vfio/container: Remove VFIOContainerBase::ops
[qemu/armbru.git] / hw / vfio / common.c
blob7cdb969fd396ae3815cb175ad631d93d7cca7006
1 /*
2 * generic functions used by VFIO devices
4 * Copyright Red Hat, Inc. 2012
6 * Authors:
7 * Alex Williamson <alex.williamson@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
12 * Based on qemu-kvm device-assignment:
13 * Adapted for KVM by Qumranet.
14 * Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com)
15 * Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com)
16 * Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com)
17 * Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com)
18 * Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com)
21 #include "qemu/osdep.h"
22 #include <sys/ioctl.h>
23 #ifdef CONFIG_KVM
24 #include <linux/kvm.h>
25 #endif
26 #include <linux/vfio.h>
28 #include "hw/vfio/vfio-common.h"
29 #include "hw/vfio/pci.h"
30 #include "exec/address-spaces.h"
31 #include "exec/memory.h"
32 #include "exec/ram_addr.h"
33 #include "hw/hw.h"
34 #include "qemu/error-report.h"
35 #include "qemu/main-loop.h"
36 #include "qemu/range.h"
37 #include "sysemu/kvm.h"
38 #include "sysemu/reset.h"
39 #include "sysemu/runstate.h"
40 #include "trace.h"
41 #include "qapi/error.h"
42 #include "migration/misc.h"
43 #include "migration/blocker.h"
44 #include "migration/qemu-file.h"
45 #include "sysemu/tpm.h"
47 VFIODeviceList vfio_device_list =
48 QLIST_HEAD_INITIALIZER(vfio_device_list);
49 static QLIST_HEAD(, VFIOAddressSpace) vfio_address_spaces =
50 QLIST_HEAD_INITIALIZER(vfio_address_spaces);
52 #ifdef CONFIG_KVM
54 * We have a single VFIO pseudo device per KVM VM. Once created it lives
55 * for the life of the VM. Closing the file descriptor only drops our
56 * reference to it and the device's reference to kvm. Therefore once
57 * initialized, this file descriptor is only released on QEMU exit and
58 * we'll re-use it should another vfio device be attached before then.
60 int vfio_kvm_device_fd = -1;
61 #endif
64 * Device state interfaces
67 bool vfio_mig_active(void)
69 VFIODevice *vbasedev;
71 if (QLIST_EMPTY(&vfio_device_list)) {
72 return false;
75 QLIST_FOREACH(vbasedev, &vfio_device_list, global_next) {
76 if (vbasedev->migration_blocker) {
77 return false;
80 return true;
83 static Error *multiple_devices_migration_blocker;
86 * Multiple devices migration is allowed only if all devices support P2P
87 * migration. Single device migration is allowed regardless of P2P migration
88 * support.
90 static bool vfio_multiple_devices_migration_is_supported(void)
92 VFIODevice *vbasedev;
93 unsigned int device_num = 0;
94 bool all_support_p2p = true;
96 QLIST_FOREACH(vbasedev, &vfio_device_list, global_next) {
97 if (vbasedev->migration) {
98 device_num++;
100 if (!(vbasedev->migration->mig_flags & VFIO_MIGRATION_P2P)) {
101 all_support_p2p = false;
106 return all_support_p2p || device_num <= 1;
109 int vfio_block_multiple_devices_migration(VFIODevice *vbasedev, Error **errp)
111 int ret;
113 if (vfio_multiple_devices_migration_is_supported()) {
114 return 0;
117 if (vbasedev->enable_migration == ON_OFF_AUTO_ON) {
118 error_setg(errp, "Multiple VFIO devices migration is supported only if "
119 "all of them support P2P migration");
120 return -EINVAL;
123 if (multiple_devices_migration_blocker) {
124 return 0;
127 error_setg(&multiple_devices_migration_blocker,
128 "Multiple VFIO devices migration is supported only if all of "
129 "them support P2P migration");
130 ret = migrate_add_blocker_normal(&multiple_devices_migration_blocker, errp);
132 return ret;
135 void vfio_unblock_multiple_devices_migration(void)
137 if (!multiple_devices_migration_blocker ||
138 !vfio_multiple_devices_migration_is_supported()) {
139 return;
142 migrate_del_blocker(&multiple_devices_migration_blocker);
145 bool vfio_viommu_preset(VFIODevice *vbasedev)
147 return vbasedev->bcontainer->space->as != &address_space_memory;
150 static void vfio_set_migration_error(int ret)
152 if (migration_is_setup_or_active()) {
153 migration_file_set_error(ret, NULL);
157 bool vfio_device_state_is_running(VFIODevice *vbasedev)
159 VFIOMigration *migration = vbasedev->migration;
161 return migration->device_state == VFIO_DEVICE_STATE_RUNNING ||
162 migration->device_state == VFIO_DEVICE_STATE_RUNNING_P2P;
165 bool vfio_device_state_is_precopy(VFIODevice *vbasedev)
167 VFIOMigration *migration = vbasedev->migration;
169 return migration->device_state == VFIO_DEVICE_STATE_PRE_COPY ||
170 migration->device_state == VFIO_DEVICE_STATE_PRE_COPY_P2P;
173 static bool vfio_devices_all_dirty_tracking(VFIOContainerBase *bcontainer)
175 VFIODevice *vbasedev;
177 if (!migration_is_active() && !migration_is_device()) {
178 return false;
181 QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) {
182 VFIOMigration *migration = vbasedev->migration;
184 if (!migration) {
185 return false;
188 if (vbasedev->pre_copy_dirty_page_tracking == ON_OFF_AUTO_OFF &&
189 (vfio_device_state_is_running(vbasedev) ||
190 vfio_device_state_is_precopy(vbasedev))) {
191 return false;
194 return true;
197 bool vfio_devices_all_device_dirty_tracking(const VFIOContainerBase *bcontainer)
199 VFIODevice *vbasedev;
201 QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) {
202 if (!vbasedev->dirty_pages_supported) {
203 return false;
207 return true;
211 * Check if all VFIO devices are running and migration is active, which is
212 * essentially equivalent to the migration being in pre-copy phase.
214 bool
215 vfio_devices_all_running_and_mig_active(const VFIOContainerBase *bcontainer)
217 VFIODevice *vbasedev;
219 if (!migration_is_active()) {
220 return false;
223 QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) {
224 VFIOMigration *migration = vbasedev->migration;
226 if (!migration) {
227 return false;
230 if (vfio_device_state_is_running(vbasedev) ||
231 vfio_device_state_is_precopy(vbasedev)) {
232 continue;
233 } else {
234 return false;
237 return true;
240 static bool vfio_listener_skipped_section(MemoryRegionSection *section)
242 return (!memory_region_is_ram(section->mr) &&
243 !memory_region_is_iommu(section->mr)) ||
244 memory_region_is_protected(section->mr) ||
246 * Sizing an enabled 64-bit BAR can cause spurious mappings to
247 * addresses in the upper part of the 64-bit address space. These
248 * are never accessed by the CPU and beyond the address width of
249 * some IOMMU hardware. TODO: VFIO should tell us the IOMMU width.
