Merge remote-tracking branch 'remotes/berrange/tags/misc-fixes-pull-request' into...
[qemu/armbru.git] / qemu-options.hx
blobac315c1ac4578c9d928648967ec0a09b0a208251
1 HXCOMM Use DEFHEADING() to define headings in both help text and texi
2 HXCOMM Text between STEXI and ETEXI are copied to texi version and
3 HXCOMM discarded from C version
4 HXCOMM DEF(option, HAS_ARG/0, opt_enum, opt_help, arch_mask) is used to
5 HXCOMM construct option structures, enums and help message for specified
6 HXCOMM architectures.
7 HXCOMM HXCOMM can be used for comments, discarded from both texi and C
9 DEFHEADING(Standard options:)
10 STEXI
11 @table @option
12 ETEXI
14 DEF("help", 0, QEMU_OPTION_h,
15 "-h or -help display this help and exit\n", QEMU_ARCH_ALL)
16 STEXI
17 @item -h
18 @findex -h
19 Display help and exit
20 ETEXI
22 DEF("version", 0, QEMU_OPTION_version,
23 "-version display version information and exit\n", QEMU_ARCH_ALL)
24 STEXI
25 @item -version
26 @findex -version
27 Display version information and exit
28 ETEXI
30 DEF("machine", HAS_ARG, QEMU_OPTION_machine, \
31 "-machine [type=]name[,prop[=value][,...]]\n"
32 " selects emulated machine ('-machine help' for list)\n"
33 " property accel=accel1[:accel2[:...]] selects accelerator\n"
34 " supported accelerators are kvm, xen, hax, hvf, whpx or tcg (default: tcg)\n"
35 " vmport=on|off|auto controls emulation of vmport (default: auto)\n"
36 " dump-guest-core=on|off include guest memory in a core dump (default=on)\n"
37 " mem-merge=on|off controls memory merge support (default: on)\n"
38 " aes-key-wrap=on|off controls support for AES key wrapping (default=on)\n"
39 " dea-key-wrap=on|off controls support for DEA key wrapping (default=on)\n"
40 " suppress-vmdesc=on|off disables self-describing migration (default=off)\n"
41 " nvdimm=on|off controls NVDIMM support (default=off)\n"
42 " enforce-config-section=on|off enforce configuration section migration (default=off)\n"
43 " memory-encryption=@var{} memory encryption object to use (default=none)\n"
44 " hmat=on|off controls ACPI HMAT support (default=off)\n",
45 QEMU_ARCH_ALL)
46 STEXI
47 @item -machine [type=]@var{name}[,prop=@var{value}[,...]]
48 @findex -machine
49 Select the emulated machine by @var{name}. Use @code{-machine help} to list
50 available machines.
52 For architectures which aim to support live migration compatibility
53 across releases, each release will introduce a new versioned machine
54 type. For example, the 2.8.0 release introduced machine types
55 ``pc-i440fx-2.8'' and ``pc-q35-2.8'' for the x86_64/i686 architectures.
57 To allow live migration of guests from QEMU version 2.8.0, to QEMU
58 version 2.9.0, the 2.9.0 version must support the ``pc-i440fx-2.8''
59 and ``pc-q35-2.8'' machines too. To allow users live migrating VMs
60 to skip multiple intermediate releases when upgrading, new releases
61 of QEMU will support machine types from many previous versions.
63 Supported machine properties are:
64 @table @option
65 @item accel=@var{accels1}[:@var{accels2}[:...]]
66 This is used to enable an accelerator. Depending on the target architecture,
67 kvm, xen, hax, hvf, whpx or tcg can be available. By default, tcg is used. If there is
68 more than one accelerator specified, the next one is used if the previous one
69 fails to initialize.
70 @item vmport=on|off|auto
71 Enables emulation of VMWare IO port, for vmmouse etc. auto says to select the
72 value based on accel. For accel=xen the default is off otherwise the default
73 is on.
74 @item dump-guest-core=on|off
75 Include guest memory in a core dump. The default is on.
76 @item mem-merge=on|off
77 Enables or disables memory merge support. This feature, when supported by
78 the host, de-duplicates identical memory pages among VMs instances
79 (enabled by default).
80 @item aes-key-wrap=on|off
81 Enables or disables AES key wrapping support on s390-ccw hosts. This feature
82 controls whether AES wrapping keys will be created to allow
83 execution of AES cryptographic functions. The default is on.
84 @item dea-key-wrap=on|off
85 Enables or disables DEA key wrapping support on s390-ccw hosts. This feature
86 controls whether DEA wrapping keys will be created to allow
87 execution of DEA cryptographic functions. The default is on.
88 @item nvdimm=on|off
89 Enables or disables NVDIMM support. The default is off.
90 @item enforce-config-section=on|off
91 If @option{enforce-config-section} is set to @var{on}, force migration
92 code to send configuration section even if the machine-type sets the
93 @option{migration.send-configuration} property to @var{off}.
94 NOTE: this parameter is deprecated. Please use @option{-global}
95 @option{migration.send-configuration}=@var{on|off} instead.
96 @item memory-encryption=@var{}
97 Memory encryption object to use. The default is none.
98 @item hmat=on|off
99 Enables or disables ACPI Heterogeneous Memory Attribute Table (HMAT) support.
100 The default is off.
101 @end table
102 ETEXI
104 HXCOMM Deprecated by -machine
105 DEF("M", HAS_ARG, QEMU_OPTION_M, "", QEMU_ARCH_ALL)
107 DEF("cpu", HAS_ARG, QEMU_OPTION_cpu,
108 "-cpu cpu select CPU ('-cpu help' for list)\n", QEMU_ARCH_ALL)
109 STEXI
110 @item -cpu @var{model}
111 @findex -cpu
112 Select CPU model (@code{-cpu help} for list and additional feature selection)
113 ETEXI
115 DEF("accel", HAS_ARG, QEMU_OPTION_accel,
116 "-accel [accel=]accelerator[,prop[=value][,...]]\n"
117 " select accelerator (kvm, xen, hax, hvf, whpx or tcg; use 'help' for a list)\n"
118 " igd-passthru=on|off (enable Xen integrated Intel graphics passthrough, default=off)\n"
119 " kernel-irqchip=on|off|split controls accelerated irqchip support (default=on)\n"
120 " kvm-shadow-mem=size of KVM shadow MMU in bytes\n"
121 " tb-size=n (TCG translation block cache size)\n"
122 " thread=single|multi (enable multi-threaded TCG)\n", QEMU_ARCH_ALL)
123 STEXI
124 @item -accel @var{name}[,prop=@var{value}[,...]]
125 @findex -accel
126 This is used to enable an accelerator. Depending on the target architecture,
127 kvm, xen, hax, hvf, whpx or tcg can be available. By default, tcg is used. If there is
128 more than one accelerator specified, the next one is used if the previous one
129 fails to initialize.
130 @table @option
131 @item igd-passthru=on|off
132 When Xen is in use, this option controls whether Intel integrated graphics
133 devices can be passed through to the guest (default=off)
134 @item kernel-irqchip=on|off|split
135 Controls KVM in-kernel irqchip support. The default is full acceleration of the
136 interrupt controllers. On x86, split irqchip reduces the kernel attack
137 surface, at a performance cost for non-MSI interrupts. Disabling the in-kernel
138 irqchip completely is not recommended except for debugging purposes.
139 @item kvm-shadow-mem=size
140 Defines the size of the KVM shadow MMU.
141 @item tb-size=@var{n}
142 Controls the size (in MiB) of the TCG translation block cache.
143 @item thread=single|multi
144 Controls number of TCG threads. When the TCG is multi-threaded there will be one
145 thread per vCPU therefor taking advantage of additional host cores. The default
146 is to enable multi-threading where both the back-end and front-ends support it and
147 no incompatible TCG features have been enabled (e.g. icount/replay).
148 @end table
149 ETEXI
151 DEF("smp", HAS_ARG, QEMU_OPTION_smp,
152 "-smp [cpus=]n[,maxcpus=cpus][,cores=cores][,threads=threads][,dies=dies][,sockets=sockets]\n"
153 " set the number of CPUs to 'n' [default=1]\n"
154 " maxcpus= maximum number of total cpus, including\n"
155 " offline CPUs for hotplug, etc\n"
156 " cores= number of CPU cores on one socket (for PC, it's on one die)\n"
157 " threads= number of threads on one CPU core\n"
158 " dies= number of CPU dies on one socket (for PC only)\n"
159 " sockets= number of discrete sockets in the system\n",
160 QEMU_ARCH_ALL)
161 STEXI
162 @item -smp [cpus=]@var{n}[,cores=@var{cores}][,threads=@var{threads}][,dies=dies][,sockets=@var{sockets}][,maxcpus=@var{maxcpus}]
163 @findex -smp
164 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
165 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
166 to 4.
167 For the PC target, the number of @var{cores} per die, the number of @var{threads}
168 per cores, the number of @var{dies} per packages and the total number of
169 @var{sockets} can be specified. Missing values will be computed.
170 If any on the three values is given, the total number of CPUs @var{n} can be omitted.
171 @var{maxcpus} specifies the maximum number of hotpluggable CPUs.
172 ETEXI
174 DEF("numa", HAS_ARG, QEMU_OPTION_numa,
175 "-numa node[,mem=size][,cpus=firstcpu[-lastcpu]][,nodeid=node][,initiator=node]\n"
176 "-numa node[,memdev=id][,cpus=firstcpu[-lastcpu]][,nodeid=node][,initiator=node]\n"
177 "-numa dist,src=source,dst=destination,val=distance\n"
178 "-numa cpu,node-id=node[,socket-id=x][,core-id=y][,thread-id=z]\n"
179 "-numa hmat-lb,initiator=node,target=node,hierarchy=memory|first-level|second-level|third-level,data-type=access-latency|read-latency|write-latency[,latency=lat][,bandwidth=bw]\n"
180 "-numa hmat-cache,node-id=node,size=size,level=level[,associativity=none|direct|complex][,policy=none|write-back|write-through][,line=size]\n",
181 QEMU_ARCH_ALL)
182 STEXI
183 @item -numa node[,mem=@var{size}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}][,initiator=@var{initiator}]
184 @itemx -numa node[,memdev=@var{id}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}][,initiator=@var{initiator}]
185 @itemx -numa dist,src=@var{source},dst=@var{destination},val=@var{distance}
186 @itemx -numa cpu,node-id=@var{node}[,socket-id=@var{x}][,core-id=@var{y}][,thread-id=@var{z}]
187 @itemx -numa hmat-lb,initiator=@var{node},target=@var{node},hierarchy=@var{hierarchy},data-type=@var{tpye}[,latency=@var{lat}][,bandwidth=@var{bw}]
188 @itemx -numa hmat-cache,node-id=@var{node},size=@var{size},level=@var{level}[,associativity=@var{str}][,policy=@var{str}][,line=@var{size}]
189 @findex -numa
190 Define a NUMA node and assign RAM and VCPUs to it.
191 Set the NUMA distance from a source node to a destination node.
192 Set the ACPI Heterogeneous Memory Attributes for the given nodes.
194 Legacy VCPU assignment uses @samp{cpus} option where
195 @var{firstcpu} and @var{lastcpu} are CPU indexes. Each
196 @samp{cpus} option represent a contiguous range of CPU indexes
197 (or a single VCPU if @var{lastcpu} is omitted). A non-contiguous
198 set of VCPUs can be represented by providing multiple @samp{cpus}
199 options. If @samp{cpus} is omitted on all nodes, VCPUs are automatically
200 split between them.
202 For example, the following option assigns VCPUs 0, 1, 2 and 5 to
203 a NUMA node:
204 @example
205 -numa node,cpus=0-2,cpus=5
206 @end example
208 @samp{cpu} option is a new alternative to @samp{cpus} option
209 which uses @samp{socket-id|core-id|thread-id} properties to assign
210 CPU objects to a @var{node} using topology layout properties of CPU.
211 The set of properties is machine specific, and depends on used
212 machine type/@samp{smp} options. It could be queried with
213 @samp{hotpluggable-cpus} monitor command.
214 @samp{node-id} property specifies @var{node} to which CPU object
215 will be assigned, it's required for @var{node} to be declared
216 with @samp{node} option before it's used with @samp{cpu} option.
218 For example:
219 @example
220 -M pc \
221 -smp 1,sockets=2,maxcpus=2 \
222 -numa node,nodeid=0 -numa node,nodeid=1 \
223 -numa cpu,node-id=0,socket-id=0 -numa cpu,node-id=1,socket-id=1
224 @end example
226 @samp{mem} assigns a given RAM amount to a node. @samp{memdev}
227 assigns RAM from a given memory backend device to a node. If
228 @samp{mem} and @samp{memdev} are omitted in all nodes, RAM is
229 split equally between them.
231 @samp{mem} and @samp{memdev} are mutually exclusive. Furthermore,
232 if one node uses @samp{memdev}, all of them have to use it.
234 @samp{initiator} is an additional option that points to an @var{initiator}
235 NUMA node that has best performance (the lowest latency or largest bandwidth)
236 to this NUMA @var{node}. Note that this option can be set only when
237 the machine property 'hmat' is set to 'on'.
239 Following example creates a machine with 2 NUMA nodes, node 0 has CPU.
240 node 1 has only memory, and its initiator is node 0. Note that because
241 node 0 has CPU, by default the initiator of node 0 is itself and must be
242 itself.
243 @example
244 -machine hmat=on \
245 -m 2G,slots=2,maxmem=4G \
246 -object memory-backend-ram,size=1G,id=m0 \
247 -object memory-backend-ram,size=1G,id=m1 \
248 -numa node,nodeid=0,memdev=m0 \
249 -numa node,nodeid=1,memdev=m1,initiator=0 \
250 -smp 2,sockets=2,maxcpus=2 \
251 -numa cpu,node-id=0,socket-id=0 \
252 -numa cpu,node-id=0,socket-id=1
253 @end example
255 @var{source} and @var{destination} are NUMA node IDs.
256 @var{distance} is the NUMA distance from @var{source} to @var{destination}.
257 The distance from a node to itself is always 10. If any pair of nodes is
258 given a distance, then all pairs must be given distances. Although, when
259 distances are only given in one direction for each pair of nodes, then
260 the distances in the opposite directions are assumed to be the same. If,
261 however, an asymmetrical pair of distances is given for even one node
262 pair, then all node pairs must be provided distance values for both
263 directions, even when they are symmetrical. When a node is unreachable
264 from another node, set the pair's distance to 255.
266 Note that the -@option{numa} option doesn't allocate any of the
267 specified resources, it just assigns existing resources to NUMA
268 nodes. This means that one still has to use the @option{-m},
269 @option{-smp} options to allocate RAM and VCPUs respectively.
271 Use @samp{hmat-lb} to set System Locality Latency and Bandwidth Information
272 between initiator and target NUMA nodes in ACPI Heterogeneous Attribute Memory Table (HMAT).
273 Initiator NUMA node can create memory requests, usually it has one or more processors.
274 Target NUMA node contains addressable memory.
276 In @samp{hmat-lb} option, @var{node} are NUMA node IDs. @var{hierarchy} is the memory
277 hierarchy of the target NUMA node: if @var{hierarchy} is 'memory', the structure
278 represents the memory performance; if @var{hierarchy} is 'first-level|second-level|third-level',
279 this structure represents aggregated performance of memory side caches for each domain.
280 @var{type} of 'data-type' is type of data represented by this structure instance:
281 if 'hierarchy' is 'memory', 'data-type' is 'access|read|write' latency or 'access|read|write'
282 bandwidth of the target memory; if 'hierarchy' is 'first-level|second-level|third-level',
283 'data-type' is 'access|read|write' hit latency or 'access|read|write' hit bandwidth of the
284 target memory side cache.
286 @var{lat} is latency value in nanoseconds. @var{bw} is bandwidth value,
287 the possible value and units are NUM[M|G|T], mean that the bandwidth value are
288 NUM byte per second (or MB/s, GB/s or TB/s depending on used suffix).
289 Note that if latency or bandwidth value is 0, means the corresponding latency or
290 bandwidth information is not provided.
292 In @samp{hmat-cache} option, @var{node-id} is the NUMA-id of the memory belongs.
293 @var{size} is the size of memory side cache in bytes. @var{level} is the cache
294 level described in this structure, note that the cache level 0 should not be used
295 with @samp{hmat-cache} option. @var{associativity} is the cache associativity,
296 the possible value is 'none/direct(direct-mapped)/complex(complex cache indexing)'.
297 @var{policy} is the write policy. @var{line} is the cache Line size in bytes.
299 For example, the following options describe 2 NUMA nodes. Node 0 has 2 cpus and
300 a ram, node 1 has only a ram. The processors in node 0 access memory in node
301 0 with access-latency 5 nanoseconds, access-bandwidth is 200 MB/s;
302 The processors in NUMA node 0 access memory in NUMA node 1 with access-latency 10
303 nanoseconds, access-bandwidth is 100 MB/s.
304 And for memory side cache information, NUMA node 0 and 1 both have 1 level memory
305 cache, size is 10KB, policy is write-back, the cache Line size is 8 bytes:
306 @example
307 -machine hmat=on \
308 -m 2G \
309 -object memory-backend-ram,size=1G,id=m0 \
310 -object memory-backend-ram,size=1G,id=m1 \
311 -smp 2 \
312 -numa node,nodeid=0,memdev=m0 \
313 -numa node,nodeid=1,memdev=m1,initiator=0 \
314 -numa cpu,node-id=0,socket-id=0 \
315 -numa cpu,node-id=0,socket-id=1 \
316 -numa hmat-lb,initiator=0,target=0,hierarchy=memory,data-type=access-latency,latency=5 \
317 -numa hmat-lb,initiator=0,target=0,hierarchy=memory,data-type=access-bandwidth,bandwidth=200M \
318 -numa hmat-lb,initiator=0,target=1,hierarchy=memory,data-type=access-latency,latency=10 \
319 -numa hmat-lb,initiator=0,target=1,hierarchy=memory,data-type=access-bandwidth,bandwidth=100M \
320 -numa hmat-cache,node-id=0,size=10K,level=1,associativity=direct,policy=write-back,line=8 \
321 -numa hmat-cache,node-id=1,size=10K,level=1,associativity=direct,policy=write-back,line=8
322 @end example
324 ETEXI
326 DEF("add-fd", HAS_ARG, QEMU_OPTION_add_fd,
327 "-add-fd fd=fd,set=set[,opaque=opaque]\n"
328 " Add 'fd' to fd 'set'\n", QEMU_ARCH_ALL)
329 STEXI
330 @item -add-fd fd=@var{fd},set=@var{set}[,opaque=@var{opaque}]
331 @findex -add-fd
333 Add a file descriptor to an fd set. Valid options are:
335 @table @option
336 @item fd=@var{fd}
337 This option defines the file descriptor of which a duplicate is added to fd set.
338 The file descriptor cannot be stdin, stdout, or stderr.
339 @item set=@var{set}
340 This option defines the ID of the fd set to add the file descriptor to.
341 @item opaque=@var{opaque}
342 This option defines a free-form string that can be used to describe @var{fd}.
343 @end table
345 You can open an image using pre-opened file descriptors from an fd set:
346 @example
347 @value{qemu_system} \
348 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file" \
349 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file" \
350 -drive file=/dev/fdset/2,index=0,media=disk
351 @end example
352 ETEXI
354 DEF("set", HAS_ARG, QEMU_OPTION_set,
355 "-set group.id.arg=value\n"
356 " set <arg> parameter for item <id> of type <group>\n"
357 " i.e. -set drive.$id.file=/path/to/image\n", QEMU_ARCH_ALL)
358 STEXI
359 @item -set @var{group}.@var{id}.@var{arg}=@var{value}
360 @findex -set
361 Set parameter @var{arg} for item @var{id} of type @var{group}
362 ETEXI
364 DEF("global", HAS_ARG, QEMU_OPTION_global,
365 "-global driver.property=value\n"
366 "-global driver=driver,property=property,value=value\n"
367 " set a global default for a driver property\n",
368 QEMU_ARCH_ALL)
369 STEXI
370 @item -global @var{driver}.@var{prop}=@var{value}
371 @itemx -global driver=@var{driver},property=@var{property},value=@var{value}
372 @findex -global
373 Set default value of @var{driver}'s property @var{prop} to @var{value}, e.g.:
375 @example
376 @value{qemu_system_x86} -global ide-hd.physical_block_size=4096 disk-image.img
377 @end example
379 In particular, you can use this to set driver properties for devices which are
380 created automatically by the machine model. To create a device which is not
381 created automatically and set properties on it, use -@option{device}.
383 -global @var{driver}.@var{prop}=@var{value} is shorthand for -global
384 driver=@var{driver},property=@var{prop},value=@var{value}. The
385 longhand syntax works even when @var{driver} contains a dot.
386 ETEXI
388 DEF("boot", HAS_ARG, QEMU_OPTION_boot,
389 "-boot [order=drives][,once=drives][,menu=on|off]\n"
390 " [,splash=sp_name][,splash-time=sp_time][,reboot-timeout=rb_time][,strict=on|off]\n"
391 " 'drives': floppy (a), hard disk (c), CD-ROM (d), network (n)\n"
392 " 'sp_name': the file's name that would be passed to bios as logo picture, if menu=on\n"
393 " 'sp_time': the period that splash picture last if menu=on, unit is ms\n"
394 " 'rb_timeout': the timeout before guest reboot when boot failed, unit is ms\n",
395 QEMU_ARCH_ALL)
396 STEXI
397 @item -boot [order=@var{drives}][,once=@var{drives}][,menu=on|off][,splash=@var{sp_name}][,splash-time=@var{sp_time}][,reboot-timeout=@var{rb_timeout}][,strict=on|off]
398 @findex -boot
399 Specify boot order @var{drives} as a string of drive letters. Valid
400 drive letters depend on the target architecture. The x86 PC uses: a, b
401 (floppy 1 and 2), c (first hard disk), d (first CD-ROM), n-p (Etherboot
402 from network adapter 1-4), hard disk boot is the default. To apply a
403 particular boot order only on the first startup, specify it via
404 @option{once}. Note that the @option{order} or @option{once} parameter
405 should not be used together with the @option{bootindex} property of
406 devices, since the firmware implementations normally do not support both
407 at the same time.
409 Interactive boot menus/prompts can be enabled via @option{menu=on} as far
410 as firmware/BIOS supports them. The default is non-interactive boot.
412 A splash picture could be passed to bios, enabling user to show it as logo,
413 when option splash=@var{sp_name} is given and menu=on, If firmware/BIOS
414 supports them. Currently Seabios for X86 system support it.
415 limitation: The splash file could be a jpeg file or a BMP file in 24 BPP
416 format(true color). The resolution should be supported by the SVGA mode, so
417 the recommended is 320x240, 640x480, 800x640.
419 A timeout could be passed to bios, guest will pause for @var{rb_timeout} ms
420 when boot failed, then reboot. If @var{rb_timeout} is '-1', guest will not
421 reboot, qemu passes '-1' to bios by default. Currently Seabios for X86
422 system support it.
424 Do strict boot via @option{strict=on} as far as firmware/BIOS
425 supports it. This only effects when boot priority is changed by
426 bootindex options. The default is non-strict boot.
428 @example
429 # try to boot from network first, then from hard disk
430 @value{qemu_system_x86} -boot order=nc
431 # boot from CD-ROM first, switch back to default order after reboot
432 @value{qemu_system_x86} -boot once=d
433 # boot with a splash picture for 5 seconds.
434 @value{qemu_system_x86} -boot menu=on,splash=/root/boot.bmp,splash-time=5000
435 @end example
437 Note: The legacy format '-boot @var{drives}' is still supported but its
438 use is discouraged as it may be removed from future versions.
439 ETEXI
441 DEF("m", HAS_ARG, QEMU_OPTION_m,
442 "-m [size=]megs[,slots=n,maxmem=size]\n"
443 " configure guest RAM\n"
444 " size: initial amount of guest memory\n"
445 " slots: number of hotplug slots (default: none)\n"
446 " maxmem: maximum amount of guest memory (default: none)\n"
447 "NOTE: Some architectures might enforce a specific granularity\n",
448 QEMU_ARCH_ALL)
449 STEXI
450 @item -m [size=]@var{megs}[,slots=n,maxmem=size]
451 @findex -m
452 Sets guest startup RAM size to @var{megs} megabytes. Default is 128 MiB.
453 Optionally, a suffix of ``M'' or ``G'' can be used to signify a value in
454 megabytes or gigabytes respectively. Optional pair @var{slots}, @var{maxmem}
455 could be used to set amount of hotpluggable memory slots and maximum amount of
456 memory. Note that @var{maxmem} must be aligned to the page size.
458 For example, the following command-line sets the guest startup RAM size to
459 1GB, creates 3 slots to hotplug additional memory and sets the maximum
460 memory the guest can reach to 4GB:
462 @example
463 @value{qemu_system} -m 1G,slots=3,maxmem=4G
464 @end example
466 If @var{slots} and @var{maxmem} are not specified, memory hotplug won't
467 be enabled and the guest startup RAM will never increase.
468 ETEXI
470 DEF("mem-path", HAS_ARG, QEMU_OPTION_mempath,
471 "-mem-path FILE provide backing storage for guest RAM\n", QEMU_ARCH_ALL)
472 STEXI
473 @item -mem-path @var{path}
474 @findex -mem-path
475 Allocate guest RAM from a temporarily created file in @var{path}.
476 ETEXI
478 DEF("mem-prealloc", 0, QEMU_OPTION_mem_prealloc,
479 "-mem-prealloc preallocate guest memory (use with -mem-path)\n",
480 QEMU_ARCH_ALL)
481 STEXI
482 @item -mem-prealloc
483 @findex -mem-prealloc
484 Preallocate memory when using -mem-path.
485 ETEXI
487 DEF("k", HAS_ARG, QEMU_OPTION_k,
488 "-k language use keyboard layout (for example 'fr' for French)\n",
489 QEMU_ARCH_ALL)
490 STEXI
491 @item -k @var{language}
492 @findex -k
493 Use keyboard layout @var{language} (for example @code{fr} for
494 French). This option is only needed where it is not easy to get raw PC
495 keycodes (e.g. on Macs, with some X11 servers or with a VNC or curses
496 display). You don't normally need to use it on PC/Linux or PC/Windows
497 hosts.
499 The available layouts are:
500 @example
501 ar de-ch es fo fr-ca hu ja mk no pt-br sv
502 da en-gb et fr fr-ch is lt nl pl ru th
503 de en-us fi fr-be hr it lv nl-be pt sl tr
504 @end example
506 The default is @code{en-us}.
507 ETEXI
510 HXCOMM Deprecated by -audiodev
511 DEF("audio-help", 0, QEMU_OPTION_audio_help,
512 "-audio-help show -audiodev equivalent of the currently specified audio settings\n",
513 QEMU_ARCH_ALL)
514 STEXI
515 @item -audio-help
516 @findex -audio-help
517 Will show the -audiodev equivalent of the currently specified
518 (deprecated) environment variables.
