4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "exec/exec-all.h"
22 #include "translate.h"
23 #include "translate-a64.h"
26 #include "semihosting/semihost.h"
29 static TCGv_i64 cpu_X
[32];
30 static TCGv_i64 cpu_pc
;
32 /* Load/store exclusive handling */
33 static TCGv_i64 cpu_exclusive_high
;
35 static const char *regnames
[] = {
36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
43 A64_SHIFT_TYPE_LSL
= 0,
44 A64_SHIFT_TYPE_LSR
= 1,
45 A64_SHIFT_TYPE_ASR
= 2,
46 A64_SHIFT_TYPE_ROR
= 3
50 * Helpers for extracting complex instruction fields
54 * For load/store with an unsigned 12 bit immediate scaled by the element
55 * size. The input has the immediate field in bits [14:3] and the element
58 static int uimm_scaled(DisasContext
*s
, int x
)
60 unsigned imm
= x
>> 3;
61 unsigned scale
= extract32(x
, 0, 3);
65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */
66 static int scale_by_log2_tag_granule(DisasContext
*s
, int x
)
68 return x
<< LOG2_TAG_GRANULE
;
72 * Include the generated decoders.
75 #include "decode-sme-fa64.c.inc"
76 #include "decode-a64.c.inc"
78 /* Table based decoder typedefs - used when the relevant bits for decode
79 * are too awkwardly scattered across the instruction (eg SIMD).
81 typedef void AArch64DecodeFn(DisasContext
*s
, uint32_t insn
);
83 typedef struct AArch64DecodeTable
{
86 AArch64DecodeFn
*disas_fn
;
89 /* initialize TCG globals. */
90 void a64_translate_init(void)
94 cpu_pc
= tcg_global_mem_new_i64(tcg_env
,
95 offsetof(CPUARMState
, pc
),
97 for (i
= 0; i
< 32; i
++) {
98 cpu_X
[i
] = tcg_global_mem_new_i64(tcg_env
,
99 offsetof(CPUARMState
, xregs
[i
]),
103 cpu_exclusive_high
= tcg_global_mem_new_i64(tcg_env
,
104 offsetof(CPUARMState
, exclusive_high
), "exclusive_high");
108 * Return the core mmu_idx to use for A64 load/store insns which
109 * have a "unprivileged load/store" variant. Those insns access
110 * EL0 if executed from an EL which has control over EL0 (usually
111 * EL1) but behave like normal loads and stores if executed from
112 * elsewhere (eg EL3).
114 * @unpriv : true for the unprivileged encoding; false for the
115 * normal encoding (in which case we will return the same
116 * thing as get_mem_index().
118 static int get_a64_user_mem_index(DisasContext
*s
, bool unpriv
)
121 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
122 * which is the usual mmu_idx for this cpu state.
124 ARMMMUIdx useridx
= s
->mmu_idx
;
126 if (unpriv
&& s
->unpriv
) {
128 * We have pre-computed the condition for AccType_UNPRIV.
129 * Therefore we should never get here with a mmu_idx for
130 * which we do not know the corresponding user mmu_idx.
133 case ARMMMUIdx_E10_1
:
134 case ARMMMUIdx_E10_1_PAN
:
135 useridx
= ARMMMUIdx_E10_0
;
137 case ARMMMUIdx_E20_2
:
138 case ARMMMUIdx_E20_2_PAN
:
139 useridx
= ARMMMUIdx_E20_0
;
142 g_assert_not_reached();
145 return arm_to_core_mmu_idx(useridx
);
148 static void set_btype_raw(int val
)
150 tcg_gen_st_i32(tcg_constant_i32(val
), tcg_env
,
151 offsetof(CPUARMState
, btype
));
154 static void set_btype(DisasContext
*s
, int val
)
156 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */
157 tcg_debug_assert(val
>= 1 && val
<= 3);
162 static void reset_btype(DisasContext
*s
)
170 static void gen_pc_plus_diff(DisasContext
*s
, TCGv_i64 dest
, target_long diff
)
172 assert(s
->pc_save
!= -1);
173 if (tb_cflags(s
->base
.tb
) & CF_PCREL
) {
174 tcg_gen_addi_i64(dest
, cpu_pc
, (s
->pc_curr
- s
->pc_save
) + diff
);
176 tcg_gen_movi_i64(dest
, s
->pc_curr
+ diff
);
180 void gen_a64_update_pc(DisasContext
*s
, target_long diff
)
182 gen_pc_plus_diff(s
, cpu_pc
, diff
);
183 s
->pc_save
= s
->pc_curr
+ diff
;
187 * Handle Top Byte Ignore (TBI) bits.
189 * If address tagging is enabled via the TCR TBI bits:
190 * + for EL2 and EL3 there is only one TBI bit, and if it is set
191 * then the address is zero-extended, clearing bits [63:56]
192 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
193 * and TBI1 controls addresses with bit 55 == 1.
194 * If the appropriate TBI bit is set for the address then
195 * the address is sign-extended from bit 55 into bits [63:56]
197 * Here We have concatenated TBI{1,0} into tbi.
199 static void gen_top_byte_ignore(DisasContext
*s
, TCGv_i64 dst
,
200 TCGv_i64 src
, int tbi
)
203 /* Load unmodified address */
204 tcg_gen_mov_i64(dst
, src
);
205 } else if (!regime_has_2_ranges(s
->mmu_idx
)) {
206 /* Force tag byte to all zero */
207 tcg_gen_extract_i64(dst
, src
, 0, 56);
209 /* Sign-extend from bit 55. */
210 tcg_gen_sextract_i64(dst
, src
, 0, 56);
214 /* tbi0 but !tbi1: only use the extension if positive */
215 tcg_gen_and_i64(dst
, dst
, src
);
218 /* !tbi0 but tbi1: only use the extension if negative */
219 tcg_gen_or_i64(dst
, dst
, src
);
222 /* tbi0 and tbi1: always use the extension */
225 g_assert_not_reached();
230 static void gen_a64_set_pc(DisasContext
*s
, TCGv_i64 src
)
233 * If address tagging is enabled for instructions via the TCR TBI bits,
234 * then loading an address into the PC will clear out any tag.
236 gen_top_byte_ignore(s
, cpu_pc
, src
, s
->tbii
);
241 * Handle MTE and/or TBI.
243 * For TBI, ideally, we would do nothing. Proper behaviour on fault is
244 * for the tag to be present in the FAR_ELx register. But for user-only
245 * mode we do not have a TLB with which to implement this, so we must
246 * remove the top byte now.
248 * Always return a fresh temporary that we can increment independently
249 * of the write-back address.
252 TCGv_i64
clean_data_tbi(DisasContext
*s
, TCGv_i64 addr
)
254 TCGv_i64 clean
= tcg_temp_new_i64();
255 #ifdef CONFIG_USER_ONLY
256 gen_top_byte_ignore(s
, clean
, addr
, s
->tbid
);
258 tcg_gen_mov_i64(clean
, addr
);
263 /* Insert a zero tag into src, with the result at dst. */
264 static void gen_address_with_allocation_tag0(TCGv_i64 dst
, TCGv_i64 src
)
266 tcg_gen_andi_i64(dst
, src
, ~MAKE_64BIT_MASK(56, 4));
269 static void gen_probe_access(DisasContext
*s
, TCGv_i64 ptr
,
270 MMUAccessType acc
, int log2_size
)
272 gen_helper_probe_access(tcg_env
, ptr
,
273 tcg_constant_i32(acc
),
274 tcg_constant_i32(get_mem_index(s
)),
275 tcg_constant_i32(1 << log2_size
));
279 * For MTE, check a single logical or atomic access. This probes a single
280 * address, the exact one specified. The size and alignment of the access
281 * is not relevant to MTE, per se, but watchpoints do require the size,
282 * and we want to recognize those before making any other changes to state.
284 static TCGv_i64
gen_mte_check1_mmuidx(DisasContext
*s
, TCGv_i64 addr
,
285 bool is_write
, bool tag_checked
,
286 MemOp memop
, bool is_unpriv
,
289 if (tag_checked
&& s
->mte_active
[is_unpriv
]) {
293 desc
= FIELD_DP32(desc
, MTEDESC
, MIDX
, core_idx
);
294 desc
= FIELD_DP32(desc
, MTEDESC
, TBI
, s
->tbid
);
295 desc
= FIELD_DP32(desc
, MTEDESC
, TCMA
, s
->tcma
);
296 desc
= FIELD_DP32(desc
, MTEDESC
, WRITE
, is_write
);
297 desc
= FIELD_DP32(desc
, MTEDESC
, ALIGN
, get_alignment_bits(memop
));
298 desc
= FIELD_DP32(desc
, MTEDESC
, SIZEM1
, memop_size(memop
) - 1);
300 ret
= tcg_temp_new_i64();
301 gen_helper_mte_check(ret
, tcg_env
, tcg_constant_i32(desc
), addr
);
305 return clean_data_tbi(s
, addr
);
308 TCGv_i64
gen_mte_check1(DisasContext
*s
, TCGv_i64 addr
, bool is_write
,
309 bool tag_checked
, MemOp memop
)
311 return gen_mte_check1_mmuidx(s
, addr
, is_write
, tag_checked
, memop
,
312 false, get_mem_index(s
));
316 * For MTE, check multiple logical sequential accesses.
318 TCGv_i64
gen_mte_checkN(DisasContext
*s
, TCGv_i64 addr
, bool is_write
,
319 bool tag_checked
, int total_size
, MemOp single_mop
)
321 if (tag_checked
&& s
->mte_active
[0]) {
325 desc
= FIELD_DP32(desc
, MTEDESC
, MIDX
, get_mem_index(s
));
326 desc
= FIELD_DP32(desc
, MTEDESC
, TBI
, s
->tbid
);
327 desc
= FIELD_DP32(desc
, MTEDESC
, TCMA
, s
->tcma
);
328 desc
= FIELD_DP32(desc
, MTEDESC
, WRITE
, is_write
);
329 desc
= FIELD_DP32(desc
, MTEDESC
, ALIGN
, get_alignment_bits(single_mop
));
330 desc
= FIELD_DP32(desc
, MTEDESC
, SIZEM1
, total_size
- 1);
332 ret
= tcg_temp_new_i64();
333 gen_helper_mte_check(ret
, tcg_env
, tcg_constant_i32(desc
), addr
);
337 return clean_data_tbi(s
, addr
);
341 * Generate the special alignment check that applies to AccType_ATOMIC
342 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be
343 * naturally aligned, but it must not cross a 16-byte boundary.
344 * See AArch64.CheckAlignment().
346 static void check_lse2_align(DisasContext
*s
, int rn
, int imm
,
347 bool is_write
, MemOp mop
)
351 TCGLabel
*over_label
;
355 tmp
= tcg_temp_new_i32();
356 tcg_gen_extrl_i64_i32(tmp
, cpu_reg_sp(s
, rn
));
357 tcg_gen_addi_i32(tmp
, tmp
, imm
& 15);
358 tcg_gen_andi_i32(tmp
, tmp
, 15);
359 tcg_gen_addi_i32(tmp
, tmp
, memop_size(mop
));
361 over_label
= gen_new_label();
362 tcg_gen_brcondi_i32(TCG_COND_LEU
, tmp
, 16, over_label
);
364 addr
= tcg_temp_new_i64();
365 tcg_gen_addi_i64(addr
, cpu_reg_sp(s
, rn
), imm
);
367 type
= is_write
? MMU_DATA_STORE
: MMU_DATA_LOAD
,
368 mmu_idx
= get_mem_index(s
);
369 gen_helper_unaligned_access(tcg_env
, addr
, tcg_constant_i32(type
),
370 tcg_constant_i32(mmu_idx
));
372 gen_set_label(over_label
);
376 /* Handle the alignment check for AccType_ATOMIC instructions. */
377 static MemOp
check_atomic_align(DisasContext
*s
, int rn
, MemOp mop
)
379 MemOp size
= mop
& MO_SIZE
;
386 * If size == MO_128, this is a LDXP, and the operation is single-copy
387 * atomic for each doubleword, not the entire quadword; it still must
388 * be quadword aligned.
390 if (size
== MO_128
) {
391 return finalize_memop_atom(s
, MO_128
| MO_ALIGN
,
392 MO_ATOM_IFALIGN_PAIR
);
394 if (dc_isar_feature(aa64_lse2
, s
)) {
395 check_lse2_align(s
, rn
, 0, true, mop
);
399 return finalize_memop(s
, mop
);
402 /* Handle the alignment check for AccType_ORDERED instructions. */
403 static MemOp
check_ordered_align(DisasContext
*s
, int rn
, int imm
,
404 bool is_write
, MemOp mop
)
406 MemOp size
= mop
& MO_SIZE
;
411 if (size
== MO_128
) {
412 return finalize_memop_atom(s
, MO_128
| MO_ALIGN
,
413 MO_ATOM_IFALIGN_PAIR
);
415 if (!dc_isar_feature(aa64_lse2
, s
)) {
417 } else if (!s
->naa
) {
418 check_lse2_align(s
, rn
, imm
, is_write
, mop
);
420 return finalize_memop(s
, mop
);
423 typedef struct DisasCompare64
{
428 static void a64_test_cc(DisasCompare64
*c64
, int cc
)
432 arm_test_cc(&c32
, cc
);
435 * Sign-extend the 32-bit value so that the GE/LT comparisons work
436 * properly. The NE/EQ comparisons are also fine with this choice.
