gt_vtimer_access,
3360 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3361 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3364 * Secure timer -- this is actually restricted to only EL3
3365 * and configurably Secure-EL1 via the accessfn.
3367 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3368 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3369 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3370 .accessfn = gt_stimer_access,
3371 .readfn = gt_sec_tval_read,
3372 .writefn = gt_sec_tval_write,
3373 .resetfn = gt_sec_timer_reset,
3375 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3376 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3377 .type = ARM_CP_IO, .access = PL1_RW,
3378 .accessfn = gt_stimer_access,
3379 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3380 .resetvalue = 0,
3381 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3383 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3384 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3385 .type = ARM_CP_IO, .access = PL1_RW,
3386 .accessfn = gt_stimer_access,
3387 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3388 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3393 * FEAT_ECV adds extra views of CNTVCT_EL0 and CNTPCT_EL0 which
3394 * are "self-synchronizing". For QEMU all sysregs are self-synchronizing,
3395 * so our implementations here are identical to the normal registers.
3397 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = {
3398 { .name = "CNTVCTSS", .cp = 15, .crm = 14, .opc1 = 9,
3399 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3400 .accessfn = gt_vct_access,
3401 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3403 { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64,
3404 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6,
3405 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3406 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3408 { .name = "CNTPCTSS", .cp = 15, .crm = 14, .opc1 = 8,
3409 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3410 .accessfn = gt_pct_access,
3411 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3413 { .name = "CNTPCTSS_EL0", .state = ARM_CP_STATE_AA64,
3414 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 5,
3415 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3416 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3420 #else
3423 * In user-mode most of the generic timer registers are inaccessible
3424 * however modern kernels (4.12+) allow access to cntvct_el0
3427 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3429 ARMCPU *cpu = env_archcpu(env);
3432 * Currently we have no support for QEMUTimer in linux-user so we
3433 * can't call gt_get_countervalue(env), instead we directly
3434 * call the lower level functions.
3436 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3439 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3440 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3441 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3442 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3443 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3444 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3446 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3447 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3448 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3449 .readfn = gt_virt_cnt_read,
3454 * CNTVCTSS_EL0 has the same trap conditions as CNTVCT_EL0, so it also
3455 * is exposed to userspace by Linux.
3457 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = {
3458 { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64,
3459 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6,
3460 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3461 .readfn = gt_virt_cnt_read,
3465 #endif
3467 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3469 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3470 raw_write(env, ri, value);
3471 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3472 raw_write(env, ri, value & 0xfffff6ff);
3473 } else {
3474 raw_write(env, ri, value & 0xfffff1ff);
3478 #ifndef CONFIG_USER_ONLY
3479 /* get_phys_addr() isn't present for user-mode-only targets */
3481 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3482 bool isread)
3484 if (ri->opc2 & 4) {
3486 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3487 * Secure EL1 (which can only happen if EL3 is AArch64).
3488 * They are simply UNDEF if executed from NS EL1.
3489 * They function normally from EL2 or EL3.
3491 if (arm_current_el(env) == 1) {
3492 if (arm_is_secure_below_el3(env)) {
3493 if (env->cp15.scr_el3 & SCR_EEL2) {
3494 return CP_ACCESS_TRAP_EL2;
3496 return CP_ACCESS_TRAP_EL3;
3498 return CP_ACCESS_TRAP_UNCATEGORIZED;
3501 return CP_ACCESS_OK;
3504 #ifdef CONFIG_TCG
3505 static int par_el1_shareability(GetPhysAddrResult *res)
3508 * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC
3509 * memory -- see pseudocode PAREncodeShareability().
3511 if (((res->cacheattrs.attrs & 0xf0) == 0) ||
3512 res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) {
3513 return 2;
3515 return res->cacheattrs.shareability;
3518 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3519 MMUAccessType access_type, ARMMMUIdx mmu_idx,
3520 ARMSecuritySpace ss)
3522 bool ret;
3523 uint64_t par64;
3524 bool format64 = false;
3525 ARMMMUFaultInfo fi = {};
3526 GetPhysAddrResult res = {};
3529 * I_MXTJT: Granule protection checks are not performed on the final address
3530 * of a successful translation.
3532 ret = get_phys_addr_with_space_nogpc(env, value, access_type, mmu_idx, ss,
3533 &res, &fi);
3536 * ATS operations only do S1 or S1+S2 translations, so we never
3537 * have to deal with the ARMCacheAttrs format for S2 only.
3539 assert(!res.cacheattrs.is_s2_format);
3541 if (ret) {
3543 * Some kinds of translation fault must cause exceptions rather
3544 * than being reported in the PAR.
3546 int current_el = arm_current_el(env);
3547 int target_el;
3548 uint32_t syn, fsr, fsc;
3549 bool take_exc = false;
3551 if (fi.s1ptw && current_el == 1
3552 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3554 * Synchronous stage 2 fault on an access made as part of the
3555 * translation table walk for AT S1E0* or AT S1E1* insn
3556 * executed from NS EL1. If this is a synchronous external abort
3557 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3558 * to EL3. Otherwise the fault is taken as an exception to EL2,
3559 * and HPFAR_EL2 holds the faulting IPA.
3561 if (fi.type == ARMFault_SyncExternalOnWalk &&
3562 (env->cp15.scr_el3 & SCR_EA)) {
3563 target_el = 3;
3564 } else {
3565 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3566 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3567 env->cp15.hpfar_el2 |= HPFAR_NS;
3569 target_el = 2;
3571 take_exc = true;
3572 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3574 * Synchronous external aborts during a translation table walk
3575 * are taken as Data Abort exceptions.
3577 if (fi.stage2) {
3578 if (current_el == 3) {
3579 target_el = 3;
3580 } else {
3581 target_el = 2;
3583 } else {
3584 target_el = exception_target_el(env);
3586 take_exc = true;
3589 if (take_exc) {
3590 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3591 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3592 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3593 fsr = arm_fi_to_lfsc(&fi);
3594 fsc = extract32(fsr, 0, 6);
3595 } else {
3596 fsr = arm_fi_to_sfsc(&fi);
3597 fsc = 0x3f;
3600 * Report exception with ESR indicating a fault due to a
3601 * translation table walk for a cache maintenance instruction.
3603 syn = syn_data_abort_no_iss(current_el == target_el, 0,
3604 fi.ea, 1, fi.s1ptw, 1, fsc);
3605 env->exception.vaddress = value;
3606 env->exception.fsr = fsr;
3607 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3611 if (is_a64(env)) {
3612 format64 = true;
3613 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3615 * ATS1Cxx:
3616 * * TTBCR.EAE determines whether the result is returned using the
3617 * 32-bit or the 64-bit PAR format
3618 * * Instructions executed in Hyp mode always use the 64bit format
3620 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3621 * * The Non-secure TTBCR.EAE bit is set to 1
3622 * * The implementation includes EL2, and the value of HCR.VM is 1
3624 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3626 * ATS1Hx always uses the 64bit format.
3628 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3630 if (arm_feature(env, ARM_FEATURE_EL2)) {
3631 if (mmu_idx == ARMMMUIdx_E10_0 ||
3632 mmu_idx == ARMMMUIdx_E10_1 ||
3633 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3634 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3635 } else {
3636 format64 |= arm_current_el(env) == 2;
3641 if (format64) {
3642 /* Create a 64-bit PAR */
3643 par64 = (1 << 11); /* LPAE bit always set */
3644 if (!ret) {
3645 par64 |= res.f.phys_addr & ~0xfffULL;
3646 if (!res.f.attrs.secure) {
3647 par64 |= (1 << 9); /* NS */
3649 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
3650 par64 |= par_el1_shareability(&res) << 7; /* SH */
3651 } else {
3652 uint32_t fsr = arm_fi_to_lfsc(&fi);
3654 par64 |= 1; /* F */
3655 par64 |= (fsr & 0x3f) << 1; /* FS */
3656 if (fi.stage2) {
3657 par64 |= (1 << 9); /* S */
3659 if (fi.s1ptw) {
3660 par64 |= (1 << 8); /* PTW */
3663 } else {
3665 * fsr is a DFSR/IFSR value for the short descriptor
3666 * translation table format (with WnR always clear).
3667 * Convert it to a 32-bit PAR.
3669 if (!ret) {
3670 /* We do not set any attribute bits in the PAR */
3671 if (res.f.lg_page_size == 24
3672 && arm_feature(env, ARM_FEATURE_V7)) {
3673 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
3674 } else {
3675 par64 = res.f.phys_addr & 0xfffff000;
3677 if (!res.f.attrs.secure) {
3678 par64 |= (1 << 9); /* NS */
3680 } else {
3681 uint32_t fsr = arm_fi_to_sfsc(&fi);
3683 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3684 ((fsr & 0xf) << 1) | 1;
3687 return par64;
3689 #endif /* CONFIG_TCG */
3691 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3693 #ifdef CONFIG_TCG
3694 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3695 uint64_t par64;
3696 ARMMMUIdx mmu_idx;
3697 int el = arm_current_el(env);
3698 ARMSecuritySpace ss = arm_security_space(env);
3700 switch (ri->opc2 & 6) {
3701 case 0:
3702 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3703 switch (el) {
3704 case 3:
3705 mmu_idx = ARMMMUIdx_E3;
3706 break;
3707 case 2:
3708 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */
3709 /* fall through */
3710 case 1:
3711 if (ri->crm == 9 && arm_pan_enabled(env)) {
3712 mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3713 } else {
3714 mmu_idx = ARMMMUIdx_Stage1_E1;
3716 break;
3717 default:
3718 g_assert_not_reached();
3720 break;
3721 case 2:
3722 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3723 switch (el) {
3724 case 3:
3725 mmu_idx = ARMMMUIdx_E10_0;
3726 break;
3727 case 2:
3728 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */
3729 mmu_idx = ARMMMUIdx_Stage1_E0;
3730 break;
3731 case 1:
3732 mmu_idx = ARMMMUIdx_Stage1_E0;
3733 break;
3734 default:
3735 g_assert_not_reached();
3737 break;
3738 case 4:
3739 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3740 mmu_idx = ARMMMUIdx_E10_1;
3741 ss = ARMSS_NonSecure;
3742 break;
3743 case 6:
3744 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3745 mmu_idx = ARMMMUIdx_E10_0;
3746 ss = ARMSS_NonSecure;
3747 break;
3748 default:
3749 g_assert_not_reached();
3752 par64 = do_ats_write(env, value, access_type, mmu_idx, ss);
3754 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3755 #else
3756 /* Handled by hardware accelerator. */
3757 g_assert_not_reached();
3758 #endif /* CONFIG_TCG */
3761 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3762 uint64_t value)
3764 #ifdef CONFIG_TCG
3765 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3766 uint64_t par64;
3768 /* There is no SecureEL2 for AArch32. */
3769 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2,
3770 ARMSS_NonSecure);
3772 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3773 #else
3774 /* Handled by hardware accelerator. */
3775 g_assert_not_reached();
3776 #endif /* CONFIG_TCG */
3779 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri,
3780 bool isread)
3783 * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level
3784 * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can
3785 * only happen when executing at EL3 because that combination also causes an
3786 * illegal exception return. We don't need to check FEAT_RME either, because
3787 * scr_write() ensures that the NSE bit is not set otherwise.
3789 if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) {
3790 return CP_ACCESS_TRAP;
3792 return CP_ACCESS_OK;
3795 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3796 bool isread)
3798 if (arm_current_el(env) == 3 &&
3799 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3800 return CP_ACCESS_TRAP;
3802 return at_e012_access(env, ri, isread);
3805 static CPAccessResult at_s1e01_access(CPUARMState *env, const ARMCPRegInfo *ri,
3806 bool isread)
3808 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_AT)) {
3809 return CP_ACCESS_TRAP_EL2;
3811 return at_e012_access(env, ri, isread);
3814 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3815 uint64_t value)
3817 #ifdef CONFIG_TCG
3818 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3819 ARMMMUIdx mmu_idx;
3820 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
3821 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
3823 switch (ri->opc2 & 6) {
3824 case 0:
3825 switch (ri->opc1) {
3826 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3827 if (ri->crm == 9 && arm_pan_enabled(env)) {
3828 mmu_idx = regime_e20 ?
3829 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
3830 } else {
3831 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
3833 break;
3834 case 4: /* AT S1E2R, AT S1E2W */
3835 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
3836 break;
3837 case 6: /* AT S1E3R, AT S1E3W */
3838 mmu_idx = ARMMMUIdx_E3;
3839 break;
3840 default:
3841 g_assert_not_reached();
3843 break;
3844 case 2: /* AT S1E0R, AT S1E0W */
3845 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
3846 break;
3847 case 4: /* AT S12E1R, AT S12E1W */
3848 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
3849 break;
3850 case 6: /* AT S12E0R, AT S12E0W */
3851 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
3852 break;
3853 default:
3854 g_assert_not_reached();
3857 env->cp15.par_el[1] = do_ats_write(env, value, access_type,
3858 mmu_idx, arm_security_space(env));
3859 #else
3860 /* Handled by hardware accelerator. */
3861 g_assert_not_reached();
3862 #endif /* CONFIG_TCG */
3864 #endif
3866 /* Return basic MPU access permission bits. */
3867 static uint32_t simple_mpu_ap_bits(uint32_t val)
3869 uint32_t ret;
3870 uint32_t mask;
3871 int i;
3872 ret = 0;
3873 mask = 3;
3874 for (i = 0; i < 16; i += 2) {
3875 ret |= (val >> i) & mask;
3876 mask <<= 2;
3878 return ret;
3881 /* Pad basic MPU access permission bits to extended format. */
3882 static uint32_t extended_mpu_ap_bits(uint32_t val)
3884 uint32_t ret;
3885 uint32_t mask;
3886 int i;
3887 ret = 0;
3888 mask = 3;
3889 for (i = 0; i < 16; i += 2) {
3890 ret |= (val & mask) << i;
3891 mask <<= 2;
3893 return ret;
3896 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3897 uint64_t value)
3899 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3902 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3904 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3907 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3908 uint64_t value)
3910 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3913 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3915 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3918 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3920 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3922 if (!u32p) {
3923 return 0;
3926 u32p += env->pmsav7.rnr[M_REG_NS];
3927 return *u32p;
3930 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3931 uint64_t value)
3933 ARMCPU *cpu = env_archcpu(env);
3934 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3936 if (!u32p) {
3937 return;
3940 u32p += env->pmsav7.rnr[M_REG_NS];
3941 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3942 *u32p = value;
3945 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3946 uint64_t value)
3948 ARMCPU *cpu = env_archcpu(env);
3949 uint32_t nrgs = cpu->pmsav7_dregion;
3951 if (value >= nrgs) {
3952 qemu_log_mask(LOG_GUEST_ERROR,
3953 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3954 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3955 return;
3958 raw_write(env, ri, value);
3961 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3962 uint64_t value)
3964 ARMCPU *cpu = env_archcpu(env);
3966 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3967 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3970 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3972 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3975 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3976 uint64_t value)
3978 ARMCPU *cpu = env_archcpu(env);
3980 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3981 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3984 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3986 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3989 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3990 uint64_t value)
3992 ARMCPU *cpu = env_archcpu(env);
3995 * Ignore writes that would select not implemented region.
3996 * This is architecturally UNPREDICTABLE.
3998 if (value >= cpu->pmsav7_dregion) {
3999 return;
4002 env->pmsav7.rnr[M_REG_NS] = value;
4005 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4006 uint64_t value)
4008 ARMCPU *cpu = env_archcpu(env);
4010 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4011 env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
4014 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
4016 return env->pmsav8.hprbar[env->pmsav8.hprselr];
4019 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4020 uint64_t value)
4022 ARMCPU *cpu = env_archcpu(env);
4024 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4025 env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
4028 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
4030 return env->pmsav8.hprlar[env->pmsav8.hprselr];
4033 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4034 uint64_t value)
4036 uint32_t n;
4037 uint32_t bit;
4038 ARMCPU *cpu = env_archcpu(env);
4040 /* Ignore writes to unimplemented regions */
4041 int rmax = MIN(cpu->pmsav8r_hdregion, 32);
4042 value &= MAKE_64BIT_MASK(0, rmax);
4044 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4046 /* Register alias is only valid for first 32 indexes */
4047 for (n = 0; n < rmax; ++n) {
4048 bit = extract32(value, n, 1);
4049 env->pmsav8.hprlar[n] = deposit32(
4050 env->pmsav8.hprlar[n], 0, 1, bit);
4054 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4056 uint32_t n;
4057 uint32_t result = 0x0;
4058 ARMCPU *cpu = env_archcpu(env);
4060 /* Register alias is only valid for first 32 indexes */
4061 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
4062 if (env->pmsav8.hprlar[n] & 0x1) {
4063 result |= (0x1 << n);
4066 return result;
4069 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4070 uint64_t value)
4072 ARMCPU *cpu = env_archcpu(env);
4075 * Ignore writes that would select not implemented region.
4076 * This is architecturally UNPREDICTABLE.
4078 if (value >= cpu->pmsav8r_hdregion) {
4079 return;
4082 env->pmsav8.hprselr = value;
4085 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
4086 uint64_t value)
4088 ARMCPU *cpu = env_archcpu(env);
4089 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
4090 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
4092 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4094 if (ri->opc1 & 4) {
4095 if (index >= cpu->pmsav8r_hdregion) {
4096 return;
4098 if (ri->opc2 & 0x1) {
4099 env->pmsav8.hprlar[index] = value;
4100 } else {
4101 env->pmsav8.hprbar[index] = value;
4103 } else {
4104 if (index >= cpu->pmsav7_dregion) {
4105 return;
4107 if (ri->opc2 & 0x1) {
4108 env->pmsav8.rlar[M_REG_NS][index] = value;
4109 } else {
4110 env->pmsav8.rbar[M_REG_NS][index] = value;
4115 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
4117 ARMCPU *cpu = env_archcpu(env);
4118 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
4119 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
4121 if (ri->opc1 & 4) {
4122 if (index >= cpu->pmsav8r_hdregion) {
4123 return 0x0;
4125 if (ri->opc2 & 0x1) {
4126 return env->pmsav8.hprlar[index];
4127 } else {
4128 return env->pmsav8.hprbar[index];
4130 } else {
4131 if (index >= cpu->pmsav7_dregion) {
4132 return 0x0;
4134 if (ri->opc2 & 0x1) {
4135 return env->pmsav8.rlar[M_REG_NS][index];
4136 } else {
4137 return env->pmsav8.rbar[M_REG_NS][index];
4142 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
4143 { .name = "PRBAR",
4144 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
4145 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4146 .accessfn = access_tvm_trvm,
4147 .readfn = prbar_read, .writefn = prbar_write },
4148 { .name = "PRLAR",
4149 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
4150 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4151 .accessfn = access_tvm_trvm,
4152 .readfn = prlar_read, .writefn = prlar_write },
4153 { .name = "PRSELR", .resetvalue = 0,
4154 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
4155 .access = PL1_RW, .accessfn = access_tvm_trvm,
4156 .writefn = prselr_write,
4157 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
4158 { .name = "HPRBAR", .resetvalue = 0,
4159 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
4160 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4161 .readfn = hprbar_read, .writefn = hprbar_write },
4162 { .name = "HPRLAR",
4163 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
4164 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4165 .readfn = hprlar_read, .writefn = hprlar_write },
4166 { .name = "HPRSELR", .resetvalue = 0,
4167 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
4168 .access = PL2_RW,
4169 .writefn = hprselr_write,
4170 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
4171 { .name = "HPRENR",
4172 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
4173 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4174 .readfn = hprenr_read, .writefn = hprenr_write },
4177 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
4179 * Reset for all these registers is handled in arm_cpu_reset(),
4180 * because the PMSAv7 is also used by M-profile CPUs, which do
4181 * not register cpregs but still need the state to be reset.
4183 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
4184 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4185 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
4186 .readfn = pmsav7_read, .writefn = pmsav7_write,
4187 .resetfn = arm_cp_reset_ignore },
4188 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
4189 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4190 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
4191 .readfn = pmsav7_read, .writefn = pmsav7_write,
4192 .resetfn = arm_cp_reset_ignore },
4193 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
4194 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4195 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
4196 .readfn = pmsav7_read, .writefn = pmsav7_write,
4197 .resetfn = arm_cp_reset_ignore },
4198 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
4199 .access = PL1_RW,
4200 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
4201 .writefn = pmsav7_rgnr_write,
4202 .resetfn = arm_cp_reset_ignore },
4205 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
4206 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4207 .access = PL1_RW, .type = ARM_CP_ALIAS,
4208 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4209 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
4210 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4211 .access = PL1_RW, .type = ARM_CP_ALIAS,
4212 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4213 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
4214 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
4215 .access = PL1_RW,
4216 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4217 .resetvalue = 0, },
4218 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
4219 .access = PL1_RW,
4220 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4221 .resetvalue = 0, },
4222 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4223 .access = PL1_RW,
4224 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
4225 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
4226 .access = PL1_RW,
4227 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
4228 /* Protection region base and size registers */
4229 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
4230 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4231 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
4232 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
4233 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4234 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
4235 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
4236 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4237 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
4238 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
4239 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4240 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
4241 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
4242 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4243 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
4244 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
4245 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4246 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
4247 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
4248 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4249 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
4250 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
4251 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4252 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
4255 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4256 uint64_t value)
4258 ARMCPU *cpu = env_archcpu(env);
4260 if (!arm_feature(env, ARM_FEATURE_V8)) {
4261 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
4263 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
4264 * using Long-descriptor translation table format
4266 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
4267 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
4269 * In an implementation that includes the Security Extensions
4270 * TTBCR has additional fields PD0 [4] and PD1 [5] for
4271 * Short-descriptor translation table format.
4273 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
4274 } else {
4275 value &= TTBCR_N;
4279 if (arm_feature(env, ARM_FEATURE_LPAE)) {
4281 * With LPAE the TTBCR could result in a change of ASID
4282 * via the TTBCR.A1 bit, so do a TLB flush.
4284 tlb_flush(CPU(cpu));
4286 raw_write(env, ri, value);
4289 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
4290 uint64_t value)
4292 ARMCPU *cpu = env_archcpu(env);
4294 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
4295 tlb_flush(CPU(cpu));
4296 raw_write(env, ri, value);
4299 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4300 uint64_t value)
4302 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
4303 if (cpreg_field_is_64bit(ri) &&
4304 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4305 ARMCPU *cpu = env_archcpu(env);
4306 tlb_flush(CPU(cpu));
4308 raw_write(env, ri, value);
4311 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4312 uint64_t value)
4315 * If we are running with E2&0 regime, then an ASID is active.
4316 * Flush if that might be changing. Note we're not checking
4317 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4318 * holds the active ASID, only checking the field that might.
4320 if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4321 (arm_hcr_el2_eff(env) & HCR_E2H)) {
4322 uint16_t mask = ARMMMUIdxBit_E20_2 |
4323 ARMMMUIdxBit_E20_2_PAN |
4324 ARMMMUIdxBit_E20_0;
4325 tlb_flush_by_mmuidx(env_cpu(env), mask);
4327 raw_write(env, ri, value);
4330 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4331 uint64_t value)
4333 ARMCPU *cpu = env_archcpu(env);
4334 CPUState *cs = CPU(cpu);
4337 * A change in VMID to the stage2 page table (Stage2) invalidates
4338 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
4340 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4341 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
4343 raw_write(env, ri, value);
4346 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4347 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4348 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4349 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4350 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4351 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4352 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4353 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4354 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4355 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4356 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4357 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4358 offsetof(CPUARMState, cp15.dfar_ns) } },
4359 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4360 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4361 .access = PL1_RW, .accessfn = access_tvm_trvm,
4362 .fgt = FGT_FAR_EL1,
4363 .nv2_redirect_offset = 0x220 | NV2_REDIR_NV1,
4364 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4365 .resetvalue = 0, },
4368 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4369 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4370 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4371 .access = PL1_RW, .accessfn = access_tvm_trvm,
4372 .fgt = FGT_ESR_EL1,
4373 .nv2_redirect_offset = 0x138 | NV2_REDIR_NV1,
4374 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4375 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4376 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4377 .access = PL1_RW, .accessfn = access_tvm_trvm,
4378 .fgt = FGT_TTBR0_EL1,
4379 .nv2_redirect_offset = 0x200 | NV2_REDIR_NV1,
4380 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4381 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4382 offsetof(CPUARMState, cp15.ttbr0_ns) } },
4383 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4384 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4385 .access = PL1_RW, .accessfn = access_tvm_trvm,
4386 .fgt = FGT_TTBR1_EL1,
4387 .nv2_redirect_offset = 0x210 | NV2_REDIR_NV1,
4388 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4389 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4390 offsetof(CPUARMState, cp15.ttbr1_ns) } },
4391 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4392 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4393 .access = PL1_RW, .accessfn = access_tvm_trvm,
4394 .fgt = FGT_TCR_EL1,
4395 .nv2_redirect_offset = 0x120 | NV2_REDIR_NV1,
4396 .writefn = vmsa_tcr_el12_write,
4397 .raw_writefn = raw_write,
4398 .resetvalue = 0,
4399 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4400 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4401 .access = PL1_RW, .accessfn = access_tvm_trvm,
4402 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4403 .raw_writefn = raw_write,
4404 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4405 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4409 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4410 * qemu tlbs nor adjusting cached masks.
4412 static const ARMCPRegInfo ttbcr2_reginfo = {
4413 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4414 .access = PL1_RW, .accessfn = access_tvm_trvm,
4415 .type = ARM_CP_ALIAS,
4416 .bank_fieldoffsets = {
4417 offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4418 offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
4422 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4423 uint64_t value)
4425 env->cp15.c15_ticonfig = value & 0xe7;
4426 /* The OS_TYPE bit in this register changes the reported CPUID! */
4427 env->cp15.c0_cpuid = (value & (1 << 5)) ?
4428 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4431 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4432 uint64_t value)
4434 env->cp15.c15_threadid = value & 0xffff;
4437 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4438 uint64_t value)
4440 /* Wait-for-interrupt (deprecated) */
4441 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4444 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4445 uint64_t value)
4448 * On OMAP there are registers indicating the max/min index of dcache lines
4449 * containing a dirty line; cache flush operations have to reset these.
4451 env->cp15.c15_i_max = 0x000;
4452 env->cp15.c15_i_min = 0xff0;
4455 static const ARMCPRegInfo omap_cp_reginfo[] = {
4456 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4457 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4458 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4459 .resetvalue = 0, },
4460 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4461 .access = PL1_RW, .type = ARM_CP_NOP },
4462 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4463 .access = PL1_RW,
4464 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4465 .writefn = omap_ticonfig_write },
4466 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4467 .access = PL1_RW,
4468 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4469 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4470 .access = PL1_RW, .resetvalue = 0xff0,
4471 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4472 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4473 .access = PL1_RW,
4474 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4475 .writefn = omap_threadid_write },
4476 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4477 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4478 .type = ARM_CP_NO_RAW,
4479 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4481 * TODO: Peripheral port remap register:
4482 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4483 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4484 * when MMU is off.
4486 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4487 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4488 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4489 .writefn = omap_cachemaint_write },
4490 { .name = "C9", .cp = 15, .crn = 9,
4491 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4492 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4495 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4496 uint64_t value)
4498 env->cp15.c15_cpar = value & 0x3fff;
4501 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4502 { .name = "XSCALE_CPAR",
4503 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4504 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4505 .writefn = xscale_cpar_write, },
4506 { .name = "XSCALE_AUXCR",
4507 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4508 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4509 .resetvalue = 0, },
4511 * XScale specific cache-lockdown: since we have no cache we NOP these
4512 * and hope the guest does not really rely on cache behaviour.
4514 { .name = "XSCALE_LOCK_ICACHE_LINE",
4515 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4516 .access = PL1_W, .type = ARM_CP_NOP },
4517 { .name = "XSCALE_UNLOCK_ICACHE",
4518 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4519 .access = PL1_W, .type = ARM_CP_NOP },
4520 { .name = "XSCALE_DCACHE_LOCK",
4521 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4522 .access = PL1_RW, .type = ARM_CP_NOP },
4523 { .name = "XSCALE_UNLOCK_DCACHE",
4524 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4525 .access = PL1_W, .type = ARM_CP_NOP },
4528 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4530 * RAZ/WI the whole crn=15 space, when we don't have a more specific
4531 * implementation of this implementation-defined space.
4532 * Ideally this should eventually disappear in favour of actually
4533 * implementing the correct behaviour for all cores.
4535 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4536 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4537 .access = PL1_RW,
4538 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4539 .resetvalue = 0 },
4542 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4543 /* Cache status: RAZ because we have no cache so it's always clean */
4544 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4545 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4546 .resetvalue = 0 },
4549 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4550 /* We never have a block transfer operation in progress */
4551 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4552 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4553 .resetvalue = 0 },
4554 /* The cache ops themselves: these all NOP for QEMU */
4555 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4556 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4557 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4558 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4559 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4560 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4561 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4562 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4563 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4564 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4565 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4566 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4569 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4571 * The cache test-and-clean instructions always return (1 << 30)
4572 * to indicate that there are no dirty cache lines.
4574 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4575 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4576 .resetvalue = (1 << 30) },
4577 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4578 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4579 .resetvalue = (1 << 30) },
4582 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4583 /* Ignore ReadBuffer accesses */
4584 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4585 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4586 .access = PL1_RW, .resetvalue = 0,
4587 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4590 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4592 unsigned int cur_el = arm_current_el(env);
4594 if (arm_is_el2_enabled(env) && cur_el == 1) {
4595 return env->cp15.vpidr_el2;
4597 return raw_read(env, ri);
4600 static uint64_t mpidr_read_val(CPUARMState *env)
4602 ARMCPU *cpu = env_archcpu(env);
4603 uint64_t mpidr = cpu->mp_affinity;
4605 if (arm_feature(env, ARM_FEATURE_V7MP)) {
4606 mpidr |= (1U << 31);
4608 * Cores which are uniprocessor (non-coherent)
4609 * but still implement the MP extensions set
4610 * bit 30. (For instance, Cortex-R5).