519 ETEXI
521 DEF("audiodev", HAS_ARG, QEMU_OPTION_audiodev,
522 "-audiodev [driver=]driver,id=id[,prop[=value][,...]]\n"
523 " specifies the audio backend to use\n"
524 " id= identifier of the backend\n"
525 " timer-period= timer period in microseconds\n"
526 " in|out.mixing-engine= use mixing engine to mix streams inside QEMU\n"
527 " in|out.fixed-settings= use fixed settings for host audio\n"
528 " in|out.frequency= frequency to use with fixed settings\n"
529 " in|out.channels= number of channels to use with fixed settings\n"
530 " in|out.format= sample format to use with fixed settings\n"
531 " valid values: s8, s16, s32, u8, u16, u32\n"
532 " in|out.voices= number of voices to use\n"
533 " in|out.buffer-length= length of buffer in microseconds\n"
534 "-audiodev none,id=id,[,prop[=value][,...]]\n"
535 " dummy driver that discards all output\n"
536 #ifdef CONFIG_AUDIO_ALSA
537 "-audiodev alsa,id=id[,prop[=value][,...]]\n"
538 " in|out.dev= name of the audio device to use\n"
539 " in|out.period-length= length of period in microseconds\n"
540 " in|out.try-poll= attempt to use poll mode\n"
541 " threshold= threshold (in microseconds) when playback starts\n"
542 #endif
543 #ifdef CONFIG_AUDIO_COREAUDIO
544 "-audiodev coreaudio,id=id[,prop[=value][,...]]\n"
545 " in|out.buffer-count= number of buffers\n"
546 #endif
547 #ifdef CONFIG_AUDIO_DSOUND
548 "-audiodev dsound,id=id[,prop[=value][,...]]\n"
549 " latency= add extra latency to playback in microseconds\n"
550 #endif
551 #ifdef CONFIG_AUDIO_OSS
552 "-audiodev oss,id=id[,prop[=value][,...]]\n"
553 " in|out.dev= path of the audio device to use\n"
554 " in|out.buffer-count= number of buffers\n"
555 " in|out.try-poll= attempt to use poll mode\n"
556 " try-mmap= try using memory mapped access\n"
557 " exclusive= open device in exclusive mode\n"
558 " dsp-policy= set timing policy (0..10), -1 to use fragment mode\n"
559 #endif
560 #ifdef CONFIG_AUDIO_PA
561 "-audiodev pa,id=id[,prop[=value][,...]]\n"
562 " server= PulseAudio server address\n"
563 " in|out.name= source/sink device name\n"
564 " in|out.latency= desired latency in microseconds\n"
565 #endif
566 #ifdef CONFIG_AUDIO_SDL
567 "-audiodev sdl,id=id[,prop[=value][,...]]\n"
568 #endif
569 #ifdef CONFIG_SPICE
570 "-audiodev spice,id=id[,prop[=value][,...]]\n"
571 #endif
572 "-audiodev wav,id=id[,prop[=value][,...]]\n"
573 " path= path of wav file to record\n",
574 QEMU_ARCH_ALL)
575 STEXI
576 @item -audiodev [driver=]@var{driver},id=@var{id}[,@var{prop}[=@var{value}][,...]]
577 @findex -audiodev
578 Adds a new audio backend @var{driver} identified by @var{id}. There are
579 global and driver specific properties. Some values can be set
580 differently for input and output, they're marked with @code{in|out.}.
581 You can set the input's property with @code{in.@var{prop}} and the
582 output's property with @code{out.@var{prop}}. For example:
583 @example
584 -audiodev alsa,id=example,in.frequency=44110,out.frequency=8000
585 -audiodev alsa,id=example,out.channels=1 # leaves in.channels unspecified
586 @end example
588 NOTE: parameter validation is known to be incomplete, in many cases
589 specifying an invalid option causes QEMU to print an error message and
590 continue emulation without sound.
592 Valid global options are:
594 @table @option
595 @item id=@var{identifier}
596 Identifies the audio backend.
598 @item timer-period=@var{period}
599 Sets the timer @var{period} used by the audio subsystem in microseconds.
600 Default is 10000 (10 ms).
602 @item in|out.mixing-engine=on|off
603 Use QEMU's mixing engine to mix all streams inside QEMU and convert
604 audio formats when not supported by the backend. When off,
605 @var{fixed-settings} must be off too. Note that disabling this option
606 means that the selected backend must support multiple streams and the
607 audio formats used by the virtual cards, otherwise you'll get no sound.
608 It's not recommended to disable this option unless you want to use 5.1
609 or 7.1 audio, as mixing engine only supports mono and stereo audio.
610 Default is on.
612 @item in|out.fixed-settings=on|off
613 Use fixed settings for host audio. When off, it will change based on
614 how the guest opens the sound card. In this case you must not specify
615 @var{frequency}, @var{channels} or @var{format}. Default is on.
617 @item in|out.frequency=@var{frequency}
618 Specify the @var{frequency} to use when using @var{fixed-settings}.
619 Default is 44100Hz.
621 @item in|out.channels=@var{channels}
622 Specify the number of @var{channels} to use when using
623 @var{fixed-settings}. Default is 2 (stereo).
625 @item in|out.format=@var{format}
626 Specify the sample @var{format} to use when using @var{fixed-settings}.
627 Valid values are: @code{s8}, @code{s16}, @code{s32}, @code{u8},
628 @code{u16}, @code{u32}. Default is @code{s16}.
630 @item in|out.voices=@var{voices}
631 Specify the number of @var{voices} to use. Default is 1.
633 @item in|out.buffer-length=@var{usecs}
634 Sets the size of the buffer in microseconds.
636 @end table
638 @item -audiodev none,id=@var{id}[,@var{prop}[=@var{value}][,...]]
639 Creates a dummy backend that discards all outputs. This backend has no
640 backend specific properties.
642 @item -audiodev alsa,id=@var{id}[,@var{prop}[=@var{value}][,...]]
643 Creates backend using the ALSA. This backend is only available on
644 Linux.
646 ALSA specific options are:
648 @table @option
650 @item in|out.dev=@var{device}
651 Specify the ALSA @var{device} to use for input and/or output. Default
652 is @code{default}.
654 @item in|out.period-length=@var{usecs}
655 Sets the period length in microseconds.
657 @item in|out.try-poll=on|off
658 Attempt to use poll mode with the device. Default is on.
660 @item threshold=@var{threshold}
661 Threshold (in microseconds) when playback starts. Default is 0.
663 @end table
665 @item -audiodev coreaudio,id=@var{id}[,@var{prop}[=@var{value}][,...]]
666 Creates a backend using Apple's Core Audio. This backend is only
667 available on Mac OS and only supports playback.
669 Core Audio specific options are:
671 @table @option
673 @item in|out.buffer-count=@var{count}
674 Sets the @var{count} of the buffers.
676 @end table
678 @item -audiodev dsound,id=@var{id}[,@var{prop}[=@var{value}][,...]]
679 Creates a backend using Microsoft's DirectSound. This backend is only
680 available on Windows and only supports playback.
682 DirectSound specific options are:
684 @table @option
686 @item latency=@var{usecs}
687 Add extra @var{usecs} microseconds latency to playback. Default is
688 10000 (10 ms).
690 @end table
692 @item -audiodev oss,id=@var{id}[,@var{prop}[=@var{value}][,...]]
693 Creates a backend using OSS. This backend is available on most
694 Unix-like systems.
696 OSS specific options are:
698 @table @option
700 @item in|out.dev=@var{device}
701 Specify the file name of the OSS @var{device} to use. Default is
702 @code{/dev/dsp}.
704 @item in|out.buffer-count=@var{count}
705 Sets the @var{count} of the buffers.
707 @item in|out.try-poll=on|of
708 Attempt to use poll mode with the device. Default is on.
710 @item try-mmap=on|off
711 Try using memory mapped device access. Default is off.
713 @item exclusive=on|off
714 Open the device in exclusive mode (vmix won't work in this case).
715 Default is off.
717 @item dsp-policy=@var{policy}
718 Sets the timing policy (between 0 and 10, where smaller number means
719 smaller latency but higher CPU usage). Use -1 to use buffer sizes
720 specified by @code{buffer} and @code{buffer-count}. This option is
721 ignored if you do not have OSS 4. Default is 5.
723 @end table
725 @item -audiodev pa,id=@var{id}[,@var{prop}[=@var{value}][,...]]
726 Creates a backend using PulseAudio. This backend is available on most
727 systems.
729 PulseAudio specific options are:
731 @table @option
733 @item server=@var{server}
734 Sets the PulseAudio @var{server} to connect to.
736 @item in|out.name=@var{sink}
737 Use the specified source/sink for recording/playback.
739 @item in|out.latency=@var{usecs}
740 Desired latency in microseconds. The PulseAudio server will try to honor this
741 value but actual latencies may be lower or higher.
743 @end table
745 @item -audiodev sdl,id=@var{id}[,@var{prop}[=@var{value}][,...]]
746 Creates a backend using SDL. This backend is available on most systems,
747 but you should use your platform's native backend if possible. This
748 backend has no backend specific properties.
750 @item -audiodev spice,id=@var{id}[,@var{prop}[=@var{value}][,...]]
751 Creates a backend that sends audio through SPICE. This backend requires
752 @code{-spice} and automatically selected in that case, so usually you
753 can ignore this option. This backend has no backend specific
754 properties.
756 @item -audiodev wav,id=@var{id}[,@var{prop}[=@var{value}][,...]]
757 Creates a backend that writes audio to a WAV file.
759 Backend specific options are:
761 @table @option
763 @item path=@var{path}
764 Write recorded audio into the specified file. Default is
765 @code{qemu.wav}.
767 @end table
768 ETEXI
770 DEF("soundhw", HAS_ARG, QEMU_OPTION_soundhw,
771 "-soundhw c1,... enable audio support\n"
772 " and only specified sound cards (comma separated list)\n"
773 " use '-soundhw help' to get the list of supported cards\n"
774 " use '-soundhw all' to enable all of them\n", QEMU_ARCH_ALL)
775 STEXI
776 @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
777 @findex -soundhw
778 Enable audio and selected sound hardware. Use 'help' to print all
779 available sound hardware. For example:
781 @example
782 @value{qemu_system_x86} -soundhw sb16,adlib disk.img
783 @value{qemu_system_x86} -soundhw es1370 disk.img
784 @value{qemu_system_x86} -soundhw ac97 disk.img
785 @value{qemu_system_x86} -soundhw hda disk.img
786 @value{qemu_system_x86} -soundhw all disk.img
787 @value{qemu_system_x86} -soundhw help
788 @end example
790 Note that Linux's i810_audio OSS kernel (for AC97) module might
791 require manually specifying clocking.
793 @example
794 modprobe i810_audio clocking=48000
795 @end example
796 ETEXI
798 DEF("device", HAS_ARG, QEMU_OPTION_device,
799 "-device driver[,prop[=value][,...]]\n"
800 " add device (based on driver)\n"
801 " prop=value,... sets driver properties\n"
802 " use '-device help' to print all possible drivers\n"
803 " use '-device driver,help' to print all possible properties\n",
804 QEMU_ARCH_ALL)
805 STEXI
806 @item -device @var{driver}[,@var{prop}[=@var{value}][,...]]
807 @findex -device
808 Add device @var{driver}. @var{prop}=@var{value} sets driver
809 properties. Valid properties depend on the driver. To get help on
810 possible drivers and properties, use @code{-device help} and
811 @code{-device @var{driver},help}.
813 Some drivers are:
814 @item -device ipmi-bmc-sim,id=@var{id}[,slave_addr=@var{val}][,sdrfile=@var{file}][,furareasize=@var{val}][,furdatafile=@var{file}][,guid=@var{uuid}]
816 Add an IPMI BMC. This is a simulation of a hardware management
817 interface processor that normally sits on a system. It provides
818 a watchdog and the ability to reset and power control the system.
819 You need to connect this to an IPMI interface to make it useful
821 The IPMI slave address to use for the BMC. The default is 0x20.
822 This address is the BMC's address on the I2C network of management
823 controllers. If you don't know what this means, it is safe to ignore
826 @table @option
827 @item id=@var{id}
828 The BMC id for interfaces to use this device.
829 @item slave_addr=@var{val}
830 Define slave address to use for the BMC. The default is 0x20.
831 @item sdrfile=@var{file}
832 file containing raw Sensor Data Records (SDR) data. The default is none.
833 @item fruareasize=@var{val}
834 size of a Field Replaceable Unit (FRU) area. The default is 1024.
835 @item frudatafile=@var{file}
836 file containing raw Field Replaceable Unit (FRU) inventory data. The default is none.
837 @item guid=@var{uuid}
838 value for the GUID for the BMC, in standard UUID format. If this is set,
839 get "Get GUID" command to the BMC will return it. Otherwise "Get GUID"
840 will return an error.
841 @end table
843 @item -device ipmi-bmc-extern,id=@var{id},chardev=@var{id}[,slave_addr=@var{val}]
845 Add a connection to an external IPMI BMC simulator. Instead of
846 locally emulating the BMC like the above item, instead connect
847 to an external entity that provides the IPMI services.
849 A connection is made to an external BMC simulator. If you do this, it
850 is strongly recommended that you use the "reconnect=" chardev option
851 to reconnect to the simulator if the connection is lost. Note that if
852 this is not used carefully, it can be a security issue, as the
853 interface has the ability to send resets, NMIs, and power off the VM.
854 It's best if QEMU makes a connection to an external simulator running
855 on a secure port on localhost, so neither the simulator nor QEMU is
856 exposed to any outside network.
858 See the "lanserv/README.vm" file in the OpenIPMI library for more
859 details on the external interface.
861 @item -device isa-ipmi-kcs,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
863 Add a KCS IPMI interafce on the ISA bus. This also adds a
864 corresponding ACPI and SMBIOS entries, if appropriate.
866 @table @option
867 @item bmc=@var{id}
868 The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above.
869 @item ioport=@var{val}
870 Define the I/O address of the interface. The default is 0xca0 for KCS.
871 @item irq=@var{val}
872 Define the interrupt to use. The default is 5. To disable interrupts,
873 set this to 0.
874 @end table
876 @item -device isa-ipmi-bt,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
878 Like the KCS interface, but defines a BT interface. The default port is
879 0xe4 and the default interrupt is 5.
881 ETEXI
883 DEF("name", HAS_ARG, QEMU_OPTION_name,
884 "-name string1[,process=string2][,debug-threads=on|off]\n"
885 " set the name of the guest\n"
886 " string1 sets the window title and string2 the process name\n"
887 " When debug-threads is enabled, individual threads are given a separate name\n"
888 " NOTE: The thread names are for debugging and not a stable API.\n",
889 QEMU_ARCH_ALL)
890 STEXI
891 @item -name @var{name}
892 @findex -name
893 Sets the @var{name} of the guest.
894 This name will be displayed in the SDL window caption.
895 The @var{name} will also be used for the VNC server.
896 Also optionally set the top visible process name in Linux.
897 Naming of individual threads can also be enabled on Linux to aid debugging.
898 ETEXI
900 DEF("uuid", HAS_ARG, QEMU_OPTION_uuid,
901 "-uuid %08x-%04x-%04x-%04x-%012x\n"
902 " specify machine UUID\n", QEMU_ARCH_ALL)
903 STEXI
904 @item -uuid @var{uuid}
905 @findex -uuid
906 Set system UUID.
907 ETEXI
909 STEXI
910 @end table
911 ETEXI
912 DEFHEADING()
914 DEFHEADING(Block device options:)
915 STEXI
916 @table @option
917 ETEXI
919 DEF("fda", HAS_ARG, QEMU_OPTION_fda,
920 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n", QEMU_ARCH_ALL)
921 DEF("fdb", HAS_ARG, QEMU_OPTION_fdb, "", QEMU_ARCH_ALL)
922 STEXI
923 @item -fda @var{file}
924 @itemx -fdb @var{file}
925 @findex -fda
926 @findex -fdb
927 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}).
928 ETEXI
930 DEF("hda", HAS_ARG, QEMU_OPTION_hda,
931 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n", QEMU_ARCH_ALL)
932 DEF("hdb", HAS_ARG, QEMU_OPTION_hdb, "", QEMU_ARCH_ALL)
933 DEF("hdc", HAS_ARG, QEMU_OPTION_hdc,
934 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n", QEMU_ARCH_ALL)
935 DEF("hdd", HAS_ARG, QEMU_OPTION_hdd, "", QEMU_ARCH_ALL)
936 STEXI
937 @item -hda @var{file}
938 @itemx -hdb @var{file}
939 @itemx -hdc @var{file}
940 @itemx -hdd @var{file}
941 @findex -hda
942 @findex -hdb
943 @findex -hdc
944 @findex -hdd
945 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
946 ETEXI
948 DEF("cdrom", HAS_ARG, QEMU_OPTION_cdrom,
949 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n",
950 QEMU_ARCH_ALL)
951 STEXI
952 @item -cdrom @var{file}
953 @findex -cdrom
954 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
955 @option{-cdrom} at the same time). You can use the host CD-ROM by
956 using @file{/dev/cdrom} as filename.
957 ETEXI
959 DEF("blockdev", HAS_ARG, QEMU_OPTION_blockdev,
960 "-blockdev [driver=]driver[,node-name=N][,discard=ignore|unmap]\n"
961 " [,cache.direct=on|off][,cache.no-flush=on|off]\n"
962 " [,read-only=on|off][,auto-read-only=on|off]\n"
963 " [,force-share=on|off][,detect-zeroes=on|off|unmap]\n"
964 " [,driver specific parameters...]\n"
965 " configure a block backend\n", QEMU_ARCH_ALL)
966 STEXI
967 @item -blockdev @var{option}[,@var{option}[,@var{option}[,...]]]
968 @findex -blockdev
970 Define a new block driver node. Some of the options apply to all block drivers,
971 other options are only accepted for a specific block driver. See below for a
972 list of generic options and options for the most common block drivers.
974 Options that expect a reference to another node (e.g. @code{file}) can be
975 given in two ways. Either you specify the node name of an already existing node
976 (file=@var{node-name}), or you define a new node inline, adding options
977 for the referenced node after a dot (file.filename=@var{path},file.aio=native).
979 A block driver node created with @option{-blockdev} can be used for a guest
980 device by specifying its node name for the @code{drive} property in a
981 @option{-device} argument that defines a block device.
983 @table @option
984 @item Valid options for any block driver node:
986 @table @code
987 @item driver
988 Specifies the block driver to use for the given node.
989 @item node-name
990 This defines the name of the block driver node by which it will be referenced
991 later. The name must be unique, i.e. it must not match the name of a different
992 block driver node, or (if you use @option{-drive} as well) the ID of a drive.
994 If no node name is specified, it is automatically generated. The generated node
995 name is not intended to be predictable and changes between QEMU invocations.
996 For the top level, an explicit node name must be specified.
997 @item read-only
998 Open the node read-only. Guest write attempts will fail.
1000 Note that some block drivers support only read-only access, either generally or
1001 in certain configurations. In this case, the default value
1002 @option{read-only=off} does not work and the option must be specified
1003 explicitly.
1004 @item auto-read-only
1005 If @option{auto-read-only=on} is set, QEMU may fall back to read-only usage
1006 even when @option{read-only=off} is requested, or even switch between modes as
1007 needed, e.g. depending on whether the image file is writable or whether a
1008 writing user is attached to the node.
1009 @item force-share
1010 Override the image locking system of QEMU by forcing the node to utilize
1011 weaker shared access for permissions where it would normally request exclusive
1012 access. When there is the potential for multiple instances to have the same
1013 file open (whether this invocation of QEMU is the first or the second
1014 instance), both instances must permit shared access for the second instance to
1015 succeed at opening the file.
1017 Enabling @option{force-share=on} requires @option{read-only=on}.
1018 @item cache.direct
1019 The host page cache can be avoided with @option{cache.direct=on}. This will
1020 attempt to do disk IO directly to the guest's memory. QEMU may still perform an
1021 internal copy of the data.
1022 @item cache.no-flush
1023 In case you don't care about data integrity over host failures, you can use
1024 @option{cache.no-flush=on}. This option tells QEMU that it never needs to write
1025 any data to the disk but can instead keep things in cache. If anything goes
1026 wrong, like your host losing power, the disk storage getting disconnected
1027 accidentally, etc. your image will most probably be rendered unusable.
1028 @item discard=@var{discard}
1029 @var{discard} is one of "ignore" (or "off") or "unmap" (or "on") and controls
1030 whether @code{discard} (also known as @code{trim} or @code{unmap}) requests are
1031 ignored or passed to the filesystem. Some machine types may not support
1032 discard requests.
1033 @item detect-zeroes=@var{detect-zeroes}
1034 @var{detect-zeroes} is "off", "on" or "unmap" and enables the automatic
1035 conversion of plain zero writes by the OS to driver specific optimized
1036 zero write commands. You may even choose "unmap" if @var{discard} is set
1037 to "unmap" to allow a zero write to be converted to an @code{unmap} operation.
1038 @end table
1040 @item Driver-specific options for @code{file}
1042 This is the protocol-level block driver for accessing regular files.
1044 @table @code
1045 @item filename
1046 The path to the image file in the local filesystem
1047 @item aio
1048 Specifies the AIO backend (threads/native, default: threads)
1049 @item locking
1050 Specifies whether the image file is protected with Linux OFD / POSIX locks. The
1051 default is to use the Linux Open File Descriptor API if available, otherwise no
1052 lock is applied. (auto/on/off, default: auto)
1053 @end table
1054 Example:
1055 @example
1056 -blockdev driver=file,node-name=disk,filename=disk.img
1057 @end example
1059 @item Driver-specific options for @code{raw}
1061 This is the image format block driver for raw images. It is usually
1062 stacked on top of a protocol level block driver such as @code{file}.
1064 @table @code
1065 @item file
1066 Reference to or definition of the data source block driver node
1067 (e.g. a @code{file} driver node)
1068 @end table
1069 Example 1:
1070 @example
1071 -blockdev driver=file,node-name=disk_file,filename=disk.img
1072 -blockdev driver=raw,node-name=disk,file=disk_file
1073 @end example
1074 Example 2:
1075 @example
1076 -blockdev driver=raw,node-name=disk,file.driver=file,file.filename=disk.img
1077 @end example
1079 @item Driver-specific options for @code{qcow2}
1081 This is the image format block driver for qcow2 images. It is usually
1082 stacked on top of a protocol level block driver such as @code{file}.
1084 @table @code
1085 @item file
1086 Reference to or definition of the data source block driver node
1087 (e.g. a @code{file} driver node)
1089 @item backing
1090 Reference to or definition of the backing file block device (default is taken
1091 from the image file). It is allowed to pass @code{null} here in order to disable
1092 the default backing file.
1094 @item lazy-refcounts
1095 Whether to enable the lazy refcounts feature (on/off; default is taken from the
1096 image file)
1098 @item cache-size
1099 The maximum total size of the L2 table and refcount block caches in bytes
1100 (default: the sum of l2-cache-size and refcount-cache-size)
1102 @item l2-cache-size
1103 The maximum size of the L2 table cache in bytes
1104 (default: if cache-size is not specified - 32M on Linux platforms, and 8M on
1105 non-Linux platforms; otherwise, as large as possible within the cache-size,
1106 while permitting the requested or the minimal refcount cache size)
1108 @item refcount-cache-size
1109 The maximum size of the refcount block cache in bytes
1110 (default: 4 times the cluster size; or if cache-size is specified, the part of
1111 it which is not used for the L2 cache)
1113 @item cache-clean-interval
1114 Clean unused entries in the L2 and refcount caches. The interval is in seconds.
1115 The default value is 600 on supporting platforms, and 0 on other platforms.
1116 Setting it to 0 disables this feature.
1118 @item pass-discard-request
1119 Whether discard requests to the qcow2 device should be forwarded to the data
1120 source (on/off; default: on if discard=unmap is specified, off otherwise)
1122 @item pass-discard-snapshot
1123 Whether discard requests for the data source should be issued when a snapshot
1124 operation (e.g. deleting a snapshot) frees clusters in the qcow2 file (on/off;
1125 default: on)
1127 @item pass-discard-other
1128 Whether discard requests for the data source should be issued on other
1129 occasions where a cluster gets freed (on/off; default: off)
1131 @item overlap-check
1132 Which overlap checks to perform for writes to the image
1133 (none/constant/cached/all; default: cached). For details or finer
1134 granularity control refer to the QAPI documentation of @code{blockdev-add}.
1135 @end table
1137 Example 1:
1138 @example
1139 -blockdev driver=file,node-name=my_file,filename=/tmp/disk.qcow2
1140 -blockdev driver=qcow2,node-name=hda,file=my_file,overlap-check=none,cache-size=16777216
1141 @end example
1142 Example 2:
1143 @example
1144 -blockdev driver=qcow2,node-name=disk,file.driver=http,file.filename=http://example.com/image.qcow2
1145 @end example
1147 @item Driver-specific options for other drivers
1148 Please refer to the QAPI documentation of the @code{blockdev-add} QMP command.
1150 @end table
1152 ETEXI
1154 DEF("drive", HAS_ARG, QEMU_OPTION_drive,
1155 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
1156 " [,cache=writethrough|writeback|none|directsync|unsafe][,format=f]\n"
1157 " [,snapshot=on|off][,rerror=ignore|stop|report]\n"
1158 " [,werror=ignore|stop|report|enospc][,id=name][,aio=threads|native]\n"
1159 " [,readonly=on|off][,copy-on-read=on|off]\n"
1160 " [,discard=ignore|unmap][,detect-zeroes=on|off|unmap]\n"
1161 " [[,bps=b]|[[,bps_rd=r][,bps_wr=w]]]\n"
1162 " [[,iops=i]|[[,iops_rd=r][,iops_wr=w]]]\n"
1163 " [[,bps_max=bm]|[[,bps_rd_max=rm][,bps_wr_max=wm]]]\n"
1164 " [[,iops_max=im]|[[,iops_rd_max=irm][,iops_wr_max=iwm]]]\n"
1165 " [[,iops_size=is]]\n"
1166 " [[,group=g]]\n"
1167 " use 'file' as a drive image\n", QEMU_ARCH_ALL)
1168 STEXI
1169 @item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
1170 @findex -drive
1172 Define a new drive. This includes creating a block driver node (the backend) as
1173 well as a guest device, and is mostly a shortcut for defining the corresponding
1174 @option{-blockdev} and @option{-device} options.
1176 @option{-drive} accepts all options that are accepted by @option{-blockdev}. In
1177 addition, it knows the following options:
1179 @table @option
1180 @item file=@var{file}
1181 This option defines which disk image (@pxref{disk_images}) to use with
1182 this drive. If the filename contains comma, you must double it
1183 (for instance, "file=my,,file" to use file "my,file").
1185 Special files such as iSCSI devices can be specified using protocol
1186 specific URLs. See the section for "Device URL Syntax" for more information.
1187 @item if=@var{interface}
1188 This option defines on which type on interface the drive is connected.
1189 Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio, none.
1190 @item bus=@var{bus},unit=@var{unit}
1191 These options define where is connected the drive by defining the bus number and
1192 the unit id.
1193 @item index=@var{index}
1194 This option defines where is connected the drive by using an index in the list
1195 of available connectors of a given interface type.
1196 @item media=@var{media}
1197 This option defines the type of the media: disk or cdrom.
1198 @item snapshot=@var{snapshot}
1199 @var{snapshot} is "on" or "off" and controls snapshot mode for the given drive
1200 (see @option{-snapshot}).
1201 @item cache=@var{cache}
1202 @var{cache} is "none", "writeback", "unsafe", "directsync" or "writethrough"
1203 and controls how the host cache is used to access block data. This is a
1204 shortcut that sets the @option{cache.direct} and @option{cache.no-flush}
1205 options (as in @option{-blockdev}), and additionally @option{cache.writeback},
1206 which provides a default for the @option{write-cache} option of block guest
1207 devices (as in @option{-device}). The modes correspond to the following
1208 settings:
1210 @c Our texi2pod.pl script doesn't support @multitable, so fall back to using
1211 @c plain ASCII art (well, UTF-8 art really). This looks okay both in the manpage
1212 @c and the HTML output.