438 c64
->cond
= c32
.cond
;
439 c64
->value
= tcg_temp_new_i64();
440 tcg_gen_ext_i32_i64(c64
->value
, c32
.value
);
443 static void gen_rebuild_hflags(DisasContext
*s
)
445 gen_helper_rebuild_hflags_a64(tcg_env
, tcg_constant_i32(s
->current_el
));
448 static void gen_exception_internal(int excp
)
450 assert(excp_is_internal(excp
));
451 gen_helper_exception_internal(tcg_env
, tcg_constant_i32(excp
));
454 static void gen_exception_internal_insn(DisasContext
*s
, int excp
)
456 gen_a64_update_pc(s
, 0);
457 gen_exception_internal(excp
);
458 s
->base
.is_jmp
= DISAS_NORETURN
;
461 static void gen_exception_bkpt_insn(DisasContext
*s
, uint32_t syndrome
)
463 gen_a64_update_pc(s
, 0);
464 gen_helper_exception_bkpt_insn(tcg_env
, tcg_constant_i32(syndrome
));
465 s
->base
.is_jmp
= DISAS_NORETURN
;
468 static void gen_step_complete_exception(DisasContext
*s
)
470 /* We just completed step of an insn. Move from Active-not-pending
471 * to Active-pending, and then also take the swstep exception.
472 * This corresponds to making the (IMPDEF) choice to prioritize
473 * swstep exceptions over asynchronous exceptions taken to an exception
474 * level where debug is disabled. This choice has the advantage that
475 * we do not need to maintain internal state corresponding to the
476 * ISV/EX syndrome bits between completion of the step and generation
477 * of the exception, and our syndrome information is always correct.
480 gen_swstep_exception(s
, 1, s
->is_ldex
);
481 s
->base
.is_jmp
= DISAS_NORETURN
;
484 static inline bool use_goto_tb(DisasContext
*s
, uint64_t dest
)
489 return translator_use_goto_tb(&s
->base
, dest
);
492 static void gen_goto_tb(DisasContext
*s
, int n
, int64_t diff
)
494 if (use_goto_tb(s
, s
->pc_curr
+ diff
)) {
496 * For pcrel, the pc must always be up-to-date on entry to
497 * the linked TB, so that it can use simple additions for all
498 * further adjustments. For !pcrel, the linked TB is compiled
499 * to know its full virtual address, so we can delay the
500 * update to pc to the unlinked path. A long chain of links
501 * can thus avoid many updates to the PC.
503 if (tb_cflags(s
->base
.tb
) & CF_PCREL
) {
504 gen_a64_update_pc(s
, diff
);
508 gen_a64_update_pc(s
, diff
);
510 tcg_gen_exit_tb(s
->base
.tb
, n
);
511 s
->base
.is_jmp
= DISAS_NORETURN
;
513 gen_a64_update_pc(s
, diff
);
515 gen_step_complete_exception(s
);
517 tcg_gen_lookup_and_goto_ptr();
518 s
->base
.is_jmp
= DISAS_NORETURN
;
524 * Register access functions
526 * These functions are used for directly accessing a register in where
527 * changes to the final register value are likely to be made. If you
528 * need to use a register for temporary calculation (e.g. index type
529 * operations) use the read_* form.
531 * B1.2.1 Register mappings
533 * In instruction register encoding 31 can refer to ZR (zero register) or
534 * the SP (stack pointer) depending on context. In QEMU's case we map SP
535 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
536 * This is the point of the _sp forms.
538 TCGv_i64
cpu_reg(DisasContext
*s
, int reg
)
541 TCGv_i64 t
= tcg_temp_new_i64();
542 tcg_gen_movi_i64(t
, 0);
549 /* register access for when 31 == SP */
550 TCGv_i64
cpu_reg_sp(DisasContext
*s
, int reg
)
555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
556 * representing the register contents. This TCGv is an auto-freed
557 * temporary so it need not be explicitly freed, and may be modified.
559 TCGv_i64
read_cpu_reg(DisasContext
*s
, int reg
, int sf
)
561 TCGv_i64 v
= tcg_temp_new_i64();
564 tcg_gen_mov_i64(v
, cpu_X
[reg
]);
566 tcg_gen_ext32u_i64(v
, cpu_X
[reg
]);
569 tcg_gen_movi_i64(v
, 0);
574 TCGv_i64
read_cpu_reg_sp(DisasContext
*s
, int reg
, int sf
)
576 TCGv_i64 v
= tcg_temp_new_i64();
578 tcg_gen_mov_i64(v
, cpu_X
[reg
]);
580 tcg_gen_ext32u_i64(v
, cpu_X
[reg
]);
585 /* Return the offset into CPUARMState of a slice (from
586 * the least significant end) of FP register Qn (ie
588 * (Note that this is not the same mapping as for A32; see cpu.h)
590 static inline int fp_reg_offset(DisasContext
*s
, int regno
, MemOp size
)
592 return vec_reg_offset(s
, regno
, 0, size
);
595 /* Offset of the high half of the 128 bit vector Qn */
596 static inline int fp_reg_hi_offset(DisasContext
*s
, int regno
)
598 return vec_reg_offset(s
, regno
, 1, MO_64
);
601 /* Convenience accessors for reading and writing single and double
602 * FP registers. Writing clears the upper parts of the associated
603 * 128 bit vector register, as required by the architecture.
604 * Note that unlike the GP register accessors, the values returned
605 * by the read functions must be manually freed.
607 static TCGv_i64
read_fp_dreg(DisasContext
*s
, int reg
)
609 TCGv_i64 v
= tcg_temp_new_i64();
611 tcg_gen_ld_i64(v
, tcg_env
, fp_reg_offset(s
, reg
, MO_64
));
615 static TCGv_i32
read_fp_sreg(DisasContext
*s
, int reg
)
617 TCGv_i32 v
= tcg_temp_new_i32();
619 tcg_gen_ld_i32(v
, tcg_env
, fp_reg_offset(s
, reg
, MO_32
));
623 static TCGv_i32
read_fp_hreg(DisasContext
*s
, int reg
)
625 TCGv_i32 v
= tcg_temp_new_i32();
627 tcg_gen_ld16u_i32(v
, tcg_env
, fp_reg_offset(s
, reg
, MO_16
));
631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
632 * If SVE is not enabled, then there are only 128 bits in the vector.
634 static void clear_vec_high(DisasContext
*s
, bool is_q
, int rd
)
636 unsigned ofs
= fp_reg_offset(s
, rd
, MO_64
);
637 unsigned vsz
= vec_full_reg_size(s
);
639 /* Nop move, with side effect of clearing the tail. */
640 tcg_gen_gvec_mov(MO_64
, ofs
, ofs
, is_q
? 16 : 8, vsz
);
643 void write_fp_dreg(DisasContext
*s
, int reg
, TCGv_i64 v
)
645 unsigned ofs
= fp_reg_offset(s
, reg
, MO_64
);
647 tcg_gen_st_i64(v
, tcg_env
, ofs
);
648 clear_vec_high(s
, false, reg
);
651 static void write_fp_sreg(DisasContext
*s
, int reg
, TCGv_i32 v
)
653 TCGv_i64 tmp
= tcg_temp_new_i64();
655 tcg_gen_extu_i32_i64(tmp
, v
);
656 write_fp_dreg(s
, reg
, tmp
);
659 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */
660 static void gen_gvec_fn2(DisasContext
*s
, bool is_q
, int rd
, int rn
,
661 GVecGen2Fn
*gvec_fn
, int vece
)
663 gvec_fn(vece
, vec_full_reg_offset(s
, rd
), vec_full_reg_offset(s
, rn
),
664 is_q
? 16 : 8, vec_full_reg_size(s
));
667 /* Expand a 2-operand + immediate AdvSIMD vector operation using
668 * an expander function.
670 static void gen_gvec_fn2i(DisasContext
*s
, bool is_q
, int rd
, int rn
,
671 int64_t imm
, GVecGen2iFn
*gvec_fn
, int vece
)
673 gvec_fn(vece
, vec_full_reg_offset(s
, rd
), vec_full_reg_offset(s
, rn
),
674 imm
, is_q
? 16 : 8, vec_full_reg_size(s
));
677 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */
678 static void gen_gvec_fn3(DisasContext
*s
, bool is_q
, int rd
, int rn
, int rm
,
679 GVecGen3Fn
*gvec_fn
, int vece
)
681 gvec_fn(vece
, vec_full_reg_offset(s
, rd
), vec_full_reg_offset(s
, rn
),
682 vec_full_reg_offset(s
, rm
), is_q
? 16 : 8, vec_full_reg_size(s
));
685 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */
686 static void gen_gvec_fn4(DisasContext
*s
, bool is_q
, int rd
, int rn
, int rm
,
687 int rx
, GVecGen4Fn
*gvec_fn
, int vece
)
689 gvec_fn(vece
, vec_full_reg_offset(s
, rd
), vec_full_reg_offset(s
, rn
),
690 vec_full_reg_offset(s
, rm
), vec_full_reg_offset(s
, rx
),
691 is_q
? 16 : 8, vec_full_reg_size(s
));
694 /* Expand a 2-operand operation using an out-of-line helper. */
695 static void gen_gvec_op2_ool(DisasContext
*s
, bool is_q
, int rd
,
696 int rn
, int data
, gen_helper_gvec_2
*fn
)
698 tcg_gen_gvec_2_ool(vec_full_reg_offset(s
, rd
),
699 vec_full_reg_offset(s
, rn
),
700 is_q
? 16 : 8, vec_full_reg_size(s
), data
, fn
);
703 /* Expand a 3-operand operation using an out-of-line helper. */
704 static void gen_gvec_op3_ool(DisasContext
*s
, bool is_q
, int rd
,
705 int rn
, int rm
, int data
, gen_helper_gvec_3
*fn
)
707 tcg_gen_gvec_3_ool(vec_full_reg_offset(s
, rd
),
708 vec_full_reg_offset(s
, rn
),
709 vec_full_reg_offset(s
, rm
),
710 is_q
? 16 : 8, vec_full_reg_size(s
), data
, fn
);
713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
714 * an out-of-line helper.
716 static void gen_gvec_op3_fpst(DisasContext
*s
, bool is_q
, int rd
, int rn
,
717 int rm
, bool is_fp16
, int data
,
718 gen_helper_gvec_3_ptr
*fn
)
720 TCGv_ptr fpst
= fpstatus_ptr(is_fp16
? FPST_FPCR_F16
: FPST_FPCR
);
721 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s
, rd
),
722 vec_full_reg_offset(s
, rn
),
723 vec_full_reg_offset(s
, rm
), fpst
,
724 is_q
? 16 : 8, vec_full_reg_size(s
), data
, fn
);
727 /* Expand a 3-operand + qc + operation using an out-of-line helper. */
728 static void gen_gvec_op3_qc(DisasContext
*s
, bool is_q
, int rd
, int rn
,
729 int rm
, gen_helper_gvec_3_ptr
*fn
)
731 TCGv_ptr qc_ptr
= tcg_temp_new_ptr();
733 tcg_gen_addi_ptr(qc_ptr
, tcg_env
, offsetof(CPUARMState
, vfp
.qc
));
734 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s
, rd
),
735 vec_full_reg_offset(s
, rn
),
736 vec_full_reg_offset(s
, rm
), qc_ptr
,
737 is_q
? 16 : 8, vec_full_reg_size(s
), 0, fn
);
740 /* Expand a 4-operand operation using an out-of-line helper. */
741 static void gen_gvec_op4_ool(DisasContext
*s
, bool is_q
, int rd
, int rn
,
742 int rm
, int ra
, int data
, gen_helper_gvec_4
*fn
)
744 tcg_gen_gvec_4_ool(vec_full_reg_offset(s
, rd
),
745 vec_full_reg_offset(s
, rn
),
746 vec_full_reg_offset(s
, rm
),
747 vec_full_reg_offset(s
, ra
),
748 is_q
? 16 : 8, vec_full_reg_size(s
), data
, fn
);
752 * Expand a 4-operand + fpstatus pointer + simd data value operation using
753 * an out-of-line helper.
755 static void gen_gvec_op4_fpst(DisasContext
*s
, bool is_q
, int rd
, int rn
,
756 int rm
, int ra
, bool is_fp16
, int data
,
757 gen_helper_gvec_4_ptr
*fn
)
759 TCGv_ptr fpst
= fpstatus_ptr(is_fp16
? FPST_FPCR_F16
: FPST_FPCR
);
760 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s
, rd
),
761 vec_full_reg_offset(s
, rn
),
762 vec_full_reg_offset(s
, rm
),
763 vec_full_reg_offset(s
, ra
), fpst
,
764 is_q
? 16 : 8, vec_full_reg_size(s
), data
, fn
);
767 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
768 * than the 32 bit equivalent.
