intc/arm_gic: Implement virtualization extensions in gic_acknowledge_irq
[qemu/armbru.git] / hw / intc / arm_gic.c
blobd80acde989f5a7fde8ad010618f115ce3603fab2
1 /*
2 * ARM Generic/Distributed Interrupt Controller
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
8 */
10 /* This file contains implementation code for the RealView EB interrupt
11 * controller, MPCore distributed interrupt controller and ARMv7-M
12 * Nested Vectored Interrupt Controller.
13 * It is compiled in two ways:
14 * (1) as a standalone file to produce a sysbus device which is a GIC
15 * that can be used on the realview board and as one of the builtin
16 * private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17 * (2) by being directly #included into armv7m_nvic.c to produce the
18 * armv7m_nvic device.
21 #include "qemu/osdep.h"
22 #include "hw/sysbus.h"
23 #include "gic_internal.h"
24 #include "qapi/error.h"
25 #include "qom/cpu.h"
26 #include "qemu/log.h"
27 #include "trace.h"
28 #include "sysemu/kvm.h"
30 /* #define DEBUG_GIC */
32 #ifdef DEBUG_GIC
33 #define DEBUG_GIC_GATE 1
34 #else
35 #define DEBUG_GIC_GATE 0
36 #endif
38 #define DPRINTF(fmt, ...) do { \
39 if (DEBUG_GIC_GATE) { \
40 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
41 } \
42 } while (0)
44 static const uint8_t gic_id_11mpcore[] = {
45 0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
48 static const uint8_t gic_id_gicv1[] = {
49 0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
52 static const uint8_t gic_id_gicv2[] = {
53 0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
56 static inline int gic_get_current_cpu(GICState *s)
58 if (s->num_cpu > 1) {
59 return current_cpu->cpu_index;
61 return 0;
64 static inline int gic_get_current_vcpu(GICState *s)
66 return gic_get_current_cpu(s) + GIC_NCPU;
69 /* Return true if this GIC config has interrupt groups, which is
70 * true if we're a GICv2, or a GICv1 with the security extensions.
72 static inline bool gic_has_groups(GICState *s)
74 return s->revision == 2 || s->security_extn;
77 static inline bool gic_cpu_ns_access(GICState *s, int cpu, MemTxAttrs attrs)
79 return !gic_is_vcpu(cpu) && s->security_extn && !attrs.secure;
82 /* TODO: Many places that call this routine could be optimized. */
83 /* Update interrupt status after enabled or pending bits have been changed. */
84 static void gic_update(GICState *s)
86 int best_irq;
87 int best_prio;
88 int irq;
89 int irq_level, fiq_level;
90 int cpu;
91 int cm;
93 for (cpu = 0; cpu < s->num_cpu; cpu++) {
94 cm = 1 << cpu;
95 s->current_pending[cpu] = 1023;
96 if (!(s->ctlr & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1))
97 || !(s->cpu_ctlr[cpu] & (GICC_CTLR_EN_GRP0 | GICC_CTLR_EN_GRP1))) {
98 qemu_irq_lower(s->parent_irq[cpu]);
99 qemu_irq_lower(s->parent_fiq[cpu]);
100 continue;
102 best_prio = 0x100;
103 best_irq = 1023;
104 for (irq = 0; irq < s->num_irq; irq++) {
105 if (GIC_DIST_TEST_ENABLED(irq, cm) &&
106 gic_test_pending(s, irq, cm) &&
107 (!GIC_DIST_TEST_ACTIVE(irq, cm)) &&
108 (irq < GIC_INTERNAL || GIC_DIST_TARGET(irq) & cm)) {
109 if (GIC_DIST_GET_PRIORITY(irq, cpu) < best_prio) {
110 best_prio = GIC_DIST_GET_PRIORITY(irq, cpu);
111 best_irq = irq;
116 if (best_irq != 1023) {
117 trace_gic_update_bestirq(cpu, best_irq, best_prio,
118 s->priority_mask[cpu], s->running_priority[cpu]);
121 irq_level = fiq_level = 0;
123 if (best_prio < s->priority_mask[cpu]) {
124 s->current_pending[cpu] = best_irq;
125 if (best_prio < s->running_priority[cpu]) {
126 int group = GIC_DIST_TEST_GROUP(best_irq, cm);
128 if (extract32(s->ctlr, group, 1) &&
129 extract32(s->cpu_ctlr[cpu], group, 1)) {
130 if (group == 0 && s->cpu_ctlr[cpu] & GICC_CTLR_FIQ_EN) {
131 DPRINTF("Raised pending FIQ %d (cpu %d)\n",
132 best_irq, cpu);
133 fiq_level = 1;
134 trace_gic_update_set_irq(cpu, "fiq", fiq_level);
135 } else {
136 DPRINTF("Raised pending IRQ %d (cpu %d)\n",
137 best_irq, cpu);
138 irq_level = 1;
139 trace_gic_update_set_irq(cpu, "irq", irq_level);
145 qemu_set_irq(s->parent_irq[cpu], irq_level);
146 qemu_set_irq(s->parent_fiq[cpu], fiq_level);
150 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
151 int cm, int target)
153 if (level) {
154 GIC_DIST_SET_LEVEL(irq, cm);
155 if (GIC_DIST_TEST_EDGE_TRIGGER(irq) || GIC_DIST_TEST_ENABLED(irq, cm)) {
156 DPRINTF("Set %d pending mask %x\n", irq, target);
157 GIC_DIST_SET_PENDING(irq, target);
159 } else {
160 GIC_DIST_CLEAR_LEVEL(irq, cm);
164 static void gic_set_irq_generic(GICState *s, int irq, int level,
165 int cm, int target)
167 if (level) {
168 GIC_DIST_SET_LEVEL(irq, cm);
169 DPRINTF("Set %d pending mask %x\n", irq, target);
170 if (GIC_DIST_TEST_EDGE_TRIGGER(irq)) {
171 GIC_DIST_SET_PENDING(irq, target);
173 } else {
174 GIC_DIST_CLEAR_LEVEL(irq, cm);
178 /* Process a change in an external IRQ input. */
179 static void gic_set_irq(void *opaque, int irq, int level)
181 /* Meaning of the 'irq' parameter:
182 * [0..N-1] : external interrupts
183 * [N..N+31] : PPI (internal) interrupts for CPU 0
184 * [N+32..N+63] : PPI (internal interrupts for CPU 1
185 * ...