1213 @example
1214 @ │ cache.writeback cache.direct cache.no-flush
1215 ─────────────┼─────────────────────────────────────────────────
1216 writeback │ on off off
1217 none │ on on off
1218 writethrough │ off off off
1219 directsync │ off on off
1220 unsafe │ on off on
1221 @end example
1223 The default mode is @option{cache=writeback}.
1225 @item aio=@var{aio}
1226 @var{aio} is "threads", or "native" and selects between pthread based disk I/O and native Linux AIO.
1227 @item format=@var{format}
1228 Specify which disk @var{format} will be used rather than detecting
1229 the format. Can be used to specify format=raw to avoid interpreting
1230 an untrusted format header.
1231 @item werror=@var{action},rerror=@var{action}
1232 Specify which @var{action} to take on write and read errors. Valid actions are:
1233 "ignore" (ignore the error and try to continue), "stop" (pause QEMU),
1234 "report" (report the error to the guest), "enospc" (pause QEMU only if the
1235 host disk is full; report the error to the guest otherwise).
1236 The default setting is @option{werror=enospc} and @option{rerror=report}.
1237 @item copy-on-read=@var{copy-on-read}
1238 @var{copy-on-read} is "on" or "off" and enables whether to copy read backing
1239 file sectors into the image file.
1240 @item bps=@var{b},bps_rd=@var{r},bps_wr=@var{w}
1241 Specify bandwidth throttling limits in bytes per second, either for all request
1242 types or for reads or writes only. Small values can lead to timeouts or hangs
1243 inside the guest. A safe minimum for disks is 2 MB/s.
1244 @item bps_max=@var{bm},bps_rd_max=@var{rm},bps_wr_max=@var{wm}
1245 Specify bursts in bytes per second, either for all request types or for reads
1246 or writes only. Bursts allow the guest I/O to spike above the limit
1247 temporarily.
1248 @item iops=@var{i},iops_rd=@var{r},iops_wr=@var{w}
1249 Specify request rate limits in requests per second, either for all request
1250 types or for reads or writes only.
1251 @item iops_max=@var{bm},iops_rd_max=@var{rm},iops_wr_max=@var{wm}
1252 Specify bursts in requests per second, either for all request types or for reads
1253 or writes only. Bursts allow the guest I/O to spike above the limit
1254 temporarily.
1255 @item iops_size=@var{is}
1256 Let every @var{is} bytes of a request count as a new request for iops
1257 throttling purposes. Use this option to prevent guests from circumventing iops
1258 limits by sending fewer but larger requests.
1259 @item group=@var{g}
1260 Join a throttling quota group with given name @var{g}. All drives that are
1261 members of the same group are accounted for together. Use this option to
1262 prevent guests from circumventing throttling limits by using many small disks
1263 instead of a single larger disk.
1264 @end table
1266 By default, the @option{cache.writeback=on} mode is used. It will report data
1267 writes as completed as soon as the data is present in the host page cache.
1268 This is safe as long as your guest OS makes sure to correctly flush disk caches
1269 where needed. If your guest OS does not handle volatile disk write caches
1270 correctly and your host crashes or loses power, then the guest may experience
1271 data corruption.
1273 For such guests, you should consider using @option{cache.writeback=off}. This
1274 means that the host page cache will be used to read and write data, but write
1275 notification will be sent to the guest only after QEMU has made sure to flush
1276 each write to the disk. Be aware that this has a major impact on performance.
1278 When using the @option{-snapshot} option, unsafe caching is always used.
1280 Copy-on-read avoids accessing the same backing file sectors repeatedly and is
1281 useful when the backing file is over a slow network. By default copy-on-read
1282 is off.
1284 Instead of @option{-cdrom} you can use:
1285 @example
1286 @value{qemu_system} -drive file=file,index=2,media=cdrom
1287 @end example
1289 Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
1290 use:
1291 @example
1292 @value{qemu_system} -drive file=file,index=0,media=disk
1293 @value{qemu_system} -drive file=file,index=1,media=disk
1294 @value{qemu_system} -drive file=file,index=2,media=disk
1295 @value{qemu_system} -drive file=file,index=3,media=disk
1296 @end example
1298 You can open an image using pre-opened file descriptors from an fd set:
1299 @example
1300 @value{qemu_system} \
1301 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file" \
1302 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file" \
1303 -drive file=/dev/fdset/2,index=0,media=disk
1304 @end example
1306 You can connect a CDROM to the slave of ide0:
1307 @example
1308 @value{qemu_system_x86} -drive file=file,if=ide,index=1,media=cdrom
1309 @end example
1311 If you don't specify the "file=" argument, you define an empty drive:
1312 @example
1313 @value{qemu_system_x86} -drive if=ide,index=1,media=cdrom
1314 @end example
1316 Instead of @option{-fda}, @option{-fdb}, you can use:
1317 @example
1318 @value{qemu_system_x86} -drive file=file,index=0,if=floppy
1319 @value{qemu_system_x86} -drive file=file,index=1,if=floppy
1320 @end example
1322 By default, @var{interface} is "ide" and @var{index} is automatically
1323 incremented:
1324 @example
1325 @value{qemu_system_x86} -drive file=a -drive file=b"
1326 @end example
1327 is interpreted like:
1328 @example
1329 @value{qemu_system_x86} -hda a -hdb b
1330 @end example
1331 ETEXI
1333 DEF("mtdblock", HAS_ARG, QEMU_OPTION_mtdblock,
1334 "-mtdblock file use 'file' as on-board Flash memory image\n",
1335 QEMU_ARCH_ALL)
1336 STEXI
1337 @item -mtdblock @var{file}
1338 @findex -mtdblock
1339 Use @var{file} as on-board Flash memory image.
1340 ETEXI
1342 DEF("sd", HAS_ARG, QEMU_OPTION_sd,
1343 "-sd file use 'file' as SecureDigital card image\n", QEMU_ARCH_ALL)
1344 STEXI
1345 @item -sd @var{file}
1346 @findex -sd
1347 Use @var{file} as SecureDigital card image.
1348 ETEXI
1350 DEF("pflash", HAS_ARG, QEMU_OPTION_pflash,
1351 "-pflash file use 'file' as a parallel flash image\n", QEMU_ARCH_ALL)
1352 STEXI
1353 @item -pflash @var{file}
1354 @findex -pflash
1355 Use @var{file} as a parallel flash image.
1356 ETEXI
1358 DEF("snapshot", 0, QEMU_OPTION_snapshot,
1359 "-snapshot write to temporary files instead of disk image files\n",
1360 QEMU_ARCH_ALL)
1361 STEXI
1362 @item -snapshot
1363 @findex -snapshot
1364 Write to temporary files instead of disk image files. In this case,
1365 the raw disk image you use is not written back. You can however force
1366 the write back by pressing @key{C-a s} (@pxref{disk_images}).
1367 ETEXI
1369 DEF("fsdev", HAS_ARG, QEMU_OPTION_fsdev,
1370 "-fsdev local,id=id,path=path,security_model=mapped-xattr|mapped-file|passthrough|none\n"
1371 " [,writeout=immediate][,readonly][,fmode=fmode][,dmode=dmode]\n"
1372 " [[,throttling.bps-total=b]|[[,throttling.bps-read=r][,throttling.bps-write=w]]]\n"
1373 " [[,throttling.iops-total=i]|[[,throttling.iops-read=r][,throttling.iops-write=w]]]\n"
1374 " [[,throttling.bps-total-max=bm]|[[,throttling.bps-read-max=rm][,throttling.bps-write-max=wm]]]\n"
1375 " [[,throttling.iops-total-max=im]|[[,throttling.iops-read-max=irm][,throttling.iops-write-max=iwm]]]\n"
1376 " [[,throttling.iops-size=is]]\n"
1377 "-fsdev proxy,id=id,socket=socket[,writeout=immediate][,readonly]\n"
1378 "-fsdev proxy,id=id,sock_fd=sock_fd[,writeout=immediate][,readonly]\n"
1379 "-fsdev synth,id=id\n",
1380 QEMU_ARCH_ALL)
1382 STEXI
1384 @item -fsdev local,id=@var{id},path=@var{path},security_model=@var{security_model} [,writeout=@var{writeout}][,readonly][,fmode=@var{fmode}][,dmode=@var{dmode}] [,throttling.@var{option}=@var{value}[,throttling.@var{option}=@var{value}[,...]]]
1385 @itemx -fsdev proxy,id=@var{id},socket=@var{socket}[,writeout=@var{writeout}][,readonly]
1386 @itemx -fsdev proxy,id=@var{id},sock_fd=@var{sock_fd}[,writeout=@var{writeout}][,readonly]
1387 @itemx -fsdev synth,id=@var{id}[,readonly]
1388 @findex -fsdev
1389 Define a new file system device. Valid options are:
1390 @table @option
1391 @item local
1392 Accesses to the filesystem are done by QEMU.
1393 @item proxy
1394 Accesses to the filesystem are done by virtfs-proxy-helper(1).
1395 @item synth
1396 Synthetic filesystem, only used by QTests.
1397 @item id=@var{id}
1398 Specifies identifier for this device.
1399 @item path=@var{path}
1400 Specifies the export path for the file system device. Files under
1401 this path will be available to the 9p client on the guest.
1402 @item security_model=@var{security_model}
1403 Specifies the security model to be used for this export path.
1404 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
1405 In "passthrough" security model, files are stored using the same
1406 credentials as they are created on the guest. This requires QEMU
1407 to run as root. In "mapped-xattr" security model, some of the file
1408 attributes like uid, gid, mode bits and link target are stored as
1409 file attributes. For "mapped-file" these attributes are stored in the
1410 hidden .virtfs_metadata directory. Directories exported by this security model cannot
1411 interact with other unix tools. "none" security model is same as
1412 passthrough except the sever won't report failures if it fails to
1413 set file attributes like ownership. Security model is mandatory
1414 only for local fsdriver. Other fsdrivers (like proxy) don't take
1415 security model as a parameter.
1416 @item writeout=@var{writeout}
1417 This is an optional argument. The only supported value is "immediate".
1418 This means that host page cache will be used to read and write data but
1419 write notification will be sent to the guest only when the data has been
1420 reported as written by the storage subsystem.
1421 @item readonly
1422 Enables exporting 9p share as a readonly mount for guests. By default
1423 read-write access is given.
1424 @item socket=@var{socket}
1425 Enables proxy filesystem driver to use passed socket file for communicating
1426 with virtfs-proxy-helper(1).
1427 @item sock_fd=@var{sock_fd}
1428 Enables proxy filesystem driver to use passed socket descriptor for
1429 communicating with virtfs-proxy-helper(1). Usually a helper like libvirt
1430 will create socketpair and pass one of the fds as sock_fd.
1431 @item fmode=@var{fmode}
1432 Specifies the default mode for newly created files on the host. Works only
1433 with security models "mapped-xattr" and "mapped-file".
1434 @item dmode=@var{dmode}
1435 Specifies the default mode for newly created directories on the host. Works
1436 only with security models "mapped-xattr" and "mapped-file".
1437 @item throttling.bps-total=@var{b},throttling.bps-read=@var{r},throttling.bps-write=@var{w}
1438 Specify bandwidth throttling limits in bytes per second, either for all request
1439 types or for reads or writes only.
1440 @item throttling.bps-total-max=@var{bm},bps-read-max=@var{rm},bps-write-max=@var{wm}
1441 Specify bursts in bytes per second, either for all request types or for reads
1442 or writes only. Bursts allow the guest I/O to spike above the limit
1443 temporarily.
1444 @item throttling.iops-total=@var{i},throttling.iops-read=@var{r}, throttling.iops-write=@var{w}
1445 Specify request rate limits in requests per second, either for all request
1446 types or for reads or writes only.
1447 @item throttling.iops-total-max=@var{im},throttling.iops-read-max=@var{irm}, throttling.iops-write-max=@var{iwm}
1448 Specify bursts in requests per second, either for all request types or for reads
1449 or writes only. Bursts allow the guest I/O to spike above the limit temporarily.
1450 @item throttling.iops-size=@var{is}
1451 Let every @var{is} bytes of a request count as a new request for iops
1452 throttling purposes.
1453 @end table
1455 -fsdev option is used along with -device driver "virtio-9p-...".
1456 @item -device virtio-9p-@var{type},fsdev=@var{id},mount_tag=@var{mount_tag}
1457 Options for virtio-9p-... driver are:
1458 @table @option
1459 @item @var{type}
1460 Specifies the variant to be used. Supported values are "pci", "ccw" or "device",
1461 depending on the machine type.
1462 @item fsdev=@var{id}
1463 Specifies the id value specified along with -fsdev option.
1464 @item mount_tag=@var{mount_tag}
1465 Specifies the tag name to be used by the guest to mount this export point.
1466 @end table
1468 ETEXI
1470 DEF("virtfs", HAS_ARG, QEMU_OPTION_virtfs,
1471 "-virtfs local,path=path,mount_tag=tag,security_model=mapped-xattr|mapped-file|passthrough|none\n"
1472 " [,id=id][,writeout=immediate][,readonly][,fmode=fmode][,dmode=dmode][,multidevs=remap|forbid|warn]\n"
1473 "-virtfs proxy,mount_tag=tag,socket=socket[,id=id][,writeout=immediate][,readonly]\n"
1474 "-virtfs proxy,mount_tag=tag,sock_fd=sock_fd[,id=id][,writeout=immediate][,readonly]\n"
1475 "-virtfs synth,mount_tag=tag[,id=id][,readonly]\n",
1476 QEMU_ARCH_ALL)
1478 STEXI
1480 @item -virtfs local,path=@var{path},mount_tag=@var{mount_tag} ,security_model=@var{security_model}[,writeout=@var{writeout}][,readonly] [,fmode=@var{fmode}][,dmode=@var{dmode}][,multidevs=@var{multidevs}]
1481 @itemx -virtfs proxy,socket=@var{socket},mount_tag=@var{mount_tag} [,writeout=@var{writeout}][,readonly]
1482 @itemx -virtfs proxy,sock_fd=@var{sock_fd},mount_tag=@var{mount_tag} [,writeout=@var{writeout}][,readonly]
1483 @itemx -virtfs synth,mount_tag=@var{mount_tag}
1484 @findex -virtfs
1486 Define a new filesystem device and expose it to the guest using a virtio-9p-device. The general form of a Virtual File system pass-through options are:
1487 @table @option
1488 @item local
1489 Accesses to the filesystem are done by QEMU.
1490 @item proxy
1491 Accesses to the filesystem are done by virtfs-proxy-helper(1).
1492 @item synth
1493 Synthetic filesystem, only used by QTests.
1494 @item id=@var{id}
1495 Specifies identifier for the filesystem device
1496 @item path=@var{path}
1497 Specifies the export path for the file system device. Files under
1498 this path will be available to the 9p client on the guest.
1499 @item security_model=@var{security_model}
1500 Specifies the security model to be used for this export path.
1501 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
1502 In "passthrough" security model, files are stored using the same
1503 credentials as they are created on the guest. This requires QEMU
1504 to run as root. In "mapped-xattr" security model, some of the file
1505 attributes like uid, gid, mode bits and link target are stored as
1506 file attributes. For "mapped-file" these attributes are stored in the
1507 hidden .virtfs_metadata directory. Directories exported by this security model cannot
1508 interact with other unix tools. "none" security model is same as
1509 passthrough except the sever won't report failures if it fails to
1510 set file attributes like ownership. Security model is mandatory only
1511 for local fsdriver. Other fsdrivers (like proxy) don't take security
1512 model as a parameter.
1513 @item writeout=@var{writeout}
1514 This is an optional argument. The only supported value is "immediate".
1515 This means that host page cache will be used to read and write data but
1516 write notification will be sent to the guest only when the data has been
1517 reported as written by the storage subsystem.
1518 @item readonly
1519 Enables exporting 9p share as a readonly mount for guests. By default
1520 read-write access is given.
1521 @item socket=@var{socket}
1522 Enables proxy filesystem driver to use passed socket file for
1523 communicating with virtfs-proxy-helper(1). Usually a helper like libvirt
1524 will create socketpair and pass one of the fds as sock_fd.
1525 @item sock_fd
1526 Enables proxy filesystem driver to use passed 'sock_fd' as the socket
1527 descriptor for interfacing with virtfs-proxy-helper(1).
1528 @item fmode=@var{fmode}
1529 Specifies the default mode for newly created files on the host. Works only
1530 with security models "mapped-xattr" and "mapped-file".
1531 @item dmode=@var{dmode}
1532 Specifies the default mode for newly created directories on the host. Works
1533 only with security models "mapped-xattr" and "mapped-file".
1534 @item mount_tag=@var{mount_tag}
1535 Specifies the tag name to be used by the guest to mount this export point.
1536 @item multidevs=@var{multidevs}
1537 Specifies how to deal with multiple devices being shared with a 9p export.
1538 Supported behaviours are either "remap", "forbid" or "warn". The latter is
1539 the default behaviour on which virtfs 9p expects only one device to be
1540 shared with the same export, and if more than one device is shared and
1541 accessed via the same 9p export then only a warning message is logged
1542 (once) by qemu on host side. In order to avoid file ID collisions on guest
1543 you should either create a separate virtfs export for each device to be
1544 shared with guests (recommended way) or you might use "remap" instead which
1545 allows you to share multiple devices with only one export instead, which is
1546 achieved by remapping the original inode numbers from host to guest in a
1547 way that would prevent such collisions. Remapping inodes in such use cases
1548 is required because the original device IDs from host are never passed and
1549 exposed on guest. Instead all files of an export shared with virtfs always
1550 share the same device id on guest. So two files with identical inode
1551 numbers but from actually different devices on host would otherwise cause a
1552 file ID collision and hence potential misbehaviours on guest. "forbid" on
1553 the other hand assumes like "warn" that only one device is shared by the
1554 same export, however it will not only log a warning message but also
1555 deny access to additional devices on guest. Note though that "forbid" does
1556 currently not block all possible file access operations (e.g. readdir()
1557 would still return entries from other devices).
1558 @end table
1559 ETEXI
1561 DEF("iscsi", HAS_ARG, QEMU_OPTION_iscsi,
1562 "-iscsi [user=user][,password=password]\n"
1563 " [,header-digest=CRC32C|CR32C-NONE|NONE-CRC32C|NONE\n"
1564 " [,initiator-name=initiator-iqn][,id=target-iqn]\n"
1565 " [,timeout=timeout]\n"
1566 " iSCSI session parameters\n", QEMU_ARCH_ALL)
1568 STEXI
1569 @item -iscsi
1570 @findex -iscsi
1571 Configure iSCSI session parameters.
1572 ETEXI
1574 STEXI
1575 @end table
1576 ETEXI
1577 DEFHEADING()
1579 DEFHEADING(USB options:)
1580 STEXI
1581 @table @option
1582 ETEXI
1584 DEF("usb", 0, QEMU_OPTION_usb,
1585 "-usb enable on-board USB host controller (if not enabled by default)\n",
1586 QEMU_ARCH_ALL)
1587 STEXI
1588 @item -usb
1589 @findex -usb
1590 Enable USB emulation on machine types with an on-board USB host controller (if
1591 not enabled by default). Note that on-board USB host controllers may not
1592 support USB 3.0. In this case @option{-device qemu-xhci} can be used instead
1593 on machines with PCI.
1594 ETEXI
1596 DEF("usbdevice", HAS_ARG, QEMU_OPTION_usbdevice,
1597 "-usbdevice name add the host or guest USB device 'name'\n",
1598 QEMU_ARCH_ALL)
1599 STEXI
1601 @item -usbdevice @var{devname}
1602 @findex -usbdevice
1603 Add the USB device @var{devname}. Note that this option is deprecated,
1604 please use @code{-device usb-...} instead. @xref{usb_devices}.
1606 @table @option
1608 @item mouse
1609 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
1611 @item tablet
1612 Pointer device that uses absolute coordinates (like a touchscreen). This
1613 means QEMU is able to report the mouse position without having to grab the
1614 mouse. Also overrides the PS/2 mouse emulation when activated.
1616 @item braille
1617 Braille device. This will use BrlAPI to display the braille output on a real
1618 or fake device.
1620 @end table
1621 ETEXI
1623 STEXI
1624 @end table
1625 ETEXI
1626 DEFHEADING()
1628 DEFHEADING(Display options:)
1629 STEXI
1630 @table @option
1631 ETEXI
1633 DEF("display", HAS_ARG, QEMU_OPTION_display,
1634 #if defined(CONFIG_SPICE)
1635 "-display spice-app[,gl=on|off]\n"
1636 #endif
1637 #if defined(CONFIG_SDL)
1638 "-display sdl[,alt_grab=on|off][,ctrl_grab=on|off]\n"
1639 " [,window_close=on|off][,gl=on|core|es|off]\n"
1640 #endif
1641 #if defined(CONFIG_GTK)
1642 "-display gtk[,grab_on_hover=on|off][,gl=on|off]|\n"
1643 #endif
1644 #if defined(CONFIG_VNC)
1645 "-display vnc=<display>[,<optargs>]\n"
1646 #endif
1647 #if defined(CONFIG_CURSES)
1648 "-display curses[,charset=<encoding>]\n"
1649 #endif
1650 #if defined(CONFIG_OPENGL)
1651 "-display egl-headless[,rendernode=<file>]\n"
1652 #endif
1653 "-display none\n"
1654 " select display backend type\n"
1655 " The default display is equivalent to\n "
1656 #if defined(CONFIG_GTK)
1657 "\"-display gtk\"\n"
1658 #elif defined(CONFIG_SDL)
1659 "\"-display sdl\"\n"
1660 #elif defined(CONFIG_COCOA)
1661 "\"-display cocoa\"\n"
1662 #elif defined(CONFIG_VNC)
1663 "\"-vnc localhost:0,to=99,id=default\"\n"
1664 #else
1665 "\"-display none\"\n"
1666 #endif
1667 , QEMU_ARCH_ALL)
1668 STEXI
1669 @item -display @var{type}
1670 @findex -display
1671 Select type of display to use. This option is a replacement for the
1672 old style -sdl/-curses/... options. Use @code{-display help} to list
1673 the available display types. Valid values for @var{type} are
1674 @table @option
1675 @item sdl
1676 Display video output via SDL (usually in a separate graphics
1677 window; see the SDL documentation for other possibilities).
1678 @item curses
1679 Display video output via curses. For graphics device models which
1680 support a text mode, QEMU can display this output using a
1681 curses/ncurses interface. Nothing is displayed when the graphics
1682 device is in graphical mode or if the graphics device does not support
1683 a text mode. Generally only the VGA device models support text mode.
1684 The font charset used by the guest can be specified with the
1685 @code{charset} option, for example @code{charset=CP850} for IBM CP850
1686 encoding. The default is @code{CP437}.
1687 @item none
1688 Do not display video output. The guest will still see an emulated
1689 graphics card, but its output will not be displayed to the QEMU
1690 user. This option differs from the -nographic option in that it
1691 only affects what is done with video output; -nographic also changes
1692 the destination of the serial and parallel port data.
1693 @item gtk
1694 Display video output in a GTK window. This interface provides drop-down
1695 menus and other UI elements to configure and control the VM during
1696 runtime.
1697 @item vnc
1698 Start a VNC server on display <arg>
1699 @item egl-headless
1700 Offload all OpenGL operations to a local DRI device. For any graphical display,
1701 this display needs to be paired with either VNC or SPICE displays.
1702 @item spice-app
1703 Start QEMU as a Spice server and launch the default Spice client
1704 application. The Spice server will redirect the serial consoles and
1705 QEMU monitors. (Since 4.0)
1706 @end table
1707 ETEXI
1709 DEF("nographic", 0, QEMU_OPTION_nographic,
1710 "-nographic disable graphical output and redirect serial I/Os to console\n",
1711 QEMU_ARCH_ALL)
1712 STEXI
1713 @item -nographic
1714 @findex -nographic
1715 Normally, if QEMU is compiled with graphical window support, it displays
1716 output such as guest graphics, guest console, and the QEMU monitor in a
1717 window. With this option, you can totally disable graphical output so
1718 that QEMU is a simple command line application. The emulated serial port
1719 is redirected on the console and muxed with the monitor (unless
1720 redirected elsewhere explicitly). Therefore, you can still use QEMU to
1721 debug a Linux kernel with a serial console. Use @key{C-a h} for help on
1722 switching between the console and monitor.
1723 ETEXI
1725 DEF("curses", 0, QEMU_OPTION_curses,
1726 "-curses shorthand for -display curses\n",
1727 QEMU_ARCH_ALL)
1728 STEXI
1729 @item -curses
1730 @findex -curses
1731 Normally, if QEMU is compiled with graphical window support, it displays
1732 output such as guest graphics, guest console, and the QEMU monitor in a
1733 window. With this option, QEMU can display the VGA output when in text
1734 mode using a curses/ncurses interface. Nothing is displayed in graphical
1735 mode.
1736 ETEXI
1738 DEF("alt-grab", 0, QEMU_OPTION_alt_grab,
1739 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n",
1740 QEMU_ARCH_ALL)
1741 STEXI
1742 @item -alt-grab
1743 @findex -alt-grab
1744 Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt). Note that this also
1745 affects the special keys (for fullscreen, monitor-mode switching, etc).
1746 ETEXI
1748 DEF("ctrl-grab", 0, QEMU_OPTION_ctrl_grab,
1749 "-ctrl-grab use Right-Ctrl to grab mouse (instead of Ctrl-Alt)\n",
1750 QEMU_ARCH_ALL)
1751 STEXI
1752 @item -ctrl-grab
1753 @findex -ctrl-grab
1754 Use Right-Ctrl to grab mouse (instead of Ctrl-Alt). Note that this also
1755 affects the special keys (for fullscreen, monitor-mode switching, etc).
1756 ETEXI
1758 DEF("no-quit", 0, QEMU_OPTION_no_quit,
1759 "-no-quit disable SDL window close capability\n", QEMU_ARCH_ALL)
1760 STEXI
1761 @item -no-quit
1762 @findex -no-quit
1763 Disable SDL window close capability.
1764 ETEXI
1766 DEF("sdl", 0, QEMU_OPTION_sdl,
1767 "-sdl shorthand for -display sdl\n", QEMU_ARCH_ALL)
1768 STEXI
1769 @item -sdl
1770 @findex -sdl
1771 Enable SDL.
1772 ETEXI
1774 DEF("spice", HAS_ARG, QEMU_OPTION_spice,
1775 "-spice [port=port][,tls-port=secured-port][,x509-dir=<dir>]\n"
1776 " [,x509-key-file=<file>][,x509-key-password=<file>]\n"
1777 " [,x509-cert-file=<file>][,x509-cacert-file=<file>]\n"
1778 " [,x509-dh-key-file=<file>][,addr=addr][,ipv4|ipv6|unix]\n"
1779 " [,tls-ciphers=<list>]\n"
1780 " [,tls-channel=[main|display|cursor|inputs|record|playback]]\n"
1781 " [,plaintext-channel=[main|display|cursor|inputs|record|playback]]\n"
1782 " [,sasl][,password=<secret>][,disable-ticketing]\n"
1783 " [,image-compression=[auto_glz|auto_lz|quic|glz|lz|off]]\n"
1784 " [,jpeg-wan-compression=[auto|never|always]]\n"
1785 " [,zlib-glz-wan-compression=[auto|never|always]]\n"
1786 " [,streaming-video=[off|all|filter]][,disable-copy-paste]\n"
1787 " [,disable-agent-file-xfer][,agent-mouse=[on|off]]\n"
1788 " [,playback-compression=[on|off]][,seamless-migration=[on|off]]\n"
1789 " [,gl=[on|off]][,rendernode=<file>]\n"
1790 " enable spice\n"
1791 " at least one of {port, tls-port} is mandatory\n",
1792 QEMU_ARCH_ALL)
1793 STEXI
1794 @item -spice @var{option}[,@var{option}[,...]]