770 static inline void gen_set_NZ64(TCGv_i64 result
)
772 tcg_gen_extr_i64_i32(cpu_ZF
, cpu_NF
, result
);
773 tcg_gen_or_i32(cpu_ZF
, cpu_ZF
, cpu_NF
);
776 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
777 static inline void gen_logic_CC(int sf
, TCGv_i64 result
)
780 gen_set_NZ64(result
);
782 tcg_gen_extrl_i64_i32(cpu_ZF
, result
);
783 tcg_gen_mov_i32(cpu_NF
, cpu_ZF
);
785 tcg_gen_movi_i32(cpu_CF
, 0);
786 tcg_gen_movi_i32(cpu_VF
, 0);
789 /* dest = T0 + T1; compute C, N, V and Z flags */
790 static void gen_add64_CC(TCGv_i64 dest
, TCGv_i64 t0
, TCGv_i64 t1
)
792 TCGv_i64 result
, flag
, tmp
;
793 result
= tcg_temp_new_i64();
794 flag
= tcg_temp_new_i64();
795 tmp
= tcg_temp_new_i64();
797 tcg_gen_movi_i64(tmp
, 0);
798 tcg_gen_add2_i64(result
, flag
, t0
, tmp
, t1
, tmp
);
800 tcg_gen_extrl_i64_i32(cpu_CF
, flag
);
802 gen_set_NZ64(result
);
804 tcg_gen_xor_i64(flag
, result
, t0
);
805 tcg_gen_xor_i64(tmp
, t0
, t1
);
806 tcg_gen_andc_i64(flag
, flag
, tmp
);
807 tcg_gen_extrh_i64_i32(cpu_VF
, flag
);
809 tcg_gen_mov_i64(dest
, result
);
812 static void gen_add32_CC(TCGv_i64 dest
, TCGv_i64 t0
, TCGv_i64 t1
)
814 TCGv_i32 t0_32
= tcg_temp_new_i32();
815 TCGv_i32 t1_32
= tcg_temp_new_i32();
816 TCGv_i32 tmp
= tcg_temp_new_i32();
818 tcg_gen_movi_i32(tmp
, 0);
819 tcg_gen_extrl_i64_i32(t0_32
, t0
);
820 tcg_gen_extrl_i64_i32(t1_32
, t1
);
821 tcg_gen_add2_i32(cpu_NF
, cpu_CF
, t0_32
, tmp
, t1_32
, tmp
);
822 tcg_gen_mov_i32(cpu_ZF
, cpu_NF
);
823 tcg_gen_xor_i32(cpu_VF
, cpu_NF
, t0_32
);
824 tcg_gen_xor_i32(tmp
, t0_32
, t1_32
);
825 tcg_gen_andc_i32(cpu_VF
, cpu_VF
, tmp
);
826 tcg_gen_extu_i32_i64(dest
, cpu_NF
);
829 static void gen_add_CC(int sf
, TCGv_i64 dest
, TCGv_i64 t0
, TCGv_i64 t1
)
832 gen_add64_CC(dest
, t0
, t1
);
834 gen_add32_CC(dest
, t0
, t1
);
838 /* dest = T0 - T1; compute C, N, V and Z flags */
839 static void gen_sub64_CC(TCGv_i64 dest
, TCGv_i64 t0
, TCGv_i64 t1
)
841 /* 64 bit arithmetic */
842 TCGv_i64 result
, flag
, tmp
;
844 result
= tcg_temp_new_i64();
845 flag
= tcg_temp_new_i64();
846 tcg_gen_sub_i64(result
, t0
, t1
);
848 gen_set_NZ64(result
);
850 tcg_gen_setcond_i64(TCG_COND_GEU
, flag
, t0
, t1
);
851 tcg_gen_extrl_i64_i32(cpu_CF
, flag
);
853 tcg_gen_xor_i64(flag
, result
, t0
);
854 tmp
= tcg_temp_new_i64();
855 tcg_gen_xor_i64(tmp
, t0
, t1
);
856 tcg_gen_and_i64(flag
, flag
, tmp
);
857 tcg_gen_extrh_i64_i32(cpu_VF
, flag
);
858 tcg_gen_mov_i64(dest
, result
);
861 static void gen_sub32_CC(TCGv_i64 dest
, TCGv_i64 t0
, TCGv_i64 t1
)
863 /* 32 bit arithmetic */
864 TCGv_i32 t0_32
= tcg_temp_new_i32();
865 TCGv_i32 t1_32
= tcg_temp_new_i32();
868 tcg_gen_extrl_i64_i32(t0_32
, t0
);
869 tcg_gen_extrl_i64_i32(t1_32
, t1
);
870 tcg_gen_sub_i32(cpu_NF
, t0_32
, t1_32
);
871 tcg_gen_mov_i32(cpu_ZF
, cpu_NF
);
872 tcg_gen_setcond_i32(TCG_COND_GEU
, cpu_CF
, t0_32
, t1_32
);
873 tcg_gen_xor_i32(cpu_VF
, cpu_NF
, t0_32
);
874 tmp
= tcg_temp_new_i32();
875 tcg_gen_xor_i32(tmp
, t0_32
, t1_32
);
876 tcg_gen_and_i32(cpu_VF
, cpu_VF
, tmp
);
877 tcg_gen_extu_i32_i64(dest
, cpu_NF
);
880 static void gen_sub_CC(int sf
, TCGv_i64 dest
, TCGv_i64 t0
, TCGv_i64 t1
)
883 gen_sub64_CC(dest
, t0
, t1
);
885 gen_sub32_CC(dest
, t0
, t1
);
889 /* dest = T0 + T1 + CF; do not compute flags. */
890 static void gen_adc(int sf
, TCGv_i64 dest
, TCGv_i64 t0
, TCGv_i64 t1
)
892 TCGv_i64 flag
= tcg_temp_new_i64();
893 tcg_gen_extu_i32_i64(flag
, cpu_CF
);
894 tcg_gen_add_i64(dest
, t0
, t1
);
895 tcg_gen_add_i64(dest
, dest
, flag
);
898 tcg_gen_ext32u_i64(dest
, dest
);
902 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
903 static void gen_adc_CC(int sf
, TCGv_i64 dest
, TCGv_i64 t0
, TCGv_i64 t1
)
906 TCGv_i64 result
= tcg_temp_new_i64();
907 TCGv_i64 cf_64
= tcg_temp_new_i64();
908 TCGv_i64 vf_64
= tcg_temp_new_i64();
909 TCGv_i64 tmp
= tcg_temp_new_i64();
910 TCGv_i64 zero
= tcg_constant_i64(0);
912 tcg_gen_extu_i32_i64(cf_64
, cpu_CF
);
913 tcg_gen_add2_i64(result
, cf_64
, t0
, zero
, cf_64
, zero
);
914 tcg_gen_add2_i64(result
, cf_64
, result
, cf_64
, t1
, zero
);
915 tcg_gen_extrl_i64_i32(cpu_CF
, cf_64
);
916 gen_set_NZ64(result
);
918 tcg_gen_xor_i64(vf_64
, result
, t0
);
919 tcg_gen_xor_i64(tmp
, t0
, t1
);
920 tcg_gen_andc_i64(vf_64
, vf_64
, tmp
);
921 tcg_gen_extrh_i64_i32(cpu_VF
, vf_64
);
923 tcg_gen_mov_i64(dest
, result
);
925 TCGv_i32 t0_32
= tcg_temp_new_i32();
926 TCGv_i32 t1_32
= tcg_temp_new_i32();
927 TCGv_i32 tmp
= tcg_temp_new_i32();
928 TCGv_i32 zero
= tcg_constant_i32(0);
930 tcg_gen_extrl_i64_i32(t0_32
, t0
);
931 tcg_gen_extrl_i64_i32(t1_32
, t1
);
932 tcg_gen_add2_i32(cpu_NF
, cpu_CF
, t0_32
, zero
, cpu_CF
, zero
);
933 tcg_gen_add2_i32(cpu_NF
, cpu_CF
, cpu_NF
, cpu_CF
, t1_32
, zero
);
935 tcg_gen_mov_i32(cpu_ZF
, cpu_NF
);
936 tcg_gen_xor_i32(cpu_VF
, cpu_NF
, t0_32
);
937 tcg_gen_xor_i32(tmp
, t0_32
, t1_32
);
938 tcg_gen_andc_i32(cpu_VF
, cpu_VF
, tmp
);
939 tcg_gen_extu_i32_i64(dest
, cpu_NF
);
944 * Load/Store generators
948 * Store from GPR register to memory.
950 static void do_gpr_st_memidx(DisasContext
*s
, TCGv_i64 source
,
951 TCGv_i64 tcg_addr
, MemOp memop
, int memidx
,
953 unsigned int iss_srt
,
954 bool iss_sf
, bool iss_ar
)
956 tcg_gen_qemu_st_i64(source
, tcg_addr
, memidx
, memop
);
961 syn
= syn_data_abort_with_iss(0,
967 0, 0, 0, 0, 0, false);
968 disas_set_insn_syndrome(s
, syn
);
972 static void do_gpr_st(DisasContext
*s
, TCGv_i64 source
,
973 TCGv_i64 tcg_addr
, MemOp memop
,
975 unsigned int iss_srt
,
976 bool iss_sf
, bool iss_ar
)
978 do_gpr_st_memidx(s
, source
, tcg_addr
, memop
, get_mem_index(s
),
979 iss_valid
, iss_srt
, iss_sf
, iss_ar
);
983 * Load from memory to GPR register
985 static void do_gpr_ld_memidx(DisasContext
*s
, TCGv_i64 dest
, TCGv_i64 tcg_addr
,
986 MemOp memop
, bool extend
, int memidx
,
987 bool iss_valid
, unsigned int iss_srt
,
988 bool iss_sf
, bool iss_ar
)
990 tcg_gen_qemu_ld_i64(dest
, tcg_addr
, memidx
, memop
);
992 if (extend
&& (memop
& MO_SIGN
)) {
993 g_assert((memop
& MO_SIZE
) <= MO_32
);
994 tcg_gen_ext32u_i64(dest
, dest
);
1000 syn
= syn_data_abort_with_iss(0,
1002 (memop
& MO_SIGN
) != 0,
1006 0, 0, 0, 0, 0, false);
1007 disas_set_insn_syndrome(s
, syn
);
1011 static void do_gpr_ld(DisasContext
*s
, TCGv_i64 dest
, TCGv_i64 tcg_addr
,
1012 MemOp memop
, bool extend
,
1013 bool iss_valid
, unsigned int iss_srt
,
1014 bool iss_sf
, bool iss_ar
)
1016 do_gpr_ld_memidx(s
, dest
, tcg_addr
, memop
, extend
, get_mem_index(s
),
1017 iss_valid
, iss_srt
, iss_sf
, iss_ar
);
1021 * Store from FP register to memory
1023 static void do_fp_st(DisasContext
*s
, int srcidx
, TCGv_i64 tcg_addr
, MemOp mop
)
1025 /* This writes the bottom N bits of a 128 bit wide vector to memory */
1026 TCGv_i64 tmplo
= tcg_temp_new_i64();
1028 tcg_gen_ld_i64(tmplo
, tcg_env
, fp_reg_offset(s
, srcidx
, MO_64
));
1030 if ((mop
& MO_SIZE
) < MO_128
) {
1031 tcg_gen_qemu_st_i64(tmplo
, tcg_addr
, get_mem_index(s
), mop
);
1033 TCGv_i64 tmphi
= tcg_temp_new_i64();
1034 TCGv_i128 t16
= tcg_temp_new_i128();
1036 tcg_gen_ld_i64(tmphi
, tcg_env
, fp_reg_hi_offset(s
, srcidx
));
1037 tcg_gen_concat_i64_i128(t16
, tmplo
, tmphi
);
1039 tcg_gen_qemu_st_i128(t16
, tcg_addr
, get_mem_index(s
), mop
);
1044 * Load from memory to FP register
1046 static void do_fp_ld(DisasContext
*s
, int destidx
, TCGv_i64 tcg_addr
, MemOp mop
)
1048 /* This always zero-extends and writes to a full 128 bit wide vector */
1049 TCGv_i64 tmplo
= tcg_temp_new_i64();
1050 TCGv_i64 tmphi
= NULL
;
1052 if ((mop
& MO_SIZE
) < MO_128
) {
1053 tcg_gen_qemu_ld_i64(tmplo
, tcg_addr
, get_mem_index(s
), mop
);
1055 TCGv_i128 t16
= tcg_temp_new_i128();
1057 tcg_gen_qemu_ld_i128(t16
, tcg_addr
, get_mem_index(s
), mop
);
1059 tmphi
= tcg_temp_new_i64();
1060 tcg_gen_extr_i128_i64(tmplo
, tmphi
, t16
);
1063 tcg_gen_st_i64(tmplo
, tcg_env
, fp_reg_offset(s
, destidx
, MO_64
));
1066 tcg_gen_st_i64(tmphi
, tcg_env
, fp_reg_hi_offset(s
, destidx
));
1068 clear_vec_high(s
, tmphi
!= NULL
, destidx
);
1072 * Vector load/store helpers.
1074 * The principal difference between this and a FP load is that we don't
1075 * zero extend as we are filling a partial chunk of the vector register.
1076 * These functions don't support 128 bit loads/stores, which would be
1077 * normal load/store operations.
1079 * The _i32 versions are useful when operating on 32 bit quantities
1080 * (eg for floating point single or using Neon helper functions).
1083 /* Get value of an element within a vector register */
1084 static void read_vec_element(DisasContext
*s
, TCGv_i64 tcg_dest
, int srcidx
,
1085 int element
, MemOp memop
)
1087 int vect_off
= vec_reg_offset(s
, srcidx
, element
, memop
& MO_SIZE
);
1088 switch ((unsigned)memop
) {
1090 tcg_gen_ld8u_i64(tcg_dest
, tcg_env
, vect_off
);
1093 tcg_gen_ld16u_i64(tcg_dest
, tcg_env
, vect_off
);
1096 tcg_gen_ld32u_i64(tcg_dest
, tcg_env
, vect_off
);
1099 tcg_gen_ld8s_i64(tcg_dest
, tcg_env
, vect_off
);
1102 tcg_gen_ld16s_i64(tcg_dest
, tcg_env
, vect_off
);
1105 tcg_gen_ld32s_i64(tcg_dest
, tcg_env
, vect_off
);
1109 tcg_gen_ld_i64(tcg_dest
, tcg_env
, vect_off
);
1112 g_assert_not_reached();
1116 static void read_vec_element_i32(DisasContext
*s
, TCGv_i32 tcg_dest
, int srcidx
,
1117 int element
, MemOp memop
)
1119 int vect_off
= vec_reg_offset(s
, srcidx
, element
, memop
& MO_SIZE
);
1122 tcg_gen_ld8u_i32(tcg_dest
, tcg_env
, vect_off
);
1125 tcg_gen_ld16u_i32(tcg_dest
, tcg_env
, vect_off
);
1128 tcg_gen_ld8s_i32(tcg_dest
, tcg_env
, vect_off
);
1131 tcg_gen_ld16s_i32(tcg_dest
, tcg_env
, vect_off
);
1135 tcg_gen_ld_i32(tcg_dest
, tcg_env
, vect_off
);
1138 g_assert_not_reached();
1142 /* Set value of an element within a vector register */
1143 static void write_vec_element(DisasContext
*s
, TCGv_i64 tcg_src
, int destidx
,
1144 int element
, MemOp memop
)
1146 int vect_off
= vec_reg_offset(s
, destidx
, element
, memop
& MO_SIZE
);
1149 tcg_gen_st8_i64(tcg_src
, tcg_env
, vect_off
);
1152 tcg_gen_st16_i64(tcg_src
, tcg_env
, vect_off
);
1155 tcg_gen_st32_i64(tcg_src
, tcg_env
, vect_off
);
1158 tcg_gen_st_i64(tcg_src
, tcg_env
, vect_off
);
1161 g_assert_not_reached();
1165 static void write_vec_element_i32(DisasContext
*s
, TCGv_i32 tcg_src
,
1166 int destidx
, int element
, MemOp memop
)
1168 int vect_off
= vec_reg_offset(s
, destidx
, element
, memop
& MO_SIZE
);
1171 tcg_gen_st8_i32(tcg_src
, tcg_env
, vect_off
);
1174 tcg_gen_st16_i32(tcg_src
, tcg_env
, vect_off
);
1177 tcg_gen_st_i32(tcg_src
, tcg_env
, vect_off
);
1180 g_assert_not_reached();
1184 /* Store from vector register to memory */
1185 static void do_vec_st(DisasContext
*s
, int srcidx
, int element
,
1186 TCGv_i64 tcg_addr
, MemOp mop
)
1188 TCGv_i64 tcg_tmp
= tcg_temp_new_i64();
1190 read_vec_element(s
, tcg_tmp
, srcidx
, element
, mop
& MO_SIZE
);
1191 tcg_gen_qemu_st_i64(tcg_tmp
, tcg_addr
, get_mem_index(s
), mop
);
1194 /* Load from memory to vector register */
1195 static void do_vec_ld(DisasContext
*s
, int destidx
, int element
,
1196 TCGv_i64 tcg_addr
, MemOp mop
)
1198 TCGv_i64 tcg_tmp
= tcg_temp_new_i64();
1200 tcg_gen_qemu_ld_i64(tcg_tmp
, tcg_addr
, get_mem_index(s
), mop
);
1201 write_vec_element(s
, tcg_tmp
, destidx
, element
, mop
& MO_SIZE
);
1204 /* Check that FP/Neon access is enabled. If it is, return
1205 * true. If not, emit code to generate an appropriate exception,
1206 * and return false; the caller should not emit any code for
1207 * the instruction. Note that this check must happen after all
1208 * unallocated-encoding checks (otherwise the syndrome information
1209 * for the resulting exception will be incorrect).