187 GICState *s = (GICState *)opaque;
188 int cm, target;
189 if (irq < (s->num_irq - GIC_INTERNAL)) {
190 /* The first external input line is internal interrupt 32. */
191 cm = ALL_CPU_MASK;
192 irq += GIC_INTERNAL;
193 target = GIC_DIST_TARGET(irq);
194 } else {
195 int cpu;
196 irq -= (s->num_irq - GIC_INTERNAL);
197 cpu = irq / GIC_INTERNAL;
198 irq %= GIC_INTERNAL;
199 cm = 1 << cpu;
200 target = cm;
203 assert(irq >= GIC_NR_SGIS);
205 if (level == GIC_DIST_TEST_LEVEL(irq, cm)) {
206 return;
209 if (s->revision == REV_11MPCORE) {
210 gic_set_irq_11mpcore(s, irq, level, cm, target);
211 } else {
212 gic_set_irq_generic(s, irq, level, cm, target);
214 trace_gic_set_irq(irq, level, cm, target);
216 gic_update(s);
219 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
220 MemTxAttrs attrs)
222 uint16_t pending_irq = s->current_pending[cpu];
224 if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
225 int group = gic_test_group(s, pending_irq, cpu);
227 /* On a GIC without the security extensions, reading this register
228 * behaves in the same way as a secure access to a GIC with them.
230 bool secure = !gic_cpu_ns_access(s, cpu, attrs);
232 if (group == 0 && !secure) {
233 /* Group0 interrupts hidden from Non-secure access */
234 return 1023;
236 if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
237 /* Group1 interrupts only seen by Secure access if
238 * AckCtl bit set.
240 return 1022;
243 return pending_irq;
246 static int gic_get_group_priority(GICState *s, int cpu, int irq)
248 /* Return the group priority of the specified interrupt
249 * (which is the top bits of its priority, with the number
250 * of bits masked determined by the applicable binary point register).
252 int bpr;
253 uint32_t mask;
255 if (gic_has_groups(s) &&
256 !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
257 gic_test_group(s, irq, cpu)) {
258 bpr = s->abpr[cpu] - 1;
259 assert(bpr >= 0);
260 } else {
261 bpr = s->bpr[cpu];
264 /* a BPR of 0 means the group priority bits are [7:1];
265 * a BPR of 1 means they are [7:2], and so on down to
266 * a BPR of 7 meaning no group priority bits at all.
268 mask = ~0U << ((bpr & 7) + 1);
270 return gic_get_priority(s, irq, cpu) & mask;
273 static void gic_activate_irq(GICState *s, int cpu, int irq)
275 /* Set the appropriate Active Priority Register bit for this IRQ,
276 * and update the running priority.
278 int prio = gic_get_group_priority(s, cpu, irq);
279 int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
280 int preemption_level = prio >> (min_bpr + 1);
281 int regno = preemption_level / 32;
282 int bitno = preemption_level % 32;
283 uint32_t *papr = NULL;
285 if (gic_is_vcpu(cpu)) {
286 assert(regno == 0);
287 papr = &s->h_apr[gic_get_vcpu_real_id(cpu)];
288 } else if (gic_has_groups(s) && gic_test_group(s, irq, cpu)) {
289 papr = &s->nsapr[regno][cpu];
290 } else {
291 papr = &s->apr[regno][cpu];
294 *papr |= (1 << bitno);
296 s->running_priority[cpu] = prio;
297 gic_set_active(s, irq, cpu);
300 static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
302 /* Recalculate the current running priority for this CPU based
303 * on the set bits in the Active Priority Registers.
305 int i;
307 if (gic_is_vcpu(cpu)) {
308 uint32_t apr = s->h_apr[gic_get_vcpu_real_id(cpu)];
309 if (apr) {
310 return ctz32(apr) << (GIC_VIRT_MIN_BPR + 1);
311 } else {
312 return 0x100;
316 for (i = 0; i < GIC_NR_APRS; i++) {
317 uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
318 if (!apr) {
319 continue;
321 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
323 return 0x100;
326 static void gic_drop_prio(GICState *s, int cpu, int group)
328 /* Drop the priority of the currently active interrupt in the
329 * specified group.
331 * Note that we can guarantee (because of the requirement to nest
332 * GICC_IAR reads [which activate an interrupt and raise priority]
333 * with GICC_EOIR writes [which drop the priority for the interrupt])
334 * that the interrupt we're being called for is the highest priority
335 * active interrupt, meaning that it has the lowest set bit in the
336 * APR registers.
338 * If the guest does not honour the ordering constraints then the
339 * behaviour of the GIC is UNPREDICTABLE, which for us means that
340 * the values of the APR registers might become incorrect and the
341 * running priority will be wrong, so interrupts that should preempt
342 * might not do so, and interrupts that should not preempt might do so.
344 if (gic_is_vcpu(cpu)) {
345 int rcpu = gic_get_vcpu_real_id(cpu);
347 if (s->h_apr[rcpu]) {
348 /* Clear lowest set bit */
349 s->h_apr[rcpu] &= s->h_apr[rcpu] - 1;
351 } else {
352 int i;
354 for (i = 0; i < GIC_NR_APRS; i++) {
355 uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
356 if (!*papr) {
357 continue;
359 /* Clear lowest set bit */
360 *papr &= *papr - 1;
361 break;
365 s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
368 static inline uint32_t gic_clear_pending_sgi(GICState *s, int irq, int cpu)
370 int src;
371 uint32_t ret;
373 if (!gic_is_vcpu(cpu)) {
374 /* Lookup the source CPU for the SGI and clear this in the
375 * sgi_pending map. Return the src and clear the overall pending
376 * state on this CPU if the SGI is not pending from any CPUs.