1795 @findex -spice
1796 Enable the spice remote desktop protocol. Valid options are
1798 @table @option
1800 @item port=<nr>
1801 Set the TCP port spice is listening on for plaintext channels.
1803 @item addr=<addr>
1804 Set the IP address spice is listening on. Default is any address.
1806 @item ipv4
1807 @itemx ipv6
1808 @itemx unix
1809 Force using the specified IP version.
1811 @item password=<secret>
1812 Set the password you need to authenticate.
1814 @item sasl
1815 Require that the client use SASL to authenticate with the spice.
1816 The exact choice of authentication method used is controlled from the
1817 system / user's SASL configuration file for the 'qemu' service. This
1818 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1819 unprivileged user, an environment variable SASL_CONF_PATH can be used
1820 to make it search alternate locations for the service config.
1821 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1822 it is recommended that SASL always be combined with the 'tls' and
1823 'x509' settings to enable use of SSL and server certificates. This
1824 ensures a data encryption preventing compromise of authentication
1825 credentials.
1827 @item disable-ticketing
1828 Allow client connects without authentication.
1830 @item disable-copy-paste
1831 Disable copy paste between the client and the guest.
1833 @item disable-agent-file-xfer
1834 Disable spice-vdagent based file-xfer between the client and the guest.
1836 @item tls-port=<nr>
1837 Set the TCP port spice is listening on for encrypted channels.
1839 @item x509-dir=<dir>
1840 Set the x509 file directory. Expects same filenames as -vnc $display,x509=$dir
1842 @item x509-key-file=<file>
1843 @itemx x509-key-password=<file>
1844 @itemx x509-cert-file=<file>
1845 @itemx x509-cacert-file=<file>
1846 @itemx x509-dh-key-file=<file>
1847 The x509 file names can also be configured individually.
1849 @item tls-ciphers=<list>
1850 Specify which ciphers to use.
1852 @item tls-channel=[main|display|cursor|inputs|record|playback]
1853 @itemx plaintext-channel=[main|display|cursor|inputs|record|playback]
1854 Force specific channel to be used with or without TLS encryption. The
1855 options can be specified multiple times to configure multiple
1856 channels. The special name "default" can be used to set the default
1857 mode. For channels which are not explicitly forced into one mode the
1858 spice client is allowed to pick tls/plaintext as he pleases.
1860 @item image-compression=[auto_glz|auto_lz|quic|glz|lz|off]
1861 Configure image compression (lossless).
1862 Default is auto_glz.
1864 @item jpeg-wan-compression=[auto|never|always]
1865 @itemx zlib-glz-wan-compression=[auto|never|always]
1866 Configure wan image compression (lossy for slow links).
1867 Default is auto.
1869 @item streaming-video=[off|all|filter]
1870 Configure video stream detection. Default is off.
1872 @item agent-mouse=[on|off]
1873 Enable/disable passing mouse events via vdagent. Default is on.
1875 @item playback-compression=[on|off]
1876 Enable/disable audio stream compression (using celt 0.5.1). Default is on.
1878 @item seamless-migration=[on|off]
1879 Enable/disable spice seamless migration. Default is off.
1881 @item gl=[on|off]
1882 Enable/disable OpenGL context. Default is off.
1884 @item rendernode=<file>
1885 DRM render node for OpenGL rendering. If not specified, it will pick
1886 the first available. (Since 2.9)
1888 @end table
1889 ETEXI
1891 DEF("portrait", 0, QEMU_OPTION_portrait,
1892 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n",
1893 QEMU_ARCH_ALL)
1894 STEXI
1895 @item -portrait
1896 @findex -portrait
1897 Rotate graphical output 90 deg left (only PXA LCD).
1898 ETEXI
1900 DEF("rotate", HAS_ARG, QEMU_OPTION_rotate,
1901 "-rotate <deg> rotate graphical output some deg left (only PXA LCD)\n",
1902 QEMU_ARCH_ALL)
1903 STEXI
1904 @item -rotate @var{deg}
1905 @findex -rotate
1906 Rotate graphical output some deg left (only PXA LCD).
1907 ETEXI
1909 DEF("vga", HAS_ARG, QEMU_OPTION_vga,
1910 "-vga [std|cirrus|vmware|qxl|xenfb|tcx|cg3|virtio|none]\n"
1911 " select video card type\n", QEMU_ARCH_ALL)
1912 STEXI
1913 @item -vga @var{type}
1914 @findex -vga
1915 Select type of VGA card to emulate. Valid values for @var{type} are
1916 @table @option
1917 @item cirrus
1918 Cirrus Logic GD5446 Video card. All Windows versions starting from
1919 Windows 95 should recognize and use this graphic card. For optimal
1920 performances, use 16 bit color depth in the guest and the host OS.
1921 (This card was the default before QEMU 2.2)
1922 @item std
1923 Standard VGA card with Bochs VBE extensions. If your guest OS
1924 supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
1925 to use high resolution modes (>= 1280x1024x16) then you should use
1926 this option. (This card is the default since QEMU 2.2)
1927 @item vmware
1928 VMWare SVGA-II compatible adapter. Use it if you have sufficiently
1929 recent XFree86/XOrg server or Windows guest with a driver for this
1930 card.
1931 @item qxl
1932 QXL paravirtual graphic card. It is VGA compatible (including VESA
1933 2.0 VBE support). Works best with qxl guest drivers installed though.
1934 Recommended choice when using the spice protocol.
1935 @item tcx
1936 (sun4m only) Sun TCX framebuffer. This is the default framebuffer for
1937 sun4m machines and offers both 8-bit and 24-bit colour depths at a
1938 fixed resolution of 1024x768.
1939 @item cg3
1940 (sun4m only) Sun cgthree framebuffer. This is a simple 8-bit framebuffer
1941 for sun4m machines available in both 1024x768 (OpenBIOS) and 1152x900 (OBP)
1942 resolutions aimed at people wishing to run older Solaris versions.
1943 @item virtio
1944 Virtio VGA card.
1945 @item none
1946 Disable VGA card.
1947 @end table
1948 ETEXI
1950 DEF("full-screen", 0, QEMU_OPTION_full_screen,
1951 "-full-screen start in full screen\n", QEMU_ARCH_ALL)
1952 STEXI
1953 @item -full-screen
1954 @findex -full-screen
1955 Start in full screen.
1956 ETEXI
1958 DEF("g", HAS_ARG, QEMU_OPTION_g ,
1959 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n",
1960 QEMU_ARCH_PPC | QEMU_ARCH_SPARC | QEMU_ARCH_M68K)
1961 STEXI
1962 @item -g @var{width}x@var{height}[x@var{depth}]
1963 @findex -g
1964 Set the initial graphical resolution and depth (PPC, SPARC only).
1965 ETEXI
1967 DEF("vnc", HAS_ARG, QEMU_OPTION_vnc ,
1968 "-vnc <display> shorthand for -display vnc=<display>\n", QEMU_ARCH_ALL)
1969 STEXI
1970 @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
1971 @findex -vnc
1972 Normally, if QEMU is compiled with graphical window support, it displays
1973 output such as guest graphics, guest console, and the QEMU monitor in a
1974 window. With this option, you can have QEMU listen on VNC display
1975 @var{display} and redirect the VGA display over the VNC session. It is
1976 very useful to enable the usb tablet device when using this option
1977 (option @option{-device usb-tablet}). When using the VNC display, you
1978 must use the @option{-k} parameter to set the keyboard layout if you are
1979 not using en-us. Valid syntax for the @var{display} is
1981 @table @option
1983 @item to=@var{L}
1985 With this option, QEMU will try next available VNC @var{display}s, until the
1986 number @var{L}, if the origianlly defined "-vnc @var{display}" is not
1987 available, e.g. port 5900+@var{display} is already used by another
1988 application. By default, to=0.
1990 @item @var{host}:@var{d}
1992 TCP connections will only be allowed from @var{host} on display @var{d}.
1993 By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
1994 be omitted in which case the server will accept connections from any host.
1996 @item unix:@var{path}
1998 Connections will be allowed over UNIX domain sockets where @var{path} is the
1999 location of a unix socket to listen for connections on.
2001 @item none
2003 VNC is initialized but not started. The monitor @code{change} command
2004 can be used to later start the VNC server.
2006 @end table
2008 Following the @var{display} value there may be one or more @var{option} flags
2009 separated by commas. Valid options are
2011 @table @option
2013 @item reverse
2015 Connect to a listening VNC client via a ``reverse'' connection. The
2016 client is specified by the @var{display}. For reverse network
2017 connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
2018 is a TCP port number, not a display number.
2020 @item websocket
2022 Opens an additional TCP listening port dedicated to VNC Websocket connections.
2023 If a bare @var{websocket} option is given, the Websocket port is
2024 5700+@var{display}. An alternative port can be specified with the
2025 syntax @code{websocket}=@var{port}.
2027 If @var{host} is specified connections will only be allowed from this host.
2028 It is possible to control the websocket listen address independently, using
2029 the syntax @code{websocket}=@var{host}:@var{port}.
2031 If no TLS credentials are provided, the websocket connection runs in
2032 unencrypted mode. If TLS credentials are provided, the websocket connection
2033 requires encrypted client connections.
2035 @item password
2037 Require that password based authentication is used for client connections.
2039 The password must be set separately using the @code{set_password} command in
2040 the @ref{pcsys_monitor}. The syntax to change your password is:
2041 @code{set_password <protocol> <password>} where <protocol> could be either
2042 "vnc" or "spice".
2044 If you would like to change <protocol> password expiration, you should use
2045 @code{expire_password <protocol> <expiration-time>} where expiration time could
2046 be one of the following options: now, never, +seconds or UNIX time of
2047 expiration, e.g. +60 to make password expire in 60 seconds, or 1335196800
2048 to make password expire on "Mon Apr 23 12:00:00 EDT 2012" (UNIX time for this
2049 date and time).
2051 You can also use keywords "now" or "never" for the expiration time to
2052 allow <protocol> password to expire immediately or never expire.
2054 @item tls-creds=@var{ID}
2056 Provides the ID of a set of TLS credentials to use to secure the
2057 VNC server. They will apply to both the normal VNC server socket
2058 and the websocket socket (if enabled). Setting TLS credentials
2059 will cause the VNC server socket to enable the VeNCrypt auth
2060 mechanism. The credentials should have been previously created
2061 using the @option{-object tls-creds} argument.
2063 @item tls-authz=@var{ID}
2065 Provides the ID of the QAuthZ authorization object against which
2066 the client's x509 distinguished name will validated. This object is
2067 only resolved at time of use, so can be deleted and recreated on the
2068 fly while the VNC server is active. If missing, it will default
2069 to denying access.
2071 @item sasl
2073 Require that the client use SASL to authenticate with the VNC server.
2074 The exact choice of authentication method used is controlled from the
2075 system / user's SASL configuration file for the 'qemu' service. This
2076 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
2077 unprivileged user, an environment variable SASL_CONF_PATH can be used
2078 to make it search alternate locations for the service config.
2079 While some SASL auth methods can also provide data encryption (eg GSSAPI),
2080 it is recommended that SASL always be combined with the 'tls' and
2081 'x509' settings to enable use of SSL and server certificates. This
2082 ensures a data encryption preventing compromise of authentication
2083 credentials. See the @ref{vnc_security} section for details on using
2084 SASL authentication.
2086 @item sasl-authz=@var{ID}
2088 Provides the ID of the QAuthZ authorization object against which
2089 the client's SASL username will validated. This object is
2090 only resolved at time of use, so can be deleted and recreated on the
2091 fly while the VNC server is active. If missing, it will default
2092 to denying access.
2094 @item acl
2096 Legacy method for enabling authorization of clients against the
2097 x509 distinguished name and SASL username. It results in the creation
2098 of two @code{authz-list} objects with IDs of @code{vnc.username} and
2099 @code{vnc.x509dname}. The rules for these objects must be configured
2100 with the HMP ACL commands.
2102 This option is deprecated and should no longer be used. The new
2103 @option{sasl-authz} and @option{tls-authz} options are a
2104 replacement.
2106 @item lossy
2108 Enable lossy compression methods (gradient, JPEG, ...). If this
2109 option is set, VNC client may receive lossy framebuffer updates
2110 depending on its encoding settings. Enabling this option can save
2111 a lot of bandwidth at the expense of quality.
2113 @item non-adaptive
2115 Disable adaptive encodings. Adaptive encodings are enabled by default.
2116 An adaptive encoding will try to detect frequently updated screen regions,
2117 and send updates in these regions using a lossy encoding (like JPEG).
2118 This can be really helpful to save bandwidth when playing videos. Disabling
2119 adaptive encodings restores the original static behavior of encodings
2120 like Tight.
2122 @item share=[allow-exclusive|force-shared|ignore]
2124 Set display sharing policy. 'allow-exclusive' allows clients to ask
2125 for exclusive access. As suggested by the rfb spec this is
2126 implemented by dropping other connections. Connecting multiple
2127 clients in parallel requires all clients asking for a shared session
2128 (vncviewer: -shared switch). This is the default. 'force-shared'
2129 disables exclusive client access. Useful for shared desktop sessions,
2130 where you don't want someone forgetting specify -shared disconnect
2131 everybody else. 'ignore' completely ignores the shared flag and
2132 allows everybody connect unconditionally. Doesn't conform to the rfb
2133 spec but is traditional QEMU behavior.
2135 @item key-delay-ms
2137 Set keyboard delay, for key down and key up events, in milliseconds.
2138 Default is 10. Keyboards are low-bandwidth devices, so this slowdown
2139 can help the device and guest to keep up and not lose events in case
2140 events are arriving in bulk. Possible causes for the latter are flaky
2141 network connections, or scripts for automated testing.
2143 @item audiodev=@var{audiodev}
2145 Use the specified @var{audiodev} when the VNC client requests audio
2146 transmission. When not using an -audiodev argument, this option must
2147 be omitted, otherwise is must be present and specify a valid audiodev.
2149 @end table
2150 ETEXI
2152 STEXI
2153 @end table
2154 ETEXI
2155 ARCHHEADING(, QEMU_ARCH_I386)
2157 ARCHHEADING(i386 target only:, QEMU_ARCH_I386)
2158 STEXI
2159 @table @option
2160 ETEXI
2162 DEF("win2k-hack", 0, QEMU_OPTION_win2k_hack,
2163 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n",
2164 QEMU_ARCH_I386)
2165 STEXI
2166 @item -win2k-hack
2167 @findex -win2k-hack
2168 Use it when installing Windows 2000 to avoid a disk full bug. After
2169 Windows 2000 is installed, you no longer need this option (this option
2170 slows down the IDE transfers).
2171 ETEXI
2173 DEF("no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk,
2174 "-no-fd-bootchk disable boot signature checking for floppy disks\n",
2175 QEMU_ARCH_I386)
2176 STEXI
2177 @item -no-fd-bootchk
2178 @findex -no-fd-bootchk
2179 Disable boot signature checking for floppy disks in BIOS. May
2180 be needed to boot from old floppy disks.
2181 ETEXI
2183 DEF("no-acpi", 0, QEMU_OPTION_no_acpi,
2184 "-no-acpi disable ACPI\n", QEMU_ARCH_I386 | QEMU_ARCH_ARM)
2185 STEXI
2186 @item -no-acpi
2187 @findex -no-acpi
2188 Disable ACPI (Advanced Configuration and Power Interface) support. Use
2189 it if your guest OS complains about ACPI problems (PC target machine
2190 only).
2191 ETEXI
2193 DEF("no-hpet", 0, QEMU_OPTION_no_hpet,
2194 "-no-hpet disable HPET\n", QEMU_ARCH_I386)
2195 STEXI
2196 @item -no-hpet
2197 @findex -no-hpet
2198 Disable HPET support.
2199 ETEXI
2201 DEF("acpitable", HAS_ARG, QEMU_OPTION_acpitable,
2202 "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,{data|file}=file1[:file2]...]\n"
2203 " ACPI table description\n", QEMU_ARCH_I386)
2204 STEXI
2205 @item -acpitable [sig=@var{str}][,rev=@var{n}][,oem_id=@var{str}][,oem_table_id=@var{str}][,oem_rev=@var{n}] [,asl_compiler_id=@var{str}][,asl_compiler_rev=@var{n}][,data=@var{file1}[:@var{file2}]...]
2206 @findex -acpitable
2207 Add ACPI table with specified header fields and context from specified files.
2208 For file=, take whole ACPI table from the specified files, including all
2209 ACPI headers (possible overridden by other options).
2210 For data=, only data
2211 portion of the table is used, all header information is specified in the
2212 command line.
2213 If a SLIC table is supplied to QEMU, then the SLIC's oem_id and oem_table_id
2214 fields will override the same in the RSDT and the FADT (a.k.a. FACP), in order
2215 to ensure the field matches required by the Microsoft SLIC spec and the ACPI
2216 spec.
2217 ETEXI
2219 DEF("smbios", HAS_ARG, QEMU_OPTION_smbios,
2220 "-smbios file=binary\n"
2221 " load SMBIOS entry from binary file\n"
2222 "-smbios type=0[,vendor=str][,version=str][,date=str][,release=%d.%d]\n"
2223 " [,uefi=on|off]\n"
2224 " specify SMBIOS type 0 fields\n"
2225 "-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
2226 " [,uuid=uuid][,sku=str][,family=str]\n"
2227 " specify SMBIOS type 1 fields\n"
2228 "-smbios type=2[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
2229 " [,asset=str][,location=str]\n"
2230 " specify SMBIOS type 2 fields\n"
2231 "-smbios type=3[,manufacturer=str][,version=str][,serial=str][,asset=str]\n"
2232 " [,sku=str]\n"
2233 " specify SMBIOS type 3 fields\n"
2234 "-smbios type=4[,sock_pfx=str][,manufacturer=str][,version=str][,serial=str]\n"
2235 " [,asset=str][,part=str]\n"
2236 " specify SMBIOS type 4 fields\n"
2237 "-smbios type=17[,loc_pfx=str][,bank=str][,manufacturer=str][,serial=str]\n"
2238 " [,asset=str][,part=str][,speed=%d]\n"
2239 " specify SMBIOS type 17 fields\n",
2240 QEMU_ARCH_I386 | QEMU_ARCH_ARM)
2241 STEXI
2242 @item -smbios file=@var{binary}
2243 @findex -smbios
2244 Load SMBIOS entry from binary file.
2246 @item -smbios type=0[,vendor=@var{str}][,version=@var{str}][,date=@var{str}][,release=@var{%d.%d}][,uefi=on|off]
2247 Specify SMBIOS type 0 fields
2249 @item -smbios type=1[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,uuid=@var{uuid}][,sku=@var{str}][,family=@var{str}]
2250 Specify SMBIOS type 1 fields
2252 @item -smbios type=2[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,location=@var{str}]
2253 Specify SMBIOS type 2 fields
2255 @item -smbios type=3[,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,sku=@var{str}]
2256 Specify SMBIOS type 3 fields
2258 @item -smbios type=4[,sock_pfx=@var{str}][,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}]
2259 Specify SMBIOS type 4 fields
2261 @item -smbios type=17[,loc_pfx=@var{str}][,bank=@var{str}][,manufacturer=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}][,speed=@var{%d}]
2262 Specify SMBIOS type 17 fields
2263 ETEXI
2265 STEXI
2266 @end table
2267 ETEXI
2268 DEFHEADING()
2270 DEFHEADING(Network options:)
2271 STEXI
2272 @table @option
2273 ETEXI
2275 DEF("netdev", HAS_ARG, QEMU_OPTION_netdev,
2276 #ifdef CONFIG_SLIRP
2277 "-netdev user,id=str[,ipv4[=on|off]][,net=addr[/mask]][,host=addr]\n"
2278 " [,ipv6[=on|off]][,ipv6-net=addr[/int]][,ipv6-host=addr]\n"
2279 " [,restrict=on|off][,hostname=host][,dhcpstart=addr]\n"
2280 " [,dns=addr][,ipv6-dns=addr][,dnssearch=domain][,domainname=domain]\n"
2281 " [,tftp=dir][,tftp-server-name=name][,bootfile=f][,hostfwd=rule][,guestfwd=rule]"
2282 #ifndef _WIN32
2283 "[,smb=dir[,smbserver=addr]]\n"
2284 #endif
2285 " configure a user mode network backend with ID 'str',\n"
2286 " its DHCP server and optional services\n"
2287 #endif
2288 #ifdef _WIN32
2289 "-netdev tap,id=str,ifname=name\n"
2290 " configure a host TAP network backend with ID 'str'\n"
2291 #else
2292 "-netdev tap,id=str[,fd=h][,fds=x:y:...:z][,ifname=name][,script=file][,downscript=dfile]\n"
2293 " [,br=bridge][,helper=helper][,sndbuf=nbytes][,vnet_hdr=on|off][,vhost=on|off]\n"
2294 " [,vhostfd=h][,vhostfds=x:y:...:z][,vhostforce=on|off][,queues=n]\n"
2295 " [,poll-us=n]\n"
2296 " configure a host TAP network backend with ID 'str'\n"
2297 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
2298 " use network scripts 'file' (default=" DEFAULT_NETWORK_SCRIPT ")\n"
2299 " to configure it and 'dfile' (default=" DEFAULT_NETWORK_DOWN_SCRIPT ")\n"
2300 " to deconfigure it\n"
2301 " use '[down]script=no' to disable script execution\n"
2302 " use network helper 'helper' (default=" DEFAULT_BRIDGE_HELPER ") to\n"
2303 " configure it\n"
2304 " use 'fd=h' to connect to an already opened TAP interface\n"
2305 " use 'fds=x:y:...:z' to connect to already opened multiqueue capable TAP interfaces\n"
2306 " use 'sndbuf=nbytes' to limit the size of the send buffer (the\n"
2307 " default is disabled 'sndbuf=0' to enable flow control set 'sndbuf=1048576')\n"
2308 " use vnet_hdr=off to avoid enabling the IFF_VNET_HDR tap flag\n"
2309 " use vnet_hdr=on to make the lack of IFF_VNET_HDR support an error condition\n"
2310 " use vhost=on to enable experimental in kernel accelerator\n"
2311 " (only has effect for virtio guests which use MSIX)\n"
2312 " use vhostforce=on to force vhost on for non-MSIX virtio guests\n"
2313 " use 'vhostfd=h' to connect to an already opened vhost net device\n"
2314 " use 'vhostfds=x:y:...:z to connect to multiple already opened vhost net devices\n"
2315 " use 'queues=n' to specify the number of queues to be created for multiqueue TAP\n"
2316 " use 'poll-us=n' to speciy the maximum number of microseconds that could be\n"
2317 " spent on busy polling for vhost net\n"
2318 "-netdev bridge,id=str[,br=bridge][,helper=helper]\n"
2319 " configure a host TAP network backend with ID 'str' that is\n"
2320 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
2321 " using the program 'helper (default=" DEFAULT_BRIDGE_HELPER ")\n"
2322 #endif
2323 #ifdef __linux__
2324 "-netdev l2tpv3,id=str,src=srcaddr,dst=dstaddr[,srcport=srcport][,dstport=dstport]\n"
2325 " [,rxsession=rxsession],txsession=txsession[,ipv6=on/off][,udp=on/off]\n"
2326 " [,cookie64=on/off][,counter][,pincounter][,txcookie=txcookie]\n"
2327 " [,rxcookie=rxcookie][,offset=offset]\n"
2328 " configure a network backend with ID 'str' connected to\n"
2329 " an Ethernet over L2TPv3 pseudowire.\n"
2330 " Linux kernel 3.3+ as well as most routers can talk\n"
2331 " L2TPv3. This transport allows connecting a VM to a VM,\n"
2332 " VM to a router and even VM to Host. It is a nearly-universal\n"
2333 " standard (RFC3391). Note - this implementation uses static\n"
2334 " pre-configured tunnels (same as the Linux kernel).\n"
2335 " use 'src=' to specify source address\n"
2336 " use 'dst=' to specify destination address\n"
2337 " use 'udp=on' to specify udp encapsulation\n"
2338 " use 'srcport=' to specify source udp port\n"
2339 " use 'dstport=' to specify destination udp port\n"
2340 " use 'ipv6=on' to force v6\n"
2341 " L2TPv3 uses cookies to prevent misconfiguration as\n"
2342 " well as a weak security measure\n"
2343 " use 'rxcookie=0x012345678' to specify a rxcookie\n"
2344 " use 'txcookie=0x012345678' to specify a txcookie\n"
2345 " use 'cookie64=on' to set cookie size to 64 bit, otherwise 32\n"
2346 " use 'counter=off' to force a 'cut-down' L2TPv3 with no counter\n"
2347 " use 'pincounter=on' to work around broken counter handling in peer\n"
2348 " use 'offset=X' to add an extra offset between header and data\n"
2349 #endif
2350 "-netdev socket,id=str[,fd=h][,listen=[host]:port][,connect=host:port]\n"
2351 " configure a network backend to connect to another network\n"
2352 " using a socket connection\n"
2353 "-netdev socket,id=str[,fd=h][,mcast=maddr:port[,localaddr=addr]]\n"
2354 " configure a network backend to connect to a multicast maddr and port\n"
2355 " use 'localaddr=addr' to specify the host address to send packets from\n"
2356 "-netdev socket,id=str[,fd=h][,udp=host:port][,localaddr=host:port]\n"
2357 " configure a network backend to connect to another network\n"
2358 " using an UDP tunnel\n"
2359 #ifdef CONFIG_VDE
2360 "-netdev vde,id=str[,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
2361 " configure a network backend to connect to port 'n' of a vde switch\n"
2362 " running on host and listening for incoming connections on 'socketpath'.\n"
2363 " Use group 'groupname' and mode 'octalmode' to change default\n"
2364 " ownership and permissions for communication port.\n"
2365 #endif
2366 #ifdef CONFIG_NETMAP
2367 "-netdev netmap,id=str,ifname=name[,devname=nmname]\n"
2368 " attach to the existing netmap-enabled network interface 'name', or to a\n"
2369 " VALE port (created on the fly) called 'name' ('nmname' is name of the \n"
2370 " netmap device, defaults to '/dev/netmap')\n"
2371 #endif
2372 #ifdef CONFIG_POSIX
2373 "-netdev vhost-user,id=str,chardev=dev[,vhostforce=on|off]\n"
2374 " configure a vhost-user network, backed by a chardev 'dev'\n"
2375 #endif
2376 "-netdev hubport,id=str,hubid=n[,netdev=nd]\n"
2377 " configure a hub port on the hub with ID 'n'\n", QEMU_ARCH_ALL)
2378 DEF("nic", HAS_ARG, QEMU_OPTION_nic,
2379 "-nic [tap|bridge|"
2380 #ifdef CONFIG_SLIRP
2381 "user|"
2382 #endif
2383 #ifdef __linux__
2384 "l2tpv3|"
2385 #endif
2386 #ifdef CONFIG_VDE
2387 "vde|"
2388 #endif
2389 #ifdef CONFIG_NETMAP
2390 "netmap|"
2391 #endif
2392 #ifdef CONFIG_POSIX
2393 "vhost-user|"
2394 #endif
2395 "socket][,option][,...][mac=macaddr]\n"
2396 " initialize an on-board / default host NIC (using MAC address\n"
2397 " macaddr) and connect it to the given host network backend\n"
2398 "-nic none use it alone to have zero network devices (the default is to\n"
2399 " provided a 'user' network connection)\n",
2400 QEMU_ARCH_ALL)
2401 DEF("net", HAS_ARG, QEMU_OPTION_net,
2402 "-net nic[,macaddr=mac][,model=type][,name=str][,addr=str][,vectors=v]\n"
2403 " configure or create an on-board (or machine default) NIC and\n"
2404 " connect it to hub 0 (please use -nic unless you need a hub)\n"
2405 "-net ["
2406 #ifdef CONFIG_SLIRP
2407 "user|"
2408 #endif
2409 "tap|"
2410 "bridge|"
2411 #ifdef CONFIG_VDE
2412 "vde|"
2413 #endif
2414 #ifdef CONFIG_NETMAP
2415 "netmap|"
2416 #endif
2417 "socket][,option][,option][,...]\n"
2418 " old way to initialize a host network interface\n"
2419 " (use the -netdev option if possible instead)\n", QEMU_ARCH_ALL)
2420 STEXI
2421 @item -nic [tap|bridge|user|l2tpv3|vde|netmap|vhost-user|socket][,...][,mac=macaddr][,model=mn]
2422 @findex -nic
2423 This option is a shortcut for configuring both the on-board (default) guest
2424 NIC hardware and the host network backend in one go. The host backend options
2425 are the same as with the corresponding @option{-netdev} options below.