1211 static bool fp_access_check_only(DisasContext
*s
)
1213 if (s
->fp_excp_el
) {
1214 assert(!s
->fp_access_checked
);
1215 s
->fp_access_checked
= true;
1217 gen_exception_insn_el(s
, 0, EXCP_UDEF
,
1218 syn_fp_access_trap(1, 0xe, false, 0),
1222 s
->fp_access_checked
= true;
1226 static bool fp_access_check(DisasContext
*s
)
1228 if (!fp_access_check_only(s
)) {
1231 if (s
->sme_trap_nonstreaming
&& s
->is_nonstreaming
) {
1232 gen_exception_insn(s
, 0, EXCP_UDEF
,
1233 syn_smetrap(SME_ET_Streaming
, false));
1240 * Check that SVE access is enabled. If it is, return true.
1241 * If not, emit code to generate an appropriate exception and return false.
1242 * This function corresponds to CheckSVEEnabled().
1244 bool sve_access_check(DisasContext
*s
)
1246 if (s
->pstate_sm
|| !dc_isar_feature(aa64_sve
, s
)) {
1247 assert(dc_isar_feature(aa64_sme
, s
));
1248 if (!sme_sm_enabled_check(s
)) {
1251 } else if (s
->sve_excp_el
) {
1252 gen_exception_insn_el(s
, 0, EXCP_UDEF
,
1253 syn_sve_access_trap(), s
->sve_excp_el
);
1256 s
->sve_access_checked
= true;
1257 return fp_access_check(s
);
1260 /* Assert that we only raise one exception per instruction. */
1261 assert(!s
->sve_access_checked
);
1262 s
->sve_access_checked
= true;
1267 * Check that SME access is enabled, raise an exception if not.
1268 * Note that this function corresponds to CheckSMEAccess and is
1269 * only used directly for cpregs.
1271 static bool sme_access_check(DisasContext
*s
)
1273 if (s
->sme_excp_el
) {
1274 gen_exception_insn_el(s
, 0, EXCP_UDEF
,
1275 syn_smetrap(SME_ET_AccessTrap
, false),
1282 /* This function corresponds to CheckSMEEnabled. */
1283 bool sme_enabled_check(DisasContext
*s
)
1286 * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1287 * to be zero when fp_excp_el has priority. This is because we need
1288 * sme_excp_el by itself for cpregs access checks.
1290 if (!s
->fp_excp_el
|| s
->sme_excp_el
< s
->fp_excp_el
) {
1291 s
->fp_access_checked
= true;
1292 return sme_access_check(s
);
1294 return fp_access_check_only(s
);
1297 /* Common subroutine for CheckSMEAnd*Enabled. */
1298 bool sme_enabled_check_with_svcr(DisasContext
*s
, unsigned req
)
1300 if (!sme_enabled_check(s
)) {
1303 if (FIELD_EX64(req
, SVCR
, SM
) && !s
->pstate_sm
) {
1304 gen_exception_insn(s
, 0, EXCP_UDEF
,
1305 syn_smetrap(SME_ET_NotStreaming
, false));
1308 if (FIELD_EX64(req
, SVCR
, ZA
) && !s
->pstate_za
) {
1309 gen_exception_insn(s
, 0, EXCP_UDEF
,
1310 syn_smetrap(SME_ET_InactiveZA
, false));
1317 * Expanders for AdvSIMD translation functions.
1320 static bool do_gvec_op2_ool(DisasContext
*s
, arg_qrr_e
*a
, int data
,
1321 gen_helper_gvec_2
*fn
)
1323 if (!a
->q
&& a
->esz
== MO_64
) {
1326 if (fp_access_check(s
)) {
1327 gen_gvec_op2_ool(s
, a
->q
, a
->rd
, a
->rn
, data
, fn
);
1332 static bool do_gvec_op3_ool(DisasContext
*s
, arg_qrrr_e
*a
, int data
,
1333 gen_helper_gvec_3
*fn
)
1335 if (!a
->q
&& a
->esz
== MO_64
) {
1338 if (fp_access_check(s
)) {
1339 gen_gvec_op3_ool(s
, a
->q
, a
->rd
, a
->rn
, a
->rm
, data
, fn
);
1344 static bool do_gvec_fn3(DisasContext
*s
, arg_qrrr_e
*a
, GVecGen3Fn
*fn
)
1346 if (!a
->q
&& a
->esz
== MO_64
) {
1349 if (fp_access_check(s
)) {
1350 gen_gvec_fn3(s
, a
->q
, a
->rd
, a
->rn
, a
->rm
, fn
, a
->esz
);
1355 static bool do_gvec_fn3_no64(DisasContext
*s
, arg_qrrr_e
*a
, GVecGen3Fn
*fn
)
1357 if (a
->esz
== MO_64
) {
1360 if (fp_access_check(s
)) {
1361 gen_gvec_fn3(s
, a
->q
, a
->rd
, a
->rn
, a
->rm
, fn
, a
->esz
);
1366 static bool do_gvec_fn4(DisasContext
*s
, arg_qrrrr_e
*a
, GVecGen4Fn
*fn
)
1368 if (!a
->q
&& a
->esz
== MO_64
) {
1371 if (fp_access_check(s
)) {
1372 gen_gvec_fn4(s
, a
->q
, a
->rd
, a
->rn
, a
->rm
, a
->ra
, fn
, a
->esz
);
1378 * This utility function is for doing register extension with an
1379 * optional shift. You will likely want to pass a temporary for the
1380 * destination register. See DecodeRegExtend() in the ARM ARM.
1382 static void ext_and_shift_reg(TCGv_i64 tcg_out
, TCGv_i64 tcg_in
,
1383 int option
, unsigned int shift
)
1385 int extsize
= extract32(option
, 0, 2);
1386 bool is_signed
= extract32(option
, 2, 1);
1388 tcg_gen_ext_i64(tcg_out
, tcg_in
, extsize
| (is_signed
? MO_SIGN
: 0));
1389 tcg_gen_shli_i64(tcg_out
, tcg_out
, shift
);
1392 static inline void gen_check_sp_alignment(DisasContext
*s
)
1394 /* The AArch64 architecture mandates that (if enabled via PSTATE
1395 * or SCTLR bits) there is a check that SP is 16-aligned on every
1396 * SP-relative load or store (with an exception generated if it is not).
1397 * In line with general QEMU practice regarding misaligned accesses,
1398 * we omit these checks for the sake of guest program performance.
1399 * This function is provided as a hook so we can more easily add these
1400 * checks in future (possibly as a "favour catching guest program bugs
1401 * over speed" user selectable option).
1406 * This provides a simple table based table lookup decoder. It is
1407 * intended to be used when the relevant bits for decode are too
1408 * awkwardly placed and switch/if based logic would be confusing and
1409 * deeply nested. Since it's a linear search through the table, tables
1410 * should be kept small.
1412 * It returns the first handler where insn & mask == pattern, or
1413 * NULL if there is no match.
1414 * The table is terminated by an empty mask (i.e. 0)
1416 static inline AArch64DecodeFn
*lookup_disas_fn(const AArch64DecodeTable
*table
,
1419 const AArch64DecodeTable
*tptr
= table
;
1421 while (tptr
->mask
) {
1422 if ((insn
& tptr
->mask
) == tptr
->pattern
) {
1423 return tptr
->disas_fn
;
1431 * The instruction disassembly implemented here matches
1432 * the instruction encoding classifications in chapter C4
1433 * of the ARM Architecture Reference Manual (DDI0487B_a);
1434 * classification names and decode diagrams here should generally
1435 * match up with those in the manual.
1438 static bool trans_B(DisasContext
*s
, arg_i
*a
)
1441 gen_goto_tb(s
, 0, a
->imm
);
1445 static bool trans_BL(DisasContext
*s
, arg_i
*a
)
1447 gen_pc_plus_diff(s
, cpu_reg(s
, 30), curr_insn_len(s
));
1449 gen_goto_tb(s
, 0, a
->imm
);
1454 static bool trans_CBZ(DisasContext
*s
, arg_cbz
*a
)
1459 tcg_cmp
= read_cpu_reg(s
, a
->rt
, a
->sf
);
1462 match
= gen_disas_label(s
);
1463 tcg_gen_brcondi_i64(a
->nz
? TCG_COND_NE
: TCG_COND_EQ
,
1464 tcg_cmp
, 0, match
.label
);
1465 gen_goto_tb(s
, 0, 4);
1466 set_disas_label(s
, match
);
1467 gen_goto_tb(s
, 1, a
->imm
);
1471 static bool trans_TBZ(DisasContext
*s
, arg_tbz
*a
)
1476 tcg_cmp
= tcg_temp_new_i64();
1477 tcg_gen_andi_i64(tcg_cmp
, cpu_reg(s
, a
->rt
), 1ULL << a
->bitpos
);
1481 match
= gen_disas_label(s
);
1482 tcg_gen_brcondi_i64(a
->nz
? TCG_COND_NE
: TCG_COND_EQ
,
1483 tcg_cmp
, 0, match
.label
);
1484 gen_goto_tb(s
, 0, 4);
1485 set_disas_label(s
, match
);
1486 gen_goto_tb(s
, 1, a
->imm
);
1490 static bool trans_B_cond(DisasContext
*s
, arg_B_cond
*a
)
1492 /* BC.cond is only present with FEAT_HBC */
1493 if (a
->c
&& !dc_isar_feature(aa64_hbc
, s
)) {
1497 if (a
->cond
< 0x0e) {
1498 /* genuinely conditional branches */
1499 DisasLabel match
= gen_disas_label(s
);
1500 arm_gen_test_cc(a
->cond
, match
.label
);
1501 gen_goto_tb(s
, 0, 4);
1502 set_disas_label(s
, match
);
1503 gen_goto_tb(s
, 1, a
->imm
);
1505 /* 0xe and 0xf are both "always" conditions */
1506 gen_goto_tb(s
, 0, a
->imm
);
1511 static void set_btype_for_br(DisasContext
*s
, int rn
)
1513 if (dc_isar_feature(aa64_bti
, s
)) {
1514 /* BR to {x16,x17} or !guard -> 1, else 3. */
1515 set_btype(s
, rn
== 16 || rn
== 17 || !s
->guarded_page
? 1 : 3);
1519 static void set_btype_for_blr(DisasContext
*s
)
1521 if (dc_isar_feature(aa64_bti
, s
)) {
1522 /* BLR sets BTYPE to 2, regardless of source guarded page. */
1527 static bool trans_BR(DisasContext
*s
, arg_r
*a
)
1529 gen_a64_set_pc(s
, cpu_reg(s
, a
->rn
));
1530 set_btype_for_br(s
, a
->rn
);
1531 s
->base
.is_jmp
= DISAS_JUMP
;
1535 static bool trans_BLR(DisasContext
*s
, arg_r
*a
)
1537 TCGv_i64 dst
= cpu_reg(s
, a
->rn
);
1538 TCGv_i64 lr
= cpu_reg(s
, 30);
1540 TCGv_i64 tmp
= tcg_temp_new_i64();
1541 tcg_gen_mov_i64(tmp
, dst
);
1544 gen_pc_plus_diff(s
, lr
, curr_insn_len(s
));
1545 gen_a64_set_pc(s
, dst
);
1546 set_btype_for_blr(s
);
1547 s
->base
.is_jmp
= DISAS_JUMP
;
1551 static bool trans_RET(DisasContext
*s
, arg_r
*a
)
1553 gen_a64_set_pc(s
, cpu_reg(s
, a
->rn
));
1554 s
->base
.is_jmp
= DISAS_JUMP
;
1558 static TCGv_i64
auth_branch_target(DisasContext
*s
, TCGv_i64 dst
,
1559 TCGv_i64 modifier
, bool use_key_a
)
1563 * Return the branch target for a BRAA/RETA/etc, which is either
1564 * just the destination dst, or that value with the pauth check
1565 * done and the code removed from the high bits.