251 section->offset_within_address_space & (1ULL << 63);
254 /* Called with rcu_read_lock held. */
255 static bool vfio_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
256 ram_addr_t *ram_addr, bool *read_only,
257 Error **errp)
259 bool ret, mr_has_discard_manager;
261 ret = memory_get_xlat_addr(iotlb, vaddr, ram_addr, read_only,
262 &mr_has_discard_manager, errp);
263 if (ret && mr_has_discard_manager) {
265 * Malicious VMs might trigger discarding of IOMMU-mapped memory. The
266 * pages will remain pinned inside vfio until unmapped, resulting in a
267 * higher memory consumption than expected. If memory would get
268 * populated again later, there would be an inconsistency between pages
269 * pinned by vfio and pages seen by QEMU. This is the case until
270 * unmapped from the IOMMU (e.g., during device reset).
272 * With malicious guests, we really only care about pinning more memory
273 * than expected. RLIMIT_MEMLOCK set for the user/process can never be
274 * exceeded and can be used to mitigate this problem.
276 warn_report_once("Using vfio with vIOMMUs and coordinated discarding of"
277 " RAM (e.g., virtio-mem) works, however, malicious"
278 " guests can trigger pinning of more memory than"
279 " intended via an IOMMU. It's possible to mitigate "
280 " by setting/adjusting RLIMIT_MEMLOCK.");
282 return ret;
285 static void vfio_iommu_map_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
287 VFIOGuestIOMMU *giommu = container_of(n, VFIOGuestIOMMU, n);
288 VFIOContainerBase *bcontainer = giommu->bcontainer;
289 hwaddr iova = iotlb->iova + giommu->iommu_offset;
290 void *vaddr;
291 int ret;
292 Error *local_err = NULL;
294 trace_vfio_iommu_map_notify(iotlb->perm == IOMMU_NONE ? "UNMAP" : "MAP",
295 iova, iova + iotlb->addr_mask);
297 if (iotlb->target_as != &address_space_memory) {
298 error_report("Wrong target AS \"%s\", only system memory is allowed",
299 iotlb->target_as->name ? iotlb->target_as->name : "none");
300 vfio_set_migration_error(-EINVAL);
301 return;
304 rcu_read_lock();
306 if ((iotlb->perm & IOMMU_RW) != IOMMU_NONE) {
307 bool read_only;
309 if (!vfio_get_xlat_addr(iotlb, &vaddr, NULL, &read_only, &local_err)) {
310 error_report_err(local_err);
311 goto out;
314 * vaddr is only valid until rcu_read_unlock(). But after
315 * vfio_dma_map has set up the mapping the pages will be
316 * pinned by the kernel. This makes sure that the RAM backend
317 * of vaddr will always be there, even if the memory object is
318 * destroyed and its backing memory munmap-ed.
320 ret = vfio_container_dma_map(bcontainer, iova,
321 iotlb->addr_mask + 1, vaddr,
322 read_only);
323 if (ret) {
324 error_report("vfio_container_dma_map(%p, 0x%"HWADDR_PRIx", "
325 "0x%"HWADDR_PRIx", %p) = %d (%s)",
326 bcontainer, iova,
327 iotlb->addr_mask + 1, vaddr, ret, strerror(-ret));
329 } else {
330 ret = vfio_container_dma_unmap(bcontainer, iova,
331 iotlb->addr_mask + 1, iotlb);
332 if (ret) {
333 error_report("vfio_container_dma_unmap(%p, 0x%"HWADDR_PRIx", "
334 "0x%"HWADDR_PRIx") = %d (%s)",
335 bcontainer, iova,
336 iotlb->addr_mask + 1, ret, strerror(-ret));
337 vfio_set_migration_error(ret);
340 out:
341 rcu_read_unlock();
344 static void vfio_ram_discard_notify_discard(RamDiscardListener *rdl,
345 MemoryRegionSection *section)
347 VFIORamDiscardListener *vrdl = container_of(rdl, VFIORamDiscardListener,
348 listener);
349 VFIOContainerBase *bcontainer = vrdl->bcontainer;
350 const hwaddr size = int128_get64(section->size);
351 const hwaddr iova = section->offset_within_address_space;
352 int ret;
354 /* Unmap with a single call. */
355 ret = vfio_container_dma_unmap(bcontainer, iova, size , NULL);
356 if (ret) {
357 error_report("%s: vfio_container_dma_unmap() failed: %s", __func__,
358 strerror(-ret));
362 static int vfio_ram_discard_notify_populate(RamDiscardListener *rdl,
363 MemoryRegionSection *section)
365 VFIORamDiscardListener *vrdl = container_of(rdl, VFIORamDiscardListener,
366 listener);
367 VFIOContainerBase *bcontainer = vrdl->bcontainer;
368 const hwaddr end = section->offset_within_region +
369 int128_get64(section->size);
370 hwaddr start, next, iova;
371 void *vaddr;
372 int ret;
375 * Map in (aligned within memory region) minimum granularity, so we can
376 * unmap in minimum granularity later.