2426 The guest NIC model can be set with @option{model=@var{modelname}}.
2427 Use @option{model=help} to list the available device types.
2428 The hardware MAC address can be set with @option{mac=@var{macaddr}}.
2430 The following two example do exactly the same, to show how @option{-nic} can
2431 be used to shorten the command line length:
2432 @example
2433 @value{qemu_system} -netdev user,id=n1,ipv6=off -device e1000,netdev=n1,mac=52:54:98:76:54:32
2434 @value{qemu_system} -nic user,ipv6=off,model=e1000,mac=52:54:98:76:54:32
2435 @end example
2437 @item -nic none
2438 Indicate that no network devices should be configured. It is used to override
2439 the default configuration (default NIC with ``user'' host network backend)
2440 which is activated if no other networking options are provided.
2442 @item -netdev user,id=@var{id}[,@var{option}][,@var{option}][,...]
2443 @findex -netdev
2444 Configure user mode host network backend which requires no administrator
2445 privilege to run. Valid options are:
2447 @table @option
2448 @item id=@var{id}
2449 Assign symbolic name for use in monitor commands.
2451 @item ipv4=on|off and ipv6=on|off
2452 Specify that either IPv4 or IPv6 must be enabled. If neither is specified
2453 both protocols are enabled.
2455 @item net=@var{addr}[/@var{mask}]
2456 Set IP network address the guest will see. Optionally specify the netmask,
2457 either in the form a.b.c.d or as number of valid top-most bits. Default is
2458 10.0.2.0/24.
2460 @item host=@var{addr}
2461 Specify the guest-visible address of the host. Default is the 2nd IP in the
2462 guest network, i.e. x.x.x.2.
2464 @item ipv6-net=@var{addr}[/@var{int}]
2465 Set IPv6 network address the guest will see (default is fec0::/64). The
2466 network prefix is given in the usual hexadecimal IPv6 address
2467 notation. The prefix size is optional, and is given as the number of
2468 valid top-most bits (default is 64).
2470 @item ipv6-host=@var{addr}
2471 Specify the guest-visible IPv6 address of the host. Default is the 2nd IPv6 in
2472 the guest network, i.e. xxxx::2.
2474 @item restrict=on|off
2475 If this option is enabled, the guest will be isolated, i.e. it will not be
2476 able to contact the host and no guest IP packets will be routed over the host
2477 to the outside. This option does not affect any explicitly set forwarding rules.
2479 @item hostname=@var{name}
2480 Specifies the client hostname reported by the built-in DHCP server.
2482 @item dhcpstart=@var{addr}
2483 Specify the first of the 16 IPs the built-in DHCP server can assign. Default
2484 is the 15th to 31st IP in the guest network, i.e. x.x.x.15 to x.x.x.31.
2486 @item dns=@var{addr}
2487 Specify the guest-visible address of the virtual nameserver. The address must
2488 be different from the host address. Default is the 3rd IP in the guest network,
2489 i.e. x.x.x.3.
2491 @item ipv6-dns=@var{addr}
2492 Specify the guest-visible address of the IPv6 virtual nameserver. The address
2493 must be different from the host address. Default is the 3rd IP in the guest
2494 network, i.e. xxxx::3.
2496 @item dnssearch=@var{domain}
2497 Provides an entry for the domain-search list sent by the built-in
2498 DHCP server. More than one domain suffix can be transmitted by specifying
2499 this option multiple times. If supported, this will cause the guest to
2500 automatically try to append the given domain suffix(es) in case a domain name
2501 can not be resolved.
2503 Example:
2504 @example
2505 @value{qemu_system} -nic user,dnssearch=mgmt.example.org,dnssearch=example.org
2506 @end example
2508 @item domainname=@var{domain}
2509 Specifies the client domain name reported by the built-in DHCP server.
2511 @item tftp=@var{dir}
2512 When using the user mode network stack, activate a built-in TFTP
2513 server. The files in @var{dir} will be exposed as the root of a TFTP server.
2514 The TFTP client on the guest must be configured in binary mode (use the command
2515 @code{bin} of the Unix TFTP client).
2517 @item tftp-server-name=@var{name}
2518 In BOOTP reply, broadcast @var{name} as the "TFTP server name" (RFC2132 option
2519 66). This can be used to advise the guest to load boot files or configurations
2520 from a different server than the host address.
2522 @item bootfile=@var{file}
2523 When using the user mode network stack, broadcast @var{file} as the BOOTP
2524 filename. In conjunction with @option{tftp}, this can be used to network boot
2525 a guest from a local directory.
2527 Example (using pxelinux):
2528 @example
2529 @value{qemu_system} -hda linux.img -boot n -device e1000,netdev=n1 \
2530 -netdev user,id=n1,tftp=/path/to/tftp/files,bootfile=/pxelinux.0
2531 @end example
2533 @item smb=@var{dir}[,smbserver=@var{addr}]
2534 When using the user mode network stack, activate a built-in SMB
2535 server so that Windows OSes can access to the host files in @file{@var{dir}}
2536 transparently. The IP address of the SMB server can be set to @var{addr}. By
2537 default the 4th IP in the guest network is used, i.e. x.x.x.4.
2539 In the guest Windows OS, the line:
2540 @example
2541 10.0.2.4 smbserver
2542 @end example
2543 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
2544 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
2546 Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
2548 Note that a SAMBA server must be installed on the host OS.
2550 @item hostfwd=[tcp|udp]:[@var{hostaddr}]:@var{hostport}-[@var{guestaddr}]:@var{guestport}
2551 Redirect incoming TCP or UDP connections to the host port @var{hostport} to
2552 the guest IP address @var{guestaddr} on guest port @var{guestport}. If
2553 @var{guestaddr} is not specified, its value is x.x.x.15 (default first address
2554 given by the built-in DHCP server). By specifying @var{hostaddr}, the rule can
2555 be bound to a specific host interface. If no connection type is set, TCP is
2556 used. This option can be given multiple times.
2558 For example, to redirect host X11 connection from screen 1 to guest
2559 screen 0, use the following:
2561 @example
2562 # on the host
2563 @value{qemu_system} -nic user,hostfwd=tcp:127.0.0.1:6001-:6000
2564 # this host xterm should open in the guest X11 server
2565 xterm -display :1
2566 @end example
2568 To redirect telnet connections from host port 5555 to telnet port on
2569 the guest, use the following:
2571 @example
2572 # on the host
2573 @value{qemu_system} -nic user,hostfwd=tcp::5555-:23
2574 telnet localhost 5555
2575 @end example
2577 Then when you use on the host @code{telnet localhost 5555}, you
2578 connect to the guest telnet server.
2580 @item guestfwd=[tcp]:@var{server}:@var{port}-@var{dev}
2581 @itemx guestfwd=[tcp]:@var{server}:@var{port}-@var{cmd:command}
2582 Forward guest TCP connections to the IP address @var{server} on port @var{port}
2583 to the character device @var{dev} or to a program executed by @var{cmd:command}
2584 which gets spawned for each connection. This option can be given multiple times.
2586 You can either use a chardev directly and have that one used throughout QEMU's
2587 lifetime, like in the following example:
2589 @example
2590 # open 10.10.1.1:4321 on bootup, connect 10.0.2.100:1234 to it whenever
2591 # the guest accesses it
2592 @value{qemu_system} -nic user,guestfwd=tcp:10.0.2.100:1234-tcp:10.10.1.1:4321
2593 @end example
2595 Or you can execute a command on every TCP connection established by the guest,
2596 so that QEMU behaves similar to an inetd process for that virtual server:
2598 @example
2599 # call "netcat 10.10.1.1 4321" on every TCP connection to 10.0.2.100:1234
2600 # and connect the TCP stream to its stdin/stdout
2601 @value{qemu_system} -nic 'user,id=n1,guestfwd=tcp:10.0.2.100:1234-cmd:netcat 10.10.1.1 4321'
2602 @end example
2604 @end table
2606 @item -netdev tap,id=@var{id}[,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}][,br=@var{bridge}][,helper=@var{helper}]
2607 Configure a host TAP network backend with ID @var{id}.
2609 Use the network script @var{file} to configure it and the network script
2610 @var{dfile} to deconfigure it. If @var{name} is not provided, the OS
2611 automatically provides one. The default network configure script is
2612 @file{/etc/qemu-ifup} and the default network deconfigure script is
2613 @file{/etc/qemu-ifdown}. Use @option{script=no} or @option{downscript=no}
2614 to disable script execution.
2616 If running QEMU as an unprivileged user, use the network helper
2617 @var{helper} to configure the TAP interface and attach it to the bridge.
2618 The default network helper executable is @file{/path/to/qemu-bridge-helper}
2619 and the default bridge device is @file{br0}.
2621 @option{fd}=@var{h} can be used to specify the handle of an already
2622 opened host TAP interface.
2624 Examples:
2626 @example
2627 #launch a QEMU instance with the default network script
2628 @value{qemu_system} linux.img -nic tap
2629 @end example
2631 @example
2632 #launch a QEMU instance with two NICs, each one connected
2633 #to a TAP device
2634 @value{qemu_system} linux.img \
2635 -netdev tap,id=nd0,ifname=tap0 -device e1000,netdev=nd0 \
2636 -netdev tap,id=nd1,ifname=tap1 -device rtl8139,netdev=nd1
2637 @end example
2639 @example
2640 #launch a QEMU instance with the default network helper to
2641 #connect a TAP device to bridge br0
2642 @value{qemu_system} linux.img -device virtio-net-pci,netdev=n1 \
2643 -netdev tap,id=n1,"helper=/path/to/qemu-bridge-helper"
2644 @end example
2646 @item -netdev bridge,id=@var{id}[,br=@var{bridge}][,helper=@var{helper}]
2647 Connect a host TAP network interface to a host bridge device.
2649 Use the network helper @var{helper} to configure the TAP interface and
2650 attach it to the bridge. The default network helper executable is
2651 @file{/path/to/qemu-bridge-helper} and the default bridge
2652 device is @file{br0}.
2654 Examples:
2656 @example
2657 #launch a QEMU instance with the default network helper to
2658 #connect a TAP device to bridge br0
2659 @value{qemu_system} linux.img -netdev bridge,id=n1 -device virtio-net,netdev=n1
2660 @end example
2662 @example
2663 #launch a QEMU instance with the default network helper to
2664 #connect a TAP device to bridge qemubr0
2665 @value{qemu_system} linux.img -netdev bridge,br=qemubr0,id=n1 -device virtio-net,netdev=n1
2666 @end example
2668 @item -netdev socket,id=@var{id}[,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
2670 This host network backend can be used to connect the guest's network to
2671 another QEMU virtual machine using a TCP socket connection. If @option{listen}
2672 is specified, QEMU waits for incoming connections on @var{port}
2673 (@var{host} is optional). @option{connect} is used to connect to
2674 another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
2675 specifies an already opened TCP socket.
2677 Example:
2678 @example
2679 # launch a first QEMU instance
2680 @value{qemu_system} linux.img \
2681 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2682 -netdev socket,id=n1,listen=:1234
2683 # connect the network of this instance to the network of the first instance
2684 @value{qemu_system} linux.img \
2685 -device e1000,netdev=n2,mac=52:54:00:12:34:57 \
2686 -netdev socket,id=n2,connect=127.0.0.1:1234
2687 @end example
2689 @item -netdev socket,id=@var{id}[,fd=@var{h}][,mcast=@var{maddr}:@var{port}[,localaddr=@var{addr}]]
2691 Configure a socket host network backend to share the guest's network traffic
2692 with another QEMU virtual machines using a UDP multicast socket, effectively
2693 making a bus for every QEMU with same multicast address @var{maddr} and @var{port}.
2694 NOTES:
2695 @enumerate
2696 @item
2697 Several QEMU can be running on different hosts and share same bus (assuming
2698 correct multicast setup for these hosts).
2699 @item
2700 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
2701 @url{http://user-mode-linux.sf.net}.
2702 @item
2703 Use @option{fd=h} to specify an already opened UDP multicast socket.
2704 @end enumerate
2706 Example:
2707 @example
2708 # launch one QEMU instance
2709 @value{qemu_system} linux.img \
2710 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2711 -netdev socket,id=n1,mcast=230.0.0.1:1234
2712 # launch another QEMU instance on same "bus"
2713 @value{qemu_system} linux.img \
2714 -device e1000,netdev=n2,mac=52:54:00:12:34:57 \
2715 -netdev socket,id=n2,mcast=230.0.0.1:1234
2716 # launch yet another QEMU instance on same "bus"
2717 @value{qemu_system} linux.img \
2718 -device e1000,netdev=n3,mac=52:54:00:12:34:58 \
2719 -netdev socket,id=n3,mcast=230.0.0.1:1234
2720 @end example
2722 Example (User Mode Linux compat.):
2723 @example
2724 # launch QEMU instance (note mcast address selected is UML's default)
2725 @value{qemu_system} linux.img \
2726 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2727 -netdev socket,id=n1,mcast=239.192.168.1:1102
2728 # launch UML
2729 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
2730 @end example
2732 Example (send packets from host's 1.2.3.4):
2733 @example
2734 @value{qemu_system} linux.img \
2735 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2736 -netdev socket,id=n1,mcast=239.192.168.1:1102,localaddr=1.2.3.4
2737 @end example
2739 @item -netdev l2tpv3,id=@var{id},src=@var{srcaddr},dst=@var{dstaddr}[,srcport=@var{srcport}][,dstport=@var{dstport}],txsession=@var{txsession}[,rxsession=@var{rxsession}][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=@var{txcookie}][,rxcookie=@var{rxcookie}][,offset=@var{offset}]
2740 Configure a L2TPv3 pseudowire host network backend. L2TPv3 (RFC3391) is a
2741 popular protocol to transport Ethernet (and other Layer 2) data frames between
2742 two systems. It is present in routers, firewalls and the Linux kernel
2743 (from version 3.3 onwards).
2745 This transport allows a VM to communicate to another VM, router or firewall directly.
2747 @table @option
2748 @item src=@var{srcaddr}
2749 source address (mandatory)
2750 @item dst=@var{dstaddr}
2751 destination address (mandatory)
2752 @item udp
2753 select udp encapsulation (default is ip).
2754 @item srcport=@var{srcport}
2755 source udp port.
2756 @item dstport=@var{dstport}
2757 destination udp port.
2758 @item ipv6
2759 force v6, otherwise defaults to v4.
2760 @item rxcookie=@var{rxcookie}
2761 @itemx txcookie=@var{txcookie}
2762 Cookies are a weak form of security in the l2tpv3 specification.
2763 Their function is mostly to prevent misconfiguration. By default they are 32
2764 bit.
2765 @item cookie64
2766 Set cookie size to 64 bit instead of the default 32
2767 @item counter=off
2768 Force a 'cut-down' L2TPv3 with no counter as in
2769 draft-mkonstan-l2tpext-keyed-ipv6-tunnel-00
2770 @item pincounter=on
2771 Work around broken counter handling in peer. This may also help on
2772 networks which have packet reorder.
2773 @item offset=@var{offset}
2774 Add an extra offset between header and data
2775 @end table
2777 For example, to attach a VM running on host 4.3.2.1 via L2TPv3 to the bridge br-lan
2778 on the remote Linux host 1.2.3.4:
2779 @example
2780 # Setup tunnel on linux host using raw ip as encapsulation
2781 # on 1.2.3.4
2782 ip l2tp add tunnel remote 4.3.2.1 local 1.2.3.4 tunnel_id 1 peer_tunnel_id 1 \
2783 encap udp udp_sport 16384 udp_dport 16384
2784 ip l2tp add session tunnel_id 1 name vmtunnel0 session_id \
2785 0xFFFFFFFF peer_session_id 0xFFFFFFFF
2786 ifconfig vmtunnel0 mtu 1500
2787 ifconfig vmtunnel0 up
2788 brctl addif br-lan vmtunnel0
2791 # on 4.3.2.1
2792 # launch QEMU instance - if your network has reorder or is very lossy add ,pincounter
2794 @value{qemu_system} linux.img -device e1000,netdev=n1 \
2795 -netdev l2tpv3,id=n1,src=4.2.3.1,dst=1.2.3.4,udp,srcport=16384,dstport=16384,rxsession=0xffffffff,txsession=0xffffffff,counter
2797 @end example
2799 @item -netdev vde,id=@var{id}[,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
2800 Configure VDE backend to connect to PORT @var{n} of a vde switch running on host and
2801 listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
2802 and MODE @var{octalmode} to change default ownership and permissions for
2803 communication port. This option is only available if QEMU has been compiled
2804 with vde support enabled.
2806 Example:
2807 @example
2808 # launch vde switch
2809 vde_switch -F -sock /tmp/myswitch
2810 # launch QEMU instance
2811 @value{qemu_system} linux.img -nic vde,sock=/tmp/myswitch
2812 @end example
2814 @item -netdev vhost-user,chardev=@var{id}[,vhostforce=on|off][,queues=n]
2816 Establish a vhost-user netdev, backed by a chardev @var{id}. The chardev should
2817 be a unix domain socket backed one. The vhost-user uses a specifically defined
2818 protocol to pass vhost ioctl replacement messages to an application on the other
2819 end of the socket. On non-MSIX guests, the feature can be forced with
2820 @var{vhostforce}. Use 'queues=@var{n}' to specify the number of queues to
2821 be created for multiqueue vhost-user.
2823 Example:
2824 @example
2825 qemu -m 512 -object memory-backend-file,id=mem,size=512M,mem-path=/hugetlbfs,share=on \
2826 -numa node,memdev=mem \
2827 -chardev socket,id=chr0,path=/path/to/socket \
2828 -netdev type=vhost-user,id=net0,chardev=chr0 \
2829 -device virtio-net-pci,netdev=net0
2830 @end example
2832 @item -netdev hubport,id=@var{id},hubid=@var{hubid}[,netdev=@var{nd}]
2834 Create a hub port on the emulated hub with ID @var{hubid}.
2836 The hubport netdev lets you connect a NIC to a QEMU emulated hub instead of a
2837 single netdev. Alternatively, you can also connect the hubport to another
2838 netdev with ID @var{nd} by using the @option{netdev=@var{nd}} option.
2840 @item -net nic[,netdev=@var{nd}][,macaddr=@var{mac}][,model=@var{type}] [,name=@var{name}][,addr=@var{addr}][,vectors=@var{v}]
2841 @findex -net
2842 Legacy option to configure or create an on-board (or machine default) Network
2843 Interface Card(NIC) and connect it either to the emulated hub with ID 0 (i.e.
2844 the default hub), or to the netdev @var{nd}.
2845 If @var{model} is omitted, then the default NIC model associated with
2846 the machine type is used. Note that the default NIC model may change in
2847 future QEMU releases, so it is highly recommended to always specify a model.
2848 Optionally, the MAC address can be changed to @var{mac}, the device
2849 address set to @var{addr} (PCI cards only), and a @var{name} can be
2850 assigned for use in monitor commands.
2851 Optionally, for PCI cards, you can specify the number @var{v} of MSI-X vectors
2852 that the card should have; this option currently only affects virtio cards; set
2853 @var{v} = 0 to disable MSI-X. If no @option{-net} option is specified, a single
2854 NIC is created. QEMU can emulate several different models of network card.
2855 Use @code{-net nic,model=help} for a list of available devices for your target.
2857 @item -net user|tap|bridge|socket|l2tpv3|vde[,...][,name=@var{name}]
2858 Configure a host network backend (with the options corresponding to the same
2859 @option{-netdev} option) and connect it to the emulated hub 0 (the default
2860 hub). Use @var{name} to specify the name of the hub port.
2861 ETEXI
2863 STEXI
2864 @end table
2865 ETEXI
2866 DEFHEADING()
2868 DEFHEADING(Character device options:)
2870 DEF("chardev", HAS_ARG, QEMU_OPTION_chardev,
2871 "-chardev help\n"
2872 "-chardev null,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2873 "-chardev socket,id=id[,host=host],port=port[,to=to][,ipv4][,ipv6][,nodelay][,reconnect=seconds]\n"
2874 " [,server][,nowait][,telnet][,websocket][,reconnect=seconds][,mux=on|off]\n"
2875 " [,logfile=PATH][,logappend=on|off][,tls-creds=ID][,tls-authz=ID] (tcp)\n"
2876 "-chardev socket,id=id,path=path[,server][,nowait][,telnet][,websocket][,reconnect=seconds]\n"
2877 " [,mux=on|off][,logfile=PATH][,logappend=on|off] (unix)\n"
2878 "-chardev udp,id=id[,host=host],port=port[,localaddr=localaddr]\n"
2879 " [,localport=localport][,ipv4][,ipv6][,mux=on|off]\n"
2880 " [,logfile=PATH][,logappend=on|off]\n"
2881 "-chardev msmouse,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2882 "-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]\n"
2883 " [,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2884 "-chardev ringbuf,id=id[,size=size][,logfile=PATH][,logappend=on|off]\n"
2885 "-chardev file,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2886 "-chardev pipe,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2887 #ifdef _WIN32
2888 "-chardev console,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2889 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2890 #else
2891 "-chardev pty,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2892 "-chardev stdio,id=id[,mux=on|off][,signal=on|off][,logfile=PATH][,logappend=on|off]\n"
2893 #endif
2894 #ifdef CONFIG_BRLAPI
2895 "-chardev braille,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2896 #endif
2897 #if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
2898 || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__)
2899 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2900 "-chardev tty,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2901 #endif
2902 #if defined(__linux__) || defined(__FreeBSD__) || defined(__DragonFly__)
2903 "-chardev parallel,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2904 "-chardev parport,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2905 #endif
2906 #if defined(CONFIG_SPICE)
2907 "-chardev spicevmc,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2908 "-chardev spiceport,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2909 #endif
2910 , QEMU_ARCH_ALL
2913 STEXI
2915 The general form of a character device option is:
2916 @table @option
2917 @item -chardev @var{backend},id=@var{id}[,mux=on|off][,@var{options}]
2918 @findex -chardev
2919 Backend is one of:
2920 @option{null},
2921 @option{socket},
2922 @option{udp},
2923 @option{msmouse},
2924 @option{vc},
2925 @option{ringbuf},
2926 @option{file},
2927 @option{pipe},
2928 @option{console},
2929 @option{serial},
2930 @option{pty},
2931 @option{stdio},
2932 @option{braille},
2933 @option{tty},
2934 @option{parallel},
2935 @option{parport},
2936 @option{spicevmc},
2937 @option{spiceport}.
2938 The specific backend will determine the applicable options.
2940 Use @code{-chardev help} to print all available chardev backend types.
2942 All devices must have an id, which can be any string up to 127 characters long.
2943 It is used to uniquely identify this device in other command line directives.
2945 A character device may be used in multiplexing mode by multiple front-ends.
2946 Specify @option{mux=on} to enable this mode.
2947 A multiplexer is a "1:N" device, and here the "1" end is your specified chardev
2948 backend, and the "N" end is the various parts of QEMU that can talk to a chardev.
2949 If you create a chardev with @option{id=myid} and @option{mux=on}, QEMU will
2950 create a multiplexer with your specified ID, and you can then configure multiple
2951 front ends to use that chardev ID for their input/output. Up to four different
2952 front ends can be connected to a single multiplexed chardev. (Without
2953 multiplexing enabled, a chardev can only be used by a single front end.)
2954 For instance you could use this to allow a single stdio chardev to be used by
2955 two serial ports and the QEMU monitor:
2957 @example
2958 -chardev stdio,mux=on,id=char0 \
2959 -mon chardev=char0,mode=readline \
2960 -serial chardev:char0 \
2961 -serial chardev:char0
2962 @end example
2964 You can have more than one multiplexer in a system configuration; for instance
2965 you could have a TCP port multiplexed between UART 0 and UART 1, and stdio
2966 multiplexed between the QEMU monitor and a parallel port:
2968 @example
2969 -chardev stdio,mux=on,id=char0 \
2970 -mon chardev=char0,mode=readline \
2971 -parallel chardev:char0 \
2972 -chardev tcp,...,mux=on,id=char1 \
2973 -serial chardev:char1 \
2974 -serial chardev:char1
2975 @end example
2977 When you're using a multiplexed character device, some escape sequences are
2978 interpreted in the input. @xref{mux_keys, Keys in the character backend
2979 multiplexer}.
2981 Note that some other command line options may implicitly create multiplexed
2982 character backends; for instance @option{-serial mon:stdio} creates a
2983 multiplexed stdio backend connected to the serial port and the QEMU monitor,
2984 and @option{-nographic} also multiplexes the console and the monitor to
2985 stdio.
2987 There is currently no support for multiplexing in the other direction
2988 (where a single QEMU front end takes input and output from multiple chardevs).
2990 Every backend supports the @option{logfile} option, which supplies the path
2991 to a file to record all data transmitted via the backend. The @option{logappend}
2992 option controls whether the log file will be truncated or appended to when
2993 opened.
2995 @end table
2997 The available backends are:
2999 @table @option
3000 @item -chardev null,id=@var{id}
3001 A void device. This device will not emit any data, and will drop any data it
3002 receives. The null backend does not take any options.
3004 @item -chardev socket,id=@var{id}[,@var{TCP options} or @var{unix options}][,server][,nowait][,telnet][,websocket][,reconnect=@var{seconds}][,tls-creds=@var{id}][,tls-authz=@var{id}]
3006 Create a two-way stream socket, which can be either a TCP or a unix socket. A
3007 unix socket will be created if @option{path} is specified. Behaviour is
3008 undefined if TCP options are specified for a unix socket.
3010 @option{server} specifies that the socket shall be a listening socket.
3012 @option{nowait} specifies that QEMU should not block waiting for a client to
3013 connect to a listening socket.
3015 @option{telnet} specifies that traffic on the socket should interpret telnet
3016 escape sequences.
3018 @option{websocket} specifies that the socket uses WebSocket protocol for
3019 communication.
3021 @option{reconnect} sets the timeout for reconnecting on non-server sockets when
3022 the remote end goes away. qemu will delay this many seconds and then attempt
3023 to reconnect. Zero disables reconnecting, and is the default.
3025 @option{tls-creds} requests enablement of the TLS protocol for encryption,
3026 and specifies the id of the TLS credentials to use for the handshake. The
3027 credentials must be previously created with the @option{-object tls-creds}
3028 argument.
3030 @option{tls-auth} provides the ID of the QAuthZ authorization object against
3031 which the client's x509 distinguished name will be validated. This object is
3032 only resolved at time of use, so can be deleted and recreated on the fly
3033 while the chardev server is active. If missing, it will default to denying
3034 access.
3036 TCP and unix socket options are given below:
3038 @table @option
3040 @item TCP options: port=@var{port}[,host=@var{host}][,to=@var{to}][,ipv4][,ipv6][,nodelay]
3042 @option{host} for a listening socket specifies the local address to be bound.