378 assert(s->sgi_pending[irq][cpu] != 0);
379 src = ctz32(s->sgi_pending[irq][cpu]);
380 s->sgi_pending[irq][cpu] &= ~(1 << src);
381 if (s->sgi_pending[irq][cpu] == 0) {
382 gic_clear_pending(s, irq, cpu);
384 ret = irq | ((src & 0x7) << 10);
385 } else {
386 uint32_t *lr_entry = gic_get_lr_entry(s, irq, cpu);
387 src = GICH_LR_CPUID(*lr_entry);
389 gic_clear_pending(s, irq, cpu);
390 ret = irq | (src << 10);
393 return ret;
396 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
398 int ret, irq;
400 /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
401 * for the case where this GIC supports grouping and the pending interrupt
402 * is in the wrong group.
404 irq = gic_get_current_pending_irq(s, cpu, attrs);
405 trace_gic_acknowledge_irq(gic_get_vcpu_real_id(cpu), irq);
407 if (irq >= GIC_MAXIRQ) {
408 DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
409 return irq;
412 if (gic_get_priority(s, irq, cpu) >= s->running_priority[cpu]) {
413 DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
414 return 1023;
417 gic_activate_irq(s, cpu, irq);
419 if (s->revision == REV_11MPCORE) {
420 /* Clear pending flags for both level and edge triggered interrupts.
421 * Level triggered IRQs will be reasserted once they become inactive.
423 gic_clear_pending(s, irq, cpu);
424 ret = irq;
425 } else {
426 if (irq < GIC_NR_SGIS) {
427 ret = gic_clear_pending_sgi(s, irq, cpu);
428 } else {
429 gic_clear_pending(s, irq, cpu);
430 ret = irq;
434 gic_update(s);
435 DPRINTF("ACK %d\n", irq);
436 return ret;
439 void gic_dist_set_priority(GICState *s, int cpu, int irq, uint8_t val,
440 MemTxAttrs attrs)
442 if (s->security_extn && !attrs.secure) {
443 if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
444 return; /* Ignore Non-secure access of Group0 IRQ */
446 val = 0x80 | (val >> 1); /* Non-secure view */
449 if (irq < GIC_INTERNAL) {
450 s->priority1[irq][cpu] = val;
451 } else {
452 s->priority2[(irq) - GIC_INTERNAL] = val;
456 static uint32_t gic_dist_get_priority(GICState *s, int cpu, int irq,
457 MemTxAttrs attrs)
459 uint32_t prio = GIC_DIST_GET_PRIORITY(irq, cpu);
461 if (s->security_extn && !attrs.secure) {
462 if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
463 return 0; /* Non-secure access cannot read priority of Group0 IRQ */
465 prio = (prio << 1) & 0xff; /* Non-secure view */
467 return prio;
470 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
471 MemTxAttrs attrs)
473 if (gic_cpu_ns_access(s, cpu, attrs)) {
474 if (s->priority_mask[cpu] & 0x80) {
475 /* Priority Mask in upper half */
476 pmask = 0x80 | (pmask >> 1);
477 } else {
478 /* Non-secure write ignored if priority mask is in lower half */
479 return;
482 s->priority_mask[cpu] = pmask;
485 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
487 uint32_t pmask = s->priority_mask[cpu];
489 if (gic_cpu_ns_access(s, cpu, attrs)) {
490 if (pmask & 0x80) {
491 /* Priority Mask in upper half, return Non-secure view */
492 pmask = (pmask << 1) & 0xff;
493 } else {
494 /* Priority Mask in lower half, RAZ */
495 pmask = 0;
498 return pmask;
501 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
503 uint32_t ret = s->cpu_ctlr[cpu];
505 if (gic_cpu_ns_access(s, cpu, attrs)) {
506 /* Construct the NS banked view of GICC_CTLR from the correct
507 * bits of the S banked view. We don't need to move the bypass
508 * control bits because we don't implement that (IMPDEF) part
509 * of the GIC architecture.
511 ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
513 return ret;
516 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
517 MemTxAttrs attrs)
519 uint32_t mask;
521 if (gic_cpu_ns_access(s, cpu, attrs)) {
522 /* The NS view can only write certain bits in the register;
523 * the rest are unchanged
525 mask = GICC_CTLR_EN_GRP1;
526 if (s->revision == 2) {
527 mask |= GICC_CTLR_EOIMODE_NS;
529 s->cpu_ctlr[cpu] &= ~mask;
530 s->cpu_ctlr[cpu] |= (value << 1) & mask;
531 } else {
532 if (s->revision == 2) {
533 mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
534 } else {
535 mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
537 s->cpu_ctlr[cpu] = value & mask;
539 DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
540 "Group1 Interrupts %sabled\n", cpu,
541 (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
542 (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
545 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
547 if ((s->revision != REV_11MPCORE) && (s->running_priority[cpu] > 0xff)) {
548 /* Idle priority */
549 return 0xff;
552 if (gic_cpu_ns_access(s, cpu, attrs)) {
553 if (s->running_priority[cpu] & 0x80) {
554 /* Running priority in upper half of range: return the Non-secure
555 * view of the priority.
557 return s->running_priority[cpu] << 1;
558 } else {
559 /* Running priority in lower half of range: RAZ */
560 return 0;
562 } else {
563 return s->running_priority[cpu];
567 /* Return true if we should split priority drop and interrupt deactivation,
568 * ie whether the relevant EOIMode bit is set.
570 static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
572 if (s->revision != 2) {
573 /* Before GICv2 prio-drop and deactivate are not separable */
574 return false;
576 if (gic_cpu_ns_access(s, cpu, attrs)) {
577 return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
579 return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
582 static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
584 int group;
586 if (irq >= s->num_irq) {
588 * This handles two cases:
589 * 1. If software writes the ID of a spurious interrupt [ie 1023]
590 * to the GICC_DIR, the GIC ignores that write.