378 for (start = section->offset_within_region; start < end; start = next) {
379 next = ROUND_UP(start + 1, vrdl->granularity);
380 next = MIN(next, end);
382 iova = start - section->offset_within_region +
383 section->offset_within_address_space;
384 vaddr = memory_region_get_ram_ptr(section->mr) + start;
386 ret = vfio_container_dma_map(bcontainer, iova, next - start,
387 vaddr, section->readonly);
388 if (ret) {
389 /* Rollback */
390 vfio_ram_discard_notify_discard(rdl, section);
391 return ret;
394 return 0;
397 static void vfio_register_ram_discard_listener(VFIOContainerBase *bcontainer,
398 MemoryRegionSection *section)
400 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr);
401 VFIORamDiscardListener *vrdl;
403 /* Ignore some corner cases not relevant in practice. */
404 g_assert(QEMU_IS_ALIGNED(section->offset_within_region, TARGET_PAGE_SIZE));
405 g_assert(QEMU_IS_ALIGNED(section->offset_within_address_space,
406 TARGET_PAGE_SIZE));
407 g_assert(QEMU_IS_ALIGNED(int128_get64(section->size), TARGET_PAGE_SIZE));
409 vrdl = g_new0(VFIORamDiscardListener, 1);
410 vrdl->bcontainer = bcontainer;
411 vrdl->mr = section->mr;
412 vrdl->offset_within_address_space = section->offset_within_address_space;
413 vrdl->size = int128_get64(section->size);
414 vrdl->granularity = ram_discard_manager_get_min_granularity(rdm,
415 section->mr);
417 g_assert(vrdl->granularity && is_power_of_2(vrdl->granularity));
418 g_assert(bcontainer->pgsizes &&
419 vrdl->granularity >= 1ULL << ctz64(bcontainer->pgsizes));
421 ram_discard_listener_init(&vrdl->listener,
422 vfio_ram_discard_notify_populate,
423 vfio_ram_discard_notify_discard, true);
424 ram_discard_manager_register_listener(rdm, &vrdl->listener, section);
425 QLIST_INSERT_HEAD(&bcontainer->vrdl_list, vrdl, next);
428 * Sanity-check if we have a theoretically problematic setup where we could
429 * exceed the maximum number of possible DMA mappings over time. We assume
430 * that each mapped section in the same address space as a RamDiscardManager
431 * section consumes exactly one DMA mapping, with the exception of
432 * RamDiscardManager sections; i.e., we don't expect to have gIOMMU sections
433 * in the same address space as RamDiscardManager sections.
435 * We assume that each section in the address space consumes one memslot.
436 * We take the number of KVM memory slots as a best guess for the maximum
437 * number of sections in the address space we could have over time,
438 * also consuming DMA mappings.
440 if (bcontainer->dma_max_mappings) {
441 unsigned int vrdl_count = 0, vrdl_mappings = 0, max_memslots = 512;
443 #ifdef CONFIG_KVM
444 if (kvm_enabled()) {
445 max_memslots = kvm_get_max_memslots();
447 #endif
449 QLIST_FOREACH(vrdl, &bcontainer->vrdl_list, next) {
450 hwaddr start, end;
452 start = QEMU_ALIGN_DOWN(vrdl->offset_within_address_space,
453 vrdl->granularity);
454 end = ROUND_UP(vrdl->offset_within_address_space + vrdl->size,
455 vrdl->granularity);
456 vrdl_mappings += (end - start) / vrdl->granularity;
457 vrdl_count++;
460 if (vrdl_mappings + max_memslots - vrdl_count >
461 bcontainer->dma_max_mappings) {
462 warn_report("%s: possibly running out of DMA mappings. E.g., try"
463 " increasing the 'block-size' of virtio-mem devies."
464 " Maximum possible DMA mappings: %d, Maximum possible"
465 " memslots: %d", __func__, bcontainer->dma_max_mappings,
466 max_memslots);
471 static void vfio_unregister_ram_discard_listener(VFIOContainerBase *bcontainer,
472 MemoryRegionSection *section)
474 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr);
475 VFIORamDiscardListener *vrdl = NULL;
477 QLIST_FOREACH(vrdl, &bcontainer->vrdl_list, next) {
478 if (vrdl->mr == section->mr &&
479 vrdl->offset_within_address_space ==
480 section->offset_within_address_space) {
481 break;
485 if (!vrdl) {
486 hw_error("vfio: Trying to unregister missing RAM discard listener");
489 ram_discard_manager_unregister_listener(rdm, &vrdl->listener);
490 QLIST_REMOVE(vrdl, next);
491 g_free(vrdl);
494 static bool vfio_known_safe_misalignment(MemoryRegionSection *section)
496 MemoryRegion *mr = section->mr;
498 if (!TPM_IS_CRB(mr->owner)) {
499 return false;
502 /* this is a known safe misaligned region, just trace for debug purpose */
503 trace_vfio_known_safe_misalignment(memory_region_name(mr),
504 section->offset_within_address_space,
505 section->offset_within_region,
506 qemu_real_host_page_size());
507 return true;
510 static bool vfio_listener_valid_section(MemoryRegionSection *section,
511 const char *name)
513 if (vfio_listener_skipped_section(section)) {
514 trace_vfio_listener_region_skip(name,
515 section->offset_within_address_space,
516 section->offset_within_address_space +
517 int128_get64(int128_sub(section->size, int128_one())));
518 return false;
521 if (unlikely((section->offset_within_address_space &
522 ~qemu_real_host_page_mask()) !=
523 (section->offset_within_region & ~qemu_real_host_page_mask()))) {
524 if (!vfio_known_safe_misalignment(section)) {
525 error_report("%s received unaligned region %s iova=0x%"PRIx64
526 " offset_within_region=0x%"PRIx64
527 " qemu_real_host_page_size=0x%"PRIxPTR,
528 __func__, memory_region_name(section->mr),
529 section->offset_within_address_space,
530 section->offset_within_region,
531 qemu_real_host_page_size());
533 return false;
536 return true;
539 static bool vfio_get_section_iova_range(VFIOContainerBase *bcontainer,
540 MemoryRegionSection *section,
541 hwaddr *out_iova, hwaddr *out_end,
542 Int128 *out_llend)
544 Int128 llend;
545 hwaddr iova;
547 iova = REAL_HOST_PAGE_ALIGN(section->offset_within_address_space);
548 llend = int128_make64(section->offset_within_address_space);
549 llend = int128_add(llend, section->size);
550 llend = int128_and(llend, int128_exts64(qemu_real_host_page_mask()));
552 if (int128_ge(int128_make64(iova), llend)) {
553 return false;
556 *out_iova = iova;
557 *out_end = int128_get64(int128_sub(llend, int128_one()));
558 if (out_llend) {
559 *out_llend = llend;
561 return true;
564 static void vfio_listener_region_add(MemoryListener *listener,
565 MemoryRegionSection *section)
567 VFIOContainerBase *bcontainer = container_of(listener, VFIOContainerBase,
568 listener);
569 hwaddr iova, end;
570 Int128 llend, llsize;
571 void *vaddr;
572 int ret;
573 Error *err = NULL;
575 if (!vfio_listener_valid_section(section, "region_add")) {
576 return;
579 if (!vfio_get_section_iova_range(bcontainer, section, &iova, &end,
580 &llend)) {
581 if (memory_region_is_ram_device(section->mr)) {
582 trace_vfio_listener_region_add_no_dma_map(
583 memory_region_name(section->mr),
584 section->offset_within_address_space,
585 int128_getlo(section->size),
586 qemu_real_host_page_size());
588 return;
591 if (!vfio_container_add_section_window(bcontainer, section, &err)) {
592 goto fail;
595 memory_region_ref(section->mr);
597 if (memory_region_is_iommu(section->mr)) {
598 VFIOGuestIOMMU *giommu;
599 IOMMUMemoryRegion *iommu_mr = IOMMU_MEMORY_REGION(section->mr);
600 int iommu_idx;
602 trace_vfio_listener_region_add_iommu(iova, end);
604 * FIXME: For VFIO iommu types which have KVM acceleration to
605 * avoid bouncing all map/unmaps through qemu this way, this
606 * would be the right place to wire that up (tell the KVM
607 * device emulation the VFIO iommu handles to use).