3043 For a connecting socket species the remote host to connect to. @option{host} is
3044 optional for listening sockets. If not specified it defaults to @code{0.0.0.0}.
3046 @option{port} for a listening socket specifies the local port to be bound. For a
3047 connecting socket specifies the port on the remote host to connect to.
3048 @option{port} can be given as either a port number or a service name.
3049 @option{port} is required.
3051 @option{to} is only relevant to listening sockets. If it is specified, and
3052 @option{port} cannot be bound, QEMU will attempt to bind to subsequent ports up
3053 to and including @option{to} until it succeeds. @option{to} must be specified
3054 as a port number.
3056 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
3057 If neither is specified the socket may use either protocol.
3059 @option{nodelay} disables the Nagle algorithm.
3061 @item unix options: path=@var{path}
3063 @option{path} specifies the local path of the unix socket. @option{path} is
3064 required.
3066 @end table
3068 @item -chardev udp,id=@var{id}[,host=@var{host}],port=@var{port}[,localaddr=@var{localaddr}][,localport=@var{localport}][,ipv4][,ipv6]
3070 Sends all traffic from the guest to a remote host over UDP.
3072 @option{host} specifies the remote host to connect to. If not specified it
3073 defaults to @code{localhost}.
3075 @option{port} specifies the port on the remote host to connect to. @option{port}
3076 is required.
3078 @option{localaddr} specifies the local address to bind to. If not specified it
3079 defaults to @code{0.0.0.0}.
3081 @option{localport} specifies the local port to bind to. If not specified any
3082 available local port will be used.
3084 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
3085 If neither is specified the device may use either protocol.
3087 @item -chardev msmouse,id=@var{id}
3089 Forward QEMU's emulated msmouse events to the guest. @option{msmouse} does not
3090 take any options.
3092 @item -chardev vc,id=@var{id}[[,width=@var{width}][,height=@var{height}]][[,cols=@var{cols}][,rows=@var{rows}]]
3094 Connect to a QEMU text console. @option{vc} may optionally be given a specific
3095 size.
3097 @option{width} and @option{height} specify the width and height respectively of
3098 the console, in pixels.
3100 @option{cols} and @option{rows} specify that the console be sized to fit a text
3101 console with the given dimensions.
3103 @item -chardev ringbuf,id=@var{id}[,size=@var{size}]
3105 Create a ring buffer with fixed size @option{size}.
3106 @var{size} must be a power of two and defaults to @code{64K}.
3108 @item -chardev file,id=@var{id},path=@var{path}
3110 Log all traffic received from the guest to a file.
3112 @option{path} specifies the path of the file to be opened. This file will be
3113 created if it does not already exist, and overwritten if it does. @option{path}
3114 is required.
3116 @item -chardev pipe,id=@var{id},path=@var{path}
3118 Create a two-way connection to the guest. The behaviour differs slightly between
3119 Windows hosts and other hosts:
3121 On Windows, a single duplex pipe will be created at
3122 @file{\\.pipe\@option{path}}.
3124 On other hosts, 2 pipes will be created called @file{@option{path}.in} and
3125 @file{@option{path}.out}. Data written to @file{@option{path}.in} will be
3126 received by the guest. Data written by the guest can be read from
3127 @file{@option{path}.out}. QEMU will not create these fifos, and requires them to
3128 be present.
3130 @option{path} forms part of the pipe path as described above. @option{path} is
3131 required.
3133 @item -chardev console,id=@var{id}
3135 Send traffic from the guest to QEMU's standard output. @option{console} does not
3136 take any options.
3138 @option{console} is only available on Windows hosts.
3140 @item -chardev serial,id=@var{id},path=@option{path}
3142 Send traffic from the guest to a serial device on the host.
3144 On Unix hosts serial will actually accept any tty device,
3145 not only serial lines.
3147 @option{path} specifies the name of the serial device to open.
3149 @item -chardev pty,id=@var{id}
3151 Create a new pseudo-terminal on the host and connect to it. @option{pty} does
3152 not take any options.
3154 @option{pty} is not available on Windows hosts.
3156 @item -chardev stdio,id=@var{id}[,signal=on|off]
3157 Connect to standard input and standard output of the QEMU process.
3159 @option{signal} controls if signals are enabled on the terminal, that includes
3160 exiting QEMU with the key sequence @key{Control-c}. This option is enabled by
3161 default, use @option{signal=off} to disable it.
3163 @item -chardev braille,id=@var{id}
3165 Connect to a local BrlAPI server. @option{braille} does not take any options.
3167 @item -chardev tty,id=@var{id},path=@var{path}
3169 @option{tty} is only available on Linux, Sun, FreeBSD, NetBSD, OpenBSD and
3170 DragonFlyBSD hosts. It is an alias for @option{serial}.
3172 @option{path} specifies the path to the tty. @option{path} is required.
3174 @item -chardev parallel,id=@var{id},path=@var{path}
3175 @itemx -chardev parport,id=@var{id},path=@var{path}
3177 @option{parallel} is only available on Linux, FreeBSD and DragonFlyBSD hosts.
3179 Connect to a local parallel port.
3181 @option{path} specifies the path to the parallel port device. @option{path} is
3182 required.
3184 @item -chardev spicevmc,id=@var{id},debug=@var{debug},name=@var{name}
3186 @option{spicevmc} is only available when spice support is built in.
3188 @option{debug} debug level for spicevmc
3190 @option{name} name of spice channel to connect to
3192 Connect to a spice virtual machine channel, such as vdiport.
3194 @item -chardev spiceport,id=@var{id},debug=@var{debug},name=@var{name}
3196 @option{spiceport} is only available when spice support is built in.
3198 @option{debug} debug level for spicevmc
3200 @option{name} name of spice port to connect to
3202 Connect to a spice port, allowing a Spice client to handle the traffic
3203 identified by a name (preferably a fqdn).
3204 ETEXI
3206 STEXI
3207 @end table
3208 ETEXI
3209 DEFHEADING()
3211 #ifdef CONFIG_TPM
3212 DEFHEADING(TPM device options:)
3214 DEF("tpmdev", HAS_ARG, QEMU_OPTION_tpmdev, \
3215 "-tpmdev passthrough,id=id[,path=path][,cancel-path=path]\n"
3216 " use path to provide path to a character device; default is /dev/tpm0\n"
3217 " use cancel-path to provide path to TPM's cancel sysfs entry; if\n"
3218 " not provided it will be searched for in /sys/class/misc/tpm?/device\n"
3219 "-tpmdev emulator,id=id,chardev=dev\n"
3220 " configure the TPM device using chardev backend\n",
3221 QEMU_ARCH_ALL)
3222 STEXI
3224 The general form of a TPM device option is:
3225 @table @option
3227 @item -tpmdev @var{backend},id=@var{id}[,@var{options}]
3228 @findex -tpmdev
3230 The specific backend type will determine the applicable options.
3231 The @code{-tpmdev} option creates the TPM backend and requires a
3232 @code{-device} option that specifies the TPM frontend interface model.
3234 Use @code{-tpmdev help} to print all available TPM backend types.
3236 @end table
3238 The available backends are:
3240 @table @option
3242 @item -tpmdev passthrough,id=@var{id},path=@var{path},cancel-path=@var{cancel-path}
3244 (Linux-host only) Enable access to the host's TPM using the passthrough
3245 driver.
3247 @option{path} specifies the path to the host's TPM device, i.e., on
3248 a Linux host this would be @code{/dev/tpm0}.
3249 @option{path} is optional and by default @code{/dev/tpm0} is used.
3251 @option{cancel-path} specifies the path to the host TPM device's sysfs
3252 entry allowing for cancellation of an ongoing TPM command.
3253 @option{cancel-path} is optional and by default QEMU will search for the
3254 sysfs entry to use.
3256 Some notes about using the host's TPM with the passthrough driver:
3258 The TPM device accessed by the passthrough driver must not be
3259 used by any other application on the host.
3261 Since the host's firmware (BIOS/UEFI) has already initialized the TPM,
3262 the VM's firmware (BIOS/UEFI) will not be able to initialize the
3263 TPM again and may therefore not show a TPM-specific menu that would
3264 otherwise allow the user to configure the TPM, e.g., allow the user to
3265 enable/disable or activate/deactivate the TPM.
3266 Further, if TPM ownership is released from within a VM then the host's TPM
3267 will get disabled and deactivated. To enable and activate the
3268 TPM again afterwards, the host has to be rebooted and the user is
3269 required to enter the firmware's menu to enable and activate the TPM.
3270 If the TPM is left disabled and/or deactivated most TPM commands will fail.
3272 To create a passthrough TPM use the following two options:
3273 @example
3274 -tpmdev passthrough,id=tpm0 -device tpm-tis,tpmdev=tpm0
3275 @end example
3276 Note that the @code{-tpmdev} id is @code{tpm0} and is referenced by
3277 @code{tpmdev=tpm0} in the device option.
3279 @item -tpmdev emulator,id=@var{id},chardev=@var{dev}
3281 (Linux-host only) Enable access to a TPM emulator using Unix domain socket based
3282 chardev backend.
3284 @option{chardev} specifies the unique ID of a character device backend that provides connection to the software TPM server.
3286 To create a TPM emulator backend device with chardev socket backend:
3287 @example
3289 -chardev socket,id=chrtpm,path=/tmp/swtpm-sock -tpmdev emulator,id=tpm0,chardev=chrtpm -device tpm-tis,tpmdev=tpm0
3291 @end example
3293 ETEXI
3295 STEXI
3296 @end table
3297 ETEXI
3298 DEFHEADING()
3300 #endif
3302 DEFHEADING(Linux/Multiboot boot specific:)
3303 STEXI
3305 When using these options, you can use a given Linux or Multiboot
3306 kernel without installing it in the disk image. It can be useful
3307 for easier testing of various kernels.
3309 @table @option
3310 ETEXI
3312 DEF("kernel", HAS_ARG, QEMU_OPTION_kernel, \
3313 "-kernel bzImage use 'bzImage' as kernel image\n", QEMU_ARCH_ALL)
3314 STEXI
3315 @item -kernel @var{bzImage}
3316 @findex -kernel
3317 Use @var{bzImage} as kernel image. The kernel can be either a Linux kernel
3318 or in multiboot format.
3319 ETEXI
3321 DEF("append", HAS_ARG, QEMU_OPTION_append, \
3322 "-append cmdline use 'cmdline' as kernel command line\n", QEMU_ARCH_ALL)
3323 STEXI
3324 @item -append @var{cmdline}
3325 @findex -append
3326 Use @var{cmdline} as kernel command line
3327 ETEXI
3329 DEF("initrd", HAS_ARG, QEMU_OPTION_initrd, \
3330 "-initrd file use 'file' as initial ram disk\n", QEMU_ARCH_ALL)
3331 STEXI
3332 @item -initrd @var{file}
3333 @findex -initrd
3334 Use @var{file} as initial ram disk.
3336 @item -initrd "@var{file1} arg=foo,@var{file2}"
3338 This syntax is only available with multiboot.
3340 Use @var{file1} and @var{file2} as modules and pass arg=foo as parameter to the
3341 first module.
3342 ETEXI
3344 DEF("dtb", HAS_ARG, QEMU_OPTION_dtb, \
3345 "-dtb file use 'file' as device tree image\n", QEMU_ARCH_ALL)
3346 STEXI
3347 @item -dtb @var{file}
3348 @findex -dtb
3349 Use @var{file} as a device tree binary (dtb) image and pass it to the kernel
3350 on boot.
3351 ETEXI
3353 STEXI
3354 @end table
3355 ETEXI
3356 DEFHEADING()
3358 DEFHEADING(Debug/Expert options:)
3359 STEXI
3360 @table @option
3361 ETEXI
3363 DEF("fw_cfg", HAS_ARG, QEMU_OPTION_fwcfg,
3364 "-fw_cfg [name=]<name>,file=<file>\n"
3365 " add named fw_cfg entry with contents from file\n"
3366 "-fw_cfg [name=]<name>,string=<str>\n"
3367 " add named fw_cfg entry with contents from string\n",
3368 QEMU_ARCH_ALL)
3369 STEXI
3371 @item -fw_cfg [name=]@var{name},file=@var{file}
3372 @findex -fw_cfg
3373 Add named fw_cfg entry with contents from file @var{file}.
3375 @item -fw_cfg [name=]@var{name},string=@var{str}
3376 Add named fw_cfg entry with contents from string @var{str}.
3378 The terminating NUL character of the contents of @var{str} will not be
3379 included as part of the fw_cfg item data. To insert contents with
3380 embedded NUL characters, you have to use the @var{file} parameter.
3382 The fw_cfg entries are passed by QEMU through to the guest.
3384 Example:
3385 @example
3386 -fw_cfg name=opt/com.mycompany/blob,file=./my_blob.bin
3387 @end example
3388 creates an fw_cfg entry named opt/com.mycompany/blob with contents
3389 from ./my_blob.bin.
3391 ETEXI
3393 DEF("serial", HAS_ARG, QEMU_OPTION_serial, \
3394 "-serial dev redirect the serial port to char device 'dev'\n",
3395 QEMU_ARCH_ALL)
3396 STEXI
3397 @item -serial @var{dev}
3398 @findex -serial
3399 Redirect the virtual serial port to host character device
3400 @var{dev}. The default device is @code{vc} in graphical mode and
3401 @code{stdio} in non graphical mode.
3403 This option can be used several times to simulate up to 4 serial
3404 ports.
3406 Use @code{-serial none} to disable all serial ports.
3408 Available character devices are:
3409 @table @option
3410 @item vc[:@var{W}x@var{H}]
3411 Virtual console. Optionally, a width and height can be given in pixel with
3412 @example
3413 vc:800x600
3414 @end example
3415 It is also possible to specify width or height in characters:
3416 @example
3417 vc:80Cx24C
3418 @end example
3419 @item pty
3420 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
3421 @item none
3422 No device is allocated.
3423 @item null
3424 void device
3425 @item chardev:@var{id}
3426 Use a named character device defined with the @code{-chardev} option.
3427 @item /dev/XXX
3428 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
3429 parameters are set according to the emulated ones.
3430 @item /dev/parport@var{N}
3431 [Linux only, parallel port only] Use host parallel port
3432 @var{N}. Currently SPP and EPP parallel port features can be used.
3433 @item file:@var{filename}
3434 Write output to @var{filename}. No character can be read.
3435 @item stdio
3436 [Unix only] standard input/output
3437 @item pipe:@var{filename}
3438 name pipe @var{filename}
3439 @item COM@var{n}
3440 [Windows only] Use host serial port @var{n}
3441 @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
3442 This implements UDP Net Console.
3443 When @var{remote_host} or @var{src_ip} are not specified
3444 they default to @code{0.0.0.0}.
3445 When not using a specified @var{src_port} a random port is automatically chosen.
3447 If you just want a simple readonly console you can use @code{netcat} or
3448 @code{nc}, by starting QEMU with: @code{-serial udp::4555} and nc as:
3449 @code{nc -u -l -p 4555}. Any time QEMU writes something to that port it
3450 will appear in the netconsole session.
3452 If you plan to send characters back via netconsole or you want to stop
3453 and start QEMU a lot of times, you should have QEMU use the same
3454 source port each time by using something like @code{-serial
3455 udp::4555@@:4556} to QEMU. Another approach is to use a patched
3456 version of netcat which can listen to a TCP port and send and receive
3457 characters via udp. If you have a patched version of netcat which
3458 activates telnet remote echo and single char transfer, then you can
3459 use the following options to set up a netcat redirector to allow
3460 telnet on port 5555 to access the QEMU port.
3461 @table @code
3462 @item QEMU Options:
3463 -serial udp::4555@@:4556
3464 @item netcat options:
3465 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
3466 @item telnet options:
3467 localhost 5555
3468 @end table
3470 @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay][,reconnect=@var{seconds}]
3471 The TCP Net Console has two modes of operation. It can send the serial
3472 I/O to a location or wait for a connection from a location. By default
3473 the TCP Net Console is sent to @var{host} at the @var{port}. If you use
3474 the @var{server} option QEMU will wait for a client socket application
3475 to connect to the port before continuing, unless the @code{nowait}
3476 option was specified. The @code{nodelay} option disables the Nagle buffering
3477 algorithm. The @code{reconnect} option only applies if @var{noserver} is
3478 set, if the connection goes down it will attempt to reconnect at the
3479 given interval. If @var{host} is omitted, 0.0.0.0 is assumed. Only
3480 one TCP connection at a time is accepted. You can use @code{telnet} to
3481 connect to the corresponding character device.
3482 @table @code
3483 @item Example to send tcp console to 192.168.0.2 port 4444
3484 -serial tcp:192.168.0.2:4444
3485 @item Example to listen and wait on port 4444 for connection
3486 -serial tcp::4444,server
3487 @item Example to not wait and listen on ip 192.168.0.100 port 4444
3488 -serial tcp:192.168.0.100:4444,server,nowait
3489 @end table
3491 @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
3492 The telnet protocol is used instead of raw tcp sockets. The options
3493 work the same as if you had specified @code{-serial tcp}. The
3494 difference is that the port acts like a telnet server or client using
3495 telnet option negotiation. This will also allow you to send the
3496 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
3497 sequence. Typically in unix telnet you do it with Control-] and then
3498 type "send break" followed by pressing the enter key.
3500 @item websocket:@var{host}:@var{port},server[,nowait][,nodelay]
3501 The WebSocket protocol is used instead of raw tcp socket. The port acts as
3502 a WebSocket server. Client mode is not supported.
3504 @item unix:@var{path}[,server][,nowait][,reconnect=@var{seconds}]
3505 A unix domain socket is used instead of a tcp socket. The option works the
3506 same as if you had specified @code{-serial tcp} except the unix domain socket
3507 @var{path} is used for connections.
3509 @item mon:@var{dev_string}
3510 This is a special option to allow the monitor to be multiplexed onto
3511 another serial port. The monitor is accessed with key sequence of
3512 @key{Control-a} and then pressing @key{c}.
3513 @var{dev_string} should be any one of the serial devices specified
3514 above. An example to multiplex the monitor onto a telnet server
3515 listening on port 4444 would be:
3516 @table @code
3517 @item -serial mon:telnet::4444,server,nowait
3518 @end table
3519 When the monitor is multiplexed to stdio in this way, Ctrl+C will not terminate
3520 QEMU any more but will be passed to the guest instead.
3522 @item braille
3523 Braille device. This will use BrlAPI to display the braille output on a real
3524 or fake device.
3526 @item msmouse
3527 Three button serial mouse. Configure the guest to use Microsoft protocol.
3528 @end table
3529 ETEXI
3531 DEF("parallel", HAS_ARG, QEMU_OPTION_parallel, \
3532 "-parallel dev redirect the parallel port to char device 'dev'\n",
3533 QEMU_ARCH_ALL)
3534 STEXI
3535 @item -parallel @var{dev}
3536 @findex -parallel
3537 Redirect the virtual parallel port to host device @var{dev} (same
3538 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
3539 be used to use hardware devices connected on the corresponding host
3540 parallel port.
3542 This option can be used several times to simulate up to 3 parallel
3543 ports.
3545 Use @code{-parallel none} to disable all parallel ports.
3546 ETEXI
3548 DEF("monitor", HAS_ARG, QEMU_OPTION_monitor, \
3549 "-monitor dev redirect the monitor to char device 'dev'\n",
3550 QEMU_ARCH_ALL)
3551 STEXI
3552 @item -monitor @var{dev}
3553 @findex -monitor
3554 Redirect the monitor to host device @var{dev} (same devices as the
3555 serial port).
3556 The default device is @code{vc} in graphical mode and @code{stdio} in
3557 non graphical mode.
3558 Use @code{-monitor none} to disable the default monitor.
3559 ETEXI
3560 DEF("qmp", HAS_ARG, QEMU_OPTION_qmp, \
3561 "-qmp dev like -monitor but opens in 'control' mode\n",
3562 QEMU_ARCH_ALL)
3563 STEXI
3564 @item -qmp @var{dev}
3565 @findex -qmp
3566 Like -monitor but opens in 'control' mode.
3567 ETEXI
3568 DEF("qmp-pretty", HAS_ARG, QEMU_OPTION_qmp_pretty, \
3569 "-qmp-pretty dev like -qmp but uses pretty JSON formatting\n",
3570 QEMU_ARCH_ALL)
3571 STEXI
3572 @item -qmp-pretty @var{dev}
3573 @findex -qmp-pretty
3574 Like -qmp but uses pretty JSON formatting.
3575 ETEXI
3577 DEF("mon", HAS_ARG, QEMU_OPTION_mon, \
3578 "-mon [chardev=]name[,mode=readline|control][,pretty[=on|off]]\n", QEMU_ARCH_ALL)
3579 STEXI
3580 @item -mon [chardev=]name[,mode=readline|control][,pretty[=on|off]]
3581 @findex -mon
3582 Setup monitor on chardev @var{name}. @code{pretty} turns on JSON pretty printing
3583 easing human reading and debugging.
3584 ETEXI
3586 DEF("debugcon", HAS_ARG, QEMU_OPTION_debugcon, \
3587 "-debugcon dev redirect the debug console to char device 'dev'\n",
3588 QEMU_ARCH_ALL)
3589 STEXI
3590 @item -debugcon @var{dev}
3591 @findex -debugcon
3592 Redirect the debug console to host device @var{dev} (same devices as the
3593 serial port). The debug console is an I/O port which is typically port
3594 0xe9; writing to that I/O port sends output to this device.
3595 The default device is @code{vc} in graphical mode and @code{stdio} in
3596 non graphical mode.
3597 ETEXI
3599 DEF("pidfile", HAS_ARG, QEMU_OPTION_pidfile, \
3600 "-pidfile file write PID to 'file'\n", QEMU_ARCH_ALL)
3601 STEXI
3602 @item -pidfile @var{file}
3603 @findex -pidfile
3604 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
3605 from a script.
3606 ETEXI
3608 DEF("singlestep", 0, QEMU_OPTION_singlestep, \
3609 "-singlestep always run in singlestep mode\n", QEMU_ARCH_ALL)
3610 STEXI
3611 @item -singlestep
3612 @findex -singlestep
3613 Run the emulation in single step mode.
3614 ETEXI
3616 DEF("preconfig", 0, QEMU_OPTION_preconfig, \
3617 "--preconfig pause QEMU before machine is initialized (experimental)\n",
3618 QEMU_ARCH_ALL)
3619 STEXI
3620 @item --preconfig
3621 @findex --preconfig
3622 Pause QEMU for interactive configuration before the machine is created,
3623 which allows querying and configuring properties that will affect
3624 machine initialization. Use QMP command 'x-exit-preconfig' to exit
3625 the preconfig state and move to the next state (i.e. run guest if -S
3626 isn't used or pause the second time if -S is used). This option is
3627 experimental.
3628 ETEXI
3630 DEF("S", 0, QEMU_OPTION_S, \
3631 "-S freeze CPU at startup (use 'c' to start execution)\n",
3632 QEMU_ARCH_ALL)
3633 STEXI
3634 @item -S
3635 @findex -S
3636 Do not start CPU at startup (you must type 'c' in the monitor).
3637 ETEXI
3639 DEF("realtime", HAS_ARG, QEMU_OPTION_realtime,
3640 "-realtime [mlock=on|off]\n"
3641 " run qemu with realtime features\n"
3642 " mlock=on|off controls mlock support (default: on)\n",
3643 QEMU_ARCH_ALL)
3644 STEXI
3645 @item -realtime mlock=on|off
3646 @findex -realtime
3647 Run qemu with realtime features.
3648 mlocking qemu and guest memory can be enabled via @option{mlock=on}
3649 (enabled by default).
3650 ETEXI
3652 DEF("overcommit", HAS_ARG, QEMU_OPTION_overcommit,
3653 "-overcommit [mem-lock=on|off][cpu-pm=on|off]\n"
3654 " run qemu with overcommit hints\n"
3655 " mem-lock=on|off controls memory lock support (default: off)\n"
3656 " cpu-pm=on|off controls cpu power management (default: off)\n",
3657 QEMU_ARCH_ALL)
3658 STEXI
3659 @item -overcommit mem-lock=on|off
3660 @item -overcommit cpu-pm=on|off
3661 @findex -overcommit
3662 Run qemu with hints about host resource overcommit. The default is
3663 to assume that host overcommits all resources.
3665 Locking qemu and guest memory can be enabled via @option{mem-lock=on} (disabled
3666 by default). This works when host memory is not overcommitted and reduces the
3667 worst-case latency for guest. This is equivalent to @option{realtime}.
3669 Guest ability to manage power state of host cpus (increasing latency for other
3670 processes on the same host cpu, but decreasing latency for guest) can be
3671 enabled via @option{cpu-pm=on} (disabled by default). This works best when
3672 host CPU is not overcommitted. When used, host estimates of CPU cycle and power
3673 utilization will be incorrect, not taking into account guest idle time.
3674 ETEXI
3676 DEF("gdb", HAS_ARG, QEMU_OPTION_gdb, \
3677 "-gdb dev wait for gdb connection on 'dev'\n", QEMU_ARCH_ALL)
3678 STEXI
3679 @item -gdb @var{dev}
3680 @findex -gdb
3681 Wait for gdb connection on device @var{dev} (@pxref{gdb_usage}). Typical
3682 connections will likely be TCP-based, but also UDP, pseudo TTY, or even
3683 stdio are reasonable use case. The latter is allowing to start QEMU from
3684 within gdb and establish the connection via a pipe:
3685 @example
3686 (gdb) target remote | exec @value{qemu_system} -gdb stdio ...
3687 @end example
3688 ETEXI
3690 DEF("s", 0, QEMU_OPTION_s, \
3691 "-s shorthand for -gdb tcp::" DEFAULT_GDBSTUB_PORT "\n",
3692 QEMU_ARCH_ALL)
3693 STEXI
3694 @item -s
3695 @findex -s
3696 Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234
3697 (@pxref{gdb_usage}).
3698 ETEXI
3700 DEF("d", HAS_ARG, QEMU_OPTION_d, \
3701 "-d item1,... enable logging of specified items (use '-d help' for a list of log items)\n",
3702 QEMU_ARCH_ALL)
3703 STEXI
3704 @item -d @var{item1}[,...]
3705 @findex -d
3706 Enable logging of specified items. Use '-d help' for a list of log items.
3707 ETEXI
3709 DEF("D", HAS_ARG, QEMU_OPTION_D, \
3710 "-D logfile output log to logfile (default stderr)\n",
3711 QEMU_ARCH_ALL)
3712 STEXI
3713 @item -D @var{logfile}
3714 @findex -D
3715 Output log in @var{logfile} instead of to stderr
3716 ETEXI
3718 DEF("dfilter", HAS_ARG, QEMU_OPTION_DFILTER, \
3719 "-dfilter range,.. filter debug output to range of addresses (useful for -d cpu,exec,etc..)\n",
3720 QEMU_ARCH_ALL)
3721 STEXI
3722 @item -dfilter @var{range1}[,...]
3723 @findex -dfilter
3724 Filter debug output to that relevant to a range of target addresses. The filter
3725 spec can be either @var{start}+@var{size}, @var{start}-@var{size} or
3726 @var{start}..@var{end} where @var{start} @var{end} and @var{size} are the
3727 addresses and sizes required. For example:
3728 @example
3729 -dfilter 0x8000..0x8fff,0xffffffc000080000+0x200,0xffffffc000060000-0x1000
3730 @end example
3731 Will dump output for any code in the 0x1000 sized block starting at 0x8000 and
3732 the 0x200 sized block starting at 0xffffffc000080000 and another 0x1000 sized
3733 block starting at 0xffffffc00005f000.