591 * 2. If software writes the number of a non-existent interrupt
592 * this must be a subcase of "value written is not an active interrupt"
593 * and so this is UNPREDICTABLE. We choose to ignore it.
595 return;
598 group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
600 if (!gic_eoi_split(s, cpu, attrs)) {
601 /* This is UNPREDICTABLE; we choose to ignore it */
602 qemu_log_mask(LOG_GUEST_ERROR,
603 "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
604 return;
607 if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
608 DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
609 return;
612 gic_clear_active(s, irq, cpu);
615 static void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
617 int cm = 1 << cpu;
618 int group;
620 DPRINTF("EOI %d\n", irq);
621 if (irq >= s->num_irq) {
622 /* This handles two cases:
623 * 1. If software writes the ID of a spurious interrupt [ie 1023]
624 * to the GICC_EOIR, the GIC ignores that write.
625 * 2. If software writes the number of a non-existent interrupt
626 * this must be a subcase of "value written does not match the last
627 * valid interrupt value read from the Interrupt Acknowledge
628 * register" and so this is UNPREDICTABLE. We choose to ignore it.
630 return;
632 if (s->running_priority[cpu] == 0x100) {
633 return; /* No active IRQ. */
636 if (s->revision == REV_11MPCORE) {
637 /* Mark level triggered interrupts as pending if they are still
638 raised. */
639 if (!GIC_DIST_TEST_EDGE_TRIGGER(irq) && GIC_DIST_TEST_ENABLED(irq, cm)
640 && GIC_DIST_TEST_LEVEL(irq, cm)
641 && (GIC_DIST_TARGET(irq) & cm) != 0) {
642 DPRINTF("Set %d pending mask %x\n", irq, cm);
643 GIC_DIST_SET_PENDING(irq, cm);
647 group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
649 if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
650 DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
651 return;
654 /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
655 * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
656 * i.e. go ahead and complete the irq anyway.
659 gic_drop_prio(s, cpu, group);
661 /* In GICv2 the guest can choose to split priority-drop and deactivate */
662 if (!gic_eoi_split(s, cpu, attrs)) {
663 gic_clear_active(s, irq, cpu);
665 gic_update(s);
668 static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
670 GICState *s = (GICState *)opaque;
671 uint32_t res;
672 int irq;
673 int i;
674 int cpu;
675 int cm;
676 int mask;
678 cpu = gic_get_current_cpu(s);
679 cm = 1 << cpu;
680 if (offset < 0x100) {
681 if (offset == 0) { /* GICD_CTLR */
682 if (s->security_extn && !attrs.secure) {
683 /* The NS bank of this register is just an alias of the
684 * EnableGrp1 bit in the S bank version.
686 return extract32(s->ctlr, 1, 1);
687 } else {
688 return s->ctlr;
691 if (offset == 4)
692 /* Interrupt Controller Type Register */
693 return ((s->num_irq / 32) - 1)
694 | ((s->num_cpu - 1) << 5)
695 | (s->security_extn << 10);
696 if (offset < 0x08)
697 return 0;
698 if (offset >= 0x80) {
699 /* Interrupt Group Registers: these RAZ/WI if this is an NS
700 * access to a GIC with the security extensions, or if the GIC
701 * doesn't have groups at all.
703 res = 0;
704 if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
705 /* Every byte offset holds 8 group status bits */
706 irq = (offset - 0x080) * 8 + GIC_BASE_IRQ;
707 if (irq >= s->num_irq) {
708 goto bad_reg;
710 for (i = 0; i < 8; i++) {
711 if (GIC_DIST_TEST_GROUP(irq + i, cm)) {
712 res |= (1 << i);
716 return res;
718 goto bad_reg;
719 } else if (offset < 0x200) {
720 /* Interrupt Set/Clear Enable. */
721 if (offset < 0x180)
722 irq = (offset - 0x100) * 8;
723 else
724 irq = (offset - 0x180) * 8;
725 irq += GIC_BASE_IRQ;
726 if (irq >= s->num_irq)
727 goto bad_reg;
728 res = 0;
729 for (i = 0; i < 8; i++) {
730 if (s->security_extn && !attrs.secure &&
731 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
732 continue; /* Ignore Non-secure access of Group0 IRQ */
735 if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
736 res |= (1 << i);
739 } else if (offset < 0x300) {
740 /* Interrupt Set/Clear Pending. */
741 if (offset < 0x280)
742 irq = (offset - 0x200) * 8;
743 else
744 irq = (offset - 0x280) * 8;
745 irq += GIC_BASE_IRQ;
746 if (irq >= s->num_irq)
747 goto bad_reg;
748 res = 0;
749 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
750 for (i = 0; i < 8; i++) {
751 if (s->security_extn && !attrs.secure &&
752 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
753 continue; /* Ignore Non-secure access of Group0 IRQ */
756 if (gic_test_pending(s, irq + i, mask)) {
757 res |= (1 << i);
760 } else if (offset < 0x400) {
761 /* Interrupt Set/Clear Active. */
762 if (offset < 0x380) {
763 irq = (offset - 0x300) * 8;
764 } else if (s->revision == 2) {
765 irq = (offset - 0x380) * 8;
766 } else {
767 goto bad_reg;
770 irq += GIC_BASE_IRQ;
771 if (irq >= s->num_irq)
772 goto bad_reg;
773 res = 0;
774 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
775 for (i = 0; i < 8; i++) {
776 if (s->security_extn && !attrs.secure &&
777 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
778 continue; /* Ignore Non-secure access of Group0 IRQ */
781 if (GIC_DIST_TEST_ACTIVE(irq + i, mask)) {
782 res |= (1 << i);
785 } else if (offset < 0x800) {
786 /* Interrupt Priority. */
787 irq = (offset - 0x400) + GIC_BASE_IRQ;