1567 if (!s
->pauth_active
) {
1571 truedst
= tcg_temp_new_i64();
1573 gen_helper_autia_combined(truedst
, tcg_env
, dst
, modifier
);
1575 gen_helper_autib_combined(truedst
, tcg_env
, dst
, modifier
);
1580 static bool trans_BRAZ(DisasContext
*s
, arg_braz
*a
)
1584 if (!dc_isar_feature(aa64_pauth
, s
)) {
1588 dst
= auth_branch_target(s
, cpu_reg(s
, a
->rn
), tcg_constant_i64(0), !a
->m
);
1589 gen_a64_set_pc(s
, dst
);
1590 set_btype_for_br(s
, a
->rn
);
1591 s
->base
.is_jmp
= DISAS_JUMP
;
1595 static bool trans_BLRAZ(DisasContext
*s
, arg_braz
*a
)
1599 if (!dc_isar_feature(aa64_pauth
, s
)) {
1603 dst
= auth_branch_target(s
, cpu_reg(s
, a
->rn
), tcg_constant_i64(0), !a
->m
);
1604 lr
= cpu_reg(s
, 30);
1606 TCGv_i64 tmp
= tcg_temp_new_i64();
1607 tcg_gen_mov_i64(tmp
, dst
);
1610 gen_pc_plus_diff(s
, lr
, curr_insn_len(s
));
1611 gen_a64_set_pc(s
, dst
);
1612 set_btype_for_blr(s
);
1613 s
->base
.is_jmp
= DISAS_JUMP
;
1617 static bool trans_RETA(DisasContext
*s
, arg_reta
*a
)
1621 dst
= auth_branch_target(s
, cpu_reg(s
, 30), cpu_X
[31], !a
->m
);
1622 gen_a64_set_pc(s
, dst
);
1623 s
->base
.is_jmp
= DISAS_JUMP
;
1627 static bool trans_BRA(DisasContext
*s
, arg_bra
*a
)
1631 if (!dc_isar_feature(aa64_pauth
, s
)) {
1634 dst
= auth_branch_target(s
, cpu_reg(s
,a
->rn
), cpu_reg_sp(s
, a
->rm
), !a
->m
);
1635 gen_a64_set_pc(s
, dst
);
1636 set_btype_for_br(s
, a
->rn
);
1637 s
->base
.is_jmp
= DISAS_JUMP
;
1641 static bool trans_BLRA(DisasContext
*s
, arg_bra
*a
)
1645 if (!dc_isar_feature(aa64_pauth
, s
)) {
1648 dst
= auth_branch_target(s
, cpu_reg(s
, a
->rn
), cpu_reg_sp(s
, a
->rm
), !a
->m
);
1649 lr
= cpu_reg(s
, 30);
1651 TCGv_i64 tmp
= tcg_temp_new_i64();
1652 tcg_gen_mov_i64(tmp
, dst
);
1655 gen_pc_plus_diff(s
, lr
, curr_insn_len(s
));
1656 gen_a64_set_pc(s
, dst
);
1657 set_btype_for_blr(s
);
1658 s
->base
.is_jmp
= DISAS_JUMP
;
1662 static bool trans_ERET(DisasContext
*s
, arg_ERET
*a
)
1666 if (s
->current_el
== 0) {
1670 gen_exception_insn_el(s
, 0, EXCP_UDEF
, syn_erettrap(0), 2);
1673 dst
= tcg_temp_new_i64();
1674 tcg_gen_ld_i64(dst
, tcg_env
,
1675 offsetof(CPUARMState
, elr_el
[s
->current_el
]));
1677 translator_io_start(&s
->base
);
1679 gen_helper_exception_return(tcg_env
, dst
);
1680 /* Must exit loop to check un-masked IRQs */
1681 s
->base
.is_jmp
= DISAS_EXIT
;
1685 static bool trans_ERETA(DisasContext
*s
, arg_reta
*a
)
1689 if (!dc_isar_feature(aa64_pauth
, s
)) {
1692 if (s
->current_el
== 0) {
1695 /* The FGT trap takes precedence over an auth trap. */
1697 gen_exception_insn_el(s
, 0, EXCP_UDEF
, syn_erettrap(a
->m
? 3 : 2), 2);
1700 dst
= tcg_temp_new_i64();
1701 tcg_gen_ld_i64(dst
, tcg_env
,
1702 offsetof(CPUARMState
, elr_el
[s
->current_el
]));
1704 dst
= auth_branch_target(s
, dst
, cpu_X
[31], !a
->m
);
1706 translator_io_start(&s
->base
);
1708 gen_helper_exception_return(tcg_env
, dst
);
1709 /* Must exit loop to check un-masked IRQs */
1710 s
->base
.is_jmp
= DISAS_EXIT
;
1714 static bool trans_NOP(DisasContext
*s
, arg_NOP
*a
)
1719 static bool trans_YIELD(DisasContext
*s
, arg_YIELD
*a
)
1722 * When running in MTTCG we don't generate jumps to the yield and
1723 * WFE helpers as it won't affect the scheduling of other vCPUs.
1724 * If we wanted to more completely model WFE/SEV so we don't busy
1725 * spin unnecessarily we would need to do something more involved.
1727 if (!(tb_cflags(s
->base
.tb
) & CF_PARALLEL
)) {
1728 s
->base
.is_jmp
= DISAS_YIELD
;
1733 static bool trans_WFI(DisasContext
*s
, arg_WFI
*a
)
1735 s
->base
.is_jmp
= DISAS_WFI
;
1739 static bool trans_WFE(DisasContext
*s
, arg_WFI
*a
)
1742 * When running in MTTCG we don't generate jumps to the yield and
1743 * WFE helpers as it won't affect the scheduling of other vCPUs.
1744 * If we wanted to more completely model WFE/SEV so we don't busy
1745 * spin unnecessarily we would need to do something more involved.
1747 if (!(tb_cflags(s
->base
.tb
) & CF_PARALLEL
)) {
1748 s
->base
.is_jmp
= DISAS_WFE
;
1753 static bool trans_XPACLRI(DisasContext
*s
, arg_XPACLRI
*a
)
1755 if (s
->pauth_active
) {
1756 gen_helper_xpaci(cpu_X
[30], tcg_env
, cpu_X
[30]);
1761 static bool trans_PACIA1716(DisasContext
*s
, arg_PACIA1716
*a
)
1763 if (s
->pauth_active
) {
1764 gen_helper_pacia(cpu_X
[17], tcg_env
, cpu_X
[17], cpu_X
[16]);
1769 static bool trans_PACIB1716(DisasContext
*s
, arg_PACIB1716
*a
)
1771 if (s
->pauth_active
) {
1772 gen_helper_pacib(cpu_X
[17], tcg_env
, cpu_X
[17], cpu_X
[16]);
1777 static bool trans_AUTIA1716(DisasContext
*s
, arg_AUTIA1716
*a
)
1779 if (s
->pauth_active
) {
1780 gen_helper_autia(cpu_X
[17], tcg_env
, cpu_X
[17], cpu_X
[16]);
1785 static bool trans_AUTIB1716(DisasContext
*s
, arg_AUTIB1716
*a
)
1787 if (s
->pauth_active
) {
1788 gen_helper_autib(cpu_X
[17], tcg_env
, cpu_X
[17], cpu_X
[16]);
1793 static bool trans_ESB(DisasContext
*s
, arg_ESB
*a
)
1795 /* Without RAS, we must implement this as NOP. */
1796 if (dc_isar_feature(aa64_ras
, s
)) {
1798 * QEMU does not have a source of physical SErrors,
1799 * so we are only concerned with virtual SErrors.
1800 * The pseudocode in the ARM for this case is
1801 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1802 * AArch64.vESBOperation();
1803 * Most of the condition can be evaluated at translation time.
1804 * Test for EL2 present, and defer test for SEL2 to runtime.
1806 if (s
->current_el
<= 1 && arm_dc_feature(s
, ARM_FEATURE_EL2
)) {
1807 gen_helper_vesb(tcg_env
);
1813 static bool trans_PACIAZ(DisasContext
*s
, arg_PACIAZ
*a
)
1815 if (s
->pauth_active
) {
1816 gen_helper_pacia(cpu_X
[30], tcg_env
, cpu_X
[30], tcg_constant_i64(0));
1821 static bool trans_PACIASP(DisasContext
*s
, arg_PACIASP
*a
)
1823 if (s
->pauth_active
) {
1824 gen_helper_pacia(cpu_X
[30], tcg_env
, cpu_X
[30], cpu_X
[31]);
1829 static bool trans_PACIBZ(DisasContext
*s
, arg_PACIBZ
*a
)
1831 if (s
->pauth_active
) {
1832 gen_helper_pacib(cpu_X
[30], tcg_env
, cpu_X
[30], tcg_constant_i64(0));
1837 static bool trans_PACIBSP(DisasContext
*s
, arg_PACIBSP
*a
)
1839 if (s
->pauth_active
) {
1840 gen_helper_pacib(cpu_X
[30], tcg_env
, cpu_X
[30], cpu_X
[31]);
1845 static bool trans_AUTIAZ(DisasContext
*s
, arg_AUTIAZ
*a
)
1847 if (s
->pauth_active
) {
1848 gen_helper_autia(cpu_X
[30], tcg_env
, cpu_X
[30], tcg_constant_i64(0));
1853 static bool trans_AUTIASP(DisasContext
*s
, arg_AUTIASP
*a
)
1855 if (s
->pauth_active
) {
1856 gen_helper_autia(cpu_X
[30], tcg_env
, cpu_X
[30], cpu_X
[31]);
1861 static bool trans_AUTIBZ(DisasContext
*s
, arg_AUTIBZ
*a
)
1863 if (s
->pauth_active
) {
1864 gen_helper_autib(cpu_X
[30], tcg_env
, cpu_X
[30], tcg_constant_i64(0));
1869 static bool trans_AUTIBSP(DisasContext
*s
, arg_AUTIBSP
*a
)
1871 if (s
->pauth_active
) {
1872 gen_helper_autib(cpu_X
[30], tcg_env
, cpu_X
[30], cpu_X
[31]);
1877 static bool trans_CLREX(DisasContext
*s
, arg_CLREX
*a
)
1879 tcg_gen_movi_i64(cpu_exclusive_addr
, -1);
1883 static bool trans_DSB_DMB(DisasContext
*s
, arg_DSB_DMB
*a
)
1885 /* We handle DSB and DMB the same way */
1889 case 1: /* MBReqTypes_Reads */
1890 bar
= TCG_BAR_SC
| TCG_MO_LD_LD
| TCG_MO_LD_ST
;
1892 case 2: /* MBReqTypes_Writes */
1893 bar
= TCG_BAR_SC
| TCG_MO_ST_ST
;
1895 default: /* MBReqTypes_All */
1896 bar
= TCG_BAR_SC
| TCG_MO_ALL
;
1903 static bool trans_ISB(DisasContext
*s
, arg_ISB
*a
)
1906 * We need to break the TB after this insn to execute
1907 * self-modifying code correctly and also to take
1908 * any pending interrupts immediately.
1911 gen_goto_tb(s
, 0, 4);
1915 static bool trans_SB(DisasContext
*s
, arg_SB
*a
)
1917 if (!dc_isar_feature(aa64_sb
, s
)) {
1921 * TODO: There is no speculation barrier opcode for TCG;
1922 * MB and end the TB instead.