609 giommu = g_malloc0(sizeof(*giommu));
610 giommu->iommu_mr = iommu_mr;
611 giommu->iommu_offset = section->offset_within_address_space -
612 section->offset_within_region;
613 giommu->bcontainer = bcontainer;
614 llend = int128_add(int128_make64(section->offset_within_region),
615 section->size);
616 llend = int128_sub(llend, int128_one());
617 iommu_idx = memory_region_iommu_attrs_to_index(iommu_mr,
618 MEMTXATTRS_UNSPECIFIED);
619 iommu_notifier_init(&giommu->n, vfio_iommu_map_notify,
620 IOMMU_NOTIFIER_IOTLB_EVENTS,
621 section->offset_within_region,
622 int128_get64(llend),
623 iommu_idx);
625 ret = memory_region_iommu_set_page_size_mask(giommu->iommu_mr,
626 bcontainer->pgsizes,
627 &err);
628 if (ret) {
629 g_free(giommu);
630 goto fail;
633 ret = memory_region_register_iommu_notifier(section->mr, &giommu->n,
634 &err);
635 if (ret) {
636 g_free(giommu);
637 goto fail;
639 QLIST_INSERT_HEAD(&bcontainer->giommu_list, giommu, giommu_next);
640 memory_region_iommu_replay(giommu->iommu_mr, &giommu->n);
642 return;
645 /* Here we assume that memory_region_is_ram(section->mr)==true */
648 * For RAM memory regions with a RamDiscardManager, we only want to map the
649 * actually populated parts - and update the mapping whenever we're notified
650 * about changes.
652 if (memory_region_has_ram_discard_manager(section->mr)) {
653 vfio_register_ram_discard_listener(bcontainer, section);
654 return;
657 vaddr = memory_region_get_ram_ptr(section->mr) +
658 section->offset_within_region +
659 (iova - section->offset_within_address_space);
661 trace_vfio_listener_region_add_ram(iova, end, vaddr);
663 llsize = int128_sub(llend, int128_make64(iova));
665 if (memory_region_is_ram_device(section->mr)) {
666 hwaddr pgmask = (1ULL << ctz64(bcontainer->pgsizes)) - 1;
668 if ((iova & pgmask) || (int128_get64(llsize) & pgmask)) {
669 trace_vfio_listener_region_add_no_dma_map(
670 memory_region_name(section->mr),
671 section->offset_within_address_space,
672 int128_getlo(section->size),
673 pgmask + 1);
674 return;
678 ret = vfio_container_dma_map(bcontainer, iova, int128_get64(llsize),
679 vaddr, section->readonly);
680 if (ret) {
681 error_setg(&err, "vfio_container_dma_map(%p, 0x%"HWADDR_PRIx", "
682 "0x%"HWADDR_PRIx", %p) = %d (%s)",
683 bcontainer, iova, int128_get64(llsize), vaddr, ret,
684 strerror(-ret));
685 if (memory_region_is_ram_device(section->mr)) {
686 /* Allow unexpected mappings not to be fatal for RAM devices */
687 error_report_err(err);
688 return;
690 goto fail;
693 return;
695 fail:
696 if (memory_region_is_ram_device(section->mr)) {
697 error_reportf_err(err, "PCI p2p may not work: ");
698 return;
701 * On the initfn path, store the first error in the container so we
702 * can gracefully fail. Runtime, there's not much we can do other
703 * than throw a hardware error.
705 if (!bcontainer->initialized) {
706 if (!bcontainer->error) {
707 error_propagate_prepend(&bcontainer->error, err,
708 "Region %s: ",
709 memory_region_name(section->mr));
710 } else {
711 error_free(err);
713 } else {
714 error_report_err(err);
715 hw_error("vfio: DMA mapping failed, unable to continue");
719 static void vfio_listener_region_del(MemoryListener *listener,
720 MemoryRegionSection *section)
722 VFIOContainerBase *bcontainer = container_of(listener, VFIOContainerBase,
723 listener);
724 hwaddr iova, end;
725 Int128 llend, llsize;
726 int ret;
727 bool try_unmap = true;
729 if (!vfio_listener_valid_section(section, "region_del")) {
730 return;
733 if (memory_region_is_iommu(section->mr)) {
734 VFIOGuestIOMMU *giommu;
736 QLIST_FOREACH(giommu, &bcontainer->giommu_list, giommu_next) {
737 if (MEMORY_REGION(giommu->iommu_mr) == section->mr &&
738 giommu->n.start == section->offset_within_region) {
739 memory_region_unregister_iommu_notifier(section->mr,
740 &giommu->n);
741 QLIST_REMOVE(giommu, giommu_next);
742 g_free(giommu);
743 break;
748 * FIXME: We assume the one big unmap below is adequate to
749 * remove any individual page mappings in the IOMMU which
750 * might have been copied into VFIO. This works for a page table
751 * based IOMMU where a big unmap flattens a large range of IO-PTEs.
752 * That may not be true for all IOMMU types.