4612 if (cpu->mp_is_up) {
4613 mpidr |= (1u << 30);
4616 return mpidr;
4619 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4621 unsigned int cur_el = arm_current_el(env);
4623 if (arm_is_el2_enabled(env) && cur_el == 1) {
4624 return env->cp15.vmpidr_el2;
4626 return mpidr_read_val(env);
4629 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4630 /* NOP AMAIR0/1 */
4631 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4632 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4633 .access = PL1_RW, .accessfn = access_tvm_trvm,
4634 .fgt = FGT_AMAIR_EL1,
4635 .nv2_redirect_offset = 0x148 | NV2_REDIR_NV1,
4636 .type = ARM_CP_CONST, .resetvalue = 0 },
4637 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4638 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4639 .access = PL1_RW, .accessfn = access_tvm_trvm,
4640 .type = ARM_CP_CONST, .resetvalue = 0 },
4641 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4642 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4643 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4644 offsetof(CPUARMState, cp15.par_ns)} },
4645 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4646 .access = PL1_RW, .accessfn = access_tvm_trvm,
4647 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4648 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4649 offsetof(CPUARMState, cp15.ttbr0_ns) },
4650 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4651 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4652 .access = PL1_RW, .accessfn = access_tvm_trvm,
4653 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4654 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4655 offsetof(CPUARMState, cp15.ttbr1_ns) },
4656 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4659 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4661 return vfp_get_fpcr(env);
4664 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4665 uint64_t value)
4667 vfp_set_fpcr(env, value);
4670 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4672 return vfp_get_fpsr(env);
4675 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4676 uint64_t value)
4678 vfp_set_fpsr(env, value);
4681 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4682 bool isread)
4684 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4685 return CP_ACCESS_TRAP;
4687 return CP_ACCESS_OK;
4690 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4691 uint64_t value)
4693 env->daif = value & PSTATE_DAIF;
4696 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4698 return env->pstate & PSTATE_PAN;
4701 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4702 uint64_t value)
4704 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4707 static const ARMCPRegInfo pan_reginfo = {
4708 .name = "PAN", .state = ARM_CP_STATE_AA64,
4709 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4710 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4711 .readfn = aa64_pan_read, .writefn = aa64_pan_write
4714 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4716 return env->pstate & PSTATE_UAO;
4719 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4720 uint64_t value)
4722 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4725 static const ARMCPRegInfo uao_reginfo = {
4726 .name = "UAO", .state = ARM_CP_STATE_AA64,
4727 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4728 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4729 .readfn = aa64_uao_read, .writefn = aa64_uao_write
4732 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4734 return env->pstate & PSTATE_DIT;
4737 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4738 uint64_t value)
4740 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4743 static const ARMCPRegInfo dit_reginfo = {
4744 .name = "DIT", .state = ARM_CP_STATE_AA64,
4745 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4746 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4747 .readfn = aa64_dit_read, .writefn = aa64_dit_write
4750 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4752 return env->pstate & PSTATE_SSBS;
4755 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4756 uint64_t value)
4758 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4761 static const ARMCPRegInfo ssbs_reginfo = {
4762 .name = "SSBS", .state = ARM_CP_STATE_AA64,
4763 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4764 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4765 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4768 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4769 const ARMCPRegInfo *ri,
4770 bool isread)
4772 /* Cache invalidate/clean to Point of Coherency or Persistence... */
4773 switch (arm_current_el(env)) {
4774 case 0:
4775 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4776 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4777 return CP_ACCESS_TRAP;
4779 /* fall through */
4780 case 1:
4781 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
4782 if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4783 return CP_ACCESS_TRAP_EL2;
4785 break;
4787 return CP_ACCESS_OK;
4790 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
4792 /* Cache invalidate/clean to Point of Unification... */
4793 switch (arm_current_el(env)) {
4794 case 0:
4795 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4796 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4797 return CP_ACCESS_TRAP;
4799 /* fall through */
4800 case 1:
4801 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */
4802 if (arm_hcr_el2_eff(env) & hcrflags) {
4803 return CP_ACCESS_TRAP_EL2;
4805 break;
4807 return CP_ACCESS_OK;
4810 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
4811 bool isread)
4813 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
4816 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
4817 bool isread)
4819 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
4823 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4824 * Page D4-1736 (DDI0487A.b)
4827 static int vae1_tlbmask(CPUARMState *env)
4829 uint64_t hcr = arm_hcr_el2_eff(env);
4830 uint16_t mask;
4832 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4833 mask = ARMMMUIdxBit_E20_2 |
4834 ARMMMUIdxBit_E20_2_PAN |
4835 ARMMMUIdxBit_E20_0;
4836 } else {
4837 mask = ARMMMUIdxBit_E10_1 |
4838 ARMMMUIdxBit_E10_1_PAN |
4839 ARMMMUIdxBit_E10_0;
4841 return mask;
4844 static int vae2_tlbmask(CPUARMState *env)
4846 uint64_t hcr = arm_hcr_el2_eff(env);
4847 uint16_t mask;
4849 if (hcr & HCR_E2H) {
4850 mask = ARMMMUIdxBit_E20_2 |
4851 ARMMMUIdxBit_E20_2_PAN |
4852 ARMMMUIdxBit_E20_0;
4853 } else {
4854 mask = ARMMMUIdxBit_E2;
4856 return mask;
4859 /* Return 56 if TBI is enabled, 64 otherwise. */
4860 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4861 uint64_t addr)
4863 uint64_t tcr = regime_tcr(env, mmu_idx);
4864 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4865 int select = extract64(addr, 55, 1);
4867 return (tbi >> select) & 1 ? 56 : 64;
4870 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4872 uint64_t hcr = arm_hcr_el2_eff(env);
4873 ARMMMUIdx mmu_idx;
4875 /* Only the regime of the mmu_idx below is significant. */
4876 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4877 mmu_idx = ARMMMUIdx_E20_0;
4878 } else {
4879 mmu_idx = ARMMMUIdx_E10_0;
4882 return tlbbits_for_regime(env, mmu_idx, addr);
4885 static int vae2_tlbbits(CPUARMState *env, uint64_t addr)
4887 uint64_t hcr = arm_hcr_el2_eff(env);
4888 ARMMMUIdx mmu_idx;
4891 * Only the regime of the mmu_idx below is significant.
4892 * Regime EL2&0 has two ranges with separate TBI configuration, while EL2
4893 * only has one.
4895 if (hcr & HCR_E2H) {
4896 mmu_idx = ARMMMUIdx_E20_2;
4897 } else {
4898 mmu_idx = ARMMMUIdx_E2;
4901 return tlbbits_for_regime(env, mmu_idx, addr);
4904 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4905 uint64_t value)
4907 CPUState *cs = env_cpu(env);
4908 int mask = vae1_tlbmask(env);
4910 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4913 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4914 uint64_t value)
4916 CPUState *cs = env_cpu(env);
4917 int mask = vae1_tlbmask(env);
4919 if (tlb_force_broadcast(env)) {
4920 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4921 } else {
4922 tlb_flush_by_mmuidx(cs, mask);
4926 static int e2_tlbmask(CPUARMState *env)
4928 return (ARMMMUIdxBit_E20_0 |
4929 ARMMMUIdxBit_E20_2 |
4930 ARMMMUIdxBit_E20_2_PAN |
4931 ARMMMUIdxBit_E2);
4934 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4935 uint64_t value)
4937 CPUState *cs = env_cpu(env);
4938 int mask = alle1_tlbmask(env);
4940 tlb_flush_by_mmuidx(cs, mask);
4943 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4944 uint64_t value)
4946 CPUState *cs = env_cpu(env);
4947 int mask = e2_tlbmask(env);
4949 tlb_flush_by_mmuidx(cs, mask);
4952 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4953 uint64_t value)
4955 ARMCPU *cpu = env_archcpu(env);
4956 CPUState *cs = CPU(cpu);
4958 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
4961 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4962 uint64_t value)
4964 CPUState *cs = env_cpu(env);
4965 int mask = alle1_tlbmask(env);
4967 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4970 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4971 uint64_t value)
4973 CPUState *cs = env_cpu(env);
4974 int mask = e2_tlbmask(env);
4976 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4979 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4980 uint64_t value)
4982 CPUState *cs = env_cpu(env);
4984 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
4987 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4988 uint64_t value)
4991 * Invalidate by VA, EL2
4992 * Currently handles both VAE2 and VALE2, since we don't support
4993 * flush-last-level-only.
4995 CPUState *cs = env_cpu(env);
4996 int mask = vae2_tlbmask(env);
4997 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4998 int bits = vae2_tlbbits(env, pageaddr);
5000 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
5003 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5004 uint64_t value)
5007 * Invalidate by VA, EL3
5008 * Currently handles both VAE3 and VALE3, since we don't support
5009 * flush-last-level-only.
5011 ARMCPU *cpu = env_archcpu(env);
5012 CPUState *cs = CPU(cpu);
5013 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5015 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
5018 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5019 uint64_t value)
5021 CPUState *cs = env_cpu(env);
5022 int mask = vae1_tlbmask(env);
5023 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5024 int bits = vae1_tlbbits(env, pageaddr);
5026 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
5029 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5030 uint64_t value)
5033 * Invalidate by VA, EL1&0 (AArch64 version).
5034 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
5035 * since we don't support flush-for-specific-ASID-only or
5036 * flush-last-level-only.
5038 CPUState *cs = env_cpu(env);
5039 int mask = vae1_tlbmask(env);
5040 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5041 int bits = vae1_tlbbits(env, pageaddr);
5043 if (tlb_force_broadcast(env)) {
5044 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
5045 } else {
5046 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
5050 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5051 uint64_t value)
5053 CPUState *cs = env_cpu(env);
5054 int mask = vae2_tlbmask(env);
5055 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5056 int bits = vae2_tlbbits(env, pageaddr);
5058 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
5061 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5062 uint64_t value)
5064 CPUState *cs = env_cpu(env);
5065 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5066 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
5068 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
5069 ARMMMUIdxBit_E3, bits);
5072 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
5075 * The MSB of value is the NS field, which only applies if SEL2
5076 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
5078 return (value >= 0
5079 && cpu_isar_feature(aa64_sel2, env_archcpu(env))
5080 && arm_is_secure_below_el3(env)
5081 ? ARMMMUIdxBit_Stage2_S
5082 : ARMMMUIdxBit_Stage2);
5085 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5086 uint64_t value)
5088 CPUState *cs = env_cpu(env);
5089 int mask = ipas2e1_tlbmask(env, value);
5090 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5092 if (tlb_force_broadcast(env)) {
5093 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
5094 } else {
5095 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
5099 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5100 uint64_t value)
5102 CPUState *cs = env_cpu(env);
5103 int mask = ipas2e1_tlbmask(env, value);
5104 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5106 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
5109 #ifdef TARGET_AARCH64
5110 typedef struct {
5111 uint64_t base;
5112 uint64_t length;
5113 } TLBIRange;
5115 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
5118 * Note that the TLBI range TG field encoding differs from both
5119 * TG0 and TG1 encodings.
5121 switch (tg) {
5122 case 1:
5123 return Gran4K;
5124 case 2:
5125 return Gran16K;
5126 case 3:
5127 return Gran64K;
5128 default:
5129 return GranInvalid;
5133 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
5134 uint64_t value)
5136 unsigned int page_size_granule, page_shift, num, scale, exponent;
5137 /* Extract one bit to represent the va selector in use. */
5138 uint64_t select = sextract64(value, 36, 1);
5139 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false);
5140 TLBIRange ret = { };
5141 ARMGranuleSize gran;
5143 page_size_granule = extract64(value, 46, 2);
5144 gran = tlbi_range_tg_to_gran_size(page_size_granule);
5146 /* The granule encoded in value must match the granule in use. */
5147 if (gran != param.gran) {
5148 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
5149 page_size_granule);
5150 return ret;
5153 page_shift = arm_granule_bits(gran);
5154 num = extract64(value, 39, 5);
5155 scale = extract64(value, 44, 2);
5156 exponent = (5 * scale) + 1;
5158 ret.length = (num + 1) << (exponent + page_shift);
5160 if (param.select) {
5161 ret.base = sextract64(value, 0, 37);
5162 } else {
5163 ret.base = extract64(value, 0, 37);
5165 if (param.ds) {
5167 * With DS=1, BaseADDR is always shifted 16 so that it is able
5168 * to address all 52 va bits. The input address is perforce
5169 * aligned on a 64k boundary regardless of translation granule.
5171 page_shift = 16;
5173 ret.base <<= page_shift;
5175 return ret;
5178 static void do_rvae_write(CPUARMState *env, uint64_t value,
5179 int idxmap, bool synced)
5181 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
5182 TLBIRange range;
5183 int bits;
5185 range = tlbi_aa64_get_range(env, one_idx, value);
5186 bits = tlbbits_for_regime(env, one_idx, range.base);
5188 if (synced) {
5189 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
5190 range.base,
5191 range.length,
5192 idxmap,
5193 bits);
5194 } else {
5195 tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
5196 range.length, idxmap, bits);
5200 static void tlbi_aa64_rvae1_write(CPUARMState *env,
5201 const ARMCPRegInfo *ri,
5202 uint64_t value)
5205 * Invalidate by VA range, EL1&0.
5206 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
5207 * since we don't support flush-for-specific-ASID-only or
5208 * flush-last-level-only.
5211 do_rvae_write(env, value, vae1_tlbmask(env),
5212 tlb_force_broadcast(env));
5215 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
5216 const ARMCPRegInfo *ri,
5217 uint64_t value)
5220 * Invalidate by VA range, Inner/Outer Shareable EL1&0.
5221 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
5222 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
5223 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
5224 * shareable specific flushes.
5227 do_rvae_write(env, value, vae1_tlbmask(env), true);
5230 static void tlbi_aa64_rvae2_write(CPUARMState *env,
5231 const ARMCPRegInfo *ri,
5232 uint64_t value)
5235 * Invalidate by VA range, EL2.
5236 * Currently handles all of RVAE2 and RVALE2,
5237 * since we don't support flush-for-specific-ASID-only or
5238 * flush-last-level-only.
5241 do_rvae_write(env, value, vae2_tlbmask(env),
5242 tlb_force_broadcast(env));
5247 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
5248 const ARMCPRegInfo *ri,
5249 uint64_t value)
5252 * Invalidate by VA range, Inner/Outer Shareable, EL2.
5253 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
5254 * since we don't support flush-for-specific-ASID-only,
5255 * flush-last-level-only or inner/outer shareable specific flushes.
5258 do_rvae_write(env, value, vae2_tlbmask(env), true);
5262 static void tlbi_aa64_rvae3_write(CPUARMState *env,
5263 const ARMCPRegInfo *ri,
5264 uint64_t value)
5267 * Invalidate by VA range, EL3.
5268 * Currently handles all of RVAE3 and RVALE3,
5269 * since we don't support flush-for-specific-ASID-only or
5270 * flush-last-level-only.
5273 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
5276 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
5277 const ARMCPRegInfo *ri,
5278 uint64_t value)
5281 * Invalidate by VA range, EL3, Inner/Outer Shareable.
5282 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
5283 * since we don't support flush-for-specific-ASID-only,
5284 * flush-last-level-only or inner/outer specific flushes.
5287 do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
5290 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5291 uint64_t value)
5293 do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
5294 tlb_force_broadcast(env));
5297 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
5298 const ARMCPRegInfo *ri,
5299 uint64_t value)
5301 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
5303 #endif
5305 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
5306 bool isread)
5308 int cur_el = arm_current_el(env);
5310 if (cur_el < 2) {
5311 uint64_t hcr = arm_hcr_el2_eff(env);
5313 if (cur_el == 0) {
5314 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5315 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
5316 return CP_ACCESS_TRAP_EL2;
5318 } else {
5319 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
5320 return CP_ACCESS_TRAP;
5322 if (hcr & HCR_TDZ) {
5323 return CP_ACCESS_TRAP_EL2;
5326 } else if (hcr & HCR_TDZ) {
5327 return CP_ACCESS_TRAP_EL2;
5330 return CP_ACCESS_OK;
5333 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
5335 ARMCPU *cpu = env_archcpu(env);
5336 int dzp_bit = 1 << 4;
5338 /* DZP indicates whether DC ZVA access is allowed */
5339 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
5340 dzp_bit = 0;
5342 return cpu->dcz_blocksize | dzp_bit;
5345 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5346 bool isread)
5348 if (!(env->pstate & PSTATE_SP)) {
5350 * Access to SP_EL0 is undefined if it's being used as
5351 * the stack pointer.
5353 return CP_ACCESS_TRAP_UNCATEGORIZED;
5355 return CP_ACCESS_OK;
5358 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
5360 return env->pstate & PSTATE_SP;
5363 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5365 update_spsel(env, val);
5368 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5369 uint64_t value)
5371 ARMCPU *cpu = env_archcpu(env);
5373 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
5374 /* M bit is RAZ/WI for PMSA with no MPU implemented */
5375 value &= ~SCTLR_M;
5378 /* ??? Lots of these bits are not implemented. */
5380 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5381 if (ri->opc1 == 6) { /* SCTLR_EL3 */
5382 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5383 } else {
5384 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5385 SCTLR_ATA0 | SCTLR_ATA);
5389 if (raw_read(env, ri) == value) {
5391 * Skip the TLB flush if nothing actually changed; Linux likes
5392 * to do a lot of pointless SCTLR writes.
5394 return;
5397 raw_write(env, ri, value);
5399 /* This may enable/disable the MMU, so do a TLB flush. */
5400 tlb_flush(CPU(cpu));
5402 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) {
5404 * Normally we would always end the TB on an SCTLR write; see the
5405 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5406 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5407 * of hflags from the translator, so do it here.
5409 arm_rebuild_hflags(env);
5413 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5414 uint64_t value)
5417 * Some MDCR_EL3 bits affect whether PMU counters are running:
5418 * if we are trying to change any of those then we must
5419 * bracket this update with PMU start/finish calls.
5421 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
5423 if (pmu_op) {
5424 pmu_op_start(env);
5426 env->cp15.mdcr_el3 = value;
5427 if (pmu_op) {
5428 pmu_op_finish(env);
5432 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5433 uint64_t value)
5435 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
5436 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
5439 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5440 uint64_t value)
5443 * Some MDCR_EL2 bits affect whether PMU counters are running:
5444 * if we are trying to change any of those then we must
5445 * bracket this update with PMU start/finish calls.
5447 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
5449 if (pmu_op) {
5450 pmu_op_start(env);
5452 env->cp15.mdcr_el2 = value;
5453 if (pmu_op) {
5454 pmu_op_finish(env);
5458 static CPAccessResult access_nv1(CPUARMState *env, const ARMCPRegInfo *ri,
5459 bool isread)
5461 if (arm_current_el(env) == 1) {
5462 uint64_t hcr_nv = arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1 | HCR_NV2);
5464 if (hcr_nv == (HCR_NV | HCR_NV1)) {
5465 return CP_ACCESS_TRAP_EL2;
5468 return CP_ACCESS_OK;
5471 #ifdef CONFIG_USER_ONLY
5473 * `IC IVAU` is handled to improve compatibility with JITs that dual-map their
5474 * code to get around W^X restrictions, where one region is writable and the
5475 * other is executable.
5477 * Since the executable region is never written to we cannot detect code
5478 * changes when running in user mode, and rely on the emulated JIT telling us
5479 * that the code has changed by executing this instruction.
5481 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri,
5482 uint64_t value)
5484 uint64_t icache_line_mask, start_address, end_address;
5485 const ARMCPU *cpu;
5487 cpu = env_archcpu(env);
5489 icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1;
5490 start_address = value & ~icache_line_mask;
5491 end_address = value | icache_line_mask;
5493 mmap_lock();
5495 tb_invalidate_phys_range(start_address, end_address);
5497 mmap_unlock();
5499 #endif
5501 static const ARMCPRegInfo v8_cp_reginfo[] = {
5503 * Minimal set of EL0-visible registers. This will need to be expanded
5504 * significantly for system emulation of AArch64 CPUs.
5506 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5507 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5508 .access = PL0_RW, .type = ARM_CP_NZCV },
5509 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5510 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5511 .type = ARM_CP_NO_RAW,
5512 .access = PL0_RW, .accessfn = aa64_daif_access,
5513 .fieldoffset = offsetof(CPUARMState, daif),
5514 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5515 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5516 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5517 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5518 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5519 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5520 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5521 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5522 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5523 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5524 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5525 .access = PL0_R, .type = ARM_CP_NO_RAW,
5526 .fgt = FGT_DCZID_EL0,
5527 .readfn = aa64_dczid_read },
5528 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5529 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5530 .access = PL0_W, .type = ARM_CP_DC_ZVA,
5531 #ifndef CONFIG_USER_ONLY
5532 /* Avoid overhead of an access check that always passes in user-mode */
5533 .accessfn = aa64_zva_access,
5534 .fgt = FGT_DCZVA,
5535 #endif
5537 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5538 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5539 .access = PL1_R, .type = ARM_CP_CURRENTEL },
5541 * Instruction cache ops. All of these except `IC IVAU` NOP because we
5542 * don't emulate caches.
5544 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5545 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5546 .access = PL1_W, .type = ARM_CP_NOP,
5547 .fgt = FGT_ICIALLUIS,
5548 .accessfn = access_ticab },
5549 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5550 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5551 .access = PL1_W, .type = ARM_CP_NOP,
5552 .fgt = FGT_ICIALLU,
5553 .accessfn = access_tocu },
5554 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5555 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5556 .access = PL0_W,
5557 .fgt = FGT_ICIVAU,
5558 .accessfn = access_tocu,
5559 #ifdef CONFIG_USER_ONLY
5560 .type = ARM_CP_NO_RAW,
5561 .writefn = ic_ivau_write
5562 #else
5563 .type = ARM_CP_NOP
5564 #endif
5566 /* Cache ops: all NOPs since we don't emulate caches */
5567 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5568 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5569 .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5570 .fgt = FGT_DCIVAC,
5571 .type = ARM_CP_NOP },
5572 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5573 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5574 .fgt = FGT_DCISW,
5575 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5576 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5577 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5578 .access = PL0_W, .type = ARM_CP_NOP,
5579 .fgt = FGT_DCCVAC,
5580 .accessfn = aa64_cacheop_poc_access },
5581 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5582 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5583 .fgt = FGT_DCCSW,
5584 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5585 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5586 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5587 .access = PL0_W, .type = ARM_CP_NOP,
5588 .fgt = FGT_DCCVAU,
5589 .accessfn = access_tocu },
5590 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5591 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5592 .access = PL0_W, .type = ARM_CP_NOP,
5593 .fgt = FGT_DCCIVAC,
5594 .accessfn = aa64_cacheop_poc_access },
5595 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5596 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5597 .fgt = FGT_DCCISW,
5598 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5599 /* TLBI operations */
5600 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5601 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5602 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5603 .fgt = FGT_TLBIVMALLE1IS,
5604 .writefn = tlbi_aa64_vmalle1is_write },
5605 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5606 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5607 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5608 .fgt = FGT_TLBIVAE1IS,
5609 .writefn = tlbi_aa64_vae1is_write },
5610 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5611 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5612 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5613 .fgt = FGT_TLBIASIDE1IS,
5614 .writefn = tlbi_aa64_vmalle1is_write },
5615 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5616 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5617 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5618 .fgt = FGT_TLBIVAAE1IS,
5619 .writefn = tlbi_aa64_vae1is_write },
5620 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5621 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5622 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5623 .fgt = FGT_TLBIVALE1IS,
5624 .writefn = tlbi_aa64_vae1is_write },
5625 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5626 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5627 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5628 .fgt = FGT_TLBIVAALE1IS,
5629 .writefn = tlbi_aa64_vae1is_write },
5630 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5631 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5632 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5633 .fgt = FGT_TLBIVMALLE1,
5634 .writefn = tlbi_aa64_vmalle1_write },
5635 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5636 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5637 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5638 .fgt = FGT_TLBIVAE1,
5639 .writefn = tlbi_aa64_vae1_write },
5640 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5641 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5642 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5643 .fgt = FGT_TLBIASIDE1,
5644 .writefn = tlbi_aa64_vmalle1_write },
5645 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5646 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5647 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5648 .fgt = FGT_TLBIVAAE1,
5649 .writefn = tlbi_aa64_vae1_write },
5650 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5651 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5652 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5653 .fgt = FGT_TLBIVALE1,
5654 .writefn = tlbi_aa64_vae1_write },
5655 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5656 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5657 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5658 .fgt = FGT_TLBIVAALE1,
5659 .writefn = tlbi_aa64_vae1_write },
5660 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5661 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5662 .access = PL2_W, .type = ARM_CP_NO_RAW,
5663 .writefn = tlbi_aa64_ipas2e1is_write },
5664 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5665 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5666 .access = PL2_W, .type = ARM_CP_NO_RAW,
5667 .writefn = tlbi_aa64_ipas2e1is_write },
5668 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5669 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5670 .access = PL2_W, .type = ARM_CP_NO_RAW,
5671 .writefn = tlbi_aa64_alle1is_write },
5672 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5673 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5674 .access = PL2_W, .type = ARM_CP_NO_RAW,
5675 .writefn = tlbi_aa64_alle1is_write },
5676 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5677 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5678 .access = PL2_W, .type = ARM_CP_NO_RAW,
5679 .writefn = tlbi_aa64_ipas2e1_write },
5680 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5681 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5682 .access = PL2_W, .type = ARM_CP_NO_RAW,
5683 .writefn = tlbi_aa64_ipas2e1_write },
5684 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5685 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5686 .access = PL2_W, .type = ARM_CP_NO_RAW,
5687 .writefn = tlbi_aa64_alle1_write },
5688 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5689 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5690 .access = PL2_W, .type = ARM_CP_NO_RAW,
5691 .writefn = tlbi_aa64_alle1is_write },
5692 #ifndef CONFIG_USER_ONLY
5693 /* 64 bit address translation operations */
5694 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5695 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5696 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5697 .fgt = FGT_ATS1E1R,
5698 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5699 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5700 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5701 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5702 .fgt = FGT_ATS1E1W,
5703 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5704 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5705 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5706 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5707 .fgt = FGT_ATS1E0R,
5708 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5709 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5710 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5711 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5712 .fgt = FGT_ATS1E0W,
5713 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5714 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5715 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5716 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5717 .accessfn = at_e012_access, .writefn = ats_write64 },
5718 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5719 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5720 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5721 .accessfn = at_e012_access, .writefn = ats_write64 },
5722 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5723 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5724 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5725 .accessfn = at_e012_access, .writefn = ats_write64 },
5726 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5727 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5728 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5729 .accessfn = at_e012_access, .writefn = ats_write64 },
5730 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5731 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5732 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5733 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5734 .writefn = ats_write64 },
5735 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5736 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5737 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5738 .writefn = ats_write64 },
5739 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5740 .type = ARM_CP_ALIAS,
5741 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5742 .access = PL1_RW, .resetvalue = 0,
5743 .fgt = FGT_PAR_EL1,
5744 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5745 .writefn = par_write },
5746 #endif
5747 /* TLB invalidate last level of translation table walk */
5748 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5749 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5750 .writefn = tlbimva_is_write },
5751 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5752 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5753 .writefn = tlbimvaa_is_write },
5754 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5755 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5756 .writefn = tlbimva_write },
5757 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5758 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5759 .writefn = tlbimvaa_write },
5760 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5761 .type = ARM_CP_NO_RAW, .access = PL2_W,
5762 .writefn = tlbimva_hyp_write },
5763 { .name = "TLBIMVALHIS",
5764 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5765 .type = ARM_CP_NO_RAW, .access = PL2_W,
5766 .writefn = tlbimva_hyp_is_write },
5767 { .name = "TLBIIPAS2",
5768 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5769 .type = ARM_CP_NO_RAW, .access = PL2_W,
5770 .writefn = tlbiipas2_hyp_write },
5771 { .name = "TLBIIPAS2IS",
5772 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5773 .type = ARM_CP_NO_RAW, .access = PL2_W,
5774 .writefn = tlbiipas2is_hyp_write },
5775 { .name = "TLBIIPAS2L",
5776 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5777 .type = ARM_CP_NO_RAW, .access = PL2_W,
5778 .writefn = tlbiipas2_hyp_write },
5779 { .name = "TLBIIPAS2LIS",
5780 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5781 .type = ARM_CP_NO_RAW, .access = PL2_W,
5782 .writefn = tlbiipas2is_hyp_write },
5783 /* 32 bit cache operations */
5784 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5785 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
5786 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5787 .type = ARM_CP_NOP, .access = PL1_W },
5788 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5789 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5790 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5791 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5792 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5793 .type = ARM_CP_NOP, .access = PL1_W },
5794 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5795 .type = ARM_CP_NOP, .access = PL1_W },
5796 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5797 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5798 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5799 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5800 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5801 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5802 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5803 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5804 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5805 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5806 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5807 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5808 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5809 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5810 /* MMU Domain access control / MPU write buffer control */
5811 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5812 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5813 .writefn = dacr_write, .raw_writefn = raw_write,
5814 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5815 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5816 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5817 .type = ARM_CP_ALIAS,
5818 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5819 .access = PL1_RW, .accessfn = access_nv1,
5820 .nv2_redirect_offset = 0x230 | NV2_REDIR_NV1,
5821 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5822 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5823 .type = ARM_CP_ALIAS,
5824 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5825 .access = PL1_RW, .accessfn = access_nv1,
5826 .nv2_redirect_offset = 0x160 | NV2_REDIR_NV1,
5827 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5829 * We rely on the access checks not allowing the guest to write to the
5830 * state field when SPSel indicates that it's being used as the stack
5831 * pointer.
5833 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5834 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5835 .access = PL1_RW, .accessfn = sp_el0_access,
5836 .type = ARM_CP_ALIAS,
5837 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5838 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5839 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5840 .nv2_redirect_offset = 0x240,
5841 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
5842 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5843 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5844 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5845 .type = ARM_CP_NO_RAW,
5846 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5847 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5848 .type = ARM_CP_ALIAS,
5849 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5850 .access = PL2_RW,
5851 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5852 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5853 .type = ARM_CP_ALIAS,
5854 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5855 .access = PL2_RW,
5856 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5857 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5858 .type = ARM_CP_ALIAS,
5859 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5860 .access = PL2_RW,
5861 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5862 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5863 .type = ARM_CP_ALIAS,
5864 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5865 .access = PL2_RW,
5866 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5867 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5868 .type = ARM_CP_IO,
5869 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5870 .resetvalue = 0,
5871 .access = PL3_RW,
5872 .writefn = mdcr_el3_write,
5873 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5874 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
5875 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5876 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5877 .writefn = sdcr_write,
5878 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5881 /* These are present only when EL1 supports AArch32 */
5882 static const ARMCPRegInfo v8_aa32_el1_reginfo[] = {
5883 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5884 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5885 .access = PL2_RW,
5886 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5887 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5888 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5889 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5890 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5891 .writefn = dacr_write, .raw_writefn = raw_write,
5892 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5893 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5894 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5895 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5896 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5899 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5901 ARMCPU *cpu = env_archcpu(env);
5903 if (arm_feature(env, ARM_FEATURE_V8)) {
5904 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
5905 } else {
5906 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
5909 if (arm_feature(env, ARM_FEATURE_EL3)) {
5910 valid_mask &= ~HCR_HCD;
5911 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5913 * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5914 * However, if we're using the SMC PSCI conduit then QEMU is
5915 * effectively acting like EL3 firmware and so the guest at
5916 * EL2 should retain the ability to prevent EL1 from being
5917 * able to make SMC calls into the ersatz firmware, so in
5918 * that case HCR.TSC should be read/write.
5920 valid_mask &= ~HCR_TSC;
5923 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5924 if (cpu_isar_feature(aa64_vh, cpu)) {
5925 valid_mask |= HCR_E2H;
5927 if (cpu_isar_feature(aa64_ras, cpu)) {
5928 valid_mask |= HCR_TERR | HCR_TEA;
5930 if (cpu_isar_feature(aa64_lor, cpu)) {
5931 valid_mask |= HCR_TLOR;
5933 if (cpu_isar_feature(aa64_pauth, cpu)) {
5934 valid_mask |= HCR_API | HCR_APK;
5936 if (cpu_isar_feature(aa64_mte, cpu)) {
5937 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5939 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
5940 valid_mask |= HCR_ENSCXT;
5942 if (cpu_isar_feature(aa64_fwb, cpu)) {
5943 valid_mask |= HCR_FWB;
5945 if (cpu_isar_feature(aa64_rme, cpu)) {
5946 valid_mask |= HCR_GPF;
5948 if (cpu_isar_feature(aa64_nv, cpu)) {
5949 valid_mask |= HCR_NV | HCR_NV1 | HCR_AT;
5951 if (cpu_isar_feature(aa64_nv2, cpu)) {
5952 valid_mask |= HCR_NV2;
5956 if (cpu_isar_feature(any_evt, cpu)) {
5957 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
5958 } else if (cpu_isar_feature(any_half_evt, cpu)) {
5959 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
5962 /* Clear RES0 bits. */
5963 value &= valid_mask;
5966 * These bits change the MMU setup:
5967 * HCR_VM enables stage 2 translation
5968 * HCR_PTW forbids certain page-table setups
5969 * HCR_DC disables stage1 and enables stage2 translation
5970 * HCR_DCT enables tagging on (disabled) stage1 translation
5971 * HCR_FWB changes the interpretation of stage2 descriptor bits
5972 * HCR_NV and HCR_NV1 affect interpretation of descriptor bits
5974 if ((env->cp15.hcr_el2 ^ value) &
5975 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB | HCR_NV | HCR_NV1)) {
5976 tlb_flush(CPU(cpu));
5978 env->cp15.hcr_el2 = value;
5981 * Updates to VI and VF require us to update the status of
5982 * virtual interrupts, which are the logical OR of these bits
5983 * and the state of the input lines from the GIC. (This requires
5984 * that we have the BQL, which is done by marking the
5985 * reginfo structs as ARM_CP_IO.)
5986 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5987 * possible for it to be taken immediately, because VIRQ and
5988 * VFIQ are masked unless running at EL0 or EL1, and HCR
5989 * can only be written at EL2.
5991 g_assert(bql_locked());
5992 arm_cpu_update_virq(cpu);
5993 arm_cpu_update_vfiq(cpu);
5994 arm_cpu_update_vserr(cpu);
5997 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5999 do_hcr_write(env, value, 0);
6002 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
6003 uint64_t value)
6005 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
6006 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
6007 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
6010 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
6011 uint64_t value)
6013 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
6014 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
6015 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
6019 * Return the effective value of HCR_EL2, at the given security state.