788 if (irq >= s->num_irq)
789 goto bad_reg;
790 res = gic_dist_get_priority(s, cpu, irq, attrs);
791 } else if (offset < 0xc00) {
792 /* Interrupt CPU Target. */
793 if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
794 /* For uniprocessor GICs these RAZ/WI */
795 res = 0;
796 } else {
797 irq = (offset - 0x800) + GIC_BASE_IRQ;
798 if (irq >= s->num_irq) {
799 goto bad_reg;
801 if (irq < 29 && s->revision == REV_11MPCORE) {
802 res = 0;
803 } else if (irq < GIC_INTERNAL) {
804 res = cm;
805 } else {
806 res = GIC_DIST_TARGET(irq);
809 } else if (offset < 0xf00) {
810 /* Interrupt Configuration. */
811 irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
812 if (irq >= s->num_irq)
813 goto bad_reg;
814 res = 0;
815 for (i = 0; i < 4; i++) {
816 if (s->security_extn && !attrs.secure &&
817 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
818 continue; /* Ignore Non-secure access of Group0 IRQ */
821 if (GIC_DIST_TEST_MODEL(irq + i)) {
822 res |= (1 << (i * 2));
824 if (GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
825 res |= (2 << (i * 2));
828 } else if (offset < 0xf10) {
829 goto bad_reg;
830 } else if (offset < 0xf30) {
831 if (s->revision == REV_11MPCORE) {
832 goto bad_reg;
835 if (offset < 0xf20) {
836 /* GICD_CPENDSGIRn */
837 irq = (offset - 0xf10);
838 } else {
839 irq = (offset - 0xf20);
840 /* GICD_SPENDSGIRn */
843 if (s->security_extn && !attrs.secure &&
844 !GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
845 res = 0; /* Ignore Non-secure access of Group0 IRQ */
846 } else {
847 res = s->sgi_pending[irq][cpu];
849 } else if (offset < 0xfd0) {
850 goto bad_reg;
851 } else if (offset < 0x1000) {
852 if (offset & 3) {
853 res = 0;
854 } else {
855 switch (s->revision) {
856 case REV_11MPCORE:
857 res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
858 break;
859 case 1:
860 res = gic_id_gicv1[(offset - 0xfd0) >> 2];
861 break;
862 case 2:
863 res = gic_id_gicv2[(offset - 0xfd0) >> 2];
864 break;
865 default:
866 res = 0;
869 } else {
870 g_assert_not_reached();
872 return res;
873 bad_reg:
874 qemu_log_mask(LOG_GUEST_ERROR,
875 "gic_dist_readb: Bad offset %x\n", (int)offset);
876 return 0;
879 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
880 unsigned size, MemTxAttrs attrs)
882 switch (size) {
883 case 1:
884 *data = gic_dist_readb(opaque, offset, attrs);
885 return MEMTX_OK;
886 case 2:
887 *data = gic_dist_readb(opaque, offset, attrs);
888 *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
889 return MEMTX_OK;
890 case 4:
891 *data = gic_dist_readb(opaque, offset, attrs);
892 *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
893 *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
894 *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
895 return MEMTX_OK;
896 default:
897 return MEMTX_ERROR;
901 static void gic_dist_writeb(void *opaque, hwaddr offset,
902 uint32_t value, MemTxAttrs attrs)
904 GICState *s = (GICState *)opaque;
905 int irq;
906 int i;
907 int cpu;
909 cpu = gic_get_current_cpu(s);
910 if (offset < 0x100) {
911 if (offset == 0) {
912 if (s->security_extn && !attrs.secure) {
913 /* NS version is just an alias of the S version's bit 1 */
914 s->ctlr = deposit32(s->ctlr, 1, 1, value);
915 } else if (gic_has_groups(s)) {
916 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
917 } else {
918 s->ctlr = value & GICD_CTLR_EN_GRP0;
920 DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
921 s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
922 s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
923 } else if (offset < 4) {
924 /* ignored. */
925 } else if (offset >= 0x80) {
926 /* Interrupt Group Registers: RAZ/WI for NS access to secure
927 * GIC, or for GICs without groups.
929 if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
930 /* Every byte offset holds 8 group status bits */
931 irq = (offset - 0x80) * 8 + GIC_BASE_IRQ;
932 if (irq >= s->num_irq) {
933 goto bad_reg;
935 for (i = 0; i < 8; i++) {
936 /* Group bits are banked for private interrupts */
937 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
938 if (value & (1 << i)) {
939 /* Group1 (Non-secure) */
940 GIC_DIST_SET_GROUP(irq + i, cm);
941 } else {
942 /* Group0 (Secure) */
943 GIC_DIST_CLEAR_GROUP(irq + i, cm);
947 } else {
948 goto bad_reg;
950 } else if (offset < 0x180) {
951 /* Interrupt Set Enable. */
952 irq = (offset - 0x100) * 8 + GIC_BASE_IRQ;
953 if (irq >= s->num_irq)
954 goto bad_reg;
955 if (irq < GIC_NR_SGIS) {
956 value = 0xff;
959 for (i = 0; i < 8; i++) {
960 if (value & (1 << i)) {
961 int mask =
962 (irq < GIC_INTERNAL) ? (1 << cpu)
963 : GIC_DIST_TARGET(irq + i);
964 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
966 if (s->security_extn && !attrs.secure &&
967 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
968 continue; /* Ignore Non-secure access of Group0 IRQ */
971 if (!GIC_DIST_TEST_ENABLED(irq + i, cm)) {
972 DPRINTF("Enabled IRQ %d\n", irq + i);
973 trace_gic_enable_irq(irq + i);
975 GIC_DIST_SET_ENABLED(irq + i, cm);
976 /* If a raised level triggered IRQ enabled then mark
977 is as pending. */
978 if (GIC_DIST_TEST_LEVEL(irq + i, mask)
979 && !GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
980 DPRINTF("Set %d pending mask %x\n", irq + i, mask);
981 GIC_DIST_SET_PENDING(irq + i, mask);
985 } else if (offset < 0x200) {