1924 tcg_gen_mb(TCG_MO_ALL
| TCG_BAR_SC
);
1925 gen_goto_tb(s
, 0, 4);
1929 static bool trans_CFINV(DisasContext
*s
, arg_CFINV
*a
)
1931 if (!dc_isar_feature(aa64_condm_4
, s
)) {
1934 tcg_gen_xori_i32(cpu_CF
, cpu_CF
, 1);
1938 static bool trans_XAFLAG(DisasContext
*s
, arg_XAFLAG
*a
)
1942 if (!dc_isar_feature(aa64_condm_5
, s
)) {
1946 z
= tcg_temp_new_i32();
1948 tcg_gen_setcondi_i32(TCG_COND_EQ
, z
, cpu_ZF
, 0);
1957 tcg_gen_or_i32(cpu_NF
, cpu_CF
, z
);
1958 tcg_gen_subi_i32(cpu_NF
, cpu_NF
, 1);
1961 tcg_gen_and_i32(cpu_ZF
, z
, cpu_CF
);
1962 tcg_gen_xori_i32(cpu_ZF
, cpu_ZF
, 1);
1964 /* (!C & Z) << 31 -> -(Z & ~C) */
1965 tcg_gen_andc_i32(cpu_VF
, z
, cpu_CF
);
1966 tcg_gen_neg_i32(cpu_VF
, cpu_VF
);
1969 tcg_gen_or_i32(cpu_CF
, cpu_CF
, z
);
1974 static bool trans_AXFLAG(DisasContext
*s
, arg_AXFLAG
*a
)
1976 if (!dc_isar_feature(aa64_condm_5
, s
)) {
1980 tcg_gen_sari_i32(cpu_VF
, cpu_VF
, 31); /* V ? -1 : 0 */
1981 tcg_gen_andc_i32(cpu_CF
, cpu_CF
, cpu_VF
); /* C & !V */
1983 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1984 tcg_gen_andc_i32(cpu_ZF
, cpu_ZF
, cpu_VF
);
1986 tcg_gen_movi_i32(cpu_NF
, 0);
1987 tcg_gen_movi_i32(cpu_VF
, 0);
1992 static bool trans_MSR_i_UAO(DisasContext
*s
, arg_i
*a
)
1994 if (!dc_isar_feature(aa64_uao
, s
) || s
->current_el
== 0) {
1998 set_pstate_bits(PSTATE_UAO
);
2000 clear_pstate_bits(PSTATE_UAO
);
2002 gen_rebuild_hflags(s
);
2003 s
->base
.is_jmp
= DISAS_TOO_MANY
;
2007 static bool trans_MSR_i_PAN(DisasContext
*s
, arg_i
*a
)
2009 if (!dc_isar_feature(aa64_pan
, s
) || s
->current_el
== 0) {
2013 set_pstate_bits(PSTATE_PAN
);
2015 clear_pstate_bits(PSTATE_PAN
);
2017 gen_rebuild_hflags(s
);
2018 s
->base
.is_jmp
= DISAS_TOO_MANY
;
2022 static bool trans_MSR_i_SPSEL(DisasContext
*s
, arg_i
*a
)
2024 if (s
->current_el
== 0) {
2027 gen_helper_msr_i_spsel(tcg_env
, tcg_constant_i32(a
->imm
& PSTATE_SP
));
2028 s
->base
.is_jmp
= DISAS_TOO_MANY
;
2032 static bool trans_MSR_i_SBSS(DisasContext
*s
, arg_i
*a
)
2034 if (!dc_isar_feature(aa64_ssbs
, s
)) {
2038 set_pstate_bits(PSTATE_SSBS
);
2040 clear_pstate_bits(PSTATE_SSBS
);
2042 /* Don't need to rebuild hflags since SSBS is a nop */
2043 s
->base
.is_jmp
= DISAS_TOO_MANY
;
2047 static bool trans_MSR_i_DIT(DisasContext
*s
, arg_i
*a
)
2049 if (!dc_isar_feature(aa64_dit
, s
)) {
2053 set_pstate_bits(PSTATE_DIT
);
2055 clear_pstate_bits(PSTATE_DIT
);
2057 /* There's no need to rebuild hflags because DIT is a nop */
2058 s
->base
.is_jmp
= DISAS_TOO_MANY
;
2062 static bool trans_MSR_i_TCO(DisasContext
*s
, arg_i
*a
)
2064 if (dc_isar_feature(aa64_mte
, s
)) {
2065 /* Full MTE is enabled -- set the TCO bit as directed. */
2067 set_pstate_bits(PSTATE_TCO
);
2069 clear_pstate_bits(PSTATE_TCO
);
2071 gen_rebuild_hflags(s
);
2072 /* Many factors, including TCO, go into MTE_ACTIVE. */
2073 s
->base
.is_jmp
= DISAS_UPDATE_NOCHAIN
;
2075 } else if (dc_isar_feature(aa64_mte_insn_reg
, s
)) {
2076 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */
2079 /* Insn not present */
2084 static bool trans_MSR_i_DAIFSET(DisasContext
*s
, arg_i
*a
)
2086 gen_helper_msr_i_daifset(tcg_env
, tcg_constant_i32(a
->imm
));
2087 s
->base
.is_jmp
= DISAS_TOO_MANY
;
2091 static bool trans_MSR_i_DAIFCLEAR(DisasContext
*s
, arg_i
*a
)
2093 gen_helper_msr_i_daifclear(tcg_env
, tcg_constant_i32(a
->imm
));
2094 /* Exit the cpu loop to re-evaluate pending IRQs. */
2095 s
->base
.is_jmp
= DISAS_UPDATE_EXIT
;
2099 static bool trans_MSR_i_ALLINT(DisasContext
*s
, arg_i
*a
)
2101 if (!dc_isar_feature(aa64_nmi
, s
) || s
->current_el
== 0) {
2106 clear_pstate_bits(PSTATE_ALLINT
);
2107 } else if (s
->current_el
> 1) {
2108 set_pstate_bits(PSTATE_ALLINT
);
2110 gen_helper_msr_set_allint_el1(tcg_env
);
2113 /* Exit the cpu loop to re-evaluate pending IRQs. */
2114 s
->base
.is_jmp
= DISAS_UPDATE_EXIT
;
2118 static bool trans_MSR_i_SVCR(DisasContext
*s
, arg_MSR_i_SVCR
*a
)
2120 if (!dc_isar_feature(aa64_sme
, s
) || a
->mask
== 0) {
2123 if (sme_access_check(s
)) {
2124 int old
= s
->pstate_sm
| (s
->pstate_za
<< 1);
2125 int new = a
->imm
* 3;
2127 if ((old
^ new) & a
->mask
) {
2128 /* At least one bit changes. */
2129 gen_helper_set_svcr(tcg_env
, tcg_constant_i32(new),
2130 tcg_constant_i32(a
->mask
));
2131 s
->base
.is_jmp
= DISAS_TOO_MANY
;
2137 static void gen_get_nzcv(TCGv_i64 tcg_rt
)
2139 TCGv_i32 tmp
= tcg_temp_new_i32();
2140 TCGv_i32 nzcv
= tcg_temp_new_i32();
2142 /* build bit 31, N */
2143 tcg_gen_andi_i32(nzcv
, cpu_NF
, (1U << 31));
2144 /* build bit 30, Z */
2145 tcg_gen_setcondi_i32(TCG_COND_EQ
, tmp
, cpu_ZF
, 0);
2146 tcg_gen_deposit_i32(nzcv
, nzcv
, tmp
, 30, 1);
2147 /* build bit 29, C */
2148 tcg_gen_deposit_i32(nzcv
, nzcv
, cpu_CF
, 29, 1);
2149 /* build bit 28, V */
2150 tcg_gen_shri_i32(tmp
, cpu_VF
, 31);
2151 tcg_gen_deposit_i32(nzcv
, nzcv
, tmp
, 28, 1);
2152 /* generate result */
2153 tcg_gen_extu_i32_i64(tcg_rt
, nzcv
);
2156 static void gen_set_nzcv(TCGv_i64 tcg_rt
)
2158 TCGv_i32 nzcv
= tcg_temp_new_i32();
2160 /* take NZCV from R[t] */
2161 tcg_gen_extrl_i64_i32(nzcv
, tcg_rt
);
2164 tcg_gen_andi_i32(cpu_NF
, nzcv
, (1U << 31));
2166 tcg_gen_andi_i32(cpu_ZF
, nzcv
, (1 << 30));
2167 tcg_gen_setcondi_i32(TCG_COND_EQ
, cpu_ZF
, cpu_ZF
, 0);
2169 tcg_gen_andi_i32(cpu_CF
, nzcv
, (1 << 29));
2170 tcg_gen_shri_i32(cpu_CF
, cpu_CF
, 29);
2172 tcg_gen_andi_i32(cpu_VF
, nzcv
, (1 << 28));
2173 tcg_gen_shli_i32(cpu_VF
, cpu_VF
, 3);
2176 static void gen_sysreg_undef(DisasContext
*s
, bool isread
,
2177 uint8_t op0
, uint8_t op1
, uint8_t op2
,
2178 uint8_t crn
, uint8_t crm
, uint8_t rt
)
2181 * Generate code to emit an UNDEF with correct syndrome
2182 * information for a failed system register access.
2183 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2184 * but if FEAT_IDST is implemented then read accesses to registers
2185 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2190 if (isread
&& dc_isar_feature(aa64_ids
, s
) &&
2191 arm_cpreg_encoding_in_idspace(op0
, op1
, op2
, crn
, crm
)) {
2192 syndrome
= syn_aa64_sysregtrap(op0
, op1
, op2
, crn
, crm
, rt
, isread
);
2194 syndrome
= syn_uncategorized();
2196 gen_exception_insn(s
, 0, EXCP_UDEF
, syndrome
);
2199 /* MRS - move from system register
2200 * MSR (register) - move to system register
2203 * These are all essentially the same insn in 'read' and 'write'
2204 * versions, with varying op0 fields.
2206 static void handle_sys(DisasContext
*s
, bool isread
,
2207 unsigned int op0
, unsigned int op1
, unsigned int op2
,
2208 unsigned int crn
, unsigned int crm
, unsigned int rt
)
2210 uint32_t key
= ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP
,
2211 crn
, crm
, op0
, op1
, op2
);
2212 const ARMCPRegInfo
*ri
= get_arm_cp_reginfo(s
->cp_regs
, key
);
2213 bool need_exit_tb
= false;
2214 bool nv_trap_to_el2
= false;
2215 bool nv_redirect_reg
= false;
2216 bool skip_fp_access_checks
= false;
2217 bool nv2_mem_redirect
= false;
2218 TCGv_ptr tcg_ri
= NULL
;
2220 uint32_t syndrome
= syn_aa64_sysregtrap(op0
, op1
, op2
, crn
, crm
, rt
, isread
);
2222 if (crn
== 11 || crn
== 15) {
2224 * Check for TIDCP trap, which must take precedence over
2225 * the UNDEF for "no such register" etc.
2227 switch (s
->current_el
) {
2229 if (dc_isar_feature(aa64_tidcp1
, s
)) {
2230 gen_helper_tidcp_el0(tcg_env
, tcg_constant_i32(syndrome
));
2234 gen_helper_tidcp_el1(tcg_env
, tcg_constant_i32(syndrome
));
2240 /* Unknown register; this might be a guest error or a QEMU
2241 * unimplemented feature.
2243 qemu_log_mask(LOG_UNIMP
, "%s access to unsupported AArch64 "
2244 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2245 isread
? "read" : "write", op0
, op1
, crn
, crm
, op2
);
2246 gen_sysreg_undef(s
, isread
, op0
, op1
, op2
, crn
, crm
, rt
);
2250 if (s
->nv2
&& ri
->nv2_redirect_offset
) {
2252 * Some registers always redirect to memory; some only do so if
2253 * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in
2254 * pairs which share an offset; see the table in R_CSRPQ).
2256 if (ri
->nv2_redirect_offset
& NV2_REDIR_NV1
) {
2257 nv2_mem_redirect
= s
->nv1
;
2258 } else if (ri
->nv2_redirect_offset
& NV2_REDIR_NO_NV1
) {
2259 nv2_mem_redirect
= !s
->nv1
;
2261 nv2_mem_redirect
= true;
2265 /* Check access permissions */
2266 if (!cp_access_ok(s
->current_el
, ri
, isread
)) {
2268 * FEAT_NV/NV2 handling does not do the usual FP access checks
2269 * for registers only accessible at EL2 (though it *does* do them
2270 * for registers accessible at EL1).
2272 skip_fp_access_checks
= true;
2273 if (s
->nv2
&& (ri
->type
& ARM_CP_NV2_REDIRECT
)) {
2275 * This is one of the few EL2 registers which should redirect
2276 * to the equivalent EL1 register. We do that after running
2277 * the EL2 register's accessfn.
2279 nv_redirect_reg
= true;
2280 assert(!nv2_mem_redirect
);
2281 } else if (nv2_mem_redirect
) {
2283 * NV2 redirect-to-memory takes precedence over trap to EL2 or
2286 } else if (s
->nv
&& arm_cpreg_traps_in_nv(ri
)) {
2288 * This register / instruction exists and is an EL2 register, so
2289 * we must trap to EL2 if accessed in nested virtualization EL1
2290 * instead of UNDEFing. We'll do that after the usual access checks.
2291 * (This makes a difference only for a couple of registers like
2292 * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority
2293 * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have
2294 * an accessfn which does nothing when called from EL1, because
2295 * the trap-to-EL3 controls which would apply to that register
2296 * at EL2 don't take priority over the FEAT_NV trap-to-EL2.)
2298 nv_trap_to_el2
= true;
2300 gen_sysreg_undef(s
, isread
, op0
, op1
, op2
, crn
, crm
, rt
);
2305 if (ri
->accessfn
|| (ri
->fgt
&& s
->fgt_active
)) {
2306 /* Emit code to perform further access permissions checks at
2307 * runtime; this may result in an exception.
2309 gen_a64_update_pc(s
, 0);
2310 tcg_ri
= tcg_temp_new_ptr();
2311 gen_helper_access_check_cp_reg(tcg_ri
, tcg_env
,
2312 tcg_constant_i32(key
),
2313 tcg_constant_i32(syndrome
),
2314 tcg_constant_i32(isread
));
2315 } else if (ri
->type
& ARM_CP_RAISES_EXC
) {
2317 * The readfn or writefn might raise an exception;
2318 * synchronize the CPU state in case it does.
2320 gen_a64_update_pc(s
, 0);
2323 if (!skip_fp_access_checks
) {
2324 if ((ri
->type
& ARM_CP_FPU
) && !fp_access_check_only(s
)) {
2326 } else if ((ri
->type
& ARM_CP_SVE
) && !sve_access_check(s
)) {
2328 } else if ((ri
->type
& ARM_CP_SME
) && !sme_access_check(s
)) {
2333 if (nv_trap_to_el2
) {
2334 gen_exception_insn_el(s
, 0, EXCP_UDEF
, syndrome
, 2);
2338 if (nv_redirect_reg
) {
2340 * FEAT_NV2 redirection of an EL2 register to an EL1 register.
2341 * Conveniently in all cases the encoding of the EL1 register is
2342 * identical to the EL2 register except that opc1 is 0.
2343 * Get the reginfo for the EL1 register to use for the actual access.
2344 * We don't use the EL1 register's access function, and
2345 * fine-grained-traps on EL1 also do not apply here.
2347 key
= ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP
,
2348 crn
, crm
, op0
, 0, op2
);
2349 ri
= get_arm_cp_reginfo(s
->cp_regs
, key
);
2351 assert(cp_access_ok(s
->current_el
, ri
, isread
));
2353 * We might not have done an update_pc earlier, so check we don't
2354 * need it. We could support this in future if necessary.
2356 assert(!(ri
->type
& ARM_CP_RAISES_EXC
));
2359 if (nv2_mem_redirect
) {
2361 * This system register is being redirected into an EL2 memory access.
2362 * This means it is not an IO operation, doesn't change hflags,
2363 * and need not end the TB, because it has no side effects.
2365 * The access is 64-bit single copy atomic, guaranteed aligned because
2366 * of the definition of VCNR_EL2. Its endianness depends on
2367 * SCTLR_EL2.EE, not on the data endianness of EL1.