756 if (!vfio_get_section_iova_range(bcontainer, section, &iova, &end,
757 &llend)) {
758 return;
761 llsize = int128_sub(llend, int128_make64(iova));
763 trace_vfio_listener_region_del(iova, end);
765 if (memory_region_is_ram_device(section->mr)) {
766 hwaddr pgmask;
768 pgmask = (1ULL << ctz64(bcontainer->pgsizes)) - 1;
769 try_unmap = !((iova & pgmask) || (int128_get64(llsize) & pgmask));
770 } else if (memory_region_has_ram_discard_manager(section->mr)) {
771 vfio_unregister_ram_discard_listener(bcontainer, section);
772 /* Unregistering will trigger an unmap. */
773 try_unmap = false;
776 if (try_unmap) {
777 if (int128_eq(llsize, int128_2_64())) {
778 /* The unmap ioctl doesn't accept a full 64-bit span. */
779 llsize = int128_rshift(llsize, 1);
780 ret = vfio_container_dma_unmap(bcontainer, iova,
781 int128_get64(llsize), NULL);
782 if (ret) {
783 error_report("vfio_container_dma_unmap(%p, 0x%"HWADDR_PRIx", "
784 "0x%"HWADDR_PRIx") = %d (%s)",
785 bcontainer, iova, int128_get64(llsize), ret,
786 strerror(-ret));
788 iova += int128_get64(llsize);
790 ret = vfio_container_dma_unmap(bcontainer, iova,
791 int128_get64(llsize), NULL);
792 if (ret) {
793 error_report("vfio_container_dma_unmap(%p, 0x%"HWADDR_PRIx", "
794 "0x%"HWADDR_PRIx") = %d (%s)",
795 bcontainer, iova, int128_get64(llsize), ret,
796 strerror(-ret));
800 memory_region_unref(section->mr);
802 vfio_container_del_section_window(bcontainer, section);
805 typedef struct VFIODirtyRanges {
806 hwaddr min32;
807 hwaddr max32;
808 hwaddr min64;
809 hwaddr max64;
810 hwaddr minpci64;
811 hwaddr maxpci64;
812 } VFIODirtyRanges;
814 typedef struct VFIODirtyRangesListener {
815 VFIOContainerBase *bcontainer;
816 VFIODirtyRanges ranges;
817 MemoryListener listener;
818 } VFIODirtyRangesListener;
820 static bool vfio_section_is_vfio_pci(MemoryRegionSection *section,
821 VFIOContainerBase *bcontainer)
823 VFIOPCIDevice *pcidev;
824 VFIODevice *vbasedev;
825 Object *owner;
827 owner = memory_region_owner(section->mr);
829 QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) {
830 if (vbasedev->type != VFIO_DEVICE_TYPE_PCI) {
831 continue;
833 pcidev = container_of(vbasedev, VFIOPCIDevice, vbasedev);
834 if (OBJECT(pcidev) == owner) {
835 return true;
839 return false;
842 static void vfio_dirty_tracking_update_range(VFIODirtyRanges *range,
843 hwaddr iova, hwaddr end,
844 bool update_pci)
846 hwaddr *min, *max;
849 * The address space passed to the dirty tracker is reduced to three ranges:
850 * one for 32-bit DMA ranges, one for 64-bit DMA ranges and one for the
851 * PCI 64-bit hole.
853 * The underlying reports of dirty will query a sub-interval of each of
854 * these ranges.
856 * The purpose of the three range handling is to handle known cases of big
857 * holes in the address space, like the x86 AMD 1T hole, and firmware (like
858 * OVMF) which may relocate the pci-hole64 to the end of the address space.
859 * The latter would otherwise generate large ranges for tracking, stressing
860 * the limits of supported hardware. The pci-hole32 will always be below 4G
861 * (overlapping or not) so it doesn't need special handling and is part of
862 * the 32-bit range.
864 * The alternative would be an IOVATree but that has a much bigger runtime
865 * overhead and unnecessary complexity.
867 if (update_pci && iova >= UINT32_MAX) {
868 min = &range->minpci64;
869 max = &range->maxpci64;
870 } else {
871 min = (end <= UINT32_MAX) ? &range->min32 : &range->min64;
872 max = (end <= UINT32_MAX) ? &range->max32 : &range->max64;
874 if (*min > iova) {
875 *min = iova;
877 if (*max < end) {
878 *max = end;
881 trace_vfio_device_dirty_tracking_update(iova, end, *min, *max);
884 static void vfio_dirty_tracking_update(MemoryListener *listener,
885 MemoryRegionSection *section)
887 VFIODirtyRangesListener *dirty =
888 container_of(listener, VFIODirtyRangesListener, listener);
889 hwaddr iova, end;
891 if (!vfio_listener_valid_section(section, "tracking_update") ||
892 !vfio_get_section_iova_range(dirty->bcontainer, section,
893 &iova, &end, NULL)) {
894 return;
897 vfio_dirty_tracking_update_range(&dirty->ranges, iova, end,
898 vfio_section_is_vfio_pci(section, dirty->bcontainer));
901 static const MemoryListener vfio_dirty_tracking_listener = {
902 .name = "vfio-tracking",
903 .region_add = vfio_dirty_tracking_update,
906 static void vfio_dirty_tracking_init(VFIOContainerBase *bcontainer,
907 VFIODirtyRanges *ranges)
909 VFIODirtyRangesListener dirty;
911 memset(&dirty, 0, sizeof(dirty));
912 dirty.ranges.min32 = UINT32_MAX;
913 dirty.ranges.min64 = UINT64_MAX;
914 dirty.ranges.minpci64 = UINT64_MAX;
915 dirty.listener = vfio_dirty_tracking_listener;
916 dirty.bcontainer = bcontainer;
918 memory_listener_register(&dirty.listener,
919 bcontainer->space->as);
921 *ranges = dirty.ranges;
924 * The memory listener is synchronous, and used to calculate the range
925 * to dirty tracking. Unregister it after we are done as we are not
926 * interested in any follow-up updates.
928 memory_listener_unregister(&dirty.listener);
931 static void vfio_devices_dma_logging_stop(VFIOContainerBase *bcontainer)
933 uint64_t buf[DIV_ROUND_UP(sizeof(struct vfio_device_feature),
934 sizeof(uint64_t))] = {};
935 struct vfio_device_feature *feature = (struct vfio_device_feature *)buf;
936 VFIODevice *vbasedev;
938 feature->argsz = sizeof(buf);
939 feature->flags = VFIO_DEVICE_FEATURE_SET |
940 VFIO_DEVICE_FEATURE_DMA_LOGGING_STOP;
942 QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) {
943 if (!vbasedev->dirty_tracking) {
944 continue;
947 if (ioctl(vbasedev->fd, VFIO_DEVICE_FEATURE, feature)) {
948 warn_report("%s: Failed to stop DMA logging, err %d (%s)",
949 vbasedev->name, -errno, strerror(errno));
951 vbasedev->dirty_tracking = false;
955 static struct vfio_device_feature *
956 vfio_device_feature_dma_logging_start_create(VFIOContainerBase *bcontainer,
957 VFIODirtyRanges *tracking)
959 struct vfio_device_feature *feature;
960 size_t feature_size;
961 struct vfio_device_feature_dma_logging_control *control;
962 struct vfio_device_feature_dma_logging_range *ranges;
964 feature_size = sizeof(struct vfio_device_feature) +
965 sizeof(struct vfio_device_feature_dma_logging_control);
966 feature = g_try_malloc0(feature_size);
967 if (!feature) {
968 errno = ENOMEM;
969 return NULL;
971 feature->argsz = feature_size;
972 feature->flags = VFIO_DEVICE_FEATURE_SET |
973 VFIO_DEVICE_FEATURE_DMA_LOGGING_START;
975 control = (struct vfio_device_feature_dma_logging_control *)feature->data;
976 control->page_size = qemu_real_host_page_size();
979 * DMA logging uAPI guarantees to support at least a number of ranges that
980 * fits into a single host kernel base page.