986 /* Interrupt Clear Enable. */
987 irq = (offset - 0x180) * 8 + GIC_BASE_IRQ;
988 if (irq >= s->num_irq)
989 goto bad_reg;
990 if (irq < GIC_NR_SGIS) {
991 value = 0;
994 for (i = 0; i < 8; i++) {
995 if (value & (1 << i)) {
996 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
998 if (s->security_extn && !attrs.secure &&
999 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1000 continue; /* Ignore Non-secure access of Group0 IRQ */
1003 if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1004 DPRINTF("Disabled IRQ %d\n", irq + i);
1005 trace_gic_disable_irq(irq + i);
1007 GIC_DIST_CLEAR_ENABLED(irq + i, cm);
1010 } else if (offset < 0x280) {
1011 /* Interrupt Set Pending. */
1012 irq = (offset - 0x200) * 8 + GIC_BASE_IRQ;
1013 if (irq >= s->num_irq)
1014 goto bad_reg;
1015 if (irq < GIC_NR_SGIS) {
1016 value = 0;
1019 for (i = 0; i < 8; i++) {
1020 if (value & (1 << i)) {
1021 if (s->security_extn && !attrs.secure &&
1022 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1023 continue; /* Ignore Non-secure access of Group0 IRQ */
1026 GIC_DIST_SET_PENDING(irq + i, GIC_DIST_TARGET(irq + i));
1029 } else if (offset < 0x300) {
1030 /* Interrupt Clear Pending. */
1031 irq = (offset - 0x280) * 8 + GIC_BASE_IRQ;
1032 if (irq >= s->num_irq)
1033 goto bad_reg;
1034 if (irq < GIC_NR_SGIS) {
1035 value = 0;
1038 for (i = 0; i < 8; i++) {
1039 if (s->security_extn && !attrs.secure &&
1040 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1041 continue; /* Ignore Non-secure access of Group0 IRQ */
1044 /* ??? This currently clears the pending bit for all CPUs, even
1045 for per-CPU interrupts. It's unclear whether this is the
1046 corect behavior. */
1047 if (value & (1 << i)) {
1048 GIC_DIST_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
1051 } else if (offset < 0x380) {
1052 /* Interrupt Set Active. */
1053 if (s->revision != 2) {
1054 goto bad_reg;
1057 irq = (offset - 0x300) * 8 + GIC_BASE_IRQ;
1058 if (irq >= s->num_irq) {
1059 goto bad_reg;
1062 /* This register is banked per-cpu for PPIs */
1063 int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1065 for (i = 0; i < 8; i++) {
1066 if (s->security_extn && !attrs.secure &&
1067 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1068 continue; /* Ignore Non-secure access of Group0 IRQ */
1071 if (value & (1 << i)) {
1072 GIC_DIST_SET_ACTIVE(irq + i, cm);
1075 } else if (offset < 0x400) {
1076 /* Interrupt Clear Active. */
1077 if (s->revision != 2) {
1078 goto bad_reg;
1081 irq = (offset - 0x380) * 8 + GIC_BASE_IRQ;
1082 if (irq >= s->num_irq) {
1083 goto bad_reg;
1086 /* This register is banked per-cpu for PPIs */
1087 int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1089 for (i = 0; i < 8; i++) {
1090 if (s->security_extn && !attrs.secure &&
1091 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1092 continue; /* Ignore Non-secure access of Group0 IRQ */
1095 if (value & (1 << i)) {
1096 GIC_DIST_CLEAR_ACTIVE(irq + i, cm);
1099 } else if (offset < 0x800) {
1100 /* Interrupt Priority. */
1101 irq = (offset - 0x400) + GIC_BASE_IRQ;
1102 if (irq >= s->num_irq)
1103 goto bad_reg;
1104 gic_dist_set_priority(s, cpu, irq, value, attrs);
1105 } else if (offset < 0xc00) {
1106 /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
1107 * annoying exception of the 11MPCore's GIC.
1109 if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
1110 irq = (offset - 0x800) + GIC_BASE_IRQ;
1111 if (irq >= s->num_irq) {
1112 goto bad_reg;
1114 if (irq < 29 && s->revision == REV_11MPCORE) {
1115 value = 0;
1116 } else if (irq < GIC_INTERNAL) {
1117 value = ALL_CPU_MASK;
1119 s->irq_target[irq] = value & ALL_CPU_MASK;
1121 } else if (offset < 0xf00) {
1122 /* Interrupt Configuration. */
1123 irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
1124 if (irq >= s->num_irq)
1125 goto bad_reg;
1126 if (irq < GIC_NR_SGIS)
1127 value |= 0xaa;
1128 for (i = 0; i < 4; i++) {
1129 if (s->security_extn && !attrs.secure &&
1130 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1131 continue; /* Ignore Non-secure access of Group0 IRQ */
1134 if (s->revision == REV_11MPCORE) {
1135 if (value & (1 << (i * 2))) {
1136 GIC_DIST_SET_MODEL(irq + i);
1137 } else {
1138 GIC_DIST_CLEAR_MODEL(irq + i);
1141 if (value & (2 << (i * 2))) {
1142 GIC_DIST_SET_EDGE_TRIGGER(irq + i);
1143 } else {
1144 GIC_DIST_CLEAR_EDGE_TRIGGER(irq + i);
1147 } else if (offset < 0xf10) {
1148 /* 0xf00 is only handled for 32-bit writes. */
1149 goto bad_reg;
1150 } else if (offset < 0xf20) {
1151 /* GICD_CPENDSGIRn */
1152 if (s->revision == REV_11MPCORE) {
1153 goto bad_reg;
1155 irq = (offset - 0xf10);
1157 if (!s->security_extn || attrs.secure ||
1158 GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1159 s->sgi_pending[irq][cpu] &= ~value;
1160 if (s->sgi_pending[irq][cpu] == 0) {
1161 GIC_DIST_CLEAR_PENDING(irq, 1 << cpu);
1164 } else if (offset < 0xf30) {
1165 /* GICD_SPENDSGIRn */
1166 if (s->revision == REV_11MPCORE) {
1167 goto bad_reg;
1169 irq = (offset - 0xf20);
1171 if (!s->security_extn || attrs.secure ||
1172 GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1173 GIC_DIST_SET_PENDING(irq, 1 << cpu);
1174 s->sgi_pending[irq][cpu] |= value;
1176 } else {
1177 goto bad_reg;
1179 gic_update(s);
1180 return;
1181 bad_reg:
1182 qemu_log_mask(LOG_GUEST_ERROR,