2368 * It is done under either the EL2 translation regime or the EL2&0
2369 * translation regime, depending on HCR_EL2.E2H. It behaves as if
2372 TCGv_i64 ptr
= tcg_temp_new_i64();
2373 MemOp mop
= MO_64
| MO_ALIGN
| MO_ATOM_IFALIGN
;
2374 ARMMMUIdx armmemidx
= s
->nv2_mem_e20
? ARMMMUIdx_E20_2
: ARMMMUIdx_E2
;
2375 int memidx
= arm_to_core_mmu_idx(armmemidx
);
2378 mop
|= (s
->nv2_mem_be
? MO_BE
: MO_LE
);
2380 tcg_gen_ld_i64(ptr
, tcg_env
, offsetof(CPUARMState
, cp15
.vncr_el2
));
2381 tcg_gen_addi_i64(ptr
, ptr
,
2382 (ri
->nv2_redirect_offset
& ~NV2_REDIR_FLAG_MASK
));
2383 tcg_rt
= cpu_reg(s
, rt
);
2385 syn
= syn_data_abort_vncr(0, !isread
, 0);
2386 disas_set_insn_syndrome(s
, syn
);
2388 tcg_gen_qemu_ld_i64(tcg_rt
, ptr
, memidx
, mop
);
2390 tcg_gen_qemu_st_i64(tcg_rt
, ptr
, memidx
, mop
);
2395 /* Handle special cases first */
2396 switch (ri
->type
& ARM_CP_SPECIAL_MASK
) {
2402 tcg_rt
= cpu_reg(s
, rt
);
2404 gen_get_nzcv(tcg_rt
);
2406 gen_set_nzcv(tcg_rt
);
2409 case ARM_CP_CURRENTEL
:
2412 * Reads as current EL value from pstate, which is
2413 * guaranteed to be constant by the tb flags.
2414 * For nested virt we should report EL2.
2416 int el
= s
->nv
? 2 : s
->current_el
;
2417 tcg_rt
= cpu_reg(s
, rt
);
2418 tcg_gen_movi_i64(tcg_rt
, el
<< 2);
2422 /* Writes clear the aligned block of memory which rt points into. */
2423 if (s
->mte_active
[0]) {
2426 desc
= FIELD_DP32(desc
, MTEDESC
, MIDX
, get_mem_index(s
));
2427 desc
= FIELD_DP32(desc
, MTEDESC
, TBI
, s
->tbid
);
2428 desc
= FIELD_DP32(desc
, MTEDESC
, TCMA
, s
->tcma
);
2430 tcg_rt
= tcg_temp_new_i64();
2431 gen_helper_mte_check_zva(tcg_rt
, tcg_env
,
2432 tcg_constant_i32(desc
), cpu_reg(s
, rt
));
2434 tcg_rt
= clean_data_tbi(s
, cpu_reg(s
, rt
));
2436 gen_helper_dc_zva(tcg_env
, tcg_rt
);
2440 TCGv_i64 clean_addr
, tag
;
2443 * DC_GVA, like DC_ZVA, requires that we supply the original
2444 * pointer for an invalid page. Probe that address first.
2446 tcg_rt
= cpu_reg(s
, rt
);
2447 clean_addr
= clean_data_tbi(s
, tcg_rt
);
2448 gen_probe_access(s
, clean_addr
, MMU_DATA_STORE
, MO_8
);
2451 /* Extract the tag from the register to match STZGM. */
2452 tag
= tcg_temp_new_i64();
2453 tcg_gen_shri_i64(tag
, tcg_rt
, 56);
2454 gen_helper_stzgm_tags(tcg_env
, clean_addr
, tag
);
2458 case ARM_CP_DC_GZVA
:
2460 TCGv_i64 clean_addr
, tag
;
2462 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2463 tcg_rt
= cpu_reg(s
, rt
);
2464 clean_addr
= clean_data_tbi(s
, tcg_rt
);
2465 gen_helper_dc_zva(tcg_env
, clean_addr
);
2468 /* Extract the tag from the register to match STZGM. */
2469 tag
= tcg_temp_new_i64();
2470 tcg_gen_shri_i64(tag
, tcg_rt
, 56);
2471 gen_helper_stzgm_tags(tcg_env
, clean_addr
, tag
);
2476 g_assert_not_reached();
2479 if (ri
->type
& ARM_CP_IO
) {
2480 /* I/O operations must end the TB here (whether read or write) */
2481 need_exit_tb
= translator_io_start(&s
->base
);
2484 tcg_rt
= cpu_reg(s
, rt
);
2487 if (ri
->type
& ARM_CP_CONST
) {
2488 tcg_gen_movi_i64(tcg_rt
, ri
->resetvalue
);
2489 } else if (ri
->readfn
) {
2491 tcg_ri
= gen_lookup_cp_reg(key
);
2493 gen_helper_get_cp_reg64(tcg_rt
, tcg_env
, tcg_ri
);
2495 tcg_gen_ld_i64(tcg_rt
, tcg_env
, ri
->fieldoffset
);
2498 if (ri
->type
& ARM_CP_CONST
) {
2499 /* If not forbidden by access permissions, treat as WI */
2501 } else if (ri
->writefn
) {
2503 tcg_ri
= gen_lookup_cp_reg(key
);
2505 gen_helper_set_cp_reg64(tcg_env
, tcg_ri
, tcg_rt
);
2507 tcg_gen_st_i64(tcg_rt
, tcg_env
, ri
->fieldoffset
);
2511 if (!isread
&& !(ri
->type
& ARM_CP_SUPPRESS_TB_END
)) {
2513 * A write to any coprocessor register that ends a TB
2514 * must rebuild the hflags for the next TB.
2516 gen_rebuild_hflags(s
);
2518 * We default to ending the TB on a coprocessor register write,
2519 * but allow this to be suppressed by the register definition
2520 * (usually only necessary to work around guest bugs).
2522 need_exit_tb
= true;
2525 s
->base
.is_jmp
= DISAS_UPDATE_EXIT
;
2529 static bool trans_SYS(DisasContext
*s
, arg_SYS
*a
)
2531 handle_sys(s
, a
->l
, a
->op0
, a
->op1
, a
->op2
, a
->crn
, a
->crm
, a
->rt
);
2535 static bool trans_SVC(DisasContext
*s
, arg_i
*a
)
2538 * For SVC, HVC and SMC we advance the single-step state
2539 * machine before taking the exception. This is architecturally
2540 * mandated, to ensure that single-stepping a system call
2541 * instruction works properly.
2543 uint32_t syndrome
= syn_aa64_svc(a
->imm
);
2545 gen_exception_insn_el(s
, 0, EXCP_UDEF
, syndrome
, 2);
2549 gen_exception_insn(s
, 4, EXCP_SWI
, syndrome
);
2553 static bool trans_HVC(DisasContext
*s
, arg_i
*a
)
2555 int target_el
= s
->current_el
== 3 ? 3 : 2;
2557 if (s
->current_el
== 0) {
2558 unallocated_encoding(s
);
2562 * The pre HVC helper handles cases when HVC gets trapped
2563 * as an undefined insn by runtime configuration.
2565 gen_a64_update_pc(s
, 0);
2566 gen_helper_pre_hvc(tcg_env
);
2567 /* Architecture requires ss advance before we do the actual work */
2569 gen_exception_insn_el(s
, 4, EXCP_HVC
, syn_aa64_hvc(a
->imm
), target_el
);
2573 static bool trans_SMC(DisasContext
*s
, arg_i
*a
)
2575 if (s
->current_el
== 0) {
2576 unallocated_encoding(s
);
2579 gen_a64_update_pc(s
, 0);
2580 gen_helper_pre_smc(tcg_env
, tcg_constant_i32(syn_aa64_smc(a
->imm
)));
2581 /* Architecture requires ss advance before we do the actual work */
2583 gen_exception_insn_el(s
, 4, EXCP_SMC
, syn_aa64_smc(a
->imm
), 3);
2587 static bool trans_BRK(DisasContext
*s
, arg_i
*a
)
2589 gen_exception_bkpt_insn(s
, syn_aa64_bkpt(a
->imm
));
2593 static bool trans_HLT(DisasContext
*s
, arg_i
*a
)
2596 * HLT. This has two purposes.
2597 * Architecturally, it is an external halting debug instruction.
2598 * Since QEMU doesn't implement external debug, we treat this as
2599 * it is required for halting debug disabled: it will UNDEF.
2600 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2602 if (semihosting_enabled(s
->current_el
== 0) && a
->imm
== 0xf000) {
2603 gen_exception_internal_insn(s
, EXCP_SEMIHOST
);
2605 unallocated_encoding(s
);
2611 * Load/Store exclusive instructions are implemented by remembering
2612 * the value/address loaded, and seeing if these are the same
2613 * when the store is performed. This is not actually the architecturally
2614 * mandated semantics, but it works for typical guest code sequences
2615 * and avoids having to monitor regular stores.
2617 * The store exclusive uses the atomic cmpxchg primitives to avoid
2618 * races in multi-threaded linux-user and when MTTCG softmmu is
2621 static void gen_load_exclusive(DisasContext
*s
, int rt
, int rt2
, int rn
,
2622 int size
, bool is_pair
)
2624 int idx
= get_mem_index(s
);
2625 TCGv_i64 dirty_addr
, clean_addr
;
2626 MemOp memop
= check_atomic_align(s
, rn
, size
+ is_pair
);
2629 dirty_addr
= cpu_reg_sp(s
, rn
);
2630 clean_addr
= gen_mte_check1(s
, dirty_addr
, false, rn
!= 31, memop
);
2632 g_assert(size
<= 3);
2634 g_assert(size
>= 2);
2636 tcg_gen_qemu_ld_i64(cpu_exclusive_val
, clean_addr
, idx
, memop
);
2637 if (s
->be_data
== MO_LE
) {
2638 tcg_gen_extract_i64(cpu_reg(s
, rt
), cpu_exclusive_val
, 0, 32);
2639 tcg_gen_extract_i64(cpu_reg(s
, rt2
), cpu_exclusive_val
, 32, 32);
2641 tcg_gen_extract_i64(cpu_reg(s
, rt
), cpu_exclusive_val
, 32, 32);
2642 tcg_gen_extract_i64(cpu_reg(s
, rt2
), cpu_exclusive_val
, 0, 32);
2645 TCGv_i128 t16
= tcg_temp_new_i128();
2647 tcg_gen_qemu_ld_i128(t16
, clean_addr
, idx
, memop
);
2649 if (s
->be_data
== MO_LE
) {
2650 tcg_gen_extr_i128_i64(cpu_exclusive_val
,
2651 cpu_exclusive_high
, t16
);
2653 tcg_gen_extr_i128_i64(cpu_exclusive_high
,
2654 cpu_exclusive_val
, t16
);
2656 tcg_gen_mov_i64(cpu_reg(s
, rt
), cpu_exclusive_val
);
2657 tcg_gen_mov_i64(cpu_reg(s
, rt2
), cpu_exclusive_high
);
2660 tcg_gen_qemu_ld_i64(cpu_exclusive_val
, clean_addr
, idx
, memop
);
2661 tcg_gen_mov_i64(cpu_reg(s
, rt
), cpu_exclusive_val
);
2663 tcg_gen_mov_i64(cpu_exclusive_addr
, clean_addr
);
2666 static void gen_store_exclusive(DisasContext
*s
, int rd
, int rt
, int rt2
,
2667 int rn
, int size
, int is_pair
)
2669 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2670 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
2673 * [addr + datasize] = {Rt2};
2679 * env->exclusive_addr = -1;
2681 TCGLabel
*fail_label
= gen_new_label();
2682 TCGLabel
*done_label
= gen_new_label();
2683 TCGv_i64 tmp
, clean_addr
;
2687 * FIXME: We are out of spec here. We have recorded only the address
2688 * from load_exclusive, not the entire range, and we assume that the
2689 * size of the access on both sides match. The architecture allows the
2690 * store to be smaller than the load, so long as the stored bytes are
2691 * within the range recorded by the load.
2694 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
2695 clean_addr
= clean_data_tbi(s
, cpu_reg_sp(s
, rn
));
2696 tcg_gen_brcond_i64(TCG_COND_NE
, clean_addr
, cpu_exclusive_addr
, fail_label
);
2699 * The write, and any associated faults, only happen if the virtual
2700 * and physical addresses pass the exclusive monitor check. These
2701 * faults are exceedingly unlikely, because normally the guest uses
2702 * the exact same address register for the load_exclusive, and we
2703 * would have recognized these faults there.
2705 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an
2706 * unaligned 4-byte write within the range of an aligned 8-byte load.
2707 * With LSE2, the store would need to cross a 16-byte boundary when the
2708 * load did not, which would mean the store is outside the range
2709 * recorded for the monitor, which would have failed a corrected monitor
2710 * check above. For now, we assume no size change and retain the
2711 * MO_ALIGN to let tcg know what we checked in the load_exclusive.
2713 * It is possible to trigger an MTE fault, by performing the load with
2714 * a virtual address with a valid tag and performing the store with the
2715 * same virtual address and a different invalid tag.