982 control->num_ranges = !!tracking->max32 + !!tracking->max64 +
983 !!tracking->maxpci64;
984 ranges = g_try_new0(struct vfio_device_feature_dma_logging_range,
985 control->num_ranges);
986 if (!ranges) {
987 g_free(feature);
988 errno = ENOMEM;
990 return NULL;
993 control->ranges = (uintptr_t)ranges;
994 if (tracking->max32) {
995 ranges->iova = tracking->min32;
996 ranges->length = (tracking->max32 - tracking->min32) + 1;
997 ranges++;
999 if (tracking->max64) {
1000 ranges->iova = tracking->min64;
1001 ranges->length = (tracking->max64 - tracking->min64) + 1;
1002 ranges++;
1004 if (tracking->maxpci64) {
1005 ranges->iova = tracking->minpci64;
1006 ranges->length = (tracking->maxpci64 - tracking->minpci64) + 1;
1009 trace_vfio_device_dirty_tracking_start(control->num_ranges,
1010 tracking->min32, tracking->max32,
1011 tracking->min64, tracking->max64,
1012 tracking->minpci64, tracking->maxpci64);
1014 return feature;
1017 static void vfio_device_feature_dma_logging_start_destroy(
1018 struct vfio_device_feature *feature)
1020 struct vfio_device_feature_dma_logging_control *control =
1021 (struct vfio_device_feature_dma_logging_control *)feature->data;
1022 struct vfio_device_feature_dma_logging_range *ranges =
1023 (struct vfio_device_feature_dma_logging_range *)(uintptr_t)control->ranges;
1025 g_free(ranges);
1026 g_free(feature);
1029 static bool vfio_devices_dma_logging_start(VFIOContainerBase *bcontainer,
1030 Error **errp)
1032 struct vfio_device_feature *feature;
1033 VFIODirtyRanges ranges;
1034 VFIODevice *vbasedev;
1035 int ret = 0;
1037 vfio_dirty_tracking_init(bcontainer, &ranges);
1038 feature = vfio_device_feature_dma_logging_start_create(bcontainer,
1039 &ranges);
1040 if (!feature) {
1041 error_setg_errno(errp, errno, "Failed to prepare DMA logging");
1042 return false;
1045 QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) {
1046 if (vbasedev->dirty_tracking) {
1047 continue;
1050 ret = ioctl(vbasedev->fd, VFIO_DEVICE_FEATURE, feature);
1051 if (ret) {
1052 ret = -errno;
1053 error_setg_errno(errp, errno, "%s: Failed to start DMA logging",
1054 vbasedev->name);
1055 goto out;
1057 vbasedev->dirty_tracking = true;
1060 out:
1061 if (ret) {
1062 vfio_devices_dma_logging_stop(bcontainer);
1065 vfio_device_feature_dma_logging_start_destroy(feature);
1067 return ret == 0;
1070 static bool vfio_listener_log_global_start(MemoryListener *listener,
1071 Error **errp)
1073 ERRP_GUARD();
1074 VFIOContainerBase *bcontainer = container_of(listener, VFIOContainerBase,
1075 listener);
1076 bool ret;
1078 if (vfio_devices_all_device_dirty_tracking(bcontainer)) {
1079 ret = vfio_devices_dma_logging_start(bcontainer, errp);
1080 } else {
1081 ret = vfio_container_set_dirty_page_tracking(bcontainer, true, errp) == 0;
1084 if (!ret) {
1085 error_prepend(errp, "vfio: Could not start dirty page tracking - ");
1087 return ret;
1090 static void vfio_listener_log_global_stop(MemoryListener *listener)
1092 VFIOContainerBase *bcontainer = container_of(listener, VFIOContainerBase,
1093 listener);
1094 Error *local_err = NULL;
1095 int ret = 0;
1097 if (vfio_devices_all_device_dirty_tracking(bcontainer)) {
1098 vfio_devices_dma_logging_stop(bcontainer);
1099 } else {
1100 ret = vfio_container_set_dirty_page_tracking(bcontainer, false,
1101 &local_err);
1104 if (ret) {
1105 error_prepend(&local_err,
1106 "vfio: Could not stop dirty page tracking - ");
1107 error_report_err(local_err);
1108 vfio_set_migration_error(ret);
1112 static int vfio_device_dma_logging_report(VFIODevice *vbasedev, hwaddr iova,
1113 hwaddr size, void *bitmap)
1115 uint64_t buf[DIV_ROUND_UP(sizeof(struct vfio_device_feature) +
1116 sizeof(struct vfio_device_feature_dma_logging_report),
1117 sizeof(uint64_t))] = {};
1118 struct vfio_device_feature *feature = (struct vfio_device_feature *)buf;
1119 struct vfio_device_feature_dma_logging_report *report =
1120 (struct vfio_device_feature_dma_logging_report *)feature->data;
1122 report->iova = iova;
1123 report->length = size;
1124 report->page_size = qemu_real_host_page_size();
1125 report->bitmap = (uintptr_t)bitmap;
1127 feature->argsz = sizeof(buf);
1128 feature->flags = VFIO_DEVICE_FEATURE_GET |
1129 VFIO_DEVICE_FEATURE_DMA_LOGGING_REPORT;
1131 if (ioctl(vbasedev->fd, VFIO_DEVICE_FEATURE, feature)) {
1132 return -errno;
1135 return 0;
1138 int vfio_devices_query_dirty_bitmap(const VFIOContainerBase *bcontainer,
1139 VFIOBitmap *vbmap, hwaddr iova, hwaddr size, Error **errp)
1141 VFIODevice *vbasedev;
1142 int ret;
1144 QLIST_FOREACH(vbasedev, &bcontainer->device_list, container_next) {
1145 ret = vfio_device_dma_logging_report(vbasedev, iova, size,
1146 vbmap->bitmap);
1147 if (ret) {
1148 error_setg_errno(errp, -ret,
1149 "%s: Failed to get DMA logging report, iova: "
1150 "0x%" HWADDR_PRIx ", size: 0x%" HWADDR_PRIx,
1151 vbasedev->name, iova, size);
1153 return ret;
1157 return 0;
1160 int vfio_get_dirty_bitmap(const VFIOContainerBase *bcontainer, uint64_t iova,
1161 uint64_t size, ram_addr_t ram_addr, Error **errp)
1163 bool all_device_dirty_tracking =
1164 vfio_devices_all_device_dirty_tracking(bcontainer);
1165 uint64_t dirty_pages;
1166 VFIOBitmap vbmap;