6020 * Bits that are not included here:
6021 * RW (read from SCR_EL3.RW as needed)
6023 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space)
6025 uint64_t ret = env->cp15.hcr_el2;
6027 assert(space != ARMSS_Root);
6029 if (!arm_is_el2_enabled_secstate(env, space)) {
6031 * "This register has no effect if EL2 is not enabled in the
6032 * current Security state". This is ARMv8.4-SecEL2 speak for
6033 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
6035 * Prior to that, the language was "In an implementation that
6036 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
6037 * as if this field is 0 for all purposes other than a direct
6038 * read or write access of HCR_EL2". With lots of enumeration
6039 * on a per-field basis. In current QEMU, this is condition
6040 * is arm_is_secure_below_el3.
6042 * Since the v8.4 language applies to the entire register, and
6043 * appears to be backward compatible, use that.
6045 return 0;
6049 * For a cpu that supports both aarch64 and aarch32, we can set bits
6050 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
6051 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
6053 if (!arm_el_is_aa64(env, 2)) {
6054 uint64_t aa32_valid;
6057 * These bits are up-to-date as of ARMv8.6.
6058 * For HCR, it's easiest to list just the 2 bits that are invalid.
6059 * For HCR2, list those that are valid.
6061 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
6062 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
6063 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
6064 ret &= aa32_valid;
6067 if (ret & HCR_TGE) {
6068 /* These bits are up-to-date as of ARMv8.6. */
6069 if (ret & HCR_E2H) {
6070 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
6071 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
6072 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
6073 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
6074 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
6075 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
6076 } else {
6077 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
6079 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
6080 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
6081 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
6082 HCR_TLOR);
6085 return ret;
6088 uint64_t arm_hcr_el2_eff(CPUARMState *env)
6090 if (arm_feature(env, ARM_FEATURE_M)) {
6091 return 0;
6093 return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env));
6097 * Corresponds to ARM pseudocode function ELIsInHost().
6099 bool el_is_in_host(CPUARMState *env, int el)
6101 uint64_t mask;
6104 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
6105 * Perform the simplest bit tests first, and validate EL2 afterward.
6107 if (el & 1) {
6108 return false; /* EL1 or EL3 */
6112 * Note that hcr_write() checks isar_feature_aa64_vh(),
6113 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
6115 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
6116 if ((env->cp15.hcr_el2 & mask) != mask) {
6117 return false;
6120 /* TGE and/or E2H set: double check those bits are currently legal. */
6121 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
6124 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
6125 uint64_t value)
6127 uint64_t valid_mask = 0;
6129 /* FEAT_MOPS adds MSCEn and MCE2 */
6130 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
6131 valid_mask |= HCRX_MSCEN | HCRX_MCE2;
6134 /* Clear RES0 bits. */
6135 env->cp15.hcrx_el2 = value & valid_mask;
6138 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
6139 bool isread)
6141 if (arm_current_el(env) == 2
6142 && arm_feature(env, ARM_FEATURE_EL3)
6143 && !(env->cp15.scr_el3 & SCR_HXEN)) {
6144 return CP_ACCESS_TRAP_EL3;
6146 return CP_ACCESS_OK;
6149 static const ARMCPRegInfo hcrx_el2_reginfo = {
6150 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
6151 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
6152 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
6153 .nv2_redirect_offset = 0xa0,
6154 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
6157 /* Return the effective value of HCRX_EL2. */
6158 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
6161 * The bits in this register behave as 0 for all purposes other than
6162 * direct reads of the register if SCR_EL3.HXEn is 0.
6163 * If EL2 is not enabled in the current security state, then the
6164 * bit may behave as if 0, or as if 1, depending on the bit.
6165 * For the moment, we treat the EL2-disabled case as taking
6166 * priority over the HXEn-disabled case. This is true for the only
6167 * bit for a feature which we implement where the answer is different
6168 * for the two cases (MSCEn for FEAT_MOPS).
6169 * This may need to be revisited for future bits.
6171 if (!arm_is_el2_enabled(env)) {
6172 uint64_t hcrx = 0;
6173 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
6174 /* MSCEn behaves as 1 if EL2 is not enabled */
6175 hcrx |= HCRX_MSCEN;
6177 return hcrx;
6179 if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) {
6180 return 0;
6182 return env->cp15.hcrx_el2;
6185 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
6186 uint64_t value)
6189 * For A-profile AArch32 EL3, if NSACR.CP10
6190 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6192 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6193 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6194 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6195 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
6197 env->cp15.cptr_el[2] = value;
6200 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
6203 * For A-profile AArch32 EL3, if NSACR.CP10
6204 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6206 uint64_t value = env->cp15.cptr_el[2];
6208 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6209 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6210 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6212 return value;
6215 static const ARMCPRegInfo el2_cp_reginfo[] = {
6216 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
6217 .type = ARM_CP_IO,
6218 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6219 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6220 .nv2_redirect_offset = 0x78,
6221 .writefn = hcr_write, .raw_writefn = raw_write },
6222 { .name = "HCR", .state = ARM_CP_STATE_AA32,
6223 .type = ARM_CP_ALIAS | ARM_CP_IO,
6224 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6225 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6226 .writefn = hcr_writelow },
6227 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
6228 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
6229 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
6230 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
6231 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT,
6232 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
6233 .access = PL2_RW,
6234 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
6235 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
6236 .type = ARM_CP_NV2_REDIRECT,
6237 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
6238 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
6239 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
6240 .type = ARM_CP_NV2_REDIRECT,
6241 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
6242 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
6243 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
6244 .type = ARM_CP_ALIAS,
6245 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
6246 .access = PL2_RW,
6247 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
6248 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
6249 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT,
6250 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
6251 .access = PL2_RW,
6252 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
6253 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
6254 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
6255 .access = PL2_RW, .writefn = vbar_write,
6256 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
6257 .resetvalue = 0 },
6258 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
6259 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
6260 .access = PL3_RW, .type = ARM_CP_ALIAS,
6261 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
6262 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
6263 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
6264 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
6265 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
6266 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
6267 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
6268 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
6269 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
6270 .resetvalue = 0 },
6271 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
6272 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
6273 .access = PL2_RW, .type = ARM_CP_ALIAS,
6274 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
6275 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
6276 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
6277 .access = PL2_RW, .type = ARM_CP_CONST,
6278 .resetvalue = 0 },
6279 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
6280 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
6281 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
6282 .access = PL2_RW, .type = ARM_CP_CONST,
6283 .resetvalue = 0 },
6284 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
6285 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
6286 .access = PL2_RW, .type = ARM_CP_CONST,
6287 .resetvalue = 0 },
6288 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
6289 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
6290 .access = PL2_RW, .type = ARM_CP_CONST,
6291 .resetvalue = 0 },
6292 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
6293 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
6294 .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
6295 .raw_writefn = raw_write,
6296 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
6297 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
6298 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6299 .type = ARM_CP_ALIAS,
6300 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6301 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
6302 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
6303 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6304 .access = PL2_RW,
6305 .nv2_redirect_offset = 0x40,
6306 /* no .writefn needed as this can't cause an ASID change */
6307 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
6308 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
6309 .cp = 15, .opc1 = 6, .crm = 2,
6310 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6311 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6312 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
6313 .writefn = vttbr_write, .raw_writefn = raw_write },
6314 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
6315 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
6316 .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write,
6317 .nv2_redirect_offset = 0x20,
6318 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
6319 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
6320 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
6321 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
6322 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
6323 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6324 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
6325 .access = PL2_RW, .resetvalue = 0,
6326 .nv2_redirect_offset = 0x90,
6327 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
6328 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
6329 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
6330 .access = PL2_RW, .resetvalue = 0,
6331 .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write,
6332 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6333 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
6334 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6335 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6336 { .name = "TLBIALLNSNH",
6337 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
6338 .type = ARM_CP_NO_RAW, .access = PL2_W,
6339 .writefn = tlbiall_nsnh_write },
6340 { .name = "TLBIALLNSNHIS",
6341 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
6342 .type = ARM_CP_NO_RAW, .access = PL2_W,
6343 .writefn = tlbiall_nsnh_is_write },
6344 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6345 .type = ARM_CP_NO_RAW, .access = PL2_W,
6346 .writefn = tlbiall_hyp_write },
6347 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6348 .type = ARM_CP_NO_RAW, .access = PL2_W,
6349 .writefn = tlbiall_hyp_is_write },
6350 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6351 .type = ARM_CP_NO_RAW, .access = PL2_W,
6352 .writefn = tlbimva_hyp_write },
6353 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6354 .type = ARM_CP_NO_RAW, .access = PL2_W,
6355 .writefn = tlbimva_hyp_is_write },
6356 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
6357 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6358 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6359 .writefn = tlbi_aa64_alle2_write },
6360 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
6361 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6362 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6363 .writefn = tlbi_aa64_vae2_write },
6364 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
6365 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
6366 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6367 .writefn = tlbi_aa64_vae2_write },
6368 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
6369 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6370 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6371 .writefn = tlbi_aa64_alle2is_write },
6372 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
6373 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6374 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6375 .writefn = tlbi_aa64_vae2is_write },
6376 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
6377 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
6378 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6379 .writefn = tlbi_aa64_vae2is_write },
6380 #ifndef CONFIG_USER_ONLY
6382 * Unlike the other EL2-related AT operations, these must
6383 * UNDEF from EL3 if EL2 is not implemented, which is why we
6384 * define them here rather than with the rest of the AT ops.
6386 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
6387 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6388 .access = PL2_W, .accessfn = at_s1e2_access,
6389 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6390 .writefn = ats_write64 },
6391 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
6392 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6393 .access = PL2_W, .accessfn = at_s1e2_access,
6394 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6395 .writefn = ats_write64 },
6397 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
6398 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
6399 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
6400 * to behave as if SCR.NS was 1.
6402 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6403 .access = PL2_W,
6404 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6405 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6406 .access = PL2_W,
6407 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6408 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
6409 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
6411 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
6412 * reset values as IMPDEF. We choose to reset to 3 to comply with
6413 * both ARMv7 and ARMv8.
6415 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3,
6416 .writefn = gt_cnthctl_write, .raw_writefn = raw_write,
6417 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
6418 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
6419 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
6420 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
6421 .writefn = gt_cntvoff_write,
6422 .nv2_redirect_offset = 0x60,
6423 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6424 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
6425 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
6426 .writefn = gt_cntvoff_write,
6427 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6428 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6429 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
6430 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6431 .type = ARM_CP_IO, .access = PL2_RW,
6432 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6433 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
6434 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6435 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
6436 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6437 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6438 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
6439 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6440 .resetfn = gt_hyp_timer_reset,
6441 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
6442 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6443 .type = ARM_CP_IO,
6444 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
6445 .access = PL2_RW,
6446 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
6447 .resetvalue = 0,
6448 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
6449 #endif
6450 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
6451 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6452 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6453 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6454 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
6455 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6456 .access = PL2_RW,
6457 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6458 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
6459 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
6460 .access = PL2_RW,
6461 .nv2_redirect_offset = 0x80,
6462 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
6465 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
6466 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
6467 .type = ARM_CP_ALIAS | ARM_CP_IO,
6468 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
6469 .access = PL2_RW,
6470 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
6471 .writefn = hcr_writehigh },
6474 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
6475 bool isread)
6477 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
6478 return CP_ACCESS_OK;
6480 return CP_ACCESS_TRAP_UNCATEGORIZED;
6483 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
6484 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
6485 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
6486 .access = PL2_RW, .accessfn = sel2_access,
6487 .nv2_redirect_offset = 0x30,
6488 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
6489 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
6490 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
6491 .access = PL2_RW, .accessfn = sel2_access,
6492 .nv2_redirect_offset = 0x48,
6493 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
6496 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
6497 bool isread)
6500 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
6501 * At Secure EL1 it traps to EL3 or EL2.
6503 if (arm_current_el(env) == 3) {
6504 return CP_ACCESS_OK;
6506 if (arm_is_secure_below_el3(env)) {
6507 if (env->cp15.scr_el3 & SCR_EEL2) {
6508 return CP_ACCESS_TRAP_EL2;
6510 return CP_ACCESS_TRAP_EL3;
6512 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
6513 if (isread) {
6514 return CP_ACCESS_OK;
6516 return CP_ACCESS_TRAP_UNCATEGORIZED;
6519 static const ARMCPRegInfo el3_cp_reginfo[] = {
6520 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6521 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6522 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6523 .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write },
6524 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6525 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6526 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6527 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6528 .writefn = scr_write, .raw_writefn = raw_write },
6529 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6530 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6531 .access = PL3_RW, .resetvalue = 0,
6532 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6533 { .name = "SDER",
6534 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6535 .access = PL3_RW, .resetvalue = 0,
6536 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6537 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6538 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6539 .writefn = vbar_write, .resetvalue = 0,
6540 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6541 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6542 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6543 .access = PL3_RW, .resetvalue = 0,
6544 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6545 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6546 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6547 .access = PL3_RW,
6548 /* no .writefn needed as this can't cause an ASID change */
6549 .resetvalue = 0,
6550 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6551 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6552 .type = ARM_CP_ALIAS,
6553 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6554 .access = PL3_RW,
6555 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6556 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6557 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6558 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6559 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6560 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6561 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6562 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6563 .type = ARM_CP_ALIAS,
6564 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6565 .access = PL3_RW,
6566 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6567 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6568 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6569 .access = PL3_RW, .writefn = vbar_write,
6570 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6571 .resetvalue = 0 },
6572 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6573 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6574 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6575 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6576 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6577 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6578 .access = PL3_RW, .resetvalue = 0,
6579 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6580 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6581 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6582 .access = PL3_RW, .type = ARM_CP_CONST,
6583 .resetvalue = 0 },
6584 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6585 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6586 .access = PL3_RW, .type = ARM_CP_CONST,
6587 .resetvalue = 0 },
6588 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6589 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6590 .access = PL3_RW, .type = ARM_CP_CONST,
6591 .resetvalue = 0 },
6592 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6593 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6594 .access = PL3_W, .type = ARM_CP_NO_RAW,
6595 .writefn = tlbi_aa64_alle3is_write },
6596 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6597 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6598 .access = PL3_W, .type = ARM_CP_NO_RAW,
6599 .writefn = tlbi_aa64_vae3is_write },
6600 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6601 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6602 .access = PL3_W, .type = ARM_CP_NO_RAW,
6603 .writefn = tlbi_aa64_vae3is_write },
6604 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6605 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6606 .access = PL3_W, .type = ARM_CP_NO_RAW,
6607 .writefn = tlbi_aa64_alle3_write },
6608 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6609 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6610 .access = PL3_W, .type = ARM_CP_NO_RAW,
6611 .writefn = tlbi_aa64_vae3_write },
6612 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6613 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6614 .access = PL3_W, .type = ARM_CP_NO_RAW,
6615 .writefn = tlbi_aa64_vae3_write },
6618 #ifndef CONFIG_USER_ONLY
6620 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
6621 bool isread)
6623 if (arm_current_el(env) == 1) {
6624 /* This must be a FEAT_NV access */
6625 return CP_ACCESS_OK;
6627 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
6628 return CP_ACCESS_TRAP_UNCATEGORIZED;
6630 return CP_ACCESS_OK;
6633 static CPAccessResult access_el1nvpct(CPUARMState *env, const ARMCPRegInfo *ri,
6634 bool isread)
6636 if (arm_current_el(env) == 1) {
6637 /* This must be a FEAT_NV access with NVx == 101 */
6638 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVPCT)) {
6639 return CP_ACCESS_TRAP_EL2;
6642 return e2h_access(env, ri, isread);
6645 static CPAccessResult access_el1nvvct(CPUARMState *env, const ARMCPRegInfo *ri,
6646 bool isread)
6648 if (arm_current_el(env) == 1) {
6649 /* This must be a FEAT_NV access with NVx == 101 */
6650 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVVCT)) {
6651 return CP_ACCESS_TRAP_EL2;
6654 return e2h_access(env, ri, isread);
6657 /* Test if system register redirection is to occur in the current state. */
6658 static bool redirect_for_e2h(CPUARMState *env)
6660 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6663 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6665 CPReadFn *readfn;
6667 if (redirect_for_e2h(env)) {
6668 /* Switch to the saved EL2 version of the register. */
6669 ri = ri->opaque;
6670 readfn = ri->readfn;
6671 } else {
6672 readfn = ri->orig_readfn;
6674 if (readfn == NULL) {
6675 readfn = raw_read;
6677 return readfn(env, ri);
6680 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6681 uint64_t value)
6683 CPWriteFn *writefn;
6685 if (redirect_for_e2h(env)) {
6686 /* Switch to the saved EL2 version of the register. */
6687 ri = ri->opaque;
6688 writefn = ri->writefn;
6689 } else {
6690 writefn = ri->orig_writefn;
6692 if (writefn == NULL) {
6693 writefn = raw_write;
6695 writefn(env, ri, value);
6698 static uint64_t el2_e2h_e12_read(CPUARMState *env, const ARMCPRegInfo *ri)
6700 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */
6701 return ri->orig_readfn(env, ri->opaque);
6704 static void el2_e2h_e12_write(CPUARMState *env, const ARMCPRegInfo *ri,
6705 uint64_t value)
6707 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */
6708 return ri->orig_writefn(env, ri->opaque, value);
6711 static CPAccessResult el2_e2h_e12_access(CPUARMState *env,
6712 const ARMCPRegInfo *ri,
6713 bool isread)
6715 if (arm_current_el(env) == 1) {
6717 * This must be a FEAT_NV access (will either trap or redirect
6718 * to memory). None of the registers with _EL12 aliases want to
6719 * apply their trap controls for this kind of access, so don't
6720 * call the orig_accessfn or do the "UNDEF when E2H is 0" check.
6722 return CP_ACCESS_OK;
6724 /* FOO_EL12 aliases only exist when E2H is 1; otherwise they UNDEF */
6725 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
6726 return CP_ACCESS_TRAP_UNCATEGORIZED;
6728 if (ri->orig_accessfn) {
6729 return ri->orig_accessfn(env, ri->opaque, isread);
6731 return CP_ACCESS_OK;
6734 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6736 struct E2HAlias {
6737 uint32_t src_key, dst_key, new_key;
6738 const char *src_name, *dst_name, *new_name;
6739 bool (*feature)(const ARMISARegisters *id);
6742 #define K(op0, op1, crn, crm, op2) \
6743 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6745 static const struct E2HAlias aliases[] = {
6746 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
6747 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6748 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
6749 "CPACR", "CPTR_EL2", "CPACR_EL12" },
6750 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
6751 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6752 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
6753 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6754 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
6755 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6756 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
6757 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6758 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
6759 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6760 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
6761 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6762 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
6763 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6764 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
6765 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6766 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
6767 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6768 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6769 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6770 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6771 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6772 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6773 "VBAR", "VBAR_EL2", "VBAR_EL12" },
6774 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6775 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6776 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6777 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6780 * Note that redirection of ZCR is mentioned in the description
6781 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6782 * not in the summary table.
6784 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
6785 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6786 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6),
6787 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
6789 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
6790 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6792 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
6793 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
6794 isar_feature_aa64_scxtnum },
6796 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6797 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6799 #undef K
6801 size_t i;
6803 for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6804 const struct E2HAlias *a = &aliases[i];
6805 ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
6806 bool ok;
6808 if (a->feature && !a->feature(&cpu->isar)) {
6809 continue;
6812 src_reg = g_hash_table_lookup(cpu->cp_regs,
6813 (gpointer)(uintptr_t)a->src_key);
6814 dst_reg = g_hash_table_lookup(cpu->cp_regs,
6815 (gpointer)(uintptr_t)a->dst_key);
6816 g_assert(src_reg != NULL);
6817 g_assert(dst_reg != NULL);
6819 /* Cross-compare names to detect typos in the keys. */
6820 g_assert(strcmp(src_reg->name, a->src_name) == 0);
6821 g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6823 /* None of the core system registers use opaque; we will. */
6824 g_assert(src_reg->opaque == NULL);
6826 /* Create alias before redirection so we dup the right data. */
6827 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6829 new_reg->name = a->new_name;
6830 new_reg->type |= ARM_CP_ALIAS;
6831 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
6832 new_reg->access &= PL2_RW | PL3_RW;
6833 /* The new_reg op fields are as per new_key, not the target reg */
6834 new_reg->crn = (a->new_key & CP_REG_ARM64_SYSREG_CRN_MASK)
6835 >> CP_REG_ARM64_SYSREG_CRN_SHIFT;
6836 new_reg->crm = (a->new_key & CP_REG_ARM64_SYSREG_CRM_MASK)
6837 >> CP_REG_ARM64_SYSREG_CRM_SHIFT;
6838 new_reg->opc0 = (a->new_key & CP_REG_ARM64_SYSREG_OP0_MASK)
6839 >> CP_REG_ARM64_SYSREG_OP0_SHIFT;
6840 new_reg->opc1 = (a->new_key & CP_REG_ARM64_SYSREG_OP1_MASK)
6841 >> CP_REG_ARM64_SYSREG_OP1_SHIFT;
6842 new_reg->opc2 = (a->new_key & CP_REG_ARM64_SYSREG_OP2_MASK)
6843 >> CP_REG_ARM64_SYSREG_OP2_SHIFT;
6844 new_reg->opaque = src_reg;
6845 new_reg->orig_readfn = src_reg->readfn ?: raw_read;
6846 new_reg->orig_writefn = src_reg->writefn ?: raw_write;
6847 new_reg->orig_accessfn = src_reg->accessfn;
6848 if (!new_reg->raw_readfn) {
6849 new_reg->raw_readfn = raw_read;
6851 if (!new_reg->raw_writefn) {
6852 new_reg->raw_writefn = raw_write;
6854 new_reg->readfn = el2_e2h_e12_read;
6855 new_reg->writefn = el2_e2h_e12_write;
6856 new_reg->accessfn = el2_e2h_e12_access;
6859 * If the _EL1 register is redirected to memory by FEAT_NV2,
6860 * then it shares the offset with the _EL12 register,
6861 * and which one is redirected depends on HCR_EL2.NV1.
6863 if (new_reg->nv2_redirect_offset) {
6864 assert(new_reg->nv2_redirect_offset & NV2_REDIR_NV1);
6865 new_reg->nv2_redirect_offset &= ~NV2_REDIR_NV1;
6866 new_reg->nv2_redirect_offset |= NV2_REDIR_NO_NV1;
6869 ok = g_hash_table_insert(cpu->cp_regs,
6870 (gpointer)(uintptr_t)a->new_key, new_reg);
6871 g_assert(ok);
6873 src_reg->opaque = dst_reg;
6874 src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6875 src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6876 if (!src_reg->raw_readfn) {
6877 src_reg->raw_readfn = raw_read;
6879 if (!src_reg->raw_writefn) {
6880 src_reg->raw_writefn = raw_write;
6882 src_reg->readfn = el2_e2h_read;
6883 src_reg->writefn = el2_e2h_write;
6886 #endif
6888 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6889 bool isread)
6891 int cur_el = arm_current_el(env);
6893 if (cur_el < 2) {
6894 uint64_t hcr = arm_hcr_el2_eff(env);
6896 if (cur_el == 0) {
6897 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6898 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6899 return CP_ACCESS_TRAP_EL2;
6901 } else {
6902 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6903 return CP_ACCESS_TRAP;
6905 if (hcr & HCR_TID2) {
6906 return CP_ACCESS_TRAP_EL2;
6909 } else if (hcr & HCR_TID2) {
6910 return CP_ACCESS_TRAP_EL2;
6914 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6915 return CP_ACCESS_TRAP_EL2;
6918 return CP_ACCESS_OK;
6922 * Check for traps to RAS registers, which are controlled
6923 * by HCR_EL2.TERR and SCR_EL3.TERR.
6925 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
6926 bool isread)
6928 int el = arm_current_el(env);
6930 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
6931 return CP_ACCESS_TRAP_EL2;
6933 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
6934 return CP_ACCESS_TRAP_EL3;
6936 return CP_ACCESS_OK;
6939 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
6941 int el = arm_current_el(env);
6943 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6944 return env->cp15.vdisr_el2;
6946 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6947 return 0; /* RAZ/WI */
6949 return env->cp15.disr_el1;
6952 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6954 int el = arm_current_el(env);
6956 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6957 env->cp15.vdisr_el2 = val;
6958 return;
6960 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6961 return; /* RAZ/WI */
6963 env->cp15.disr_el1 = val;
6967 * Minimal RAS implementation with no Error Records.
6968 * Which means that all of the Error Record registers:
6969 * ERXADDR_EL1
6970 * ERXCTLR_EL1
6971 * ERXFR_EL1
6972 * ERXMISC0_EL1
6973 * ERXMISC1_EL1
6974 * ERXMISC2_EL1
6975 * ERXMISC3_EL1
6976 * ERXPFGCDN_EL1 (RASv1p1)
6977 * ERXPFGCTL_EL1 (RASv1p1)
6978 * ERXPFGF_EL1 (RASv1p1)
6979 * ERXSTATUS_EL1
6980 * and
6981 * ERRSELR_EL1
6982 * may generate UNDEFINED, which is the effect we get by not
6983 * listing them at all.
6985 * These registers have fine-grained trap bits, but UNDEF-to-EL1
6986 * is higher priority than FGT-to-EL2 so we do not need to list them
6987 * in order to check for an FGT.
6989 static const ARMCPRegInfo minimal_ras_reginfo[] = {
6990 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
6991 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
6992 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
6993 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
6994 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
6995 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
6996 .access = PL1_R, .accessfn = access_terr,
6997 .fgt = FGT_ERRIDR_EL1,
6998 .type = ARM_CP_CONST, .resetvalue = 0 },
6999 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
7000 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
7001 .nv2_redirect_offset = 0x500,
7002 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
7003 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
7004 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
7005 .nv2_redirect_offset = 0x508,
7006 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
7010 * Return the exception level to which exceptions should be taken
7011 * via SVEAccessTrap. This excludes the check for whether the exception
7012 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily
7013 * be found by testing 0 < fp_exception_el < sve_exception_el.
7015 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the
7016 * pseudocode does *not* separate out the FP trap checks, but has them
7017 * all in one function.
7019 int sve_exception_el(CPUARMState *env, int el)
7021 #ifndef CONFIG_USER_ONLY
7022 if (el <= 1 && !el_is_in_host(env, el)) {
7023 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
7024 case 1:
7025 if (el != 0) {
7026 break;
7028 /* fall through */
7029 case 0:
7030 case 2:
7031 return 1;
7035 if (el <= 2 && arm_is_el2_enabled(env)) {
7036 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
7037 if (env->cp15.hcr_el2 & HCR_E2H) {
7038 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
7039 case 1:
7040 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
7041 break;
7043 /* fall through */
7044 case 0:
7045 case 2:
7046 return 2;
7048 } else {
7049 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
7050 return 2;
7055 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
7056 if (arm_feature(env, ARM_FEATURE_EL3)
7057 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
7058 return 3;
7060 #endif
7061 return 0;
7065 * Return the exception level to which exceptions should be taken for SME.
7066 * C.f. the ARM pseudocode function CheckSMEAccess.
7068 int sme_exception_el(CPUARMState *env, int el)
7070 #ifndef CONFIG_USER_ONLY
7071 if (el <= 1 && !el_is_in_host(env, el)) {
7072 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
7073 case 1:
7074 if (el != 0) {
7075 break;
7077 /* fall through */
7078 case 0:
7079 case 2:
7080 return 1;
7084 if (el <= 2 && arm_is_el2_enabled(env)) {
7085 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
7086 if (env->cp15.hcr_el2 & HCR_E2H) {
7087 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
7088 case 1:
7089 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
7090 break;
7092 /* fall through */
7093 case 0:
7094 case 2:
7095 return 2;
7097 } else {
7098 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
7099 return 2;
7104 /* CPTR_EL3. Since ESM is negative we must check for EL3. */
7105 if (arm_feature(env, ARM_FEATURE_EL3)
7106 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7107 return 3;
7109 #endif
7110 return 0;
7114 * Given that SVE is enabled, return the vector length for EL.
7116 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
7118 ARMCPU *cpu = env_archcpu(env);
7119 uint64_t *cr = env->vfp.zcr_el;
7120 uint32_t map = cpu->sve_vq.map;
7121 uint32_t len = ARM_MAX_VQ - 1;
7123 if (sm) {
7124 cr = env->vfp.smcr_el;
7125 map = cpu->sme_vq.map;
7128 if (el <= 1 && !el_is_in_host(env, el)) {
7129 len = MIN(len, 0xf & (uint32_t)cr[1]);
7131 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
7132 len = MIN(len, 0xf & (uint32_t)cr[2]);
7134 if (arm_feature(env, ARM_FEATURE_EL3)) {
7135 len = MIN(len, 0xf & (uint32_t)cr[3]);
7138 map &= MAKE_64BIT_MASK(0, len + 1);
7139 if (map != 0) {
7140 return 31 - clz32(map);
7143 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
7144 assert(sm);
7145 return ctz32(cpu->sme_vq.map);
7148 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
7150 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
7153 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7154 uint64_t value)
7156 int cur_el = arm_current_el(env);
7157 int old_len = sve_vqm1_for_el(env, cur_el);
7158 int new_len;
7160 /* Bits other than [3:0] are RAZ/WI. */
7161 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
7162 raw_write(env, ri, value & 0xf);
7165 * Because we arrived here, we know both FP and SVE are enabled;
7166 * otherwise we would have trapped access to the ZCR_ELn register.
7168 new_len = sve_vqm1_for_el(env, cur_el);
7169 if (new_len < old_len) {
7170 aarch64_sve_narrow_vq(env, new_len + 1);
7174 static const ARMCPRegInfo zcr_reginfo[] = {
7175 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
7176 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
7177 .nv2_redirect_offset = 0x1e0 | NV2_REDIR_NV1,
7178 .access = PL1_RW, .type = ARM_CP_SVE,
7179 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
7180 .writefn = zcr_write, .raw_writefn = raw_write },
7181 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
7182 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
7183 .access = PL2_RW, .type = ARM_CP_SVE,
7184 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
7185 .writefn = zcr_write, .raw_writefn = raw_write },
7186 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
7187 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
7188 .access = PL3_RW, .type = ARM_CP_SVE,
7189 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
7190 .writefn = zcr_write, .raw_writefn = raw_write },
7193 #ifdef TARGET_AARCH64
7194 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
7195 bool isread)
7197 int el = arm_current_el(env);
7199 if (el == 0) {
7200 uint64_t sctlr = arm_sctlr(env, el);
7201 if (!(sctlr & SCTLR_EnTP2)) {
7202 return CP_ACCESS_TRAP;
7205 /* TODO: FEAT_FGT */
7206 if (el < 3
7207 && arm_feature(env, ARM_FEATURE_EL3)
7208 && !(env->cp15.scr_el3 & SCR_ENTP2)) {
7209 return CP_ACCESS_TRAP_EL3;
7211 return CP_ACCESS_OK;
7214 static CPAccessResult access_smprimap(CPUARMState *env, const ARMCPRegInfo *ri,
7215 bool isread)
7217 /* If EL1 this is a FEAT_NV access and CPTR_EL3.ESM doesn't apply */
7218 if (arm_current_el(env) == 2
7219 && arm_feature(env, ARM_FEATURE_EL3)
7220 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7221 return CP_ACCESS_TRAP_EL3;
7223 return CP_ACCESS_OK;
7226 static CPAccessResult access_smpri(CPUARMState *env, const ARMCPRegInfo *ri,
7227 bool isread)
7229 if (arm_current_el(env) < 3
7230 && arm_feature(env, ARM_FEATURE_EL3)
7231 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7232 return CP_ACCESS_TRAP_EL3;
7234 return CP_ACCESS_OK;
7237 /* ResetSVEState */
7238 static void arm_reset_sve_state(CPUARMState *env)
7240 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
7241 /* Recall that FFR is stored as pregs[16]. */
7242 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
7243 vfp_set_fpcr(env, 0x0800009f);
7246 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
7248 uint64_t change = (env->svcr ^ new) & mask;
7250 if (change == 0) {
7251 return;
7253 env->svcr ^= change;
7255 if (change & R_SVCR_SM_MASK) {
7256 arm_reset_sve_state(env);
7260 * ResetSMEState.
7262 * SetPSTATE_ZA zeros on enable and disable. We can zero this only
7263 * on enable: while disabled, the storage is inaccessible and the
7264 * value does not matter. We're not saving the storage in vmstate
7265 * when disabled either.