1183 "gic_dist_writeb: Bad offset %x\n", (int)offset);
1186 static void gic_dist_writew(void *opaque, hwaddr offset,
1187 uint32_t value, MemTxAttrs attrs)
1189 gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1190 gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1193 static void gic_dist_writel(void *opaque, hwaddr offset,
1194 uint32_t value, MemTxAttrs attrs)
1196 GICState *s = (GICState *)opaque;
1197 if (offset == 0xf00) {
1198 int cpu;
1199 int irq;
1200 int mask;
1201 int target_cpu;
1203 cpu = gic_get_current_cpu(s);
1204 irq = value & 0x3ff;
1205 switch ((value >> 24) & 3) {
1206 case 0:
1207 mask = (value >> 16) & ALL_CPU_MASK;
1208 break;
1209 case 1:
1210 mask = ALL_CPU_MASK ^ (1 << cpu);
1211 break;
1212 case 2:
1213 mask = 1 << cpu;
1214 break;
1215 default:
1216 DPRINTF("Bad Soft Int target filter\n");
1217 mask = ALL_CPU_MASK;
1218 break;
1220 GIC_DIST_SET_PENDING(irq, mask);
1221 target_cpu = ctz32(mask);
1222 while (target_cpu < GIC_NCPU) {
1223 s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1224 mask &= ~(1 << target_cpu);
1225 target_cpu = ctz32(mask);
1227 gic_update(s);
1228 return;
1230 gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1231 gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1234 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1235 unsigned size, MemTxAttrs attrs)
1237 switch (size) {
1238 case 1:
1239 gic_dist_writeb(opaque, offset, data, attrs);
1240 return MEMTX_OK;
1241 case 2:
1242 gic_dist_writew(opaque, offset, data, attrs);
1243 return MEMTX_OK;
1244 case 4:
1245 gic_dist_writel(opaque, offset, data, attrs);
1246 return MEMTX_OK;
1247 default:
1248 return MEMTX_ERROR;
1252 static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1254 /* Return the Nonsecure view of GICC_APR<regno>. This is the
1255 * second half of GICC_NSAPR.
1257 switch (GIC_MIN_BPR) {
1258 case 0:
1259 if (regno < 2) {
1260 return s->nsapr[regno + 2][cpu];
1262 break;
1263 case 1:
1264 if (regno == 0) {
1265 return s->nsapr[regno + 1][cpu];
1267 break;
1268 case 2:
1269 if (regno == 0) {
1270 return extract32(s->nsapr[0][cpu], 16, 16);
1272 break;
1273 case 3:
1274 if (regno == 0) {
1275 return extract32(s->nsapr[0][cpu], 8, 8);
1277 break;
1278 default:
1279 g_assert_not_reached();
1281 return 0;
1284 static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1285 uint32_t value)
1287 /* Write the Nonsecure view of GICC_APR<regno>. */
1288 switch (GIC_MIN_BPR) {
1289 case 0:
1290 if (regno < 2) {
1291 s->nsapr[regno + 2][cpu] = value;
1293 break;
1294 case 1:
1295 if (regno == 0) {
1296 s->nsapr[regno + 1][cpu] = value;
1298 break;
1299 case 2:
1300 if (regno == 0) {
1301 s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1303 break;
1304 case 3:
1305 if (regno == 0) {
1306 s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1308 break;
1309 default:
1310 g_assert_not_reached();
1314 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1315 uint64_t *data, MemTxAttrs attrs)
1317 switch (offset) {
1318 case 0x00: /* Control */
1319 *data = gic_get_cpu_control(s, cpu, attrs);
1320 break;
1321 case 0x04: /* Priority mask */
1322 *data = gic_get_priority_mask(s, cpu, attrs);
1323 break;
1324 case 0x08: /* Binary Point */
1325 if (gic_cpu_ns_access(s, cpu, attrs)) {
1326 if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1327 /* NS view of BPR when CBPR is 1 */
1328 *data = MIN(s->bpr[cpu] + 1, 7);
1329 } else {
1330 /* BPR is banked. Non-secure copy stored in ABPR. */
1331 *data = s->abpr[cpu];
1333 } else {
1334 *data = s->bpr[cpu];
1336 break;
1337 case 0x0c: /* Acknowledge */
1338 *data = gic_acknowledge_irq(s, cpu, attrs);
1339 break;
1340 case 0x14: /* Running Priority */
1341 *data = gic_get_running_priority(s, cpu, attrs);
1342 break;
1343 case 0x18: /* Highest Pending Interrupt */
1344 *data = gic_get_current_pending_irq(s, cpu, attrs);
1345 break;
1346 case 0x1c: /* Aliased Binary Point */
1347 /* GIC v2, no security: ABPR
1348 * GIC v1, no security: not implemented (RAZ/WI)
1349 * With security extensions, secure access: ABPR (alias of NS BPR)
1350 * With security extensions, nonsecure access: RAZ/WI
1352 if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1353 *data = 0;
1354 } else {
1355 *data = s->abpr[cpu];
1357 break;
1358 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1360 int regno = (offset - 0xd0) / 4;
1362 if (regno >= GIC_NR_APRS || s->revision != 2) {
1363 *data = 0;
1364 } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1365 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1366 *data = gic_apr_ns_view(s, regno, cpu);
1367 } else {
1368 *data = s->apr[regno][cpu];
1370 break;
1372 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1374 int regno = (offset - 0xe0) / 4;
1376 if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1377 gic_cpu_ns_access(s, cpu, attrs)) {
1378 *data = 0;
1379 } else {
1380 *data = s->nsapr[regno][cpu];
1382 break;
1384 default:
1385 qemu_log_mask(LOG_GUEST_ERROR,
1386 "gic_cpu_read: Bad offset %x\n", (int)offset);
1387 *data = 0;
1388 break;
1390 return MEMTX_OK;
1393 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1394 uint32_t value, MemTxAttrs attrs)
1396 switch (offset) {
1397 case 0x00: /* Control */
1398 gic_set_cpu_control(s, cpu, value, attrs);
1399 break;
1400 case 0x04: /* Priority mask */