1167 int ret;
1169 if (!bcontainer->dirty_pages_supported && !all_device_dirty_tracking) {
1170 cpu_physical_memory_set_dirty_range(ram_addr, size,
1171 tcg_enabled() ? DIRTY_CLIENTS_ALL :
1172 DIRTY_CLIENTS_NOCODE);
1173 return 0;
1176 ret = vfio_bitmap_alloc(&vbmap, size);
1177 if (ret) {
1178 error_setg_errno(errp, -ret,
1179 "Failed to allocate dirty tracking bitmap");
1180 return ret;
1183 if (all_device_dirty_tracking) {
1184 ret = vfio_devices_query_dirty_bitmap(bcontainer, &vbmap, iova, size,
1185 errp);
1186 } else {
1187 ret = vfio_container_query_dirty_bitmap(bcontainer, &vbmap, iova, size,
1188 errp);
1191 if (ret) {
1192 goto out;
1195 dirty_pages = cpu_physical_memory_set_dirty_lebitmap(vbmap.bitmap, ram_addr,
1196 vbmap.pages);
1198 trace_vfio_get_dirty_bitmap(iova, size, vbmap.size, ram_addr, dirty_pages);
1199 out:
1200 g_free(vbmap.bitmap);
1202 return ret;
1205 typedef struct {
1206 IOMMUNotifier n;
1207 VFIOGuestIOMMU *giommu;
1208 } vfio_giommu_dirty_notifier;
1210 static void vfio_iommu_map_dirty_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
1212 vfio_giommu_dirty_notifier *gdn = container_of(n,
1213 vfio_giommu_dirty_notifier, n);
1214 VFIOGuestIOMMU *giommu = gdn->giommu;
1215 VFIOContainerBase *bcontainer = giommu->bcontainer;
1216 hwaddr iova = iotlb->iova + giommu->iommu_offset;
1217 ram_addr_t translated_addr;
1218 Error *local_err = NULL;
1219 int ret = -EINVAL;
1221 trace_vfio_iommu_map_dirty_notify(iova, iova + iotlb->addr_mask);
1223 if (iotlb->target_as != &address_space_memory) {
1224 error_report("Wrong target AS \"%s\", only system memory is allowed",
1225 iotlb->target_as->name ? iotlb->target_as->name : "none");
1226 goto out;
1229 rcu_read_lock();
1230 if (!vfio_get_xlat_addr(iotlb, NULL, &translated_addr, NULL, &local_err)) {
1231 error_report_err(local_err);
1232 goto out_unlock;
1235 ret = vfio_get_dirty_bitmap(bcontainer, iova, iotlb->addr_mask + 1,
1236 translated_addr, &local_err);
1237 if (ret) {
1238 error_prepend(&local_err,
1239 "vfio_iommu_map_dirty_notify(%p, 0x%"HWADDR_PRIx", "
1240 "0x%"HWADDR_PRIx") failed - ", bcontainer, iova,
1241 iotlb->addr_mask + 1);
1242 error_report_err(local_err);
1245 out_unlock:
1246 rcu_read_unlock();
1248 out:
1249 if (ret) {
1250 vfio_set_migration_error(ret);
1254 static int vfio_ram_discard_get_dirty_bitmap(MemoryRegionSection *section,
1255 void *opaque)
1257 const hwaddr size = int128_get64(section->size);
1258 const hwaddr iova = section->offset_within_address_space;
1259 const ram_addr_t ram_addr = memory_region_get_ram_addr(section->mr) +
1260 section->offset_within_region;
1261 VFIORamDiscardListener *vrdl = opaque;
1262 Error *local_err = NULL;
1263 int ret;
1266 * Sync the whole mapped region (spanning multiple individual mappings)
1267 * in one go.
1269 ret = vfio_get_dirty_bitmap(vrdl->bcontainer, iova, size, ram_addr,
1270 &local_err);
1271 if (ret) {
1272 error_report_err(local_err);
1274 return ret;
1277 static int
1278 vfio_sync_ram_discard_listener_dirty_bitmap(VFIOContainerBase *bcontainer,
1279 MemoryRegionSection *section)
1281 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr);
1282 VFIORamDiscardListener *vrdl = NULL;
1284 QLIST_FOREACH(vrdl, &bcontainer->vrdl_list, next) {
1285 if (vrdl->mr == section->mr &&
1286 vrdl->offset_within_address_space ==
1287 section->offset_within_address_space) {
1288 break;
1292 if (!vrdl) {
1293 hw_error("vfio: Trying to sync missing RAM discard listener");
1297 * We only want/can synchronize the bitmap for actually mapped parts -
1298 * which correspond to populated parts. Replay all populated parts.
1300 return ram_discard_manager_replay_populated(rdm, section,
1301 vfio_ram_discard_get_dirty_bitmap,
1302 &vrdl);
1305 static int vfio_sync_iommu_dirty_bitmap(VFIOContainerBase *bcontainer,
1306 MemoryRegionSection *section)
1308 VFIOGuestIOMMU *giommu;
1309 bool found = false;
1310 Int128 llend;
1311 vfio_giommu_dirty_notifier gdn;
1312 int idx;
1314 QLIST_FOREACH(giommu, &bcontainer->giommu_list, giommu_next) {
1315 if (MEMORY_REGION(giommu->iommu_mr) == section->mr &&
1316 giommu->n.start == section->offset_within_region) {
1317 found = true;
1318 break;
1322 if (!found) {
1323 return 0;
1326 gdn.giommu = giommu;
1327 idx = memory_region_iommu_attrs_to_index(giommu->iommu_mr,
1328 MEMTXATTRS_UNSPECIFIED);
1330 llend = int128_add(int128_make64(section->offset_within_region),
1331 section->size);
1332 llend = int128_sub(llend, int128_one());
1334 iommu_notifier_init(&gdn.n, vfio_iommu_map_dirty_notify, IOMMU_NOTIFIER_MAP,
1335 section->offset_within_region, int128_get64(llend),
1336 idx);
1337 memory_region_iommu_replay(giommu->iommu_mr, &gdn.n);
1339 return 0;
1342 static int vfio_sync_dirty_bitmap(VFIOContainerBase *bcontainer,
1343 MemoryRegionSection *section, Error **errp)
1345 ram_addr_t ram_addr;
1347 if (memory_region_is_iommu(section->mr)) {
1348 return vfio_sync_iommu_dirty_bitmap(bcontainer, section);
1349 } else if (memory_region_has_ram_discard_manager(section->mr)) {
1350 int ret;
1352 ret = vfio_sync_ram_discard_listener_dirty_bitmap(bcontainer, section);
1353 if (ret) {
1354 error_setg(errp,