7267 if (change & new & R_SVCR_ZA_MASK) {
7268 memset(env->zarray, 0, sizeof(env->zarray));
7271 if (tcg_enabled()) {
7272 arm_rebuild_hflags(env);
7276 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7277 uint64_t value)
7279 aarch64_set_svcr(env, value, -1);
7282 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7283 uint64_t value)
7285 int cur_el = arm_current_el(env);
7286 int old_len = sve_vqm1_for_el(env, cur_el);
7287 int new_len;
7289 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
7290 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
7291 raw_write(env, ri, value);
7294 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
7295 * when SVL is widened (old values kept, or zeros). Choose to keep the
7296 * current values for simplicity. But for QEMU internals, we must still
7297 * apply the narrower SVL to the Zregs and Pregs -- see the comment
7298 * above aarch64_sve_narrow_vq.
7300 new_len = sve_vqm1_for_el(env, cur_el);
7301 if (new_len < old_len) {
7302 aarch64_sve_narrow_vq(env, new_len + 1);
7306 static const ARMCPRegInfo sme_reginfo[] = {
7307 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
7308 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
7309 .access = PL0_RW, .accessfn = access_tpidr2,
7310 .fgt = FGT_NTPIDR2_EL0,
7311 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
7312 { .name = "SVCR", .state = ARM_CP_STATE_AA64,
7313 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
7314 .access = PL0_RW, .type = ARM_CP_SME,
7315 .fieldoffset = offsetof(CPUARMState, svcr),
7316 .writefn = svcr_write, .raw_writefn = raw_write },
7317 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
7318 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
7319 .nv2_redirect_offset = 0x1f0 | NV2_REDIR_NV1,
7320 .access = PL1_RW, .type = ARM_CP_SME,
7321 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
7322 .writefn = smcr_write, .raw_writefn = raw_write },
7323 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
7324 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
7325 .access = PL2_RW, .type = ARM_CP_SME,
7326 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
7327 .writefn = smcr_write, .raw_writefn = raw_write },
7328 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
7329 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
7330 .access = PL3_RW, .type = ARM_CP_SME,
7331 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
7332 .writefn = smcr_write, .raw_writefn = raw_write },
7333 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
7334 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
7335 .access = PL1_R, .accessfn = access_aa64_tid1,
7337 * IMPLEMENTOR = 0 (software)
7338 * REVISION = 0 (implementation defined)
7339 * SMPS = 0 (no streaming execution priority in QEMU)
7340 * AFFINITY = 0 (streaming sve mode not shared with other PEs)
7342 .type = ARM_CP_CONST, .resetvalue = 0, },
7344 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
7346 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
7347 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
7348 .access = PL1_RW, .accessfn = access_smpri,
7349 .fgt = FGT_NSMPRI_EL1,
7350 .type = ARM_CP_CONST, .resetvalue = 0 },
7351 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
7352 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
7353 .nv2_redirect_offset = 0x1f8,
7354 .access = PL2_RW, .accessfn = access_smprimap,
7355 .type = ARM_CP_CONST, .resetvalue = 0 },
7358 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri,
7359 uint64_t value)
7361 CPUState *cs = env_cpu(env);
7363 tlb_flush(cs);
7366 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7367 uint64_t value)
7369 /* L0GPTSZ is RO; other bits not mentioned are RES0. */
7370 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK |
7371 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK |
7372 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK;
7374 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask);
7377 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
7379 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ,
7380 env_archcpu(env)->reset_l0gptsz);
7383 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri,
7384 uint64_t value)
7386 CPUState *cs = env_cpu(env);
7388 tlb_flush_all_cpus_synced(cs);
7391 static const ARMCPRegInfo rme_reginfo[] = {
7392 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64,
7393 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6,
7394 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset,
7395 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) },
7396 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64,
7397 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4,
7398 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) },
7399 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64,
7400 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5,
7401 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) },
7402 { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64,
7403 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4,
7404 .access = PL3_W, .type = ARM_CP_NO_RAW,
7405 .writefn = tlbi_aa64_paall_write },
7406 { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64,
7407 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4,
7408 .access = PL3_W, .type = ARM_CP_NO_RAW,
7409 .writefn = tlbi_aa64_paallos_write },
7411 * QEMU does not have a way to invalidate by physical address, thus
7412 * invalidating a range of physical addresses is accomplished by
7413 * flushing all tlb entries in the outer shareable domain,
7414 * just like PAALLOS.
7416 { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64,
7417 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7,
7418 .access = PL3_W, .type = ARM_CP_NO_RAW,
7419 .writefn = tlbi_aa64_paallos_write },
7420 { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64,
7421 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3,
7422 .access = PL3_W, .type = ARM_CP_NO_RAW,
7423 .writefn = tlbi_aa64_paallos_write },
7424 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64,
7425 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1,
7426 .access = PL3_W, .type = ARM_CP_NOP },
7429 static const ARMCPRegInfo rme_mte_reginfo[] = {
7430 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64,
7431 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5,
7432 .access = PL3_W, .type = ARM_CP_NOP },
7434 #endif /* TARGET_AARCH64 */
7436 static void define_pmu_regs(ARMCPU *cpu)
7439 * v7 performance monitor control register: same implementor
7440 * field as main ID register, and we implement four counters in
7441 * addition to the cycle count register.
7443 unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
7444 ARMCPRegInfo pmcr = {
7445 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
7446 .access = PL0_RW,
7447 .fgt = FGT_PMCR_EL0,
7448 .type = ARM_CP_IO | ARM_CP_ALIAS,
7449 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
7450 .accessfn = pmreg_access,
7451 .readfn = pmcr_read, .raw_readfn = raw_read,
7452 .writefn = pmcr_write, .raw_writefn = raw_write,
7454 ARMCPRegInfo pmcr64 = {
7455 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
7456 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
7457 .access = PL0_RW, .accessfn = pmreg_access,
7458 .fgt = FGT_PMCR_EL0,
7459 .type = ARM_CP_IO,
7460 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
7461 .resetvalue = cpu->isar.reset_pmcr_el0,
7462 .readfn = pmcr_read, .raw_readfn = raw_read,
7463 .writefn = pmcr_write, .raw_writefn = raw_write,
7466 define_one_arm_cp_reg(cpu, &pmcr);
7467 define_one_arm_cp_reg(cpu, &pmcr64);
7468 for (i = 0; i < pmcrn; i++) {
7469 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
7470 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
7471 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
7472 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
7473 ARMCPRegInfo pmev_regs[] = {
7474 { .name = pmevcntr_name, .cp = 15, .crn = 14,
7475 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7476 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7477 .fgt = FGT_PMEVCNTRN_EL0,
7478 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7479 .accessfn = pmreg_access_xevcntr },
7480 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
7481 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
7482 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
7483 .type = ARM_CP_IO,
7484 .fgt = FGT_PMEVCNTRN_EL0,
7485 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7486 .raw_readfn = pmevcntr_rawread,
7487 .raw_writefn = pmevcntr_rawwrite },
7488 { .name = pmevtyper_name, .cp = 15, .crn = 14,
7489 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7490 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7491 .fgt = FGT_PMEVTYPERN_EL0,
7492 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7493 .accessfn = pmreg_access },
7494 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
7495 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
7496 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
7497 .fgt = FGT_PMEVTYPERN_EL0,
7498 .type = ARM_CP_IO,
7499 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7500 .raw_writefn = pmevtyper_rawwrite },
7502 define_arm_cp_regs(cpu, pmev_regs);
7503 g_free(pmevcntr_name);
7504 g_free(pmevcntr_el0_name);
7505 g_free(pmevtyper_name);
7506 g_free(pmevtyper_el0_name);
7508 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
7509 ARMCPRegInfo v81_pmu_regs[] = {
7510 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
7511 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
7512 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7513 .fgt = FGT_PMCEIDN_EL0,
7514 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
7515 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
7516 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
7517 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7518 .fgt = FGT_PMCEIDN_EL0,
7519 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
7521 define_arm_cp_regs(cpu, v81_pmu_regs);
7523 if (cpu_isar_feature(any_pmuv3p4, cpu)) {
7524 static const ARMCPRegInfo v84_pmmir = {
7525 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
7526 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
7527 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7528 .fgt = FGT_PMMIR_EL1,
7529 .resetvalue = 0
7531 define_one_arm_cp_reg(cpu, &v84_pmmir);
7535 #ifndef CONFIG_USER_ONLY
7537 * We don't know until after realize whether there's a GICv3
7538 * attached, and that is what registers the gicv3 sysregs.
7539 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
7540 * at runtime.
7542 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
7544 ARMCPU *cpu = env_archcpu(env);
7545 uint64_t pfr1 = cpu->isar.id_pfr1;
7547 if (env->gicv3state) {
7548 pfr1 |= 1 << 28;
7550 return pfr1;
7553 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
7555 ARMCPU *cpu = env_archcpu(env);
7556 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
7558 if (env->gicv3state) {
7559 pfr0 |= 1 << 24;
7561 return pfr0;
7563 #endif
7566 * Shared logic between LORID and the rest of the LOR* registers.
7567 * Secure state exclusion has already been dealt with.
7569 static CPAccessResult access_lor_ns(CPUARMState *env,
7570 const ARMCPRegInfo *ri, bool isread)
7572 int el = arm_current_el(env);
7574 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
7575 return CP_ACCESS_TRAP_EL2;
7577 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
7578 return CP_ACCESS_TRAP_EL3;
7580 return CP_ACCESS_OK;
7583 static CPAccessResult access_lor_other(CPUARMState *env,
7584 const ARMCPRegInfo *ri, bool isread)
7586 if (arm_is_secure_below_el3(env)) {
7587 /* Access denied in secure mode. */
7588 return CP_ACCESS_TRAP;
7590 return access_lor_ns(env, ri, isread);
7594 * A trivial implementation of ARMv8.1-LOR leaves all of these
7595 * registers fixed at 0, which indicates that there are zero
7596 * supported Limited Ordering regions.
7598 static const ARMCPRegInfo lor_reginfo[] = {
7599 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7600 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7601 .access = PL1_RW, .accessfn = access_lor_other,
7602 .fgt = FGT_LORSA_EL1,
7603 .type = ARM_CP_CONST, .resetvalue = 0 },
7604 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7605 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7606 .access = PL1_RW, .accessfn = access_lor_other,
7607 .fgt = FGT_LOREA_EL1,
7608 .type = ARM_CP_CONST, .resetvalue = 0 },
7609 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7610 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7611 .access = PL1_RW, .accessfn = access_lor_other,
7612 .fgt = FGT_LORN_EL1,
7613 .type = ARM_CP_CONST, .resetvalue = 0 },
7614 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7615 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7616 .access = PL1_RW, .accessfn = access_lor_other,
7617 .fgt = FGT_LORC_EL1,
7618 .type = ARM_CP_CONST, .resetvalue = 0 },
7619 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7620 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7621 .access = PL1_R, .accessfn = access_lor_ns,
7622 .fgt = FGT_LORID_EL1,
7623 .type = ARM_CP_CONST, .resetvalue = 0 },
7626 #ifdef TARGET_AARCH64
7627 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7628 bool isread)
7630 int el = arm_current_el(env);
7632 if (el < 2 &&
7633 arm_is_el2_enabled(env) &&
7634 !(arm_hcr_el2_eff(env) & HCR_APK)) {
7635 return CP_ACCESS_TRAP_EL2;
7637 if (el < 3 &&
7638 arm_feature(env, ARM_FEATURE_EL3) &&
7639 !(env->cp15.scr_el3 & SCR_APK)) {
7640 return CP_ACCESS_TRAP_EL3;
7642 return CP_ACCESS_OK;
7645 static const ARMCPRegInfo pauth_reginfo[] = {
7646 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7647 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7648 .access = PL1_RW, .accessfn = access_pauth,
7649 .fgt = FGT_APDAKEY,
7650 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7651 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7652 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7653 .access = PL1_RW, .accessfn = access_pauth,
7654 .fgt = FGT_APDAKEY,
7655 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7656 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7657 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7658 .access = PL1_RW, .accessfn = access_pauth,
7659 .fgt = FGT_APDBKEY,
7660 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7661 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7662 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7663 .access = PL1_RW, .accessfn = access_pauth,
7664 .fgt = FGT_APDBKEY,
7665 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7666 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7667 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7668 .access = PL1_RW, .accessfn = access_pauth,
7669 .fgt = FGT_APGAKEY,
7670 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7671 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7672 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7673 .access = PL1_RW, .accessfn = access_pauth,
7674 .fgt = FGT_APGAKEY,
7675 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7676 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7677 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7678 .access = PL1_RW, .accessfn = access_pauth,
7679 .fgt = FGT_APIAKEY,
7680 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7681 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7682 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7683 .access = PL1_RW, .accessfn = access_pauth,
7684 .fgt = FGT_APIAKEY,
7685 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7686 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7687 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7688 .access = PL1_RW, .accessfn = access_pauth,
7689 .fgt = FGT_APIBKEY,
7690 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7691 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7692 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7693 .access = PL1_RW, .accessfn = access_pauth,
7694 .fgt = FGT_APIBKEY,
7695 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7698 static const ARMCPRegInfo tlbirange_reginfo[] = {
7699 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7700 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7701 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7702 .fgt = FGT_TLBIRVAE1IS,
7703 .writefn = tlbi_aa64_rvae1is_write },
7704 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7705 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7706 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7707 .fgt = FGT_TLBIRVAAE1IS,
7708 .writefn = tlbi_aa64_rvae1is_write },
7709 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7710 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7711 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7712 .fgt = FGT_TLBIRVALE1IS,
7713 .writefn = tlbi_aa64_rvae1is_write },
7714 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7715 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7716 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7717 .fgt = FGT_TLBIRVAALE1IS,
7718 .writefn = tlbi_aa64_rvae1is_write },
7719 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7720 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7721 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7722 .fgt = FGT_TLBIRVAE1OS,
7723 .writefn = tlbi_aa64_rvae1is_write },
7724 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7725 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7726 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7727 .fgt = FGT_TLBIRVAAE1OS,
7728 .writefn = tlbi_aa64_rvae1is_write },
7729 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7730 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7731 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7732 .fgt = FGT_TLBIRVALE1OS,
7733 .writefn = tlbi_aa64_rvae1is_write },
7734 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7735 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7736 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7737 .fgt = FGT_TLBIRVAALE1OS,
7738 .writefn = tlbi_aa64_rvae1is_write },
7739 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7740 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7741 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7742 .fgt = FGT_TLBIRVAE1,
7743 .writefn = tlbi_aa64_rvae1_write },
7744 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7745 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7746 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7747 .fgt = FGT_TLBIRVAAE1,
7748 .writefn = tlbi_aa64_rvae1_write },
7749 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7750 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7751 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7752 .fgt = FGT_TLBIRVALE1,
7753 .writefn = tlbi_aa64_rvae1_write },
7754 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7755 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7756 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7757 .fgt = FGT_TLBIRVAALE1,
7758 .writefn = tlbi_aa64_rvae1_write },
7759 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7760 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7761 .access = PL2_W, .type = ARM_CP_NO_RAW,
7762 .writefn = tlbi_aa64_ripas2e1is_write },
7763 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7764 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7765 .access = PL2_W, .type = ARM_CP_NO_RAW,
7766 .writefn = tlbi_aa64_ripas2e1is_write },
7767 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7768 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7769 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7770 .writefn = tlbi_aa64_rvae2is_write },
7771 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7772 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7773 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7774 .writefn = tlbi_aa64_rvae2is_write },
7775 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7776 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7777 .access = PL2_W, .type = ARM_CP_NO_RAW,
7778 .writefn = tlbi_aa64_ripas2e1_write },
7779 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7780 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7781 .access = PL2_W, .type = ARM_CP_NO_RAW,
7782 .writefn = tlbi_aa64_ripas2e1_write },
7783 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7784 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7785 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7786 .writefn = tlbi_aa64_rvae2is_write },
7787 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7788 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7789 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7790 .writefn = tlbi_aa64_rvae2is_write },
7791 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7792 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7793 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7794 .writefn = tlbi_aa64_rvae2_write },
7795 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7796 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7797 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7798 .writefn = tlbi_aa64_rvae2_write },
7799 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7800 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7801 .access = PL3_W, .type = ARM_CP_NO_RAW,
7802 .writefn = tlbi_aa64_rvae3is_write },
7803 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7804 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7805 .access = PL3_W, .type = ARM_CP_NO_RAW,
7806 .writefn = tlbi_aa64_rvae3is_write },
7807 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7808 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7809 .access = PL3_W, .type = ARM_CP_NO_RAW,
7810 .writefn = tlbi_aa64_rvae3is_write },
7811 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7812 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7813 .access = PL3_W, .type = ARM_CP_NO_RAW,
7814 .writefn = tlbi_aa64_rvae3is_write },
7815 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7816 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7817 .access = PL3_W, .type = ARM_CP_NO_RAW,
7818 .writefn = tlbi_aa64_rvae3_write },
7819 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7820 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7821 .access = PL3_W, .type = ARM_CP_NO_RAW,
7822 .writefn = tlbi_aa64_rvae3_write },
7825 static const ARMCPRegInfo tlbios_reginfo[] = {
7826 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7827 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7828 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7829 .fgt = FGT_TLBIVMALLE1OS,
7830 .writefn = tlbi_aa64_vmalle1is_write },
7831 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
7832 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
7833 .fgt = FGT_TLBIVAE1OS,
7834 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7835 .writefn = tlbi_aa64_vae1is_write },
7836 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7837 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7838 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7839 .fgt = FGT_TLBIASIDE1OS,
7840 .writefn = tlbi_aa64_vmalle1is_write },
7841 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7842 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
7843 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7844 .fgt = FGT_TLBIVAAE1OS,
7845 .writefn = tlbi_aa64_vae1is_write },
7846 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
7847 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
7848 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7849 .fgt = FGT_TLBIVALE1OS,
7850 .writefn = tlbi_aa64_vae1is_write },
7851 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
7852 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
7853 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7854 .fgt = FGT_TLBIVAALE1OS,
7855 .writefn = tlbi_aa64_vae1is_write },
7856 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7857 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7858 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7859 .writefn = tlbi_aa64_alle2is_write },
7860 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
7861 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
7862 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7863 .writefn = tlbi_aa64_vae2is_write },
7864 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7865 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7866 .access = PL2_W, .type = ARM_CP_NO_RAW,
7867 .writefn = tlbi_aa64_alle1is_write },
7868 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
7869 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
7870 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7871 .writefn = tlbi_aa64_vae2is_write },
7872 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7873 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7874 .access = PL2_W, .type = ARM_CP_NO_RAW,
7875 .writefn = tlbi_aa64_alle1is_write },
7876 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7877 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7878 .access = PL2_W, .type = ARM_CP_NOP },
7879 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7880 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7881 .access = PL2_W, .type = ARM_CP_NOP },
7882 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7883 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7884 .access = PL2_W, .type = ARM_CP_NOP },
7885 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7886 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7887 .access = PL2_W, .type = ARM_CP_NOP },
7888 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7889 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7890 .access = PL3_W, .type = ARM_CP_NO_RAW,
7891 .writefn = tlbi_aa64_alle3is_write },
7892 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
7893 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
7894 .access = PL3_W, .type = ARM_CP_NO_RAW,
7895 .writefn = tlbi_aa64_vae3is_write },
7896 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
7897 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
7898 .access = PL3_W, .type = ARM_CP_NO_RAW,
7899 .writefn = tlbi_aa64_vae3is_write },
7902 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7904 Error *err = NULL;
7905 uint64_t ret;
7907 /* Success sets NZCV = 0000. */
7908 env->NF = env->CF = env->VF = 0, env->ZF = 1;
7910 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7912 * ??? Failed, for unknown reasons in the crypto subsystem.
7913 * The best we can do is log the reason and return the
7914 * timed-out indication to the guest. There is no reason
7915 * we know to expect this failure to be transitory, so the
7916 * guest may well hang retrying the operation.
7918 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7919 ri->name, error_get_pretty(err));
7920 error_free(err);
7922 env->ZF = 0; /* NZCF = 0100 */
7923 return 0;
7925 return ret;
7928 /* We do not support re-seeding, so the two registers operate the same. */
7929 static const ARMCPRegInfo rndr_reginfo[] = {
7930 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7931 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7932 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7933 .access = PL0_R, .readfn = rndr_readfn },
7934 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7935 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7936 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7937 .access = PL0_R, .readfn = rndr_readfn },
7940 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7941 uint64_t value)
7943 #ifdef CONFIG_TCG
7944 ARMCPU *cpu = env_archcpu(env);
7945 /* CTR_EL0 System register -> DminLine, bits [19:16] */
7946 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7947 uint64_t vaddr_in = (uint64_t) value;
7948 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7949 void *haddr;
7950 int mem_idx = arm_env_mmu_index(env);
7952 /* This won't be crossing page boundaries */
7953 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7954 if (haddr) {
7955 #ifndef CONFIG_USER_ONLY
7957 ram_addr_t offset;
7958 MemoryRegion *mr;
7960 /* RCU lock is already being held */
7961 mr = memory_region_from_host(haddr, &offset);
7963 if (mr) {
7964 memory_region_writeback(mr, offset, dline_size);
7966 #endif /*CONFIG_USER_ONLY*/
7968 #else
7969 /* Handled by hardware accelerator. */
7970 g_assert_not_reached();
7971 #endif /* CONFIG_TCG */
7974 static const ARMCPRegInfo dcpop_reg[] = {
7975 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7976 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7977 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7978 .fgt = FGT_DCCVAP,
7979 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7982 static const ARMCPRegInfo dcpodp_reg[] = {
7983 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7984 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7985 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7986 .fgt = FGT_DCCVADP,
7987 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7990 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7991 bool isread)
7993 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7994 return CP_ACCESS_TRAP_EL2;
7997 return CP_ACCESS_OK;
8000 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
8001 bool isread)
8003 int el = arm_current_el(env);
8004 if (el < 2 && arm_is_el2_enabled(env)) {
8005 uint64_t hcr = arm_hcr_el2_eff(env);
8006 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
8007 return CP_ACCESS_TRAP_EL2;
8010 if (el < 3 &&
8011 arm_feature(env, ARM_FEATURE_EL3) &&
8012 !(env->cp15.scr_el3 & SCR_ATA)) {
8013 return CP_ACCESS_TRAP_EL3;
8015 return CP_ACCESS_OK;
8018 static CPAccessResult access_tfsr_el1(CPUARMState *env, const ARMCPRegInfo *ri,
8019 bool isread)
8021 CPAccessResult nv1 = access_nv1(env, ri, isread);
8023 if (nv1 != CP_ACCESS_OK) {
8024 return nv1;
8026 return access_mte(env, ri, isread);
8029 static CPAccessResult access_tfsr_el2(CPUARMState *env, const ARMCPRegInfo *ri,
8030 bool isread)
8033 * TFSR_EL2: similar to generic access_mte(), but we need to
8034 * account for FEAT_NV. At EL1 this must be a FEAT_NV access;
8035 * if NV2 is enabled then we will redirect this to TFSR_EL1
8036 * after doing the HCR and SCR ATA traps; otherwise this will
8037 * be a trap to EL2 and the HCR/SCR traps do not apply.
8039 int el = arm_current_el(env);
8041 if (el == 1 && (arm_hcr_el2_eff(env) & HCR_NV2)) {
8042 return CP_ACCESS_OK;
8044 if (el < 2 && arm_is_el2_enabled(env)) {
8045 uint64_t hcr = arm_hcr_el2_eff(env);
8046 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
8047 return CP_ACCESS_TRAP_EL2;
8050 if (el < 3 &&
8051 arm_feature(env, ARM_FEATURE_EL3) &&
8052 !(env->cp15.scr_el3 & SCR_ATA)) {
8053 return CP_ACCESS_TRAP_EL3;
8055 return CP_ACCESS_OK;
8058 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
8060 return env->pstate & PSTATE_TCO;
8063 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
8065 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
8068 static const ARMCPRegInfo mte_reginfo[] = {
8069 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
8070 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
8071 .access = PL1_RW, .accessfn = access_mte,
8072 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
8073 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
8074 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
8075 .access = PL1_RW, .accessfn = access_tfsr_el1,
8076 .nv2_redirect_offset = 0x190 | NV2_REDIR_NV1,
8077 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
8078 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
8079 .type = ARM_CP_NV2_REDIRECT,
8080 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
8081 .access = PL2_RW, .accessfn = access_tfsr_el2,
8082 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
8083 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
8084 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
8085 .access = PL3_RW,
8086 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
8087 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
8088 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
8089 .access = PL1_RW, .accessfn = access_mte,
8090 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
8091 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
8092 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
8093 .access = PL1_RW, .accessfn = access_mte,
8094 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
8095 { .name = "TCO", .state = ARM_CP_STATE_AA64,
8096 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
8097 .type = ARM_CP_NO_RAW,
8098 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
8099 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
8100 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
8101 .type = ARM_CP_NOP, .access = PL1_W,
8102 .fgt = FGT_DCIVAC,
8103 .accessfn = aa64_cacheop_poc_access },
8104 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
8105 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
8106 .fgt = FGT_DCISW,
8107 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8108 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
8109 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
8110 .type = ARM_CP_NOP, .access = PL1_W,
8111 .fgt = FGT_DCIVAC,
8112 .accessfn = aa64_cacheop_poc_access },
8113 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
8114 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
8115 .fgt = FGT_DCISW,
8116 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8117 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
8118 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
8119 .fgt = FGT_DCCSW,
8120 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8121 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
8122 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
8123 .fgt = FGT_DCCSW,
8124 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8125 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
8126 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
8127 .fgt = FGT_DCCISW,
8128 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8129 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
8130 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
8131 .fgt = FGT_DCCISW,
8132 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8135 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
8136 { .name = "TCO", .state = ARM_CP_STATE_AA64,
8137 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
8138 .type = ARM_CP_CONST, .access = PL0_RW, },
8141 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
8142 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
8143 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
8144 .type = ARM_CP_NOP, .access = PL0_W,
8145 .fgt = FGT_DCCVAC,
8146 .accessfn = aa64_cacheop_poc_access },
8147 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
8148 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
8149 .type = ARM_CP_NOP, .access = PL0_W,
8150 .fgt = FGT_DCCVAC,
8151 .accessfn = aa64_cacheop_poc_access },
8152 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
8153 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
8154 .type = ARM_CP_NOP, .access = PL0_W,
8155 .fgt = FGT_DCCVAP,
8156 .accessfn = aa64_cacheop_poc_access },
8157 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
8158 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
8159 .type = ARM_CP_NOP, .access = PL0_W,
8160 .fgt = FGT_DCCVAP,
8161 .accessfn = aa64_cacheop_poc_access },
8162 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
8163 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
8164 .type = ARM_CP_NOP, .access = PL0_W,
8165 .fgt = FGT_DCCVADP,
8166 .accessfn = aa64_cacheop_poc_access },
8167 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
8168 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
8169 .type = ARM_CP_NOP, .access = PL0_W,
8170 .fgt = FGT_DCCVADP,
8171 .accessfn = aa64_cacheop_poc_access },
8172 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
8173 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
8174 .type = ARM_CP_NOP, .access = PL0_W,
8175 .fgt = FGT_DCCIVAC,
8176 .accessfn = aa64_cacheop_poc_access },
8177 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
8178 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
8179 .type = ARM_CP_NOP, .access = PL0_W,
8180 .fgt = FGT_DCCIVAC,
8181 .accessfn = aa64_cacheop_poc_access },
8182 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
8183 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
8184 .access = PL0_W, .type = ARM_CP_DC_GVA,
8185 #ifndef CONFIG_USER_ONLY
8186 /* Avoid overhead of an access check that always passes in user-mode */
8187 .accessfn = aa64_zva_access,
8188 .fgt = FGT_DCZVA,
8189 #endif
8191 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
8192 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
8193 .access = PL0_W, .type = ARM_CP_DC_GZVA,
8194 #ifndef CONFIG_USER_ONLY
8195 /* Avoid overhead of an access check that always passes in user-mode */
8196 .accessfn = aa64_zva_access,
8197 .fgt = FGT_DCZVA,
8198 #endif
8202 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
8203 bool isread)
8205 uint64_t hcr = arm_hcr_el2_eff(env);
8206 int el = arm_current_el(env);
8208 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
8209 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
8210 if (hcr & HCR_TGE) {
8211 return CP_ACCESS_TRAP_EL2;
8213 return CP_ACCESS_TRAP;
8215 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
8216 return CP_ACCESS_TRAP_EL2;
8218 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
8219 return CP_ACCESS_TRAP_EL2;
8221 if (el < 3
8222 && arm_feature(env, ARM_FEATURE_EL3)
8223 && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
8224 return CP_ACCESS_TRAP_EL3;
8226 return CP_ACCESS_OK;
8229 static CPAccessResult access_scxtnum_el1(CPUARMState *env,
8230 const ARMCPRegInfo *ri,
8231 bool isread)
8233 CPAccessResult nv1 = access_nv1(env, ri, isread);
8235 if (nv1 != CP_ACCESS_OK) {
8236 return nv1;
8238 return access_scxtnum(env, ri, isread);
8241 static const ARMCPRegInfo scxtnum_reginfo[] = {
8242 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
8243 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
8244 .access = PL0_RW, .accessfn = access_scxtnum,
8245 .fgt = FGT_SCXTNUM_EL0,
8246 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
8247 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
8248 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
8249 .access = PL1_RW, .accessfn = access_scxtnum_el1,
8250 .fgt = FGT_SCXTNUM_EL1,
8251 .nv2_redirect_offset = 0x188 | NV2_REDIR_NV1,
8252 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
8253 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
8254 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
8255 .access = PL2_RW, .accessfn = access_scxtnum,
8256 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
8257 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
8258 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
8259 .access = PL3_RW,
8260 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
8263 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
8264 bool isread)
8266 if (arm_current_el(env) == 2 &&
8267 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) {
8268 return CP_ACCESS_TRAP_EL3;
8270 return CP_ACCESS_OK;
8273 static const ARMCPRegInfo fgt_reginfo[] = {
8274 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
8275 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
8276 .nv2_redirect_offset = 0x1b8,
8277 .access = PL2_RW, .accessfn = access_fgt,
8278 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
8279 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
8280 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
8281 .nv2_redirect_offset = 0x1c0,
8282 .access = PL2_RW, .accessfn = access_fgt,
8283 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
8284 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
8285 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
8286 .nv2_redirect_offset = 0x1d0,
8287 .access = PL2_RW, .accessfn = access_fgt,
8288 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
8289 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
8290 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
8291 .nv2_redirect_offset = 0x1d8,
8292 .access = PL2_RW, .accessfn = access_fgt,
8293 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
8294 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
8295 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
8296 .nv2_redirect_offset = 0x1c8,
8297 .access = PL2_RW, .accessfn = access_fgt,
8298 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
8301 static void vncr_write(CPUARMState *env, const ARMCPRegInfo *ri,
8302 uint64_t value)
8305 * Clear the RES0 bottom 12 bits; this means at runtime we can guarantee
8306 * that VNCR_EL2 + offset is 64-bit aligned. We don't need to do anything
8307 * about the RESS bits at the top -- we choose the "generate an EL2
8308 * translation abort on use" CONSTRAINED UNPREDICTABLE option (i.e. let
8309 * the ptw.c code detect the resulting invalid address).
8311 env->cp15.vncr_el2 = value & ~0xfffULL;
8314 static const ARMCPRegInfo nv2_reginfo[] = {
8315 { .name = "VNCR_EL2", .state = ARM_CP_STATE_AA64,
8316 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 2, .opc2 = 0,
8317 .access = PL2_RW,
8318 .writefn = vncr_write,
8319 .nv2_redirect_offset = 0xb0,
8320 .fieldoffset = offsetof(CPUARMState, cp15.vncr_el2) },
8323 #endif /* TARGET_AARCH64 */
8325 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
8326 bool isread)
8328 int el = arm_current_el(env);
8330 if (el == 0) {
8331 uint64_t sctlr = arm_sctlr(env, el);
8332 if (!(sctlr & SCTLR_EnRCTX)) {
8333 return CP_ACCESS_TRAP;
8335 } else if (el == 1) {
8336 uint64_t hcr = arm_hcr_el2_eff(env);
8337 if (hcr & HCR_NV) {
8338 return CP_ACCESS_TRAP_EL2;
8341 return CP_ACCESS_OK;
8344 static const ARMCPRegInfo predinv_reginfo[] = {
8345 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
8346 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
8347 .fgt = FGT_CFPRCTX,
8348 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8349 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
8350 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
8351 .fgt = FGT_DVPRCTX,
8352 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8353 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
8354 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
8355 .fgt = FGT_CPPRCTX,
8356 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8358 * Note the AArch32 opcodes have a different OPC1.