3734 ETEXI
3736 DEF("seed", HAS_ARG, QEMU_OPTION_seed, \
3737 "-seed number seed the pseudo-random number generator\n",
3738 QEMU_ARCH_ALL)
3739 STEXI
3740 @item -seed @var{number}
3741 @findex -seed
3742 Force the guest to use a deterministic pseudo-random number generator, seeded
3743 with @var{number}. This does not affect crypto routines within the host.
3744 ETEXI
3746 DEF("L", HAS_ARG, QEMU_OPTION_L, \
3747 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n",
3748 QEMU_ARCH_ALL)
3749 STEXI
3750 @item -L @var{path}
3751 @findex -L
3752 Set the directory for the BIOS, VGA BIOS and keymaps.
3754 To list all the data directories, use @code{-L help}.
3755 ETEXI
3757 DEF("bios", HAS_ARG, QEMU_OPTION_bios, \
3758 "-bios file set the filename for the BIOS\n", QEMU_ARCH_ALL)
3759 STEXI
3760 @item -bios @var{file}
3761 @findex -bios
3762 Set the filename for the BIOS.
3763 ETEXI
3765 DEF("enable-kvm", 0, QEMU_OPTION_enable_kvm, \
3766 "-enable-kvm enable KVM full virtualization support\n", QEMU_ARCH_ALL)
3767 STEXI
3768 @item -enable-kvm
3769 @findex -enable-kvm
3770 Enable KVM full virtualization support. This option is only available
3771 if KVM support is enabled when compiling.
3772 ETEXI
3774 DEF("xen-domid", HAS_ARG, QEMU_OPTION_xen_domid,
3775 "-xen-domid id specify xen guest domain id\n", QEMU_ARCH_ALL)
3776 DEF("xen-attach", 0, QEMU_OPTION_xen_attach,
3777 "-xen-attach attach to existing xen domain\n"
3778 " libxl will use this when starting QEMU\n",
3779 QEMU_ARCH_ALL)
3780 DEF("xen-domid-restrict", 0, QEMU_OPTION_xen_domid_restrict,
3781 "-xen-domid-restrict restrict set of available xen operations\n"
3782 " to specified domain id. (Does not affect\n"
3783 " xenpv machine type).\n",
3784 QEMU_ARCH_ALL)
3785 STEXI
3786 @item -xen-domid @var{id}
3787 @findex -xen-domid
3788 Specify xen guest domain @var{id} (XEN only).
3789 @item -xen-attach
3790 @findex -xen-attach
3791 Attach to existing xen domain.
3792 libxl will use this when starting QEMU (XEN only).
3793 @findex -xen-domid-restrict
3794 Restrict set of available xen operations to specified domain id (XEN only).
3795 ETEXI
3797 DEF("no-reboot", 0, QEMU_OPTION_no_reboot, \
3798 "-no-reboot exit instead of rebooting\n", QEMU_ARCH_ALL)
3799 STEXI
3800 @item -no-reboot
3801 @findex -no-reboot
3802 Exit instead of rebooting.
3803 ETEXI
3805 DEF("no-shutdown", 0, QEMU_OPTION_no_shutdown, \
3806 "-no-shutdown stop before shutdown\n", QEMU_ARCH_ALL)
3807 STEXI
3808 @item -no-shutdown
3809 @findex -no-shutdown
3810 Don't exit QEMU on guest shutdown, but instead only stop the emulation.
3811 This allows for instance switching to monitor to commit changes to the
3812 disk image.
3813 ETEXI
3815 DEF("loadvm", HAS_ARG, QEMU_OPTION_loadvm, \
3816 "-loadvm [tag|id]\n" \
3817 " start right away with a saved state (loadvm in monitor)\n",
3818 QEMU_ARCH_ALL)
3819 STEXI
3820 @item -loadvm @var{file}
3821 @findex -loadvm
3822 Start right away with a saved state (@code{loadvm} in monitor)
3823 ETEXI
3825 #ifndef _WIN32
3826 DEF("daemonize", 0, QEMU_OPTION_daemonize, \
3827 "-daemonize daemonize QEMU after initializing\n", QEMU_ARCH_ALL)
3828 #endif
3829 STEXI
3830 @item -daemonize
3831 @findex -daemonize
3832 Daemonize the QEMU process after initialization. QEMU will not detach from
3833 standard IO until it is ready to receive connections on any of its devices.
3834 This option is a useful way for external programs to launch QEMU without having
3835 to cope with initialization race conditions.
3836 ETEXI
3838 DEF("option-rom", HAS_ARG, QEMU_OPTION_option_rom, \
3839 "-option-rom rom load a file, rom, into the option ROM space\n",
3840 QEMU_ARCH_ALL)
3841 STEXI
3842 @item -option-rom @var{file}
3843 @findex -option-rom
3844 Load the contents of @var{file} as an option ROM.
3845 This option is useful to load things like EtherBoot.
3846 ETEXI
3848 DEF("rtc", HAS_ARG, QEMU_OPTION_rtc, \
3849 "-rtc [base=utc|localtime|<datetime>][,clock=host|rt|vm][,driftfix=none|slew]\n" \
3850 " set the RTC base and clock, enable drift fix for clock ticks (x86 only)\n",
3851 QEMU_ARCH_ALL)
3853 STEXI
3855 @item -rtc [base=utc|localtime|@var{datetime}][,clock=host|rt|vm][,driftfix=none|slew]
3856 @findex -rtc
3857 Specify @option{base} as @code{utc} or @code{localtime} to let the RTC start at the current
3858 UTC or local time, respectively. @code{localtime} is required for correct date in
3859 MS-DOS or Windows. To start at a specific point in time, provide @var{datetime} in the
3860 format @code{2006-06-17T16:01:21} or @code{2006-06-17}. The default base is UTC.
3862 By default the RTC is driven by the host system time. This allows using of the
3863 RTC as accurate reference clock inside the guest, specifically if the host
3864 time is smoothly following an accurate external reference clock, e.g. via NTP.
3865 If you want to isolate the guest time from the host, you can set @option{clock}
3866 to @code{rt} instead, which provides a host monotonic clock if host support it.
3867 To even prevent the RTC from progressing during suspension, you can set @option{clock}
3868 to @code{vm} (virtual clock). @samp{clock=vm} is recommended especially in
3869 icount mode in order to preserve determinism; however, note that in icount mode
3870 the speed of the virtual clock is variable and can in general differ from the
3871 host clock.
3873 Enable @option{driftfix} (i386 targets only) if you experience time drift problems,
3874 specifically with Windows' ACPI HAL. This option will try to figure out how
3875 many timer interrupts were not processed by the Windows guest and will
3876 re-inject them.
3877 ETEXI
3879 DEF("icount", HAS_ARG, QEMU_OPTION_icount, \
3880 "-icount [shift=N|auto][,align=on|off][,sleep=on|off,rr=record|replay,rrfile=<filename>,rrsnapshot=<snapshot>]\n" \
3881 " enable virtual instruction counter with 2^N clock ticks per\n" \
3882 " instruction, enable aligning the host and virtual clocks\n" \
3883 " or disable real time cpu sleeping\n", QEMU_ARCH_ALL)
3884 STEXI
3885 @item -icount [shift=@var{N}|auto][,rr=record|replay,rrfile=@var{filename},rrsnapshot=@var{snapshot}]
3886 @findex -icount
3887 Enable virtual instruction counter. The virtual cpu will execute one
3888 instruction every 2^@var{N} ns of virtual time. If @code{auto} is specified
3889 then the virtual cpu speed will be automatically adjusted to keep virtual
3890 time within a few seconds of real time.
3892 When the virtual cpu is sleeping, the virtual time will advance at default
3893 speed unless @option{sleep=on|off} is specified.
3894 With @option{sleep=on|off}, the virtual time will jump to the next timer deadline
3895 instantly whenever the virtual cpu goes to sleep mode and will not advance
3896 if no timer is enabled. This behavior give deterministic execution times from
3897 the guest point of view.
3899 Note that while this option can give deterministic behavior, it does not
3900 provide cycle accurate emulation. Modern CPUs contain superscalar out of
3901 order cores with complex cache hierarchies. The number of instructions
3902 executed often has little or no correlation with actual performance.
3904 @option{align=on} will activate the delay algorithm which will try
3905 to synchronise the host clock and the virtual clock. The goal is to
3906 have a guest running at the real frequency imposed by the shift option.
3907 Whenever the guest clock is behind the host clock and if
3908 @option{align=on} is specified then we print a message to the user
3909 to inform about the delay.
3910 Currently this option does not work when @option{shift} is @code{auto}.
3911 Note: The sync algorithm will work for those shift values for which
3912 the guest clock runs ahead of the host clock. Typically this happens
3913 when the shift value is high (how high depends on the host machine).
3915 When @option{rr} option is specified deterministic record/replay is enabled.
3916 Replay log is written into @var{filename} file in record mode and
3917 read from this file in replay mode.
3919 Option rrsnapshot is used to create new vm snapshot named @var{snapshot}
3920 at the start of execution recording. In replay mode this option is used
3921 to load the initial VM state.
3922 ETEXI
3924 DEF("watchdog", HAS_ARG, QEMU_OPTION_watchdog, \
3925 "-watchdog model\n" \
3926 " enable virtual hardware watchdog [default=none]\n",
3927 QEMU_ARCH_ALL)
3928 STEXI
3929 @item -watchdog @var{model}
3930 @findex -watchdog
3931 Create a virtual hardware watchdog device. Once enabled (by a guest
3932 action), the watchdog must be periodically polled by an agent inside
3933 the guest or else the guest will be restarted. Choose a model for
3934 which your guest has drivers.
3936 The @var{model} is the model of hardware watchdog to emulate. Use
3937 @code{-watchdog help} to list available hardware models. Only one
3938 watchdog can be enabled for a guest.
3940 The following models may be available:
3941 @table @option
3942 @item ib700
3943 iBASE 700 is a very simple ISA watchdog with a single timer.
3944 @item i6300esb
3945 Intel 6300ESB I/O controller hub is a much more featureful PCI-based
3946 dual-timer watchdog.
3947 @item diag288
3948 A virtual watchdog for s390x backed by the diagnose 288 hypercall
3949 (currently KVM only).
3950 @end table
3951 ETEXI
3953 DEF("watchdog-action", HAS_ARG, QEMU_OPTION_watchdog_action, \
3954 "-watchdog-action reset|shutdown|poweroff|inject-nmi|pause|debug|none\n" \
3955 " action when watchdog fires [default=reset]\n",
3956 QEMU_ARCH_ALL)
3957 STEXI
3958 @item -watchdog-action @var{action}
3959 @findex -watchdog-action
3961 The @var{action} controls what QEMU will do when the watchdog timer
3962 expires.
3963 The default is
3964 @code{reset} (forcefully reset the guest).
3965 Other possible actions are:
3966 @code{shutdown} (attempt to gracefully shutdown the guest),
3967 @code{poweroff} (forcefully poweroff the guest),
3968 @code{inject-nmi} (inject a NMI into the guest),
3969 @code{pause} (pause the guest),
3970 @code{debug} (print a debug message and continue), or
3971 @code{none} (do nothing).
3973 Note that the @code{shutdown} action requires that the guest responds
3974 to ACPI signals, which it may not be able to do in the sort of
3975 situations where the watchdog would have expired, and thus
3976 @code{-watchdog-action shutdown} is not recommended for production use.
3978 Examples:
3980 @table @code
3981 @item -watchdog i6300esb -watchdog-action pause
3982 @itemx -watchdog ib700
3983 @end table
3984 ETEXI
3986 DEF("echr", HAS_ARG, QEMU_OPTION_echr, \
3987 "-echr chr set terminal escape character instead of ctrl-a\n",
3988 QEMU_ARCH_ALL)
3989 STEXI
3991 @item -echr @var{numeric_ascii_value}
3992 @findex -echr
3993 Change the escape character used for switching to the monitor when using
3994 monitor and serial sharing. The default is @code{0x01} when using the
3995 @code{-nographic} option. @code{0x01} is equal to pressing
3996 @code{Control-a}. You can select a different character from the ascii
3997 control keys where 1 through 26 map to Control-a through Control-z. For
3998 instance you could use the either of the following to change the escape
3999 character to Control-t.
4000 @table @code
4001 @item -echr 0x14
4002 @itemx -echr 20
4003 @end table
4004 ETEXI
4006 DEF("show-cursor", 0, QEMU_OPTION_show_cursor, \
4007 "-show-cursor show cursor\n", QEMU_ARCH_ALL)
4008 STEXI
4009 @item -show-cursor
4010 @findex -show-cursor
4011 Show cursor.
4012 ETEXI
4014 DEF("tb-size", HAS_ARG, QEMU_OPTION_tb_size, \
4015 "-tb-size n set TB size\n", QEMU_ARCH_ALL)
4016 STEXI
4017 @item -tb-size @var{n}
4018 @findex -tb-size
4019 Set TCG translation block cache size. Deprecated, use @samp{-accel tcg,tb-size=@var{n}}
4020 instead.
4021 ETEXI
4023 DEF("incoming", HAS_ARG, QEMU_OPTION_incoming, \
4024 "-incoming tcp:[host]:port[,to=maxport][,ipv4][,ipv6]\n" \
4025 "-incoming rdma:host:port[,ipv4][,ipv6]\n" \
4026 "-incoming unix:socketpath\n" \
4027 " prepare for incoming migration, listen on\n" \
4028 " specified protocol and socket address\n" \
4029 "-incoming fd:fd\n" \
4030 "-incoming exec:cmdline\n" \
4031 " accept incoming migration on given file descriptor\n" \
4032 " or from given external command\n" \
4033 "-incoming defer\n" \
4034 " wait for the URI to be specified via migrate_incoming\n",
4035 QEMU_ARCH_ALL)
4036 STEXI
4037 @item -incoming tcp:[@var{host}]:@var{port}[,to=@var{maxport}][,ipv4][,ipv6]
4038 @itemx -incoming rdma:@var{host}:@var{port}[,ipv4][,ipv6]
4039 @findex -incoming
4040 Prepare for incoming migration, listen on a given tcp port.
4042 @item -incoming unix:@var{socketpath}
4043 Prepare for incoming migration, listen on a given unix socket.
4045 @item -incoming fd:@var{fd}
4046 Accept incoming migration from a given filedescriptor.
4048 @item -incoming exec:@var{cmdline}
4049 Accept incoming migration as an output from specified external command.
4051 @item -incoming defer
4052 Wait for the URI to be specified via migrate_incoming. The monitor can
4053 be used to change settings (such as migration parameters) prior to issuing
4054 the migrate_incoming to allow the migration to begin.
4055 ETEXI
4057 DEF("only-migratable", 0, QEMU_OPTION_only_migratable, \
4058 "-only-migratable allow only migratable devices\n", QEMU_ARCH_ALL)
4059 STEXI
4060 @item -only-migratable
4061 @findex -only-migratable
4062 Only allow migratable devices. Devices will not be allowed to enter an
4063 unmigratable state.
4064 ETEXI
4066 DEF("nodefaults", 0, QEMU_OPTION_nodefaults, \
4067 "-nodefaults don't create default devices\n", QEMU_ARCH_ALL)
4068 STEXI
4069 @item -nodefaults
4070 @findex -nodefaults
4071 Don't create default devices. Normally, QEMU sets the default devices like serial
4072 port, parallel port, virtual console, monitor device, VGA adapter, floppy and
4073 CD-ROM drive and others. The @code{-nodefaults} option will disable all those
4074 default devices.
4075 ETEXI
4077 #ifndef _WIN32
4078 DEF("chroot", HAS_ARG, QEMU_OPTION_chroot, \
4079 "-chroot dir chroot to dir just before starting the VM\n",
4080 QEMU_ARCH_ALL)
4081 #endif
4082 STEXI
4083 @item -chroot @var{dir}
4084 @findex -chroot
4085 Immediately before starting guest execution, chroot to the specified
4086 directory. Especially useful in combination with -runas.
4087 ETEXI
4089 #ifndef _WIN32
4090 DEF("runas", HAS_ARG, QEMU_OPTION_runas, \
4091 "-runas user change to user id user just before starting the VM\n" \
4092 " user can be numeric uid:gid instead\n",
4093 QEMU_ARCH_ALL)
4094 #endif
4095 STEXI
4096 @item -runas @var{user}
4097 @findex -runas
4098 Immediately before starting guest execution, drop root privileges, switching
4099 to the specified user.
4100 ETEXI
4102 DEF("prom-env", HAS_ARG, QEMU_OPTION_prom_env,
4103 "-prom-env variable=value\n"
4104 " set OpenBIOS nvram variables\n",
4105 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
4106 STEXI
4107 @item -prom-env @var{variable}=@var{value}
4108 @findex -prom-env
4109 Set OpenBIOS nvram @var{variable} to given @var{value} (PPC, SPARC only).
4110 ETEXI
4111 DEF("semihosting", 0, QEMU_OPTION_semihosting,
4112 "-semihosting semihosting mode\n",
4113 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
4114 QEMU_ARCH_MIPS | QEMU_ARCH_NIOS2)
4115 STEXI
4116 @item -semihosting
4117 @findex -semihosting
4118 Enable semihosting mode (ARM, M68K, Xtensa, MIPS, Nios II only).
4119 ETEXI
4120 DEF("semihosting-config", HAS_ARG, QEMU_OPTION_semihosting_config,
4121 "-semihosting-config [enable=on|off][,target=native|gdb|auto][,chardev=id][,arg=str[,...]]\n" \
4122 " semihosting configuration\n",
4123 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
4124 QEMU_ARCH_MIPS | QEMU_ARCH_NIOS2)
4125 STEXI
4126 @item -semihosting-config [enable=on|off][,target=native|gdb|auto][,chardev=id][,arg=str[,...]]
4127 @findex -semihosting-config
4128 Enable and configure semihosting (ARM, M68K, Xtensa, MIPS, Nios II only).
4129 @table @option
4130 @item target=@code{native|gdb|auto}
4131 Defines where the semihosting calls will be addressed, to QEMU (@code{native})
4132 or to GDB (@code{gdb}). The default is @code{auto}, which means @code{gdb}
4133 during debug sessions and @code{native} otherwise.
4134 @item chardev=@var{str1}
4135 Send the output to a chardev backend output for native or auto output when not in gdb
4136 @item arg=@var{str1},arg=@var{str2},...
4137 Allows the user to pass input arguments, and can be used multiple times to build
4138 up a list. The old-style @code{-kernel}/@code{-append} method of passing a
4139 command line is still supported for backward compatibility. If both the
4140 @code{--semihosting-config arg} and the @code{-kernel}/@code{-append} are
4141 specified, the former is passed to semihosting as it always takes precedence.
4142 @end table
4143 ETEXI
4144 DEF("old-param", 0, QEMU_OPTION_old_param,
4145 "-old-param old param mode\n", QEMU_ARCH_ARM)
4146 STEXI
4147 @item -old-param
4148 @findex -old-param (ARM)
4149 Old param mode (ARM only).
4150 ETEXI
4152 DEF("sandbox", HAS_ARG, QEMU_OPTION_sandbox, \
4153 "-sandbox on[,obsolete=allow|deny][,elevateprivileges=allow|deny|children]\n" \
4154 " [,spawn=allow|deny][,resourcecontrol=allow|deny]\n" \
4155 " Enable seccomp mode 2 system call filter (default 'off').\n" \
4156 " use 'obsolete' to allow obsolete system calls that are provided\n" \
4157 " by the kernel, but typically no longer used by modern\n" \
4158 " C library implementations.\n" \
4159 " use 'elevateprivileges' to allow or deny QEMU process to elevate\n" \
4160 " its privileges by blacklisting all set*uid|gid system calls.\n" \
4161 " The value 'children' will deny set*uid|gid system calls for\n" \
4162 " main QEMU process but will allow forks and execves to run unprivileged\n" \
4163 " use 'spawn' to avoid QEMU to spawn new threads or processes by\n" \
4164 " blacklisting *fork and execve\n" \
4165 " use 'resourcecontrol' to disable process affinity and schedular priority\n",
4166 QEMU_ARCH_ALL)
4167 STEXI
4168 @item -sandbox @var{arg}[,obsolete=@var{string}][,elevateprivileges=@var{string}][,spawn=@var{string}][,resourcecontrol=@var{string}]
4169 @findex -sandbox
4170 Enable Seccomp mode 2 system call filter. 'on' will enable syscall filtering and 'off' will
4171 disable it. The default is 'off'.
4172 @table @option
4173 @item obsolete=@var{string}
4174 Enable Obsolete system calls
4175 @item elevateprivileges=@var{string}
4176 Disable set*uid|gid system calls
4177 @item spawn=@var{string}
4178 Disable *fork and execve
4179 @item resourcecontrol=@var{string}
4180 Disable process affinity and schedular priority
4181 @end table
4182 ETEXI
4184 DEF("readconfig", HAS_ARG, QEMU_OPTION_readconfig,
4185 "-readconfig <file>\n", QEMU_ARCH_ALL)
4186 STEXI
4187 @item -readconfig @var{file}
4188 @findex -readconfig
4189 Read device configuration from @var{file}. This approach is useful when you want to spawn
4190 QEMU process with many command line options but you don't want to exceed the command line
4191 character limit.
4192 ETEXI
4193 DEF("writeconfig", HAS_ARG, QEMU_OPTION_writeconfig,
4194 "-writeconfig <file>\n"
4195 " read/write config file\n", QEMU_ARCH_ALL)
4196 STEXI
4197 @item -writeconfig @var{file}
4198 @findex -writeconfig
4199 Write device configuration to @var{file}. The @var{file} can be either filename to save
4200 command line and device configuration into file or dash @code{-}) character to print the
4201 output to stdout. This can be later used as input file for @code{-readconfig} option.
4202 ETEXI
4204 DEF("no-user-config", 0, QEMU_OPTION_nouserconfig,
4205 "-no-user-config\n"
4206 " do not load default user-provided config files at startup\n",
4207 QEMU_ARCH_ALL)
4208 STEXI
4209 @item -no-user-config
4210 @findex -no-user-config
4211 The @code{-no-user-config} option makes QEMU not load any of the user-provided
4212 config files on @var{sysconfdir}.
4213 ETEXI
4215 DEF("trace", HAS_ARG, QEMU_OPTION_trace,
4216 "-trace [[enable=]<pattern>][,events=<file>][,file=<file>]\n"
4217 " specify tracing options\n",
4218 QEMU_ARCH_ALL)
4219 STEXI
4220 HXCOMM This line is not accurate, as some sub-options are backend-specific but
4221 HXCOMM HX does not support conditional compilation of text.
4222 @item -trace [[enable=]@var{pattern}][,events=@var{file}][,file=@var{file}]
4223 @findex -trace
4224 @include qemu-option-trace.texi
4225 ETEXI
4226 DEF("plugin", HAS_ARG, QEMU_OPTION_plugin,
4227 "-plugin [file=]<file>[,arg=<string>]\n"
4228 " load a plugin\n",
4229 QEMU_ARCH_ALL)
4230 STEXI
4231 @item -plugin file=@var{file}[,arg=@var{string}]
4232 @findex -plugin
4234 Load a plugin.
4236 @table @option
4237 @item file=@var{file}
4238 Load the given plugin from a shared library file.
4239 @item arg=@var{string}
4240 Argument string passed to the plugin. (Can be given multiple times.)
4241 @end table
4242 ETEXI
4244 HXCOMM Internal use
4245 DEF("qtest", HAS_ARG, QEMU_OPTION_qtest, "", QEMU_ARCH_ALL)
4246 DEF("qtest-log", HAS_ARG, QEMU_OPTION_qtest_log, "", QEMU_ARCH_ALL)
4248 #ifdef __linux__
4249 DEF("enable-fips", 0, QEMU_OPTION_enablefips,
4250 "-enable-fips enable FIPS 140-2 compliance\n",
4251 QEMU_ARCH_ALL)
4252 #endif
4253 STEXI
4254 @item -enable-fips
4255 @findex -enable-fips
4256 Enable FIPS 140-2 compliance mode.
4257 ETEXI
4259 HXCOMM Deprecated by -accel tcg
4260 DEF("no-kvm", 0, QEMU_OPTION_no_kvm, "", QEMU_ARCH_I386)
4262 DEF("msg", HAS_ARG, QEMU_OPTION_msg,
4263 "-msg timestamp[=on|off]\n"
4264 " control error message format\n"
4265 " timestamp=on enables timestamps (default: off)\n",
4266 QEMU_ARCH_ALL)
4267 STEXI
4268 @item -msg timestamp[=on|off]
4269 @findex -msg
4270 Control error message format.
4271 @table @option
4272 @item timestamp=on|off
4273 Prefix messages with a timestamp. Default is off.
4274 @end table
4275 ETEXI
4277 DEF("dump-vmstate", HAS_ARG, QEMU_OPTION_dump_vmstate,
4278 "-dump-vmstate <file>\n"
4279 " Output vmstate information in JSON format to file.\n"
4280 " Use the scripts/vmstate-static-checker.py file to\n"
4281 " check for possible regressions in migration code\n"
4282 " by comparing two such vmstate dumps.\n",
4283 QEMU_ARCH_ALL)
4284 STEXI
4285 @item -dump-vmstate @var{file}
4286 @findex -dump-vmstate
4287 Dump json-encoded vmstate information for current machine type to file
4288 in @var{file}
4289 ETEXI
4291 DEF("enable-sync-profile", 0, QEMU_OPTION_enable_sync_profile,
4292 "-enable-sync-profile\n"
4293 " enable synchronization profiling\n",
4294 QEMU_ARCH_ALL)
4295 STEXI
4296 @item -enable-sync-profile
4297 @findex -enable-sync-profile
4298 Enable synchronization profiling.
4299 ETEXI
4301 STEXI
4302 @end table
4303 ETEXI
4304 DEFHEADING()
4306 DEFHEADING(Generic object creation:)
4307 STEXI
4308 @table @option
4309 ETEXI
4311 DEF("object", HAS_ARG, QEMU_OPTION_object,
4312 "-object TYPENAME[,PROP1=VALUE1,...]\n"
4313 " create a new object of type TYPENAME setting properties\n"
4314 " in the order they are specified. Note that the 'id'\n"
4315 " property must be set. These objects are placed in the\n"
4316 " '/objects' path.\n",
4317 QEMU_ARCH_ALL)
4318 STEXI
4319 @item -object @var{typename}[,@var{prop1}=@var{value1},...]
4320 @findex -object
4321 Create a new object of type @var{typename} setting properties
4322 in the order they are specified. Note that the 'id'
4323 property must be set. These objects are placed in the
4324 '/objects' path.
4326 @table @option
4328 @item -object memory-backend-file,id=@var{id},size=@var{size},mem-path=@var{dir},share=@var{on|off},discard-data=@var{on|off},merge=@var{on|off},dump=@var{on|off},prealloc=@var{on|off},host-nodes=@var{host-nodes},policy=@var{default|preferred|bind|interleave},align=@var{align}
4330 Creates a memory file backend object, which can be used to back
4331 the guest RAM with huge pages.
4333 The @option{id} parameter is a unique ID that will be used to reference this
4334 memory region when configuring the @option{-numa} argument.
4336 The @option{size} option provides the size of the memory region, and accepts
4337 common suffixes, eg @option{500M}.
4339 The @option{mem-path} provides the path to either a shared memory or huge page
4340 filesystem mount.
4342 The @option{share} boolean option determines whether the memory
4343 region is marked as private to QEMU, or shared. The latter allows
4344 a co-operating external process to access the QEMU memory region.
4346 The @option{share} is also required for pvrdma devices due to
4347 limitations in the RDMA API provided by Linux.