1401 gic_set_priority_mask(s, cpu, value, attrs);
1402 break;
1403 case 0x08: /* Binary Point */
1404 if (gic_cpu_ns_access(s, cpu, attrs)) {
1405 if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1406 /* WI when CBPR is 1 */
1407 return MEMTX_OK;
1408 } else {
1409 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1411 } else {
1412 s->bpr[cpu] = MAX(value & 0x7, GIC_MIN_BPR);
1414 break;
1415 case 0x10: /* End Of Interrupt */
1416 gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1417 return MEMTX_OK;
1418 case 0x1c: /* Aliased Binary Point */
1419 if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1420 /* unimplemented, or NS access: RAZ/WI */
1421 return MEMTX_OK;
1422 } else {
1423 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1425 break;
1426 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1428 int regno = (offset - 0xd0) / 4;
1430 if (regno >= GIC_NR_APRS || s->revision != 2) {
1431 return MEMTX_OK;
1433 if (gic_cpu_ns_access(s, cpu, attrs)) {
1434 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1435 gic_apr_write_ns_view(s, regno, cpu, value);
1436 } else {
1437 s->apr[regno][cpu] = value;
1439 break;
1441 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1443 int regno = (offset - 0xe0) / 4;
1445 if (regno >= GIC_NR_APRS || s->revision != 2) {
1446 return MEMTX_OK;
1448 if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1449 return MEMTX_OK;
1451 s->nsapr[regno][cpu] = value;
1452 break;
1454 case 0x1000:
1455 /* GICC_DIR */
1456 gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1457 break;
1458 default:
1459 qemu_log_mask(LOG_GUEST_ERROR,
1460 "gic_cpu_write: Bad offset %x\n", (int)offset);
1461 return MEMTX_OK;
1463 gic_update(s);
1464 return MEMTX_OK;
1467 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1468 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1469 unsigned size, MemTxAttrs attrs)
1471 GICState *s = (GICState *)opaque;
1472 return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1475 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1476 uint64_t value, unsigned size,
1477 MemTxAttrs attrs)
1479 GICState *s = (GICState *)opaque;
1480 return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1483 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1484 * These just decode the opaque pointer into GICState* + cpu id.
1486 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1487 unsigned size, MemTxAttrs attrs)
1489 GICState **backref = (GICState **)opaque;
1490 GICState *s = *backref;
1491 int id = (backref - s->backref);
1492 return gic_cpu_read(s, id, addr, data, attrs);
1495 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1496 uint64_t value, unsigned size,
1497 MemTxAttrs attrs)
1499 GICState **backref = (GICState **)opaque;
1500 GICState *s = *backref;
1501 int id = (backref - s->backref);
1502 return gic_cpu_write(s, id, addr, value, attrs);
1505 static const MemoryRegionOps gic_ops[2] = {
1507 .read_with_attrs = gic_dist_read,
1508 .write_with_attrs = gic_dist_write,
1509 .endianness = DEVICE_NATIVE_ENDIAN,
1512 .read_with_attrs = gic_thiscpu_read,
1513 .write_with_attrs = gic_thiscpu_write,
1514 .endianness = DEVICE_NATIVE_ENDIAN,
1518 static const MemoryRegionOps gic_cpu_ops = {
1519 .read_with_attrs = gic_do_cpu_read,
1520 .write_with_attrs = gic_do_cpu_write,
1521 .endianness = DEVICE_NATIVE_ENDIAN,
1524 static void arm_gic_realize(DeviceState *dev, Error **errp)
1526 /* Device instance realize function for the GIC sysbus device */
1527 int i;
1528 GICState *s = ARM_GIC(dev);
1529 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1530 ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
1531 Error *local_err = NULL;
1533 agc->parent_realize(dev, &local_err);
1534 if (local_err) {
1535 error_propagate(errp, local_err);
1536 return;
1539 if (kvm_enabled() && !kvm_arm_supports_user_irq()) {
1540 error_setg(errp, "KVM with user space irqchip only works when the "
1541 "host kernel supports KVM_CAP_ARM_USER_IRQ");
1542 return;
1545 /* This creates distributor and main CPU interface (s->cpuiomem[0]) */
1546 gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops, NULL);
1548 /* Extra core-specific regions for the CPU interfaces. This is
1549 * necessary for "franken-GIC" implementations, for example on
1550 * Exynos 4.
1551 * NB that the memory region size of 0x100 applies for the 11MPCore
1552 * and also cores following the GIC v1 spec (ie A9).
1553 * GIC v2 defines a larger memory region (0x1000) so this will need
1554 * to be extended when we implement A15.
1556 for (i = 0; i < s->num_cpu; i++) {
1557 s->backref[i] = s;
1558 memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
1559 &s->backref[i], "gic_cpu", 0x100);
1560 sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
1564 static void arm_gic_class_init(ObjectClass *klass, void *data)
1566 DeviceClass *dc = DEVICE_CLASS(klass);
1567 ARMGICClass *agc = ARM_GIC_CLASS(klass);
1569 device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize);
1572 static const TypeInfo arm_gic_info = {
1573 .name = TYPE_ARM_GIC,
1574 .parent = TYPE_ARM_GIC_COMMON,
1575 .instance_size = sizeof(GICState),
1576 .class_init = arm_gic_class_init,
1577 .class_size = sizeof(ARMGICClass),
1580 static void arm_gic_register_types(void)
1582 type_register_static(&arm_gic_info);
1585 type_init(arm_gic_register_types)