8360 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
8361 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
8362 .fgt = FGT_CFPRCTX,
8363 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8364 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
8365 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
8366 .fgt = FGT_DVPRCTX,
8367 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8368 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
8369 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
8370 .fgt = FGT_CPPRCTX,
8371 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8374 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
8376 /* Read the high 32 bits of the current CCSIDR */
8377 return extract64(ccsidr_read(env, ri), 32, 32);
8380 static const ARMCPRegInfo ccsidr2_reginfo[] = {
8381 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
8382 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
8383 .access = PL1_R,
8384 .accessfn = access_tid4,
8385 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
8388 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8389 bool isread)
8391 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
8392 return CP_ACCESS_TRAP_EL2;
8395 return CP_ACCESS_OK;
8398 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8399 bool isread)
8401 if (arm_feature(env, ARM_FEATURE_V8)) {
8402 return access_aa64_tid3(env, ri, isread);
8405 return CP_ACCESS_OK;
8408 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
8409 bool isread)
8411 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
8412 return CP_ACCESS_TRAP_EL2;
8415 return CP_ACCESS_OK;
8418 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
8419 const ARMCPRegInfo *ri, bool isread)
8422 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
8423 * in v7A, not in v8A.
8425 if (!arm_feature(env, ARM_FEATURE_V8) &&
8426 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
8427 (env->cp15.hstr_el2 & HSTR_TJDBX)) {
8428 return CP_ACCESS_TRAP_EL2;
8430 return CP_ACCESS_OK;
8433 static const ARMCPRegInfo jazelle_regs[] = {
8434 { .name = "JIDR",
8435 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
8436 .access = PL1_R, .accessfn = access_jazelle,
8437 .type = ARM_CP_CONST, .resetvalue = 0 },
8438 { .name = "JOSCR",
8439 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
8440 .accessfn = access_joscr_jmcr,
8441 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8442 { .name = "JMCR",
8443 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
8444 .accessfn = access_joscr_jmcr,
8445 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8448 static const ARMCPRegInfo contextidr_el2 = {
8449 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
8450 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
8451 .access = PL2_RW,
8452 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
8455 static const ARMCPRegInfo vhe_reginfo[] = {
8456 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
8457 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
8458 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
8459 .raw_writefn = raw_write,
8460 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
8461 #ifndef CONFIG_USER_ONLY
8462 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
8463 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
8464 .fieldoffset =
8465 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
8466 .type = ARM_CP_IO, .access = PL2_RW,
8467 .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
8468 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
8469 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
8470 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
8471 .resetfn = gt_hv_timer_reset,
8472 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
8473 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
8474 .type = ARM_CP_IO,
8475 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
8476 .access = PL2_RW,
8477 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
8478 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
8479 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
8480 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
8481 .type = ARM_CP_IO | ARM_CP_ALIAS,
8482 .access = PL2_RW, .accessfn = access_el1nvpct,
8483 .nv2_redirect_offset = 0x180 | NV2_REDIR_NO_NV1,
8484 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
8485 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
8486 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
8487 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
8488 .type = ARM_CP_IO | ARM_CP_ALIAS,
8489 .access = PL2_RW, .accessfn = access_el1nvvct,
8490 .nv2_redirect_offset = 0x170 | NV2_REDIR_NO_NV1,
8491 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
8492 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
8493 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8494 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
8495 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8496 .access = PL2_RW, .accessfn = e2h_access,
8497 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
8498 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8499 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
8500 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8501 .access = PL2_RW, .accessfn = e2h_access,
8502 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
8503 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8504 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
8505 .type = ARM_CP_IO | ARM_CP_ALIAS,
8506 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
8507 .nv2_redirect_offset = 0x178 | NV2_REDIR_NO_NV1,
8508 .access = PL2_RW, .accessfn = access_el1nvpct,
8509 .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
8510 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8511 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
8512 .type = ARM_CP_IO | ARM_CP_ALIAS,
8513 .nv2_redirect_offset = 0x168 | NV2_REDIR_NO_NV1,
8514 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
8515 .access = PL2_RW, .accessfn = access_el1nvvct,
8516 .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
8517 #endif
8520 #ifndef CONFIG_USER_ONLY
8521 static const ARMCPRegInfo ats1e1_reginfo[] = {
8522 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64,
8523 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8524 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8525 .fgt = FGT_ATS1E1RP,
8526 .accessfn = at_s1e01_access, .writefn = ats_write64 },
8527 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64,
8528 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8529 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8530 .fgt = FGT_ATS1E1WP,
8531 .accessfn = at_s1e01_access, .writefn = ats_write64 },
8534 static const ARMCPRegInfo ats1cp_reginfo[] = {
8535 { .name = "ATS1CPRP",
8536 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8537 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8538 .writefn = ats_write },
8539 { .name = "ATS1CPWP",
8540 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8541 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8542 .writefn = ats_write },
8544 #endif
8547 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
8548 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
8549 * is non-zero, which is never for ARMv7, optionally in ARMv8
8550 * and mandatorily for ARMv8.2 and up.
8551 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
8552 * implementation is RAZ/WI we can ignore this detail, as we
8553 * do for ACTLR.
8555 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
8556 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
8557 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
8558 .access = PL1_RW, .accessfn = access_tacr,
8559 .type = ARM_CP_CONST, .resetvalue = 0 },
8560 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
8561 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
8562 .access = PL2_RW, .type = ARM_CP_CONST,
8563 .resetvalue = 0 },
8566 void register_cp_regs_for_features(ARMCPU *cpu)
8568 /* Register all the coprocessor registers based on feature bits */
8569 CPUARMState *env = &cpu->env;
8570 if (arm_feature(env, ARM_FEATURE_M)) {
8571 /* M profile has no coprocessor registers */
8572 return;
8575 define_arm_cp_regs(cpu, cp_reginfo);
8576 if (!arm_feature(env, ARM_FEATURE_V8)) {
8578 * Must go early as it is full of wildcards that may be
8579 * overridden by later definitions.
8581 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
8584 if (arm_feature(env, ARM_FEATURE_V6)) {
8585 /* The ID registers all have impdef reset values */
8586 ARMCPRegInfo v6_idregs[] = {
8587 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
8588 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
8589 .access = PL1_R, .type = ARM_CP_CONST,
8590 .accessfn = access_aa32_tid3,
8591 .resetvalue = cpu->isar.id_pfr0 },
8593 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
8594 * the value of the GIC field until after we define these regs.
8596 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
8597 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
8598 .access = PL1_R, .type = ARM_CP_NO_RAW,
8599 .accessfn = access_aa32_tid3,
8600 #ifdef CONFIG_USER_ONLY
8601 .type = ARM_CP_CONST,
8602 .resetvalue = cpu->isar.id_pfr1,
8603 #else
8604 .type = ARM_CP_NO_RAW,
8605 .accessfn = access_aa32_tid3,
8606 .readfn = id_pfr1_read,
8607 .writefn = arm_cp_write_ignore
8608 #endif
8610 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
8611 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
8612 .access = PL1_R, .type = ARM_CP_CONST,
8613 .accessfn = access_aa32_tid3,
8614 .resetvalue = cpu->isar.id_dfr0 },
8615 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
8616 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
8617 .access = PL1_R, .type = ARM_CP_CONST,
8618 .accessfn = access_aa32_tid3,
8619 .resetvalue = cpu->id_afr0 },
8620 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
8621 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
8622 .access = PL1_R, .type = ARM_CP_CONST,
8623 .accessfn = access_aa32_tid3,
8624 .resetvalue = cpu->isar.id_mmfr0 },
8625 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
8626 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
8627 .access = PL1_R, .type = ARM_CP_CONST,
8628 .accessfn = access_aa32_tid3,
8629 .resetvalue = cpu->isar.id_mmfr1 },
8630 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
8631 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
8632 .access = PL1_R, .type = ARM_CP_CONST,
8633 .accessfn = access_aa32_tid3,
8634 .resetvalue = cpu->isar.id_mmfr2 },
8635 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
8636 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
8637 .access = PL1_R, .type = ARM_CP_CONST,
8638 .accessfn = access_aa32_tid3,
8639 .resetvalue = cpu->isar.id_mmfr3 },
8640 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
8641 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
8642 .access = PL1_R, .type = ARM_CP_CONST,
8643 .accessfn = access_aa32_tid3,
8644 .resetvalue = cpu->isar.id_isar0 },
8645 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
8646 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
8647 .access = PL1_R, .type = ARM_CP_CONST,
8648 .accessfn = access_aa32_tid3,
8649 .resetvalue = cpu->isar.id_isar1 },
8650 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
8651 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
8652 .access = PL1_R, .type = ARM_CP_CONST,
8653 .accessfn = access_aa32_tid3,
8654 .resetvalue = cpu->isar.id_isar2 },
8655 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
8656 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
8657 .access = PL1_R, .type = ARM_CP_CONST,
8658 .accessfn = access_aa32_tid3,
8659 .resetvalue = cpu->isar.id_isar3 },
8660 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
8661 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
8662 .access = PL1_R, .type = ARM_CP_CONST,
8663 .accessfn = access_aa32_tid3,
8664 .resetvalue = cpu->isar.id_isar4 },
8665 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
8666 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
8667 .access = PL1_R, .type = ARM_CP_CONST,
8668 .accessfn = access_aa32_tid3,
8669 .resetvalue = cpu->isar.id_isar5 },
8670 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
8671 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
8672 .access = PL1_R, .type = ARM_CP_CONST,
8673 .accessfn = access_aa32_tid3,
8674 .resetvalue = cpu->isar.id_mmfr4 },
8675 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
8676 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
8677 .access = PL1_R, .type = ARM_CP_CONST,
8678 .accessfn = access_aa32_tid3,
8679 .resetvalue = cpu->isar.id_isar6 },
8681 define_arm_cp_regs(cpu, v6_idregs);
8682 define_arm_cp_regs(cpu, v6_cp_reginfo);
8683 } else {
8684 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
8686 if (arm_feature(env, ARM_FEATURE_V6K)) {
8687 define_arm_cp_regs(cpu, v6k_cp_reginfo);
8689 if (arm_feature(env, ARM_FEATURE_V7MP) &&
8690 !arm_feature(env, ARM_FEATURE_PMSA)) {
8691 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
8693 if (arm_feature(env, ARM_FEATURE_V7VE)) {
8694 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
8696 if (arm_feature(env, ARM_FEATURE_V7)) {
8697 ARMCPRegInfo clidr = {
8698 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
8699 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
8700 .access = PL1_R, .type = ARM_CP_CONST,
8701 .accessfn = access_tid4,
8702 .fgt = FGT_CLIDR_EL1,
8703 .resetvalue = cpu->clidr
8705 define_one_arm_cp_reg(cpu, &clidr);
8706 define_arm_cp_regs(cpu, v7_cp_reginfo);
8707 define_debug_regs(cpu);
8708 define_pmu_regs(cpu);
8709 } else {
8710 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
8712 if (arm_feature(env, ARM_FEATURE_V8)) {
8714 * v8 ID registers, which all have impdef reset values.
8715 * Note that within the ID register ranges the unused slots
8716 * must all RAZ, not UNDEF; future architecture versions may
8717 * define new registers here.
8718 * ID registers which are AArch64 views of the AArch32 ID registers
8719 * which already existed in v6 and v7 are handled elsewhere,
8720 * in v6_idregs[].
8722 int i;
8723 ARMCPRegInfo v8_idregs[] = {
8725 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
8726 * emulation because we don't know the right value for the
8727 * GIC field until after we define these regs.
8729 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
8730 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
8731 .access = PL1_R,
8732 #ifdef CONFIG_USER_ONLY
8733 .type = ARM_CP_CONST,
8734 .resetvalue = cpu->isar.id_aa64pfr0
8735 #else
8736 .type = ARM_CP_NO_RAW,
8737 .accessfn = access_aa64_tid3,
8738 .readfn = id_aa64pfr0_read,
8739 .writefn = arm_cp_write_ignore
8740 #endif
8742 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
8743 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
8744 .access = PL1_R, .type = ARM_CP_CONST,
8745 .accessfn = access_aa64_tid3,
8746 .resetvalue = cpu->isar.id_aa64pfr1},
8747 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8748 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
8749 .access = PL1_R, .type = ARM_CP_CONST,
8750 .accessfn = access_aa64_tid3,
8751 .resetvalue = 0 },
8752 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8753 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
8754 .access = PL1_R, .type = ARM_CP_CONST,
8755 .accessfn = access_aa64_tid3,
8756 .resetvalue = 0 },
8757 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
8758 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
8759 .access = PL1_R, .type = ARM_CP_CONST,
8760 .accessfn = access_aa64_tid3,
8761 .resetvalue = cpu->isar.id_aa64zfr0 },
8762 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
8763 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
8764 .access = PL1_R, .type = ARM_CP_CONST,
8765 .accessfn = access_aa64_tid3,
8766 .resetvalue = cpu->isar.id_aa64smfr0 },
8767 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8768 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
8769 .access = PL1_R, .type = ARM_CP_CONST,
8770 .accessfn = access_aa64_tid3,
8771 .resetvalue = 0 },
8772 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8773 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
8774 .access = PL1_R, .type = ARM_CP_CONST,
8775 .accessfn = access_aa64_tid3,
8776 .resetvalue = 0 },
8777 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
8778 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
8779 .access = PL1_R, .type = ARM_CP_CONST,
8780 .accessfn = access_aa64_tid3,
8781 .resetvalue = cpu->isar.id_aa64dfr0 },
8782 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
8783 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
8784 .access = PL1_R, .type = ARM_CP_CONST,
8785 .accessfn = access_aa64_tid3,
8786 .resetvalue = cpu->isar.id_aa64dfr1 },
8787 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8788 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
8789 .access = PL1_R, .type = ARM_CP_CONST,
8790 .accessfn = access_aa64_tid3,
8791 .resetvalue = 0 },
8792 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8793 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
8794 .access = PL1_R, .type = ARM_CP_CONST,
8795 .accessfn = access_aa64_tid3,
8796 .resetvalue = 0 },
8797 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
8798 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
8799 .access = PL1_R, .type = ARM_CP_CONST,
8800 .accessfn = access_aa64_tid3,
8801 .resetvalue = cpu->id_aa64afr0 },
8802 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
8803 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
8804 .access = PL1_R, .type = ARM_CP_CONST,
8805 .accessfn = access_aa64_tid3,
8806 .resetvalue = cpu->id_aa64afr1 },
8807 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8808 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
8809 .access = PL1_R, .type = ARM_CP_CONST,
8810 .accessfn = access_aa64_tid3,
8811 .resetvalue = 0 },
8812 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8813 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
8814 .access = PL1_R, .type = ARM_CP_CONST,
8815 .accessfn = access_aa64_tid3,
8816 .resetvalue = 0 },
8817 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
8818 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
8819 .access = PL1_R, .type = ARM_CP_CONST,
8820 .accessfn = access_aa64_tid3,
8821 .resetvalue = cpu->isar.id_aa64isar0 },
8822 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
8823 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
8824 .access = PL1_R, .type = ARM_CP_CONST,
8825 .accessfn = access_aa64_tid3,
8826 .resetvalue = cpu->isar.id_aa64isar1 },
8827 { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64,
8828 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
8829 .access = PL1_R, .type = ARM_CP_CONST,
8830 .accessfn = access_aa64_tid3,
8831 .resetvalue = cpu->isar.id_aa64isar2 },
8832 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8833 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
8834 .access = PL1_R, .type = ARM_CP_CONST,
8835 .accessfn = access_aa64_tid3,
8836 .resetvalue = 0 },
8837 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8838 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
8839 .access = PL1_R, .type = ARM_CP_CONST,
8840 .accessfn = access_aa64_tid3,
8841 .resetvalue = 0 },
8842 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8843 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
8844 .access = PL1_R, .type = ARM_CP_CONST,
8845 .accessfn = access_aa64_tid3,
8846 .resetvalue = 0 },
8847 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8848 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
8849 .access = PL1_R, .type = ARM_CP_CONST,
8850 .accessfn = access_aa64_tid3,
8851 .resetvalue = 0 },
8852 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8853 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
8854 .access = PL1_R, .type = ARM_CP_CONST,
8855 .accessfn = access_aa64_tid3,
8856 .resetvalue = 0 },
8857 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
8858 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
8859 .access = PL1_R, .type = ARM_CP_CONST,
8860 .accessfn = access_aa64_tid3,
8861 .resetvalue = cpu->isar.id_aa64mmfr0 },
8862 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
8863 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
8864 .access = PL1_R, .type = ARM_CP_CONST,
8865 .accessfn = access_aa64_tid3,
8866 .resetvalue = cpu->isar.id_aa64mmfr1 },
8867 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
8868 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
8869 .access = PL1_R, .type = ARM_CP_CONST,
8870 .accessfn = access_aa64_tid3,
8871 .resetvalue = cpu->isar.id_aa64mmfr2 },
8872 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8873 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
8874 .access = PL1_R, .type = ARM_CP_CONST,
8875 .accessfn = access_aa64_tid3,
8876 .resetvalue = 0 },
8877 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8878 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
8879 .access = PL1_R, .type = ARM_CP_CONST,
8880 .accessfn = access_aa64_tid3,
8881 .resetvalue = 0 },
8882 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8883 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
8884 .access = PL1_R, .type = ARM_CP_CONST,
8885 .accessfn = access_aa64_tid3,
8886 .resetvalue = 0 },
8887 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8888 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
8889 .access = PL1_R, .type = ARM_CP_CONST,
8890 .accessfn = access_aa64_tid3,
8891 .resetvalue = 0 },
8892 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8893 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
8894 .access = PL1_R, .type = ARM_CP_CONST,
8895 .accessfn = access_aa64_tid3,
8896 .resetvalue = 0 },
8897 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
8898 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8899 .access = PL1_R, .type = ARM_CP_CONST,
8900 .accessfn = access_aa64_tid3,
8901 .resetvalue = cpu->isar.mvfr0 },
8902 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
8903 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8904 .access = PL1_R, .type = ARM_CP_CONST,
8905 .accessfn = access_aa64_tid3,
8906 .resetvalue = cpu->isar.mvfr1 },
8907 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
8908 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8909 .access = PL1_R, .type = ARM_CP_CONST,
8910 .accessfn = access_aa64_tid3,
8911 .resetvalue = cpu->isar.mvfr2 },
8913 * "0, c0, c3, {0,1,2}" are the encodings corresponding to
8914 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
8915 * as RAZ, since it is in the "reserved for future ID
8916 * registers, RAZ" part of the AArch32 encoding space.
8918 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
8919 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8920 .access = PL1_R, .type = ARM_CP_CONST,
8921 .accessfn = access_aa64_tid3,
8922 .resetvalue = 0 },
8923 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
8924 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8925 .access = PL1_R, .type = ARM_CP_CONST,
8926 .accessfn = access_aa64_tid3,
8927 .resetvalue = 0 },
8928 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
8929 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8930 .access = PL1_R, .type = ARM_CP_CONST,
8931 .accessfn = access_aa64_tid3,
8932 .resetvalue = 0 },
8934 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
8935 * they're also RAZ for AArch64, and in v8 are gradually
8936 * being filled with AArch64-view-of-AArch32-ID-register
8937 * for new ID registers.
8939 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
8940 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
8941 .access = PL1_R, .type = ARM_CP_CONST,
8942 .accessfn = access_aa64_tid3,
8943 .resetvalue = 0 },
8944 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
8945 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
8946 .access = PL1_R, .type = ARM_CP_CONST,
8947 .accessfn = access_aa64_tid3,
8948 .resetvalue = cpu->isar.id_pfr2 },
8949 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
8950 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
8951 .access = PL1_R, .type = ARM_CP_CONST,
8952 .accessfn = access_aa64_tid3,
8953 .resetvalue = cpu->isar.id_dfr1 },
8954 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
8955 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
8956 .access = PL1_R, .type = ARM_CP_CONST,
8957 .accessfn = access_aa64_tid3,
8958 .resetvalue = cpu->isar.id_mmfr5 },
8959 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
8960 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
8961 .access = PL1_R, .type = ARM_CP_CONST,
8962 .accessfn = access_aa64_tid3,
8963 .resetvalue = 0 },
8964 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
8965 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
8966 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8967 .fgt = FGT_PMCEIDN_EL0,
8968 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
8969 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
8970 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
8971 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8972 .fgt = FGT_PMCEIDN_EL0,
8973 .resetvalue = cpu->pmceid0 },
8974 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
8975 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
8976 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8977 .fgt = FGT_PMCEIDN_EL0,
8978 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
8979 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
8980 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
8981 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8982 .fgt = FGT_PMCEIDN_EL0,
8983 .resetvalue = cpu->pmceid1 },
8985 #ifdef CONFIG_USER_ONLY
8986 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
8987 { .name = "ID_AA64PFR0_EL1",
8988 .exported_bits = R_ID_AA64PFR0_FP_MASK |
8989 R_ID_AA64PFR0_ADVSIMD_MASK |
8990 R_ID_AA64PFR0_SVE_MASK |
8991 R_ID_AA64PFR0_DIT_MASK,
8992 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
8993 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
8994 { .name = "ID_AA64PFR1_EL1",
8995 .exported_bits = R_ID_AA64PFR1_BT_MASK |
8996 R_ID_AA64PFR1_SSBS_MASK |
8997 R_ID_AA64PFR1_MTE_MASK |
8998 R_ID_AA64PFR1_SME_MASK },
8999 { .name = "ID_AA64PFR*_EL1_RESERVED",
9000 .is_glob = true },
9001 { .name = "ID_AA64ZFR0_EL1",
9002 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
9003 R_ID_AA64ZFR0_AES_MASK |
9004 R_ID_AA64ZFR0_BITPERM_MASK |
9005 R_ID_AA64ZFR0_BFLOAT16_MASK |
9006 R_ID_AA64ZFR0_B16B16_MASK |
9007 R_ID_AA64ZFR0_SHA3_MASK |
9008 R_ID_AA64ZFR0_SM4_MASK |
9009 R_ID_AA64ZFR0_I8MM_MASK |
9010 R_ID_AA64ZFR0_F32MM_MASK |
9011 R_ID_AA64ZFR0_F64MM_MASK },
9012 { .name = "ID_AA64SMFR0_EL1",
9013 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
9014 R_ID_AA64SMFR0_BI32I32_MASK |
9015 R_ID_AA64SMFR0_B16F32_MASK |
9016 R_ID_AA64SMFR0_F16F32_MASK |
9017 R_ID_AA64SMFR0_I8I32_MASK |
9018 R_ID_AA64SMFR0_F16F16_MASK |
9019 R_ID_AA64SMFR0_B16B16_MASK |
9020 R_ID_AA64SMFR0_I16I32_MASK |
9021 R_ID_AA64SMFR0_F64F64_MASK |
9022 R_ID_AA64SMFR0_I16I64_MASK |
9023 R_ID_AA64SMFR0_SMEVER_MASK |
9024 R_ID_AA64SMFR0_FA64_MASK },
9025 { .name = "ID_AA64MMFR0_EL1",
9026 .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
9027 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
9028 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
9029 { .name = "ID_AA64MMFR1_EL1",
9030 .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
9031 { .name = "ID_AA64MMFR2_EL1",
9032 .exported_bits = R_ID_AA64MMFR2_AT_MASK },
9033 { .name = "ID_AA64MMFR*_EL1_RESERVED",
9034 .is_glob = true },
9035 { .name = "ID_AA64DFR0_EL1",
9036 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
9037 { .name = "ID_AA64DFR1_EL1" },
9038 { .name = "ID_AA64DFR*_EL1_RESERVED",
9039 .is_glob = true },
9040 { .name = "ID_AA64AFR*",
9041 .is_glob = true },
9042 { .name = "ID_AA64ISAR0_EL1",
9043 .exported_bits = R_ID_AA64ISAR0_AES_MASK |
9044 R_ID_AA64ISAR0_SHA1_MASK |
9045 R_ID_AA64ISAR0_SHA2_MASK |
9046 R_ID_AA64ISAR0_CRC32_MASK |
9047 R_ID_AA64ISAR0_ATOMIC_MASK |
9048 R_ID_AA64ISAR0_RDM_MASK |
9049 R_ID_AA64ISAR0_SHA3_MASK |
9050 R_ID_AA64ISAR0_SM3_MASK |
9051 R_ID_AA64ISAR0_SM4_MASK |
9052 R_ID_AA64ISAR0_DP_MASK |
9053 R_ID_AA64ISAR0_FHM_MASK |
9054 R_ID_AA64ISAR0_TS_MASK |
9055 R_ID_AA64ISAR0_RNDR_MASK },
9056 { .name = "ID_AA64ISAR1_EL1",
9057 .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
9058 R_ID_AA64ISAR1_APA_MASK |
9059 R_ID_AA64ISAR1_API_MASK |
9060 R_ID_AA64ISAR1_JSCVT_MASK |
9061 R_ID_AA64ISAR1_FCMA_MASK |
9062 R_ID_AA64ISAR1_LRCPC_MASK |
9063 R_ID_AA64ISAR1_GPA_MASK |
9064 R_ID_AA64ISAR1_GPI_MASK |
9065 R_ID_AA64ISAR1_FRINTTS_MASK |
9066 R_ID_AA64ISAR1_SB_MASK |
9067 R_ID_AA64ISAR1_BF16_MASK |
9068 R_ID_AA64ISAR1_DGH_MASK |
9069 R_ID_AA64ISAR1_I8MM_MASK },
9070 { .name = "ID_AA64ISAR2_EL1",
9071 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
9072 R_ID_AA64ISAR2_RPRES_MASK |
9073 R_ID_AA64ISAR2_GPA3_MASK |
9074 R_ID_AA64ISAR2_APA3_MASK |
9075 R_ID_AA64ISAR2_MOPS_MASK |
9076 R_ID_AA64ISAR2_BC_MASK |
9077 R_ID_AA64ISAR2_RPRFM_MASK |
9078 R_ID_AA64ISAR2_CSSC_MASK },
9079 { .name = "ID_AA64ISAR*_EL1_RESERVED",
9080 .is_glob = true },
9082 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
9083 #endif
9085 * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL.
9086 * TODO: For RMR, a write with bit 1 set should do something with
9087 * cpu_reset(). In the meantime, "the bit is strictly a request",
9088 * so we are in spec just ignoring writes.
9090 if (!arm_feature(env, ARM_FEATURE_EL3) &&
9091 !arm_feature(env, ARM_FEATURE_EL2)) {
9092 ARMCPRegInfo el1_reset_regs[] = {
9093 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
9094 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
9095 .access = PL1_R,
9096 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
9097 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH,
9098 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
9099 .access = PL1_RW, .type = ARM_CP_CONST,
9100 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }
9102 define_arm_cp_regs(cpu, el1_reset_regs);
9104 define_arm_cp_regs(cpu, v8_idregs);
9105 define_arm_cp_regs(cpu, v8_cp_reginfo);
9106 if (cpu_isar_feature(aa64_aa32_el1, cpu)) {
9107 define_arm_cp_regs(cpu, v8_aa32_el1_reginfo);
9110 for (i = 4; i < 16; i++) {
9112 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
9113 * For pre-v8 cores there are RAZ patterns for these in
9114 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
9115 * v8 extends the "must RAZ" part of the ID register space
9116 * to also cover c0, 0, c{8-15}, {0-7}.
9117 * These are STATE_AA32 because in the AArch64 sysreg space
9118 * c4-c7 is where the AArch64 ID registers live (and we've
9119 * already defined those in v8_idregs[]), and c8-c15 are not
9120 * "must RAZ" for AArch64.
9122 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
9123 ARMCPRegInfo v8_aa32_raz_idregs = {
9124 .name = name,
9125 .state = ARM_CP_STATE_AA32,
9126 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
9127 .access = PL1_R, .type = ARM_CP_CONST,
9128 .accessfn = access_aa64_tid3,
9129 .resetvalue = 0 };
9130 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
9135 * Register the base EL2 cpregs.
9136 * Pre v8, these registers are implemented only as part of the
9137 * Virtualization Extensions (EL2 present). Beginning with v8,
9138 * if EL2 is missing but EL3 is enabled, mostly these become
9139 * RES0 from EL3, with some specific exceptions.
9141 if (arm_feature(env, ARM_FEATURE_EL2)
9142 || (arm_feature(env, ARM_FEATURE_EL3)
9143 && arm_feature(env, ARM_FEATURE_V8))) {
9144 uint64_t vmpidr_def = mpidr_read_val(env);
9145 ARMCPRegInfo vpidr_regs[] = {
9146 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
9147 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
9148 .access = PL2_RW, .accessfn = access_el3_aa32ns,
9149 .resetvalue = cpu->midr,
9150 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
9151 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
9152 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
9153 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
9154 .access = PL2_RW, .resetvalue = cpu->midr,
9155 .type = ARM_CP_EL3_NO_EL2_C_NZ,
9156 .nv2_redirect_offset = 0x88,
9157 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
9158 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
9159 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
9160 .access = PL2_RW, .accessfn = access_el3_aa32ns,
9161 .resetvalue = vmpidr_def,
9162 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
9163 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
9164 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
9165 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
9166 .access = PL2_RW, .resetvalue = vmpidr_def,
9167 .type = ARM_CP_EL3_NO_EL2_C_NZ,
9168 .nv2_redirect_offset = 0x50,
9169 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
9172 * The only field of MDCR_EL2 that has a defined architectural reset
9173 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
9175 ARMCPRegInfo mdcr_el2 = {
9176 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
9177 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
9178 .writefn = mdcr_el2_write,
9179 .access = PL2_RW, .resetvalue = pmu_num_counters(env),
9180 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
9182 define_one_arm_cp_reg(cpu, &mdcr_el2);
9183 define_arm_cp_regs(cpu, vpidr_regs);
9184 define_arm_cp_regs(cpu, el2_cp_reginfo);
9185 if (arm_feature(env, ARM_FEATURE_V8)) {
9186 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
9188 if (cpu_isar_feature(aa64_sel2, cpu)) {
9189 define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
9192 * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL.
9193 * See commentary near RMR_EL1.
9195 if (!arm_feature(env, ARM_FEATURE_EL3)) {
9196 static const ARMCPRegInfo el2_reset_regs[] = {
9197 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
9198 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
9199 .access = PL2_R,
9200 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
9201 { .name = "RVBAR", .type = ARM_CP_ALIAS,
9202 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
9203 .access = PL2_R,
9204 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
9205 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64,
9206 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2,
9207 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
9209 define_arm_cp_regs(cpu, el2_reset_regs);
9213 /* Register the base EL3 cpregs. */
9214 if (arm_feature(env, ARM_FEATURE_EL3)) {
9215 define_arm_cp_regs(cpu, el3_cp_reginfo);
9216 ARMCPRegInfo el3_regs[] = {
9217 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
9218 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
9219 .access = PL3_R,
9220 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), },
9221 { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64,
9222 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2,
9223 .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
9224 { .name = "RMR", .state = ARM_CP_STATE_AA32,
9225 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
9226 .access = PL3_RW, .type = ARM_CP_CONST,
9227 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) },
9228 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
9229 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
9230 .access = PL3_RW,
9231 .raw_writefn = raw_write, .writefn = sctlr_write,
9232 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
9233 .resetvalue = cpu->reset_sctlr },
9236 define_arm_cp_regs(cpu, el3_regs);
9239 * The behaviour of NSACR is sufficiently various that we don't
9240 * try to describe it in a single reginfo:
9241 * if EL3 is 64 bit, then trap to EL3 from S EL1,
9242 * reads as constant 0xc00 from NS EL1 and NS EL2
9243 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
9244 * if v7 without EL3, register doesn't exist
9245 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
9247 if (arm_feature(env, ARM_FEATURE_EL3)) {
9248 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
9249 static const ARMCPRegInfo nsacr = {
9250 .name = "NSACR", .type = ARM_CP_CONST,
9251 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9252 .access = PL1_RW, .accessfn = nsacr_access,
9253 .resetvalue = 0xc00
9255 define_one_arm_cp_reg(cpu, &nsacr);
9256 } else {
9257 static const ARMCPRegInfo nsacr = {
9258 .name = "NSACR",
9259 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9260 .access = PL3_RW | PL1_R,
9261 .resetvalue = 0,
9262 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
9264 define_one_arm_cp_reg(cpu, &nsacr);
9266 } else {
9267 if (arm_feature(env, ARM_FEATURE_V8)) {
9268 static const ARMCPRegInfo nsacr = {
9269 .name = "NSACR", .type = ARM_CP_CONST,
9270 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9271 .access = PL1_R,
9272 .resetvalue = 0xc00
9274 define_one_arm_cp_reg(cpu, &nsacr);
9278 if (arm_feature(env, ARM_FEATURE_PMSA)) {
9279 if (arm_feature(env, ARM_FEATURE_V6)) {
9280 /* PMSAv6 not implemented */
9281 assert(arm_feature(env, ARM_FEATURE_V7));
9282 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
9283 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
9284 } else {
9285 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
9287 } else {
9288 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
9289 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
9290 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
9291 if (cpu_isar_feature(aa32_hpd, cpu)) {
9292 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
9295 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
9296 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
9298 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
9299 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
9301 if (cpu_isar_feature(aa64_ecv_traps, cpu)) {
9302 define_arm_cp_regs(cpu, gen_timer_ecv_cp_reginfo);
9304 if (arm_feature(env, ARM_FEATURE_VAPA)) {
9305 ARMCPRegInfo vapa_cp_reginfo[] = {
9306 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
9307 .access = PL1_RW, .resetvalue = 0,
9308 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
9309 offsetoflow32(CPUARMState, cp15.par_ns) },
9310 .writefn = par_write},
9311 #ifndef CONFIG_USER_ONLY
9312 /* This underdecoding is safe because the reginfo is NO_RAW. */
9313 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
9314 .access = PL1_W, .accessfn = ats_access,
9315 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
9316 #endif
9320 * When LPAE exists this 32-bit PAR register is an alias of the
9321 * 64-bit AArch32 PAR register defined in lpae_cp_reginfo[]
9323 if (arm_feature(env, ARM_FEATURE_LPAE)) {
9324 vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB;
9326 define_arm_cp_regs(cpu, vapa_cp_reginfo);
9328 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
9329 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
9331 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
9332 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
9334 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
9335 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
9337 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
9338 define_arm_cp_regs(cpu, omap_cp_reginfo);
9340 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
9341 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
9343 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9344 define_arm_cp_regs(cpu, xscale_cp_reginfo);
9346 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
9347 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
9349 if (arm_feature(env, ARM_FEATURE_LPAE)) {
9350 define_arm_cp_regs(cpu, lpae_cp_reginfo);
9352 if (cpu_isar_feature(aa32_jazelle, cpu)) {
9353 define_arm_cp_regs(cpu, jazelle_regs);
9356 * Slightly awkwardly, the OMAP and StrongARM cores need all of
9357 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
9358 * be read-only (ie write causes UNDEF exception).