4349 Setting share=on might affect the ability to configure NUMA
4350 bindings for the memory backend under some circumstances, see
4351 Documentation/vm/numa_memory_policy.txt on the Linux kernel
4352 source tree for additional details.
4354 Setting the @option{discard-data} boolean option to @var{on}
4355 indicates that file contents can be destroyed when QEMU exits,
4356 to avoid unnecessarily flushing data to the backing file. Note
4357 that @option{discard-data} is only an optimization, and QEMU
4358 might not discard file contents if it aborts unexpectedly or is
4359 terminated using SIGKILL.
4361 The @option{merge} boolean option enables memory merge, also known as
4362 MADV_MERGEABLE, so that Kernel Samepage Merging will consider the pages for
4363 memory deduplication.
4365 Setting the @option{dump} boolean option to @var{off} excludes the memory from
4366 core dumps. This feature is also known as MADV_DONTDUMP.
4368 The @option{prealloc} boolean option enables memory preallocation.
4370 The @option{host-nodes} option binds the memory range to a list of NUMA host
4371 nodes.
4373 The @option{policy} option sets the NUMA policy to one of the following values:
4375 @table @option
4376 @item @var{default}
4377 default host policy
4379 @item @var{preferred}
4380 prefer the given host node list for allocation
4382 @item @var{bind}
4383 restrict memory allocation to the given host node list
4385 @item @var{interleave}
4386 interleave memory allocations across the given host node list
4387 @end table
4389 The @option{align} option specifies the base address alignment when
4390 QEMU mmap(2) @option{mem-path}, and accepts common suffixes, eg
4391 @option{2M}. Some backend store specified by @option{mem-path}
4392 requires an alignment different than the default one used by QEMU, eg
4393 the device DAX /dev/dax0.0 requires 2M alignment rather than 4K. In
4394 such cases, users can specify the required alignment via this option.
4396 The @option{pmem} option specifies whether the backing file specified
4397 by @option{mem-path} is in host persistent memory that can be accessed
4398 using the SNIA NVM programming model (e.g. Intel NVDIMM).
4399 If @option{pmem} is set to 'on', QEMU will take necessary operations to
4400 guarantee the persistence of its own writes to @option{mem-path}
4401 (e.g. in vNVDIMM label emulation and live migration).
4402 Also, we will map the backend-file with MAP_SYNC flag, which ensures the
4403 file metadata is in sync for @option{mem-path} in case of host crash
4404 or a power failure. MAP_SYNC requires support from both the host kernel
4405 (since Linux kernel 4.15) and the filesystem of @option{mem-path} mounted
4406 with DAX option.
4408 @item -object memory-backend-ram,id=@var{id},merge=@var{on|off},dump=@var{on|off},share=@var{on|off},prealloc=@var{on|off},size=@var{size},host-nodes=@var{host-nodes},policy=@var{default|preferred|bind|interleave}
4410 Creates a memory backend object, which can be used to back the guest RAM.
4411 Memory backend objects offer more control than the @option{-m} option that is
4412 traditionally used to define guest RAM. Please refer to
4413 @option{memory-backend-file} for a description of the options.
4415 @item -object memory-backend-memfd,id=@var{id},merge=@var{on|off},dump=@var{on|off},share=@var{on|off},prealloc=@var{on|off},size=@var{size},host-nodes=@var{host-nodes},policy=@var{default|preferred|bind|interleave},seal=@var{on|off},hugetlb=@var{on|off},hugetlbsize=@var{size}
4417 Creates an anonymous memory file backend object, which allows QEMU to
4418 share the memory with an external process (e.g. when using
4419 vhost-user). The memory is allocated with memfd and optional
4420 sealing. (Linux only)
4422 The @option{seal} option creates a sealed-file, that will block
4423 further resizing the memory ('on' by default).
4425 The @option{hugetlb} option specify the file to be created resides in
4426 the hugetlbfs filesystem (since Linux 4.14). Used in conjunction with
4427 the @option{hugetlb} option, the @option{hugetlbsize} option specify
4428 the hugetlb page size on systems that support multiple hugetlb page
4429 sizes (it must be a power of 2 value supported by the system).
4431 In some versions of Linux, the @option{hugetlb} option is incompatible
4432 with the @option{seal} option (requires at least Linux 4.16).
4434 Please refer to @option{memory-backend-file} for a description of the
4435 other options.
4437 The @option{share} boolean option is @var{on} by default with memfd.
4439 @item -object rng-builtin,id=@var{id}
4441 Creates a random number generator backend which obtains entropy from
4442 QEMU builtin functions. The @option{id} parameter is a unique ID that
4443 will be used to reference this entropy backend from the @option{virtio-rng}
4444 device. By default, the @option{virtio-rng} device uses this RNG backend.
4446 @item -object rng-random,id=@var{id},filename=@var{/dev/random}
4448 Creates a random number generator backend which obtains entropy from
4449 a device on the host. The @option{id} parameter is a unique ID that
4450 will be used to reference this entropy backend from the @option{virtio-rng}
4451 device. The @option{filename} parameter specifies which file to obtain
4452 entropy from and if omitted defaults to @option{/dev/urandom}.
4454 @item -object rng-egd,id=@var{id},chardev=@var{chardevid}
4456 Creates a random number generator backend which obtains entropy from
4457 an external daemon running on the host. The @option{id} parameter is
4458 a unique ID that will be used to reference this entropy backend from
4459 the @option{virtio-rng} device. The @option{chardev} parameter is
4460 the unique ID of a character device backend that provides the connection
4461 to the RNG daemon.
4463 @item -object tls-creds-anon,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},verify-peer=@var{on|off}
4465 Creates a TLS anonymous credentials object, which can be used to provide
4466 TLS support on network backends. The @option{id} parameter is a unique
4467 ID which network backends will use to access the credentials. The
4468 @option{endpoint} is either @option{server} or @option{client} depending
4469 on whether the QEMU network backend that uses the credentials will be
4470 acting as a client or as a server. If @option{verify-peer} is enabled
4471 (the default) then once the handshake is completed, the peer credentials
4472 will be verified, though this is a no-op for anonymous credentials.
4474 The @var{dir} parameter tells QEMU where to find the credential
4475 files. For server endpoints, this directory may contain a file
4476 @var{dh-params.pem} providing diffie-hellman parameters to use
4477 for the TLS server. If the file is missing, QEMU will generate
4478 a set of DH parameters at startup. This is a computationally
4479 expensive operation that consumes random pool entropy, so it is
4480 recommended that a persistent set of parameters be generated
4481 upfront and saved.
4483 @item -object tls-creds-psk,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/keys/dir}[,username=@var{username}]
4485 Creates a TLS Pre-Shared Keys (PSK) credentials object, which can be used to provide
4486 TLS support on network backends. The @option{id} parameter is a unique
4487 ID which network backends will use to access the credentials. The
4488 @option{endpoint} is either @option{server} or @option{client} depending
4489 on whether the QEMU network backend that uses the credentials will be
4490 acting as a client or as a server. For clients only, @option{username}
4491 is the username which will be sent to the server. If omitted
4492 it defaults to ``qemu''.
4494 The @var{dir} parameter tells QEMU where to find the keys file.
4495 It is called ``@var{dir}/keys.psk'' and contains ``username:key''
4496 pairs. This file can most easily be created using the GnuTLS
4497 @code{psktool} program.
4499 For server endpoints, @var{dir} may also contain a file
4500 @var{dh-params.pem} providing diffie-hellman parameters to use
4501 for the TLS server. If the file is missing, QEMU will generate
4502 a set of DH parameters at startup. This is a computationally
4503 expensive operation that consumes random pool entropy, so it is
4504 recommended that a persistent set of parameters be generated
4505 up front and saved.
4507 @item -object tls-creds-x509,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},priority=@var{priority},verify-peer=@var{on|off},passwordid=@var{id}
4509 Creates a TLS anonymous credentials object, which can be used to provide
4510 TLS support on network backends. The @option{id} parameter is a unique
4511 ID which network backends will use to access the credentials. The
4512 @option{endpoint} is either @option{server} or @option{client} depending
4513 on whether the QEMU network backend that uses the credentials will be
4514 acting as a client or as a server. If @option{verify-peer} is enabled
4515 (the default) then once the handshake is completed, the peer credentials
4516 will be verified. With x509 certificates, this implies that the clients
4517 must be provided with valid client certificates too.
4519 The @var{dir} parameter tells QEMU where to find the credential
4520 files. For server endpoints, this directory may contain a file
4521 @var{dh-params.pem} providing diffie-hellman parameters to use
4522 for the TLS server. If the file is missing, QEMU will generate
4523 a set of DH parameters at startup. This is a computationally
4524 expensive operation that consumes random pool entropy, so it is
4525 recommended that a persistent set of parameters be generated
4526 upfront and saved.
4528 For x509 certificate credentials the directory will contain further files
4529 providing the x509 certificates. The certificates must be stored
4530 in PEM format, in filenames @var{ca-cert.pem}, @var{ca-crl.pem} (optional),
4531 @var{server-cert.pem} (only servers), @var{server-key.pem} (only servers),
4532 @var{client-cert.pem} (only clients), and @var{client-key.pem} (only clients).
4534 For the @var{server-key.pem} and @var{client-key.pem} files which
4535 contain sensitive private keys, it is possible to use an encrypted
4536 version by providing the @var{passwordid} parameter. This provides
4537 the ID of a previously created @code{secret} object containing the
4538 password for decryption.
4540 The @var{priority} parameter allows to override the global default
4541 priority used by gnutls. This can be useful if the system administrator
4542 needs to use a weaker set of crypto priorities for QEMU without
4543 potentially forcing the weakness onto all applications. Or conversely
4544 if one wants wants a stronger default for QEMU than for all other
4545 applications, they can do this through this parameter. Its format is
4546 a gnutls priority string as described at
4547 @url{https://gnutls.org/manual/html_node/Priority-Strings.html}.
4549 @item -object filter-buffer,id=@var{id},netdev=@var{netdevid},interval=@var{t}[,queue=@var{all|rx|tx}][,status=@var{on|off}]
4551 Interval @var{t} can't be 0, this filter batches the packet delivery: all
4552 packets arriving in a given interval on netdev @var{netdevid} are delayed
4553 until the end of the interval. Interval is in microseconds.
4554 @option{status} is optional that indicate whether the netfilter is
4555 on (enabled) or off (disabled), the default status for netfilter will be 'on'.
4557 queue @var{all|rx|tx} is an option that can be applied to any netfilter.
4559 @option{all}: the filter is attached both to the receive and the transmit
4560 queue of the netdev (default).
4562 @option{rx}: the filter is attached to the receive queue of the netdev,
4563 where it will receive packets sent to the netdev.
4565 @option{tx}: the filter is attached to the transmit queue of the netdev,
4566 where it will receive packets sent by the netdev.
4568 @item -object filter-mirror,id=@var{id},netdev=@var{netdevid},outdev=@var{chardevid},queue=@var{all|rx|tx}[,vnet_hdr_support]
4570 filter-mirror on netdev @var{netdevid},mirror net packet to chardev@var{chardevid}, if it has the vnet_hdr_support flag, filter-mirror will mirror packet with vnet_hdr_len.
4572 @item -object filter-redirector,id=@var{id},netdev=@var{netdevid},indev=@var{chardevid},outdev=@var{chardevid},queue=@var{all|rx|tx}[,vnet_hdr_support]
4574 filter-redirector on netdev @var{netdevid},redirect filter's net packet to chardev
4575 @var{chardevid},and redirect indev's packet to filter.if it has the vnet_hdr_support flag,
4576 filter-redirector will redirect packet with vnet_hdr_len.
4577 Create a filter-redirector we need to differ outdev id from indev id, id can not
4578 be the same. we can just use indev or outdev, but at least one of indev or outdev
4579 need to be specified.
4581 @item -object filter-rewriter,id=@var{id},netdev=@var{netdevid},queue=@var{all|rx|tx},[vnet_hdr_support]
4583 Filter-rewriter is a part of COLO project.It will rewrite tcp packet to
4584 secondary from primary to keep secondary tcp connection,and rewrite
4585 tcp packet to primary from secondary make tcp packet can be handled by
4586 client.if it has the vnet_hdr_support flag, we can parse packet with vnet header.
4588 usage:
4589 colo secondary:
4590 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4591 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4592 -object filter-rewriter,id=rew0,netdev=hn0,queue=all
4594 @item -object filter-dump,id=@var{id},netdev=@var{dev}[,file=@var{filename}][,maxlen=@var{len}]
4596 Dump the network traffic on netdev @var{dev} to the file specified by
4597 @var{filename}. At most @var{len} bytes (64k by default) per packet are stored.
4598 The file format is libpcap, so it can be analyzed with tools such as tcpdump
4599 or Wireshark.
4601 @item -object colo-compare,id=@var{id},primary_in=@var{chardevid},secondary_in=@var{chardevid},outdev=@var{chardevid},iothread=@var{id}[,vnet_hdr_support][,notify_dev=@var{id}]
4603 Colo-compare gets packet from primary_in@var{chardevid} and secondary_in@var{chardevid}, than compare primary packet with
4604 secondary packet. If the packets are same, we will output primary
4605 packet to outdev@var{chardevid}, else we will notify colo-frame
4606 do checkpoint and send primary packet to outdev@var{chardevid}.
4607 In order to improve efficiency, we need to put the task of comparison
4608 in another thread. If it has the vnet_hdr_support flag, colo compare
4609 will send/recv packet with vnet_hdr_len.
4610 If you want to use Xen COLO, will need the notify_dev to notify Xen
4611 colo-frame to do checkpoint.
4613 we must use it with the help of filter-mirror and filter-redirector.
4615 @example
4617 KVM COLO
4619 primary:
4620 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown
4621 -device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66
4622 -chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait
4623 -chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait
4624 -chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait
4625 -chardev socket,id=compare0-0,host=3.3.3.3,port=9001
4626 -chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait
4627 -chardev socket,id=compare_out0,host=3.3.3.3,port=9005
4628 -object iothread,id=iothread1
4629 -object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0
4630 -object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
4631 -object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
4632 -object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0,iothread=iothread1
4634 secondary:
4635 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown
4636 -device e1000,netdev=hn0,mac=52:a4:00:12:78:66
4637 -chardev socket,id=red0,host=3.3.3.3,port=9003
4638 -chardev socket,id=red1,host=3.3.3.3,port=9004
4639 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4640 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4643 Xen COLO
4645 primary:
4646 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown
4647 -device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66
4648 -chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait
4649 -chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait
4650 -chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait
4651 -chardev socket,id=compare0-0,host=3.3.3.3,port=9001
4652 -chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait
4653 -chardev socket,id=compare_out0,host=3.3.3.3,port=9005
4654 -chardev socket,id=notify_way,host=3.3.3.3,port=9009,server,nowait
4655 -object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0
4656 -object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
4657 -object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
4658 -object iothread,id=iothread1
4659 -object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0,notify_dev=nofity_way,iothread=iothread1
4661 secondary:
4662 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown
4663 -device e1000,netdev=hn0,mac=52:a4:00:12:78:66
4664 -chardev socket,id=red0,host=3.3.3.3,port=9003
4665 -chardev socket,id=red1,host=3.3.3.3,port=9004
4666 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4667 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4669 @end example
4671 If you want to know the detail of above command line, you can read
4672 the colo-compare git log.
4674 @item -object cryptodev-backend-builtin,id=@var{id}[,queues=@var{queues}]
4676 Creates a cryptodev backend which executes crypto opreation from
4677 the QEMU cipher APIS. The @var{id} parameter is
4678 a unique ID that will be used to reference this cryptodev backend from
4679 the @option{virtio-crypto} device. The @var{queues} parameter is optional,
4680 which specify the queue number of cryptodev backend, the default of
4681 @var{queues} is 1.
4683 @example
4685 # @value{qemu_system} \
4686 [...] \
4687 -object cryptodev-backend-builtin,id=cryptodev0 \
4688 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \
4689 [...]
4690 @end example
4692 @item -object cryptodev-vhost-user,id=@var{id},chardev=@var{chardevid}[,queues=@var{queues}]
4694 Creates a vhost-user cryptodev backend, backed by a chardev @var{chardevid}.
4695 The @var{id} parameter is a unique ID that will be used to reference this
4696 cryptodev backend from the @option{virtio-crypto} device.
4697 The chardev should be a unix domain socket backed one. The vhost-user uses
4698 a specifically defined protocol to pass vhost ioctl replacement messages
4699 to an application on the other end of the socket.
4700 The @var{queues} parameter is optional, which specify the queue number
4701 of cryptodev backend for multiqueue vhost-user, the default of @var{queues} is 1.
4703 @example
4705 # @value{qemu_system} \
4706 [...] \
4707 -chardev socket,id=chardev0,path=/path/to/socket \
4708 -object cryptodev-vhost-user,id=cryptodev0,chardev=chardev0 \
4709 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \
4710 [...]
4711 @end example
4713 @item -object secret,id=@var{id},data=@var{string},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
4714 @item -object secret,id=@var{id},file=@var{filename},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
4716 Defines a secret to store a password, encryption key, or some other sensitive
4717 data. The sensitive data can either be passed directly via the @var{data}
4718 parameter, or indirectly via the @var{file} parameter. Using the @var{data}
4719 parameter is insecure unless the sensitive data is encrypted.
4721 The sensitive data can be provided in raw format (the default), or base64.
4722 When encoded as JSON, the raw format only supports valid UTF-8 characters,
4723 so base64 is recommended for sending binary data. QEMU will convert from
4724 which ever format is provided to the format it needs internally. eg, an
4725 RBD password can be provided in raw format, even though it will be base64
4726 encoded when passed onto the RBD sever.
4728 For added protection, it is possible to encrypt the data associated with
4729 a secret using the AES-256-CBC cipher. Use of encryption is indicated
4730 by providing the @var{keyid} and @var{iv} parameters. The @var{keyid}
4731 parameter provides the ID of a previously defined secret that contains
4732 the AES-256 decryption key. This key should be 32-bytes long and be
4733 base64 encoded. The @var{iv} parameter provides the random initialization
4734 vector used for encryption of this particular secret and should be a
4735 base64 encrypted string of the 16-byte IV.
4737 The simplest (insecure) usage is to provide the secret inline
4739 @example
4741 # @value{qemu_system} -object secret,id=sec0,data=letmein,format=raw
4743 @end example
4745 The simplest secure usage is to provide the secret via a file
4747 # printf "letmein" > mypasswd.txt
4748 # @value{qemu_system} -object secret,id=sec0,file=mypasswd.txt,format=raw
4750 For greater security, AES-256-CBC should be used. To illustrate usage,
4751 consider the openssl command line tool which can encrypt the data. Note
4752 that when encrypting, the plaintext must be padded to the cipher block
4753 size (32 bytes) using the standard PKCS#5/6 compatible padding algorithm.
4755 First a master key needs to be created in base64 encoding:
4757 @example
4758 # openssl rand -base64 32 > key.b64
4759 # KEY=$(base64 -d key.b64 | hexdump -v -e '/1 "%02X"')
4760 @end example
4762 Each secret to be encrypted needs to have a random initialization vector
4763 generated. These do not need to be kept secret
4765 @example
4766 # openssl rand -base64 16 > iv.b64
4767 # IV=$(base64 -d iv.b64 | hexdump -v -e '/1 "%02X"')
4768 @end example
4770 The secret to be defined can now be encrypted, in this case we're
4771 telling openssl to base64 encode the result, but it could be left
4772 as raw bytes if desired.
4774 @example
4775 # SECRET=$(printf "letmein" |
4776 openssl enc -aes-256-cbc -a -K $KEY -iv $IV)
4777 @end example
4779 When launching QEMU, create a master secret pointing to @code{key.b64}
4780 and specify that to be used to decrypt the user password. Pass the
4781 contents of @code{iv.b64} to the second secret
4783 @example
4784 # @value{qemu_system} \
4785 -object secret,id=secmaster0,format=base64,file=key.b64 \
4786 -object secret,id=sec0,keyid=secmaster0,format=base64,\
4787 data=$SECRET,iv=$(<iv.b64)
4788 @end example
4790 @item -object sev-guest,id=@var{id},cbitpos=@var{cbitpos},reduced-phys-bits=@var{val},[sev-device=@var{string},policy=@var{policy},handle=@var{handle},dh-cert-file=@var{file},session-file=@var{file}]
4792 Create a Secure Encrypted Virtualization (SEV) guest object, which can be used
4793 to provide the guest memory encryption support on AMD processors.
4795 When memory encryption is enabled, one of the physical address bit (aka the
4796 C-bit) is utilized to mark if a memory page is protected. The @option{cbitpos}
4797 is used to provide the C-bit position. The C-bit position is Host family dependent
4798 hence user must provide this value. On EPYC, the value should be 47.
4800 When memory encryption is enabled, we loose certain bits in physical address space.
4801 The @option{reduced-phys-bits} is used to provide the number of bits we loose in
4802 physical address space. Similar to C-bit, the value is Host family dependent.
4803 On EPYC, the value should be 5.
4805 The @option{sev-device} provides the device file to use for communicating with
4806 the SEV firmware running inside AMD Secure Processor. The default device is
4807 '/dev/sev'. If hardware supports memory encryption then /dev/sev devices are
4808 created by CCP driver.
4810 The @option{policy} provides the guest policy to be enforced by the SEV firmware
4811 and restrict what configuration and operational commands can be performed on this
4812 guest by the hypervisor. The policy should be provided by the guest owner and is
4813 bound to the guest and cannot be changed throughout the lifetime of the guest.
4814 The default is 0.
4816 If guest @option{policy} allows sharing the key with another SEV guest then
4817 @option{handle} can be use to provide handle of the guest from which to share
4818 the key.
4820 The @option{dh-cert-file} and @option{session-file} provides the guest owner's
4821 Public Diffie-Hillman key defined in SEV spec. The PDH and session parameters
4822 are used for establishing a cryptographic session with the guest owner to
4823 negotiate keys used for attestation. The file must be encoded in base64.
4825 e.g to launch a SEV guest
4826 @example
4827 # @value{qemu_system_x86} \
4828 ......
4829 -object sev-guest,id=sev0,cbitpos=47,reduced-phys-bits=5 \
4830 -machine ...,memory-encryption=sev0
4831 .....
4833 @end example
4836 @item -object authz-simple,id=@var{id},identity=@var{string}
4838 Create an authorization object that will control access to network services.
4840 The @option{identity} parameter is identifies the user and its format
4841 depends on the network service that authorization object is associated
4842 with. For authorizing based on TLS x509 certificates, the identity must
4843 be the x509 distinguished name. Note that care must be taken to escape
4844 any commas in the distinguished name.
4846 An example authorization object to validate a x509 distinguished name
4847 would look like:
4848 @example
4849 # @value{qemu_system} \
4851 -object 'authz-simple,id=auth0,identity=CN=laptop.example.com,,O=Example Org,,L=London,,ST=London,,C=GB' \
4853 @end example
4855 Note the use of quotes due to the x509 distinguished name containing
4856 whitespace, and escaping of ','.
4858 @item -object authz-listfile,id=@var{id},filename=@var{path},refresh=@var{yes|no}
4860 Create an authorization object that will control access to network services.
4862 The @option{filename} parameter is the fully qualified path to a file
4863 containing the access control list rules in JSON format.
4865 An example set of rules that match against SASL usernames might look
4866 like:
4868 @example
4870 "rules": [
4871 @{ "match": "fred", "policy": "allow", "format": "exact" @},
4872 @{ "match": "bob", "policy": "allow", "format": "exact" @},
4873 @{ "match": "danb", "policy": "deny", "format": "glob" @},
4874 @{ "match": "dan*", "policy": "allow", "format": "exact" @},
4876 "policy": "deny"
4878 @end example
4880 When checking access the object will iterate over all the rules and
4881 the first rule to match will have its @option{policy} value returned
4882 as the result. If no rules match, then the default @option{policy}
4883 value is returned.
4885 The rules can either be an exact string match, or they can use the
4886 simple UNIX glob pattern matching to allow wildcards to be used.
4888 If @option{refresh} is set to true the file will be monitored
4889 and automatically reloaded whenever its content changes.
4891 As with the @code{authz-simple} object, the format of the identity
4892 strings being matched depends on the network service, but is usually
4893 a TLS x509 distinguished name, or a SASL username.
4895 An example authorization object to validate a SASL username
4896 would look like:
4897 @example
4898 # @value{qemu_system} \
4900 -object authz-simple,id=auth0,filename=/etc/qemu/vnc-sasl.acl,refresh=yes
4902 @end example
4904 @item -object authz-pam,id=@var{id},service=@var{string}
4906 Create an authorization object that will control access to network services.
4908 The @option{service} parameter provides the name of a PAM service to use
4909 for authorization. It requires that a file @code{/etc/pam.d/@var{service}}
4910 exist to provide the configuration for the @code{account} subsystem.
4912 An example authorization object to validate a TLS x509 distinguished
4913 name would look like:
4915 @example
4916 # @value{qemu_system} \
4918 -object authz-pam,id=auth0,service=qemu-vnc
4920 @end example
4922 There would then be a corresponding config file for PAM at
4923 @code{/etc/pam.d/qemu-vnc} that contains:
4925 @example
4926 account requisite pam_listfile.so item=user sense=allow \
4927 file=/etc/qemu/vnc.allow
4928 @end example
4930 Finally the @code{/etc/qemu/vnc.allow} file would contain
4931 the list of x509 distingished names that are permitted
4932 access
4934 @example
4935 CN=laptop.example.com,O=Example Home,L=London,ST=London,C=GB
4936 @end example
4938 @item -object iothread,id=@var{id},poll-max-ns=@var{poll-max-ns},poll-grow=@var{poll-grow},poll-shrink=@var{poll-shrink}
4940 Creates a dedicated event loop thread that devices can be assigned to. This is
4941 known as an IOThread. By default device emulation happens in vCPU threads or
4942 the main event loop thread. This can become a scalability bottleneck.
4943 IOThreads allow device emulation and I/O to run on other host CPUs.
4945 The @option{id} parameter is a unique ID that will be used to reference this
4946 IOThread from @option{-device ...,iothread=@var{id}}. Multiple devices can be
4947 assigned to an IOThread. Note that not all devices support an
4948 @option{iothread} parameter.
4950 The @code{query-iothreads} QMP command lists IOThreads and reports their thread
4951 IDs so that the user can configure host CPU pinning/affinity.
4953 IOThreads use an adaptive polling algorithm to reduce event loop latency.
4954 Instead of entering a blocking system call to monitor file descriptors and then
4955 pay the cost of being woken up when an event occurs, the polling algorithm
4956 spins waiting for events for a short time. The algorithm's default parameters
4957 are suitable for many cases but can be adjusted based on knowledge of the
4958 workload and/or host device latency.
4960 The @option{poll-max-ns} parameter is the maximum number of nanoseconds to busy
4961 wait for events. Polling can be disabled by setting this value to 0.
4963 The @option{poll-grow} parameter is the multiplier used to increase the polling
4964 time when the algorithm detects it is missing events due to not polling long
4965 enough.
4967 The @option{poll-shrink} parameter is the divisor used to decrease the polling
4968 time when the algorithm detects it is spending too long polling without
4969 encountering events.
4971 The polling parameters can be modified at run-time using the @code{qom-set} command (where @code{iothread1} is the IOThread's @code{id}):
4973 @example
4974 (qemu) qom-set /objects/iothread1 poll-max-ns 100000
4975 @end example
4977 @end table
4979 ETEXI
4982 HXCOMM This is the last statement. Insert new options before this line!
4983 STEXI
4984 @end table
4985 ETEXI