1355 "Failed to sync dirty bitmap with RAM discard listener");
1357 return ret;
1360 ram_addr = memory_region_get_ram_addr(section->mr) +
1361 section->offset_within_region;
1363 return vfio_get_dirty_bitmap(bcontainer,
1364 REAL_HOST_PAGE_ALIGN(section->offset_within_address_space),
1365 int128_get64(section->size), ram_addr, errp);
1368 static void vfio_listener_log_sync(MemoryListener *listener,
1369 MemoryRegionSection *section)
1371 VFIOContainerBase *bcontainer = container_of(listener, VFIOContainerBase,
1372 listener);
1373 int ret;
1374 Error *local_err = NULL;
1376 if (vfio_listener_skipped_section(section)) {
1377 return;
1380 if (vfio_devices_all_dirty_tracking(bcontainer)) {
1381 ret = vfio_sync_dirty_bitmap(bcontainer, section, &local_err);
1382 if (ret) {
1383 error_report_err(local_err);
1384 vfio_set_migration_error(ret);
1389 const MemoryListener vfio_memory_listener = {
1390 .name = "vfio",
1391 .region_add = vfio_listener_region_add,
1392 .region_del = vfio_listener_region_del,
1393 .log_global_start = vfio_listener_log_global_start,
1394 .log_global_stop = vfio_listener_log_global_stop,
1395 .log_sync = vfio_listener_log_sync,
1398 void vfio_reset_handler(void *opaque)
1400 VFIODevice *vbasedev;
1402 QLIST_FOREACH(vbasedev, &vfio_device_list, global_next) {
1403 if (vbasedev->dev->realized) {
1404 vbasedev->ops->vfio_compute_needs_reset(vbasedev);
1408 QLIST_FOREACH(vbasedev, &vfio_device_list, global_next) {
1409 if (vbasedev->dev->realized && vbasedev->needs_reset) {
1410 vbasedev->ops->vfio_hot_reset_multi(vbasedev);
1415 int vfio_kvm_device_add_fd(int fd, Error **errp)
1417 #ifdef CONFIG_KVM
1418 struct kvm_device_attr attr = {
1419 .group = KVM_DEV_VFIO_FILE,
1420 .attr = KVM_DEV_VFIO_FILE_ADD,
1421 .addr = (uint64_t)(unsigned long)&fd,
1424 if (!kvm_enabled()) {
1425 return 0;
1428 if (vfio_kvm_device_fd < 0) {
1429 struct kvm_create_device cd = {
1430 .type = KVM_DEV_TYPE_VFIO,
1433 if (kvm_vm_ioctl(kvm_state, KVM_CREATE_DEVICE, &cd)) {
1434 error_setg_errno(errp, errno, "Failed to create KVM VFIO device");
1435 return -errno;
1438 vfio_kvm_device_fd = cd.fd;
1441 if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) {
1442 error_setg_errno(errp, errno, "Failed to add fd %d to KVM VFIO device",
1443 fd);
1444 return -errno;
1446 #endif
1447 return 0;
1450 int vfio_kvm_device_del_fd(int fd, Error **errp)
1452 #ifdef CONFIG_KVM
1453 struct kvm_device_attr attr = {
1454 .group = KVM_DEV_VFIO_FILE,
1455 .attr = KVM_DEV_VFIO_FILE_DEL,
1456 .addr = (uint64_t)(unsigned long)&fd,
1459 if (vfio_kvm_device_fd < 0) {
1460 error_setg(errp, "KVM VFIO device isn't created yet");
1461 return -EINVAL;
1464 if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) {
1465 error_setg_errno(errp, errno,
1466 "Failed to remove fd %d from KVM VFIO device", fd);
1467 return -errno;
1469 #endif
1470 return 0;
1473 VFIOAddressSpace *vfio_get_address_space(AddressSpace *as)
1475 VFIOAddressSpace *space;
1477 QLIST_FOREACH(space, &vfio_address_spaces, list) {
1478 if (space->as == as) {
1479 return space;
1483 /* No suitable VFIOAddressSpace, create a new one */
1484 space = g_malloc0(sizeof(*space));
1485 space->as = as;
1486 QLIST_INIT(&space->containers);
1488 if (QLIST_EMPTY(&vfio_address_spaces)) {
1489 qemu_register_reset(vfio_reset_handler, NULL);
1492 QLIST_INSERT_HEAD(&vfio_address_spaces, space, list);
1494 return space;
1497 void vfio_put_address_space(VFIOAddressSpace *space)
1499 if (!QLIST_EMPTY(&space->containers)) {
1500 return;
1503 QLIST_REMOVE(space, list);
1504 g_free(space);
1506 if (QLIST_EMPTY(&vfio_address_spaces)) {
1507 qemu_unregister_reset(vfio_reset_handler, NULL);
1511 void vfio_address_space_insert(VFIOAddressSpace *space,
1512 VFIOContainerBase *bcontainer)
1514 QLIST_INSERT_HEAD(&space->containers, bcontainer, next);
1515 bcontainer->space = space;
1518 struct vfio_device_info *vfio_get_device_info(int fd)
1520 struct vfio_device_info *info;
1521 uint32_t argsz = sizeof(*info);
1523 info = g_malloc0(argsz);
1525 retry:
1526 info->argsz = argsz;
1528 if (ioctl(fd, VFIO_DEVICE_GET_INFO, info)) {
1529 g_free(info);
1530 return NULL;
1533 if (info->argsz > argsz) {
1534 argsz = info->argsz;
1535 info = g_realloc(info, argsz);
1536 goto retry;
1539 return info;
1542 bool vfio_attach_device(char *name, VFIODevice *vbasedev,
1543 AddressSpace *as, Error **errp)
1545 const VFIOIOMMUClass *ops =
1546 VFIO_IOMMU_CLASS(object_class_by_name(TYPE_VFIO_IOMMU_LEGACY));
1547 HostIOMMUDevice *hiod;
1549 if (vbasedev->iommufd) {
1550 ops = VFIO_IOMMU_CLASS(object_class_by_name(TYPE_VFIO_IOMMU_IOMMUFD));
1553 assert(ops);
1555 if (!ops->attach_device(name, vbasedev, as, errp)) {
1556 return false;
1559 hiod = HOST_IOMMU_DEVICE(object_new(ops->hiod_typename));
1560 if (!HOST_IOMMU_DEVICE_GET_CLASS(hiod)->realize(hiod, vbasedev, errp)) {
1561 object_unref(hiod);
1562 ops->detach_device(vbasedev);
1563 return false;
1565 vbasedev->hiod = hiod;
1567 return true;
1570 void vfio_detach_device(VFIODevice *vbasedev)
1572 if (!vbasedev->bcontainer) {
1573 return;
1575 object_unref(vbasedev->hiod);
1576 VFIO_IOMMU_GET_CLASS(vbasedev->bcontainer)->detach_device(vbasedev);