9361 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
9363 * Pre-v8 MIDR space.
9364 * Note that the MIDR isn't a simple constant register because
9365 * of the TI925 behaviour where writes to another register can
9366 * cause the MIDR value to change.
9368 * Unimplemented registers in the c15 0 0 0 space default to
9369 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
9370 * and friends override accordingly.
9372 { .name = "MIDR",
9373 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
9374 .access = PL1_R, .resetvalue = cpu->midr,
9375 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
9376 .readfn = midr_read,
9377 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
9378 .type = ARM_CP_OVERRIDE },
9379 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
9380 { .name = "DUMMY",
9381 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
9382 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9383 { .name = "DUMMY",
9384 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
9385 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9386 { .name = "DUMMY",
9387 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
9388 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9389 { .name = "DUMMY",
9390 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
9391 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9392 { .name = "DUMMY",
9393 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
9394 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9396 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
9397 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
9398 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
9399 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
9400 .fgt = FGT_MIDR_EL1,
9401 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
9402 .readfn = midr_read },
9403 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
9404 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
9405 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
9406 .access = PL1_R, .resetvalue = cpu->midr },
9407 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
9408 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
9409 .access = PL1_R,
9410 .accessfn = access_aa64_tid1,
9411 .fgt = FGT_REVIDR_EL1,
9412 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
9414 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
9415 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB,
9416 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9417 .access = PL1_R, .resetvalue = cpu->midr
9419 ARMCPRegInfo id_cp_reginfo[] = {
9420 /* These are common to v8 and pre-v8 */
9421 { .name = "CTR",
9422 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
9423 .access = PL1_R, .accessfn = ctr_el0_access,
9424 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9425 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
9426 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
9427 .access = PL0_R, .accessfn = ctr_el0_access,
9428 .fgt = FGT_CTR_EL0,
9429 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9430 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
9431 { .name = "TCMTR",
9432 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
9433 .access = PL1_R,
9434 .accessfn = access_aa32_tid1,
9435 .type = ARM_CP_CONST, .resetvalue = 0 },
9437 /* TLBTR is specific to VMSA */
9438 ARMCPRegInfo id_tlbtr_reginfo = {
9439 .name = "TLBTR",
9440 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
9441 .access = PL1_R,
9442 .accessfn = access_aa32_tid1,
9443 .type = ARM_CP_CONST, .resetvalue = 0,
9445 /* MPUIR is specific to PMSA V6+ */
9446 ARMCPRegInfo id_mpuir_reginfo = {
9447 .name = "MPUIR",
9448 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9449 .access = PL1_R, .type = ARM_CP_CONST,
9450 .resetvalue = cpu->pmsav7_dregion << 8
9452 /* HMPUIR is specific to PMSA V8 */
9453 ARMCPRegInfo id_hmpuir_reginfo = {
9454 .name = "HMPUIR",
9455 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
9456 .access = PL2_R, .type = ARM_CP_CONST,
9457 .resetvalue = cpu->pmsav8r_hdregion
9459 static const ARMCPRegInfo crn0_wi_reginfo = {
9460 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
9461 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
9462 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
9464 #ifdef CONFIG_USER_ONLY
9465 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
9466 { .name = "MIDR_EL1",
9467 .exported_bits = R_MIDR_EL1_REVISION_MASK |
9468 R_MIDR_EL1_PARTNUM_MASK |
9469 R_MIDR_EL1_ARCHITECTURE_MASK |
9470 R_MIDR_EL1_VARIANT_MASK |
9471 R_MIDR_EL1_IMPLEMENTER_MASK },
9472 { .name = "REVIDR_EL1" },
9474 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
9475 #endif
9476 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
9477 arm_feature(env, ARM_FEATURE_STRONGARM)) {
9478 size_t i;
9480 * Register the blanket "writes ignored" value first to cover the
9481 * whole space. Then update the specific ID registers to allow write
9482 * access, so that they ignore writes rather than causing them to
9483 * UNDEF.
9485 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
9486 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
9487 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
9489 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
9490 id_cp_reginfo[i].access = PL1_RW;
9492 id_mpuir_reginfo.access = PL1_RW;
9493 id_tlbtr_reginfo.access = PL1_RW;
9495 if (arm_feature(env, ARM_FEATURE_V8)) {
9496 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
9497 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9498 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
9500 } else {
9501 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
9503 define_arm_cp_regs(cpu, id_cp_reginfo);
9504 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9505 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
9506 } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
9507 arm_feature(env, ARM_FEATURE_V8)) {
9508 uint32_t i = 0;
9509 char *tmp_string;
9511 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9512 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
9513 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
9515 /* Register alias is only valid for first 32 indexes */
9516 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
9517 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9518 uint8_t opc1 = extract32(i, 4, 1);
9519 uint8_t opc2 = extract32(i, 0, 1) << 2;
9521 tmp_string = g_strdup_printf("PRBAR%u", i);
9522 ARMCPRegInfo tmp_prbarn_reginfo = {
9523 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9524 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9525 .access = PL1_RW, .resetvalue = 0,
9526 .accessfn = access_tvm_trvm,
9527 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9529 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
9530 g_free(tmp_string);
9532 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9533 tmp_string = g_strdup_printf("PRLAR%u", i);
9534 ARMCPRegInfo tmp_prlarn_reginfo = {
9535 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9536 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9537 .access = PL1_RW, .resetvalue = 0,
9538 .accessfn = access_tvm_trvm,
9539 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9541 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
9542 g_free(tmp_string);
9545 /* Register alias is only valid for first 32 indexes */
9546 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
9547 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9548 uint8_t opc1 = 0b100 | extract32(i, 4, 1);
9549 uint8_t opc2 = extract32(i, 0, 1) << 2;
9551 tmp_string = g_strdup_printf("HPRBAR%u", i);
9552 ARMCPRegInfo tmp_hprbarn_reginfo = {
9553 .name = tmp_string,
9554 .type = ARM_CP_NO_RAW,
9555 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9556 .access = PL2_RW, .resetvalue = 0,
9557 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9559 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
9560 g_free(tmp_string);
9562 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9563 tmp_string = g_strdup_printf("HPRLAR%u", i);
9564 ARMCPRegInfo tmp_hprlarn_reginfo = {
9565 .name = tmp_string,
9566 .type = ARM_CP_NO_RAW,
9567 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9568 .access = PL2_RW, .resetvalue = 0,
9569 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9571 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
9572 g_free(tmp_string);
9574 } else if (arm_feature(env, ARM_FEATURE_V7)) {
9575 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9579 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
9580 ARMCPRegInfo mpidr_cp_reginfo[] = {
9581 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
9582 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
9583 .fgt = FGT_MPIDR_EL1,
9584 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
9586 #ifdef CONFIG_USER_ONLY
9587 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
9588 { .name = "MPIDR_EL1",
9589 .fixed_bits = 0x0000000080000000 },
9591 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
9592 #endif
9593 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
9596 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
9597 ARMCPRegInfo auxcr_reginfo[] = {
9598 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
9599 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
9600 .access = PL1_RW, .accessfn = access_tacr,
9601 .nv2_redirect_offset = 0x118,
9602 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
9603 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
9604 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
9605 .access = PL2_RW, .type = ARM_CP_CONST,
9606 .resetvalue = 0 },
9607 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
9608 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
9609 .access = PL3_RW, .type = ARM_CP_CONST,
9610 .resetvalue = 0 },
9612 define_arm_cp_regs(cpu, auxcr_reginfo);
9613 if (cpu_isar_feature(aa32_ac2, cpu)) {
9614 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
9618 if (arm_feature(env, ARM_FEATURE_CBAR)) {
9620 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
9621 * There are two flavours:
9622 * (1) older 32-bit only cores have a simple 32-bit CBAR
9623 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
9624 * 32-bit register visible to AArch32 at a different encoding
9625 * to the "flavour 1" register and with the bits rearranged to
9626 * be able to squash a 64-bit address into the 32-bit view.
9627 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
9628 * in future if we support AArch32-only configs of some of the
9629 * AArch64 cores we might need to add a specific feature flag
9630 * to indicate cores with "flavour 2" CBAR.
9632 if (arm_feature(env, ARM_FEATURE_V8)) {
9633 /* 32 bit view is [31:18] 0...0 [43:32]. */
9634 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
9635 | extract64(cpu->reset_cbar, 32, 12);
9636 ARMCPRegInfo cbar_reginfo[] = {
9637 { .name = "CBAR",
9638 .type = ARM_CP_CONST,
9639 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
9640 .access = PL1_R, .resetvalue = cbar32 },
9641 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
9642 .type = ARM_CP_CONST,
9643 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
9644 .access = PL1_R, .resetvalue = cpu->reset_cbar },
9646 /* We don't implement a r/w 64 bit CBAR currently */
9647 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
9648 define_arm_cp_regs(cpu, cbar_reginfo);
9649 } else {
9650 ARMCPRegInfo cbar = {
9651 .name = "CBAR",
9652 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
9653 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
9654 .fieldoffset = offsetof(CPUARMState,
9655 cp15.c15_config_base_address)
9657 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
9658 cbar.access = PL1_R;
9659 cbar.fieldoffset = 0;
9660 cbar.type = ARM_CP_CONST;
9662 define_one_arm_cp_reg(cpu, &cbar);
9666 if (arm_feature(env, ARM_FEATURE_VBAR)) {
9667 static const ARMCPRegInfo vbar_cp_reginfo[] = {
9668 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
9669 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
9670 .access = PL1_RW, .writefn = vbar_write,
9671 .accessfn = access_nv1,
9672 .fgt = FGT_VBAR_EL1,
9673 .nv2_redirect_offset = 0x250 | NV2_REDIR_NV1,
9674 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
9675 offsetof(CPUARMState, cp15.vbar_ns) },
9676 .resetvalue = 0 },
9678 define_arm_cp_regs(cpu, vbar_cp_reginfo);
9681 /* Generic registers whose values depend on the implementation */
9683 ARMCPRegInfo sctlr = {
9684 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
9685 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
9686 .access = PL1_RW, .accessfn = access_tvm_trvm,
9687 .fgt = FGT_SCTLR_EL1,
9688 .nv2_redirect_offset = 0x110 | NV2_REDIR_NV1,
9689 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
9690 offsetof(CPUARMState, cp15.sctlr_ns) },
9691 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
9692 .raw_writefn = raw_write,
9694 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9696 * Normally we would always end the TB on an SCTLR write, but Linux
9697 * arch/arm/mach-pxa/sleep.S expects two instructions following
9698 * an MMU enable to execute from cache. Imitate this behaviour.
9700 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
9702 define_one_arm_cp_reg(cpu, &sctlr);
9704 if (arm_feature(env, ARM_FEATURE_PMSA) &&
9705 arm_feature(env, ARM_FEATURE_V8)) {
9706 ARMCPRegInfo vsctlr = {
9707 .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
9708 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
9709 .access = PL2_RW, .resetvalue = 0x0,
9710 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
9712 define_one_arm_cp_reg(cpu, &vsctlr);
9716 if (cpu_isar_feature(aa64_lor, cpu)) {
9717 define_arm_cp_regs(cpu, lor_reginfo);
9719 if (cpu_isar_feature(aa64_pan, cpu)) {
9720 define_one_arm_cp_reg(cpu, &pan_reginfo);
9722 #ifndef CONFIG_USER_ONLY
9723 if (cpu_isar_feature(aa64_ats1e1, cpu)) {
9724 define_arm_cp_regs(cpu, ats1e1_reginfo);
9726 if (cpu_isar_feature(aa32_ats1e1, cpu)) {
9727 define_arm_cp_regs(cpu, ats1cp_reginfo);
9729 #endif
9730 if (cpu_isar_feature(aa64_uao, cpu)) {
9731 define_one_arm_cp_reg(cpu, &uao_reginfo);
9734 if (cpu_isar_feature(aa64_dit, cpu)) {
9735 define_one_arm_cp_reg(cpu, &dit_reginfo);
9737 if (cpu_isar_feature(aa64_ssbs, cpu)) {
9738 define_one_arm_cp_reg(cpu, &ssbs_reginfo);
9740 if (cpu_isar_feature(any_ras, cpu)) {
9741 define_arm_cp_regs(cpu, minimal_ras_reginfo);
9744 if (cpu_isar_feature(aa64_vh, cpu) ||
9745 cpu_isar_feature(aa64_debugv8p2, cpu)) {
9746 define_one_arm_cp_reg(cpu, &contextidr_el2);
9748 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9749 define_arm_cp_regs(cpu, vhe_reginfo);
9752 if (cpu_isar_feature(aa64_sve, cpu)) {
9753 define_arm_cp_regs(cpu, zcr_reginfo);
9756 if (cpu_isar_feature(aa64_hcx, cpu)) {
9757 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
9760 #ifdef TARGET_AARCH64
9761 if (cpu_isar_feature(aa64_sme, cpu)) {
9762 define_arm_cp_regs(cpu, sme_reginfo);
9764 if (cpu_isar_feature(aa64_pauth, cpu)) {
9765 define_arm_cp_regs(cpu, pauth_reginfo);
9767 if (cpu_isar_feature(aa64_rndr, cpu)) {
9768 define_arm_cp_regs(cpu, rndr_reginfo);
9770 if (cpu_isar_feature(aa64_tlbirange, cpu)) {
9771 define_arm_cp_regs(cpu, tlbirange_reginfo);
9773 if (cpu_isar_feature(aa64_tlbios, cpu)) {
9774 define_arm_cp_regs(cpu, tlbios_reginfo);
9776 /* Data Cache clean instructions up to PoP */
9777 if (cpu_isar_feature(aa64_dcpop, cpu)) {
9778 define_one_arm_cp_reg(cpu, dcpop_reg);
9780 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
9781 define_one_arm_cp_reg(cpu, dcpodp_reg);
9786 * If full MTE is enabled, add all of the system registers.
9787 * If only "instructions available at EL0" are enabled,
9788 * then define only a RAZ/WI version of PSTATE.TCO.
9790 if (cpu_isar_feature(aa64_mte, cpu)) {
9791 ARMCPRegInfo gmid_reginfo = {
9792 .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
9793 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
9794 .access = PL1_R, .accessfn = access_aa64_tid5,
9795 .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize,
9797 define_one_arm_cp_reg(cpu, &gmid_reginfo);
9798 define_arm_cp_regs(cpu, mte_reginfo);
9799 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9800 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
9801 define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
9802 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9805 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
9806 define_arm_cp_regs(cpu, scxtnum_reginfo);
9809 if (cpu_isar_feature(aa64_fgt, cpu)) {
9810 define_arm_cp_regs(cpu, fgt_reginfo);
9813 if (cpu_isar_feature(aa64_rme, cpu)) {
9814 define_arm_cp_regs(cpu, rme_reginfo);
9815 if (cpu_isar_feature(aa64_mte, cpu)) {
9816 define_arm_cp_regs(cpu, rme_mte_reginfo);
9820 if (cpu_isar_feature(aa64_nv2, cpu)) {
9821 define_arm_cp_regs(cpu, nv2_reginfo);
9823 #endif
9825 if (cpu_isar_feature(any_predinv, cpu)) {
9826 define_arm_cp_regs(cpu, predinv_reginfo);
9829 if (cpu_isar_feature(any_ccidx, cpu)) {
9830 define_arm_cp_regs(cpu, ccsidr2_reginfo);
9833 #ifndef CONFIG_USER_ONLY
9835 * Register redirections and aliases must be done last,
9836 * after the registers from the other extensions have been defined.
9838 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9839 define_arm_vh_e2h_redirects_aliases(cpu);
9841 #endif
9845 * Private utility function for define_one_arm_cp_reg_with_opaque():
9846 * add a single reginfo struct to the hash table.
9848 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
9849 void *opaque, CPState state,
9850 CPSecureState secstate,
9851 int crm, int opc1, int opc2,
9852 const char *name)
9854 CPUARMState *env = &cpu->env;
9855 uint32_t key;
9856 ARMCPRegInfo *r2;
9857 bool is64 = r->type & ARM_CP_64BIT;
9858 bool ns = secstate & ARM_CP_SECSTATE_NS;
9859 int cp = r->cp;
9860 size_t name_len;
9861 bool make_const;
9863 switch (state) {
9864 case ARM_CP_STATE_AA32:
9865 /* We assume it is a cp15 register if the .cp field is left unset. */
9866 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
9867 cp = 15;
9869 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
9870 break;
9871 case ARM_CP_STATE_AA64:
9873 * To allow abbreviation of ARMCPRegInfo definitions, we treat
9874 * cp == 0 as equivalent to the value for "standard guest-visible
9875 * sysreg". STATE_BOTH definitions are also always "standard sysreg"
9876 * in their AArch64 view (the .cp value may be non-zero for the
9877 * benefit of the AArch32 view).
9879 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
9880 cp = CP_REG_ARM64_SYSREG_CP;
9882 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
9883 break;
9884 default:
9885 g_assert_not_reached();
9888 /* Overriding of an existing definition must be explicitly requested. */
9889 if (!(r->type & ARM_CP_OVERRIDE)) {
9890 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
9891 if (oldreg) {
9892 assert(oldreg->type & ARM_CP_OVERRIDE);
9897 * Eliminate registers that are not present because the EL is missing.
9898 * Doing this here makes it easier to put all registers for a given
9899 * feature into the same ARMCPRegInfo array and define them all at once.
9901 make_const = false;
9902 if (arm_feature(env, ARM_FEATURE_EL3)) {
9904 * An EL2 register without EL2 but with EL3 is (usually) RES0.
9905 * See rule RJFFP in section D1.1.3 of DDI0487H.a.
9907 int min_el = ctz32(r->access) / 2;
9908 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
9909 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
9910 return;
9912 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
9914 } else {
9915 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
9916 ? PL2_RW : PL1_RW);
9917 if ((r->access & max_el) == 0) {
9918 return;
9922 /* Combine cpreg and name into one allocation. */
9923 name_len = strlen(name) + 1;
9924 r2 = g_malloc(sizeof(*r2) + name_len);
9925 *r2 = *r;
9926 r2->name = memcpy(r2 + 1, name, name_len);
9929 * Update fields to match the instantiation, overwiting wildcards
9930 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
9932 r2->cp = cp;
9933 r2->crm = crm;
9934 r2->opc1 = opc1;
9935 r2->opc2 = opc2;
9936 r2->state = state;
9937 r2->secure = secstate;
9938 if (opaque) {
9939 r2->opaque = opaque;
9942 if (make_const) {
9943 /* This should not have been a very special register to begin. */
9944 int old_special = r2->type & ARM_CP_SPECIAL_MASK;
9945 assert(old_special == 0 || old_special == ARM_CP_NOP);
9947 * Set the special function to CONST, retaining the other flags.
9948 * This is important for e.g. ARM_CP_SVE so that we still
9949 * take the SVE trap if CPTR_EL3.EZ == 0.
9951 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
9953 * Usually, these registers become RES0, but there are a few
9954 * special cases like VPIDR_EL2 which have a constant non-zero
9955 * value with writes ignored.
9957 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
9958 r2->resetvalue = 0;
9961 * ARM_CP_CONST has precedence, so removing the callbacks and
9962 * offsets are not strictly necessary, but it is potentially
9963 * less confusing to debug later.
9965 r2->readfn = NULL;
9966 r2->writefn = NULL;
9967 r2->raw_readfn = NULL;
9968 r2->raw_writefn = NULL;
9969 r2->resetfn = NULL;
9970 r2->fieldoffset = 0;
9971 r2->bank_fieldoffsets[0] = 0;
9972 r2->bank_fieldoffsets[1] = 0;
9973 } else {
9974 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
9976 if (isbanked) {
9978 * Register is banked (using both entries in array).
9979 * Overwriting fieldoffset as the array is only used to define
9980 * banked registers but later only fieldoffset is used.
9982 r2->fieldoffset = r->bank_fieldoffsets[ns];
9984 if (state == ARM_CP_STATE_AA32) {
9985 if (isbanked) {
9987 * If the register is banked then we don't need to migrate or
9988 * reset the 32-bit instance in certain cases:
9990 * 1) If the register has both 32-bit and 64-bit instances
9991 * then we can count on the 64-bit instance taking care
9992 * of the non-secure bank.
9993 * 2) If ARMv8 is enabled then we can count on a 64-bit
9994 * version taking care of the secure bank. This requires
9995 * that separate 32 and 64-bit definitions are provided.
9997 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
9998 (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
9999 r2->type |= ARM_CP_ALIAS;
10001 } else if ((secstate != r->secure) && !ns) {
10003 * The register is not banked so we only want to allow
10004 * migration of the non-secure instance.
10006 r2->type |= ARM_CP_ALIAS;
10009 if (HOST_BIG_ENDIAN &&
10010 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
10011 r2->fieldoffset += sizeof(uint32_t);
10017 * By convention, for wildcarded registers only the first
10018 * entry is used for migration; the others are marked as
10019 * ALIAS so we don't try to transfer the register
10020 * multiple times. Special registers (ie NOP/WFI) are
10021 * never migratable and not even raw-accessible.
10023 if (r2->type & ARM_CP_SPECIAL_MASK) {
10024 r2->type |= ARM_CP_NO_RAW;
10026 if (((r->crm == CP_ANY) && crm != 0) ||
10027 ((r->opc1 == CP_ANY) && opc1 != 0) ||
10028 ((r->opc2 == CP_ANY) && opc2 != 0)) {
10029 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
10033 * Check that raw accesses are either forbidden or handled. Note that
10034 * we can't assert this earlier because the setup of fieldoffset for
10035 * banked registers has to be done first.
10037 if (!(r2->type & ARM_CP_NO_RAW)) {
10038 assert(!raw_accessors_invalid(r2));
10041 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
10045 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
10046 const ARMCPRegInfo *r, void *opaque)
10049 * Define implementations of coprocessor registers.
10050 * We store these in a hashtable because typically
10051 * there are less than 150 registers in a space which
10052 * is 16*16*16*8*8 = 262144 in size.
10053 * Wildcarding is supported for the crm, opc1 and opc2 fields.
10054 * If a register is defined twice then the second definition is
10055 * used, so this can be used to define some generic registers and
10056 * then override them with implementation specific variations.
10057 * At least one of the original and the second definition should
10058 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
10059 * against accidental use.
10061 * The state field defines whether the register is to be
10062 * visible in the AArch32 or AArch64 execution state. If the
10063 * state is set to ARM_CP_STATE_BOTH then we synthesise a
10064 * reginfo structure for the AArch32 view, which sees the lower
10065 * 32 bits of the 64 bit register.
10067 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
10068 * be wildcarded. AArch64 registers are always considered to be 64
10069 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
10070 * the register, if any.
10072 int crm, opc1, opc2;
10073 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
10074 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
10075 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
10076 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
10077 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
10078 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
10079 CPState state;
10081 /* 64 bit registers have only CRm and Opc1 fields */
10082 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
10083 /* op0 only exists in the AArch64 encodings */
10084 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
10085 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
10086 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
10088 * This API is only for Arm's system coprocessors (14 and 15) or
10089 * (M-profile or v7A-and-earlier only) for implementation defined
10090 * coprocessors in the range 0..7. Our decode assumes this, since
10091 * 8..13 can be used for other insns including VFP and Neon. See
10092 * valid_cp() in translate.c. Assert here that we haven't tried
10093 * to use an invalid coprocessor number.
10095 switch (r->state) {
10096 case ARM_CP_STATE_BOTH:
10097 /* 0 has a special meaning, but otherwise the same rules as AA32. */
10098 if (r->cp == 0) {
10099 break;
10101 /* fall through */
10102 case ARM_CP_STATE_AA32:
10103 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
10104 !arm_feature(&cpu->env, ARM_FEATURE_M)) {
10105 assert(r->cp >= 14 && r->cp <= 15);
10106 } else {
10107 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
10109 break;
10110 case ARM_CP_STATE_AA64:
10111 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
10112 break;
10113 default:
10114 g_assert_not_reached();
10117 * The AArch64 pseudocode CheckSystemAccess() specifies that op1
10118 * encodes a minimum access level for the register. We roll this
10119 * runtime check into our general permission check code, so check
10120 * here that the reginfo's specified permissions are strict enough
10121 * to encompass the generic architectural permission check.
10123 if (r->state != ARM_CP_STATE_AA32) {
10124 CPAccessRights mask;
10125 switch (r->opc1) {
10126 case 0:
10127 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
10128 mask = PL0U_R | PL1_RW;
10129 break;
10130 case 1: case 2:
10131 /* min_EL EL1 */
10132 mask = PL1_RW;
10133 break;
10134 case 3:
10135 /* min_EL EL0 */
10136 mask = PL0_RW;
10137 break;
10138 case 4:
10139 case 5:
10140 /* min_EL EL2 */
10141 mask = PL2_RW;
10142 break;
10143 case 6:
10144 /* min_EL EL3 */
10145 mask = PL3_RW;
10146 break;
10147 case 7:
10148 /* min_EL EL1, secure mode only (we don't check the latter) */
10149 mask = PL1_RW;
10150 break;
10151 default:
10152 /* broken reginfo with out-of-range opc1 */
10153 g_assert_not_reached();
10155 /* assert our permissions are not too lax (stricter is fine) */
10156 assert((r->access & ~mask) == 0);
10160 * Check that the register definition has enough info to handle
10161 * reads and writes if they are permitted.
10163 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
10164 if (r->access & PL3_R) {
10165 assert((r->fieldoffset ||
10166 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
10167 r->readfn);
10169 if (r->access & PL3_W) {
10170 assert((r->fieldoffset ||
10171 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
10172 r->writefn);
10176 for (crm = crmmin; crm <= crmmax; crm++) {
10177 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
10178 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
10179 for (state = ARM_CP_STATE_AA32;
10180 state <= ARM_CP_STATE_AA64; state++) {
10181 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
10182 continue;
10184 if (state == ARM_CP_STATE_AA32) {
10186 * Under AArch32 CP registers can be common
10187 * (same for secure and non-secure world) or banked.
10189 char *name;
10191 switch (r->secure) {
10192 case ARM_CP_SECSTATE_S:
10193 case ARM_CP_SECSTATE_NS:
10194 add_cpreg_to_hashtable(cpu, r, opaque, state,
10195 r->secure, crm, opc1, opc2,
10196 r->name);
10197 break;
10198 case ARM_CP_SECSTATE_BOTH:
10199 name = g_strdup_printf("%s_S", r->name);
10200 add_cpreg_to_hashtable(cpu, r, opaque, state,
10201 ARM_CP_SECSTATE_S,
10202 crm, opc1, opc2, name);
10203 g_free(name);
10204 add_cpreg_to_hashtable(cpu, r, opaque, state,
10205 ARM_CP_SECSTATE_NS,
10206 crm, opc1, opc2, r->name);
10207 break;
10208 default:
10209 g_assert_not_reached();
10211 } else {
10213 * AArch64 registers get mapped to non-secure instance
10214 * of AArch32
10216 add_cpreg_to_hashtable(cpu, r, opaque, state,
10217 ARM_CP_SECSTATE_NS,
10218 crm, opc1, opc2, r->name);
10226 /* Define a whole list of registers */
10227 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
10228 void *opaque, size_t len)
10230 size_t i;
10231 for (i = 0; i < len; ++i) {
10232 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
10237 * Modify ARMCPRegInfo for access from userspace.
10239 * This is a data driven modification directed by
10240 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
10241 * user-space cannot alter any values and dynamic values pertaining to
10242 * execution state are hidden from user space view anyway.
10244 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
10245 const ARMCPRegUserSpaceInfo *mods,
10246 size_t mods_len)
10248 for (size_t mi = 0; mi < mods_len; ++mi) {
10249 const ARMCPRegUserSpaceInfo *m = mods + mi;
10250 GPatternSpec *pat = NULL;
10252 if (m->is_glob) {
10253 pat = g_pattern_spec_new(m->name);
10255 for (size_t ri = 0; ri < regs_len; ++ri) {
10256 ARMCPRegInfo *r = regs + ri;
10258 if (pat && g_pattern_match_string(pat, r->name)) {
10259 r->type = ARM_CP_CONST;
10260 r->access = PL0U_R;
10261 r->resetvalue = 0;
10262 /* continue */
10263 } else if (strcmp(r->name, m->name) == 0) {
10264 r->type = ARM_CP_CONST;
10265 r->access = PL0U_R;
10266 r->resetvalue &= m->exported_bits;
10267 r->resetvalue |= m->fixed_bits;
10268 break;
10271 if (pat) {
10272 g_pattern_spec_free(pat);
10277 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
10279 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
10282 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
10283 uint64_t value)
10285 /* Helper coprocessor write function for write-ignore registers */
10288 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
10290 /* Helper coprocessor write function for read-as-zero registers */
10291 return 0;
10294 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
10296 /* Helper coprocessor reset function for do-nothing-on-reset registers */
10299 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
10302 * Return true if it is not valid for us to switch to
10303 * this CPU mode (ie all the UNPREDICTABLE cases in
10304 * the ARM ARM CPSRWriteByInstr pseudocode).
10307 /* Changes to or from Hyp via MSR and CPS are illegal. */
10308 if (write_type == CPSRWriteByInstr &&
10309 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
10310 mode == ARM_CPU_MODE_HYP)) {
10311 return 1;
10314 switch (mode) {
10315 case ARM_CPU_MODE_USR:
10316 return 0;
10317 case ARM_CPU_MODE_SYS:
10318 case ARM_CPU_MODE_SVC:
10319 case ARM_CPU_MODE_ABT:
10320 case ARM_CPU_MODE_UND:
10321 case ARM_CPU_MODE_IRQ:
10322 case ARM_CPU_MODE_FIQ:
10324 * Note that we don't implement the IMPDEF NSACR.RFR which in v7
10325 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
10328 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
10329 * and CPS are treated as illegal mode changes.
10331 if (write_type == CPSRWriteByInstr &&
10332 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
10333 (arm_hcr_el2_eff(env) & HCR_TGE)) {
10334 return 1;
10336 return 0;
10337 case ARM_CPU_MODE_HYP:
10338 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
10339 case ARM_CPU_MODE_MON:
10340 return arm_current_el(env) < 3;
10341 default:
10342 return 1;
10346 uint32_t cpsr_read(CPUARMState *env)
10348 int ZF;
10349 ZF = (env->ZF == 0);
10350 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
10351 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
10352 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
10353 | ((env->condexec_bits & 0xfc) << 8)
10354 | (env->GE << 16) | (env->daif & CPSR_AIF);
10357 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
10358 CPSRWriteType write_type)
10360 uint32_t changed_daif;
10361 bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
10362 (mask & (CPSR_M | CPSR_E | CPSR_IL));
10364 if (mask & CPSR_NZCV) {
10365 env->ZF = (~val) & CPSR_Z;
10366 env->NF = val;
10367 env->CF = (val >> 29) & 1;
10368 env->VF = (val << 3) & 0x80000000;
10370 if (mask & CPSR_Q) {
10371 env->QF = ((val & CPSR_Q) != 0);
10373 if (mask & CPSR_T) {
10374 env->thumb = ((val & CPSR_T) != 0);
10376 if (mask & CPSR_IT_0_1) {
10377 env->condexec_bits &= ~3;
10378 env->condexec_bits |= (val >> 25) & 3;
10380 if (mask & CPSR_IT_2_7) {
10381 env->condexec_bits &= 3;
10382 env->condexec_bits |= (val >> 8) & 0xfc;
10384 if (mask & CPSR_GE) {
10385 env->GE = (val >> 16) & 0xf;
10389 * In a V7 implementation that includes the security extensions but does
10390 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
10391 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
10392 * bits respectively.
10394 * In a V8 implementation, it is permitted for privileged software to
10395 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
10397 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
10398 arm_feature(env, ARM_FEATURE_EL3) &&
10399 !arm_feature(env, ARM_FEATURE_EL2) &&
10400 !arm_is_secure(env)) {
10402 changed_daif = (env->daif ^ val) & mask;
10404 if (changed_daif & CPSR_A) {
10406 * Check to see if we are allowed to change the masking of async
10407 * abort exceptions from a non-secure state.
10409 if (!(env->cp15.scr_el3 & SCR_AW)) {
10410 qemu_log_mask(LOG_GUEST_ERROR,
10411 "Ignoring attempt to switch CPSR_A flag from "
10412 "non-secure world with SCR.AW bit clear\n");
10413 mask &= ~CPSR_A;
10417 if (changed_daif & CPSR_F) {
10419 * Check to see if we are allowed to change the masking of FIQ
10420 * exceptions from a non-secure state.
10422 if (!(env->cp15.scr_el3 & SCR_FW)) {
10423 qemu_log_mask(LOG_GUEST_ERROR,
10424 "Ignoring attempt to switch CPSR_F flag from "
10425 "non-secure world with SCR.FW bit clear\n");
10426 mask &= ~CPSR_F;
10430 * Check whether non-maskable FIQ (NMFI) support is enabled.
10431 * If this bit is set software is not allowed to mask
10432 * FIQs, but is allowed to set CPSR_F to 0.
10434 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
10435 (val & CPSR_F)) {
10436 qemu_log_mask(LOG_GUEST_ERROR,
10437 "Ignoring attempt to enable CPSR_F flag "
10438 "(non-maskable FIQ [NMFI] support enabled)\n");
10439 mask &= ~CPSR_F;
10444 env->daif &= ~(CPSR_AIF & mask);
10445 env->daif |= val & CPSR_AIF & mask;
10447 if (write_type != CPSRWriteRaw &&
10448 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
10449 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
10451 * Note that we can only get here in USR mode if this is a
10452 * gdb stub write; for this case we follow the architectural
10453 * behaviour for guest writes in USR mode of ignoring an attempt
10454 * to switch mode. (Those are caught by translate.c for writes
10455 * triggered by guest instructions.)
10457 mask &= ~CPSR_M;
10458 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
10460 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in
10461 * v7, and has defined behaviour in v8:
10462 * + leave CPSR.M untouched
10463 * + allow changes to the other CPSR fields
10464 * + set PSTATE.IL
10465 * For user changes via the GDB stub, we don't set PSTATE.IL,
10466 * as this would be unnecessarily harsh for a user error.
10468 mask &= ~CPSR_M;
10469 if (write_type != CPSRWriteByGDBStub &&
10470 arm_feature(env, ARM_FEATURE_V8)) {
10471 mask |= CPSR_IL;
10472 val |= CPSR_IL;
10474 qemu_log_mask(LOG_GUEST_ERROR,
10475 "Illegal AArch32 mode switch attempt from %s to %s\n",
10476 aarch32_mode_name(env->uncached_cpsr),
10477 aarch32_mode_name(val));
10478 } else {
10479 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
10480 write_type == CPSRWriteExceptionReturn ?
10481 "Exception return from AArch32" :
10482 "AArch32 mode switch from",
10483 aarch32_mode_name(env->uncached_cpsr),
10484 aarch32_mode_name(val), env->regs[15]);
10485 switch_mode(env, val & CPSR_M);
10488 mask &= ~CACHED_CPSR_BITS;
10489 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
10490 if (tcg_enabled() && rebuild_hflags) {
10491 arm_rebuild_hflags(env);
10495 #ifdef CONFIG_USER_ONLY
10497 static void switch_mode(CPUARMState *env, int mode)
10499 ARMCPU *cpu = env_archcpu(env);
10501 if (mode != ARM_CPU_MODE_USR) {
10502 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
10506 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10507 uint32_t cur_el, bool secure)
10509 return 1;
10512 void aarch64_sync_64_to_32(CPUARMState *env)
10514 g_assert_not_reached();
10517 #else
10519 static void switch_mode(CPUARMState *env, int mode)
10521 int old_mode;
10522 int i;
10524 old_mode = env->uncached_cpsr & CPSR_M;
10525 if (mode == old_mode) {
10526 return;
10529 if (old_mode == ARM_CPU_MODE_FIQ) {
10530 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
10531 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
10532 } else if (mode == ARM_CPU_MODE_FIQ) {
10533 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
10534 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
10537 i = bank_number(old_mode);
10538 env->banked_r13[i] = env->regs[13];
10539 env->banked_spsr[i] = env->spsr;
10541 i = bank_number(mode);
10542 env->regs[13] = env->banked_r13[i];
10543 env->spsr = env->banked_spsr[i];
10545 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
10546 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
10550 * Physical Interrupt Target EL Lookup Table
10552 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
10554 * The below multi-dimensional table is used for looking up the target
10555 * exception level given numerous condition criteria. Specifically, the
10556 * target EL is based on SCR and HCR routing controls as well as the
10557 * currently executing EL and secure state.
10559 * Dimensions:
10560 * target_el_table[2][2][2][2][2][4]
10561 * | | | | | +--- Current EL
10562 * | | | | +------ Non-secure(0)/Secure(1)
10563 * | | | +--------- HCR mask override
10564 * | | +------------ SCR exec state control
10565 * | +--------------- SCR mask override
10566 * +------------------ 32-bit(0)/64-bit(1) EL3
10568 * The table values are as such:
10569 * 0-3 = EL0-EL3
10570 * -1 = Cannot occur
10572 * The ARM ARM target EL table includes entries indicating that an "exception
10573 * is not taken". The two cases where this is applicable are:
10574 * 1) An exception is taken from EL3 but the SCR does not have the exception
10575 * routed to EL3.
10576 * 2) An exception is taken from EL2 but the HCR does not have the exception
10577 * routed to EL2.
10578 * In these two cases, the below table contain a target of EL1. This value is
10579 * returned as it is expected that the consumer of the table data will check
10580 * for "target EL >= current EL" to ensure the exception is not taken.
10582 * SCR HCR
10583 * 64 EA AMO From
10584 * BIT IRQ IMO Non-secure Secure
10585 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
10587 static const int8_t target_el_table[2][2][2][2][2][4] = {
10588 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
10589 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
10590 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
10591 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
10592 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
10593 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
10594 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
10595 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
10596 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
10597 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},},
10598 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },},
10599 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},},
10600 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
10601 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
10602 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},
10603 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},},
10607 * Determine the target EL for physical exceptions
10609 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10610 uint32_t cur_el, bool secure)
10612 CPUARMState *env = cpu_env(cs);
10613 bool rw;
10614 bool scr;
10615 bool hcr;
10616 int target_el;
10617 /* Is the highest EL AArch64? */
10618 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
10619 uint64_t hcr_el2;
10621 if (arm_feature(env, ARM_FEATURE_EL3)) {
10622 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
10623 } else {
10625 * Either EL2 is the highest EL (and so the EL2 register width
10626 * is given by is64); or there is no EL2 or EL3, in which case
10627 * the value of 'rw' does not affect the table lookup anyway.
10629 rw = is64;
10632 hcr_el2 = arm_hcr_el2_eff(env);
10633 switch (excp_idx) {
10634 case EXCP_IRQ:
10635 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
10636 hcr = hcr_el2 & HCR_IMO;
10637 break;
10638 case EXCP_FIQ:
10639 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
10640 hcr = hcr_el2 & HCR_FMO;
10641 break;
10642 default:
10643 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
10644 hcr = hcr_el2 & HCR_AMO;
10645 break;
10649 * For these purposes, TGE and AMO/IMO/FMO both force the
10650 * interrupt to EL2. Fold TGE into the bit extracted above.
10652 hcr |= (hcr_el2 & HCR_TGE) != 0;
10654 /* Perform a table-lookup for the target EL given the current state */
10655 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
10657 assert(target_el > 0);
10659 return target_el;
10662 void arm_log_exception(CPUState *cs)
10664 int idx = cs->exception_index;
10666 if (qemu_loglevel_mask(CPU_LOG_INT)) {
10667 const char *exc = NULL;
10668 static const char * const excnames[] = {
10669 [EXCP_UDEF] = "Undefined Instruction",
10670 [EXCP_SWI] = "SVC",
10671 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
10672 [EXCP_DATA_ABORT] = "Data Abort",
10673 [EXCP_IRQ] = "IRQ",
10674 [EXCP_FIQ] = "FIQ",
10675 [EXCP_BKPT] = "Breakpoint",
10676 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
10677 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
10678 [EXCP_HVC] = "Hypervisor Call",
10679 [EXCP_HYP_TRAP] = "Hypervisor Trap",
10680 [EXCP_SMC] = "Secure Monitor Call",
10681 [EXCP_VIRQ] = "Virtual IRQ",
10682 [EXCP_VFIQ] = "Virtual FIQ",
10683 [EXCP_SEMIHOST] = "Semihosting call",
10684 [EXCP_NOCP] = "v7M NOCP UsageFault",
10685 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
10686 [EXCP_STKOF] = "v8M STKOF UsageFault",
10687 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
10688 [EXCP_LSERR] = "v8M LSERR UsageFault",
10689 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
10690 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
10691 [EXCP_VSERR] = "Virtual SERR",
10692 [EXCP_GPC] = "Granule Protection Check",
10695 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
10696 exc = excnames[idx];
10698 if (!exc) {
10699 exc = "unknown";
10701 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
10702 idx, exc, cs->cpu_index);
10707 * Function used to synchronize QEMU's AArch64 register set with AArch32
10708 * register set. This is necessary when switching between AArch32 and AArch64
10709 * execution state.
10711 void aarch64_sync_32_to_64(CPUARMState *env)
10713 int i;
10714 uint32_t mode = env->uncached_cpsr & CPSR_M;
10716 /* We can blanket copy R[0:7] to X[0:7] */
10717 for (i = 0; i < 8; i++) {
10718 env->xregs[i] = env->regs[i];
10722 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
10723 * Otherwise, they come from the banked user regs.
10725 if (mode == ARM_CPU_MODE_FIQ) {
10726 for (i = 8; i < 13; i++) {
10727 env->xregs[i] = env->usr_regs[i - 8];
10729 } else {
10730 for (i = 8; i < 13; i++) {
10731 env->xregs[i] = env->regs[i];
10736 * Registers x13-x23 are the various mode SP and FP registers. Registers
10737 * r13 and r14 are only copied if we are in that mode, otherwise we copy
10738 * from the mode banked register.
10740 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10741 env->xregs[13] = env->regs[13];
10742 env->xregs[14] = env->regs[14];
10743 } else {
10744 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
10745 /* HYP is an exception in that it is copied from r14 */
10746 if (mode == ARM_CPU_MODE_HYP) {
10747 env->xregs[14] = env->regs[14];
10748 } else {
10749 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
10753 if (mode == ARM_CPU_MODE_HYP) {
10754 env->xregs[15] = env->regs[13];
10755 } else {
10756 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
10759 if (mode == ARM_CPU_MODE_IRQ) {
10760 env->xregs[16] = env->regs[14];
10761 env->xregs[17] = env->regs[13];
10762 } else {
10763 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
10764 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
10767 if (mode == ARM_CPU_MODE_SVC) {
10768 env->xregs[18] = env->regs[14];
10769 env->xregs[19] = env->regs[13];
10770 } else {
10771 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
10772 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
10775 if (mode == ARM_CPU_MODE_ABT) {
10776 env->xregs[20] = env->regs[14];
10777 env->xregs[21] = env->regs[13];
10778 } else {
10779 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
10780 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
10783 if (mode == ARM_CPU_MODE_UND) {
10784 env->xregs[22] = env->regs[14];
10785 env->xregs[23] = env->regs[13];
10786 } else {
10787 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
10788 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
10792 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
10793 * mode, then we can copy from r8-r14. Otherwise, we copy from the
10794 * FIQ bank for r8-r14.
10796 if (mode == ARM_CPU_MODE_FIQ) {
10797 for (i = 24; i < 31; i++) {
10798 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
10800 } else {
10801 for (i = 24; i < 29; i++) {
10802 env->xregs[i] = env->fiq_regs[i - 24];
10804 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
10805 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
10808 env->pc = env->regs[15];
10812 * Function used to synchronize QEMU's AArch32 register set with AArch64
10813 * register set. This is necessary when switching between AArch32 and AArch64
10814 * execution state.
10816 void aarch64_sync_64_to_32(CPUARMState *env)
10818 int i;
10819 uint32_t mode = env->uncached_cpsr & CPSR_M;
10821 /* We can blanket copy X[0:7] to R[0:7] */
10822 for (i = 0; i < 8; i++) {
10823 env->regs[i] = env->xregs[i];
10827 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
10828 * Otherwise, we copy x8-x12 into the banked user regs.
10830 if (mode == ARM_CPU_MODE_FIQ) {
10831 for (i = 8; i < 13; i++) {
10832 env->usr_regs[i - 8] = env->xregs[i];
10834 } else {
10835 for (i = 8; i < 13; i++) {
10836 env->regs[i] = env->xregs[i];
10841 * Registers r13 & r14 depend on the current mode.
10842 * If we are in a given mode, we copy the corresponding x registers to r13
10843 * and r14. Otherwise, we copy the x register to the banked r13 and r14
10844 * for the mode.
10846 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10847 env->regs[13] = env->xregs[13];
10848 env->regs[14] = env->xregs[14];
10849 } else {
10850 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
10853 * HYP is an exception in that it does not have its own banked r14 but
10854 * shares the USR r14
10856 if (mode == ARM_CPU_MODE_HYP) {
10857 env->regs[14] = env->xregs[14];
10858 } else {
10859 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
10863 if (mode == ARM_CPU_MODE_HYP) {
10864 env->regs[13] = env->xregs[15];
10865 } else {
10866 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
10869 if (mode == ARM_CPU_MODE_IRQ) {
10870 env->regs[14] = env->xregs[16];
10871 env->regs[13] = env->xregs[17];
10872 } else {
10873 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
10874 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
10877 if (mode == ARM_CPU_MODE_SVC) {
10878 env->regs[14] = env->xregs[18];
10879 env->regs[13] = env->xregs[19];
10880 } else {
10881 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
10882 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
10885 if (mode == ARM_CPU_MODE_ABT) {
10886 env->regs[14] = env->xregs[20];
10887 env->regs[13] = env->xregs[21];
10888 } else {
10889 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
10890 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
10893 if (mode == ARM_CPU_MODE_UND) {
10894 env->regs[14] = env->xregs[22];
10895 env->regs[13] = env->xregs[23];
10896 } else {
10897 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
10898 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
10902 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
10903 * mode, then we can copy to r8-r14. Otherwise, we copy to the
10904 * FIQ bank for r8-r14.
10906 if (mode == ARM_CPU_MODE_FIQ) {
10907 for (i = 24; i < 31; i++) {
10908 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
10910 } else {
10911 for (i = 24; i < 29; i++) {
10912 env->fiq_regs[i - 24] = env->xregs[i];
10914 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
10915 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
10918 env->regs[15] = env->pc;
10921 static void take_aarch32_exception(CPUARMState *env, int new_mode,
10922 uint32_t mask, uint32_t offset,
10923 uint32_t newpc)
10925 int new_el;
10927 /* Change the CPU state so as to actually take the exception. */
10928 switch_mode(env, new_mode);
10931 * For exceptions taken to AArch32 we must clear the SS bit in both
10932 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
10934 env->pstate &= ~PSTATE_SS;
10935 env->spsr = cpsr_read(env);
10936 /* Clear IT bits. */
10937 env->condexec_bits = 0;
10938 /* Switch to the new mode, and to the correct instruction set. */
10939 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
10941 /* This must be after mode switching. */
10942 new_el = arm_current_el(env);
10944 /* Set new mode endianness */
10945 env->uncached_cpsr &= ~CPSR_E;
10946 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
10947 env->uncached_cpsr |= CPSR_E;
10949 /* J and IL must always be cleared for exception entry */
10950 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
10951 env->daif |= mask;
10953 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
10954 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
10955 env->uncached_cpsr |= CPSR_SSBS;
10956 } else {
10957 env->uncached_cpsr &= ~CPSR_SSBS;
10961 if (new_mode == ARM_CPU_MODE_HYP) {
10962 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
10963 env->elr_el[2] = env->regs[15];
10964 } else {
10965 /* CPSR.PAN is normally preserved preserved unless... */
10966 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
10967 switch (new_el) {
10968 case 3:
10969 if (!arm_is_secure_below_el3(env)) {
10970 /* ... the target is EL3, from non-secure state. */
10971 env->uncached_cpsr &= ~CPSR_PAN;
10972 break;
10974 /* ... the target is EL3, from secure state ... */
10975 /* fall through */
10976 case 1:
10977 /* ... the target is EL1 and SCTLR.SPAN is 0. */
10978 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
10979 env->uncached_cpsr |= CPSR_PAN;
10981 break;
10985 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
10986 * and we should just guard the thumb mode on V4
10988 if (arm_feature(env, ARM_FEATURE_V4T)) {
10989 env->thumb =
10990 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
10992 env->regs[14] = env->regs[15] + offset;
10994 env->regs[15] = newpc;
10996 if (tcg_enabled()) {
10997 arm_rebuild_hflags(env);
11001 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
11004 * Handle exception entry to Hyp mode; this is sufficiently
11005 * different to entry to other AArch32 modes that we handle it
11006 * separately here.
11008 * The vector table entry used is always the 0x14 Hyp mode entry point,
11009 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
11010 * The offset applied to the preferred return address is always zero
11011 * (see DDI0487C.a section G1.12.3).
11012 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
11014 uint32_t addr, mask;
11015 ARMCPU *cpu = ARM_CPU(cs);
11016 CPUARMState *env = &cpu->env;
11018 switch (cs->exception_index) {
11019 case EXCP_UDEF:
11020 addr = 0x04;
11021 break;
11022 case EXCP_SWI:
11023 addr = 0x08;
11024 break;
11025 case EXCP_BKPT:
11026 /* Fall through to prefetch abort. */
11027 case EXCP_PREFETCH_ABORT:
11028 env->cp15.ifar_s = env->exception.vaddress;
11029 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
11030 (uint32_t)env->exception.vaddress);
11031 addr = 0x0c;
11032 break;
11033 case EXCP_DATA_ABORT:
11034 env->cp15.dfar_s = env->exception.vaddress;
11035 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
11036 (uint32_t)env->exception.vaddress);
11037 addr = 0x10;
11038 break;
11039 case EXCP_IRQ:
11040 addr = 0x18;
11041 break;
11042 case EXCP_FIQ:
11043 addr = 0x1c;
11044 break;
11045 case EXCP_HVC:
11046 addr = 0x08;
11047 break;
11048 case EXCP_HYP_TRAP:
11049 addr = 0x14;
11050 break;
11051 default:
11052 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11055 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
11056 if (!arm_feature(env, ARM_FEATURE_V8)) {
11058 * QEMU syndrome values are v8-style. v7 has the IL bit
11059 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
11060 * If this is a v7 CPU, squash the IL bit in those cases.
11062 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
11063 (cs->exception_index == EXCP_DATA_ABORT &&
11064 !(env->exception.syndrome & ARM_EL_ISV)) ||
11065 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
11066 env->exception.syndrome &= ~ARM_EL_IL;
11069 env->cp15.esr_el[2] = env->exception.syndrome;
11072 if (arm_current_el(env) != 2 && addr < 0x14) {
11073 addr = 0x14;
11076 mask = 0;
11077 if (!(env->cp15.scr_el3 & SCR_EA)) {
11078 mask |= CPSR_A;
11080 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
11081 mask |= CPSR_I;
11083 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
11084 mask |= CPSR_F;
11087 addr += env->cp15.hvbar;
11089 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
11092 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
11094 ARMCPU *cpu = ARM_CPU(cs);
11095 CPUARMState *env = &cpu->env;
11096 uint32_t addr;
11097 uint32_t mask;
11098 int new_mode;
11099 uint32_t offset;
11100 uint32_t moe;
11102 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
11103 switch (syn_get_ec(env->exception.syndrome)) {
11104 case EC_BREAKPOINT:
11105 case EC_BREAKPOINT_SAME_EL:
11106 moe = 1;
11107 break;
11108 case EC_WATCHPOINT:
11109 case EC_WATCHPOINT_SAME_EL:
11110 moe = 10;
11111 break;
11112 case EC_AA32_BKPT:
11113 moe = 3;
11114 break;
11115 case EC_VECTORCATCH:
11116 moe = 5;
11117 break;
11118 default:
11119 moe = 0;
11120 break;
11123 if (moe) {
11124 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
11127 if (env->exception.target_el == 2) {
11128 /* Debug exceptions are reported differently on AArch32 */
11129 switch (syn_get_ec(env->exception.syndrome)) {
11130 case EC_BREAKPOINT:
11131 case EC_BREAKPOINT_SAME_EL:
11132 case EC_AA32_BKPT:
11133 case EC_VECTORCATCH:
11134 env->exception.syndrome = syn_insn_abort(arm_current_el(env) == 2,
11135 0, 0, 0x22);
11136 break;
11137 case EC_WATCHPOINT:
11138 env->exception.syndrome = syn_set_ec(env->exception.syndrome,
11139 EC_DATAABORT);
11140 break;
11141 case EC_WATCHPOINT_SAME_EL:
11142 env->exception.syndrome = syn_set_ec(env->exception.syndrome,
11143 EC_DATAABORT_SAME_EL);
11144 break;
11146 arm_cpu_do_interrupt_aarch32_hyp(cs);
11147 return;
11150 switch (cs->exception_index) {
11151 case EXCP_UDEF:
11152 new_mode = ARM_CPU_MODE_UND;
11153 addr = 0x04;
11154 mask = CPSR_I;
11155 if (env->thumb) {
11156 offset = 2;
11157 } else {
11158 offset = 4;
11160 break;
11161 case EXCP_SWI:
11162 new_mode = ARM_CPU_MODE_SVC;
11163 addr = 0x08;
11164 mask = CPSR_I;
11165 /* The PC already points to the next instruction. */
11166 offset = 0;
11167 break;
11168 case EXCP_BKPT:
11169 /* Fall through to prefetch abort. */
11170 case EXCP_PREFETCH_ABORT:
11171 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
11172 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
11173 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
11174 env->exception.fsr, (uint32_t)env->exception.vaddress);
11175 new_mode = ARM_CPU_MODE_ABT;
11176 addr = 0x0c;
11177 mask = CPSR_A | CPSR_I;
11178 offset = 4;
11179 break;
11180 case EXCP_DATA_ABORT:
11181 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
11182 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
11183 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
11184 env->exception.fsr,
11185 (uint32_t)env->exception.vaddress);
11186 new_mode = ARM_CPU_MODE_ABT;
11187 addr = 0x10;
11188 mask = CPSR_A | CPSR_I;
11189 offset = 8;
11190 break;
11191 case EXCP_IRQ:
11192 new_mode = ARM_CPU_MODE_IRQ;
11193 addr = 0x18;
11194 /* Disable IRQ and imprecise data aborts. */
11195 mask = CPSR_A | CPSR_I;
11196 offset = 4;
11197 if (env->cp15.scr_el3 & SCR_IRQ) {
11198 /* IRQ routed to monitor mode */
11199 new_mode = ARM_CPU_MODE_MON;
11200 mask |= CPSR_F;
11202 break;
11203 case EXCP_FIQ:
11204 new_mode = ARM_CPU_MODE_FIQ;
11205 addr = 0x1c;
11206 /* Disable FIQ, IRQ and imprecise data aborts. */
11207 mask = CPSR_A | CPSR_I | CPSR_F;
11208 if (env->cp15.scr_el3 & SCR_FIQ) {
11209 /* FIQ routed to monitor mode */
11210 new_mode = ARM_CPU_MODE_MON;
11212 offset = 4;
11213 break;
11214 case EXCP_VIRQ:
11215 new_mode = ARM_CPU_MODE_IRQ;
11216 addr = 0x18;
11217 /* Disable IRQ and imprecise data aborts. */
11218 mask = CPSR_A | CPSR_I;
11219 offset = 4;
11220 break;
11221 case EXCP_VFIQ:
11222 new_mode = ARM_CPU_MODE_FIQ;
11223 addr = 0x1c;
11224 /* Disable FIQ, IRQ and imprecise data aborts. */
11225 mask = CPSR_A | CPSR_I | CPSR_F;
11226 offset = 4;
11227 break;
11228 case EXCP_VSERR:
11231 * Note that this is reported as a data abort, but the DFAR
11232 * has an UNKNOWN value. Construct the SError syndrome from
11233 * AET and ExT fields.
11235 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
11237 if (extended_addresses_enabled(env)) {
11238 env->exception.fsr = arm_fi_to_lfsc(&fi);
11239 } else {
11240 env->exception.fsr = arm_fi_to_sfsc(&fi);
11242 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
11243 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
11244 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
11245 env->exception.fsr);
11247 new_mode = ARM_CPU_MODE_ABT;
11248 addr = 0x10;
11249 mask = CPSR_A | CPSR_I;
11250 offset = 8;
11252 break;
11253 case EXCP_SMC:
11254 new_mode = ARM_CPU_MODE_MON;
11255 addr = 0x08;
11256 mask = CPSR_A | CPSR_I | CPSR_F;
11257 offset = 0;
11258 break;
11259 default:
11260 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11261 return; /* Never happens. Keep compiler happy. */
11264 if (new_mode == ARM_CPU_MODE_MON) {
11265 addr += env->cp15.mvbar;
11266 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
11267 /* High vectors. When enabled, base address cannot be remapped. */
11268 addr += 0xffff0000;
11269 } else {
11271 * ARM v7 architectures provide a vector base address register to remap
11272 * the interrupt vector table.
11273 * This register is only followed in non-monitor mode, and is banked.
11274 * Note: only bits 31:5 are valid.
11276 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
11279 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
11280 env->cp15.scr_el3 &= ~SCR_NS;
11283 take_aarch32_exception(env, new_mode, mask, offset, addr);
11286 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
11289 * Return the register number of the AArch64 view of the AArch32
11290 * register @aarch32_reg. The CPUARMState CPSR is assumed to still
11291 * be that of the AArch32 mode the exception came from.
11293 int mode = env->uncached_cpsr & CPSR_M;
11295 switch (aarch32_reg) {
11296 case 0 ... 7:
11297 return aarch32_reg;
11298 case 8 ... 12:
11299 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
11300 case 13:
11301 switch (mode) {
11302 case ARM_CPU_MODE_USR:
11303 case ARM_CPU_MODE_SYS:
11304 return 13;
11305 case ARM_CPU_MODE_HYP:
11306 return 15;
11307 case ARM_CPU_MODE_IRQ:
11308 return 17;
11309 case ARM_CPU_MODE_SVC:
11310 return 19;
11311 case ARM_CPU_MODE_ABT:
11312 return 21;
11313 case ARM_CPU_MODE_UND:
11314 return 23;
11315 case ARM_CPU_MODE_FIQ:
11316 return 29;
11317 default:
11318 g_assert_not_reached();
11320 case 14:
11321 switch (mode) {
11322 case ARM_CPU_MODE_USR:
11323 case ARM_CPU_MODE_SYS:
11324 case ARM_CPU_MODE_HYP:
11325 return 14;
11326 case ARM_CPU_MODE_IRQ:
11327 return 16;
11328 case ARM_CPU_MODE_SVC:
11329 return 18;
11330 case ARM_CPU_MODE_ABT:
11331 return 20;
11332 case ARM_CPU_MODE_UND:
11333 return 22;
11334 case ARM_CPU_MODE_FIQ:
11335 return 30;
11336 default:
11337 g_assert_not_reached();
11339 case 15:
11340 return 31;
11341 default:
11342 g_assert_not_reached();
11346 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
11348 uint32_t ret = cpsr_read(env);
11350 /* Move DIT to the correct location for SPSR_ELx */
11351 if (ret & CPSR_DIT) {
11352 ret &= ~CPSR_DIT;
11353 ret |= PSTATE_DIT;
11355 /* Merge PSTATE.SS into SPSR_ELx */
11356 ret |= env->pstate & PSTATE_SS;
11358 return ret;
11361 static bool syndrome_is_sync_extabt(uint32_t syndrome)
11363 /* Return true if this syndrome value is a synchronous external abort */
11364 switch (syn_get_ec(syndrome)) {
11365 case EC_INSNABORT:
11366 case EC_INSNABORT_SAME_EL:
11367 case EC_DATAABORT:
11368 case EC_DATAABORT_SAME_EL:
11369 /* Look at fault status code for all the synchronous ext abort cases */
11370 switch (syndrome & 0x3f) {
11371 case 0x10:
11372 case 0x13:
11373 case 0x14:
11374 case 0x15:
11375 case 0x16:
11376 case 0x17:
11377 return true;
11378 default:
11379 return false;
11381 default:
11382 return false;
11386 /* Handle exception entry to a target EL which is using AArch64 */
11387 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
11389 ARMCPU *cpu = ARM_CPU(cs);
11390 CPUARMState *env = &cpu->env;
11391 unsigned int new_el = env->exception.target_el;
11392 target_ulong addr = env->cp15.vbar_el[new_el];
11393 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
11394 unsigned int old_mode;
11395 unsigned int cur_el = arm_current_el(env);
11396 int rt;
11398 if (tcg_enabled()) {
11400 * Note that new_el can never be 0. If cur_el is 0, then
11401 * el0_a64 is is_a64(), else el0_a64 is ignored.
11403 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
11406 if (cur_el < new_el) {
11408 * Entry vector offset depends on whether the implemented EL
11409 * immediately lower than the target level is using AArch32 or AArch64
11411 bool is_aa64;
11412 uint64_t hcr;
11414 switch (new_el) {
11415 case 3:
11416 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
11417 break;
11418 case 2:
11419 hcr = arm_hcr_el2_eff(env);
11420 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11421 is_aa64 = (hcr & HCR_RW) != 0;
11422 break;
11424 /* fall through */
11425 case 1:
11426 is_aa64 = is_a64(env);
11427 break;
11428 default:
11429 g_assert_not_reached();
11432 if (is_aa64) {
11433 addr += 0x400;
11434 } else {
11435 addr += 0x600;
11437 } else if (pstate_read(env) & PSTATE_SP) {
11438 addr += 0x200;
11441 switch (cs->exception_index) {
11442 case EXCP_GPC:
11443 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n",
11444 env->cp15.mfar_el3);
11445 /* fall through */
11446 case EXCP_PREFETCH_ABORT:
11447 case EXCP_DATA_ABORT:
11449 * FEAT_DoubleFault allows synchronous external aborts taken to EL3
11450 * to be taken to the SError vector entrypoint.
11452 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
11453 syndrome_is_sync_extabt(env->exception.syndrome)) {
11454 addr += 0x180;
11456 env->cp15.far_el[new_el] = env->exception.vaddress;
11457 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
11458 env->cp15.far_el[new_el]);
11459 /* fall through */
11460 case EXCP_BKPT:
11461 case EXCP_UDEF:
11462 case EXCP_SWI:
11463 case EXCP_HVC:
11464 case EXCP_HYP_TRAP:
11465 case EXCP_SMC:
11466 switch (syn_get_ec(env->exception.syndrome)) {
11467 case EC_ADVSIMDFPACCESSTRAP:
11469 * QEMU internal FP/SIMD syndromes from AArch32 include the
11470 * TA and coproc fields which are only exposed if the exception
11471 * is taken to AArch32 Hyp mode. Mask them out to get a valid
11472 * AArch64 format syndrome.
11474 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
11475 break;
11476 case EC_CP14RTTRAP:
11477 case EC_CP15RTTRAP:
11478 case EC_CP14DTTRAP:
11480 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
11481 * the raw register field from the insn; when taking this to
11482 * AArch64 we must convert it to the AArch64 view of the register
11483 * number. Notice that we read a 4-bit AArch32 register number and
11484 * write back a 5-bit AArch64 one.
11486 rt = extract32(env->exception.syndrome, 5, 4);
11487 rt = aarch64_regnum(env, rt);
11488 env->exception.syndrome = deposit32(env->exception.syndrome,
11489 5, 5, rt);
11490 break;
11491 case EC_CP15RRTTRAP:
11492 case EC_CP14RRTTRAP:
11493 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
11494 rt = extract32(env->exception.syndrome, 5, 4);
11495 rt = aarch64_regnum(env, rt);
11496 env->exception.syndrome = deposit32(env->exception.syndrome,
11497 5, 5, rt);
11498 rt = extract32(env->exception.syndrome, 10, 4);
11499 rt = aarch64_regnum(env, rt);
11500 env->exception.syndrome = deposit32(env->exception.syndrome,
11501 10, 5, rt);
11502 break;
11504 env->cp15.esr_el[new_el] = env->exception.syndrome;
11505 break;
11506 case EXCP_IRQ:
11507 case EXCP_VIRQ:
11508 addr += 0x80;
11509 break;
11510 case EXCP_FIQ:
11511 case EXCP_VFIQ:
11512 addr += 0x100;
11513 break;
11514 case EXCP_VSERR:
11515 addr += 0x180;
11516 /* Construct the SError syndrome from IDS and ISS fields. */
11517 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
11518 env->cp15.esr_el[new_el] = env->exception.syndrome;
11519 break;
11520 default:
11521 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11524 if (is_a64(env)) {
11525 old_mode = pstate_read(env);
11526 aarch64_save_sp(env, arm_current_el(env));
11527 env->elr_el[new_el] = env->pc;
11529 if (cur_el == 1 && new_el == 1) {
11530 uint64_t hcr = arm_hcr_el2_eff(env);
11531 if ((hcr & (HCR_NV | HCR_NV1 | HCR_NV2)) == HCR_NV ||
11532 (hcr & (HCR_NV | HCR_NV2)) == (HCR_NV | HCR_NV2)) {
11534 * FEAT_NV, FEAT_NV2 may need to report EL2 in the SPSR
11535 * by setting M[3:2] to 0b10.
11536 * If NV2 is disabled, change SPSR when NV,NV1 == 1,0 (I_ZJRNN)
11537 * If NV2 is enabled, change SPSR when NV is 1 (I_DBTLM)
11539 old_mode = deposit32(old_mode, 2, 2, 2);
11542 } else {
11543 old_mode = cpsr_read_for_spsr_elx(env);
11544 env->elr_el[new_el] = env->regs[15];
11546 aarch64_sync_32_to_64(env);
11548 env->condexec_bits = 0;
11550 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
11552 qemu_log_mask(CPU_LOG_INT, "...with SPSR 0x%x\n", old_mode);
11553 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
11554 env->elr_el[new_el]);
11556 if (cpu_isar_feature(aa64_pan, cpu)) {
11557 /* The value of PSTATE.PAN is normally preserved, except when ... */
11558 new_mode |= old_mode & PSTATE_PAN;
11559 switch (new_el) {
11560 case 2:
11561 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
11562 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
11563 != (HCR_E2H | HCR_TGE)) {
11564 break;
11566 /* fall through */
11567 case 1:
11568 /* ... the target is EL1 ... */
11569 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
11570 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
11571 new_mode |= PSTATE_PAN;
11573 break;
11576 if (cpu_isar_feature(aa64_mte, cpu)) {
11577 new_mode |= PSTATE_TCO;
11580 if (cpu_isar_feature(aa64_ssbs, cpu)) {
11581 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
11582 new_mode |= PSTATE_SSBS;
11583 } else {
11584 new_mode &= ~PSTATE_SSBS;
11588 pstate_write(env, PSTATE_DAIF | new_mode);
11589 env->aarch64 = true;
11590 aarch64_restore_sp(env, new_el);
11592 if (tcg_enabled()) {
11593 helper_rebuild_hflags_a64(env, new_el);
11596 env->pc = addr;
11598 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
11599 new_el, env->pc, pstate_read(env));
11603 * Do semihosting call and set the appropriate return value. All the
11604 * permission and validity checks have been done at translate time.
11606 * We only see semihosting exceptions in TCG only as they are not
11607 * trapped to the hypervisor in KVM.
11609 #ifdef CONFIG_TCG
11610 static void tcg_handle_semihosting(CPUState *cs)
11612 ARMCPU *cpu = ARM_CPU(cs);
11613 CPUARMState *env = &cpu->env;
11615 if (is_a64(env)) {
11616 qemu_log_mask(CPU_LOG_INT,
11617 "...handling as semihosting call 0x%" PRIx64 "\n",
11618 env->xregs[0]);
11619 do_common_semihosting(cs);
11620 env->pc += 4;
11621 } else {
11622 qemu_log_mask(CPU_LOG_INT,
11623 "...handling as semihosting call 0x%x\n",
11624 env->regs[0]);
11625 do_common_semihosting(cs);
11626 env->regs[15] += env->thumb ? 2 : 4;
11629 #endif
11632 * Handle a CPU exception for A and R profile CPUs.
11633 * Do any appropriate logging, handle PSCI calls, and then hand off
11634 * to the AArch64-entry or AArch32-entry function depending on the
11635 * target exception level's register width.
11637 * Note: this is used for both TCG (as the do_interrupt tcg op),
11638 * and KVM to re-inject guest debug exceptions, and to
11639 * inject a Synchronous-External-Abort.
11641 void arm_cpu_do_interrupt(CPUState *cs)
11643 ARMCPU *cpu = ARM_CPU(cs);
11644 CPUARMState *env = &cpu->env;
11645 unsigned int new_el = env->exception.target_el;
11647 assert(!arm_feature(env, ARM_FEATURE_M));
11649 arm_log_exception(cs);
11650 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
11651 new_el);
11652 if (qemu_loglevel_mask(CPU_LOG_INT)
11653 && !excp_is_internal(cs->exception_index)) {
11654 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
11655 syn_get_ec(env->exception.syndrome),
11656 env->exception.syndrome);
11659 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) {
11660 arm_handle_psci_call(cpu);
11661 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
11662 return;
11666 * Semihosting semantics depend on the register width of the code
11667 * that caused the exception, not the target exception level, so
11668 * must be handled here.
11670 #ifdef CONFIG_TCG
11671 if (cs->exception_index == EXCP_SEMIHOST) {
11672 tcg_handle_semihosting(cs);
11673 return;
11675 #endif
11678 * Hooks may change global state so BQL should be held, also the
11679 * BQL needs to be held for any modification of
11680 * cs->interrupt_request.
11682 g_assert(bql_locked());
11684 arm_call_pre_el_change_hook(cpu);
11686 assert(!excp_is_internal(cs->exception_index));
11687 if (arm_el_is_aa64(env, new_el)) {
11688 arm_cpu_do_interrupt_aarch64(cs);
11689 } else {
11690 arm_cpu_do_interrupt_aarch32(cs);
11693 arm_call_el_change_hook(cpu);
11695 if (!kvm_enabled()) {
11696 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
11699 #endif /* !CONFIG_USER_ONLY */
11701 uint64_t arm_sctlr(CPUARMState *env, int el)
11703 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
11704 if (el == 0) {
11705 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
11706 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1;
11708 return env->cp15.sctlr_el[el];
11711 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11713 if (regime_has_2_ranges(mmu_idx)) {
11714 return extract64(tcr, 37, 2);
11715 } else if (regime_is_stage2(mmu_idx)) {
11716 return 0; /* VTCR_EL2 */
11717 } else {
11718 /* Replicate the single TBI bit so we always have 2 bits. */
11719 return extract32(tcr, 20, 1) * 3;
11723 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11725 if (regime_has_2_ranges(mmu_idx)) {
11726 return extract64(tcr, 51, 2);
11727 } else if (regime_is_stage2(mmu_idx)) {
11728 return 0; /* VTCR_EL2 */
11729 } else {
11730 /* Replicate the single TBID bit so we always have 2 bits. */
11731 return extract32(tcr, 29, 1) * 3;
11735 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11737 if (regime_has_2_ranges(mmu_idx)) {
11738 return extract64(tcr, 57, 2);
11739 } else {
11740 /* Replicate the single TCMA bit so we always have 2 bits. */
11741 return extract32(tcr, 30, 1) * 3;
11745 static ARMGranuleSize tg0_to_gran_size(int tg)
11747 switch (tg) {
11748 case 0:
11749 return Gran4K;
11750 case 1:
11751 return Gran64K;
11752 case 2:
11753 return Gran16K;
11754 default:
11755 return GranInvalid;
11759 static ARMGranuleSize tg1_to_gran_size(int tg)
11761 switch (tg) {
11762 case 1:
11763 return Gran16K;
11764 case 2:
11765 return Gran4K;
11766 case 3:
11767 return Gran64K;
11768 default:
11769 return GranInvalid;
11773 static inline bool have4k(ARMCPU *cpu, bool stage2)
11775 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
11776 : cpu_isar_feature(aa64_tgran4, cpu);
11779 static inline bool have16k(ARMCPU *cpu, bool stage2)
11781 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
11782 : cpu_isar_feature(aa64_tgran16, cpu);
11785 static inline bool have64k(ARMCPU *cpu, bool stage2)
11787 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
11788 : cpu_isar_feature(aa64_tgran64, cpu);
11791 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
11792 bool stage2)
11794 switch (gran) {
11795 case Gran4K:
11796 if (have4k(cpu, stage2)) {
11797 return gran;
11799 break;
11800 case Gran16K:
11801 if (have16k(cpu, stage2)) {
11802 return gran;
11804 break;
11805 case Gran64K:
11806 if (have64k(cpu, stage2)) {
11807 return gran;
11809 break;
11810 case GranInvalid:
11811 break;
11814 * If the guest selects a granule size that isn't implemented,
11815 * the architecture requires that we behave as if it selected one
11816 * that is (with an IMPDEF choice of which one to pick). We choose
11817 * to implement the smallest supported granule size.
11819 if (have4k(cpu, stage2)) {
11820 return Gran4K;
11822 if (have16k(cpu, stage2)) {
11823 return Gran16K;
11825 assert(have64k(cpu, stage2));
11826 return Gran64K;
11829 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11830 ARMMMUIdx mmu_idx, bool data,
11831 bool el1_is_aa32)
11833 uint64_t tcr = regime_tcr(env, mmu_idx);
11834 bool epd, hpd, tsz_oob, ds, ha, hd;
11835 int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
11836 ARMGranuleSize gran;
11837 ARMCPU *cpu = env_archcpu(env);
11838 bool stage2 = regime_is_stage2(mmu_idx);
11840 if (!regime_has_2_ranges(mmu_idx)) {
11841 select = 0;
11842 tsz = extract32(tcr, 0, 6);
11843 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11844 if (stage2) {
11845 /* VTCR_EL2 */
11846 hpd = false;
11847 } else {
11848 hpd = extract32(tcr, 24, 1);
11850 epd = false;
11851 sh = extract32(tcr, 12, 2);
11852 ps = extract32(tcr, 16, 3);
11853 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
11854 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11855 ds = extract64(tcr, 32, 1);
11856 } else {
11857 bool e0pd;
11860 * Bit 55 is always between the two regions, and is canonical for
11861 * determining if address tagging is enabled.
11863 select = extract64(va, 55, 1);
11864 if (!select) {
11865 tsz = extract32(tcr, 0, 6);
11866 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11867 epd = extract32(tcr, 7, 1);
11868 sh = extract32(tcr, 12, 2);
11869 hpd = extract64(tcr, 41, 1);
11870 e0pd = extract64(tcr, 55, 1);
11871 } else {
11872 tsz = extract32(tcr, 16, 6);
11873 gran = tg1_to_gran_size(extract32(tcr, 30, 2));
11874 epd = extract32(tcr, 23, 1);
11875 sh = extract32(tcr, 28, 2);
11876 hpd = extract64(tcr, 42, 1);
11877 e0pd = extract64(tcr, 56, 1);
11879 ps = extract64(tcr, 32, 3);
11880 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
11881 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11882 ds = extract64(tcr, 59, 1);
11884 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
11885 regime_is_user(env, mmu_idx)) {
11886 epd = true;
11890 gran = sanitize_gran_size(cpu, gran, stage2);
11892 if (cpu_isar_feature(aa64_st, cpu)) {
11893 max_tsz = 48 - (gran == Gran64K);
11894 } else {
11895 max_tsz = 39;
11899 * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
11900 * adjust the effective value of DS, as documented.
11902 min_tsz = 16;
11903 if (gran == Gran64K) {
11904 if (cpu_isar_feature(aa64_lva, cpu)) {
11905 min_tsz = 12;
11907 ds = false;
11908 } else if (ds) {
11909 if (regime_is_stage2(mmu_idx)) {
11910 if (gran == Gran16K) {
11911 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
11912 } else {
11913 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
11915 } else {
11916 if (gran == Gran16K) {
11917 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
11918 } else {
11919 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
11922 if (ds) {
11923 min_tsz = 12;
11927 if (stage2 && el1_is_aa32) {
11929 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements
11930 * are loosened: a configured IPA of 40 bits is permitted even if
11931 * the implemented PA is less than that (and so a 40 bit IPA would
11932 * fault for an AArch64 EL1). See R_DTLMN.
11934 min_tsz = MIN(min_tsz, 24);
11937 if (tsz > max_tsz) {
11938 tsz = max_tsz;
11939 tsz_oob = true;
11940 } else if (tsz < min_tsz) {
11941 tsz = min_tsz;
11942 tsz_oob = true;
11943 } else {
11944 tsz_oob = false;
11947 /* Present TBI as a composite with TBID. */
11948 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11949 if (!data) {
11950 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11952 tbi = (tbi >> select) & 1;
11954 return (ARMVAParameters) {
11955 .tsz = tsz,
11956 .ps = ps,
11957 .sh = sh,
11958 .select = select,
11959 .tbi = tbi,
11960 .epd = epd,
11961 .hpd = hpd,
11962 .tsz_oob = tsz_oob,
11963 .ds = ds,
11964 .ha = ha,
11965 .hd = ha && hd,
11966 .gran = gran,
11971 * Note that signed overflow is undefined in C. The following routines are
11972 * careful to use unsigned types where modulo arithmetic is required.
11973 * Failure to do so _will_ break on newer gcc.
11976 /* Signed saturating arithmetic. */
11978 /* Perform 16-bit signed saturating addition. */
11979 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11981 uint16_t res;
11983 res = a + b;
11984 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11985 if (a & 0x8000) {
11986 res = 0x8000;
11987 } else {
11988 res = 0x7fff;
11991 return res;
11994 /* Perform 8-bit signed saturating addition. */
11995 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11997 uint8_t res;
11999 res = a + b;
12000 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12001 if (a & 0x80) {
12002 res = 0x80;
12003 } else {
12004 res = 0x7f;
12007 return res;
12010 /* Perform 16-bit signed saturating subtraction. */
12011 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12013 uint16_t res;
12015 res = a - b;
12016 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12017 if (a & 0x8000) {
12018 res = 0x8000;
12019 } else {
12020 res = 0x7fff;
12023 return res;
12026 /* Perform 8-bit signed saturating subtraction. */
12027 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12029 uint8_t res;
12031 res = a - b;
12032 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12033 if (a & 0x80) {
12034 res = 0x80;
12035 } else {
12036 res = 0x7f;
12039 return res;
12042 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12043 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12044 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
12045 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
12046 #define PFX q
12048 #include "op_addsub.h"
12050 /* Unsigned saturating arithmetic. */
12051 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12053 uint16_t res;
12054 res = a + b;
12055 if (res < a) {
12056 res = 0xffff;
12058 return res;
12061 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12063 if (a > b) {
12064 return a - b;
12065 } else {
12066 return 0;
12070 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12072 uint8_t res;
12073 res = a + b;
12074 if (res < a) {
12075 res = 0xff;
12077 return res;
12080 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12082 if (a > b) {
12083 return a - b;
12084 } else {
12085 return 0;
12089 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12090 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12091 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
12092 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
12093 #define PFX uq
12095 #include "op_addsub.h"
12097 /* Signed modulo arithmetic. */
12098 #define SARITH16(a, b, n, op) do { \
12099 int32_t sum; \
12100 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12101 RESULT(sum, n, 16); \
12102 if (sum >= 0) \
12103 ge |= 3 << (n * 2); \
12104 } while (0)
12106 #define SARITH8(a, b, n, op) do { \
12107 int32_t sum; \
12108 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12109 RESULT(sum, n, 8); \
12110 if (sum >= 0) \
12111 ge |= 1 << n; \
12112 } while (0)
12115 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12116 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12117 #define ADD8(a, b, n) SARITH8(a, b, n, +)
12118 #define SUB8(a, b, n) SARITH8(a, b, n, -)
12119 #define PFX s
12120 #define ARITH_GE
12122 #include "op_addsub.h"
12124 /* Unsigned modulo arithmetic. */
12125 #define ADD16(a, b, n) do { \
12126 uint32_t sum; \
12127 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12128 RESULT(sum, n, 16); \
12129 if ((sum >> 16) == 1) \
12130 ge |= 3 << (n * 2); \
12131 } while (0)
12133 #define ADD8(a, b, n) do { \
12134 uint32_t sum; \
12135 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12136 RESULT(sum, n, 8); \
12137 if ((sum >> 8) == 1) \
12138 ge |= 1 << n; \
12139 } while (0)
12141 #define SUB16(a, b, n) do { \
12142 uint32_t sum; \
12143 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12144 RESULT(sum, n, 16); \
12145 if ((sum >> 16) == 0) \
12146 ge |= 3 << (n * 2); \
12147 } while (0)
12149 #define SUB8(a, b, n) do { \
12150 uint32_t sum; \
12151 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12152 RESULT(sum, n, 8); \
12153 if ((sum >> 8) == 0) \
12154 ge |= 1 << n; \
12155 } while (0)
12157 #define PFX u
12158 #define ARITH_GE
12160 #include "op_addsub.h"
12162 /* Halved signed arithmetic. */
12163 #define ADD16(a, b, n) \
12164 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12165 #define SUB16(a, b, n) \
12166 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12167 #define ADD8(a, b, n) \
12168 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12169 #define SUB8(a, b, n) \
12170 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12171 #define PFX sh
12173 #include "op_addsub.h"
12175 /* Halved unsigned arithmetic. */
12176 #define ADD16(a, b, n) \
12177 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12178 #define SUB16(a, b, n) \
12179 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12180 #define ADD8(a, b, n) \
12181 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12182 #define SUB8(a, b, n) \
12183 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12184 #define PFX uh
12186 #include "op_addsub.h"
12188 static inline uint8_t do_usad(uint8_t a, uint8_t b)
12190 if (a > b) {
12191 return a - b;
12192 } else {
12193 return b - a;
12197 /* Unsigned sum of absolute byte differences. */
12198 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12200 uint32_t sum;
12201 sum = do_usad(a, b);
12202 sum += do_usad(a >> 8, b >> 8);
12203 sum += do_usad(a >> 16, b >> 16);
12204 sum += do_usad(a >> 24, b >> 24);
12205 return sum;
12208 /* For ARMv6 SEL instruction. */
12209 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12211 uint32_t mask;
12213 mask = 0;
12214 if (flags & 1) {
12215 mask |= 0xff;
12217 if (flags & 2) {
12218 mask |= 0xff00;
12220 if (flags & 4) {
12221 mask |= 0xff0000;
12223 if (flags & 8) {
12224 mask |= 0xff000000;
12226 return (a & mask) | (b & ~mask);
12230 * CRC helpers.
12231 * The upper bytes of val (above the number specified by 'bytes') must have
12232 * been zeroed out by the caller.
12234 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12236 uint8_t buf[4];
12238 stl_le_p(buf, val);
12240 /* zlib crc32 converts the accumulator and output to one's complement. */
12241 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12244 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12246 uint8_t buf[4];
12248 stl_le_p(buf, val);
12250 /* Linux crc32c converts the output to one's complement. */
12251 return crc32c(acc, buf, bytes) ^ 0xffffffff;
12255 * Return the exception level to which FP-disabled exceptions should
12256 * be taken, or 0 if FP is enabled.
12258 int fp_exception_el(CPUARMState *env, int cur_el)
12260 #ifndef CONFIG_USER_ONLY
12261 uint64_t hcr_el2;
12264 * CPACR and the CPTR registers don't exist before v6, so FP is
12265 * always accessible
12267 if (!arm_feature(env, ARM_FEATURE_V6)) {
12268 return 0;
12271 if (arm_feature(env, ARM_FEATURE_M)) {
12272 /* CPACR can cause a NOCP UsageFault taken to current security state */
12273 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
12274 return 1;
12277 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
12278 if (!extract32(env->v7m.nsacr, 10, 1)) {
12279 /* FP insns cause a NOCP UsageFault taken to Secure */
12280 return 3;
12284 return 0;
12287 hcr_el2 = arm_hcr_el2_eff(env);
12290 * The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12291 * 0, 2 : trap EL0 and EL1/PL1 accesses
12292 * 1 : trap only EL0 accesses
12293 * 3 : trap no accesses
12294 * This register is ignored if E2H+TGE are both set.
12296 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12297 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
12299 switch (fpen) {
12300 case 1:
12301 if (cur_el != 0) {
12302 break;
12304 /* fall through */
12305 case 0:
12306 case 2:
12307 /* Trap from Secure PL0 or PL1 to Secure PL1. */
12308 if (!arm_el_is_aa64(env, 3)
12309 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
12310 return 3;
12312 if (cur_el <= 1) {
12313 return 1;
12315 break;
12320 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
12321 * to control non-secure access to the FPU. It doesn't have any
12322 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
12324 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
12325 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
12326 if (!extract32(env->cp15.nsacr, 10, 1)) {
12327 /* FP insns act as UNDEF */
12328 return cur_el == 2 ? 2 : 1;
12333 * CPTR_EL2 is present in v7VE or v8, and changes format
12334 * with HCR_EL2.E2H (regardless of TGE).
12336 if (cur_el <= 2) {
12337 if (hcr_el2 & HCR_E2H) {
12338 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
12339 case 1:
12340 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
12341 break;
12343 /* fall through */
12344 case 0:
12345 case 2:
12346 return 2;
12348 } else if (arm_is_el2_enabled(env)) {
12349 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
12350 return 2;
12355 /* CPTR_EL3 : present in v8 */
12356 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
12357 /* Trap all FP ops to EL3 */
12358 return 3;
12360 #endif
12361 return 0;
12364 /* Return the exception level we're running at if this is our mmu_idx */
12365 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
12367 if (mmu_idx & ARM_MMU_IDX_M) {
12368 return mmu_idx & ARM_MMU_IDX_M_PRIV;
12371 switch (mmu_idx) {
12372 case ARMMMUIdx_E10_0:
12373 case ARMMMUIdx_E20_0:
12374 return 0;
12375 case ARMMMUIdx_E10_1:
12376 case ARMMMUIdx_E10_1_PAN:
12377 return 1;
12378 case ARMMMUIdx_E2:
12379 case ARMMMUIdx_E20_2:
12380 case ARMMMUIdx_E20_2_PAN:
12381 return 2;
12382 case ARMMMUIdx_E3:
12383 return 3;
12384 default:
12385 g_assert_not_reached();
12389 #ifndef CONFIG_TCG
12390 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12392 g_assert_not_reached();
12394 #endif
12396 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
12398 ARMMMUIdx idx;
12399 uint64_t hcr;
12401 if (arm_feature(env, ARM_FEATURE_M)) {
12402 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12405 /* See ARM pseudo-function ELIsInHost. */
12406 switch (el) {
12407 case 0:
12408 hcr = arm_hcr_el2_eff(env);
12409 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
12410 idx = ARMMMUIdx_E20_0;
12411 } else {
12412 idx = ARMMMUIdx_E10_0;
12414 break;
12415 case 1:
12416 if (arm_pan_enabled(env)) {
12417 idx = ARMMMUIdx_E10_1_PAN;
12418 } else {
12419 idx = ARMMMUIdx_E10_1;
12421 break;
12422 case 2:
12423 /* Note that TGE does not apply at EL2. */
12424 if (arm_hcr_el2_eff(env) & HCR_E2H) {
12425 if (arm_pan_enabled(env)) {
12426 idx = ARMMMUIdx_E20_2_PAN;
12427 } else {
12428 idx = ARMMMUIdx_E20_2;
12430 } else {
12431 idx = ARMMMUIdx_E2;
12433 break;
12434 case 3:
12435 return ARMMMUIdx_E3;
12436 default:
12437 g_assert_not_reached();
12440 return idx;
12443 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12445 return arm_mmu_idx_el(env, arm_current_el(env));
12448 static bool mve_no_pred(CPUARMState *env)
12451 * Return true if there is definitely no predication of MVE
12452 * instructions by VPR or LTPSIZE. (Returning false even if there
12453 * isn't any predication is OK; generated code will just be
12454 * a little worse.)
12455 * If the CPU does not implement MVE then this TB flag is always 0.
12457 * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
12458 * logic in gen_update_fp_context() needs to be updated to match.
12460 * We do not include the effect of the ECI bits here -- they are
12461 * tracked in other TB flags. This simplifies the logic for
12462 * "when did we emit code that changes the MVE_NO_PRED TB flag
12463 * and thus need to end the TB?".
12465 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
12466 return false;
12468 if (env->v7m.vpr) {
12469 return false;
12471 if (env->v7m.ltpsize < 4) {
12472 return false;
12474 return true;
12477 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
12478 uint64_t *cs_base, uint32_t *pflags)
12480 CPUARMTBFlags flags;
12482 assert_hflags_rebuild_correctly(env);
12483 flags = env->hflags;
12485 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
12486 *pc = env->pc;
12487 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12488 DP_TBFLAG_A64(flags, BTYPE, env->btype);
12490 } else {
12491 *pc = env->regs[15];
12493 if (arm_feature(env, ARM_FEATURE_M)) {
12494 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
12495 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
12496 != env->v7m.secure) {
12497 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
12500 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
12501 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
12502 (env->v7m.secure &&
12503 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
12505 * ASPEN is set, but FPCA/SFPA indicate that there is no
12506 * active FP context; we must create a new FP context before
12507 * executing any FP insn.
12509 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
12512 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
12513 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
12514 DP_TBFLAG_M32(flags, LSPACT, 1);
12517 if (mve_no_pred(env)) {
12518 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
12520 } else {
12522 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
12523 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
12525 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
12526 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
12527 } else {
12528 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
12529 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
12531 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
12532 DP_TBFLAG_A32(flags, VFPEN, 1);
12536 DP_TBFLAG_AM32(flags, THUMB, env->thumb);
12537 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
12541 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12542 * states defined in the ARM ARM for software singlestep:
12543 * SS_ACTIVE PSTATE.SS State
12544 * 0 x Inactive (the TB flag for SS is always 0)
12545 * 1 0 Active-pending
12546 * 1 1 Active-not-pending
12547 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
12549 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
12550 DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
12553 *pflags = flags.flags;
12554 *cs_base = flags.flags2;
12557 #ifdef TARGET_AARCH64
12559 * The manual says that when SVE is enabled and VQ is widened the
12560 * implementation is allowed to zero the previously inaccessible
12561 * portion of the registers. The corollary to that is that when
12562 * SVE is enabled and VQ is narrowed we are also allowed to zero
12563 * the now inaccessible portion of the registers.
12565 * The intent of this is that no predicate bit beyond VQ is ever set.
12566 * Which means that some operations on predicate registers themselves
12567 * may operate on full uint64_t or even unrolled across the maximum
12568 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
12569 * may well be cheaper than conditionals to restrict the operation
12570 * to the relevant portion of a uint16_t[16].
12572 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12574 int i, j;
12575 uint64_t pmask;
12577 assert(vq >= 1 && vq <= ARM_MAX_VQ);
12578 assert(vq <= env_archcpu(env)->sve_max_vq);
12580 /* Zap the high bits of the zregs. */
12581 for (i = 0; i < 32; i++) {
12582 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12585 /* Zap the high bits of the pregs and ffr. */
12586 pmask = 0;
12587 if (vq & 3) {
12588 pmask = ~(-1ULL << (16 * (vq & 3)));
12590 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12591 for (i = 0; i < 17; ++i) {
12592 env->vfp.pregs[i].p[j] &= pmask;
12594 pmask = 0;
12598 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
12600 int exc_el;
12602 if (sm) {
12603 exc_el = sme_exception_el(env, el);
12604 } else {
12605 exc_el = sve_exception_el(env, el);
12607 if (exc_el) {
12608 return 0; /* disabled */
12610 return sve_vqm1_for_el_sm(env, el, sm);
12614 * Notice a change in SVE vector size when changing EL.
12616 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12617 int new_el, bool el0_a64)
12619 ARMCPU *cpu = env_archcpu(env);
12620 int old_len, new_len;
12621 bool old_a64, new_a64, sm;
12623 /* Nothing to do if no SVE. */
12624 if (!cpu_isar_feature(aa64_sve, cpu)) {
12625 return;
12628 /* Nothing to do if FP is disabled in either EL. */
12629 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12630 return;
12633 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12634 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12637 * Both AArch64.TakeException and AArch64.ExceptionReturn
12638 * invoke ResetSVEState when taking an exception from, or
12639 * returning to, AArch32 state when PSTATE.SM is enabled.
12641 sm = FIELD_EX64(env->svcr, SVCR, SM);
12642 if (old_a64 != new_a64 && sm) {
12643 arm_reset_sve_state(env);
12644 return;
12648 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12649 * at ELx, or not available because the EL is in AArch32 state, then
12650 * for all purposes other than a direct read, the ZCR_ELx.LEN field
12651 * has an effective value of 0".
12653 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12654 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12655 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
12656 * we already have the correct register contents when encountering the
12657 * vq0->vq0 transition between EL0->EL1.
12659 old_len = new_len = 0;
12660 if (old_a64) {
12661 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
12663 if (new_a64) {
12664 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
12667 /* When changing vector length, clear inaccessible state. */
12668 if (new_len < old_len) {
12669 aarch64_sve_narrow_vq(env, new_len + 1);
12672 #endif
12674 #ifndef CONFIG_USER_ONLY
12675 ARMSecuritySpace arm_security_space(CPUARMState *env)
12677 if (arm_feature(env, ARM_FEATURE_M)) {
12678 return arm_secure_to_space(env->v7m.secure);
12682 * If EL3 is not supported then the secure state is implementation
12683 * defined, in which case QEMU defaults to non-secure.
12685 if (!arm_feature(env, ARM_FEATURE_EL3)) {
12686 return ARMSS_NonSecure;
12689 /* Check for AArch64 EL3 or AArch32 Mon. */
12690 if (is_a64(env)) {
12691 if (extract32(env->pstate, 2, 2) == 3) {
12692 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) {
12693 return ARMSS_Root;
12694 } else {
12695 return ARMSS_Secure;
12698 } else {
12699 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
12700 return ARMSS_Secure;
12704 return arm_security_space_below_el3(env);
12707 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
12709 assert(!arm_feature(env, ARM_FEATURE_M));
12712 * If EL3 is not supported then the secure state is implementation
12713 * defined, in which case QEMU defaults to non-secure.
12715 if (!arm_feature(env, ARM_FEATURE_EL3)) {
12716 return ARMSS_NonSecure;
12720 * Note NSE cannot be set without RME, and NSE & !NS is Reserved.
12721 * Ignoring NSE when !NS retains consistency without having to
12722 * modify other predicates.
12724 if (!(env->cp15.scr_el3 & SCR_NS)) {
12725 return ARMSS_Secure;
12726 } else if (env->cp15.scr_el3 & SCR_NSE) {
12727 return ARMSS_Realm;
12728 } else {
12729 return ARMSS_NonSecure;
12732 #endif /* !CONFIG_USER_ONLY */