2717 memop
= size
+ is_pair
;
2718 if (memop
== MO_128
|| !dc_isar_feature(aa64_lse2
, s
)) {
2721 memop
= finalize_memop(s
, memop
);
2722 gen_mte_check1(s
, cpu_reg_sp(s
, rn
), true, rn
!= 31, memop
);
2724 tmp
= tcg_temp_new_i64();
2727 if (s
->be_data
== MO_LE
) {
2728 tcg_gen_concat32_i64(tmp
, cpu_reg(s
, rt
), cpu_reg(s
, rt2
));
2730 tcg_gen_concat32_i64(tmp
, cpu_reg(s
, rt2
), cpu_reg(s
, rt
));
2732 tcg_gen_atomic_cmpxchg_i64(tmp
, cpu_exclusive_addr
,
2733 cpu_exclusive_val
, tmp
,
2734 get_mem_index(s
), memop
);
2735 tcg_gen_setcond_i64(TCG_COND_NE
, tmp
, tmp
, cpu_exclusive_val
);
2737 TCGv_i128 t16
= tcg_temp_new_i128();
2738 TCGv_i128 c16
= tcg_temp_new_i128();
2741 if (s
->be_data
== MO_LE
) {
2742 tcg_gen_concat_i64_i128(t16
, cpu_reg(s
, rt
), cpu_reg(s
, rt2
));
2743 tcg_gen_concat_i64_i128(c16
, cpu_exclusive_val
,
2744 cpu_exclusive_high
);
2746 tcg_gen_concat_i64_i128(t16
, cpu_reg(s
, rt2
), cpu_reg(s
, rt
));
2747 tcg_gen_concat_i64_i128(c16
, cpu_exclusive_high
,
2751 tcg_gen_atomic_cmpxchg_i128(t16
, cpu_exclusive_addr
, c16
, t16
,
2752 get_mem_index(s
), memop
);
2754 a
= tcg_temp_new_i64();
2755 b
= tcg_temp_new_i64();
2756 if (s
->be_data
== MO_LE
) {
2757 tcg_gen_extr_i128_i64(a
, b
, t16
);
2759 tcg_gen_extr_i128_i64(b
, a
, t16
);
2762 tcg_gen_xor_i64(a
, a
, cpu_exclusive_val
);
2763 tcg_gen_xor_i64(b
, b
, cpu_exclusive_high
);
2764 tcg_gen_or_i64(tmp
, a
, b
);
2766 tcg_gen_setcondi_i64(TCG_COND_NE
, tmp
, tmp
, 0);
2769 tcg_gen_atomic_cmpxchg_i64(tmp
, cpu_exclusive_addr
, cpu_exclusive_val
,
2770 cpu_reg(s
, rt
), get_mem_index(s
), memop
);
2771 tcg_gen_setcond_i64(TCG_COND_NE
, tmp
, tmp
, cpu_exclusive_val
);
2773 tcg_gen_mov_i64(cpu_reg(s
, rd
), tmp
);
2774 tcg_gen_br(done_label
);
2776 gen_set_label(fail_label
);
2777 tcg_gen_movi_i64(cpu_reg(s
, rd
), 1);
2778 gen_set_label(done_label
);
2779 tcg_gen_movi_i64(cpu_exclusive_addr
, -1);
2782 static void gen_compare_and_swap(DisasContext
*s
, int rs
, int rt
,
2785 TCGv_i64 tcg_rs
= cpu_reg(s
, rs
);
2786 TCGv_i64 tcg_rt
= cpu_reg(s
, rt
);
2787 int memidx
= get_mem_index(s
);
2788 TCGv_i64 clean_addr
;
2792 gen_check_sp_alignment(s
);
2794 memop
= check_atomic_align(s
, rn
, size
);
2795 clean_addr
= gen_mte_check1(s
, cpu_reg_sp(s
, rn
), true, rn
!= 31, memop
);
2796 tcg_gen_atomic_cmpxchg_i64(tcg_rs
, clean_addr
, tcg_rs
, tcg_rt
,
2800 static void gen_compare_and_swap_pair(DisasContext
*s
, int rs
, int rt
,
2803 TCGv_i64 s1
= cpu_reg(s
, rs
);
2804 TCGv_i64 s2
= cpu_reg(s
, rs
+ 1);
2805 TCGv_i64 t1
= cpu_reg(s
, rt
);
2806 TCGv_i64 t2
= cpu_reg(s
, rt
+ 1);
2807 TCGv_i64 clean_addr
;
2808 int memidx
= get_mem_index(s
);
2812 gen_check_sp_alignment(s
);
2815 /* This is a single atomic access, despite the "pair". */
2816 memop
= check_atomic_align(s
, rn
, size
+ 1);
2817 clean_addr
= gen_mte_check1(s
, cpu_reg_sp(s
, rn
), true, rn
!= 31, memop
);
2820 TCGv_i64 cmp
= tcg_temp_new_i64();
2821 TCGv_i64 val
= tcg_temp_new_i64();
2823 if (s
->be_data
== MO_LE
) {
2824 tcg_gen_concat32_i64(val
, t1
, t2
);
2825 tcg_gen_concat32_i64(cmp
, s1
, s2
);
2827 tcg_gen_concat32_i64(val
, t2
, t1
);
2828 tcg_gen_concat32_i64(cmp
, s2
, s1
);
2831 tcg_gen_atomic_cmpxchg_i64(cmp
, clean_addr
, cmp
, val
, memidx
, memop
);
2833 if (s
->be_data
== MO_LE
) {
2834 tcg_gen_extr32_i64(s1
, s2
, cmp
);
2836 tcg_gen_extr32_i64(s2
, s1
, cmp
);
2839 TCGv_i128 cmp
= tcg_temp_new_i128();
2840 TCGv_i128 val
= tcg_temp_new_i128();
2842 if (s
->be_data
== MO_LE
) {
2843 tcg_gen_concat_i64_i128(val
, t1
, t2
);
2844 tcg_gen_concat_i64_i128(cmp
, s1
, s2
);
2846 tcg_gen_concat_i64_i128(val
, t2
, t1
);
2847 tcg_gen_concat_i64_i128(cmp
, s2
, s1
);
2850 tcg_gen_atomic_cmpxchg_i128(cmp
, clean_addr
, cmp
, val
, memidx
, memop
);
2852 if (s
->be_data
== MO_LE
) {
2853 tcg_gen_extr_i128_i64(s1
, s2
, cmp
);
2855 tcg_gen_extr_i128_i64(s2
, s1
, cmp
);
2861 * Compute the ISS.SF bit for syndrome information if an exception
2862 * is taken on a load or store. This indicates whether the instruction
2863 * is accessing a 32-bit or 64-bit register. This logic is derived
2864 * from the ARMv8 specs for LDR (Shared decode for all encodings).
2866 static bool ldst_iss_sf(int size
, bool sign
, bool ext
)
2871 * Signed loads are 64 bit results if we are not going to
2872 * do a zero-extend from 32 to 64 after the load.
2873 * (For a store, sign and ext are always false.)
2877 /* Unsigned loads/stores work at the specified size */
2878 return size
== MO_64
;
2882 static bool trans_STXR(DisasContext
*s
, arg_stxr
*a
)
2885 gen_check_sp_alignment(s
);
2888 tcg_gen_mb(TCG_MO_ALL
| TCG_BAR_STRL
);
2890 gen_store_exclusive(s
, a
->rs
, a
->rt
, a
->rt2
, a
->rn
, a
->sz
, false);
2894 static bool trans_LDXR(DisasContext
*s
, arg_stxr
*a
)
2897 gen_check_sp_alignment(s
);
2899 gen_load_exclusive(s
, a
->rt
, a
->rt2
, a
->rn
, a
->sz
, false);
2901 tcg_gen_mb(TCG_MO_ALL
| TCG_BAR_LDAQ
);
2906 static bool trans_STLR(DisasContext
*s
, arg_stlr
*a
)
2908 TCGv_i64 clean_addr
;
2910 bool iss_sf
= ldst_iss_sf(a
->sz
, false, false);
2913 * StoreLORelease is the same as Store-Release for QEMU, but
2914 * needs the feature-test.
2916 if (!a
->lasr
&& !dc_isar_feature(aa64_lor
, s
)) {
2919 /* Generate ISS for non-exclusive accesses including LASR. */
2921 gen_check_sp_alignment(s
);
2923 tcg_gen_mb(TCG_MO_ALL
| TCG_BAR_STRL
);
2924 memop
= check_ordered_align(s
, a
->rn
, 0, true, a
->sz
);
2925 clean_addr
= gen_mte_check1(s
, cpu_reg_sp(s
, a
->rn
),
2926 true, a
->rn
!= 31, memop
);
2927 do_gpr_st(s
, cpu_reg(s
, a
->rt
), clean_addr
, memop
, true, a
->rt
,
2932 static bool trans_LDAR(DisasContext
*s
, arg_stlr
*a
)
2934 TCGv_i64 clean_addr
;
2936 bool iss_sf
= ldst_iss_sf(a
->sz
, false, false);
2938 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */
2939 if (!a
->lasr
&& !dc_isar_feature(aa64_lor
, s
)) {
2942 /* Generate ISS for non-exclusive accesses including LASR. */
2944 gen_check_sp_alignment(s
);
2946 memop
= check_ordered_align(s
, a
->rn
, 0, false, a
->sz
);
2947 clean_addr
= gen_mte_check1(s
, cpu_reg_sp(s
, a
->rn
),
2948 false, a
->rn
!= 31, memop
);
2949 do_gpr_ld(s
, cpu_reg(s
, a
->rt
), clean_addr
, memop
, false, true,
2950 a
->rt
, iss_sf
, a
->lasr
);
2951 tcg_gen_mb(TCG_MO_ALL
| TCG_BAR_LDAQ
);
2955 static bool trans_STXP(DisasContext
*s
, arg_stxr
*a
)
2958 gen_check_sp_alignment(s
);
2961 tcg_gen_mb(TCG_MO_ALL
| TCG_BAR_STRL
);
2963 gen_store_exclusive(s
, a
->rs
, a
->rt
, a
->rt2
, a
->rn
, a
->sz
, true);
2967 static bool trans_LDXP(DisasContext
*s
, arg_stxr
*a
)
2970 gen_check_sp_alignment(s
);
2972 gen_load_exclusive(s
, a
->rt
, a
->rt2
, a
->rn
, a
->sz
, true);
2974 tcg_gen_mb(TCG_MO_ALL
| TCG_BAR_LDAQ
);
2979 static bool trans_CASP(DisasContext
*s
, arg_CASP
*a
)
2981 if (!dc_isar_feature(aa64_atomics
, s
)) {
2984 if (((a
->rt
| a
->rs
) & 1) != 0) {
2988 gen_compare_and_swap_pair(s
, a
->rs
, a
->rt
, a
->rn
, a
->sz
);
2992 static bool trans_CAS(DisasContext
*s
, arg_CAS
*a
)
2994 if (!dc_isar_feature(aa64_atomics
, s
)) {
2997 gen_compare_and_swap(s
, a
->rs
, a
->rt
, a
->rn
, a
->sz
);
3001 static bool trans_LD_lit(DisasContext
*s
, arg_ldlit
*a
)
3003 bool iss_sf
= ldst_iss_sf(a
->sz
, a
->sign
, false);
3004 TCGv_i64 tcg_rt
= cpu_reg(s
, a
->rt
);
3005 TCGv_i64 clean_addr
= tcg_temp_new_i64();
3006 MemOp memop
= finalize_memop(s
, a
->sz
+ a
->sign
* MO_SIGN
);
3008 gen_pc_plus_diff(s
, clean_addr
, a
->imm
);
3009 do_gpr_ld(s
, tcg_rt
, clean_addr
, memop
,
3010 false, true, a
->rt
, iss_sf
, false);
3014 static bool trans_LD_lit_v(DisasContext
*s
, arg_ldlit
*a
)
3016 /* Load register (literal), vector version */
3017 TCGv_i64 clean_addr
;
3020 if (!fp_access_check(s
)) {
3023 memop
= finalize_memop_asimd(s
, a
->sz
);
3024 clean_addr
= tcg_temp_new_i64();
3025 gen_pc_plus_diff(s
, clean_addr
, a
->imm
);
3026 do_fp_ld(s
, a
->rt
, clean_addr
, memop
);
3030 static void op_addr_ldstpair_pre(DisasContext
*s
, arg_ldstpair
*a
,
3031 TCGv_i64
*clean_addr
, TCGv_i64
*dirty_addr
,
3032 uint64_t offset
, bool is_store
, MemOp mop
)
3035 gen_check_sp_alignment(s
);
3038 *dirty_addr
= read_cpu_reg_sp(s
, a
->rn
, 1);
3040 tcg_gen_addi_i64(*dirty_addr
, *dirty_addr
, offset
);
3043 *clean_addr
= gen_mte_checkN(s
, *dirty_addr
, is_store
,
3044 (a
->w
|| a
->rn
!= 31), 2 << a
->sz
, mop
);
3047 static void op_addr_ldstpair_post(DisasContext
*s
, arg_ldstpair
*a
,
3048 TCGv_i64 dirty_addr
, uint64_t offset
)
3052 tcg_gen_addi_i64(dirty_addr
, dirty_addr
, offset
);
3054 tcg_gen_mov_i64(cpu_reg_sp(s
, a
->rn
), dirty_addr
);
3058 static bool trans_STP(DisasContext
*s
, arg_ldstpair
*a
)
3060 uint64_t offset
= a
->imm
<< a
->sz
;
3061 TCGv_i64 clean_addr
, dirty_addr
, tcg_rt
, tcg_rt2
;
3062 MemOp mop
= finalize_memop(s
, a
->sz
);
3064 op_addr_ldstpair_pre(s
, a
, &clean_addr
, &dirty_addr
, offset
, true, mop
);
3065 tcg_rt
= cpu_reg(s
, a
->rt
);
3066 tcg_rt2
= cpu_reg(s
, a
->rt2
);
3068 * We built mop above for the single logical access -- rebuild it
3069 * now for the paired operation.
3071 * With LSE2, non-sign-extending pairs are treated atomically if
3072 * aligned, and if unaligned one of the pair will be completely
3073 * within a 16-byte block and that element will be atomic.
3074 * Otherwise each element is separately atomic.
3075 * In all cases, issue one operation with the correct atomicity.
3079 mop
|= (a
->sz
== 2 ? MO_ALIGN_4
: MO_ALIGN_8
);
3081 mop
= finalize_memop_pair(s
, mop
);
3083 TCGv_i64 tmp
= tcg_temp_new_i64();
3085 if (s
->be_data
== MO_LE
) {
3086 tcg_gen_concat32_i64(tmp
, tcg_rt
, tcg_rt2
);
3088 tcg_gen_concat32_i64(tmp
, tcg_rt2
, tcg_rt
);
3090 tcg_gen_qemu_st_i64(tmp
, clean_addr
, get_mem_index(s
), mop
);
3092 TCGv_i128 tmp
= tcg_temp_new_i128();
3094 if (s
->be_data
== MO_LE
) {
3095 tcg_gen_concat_i64_i128(tmp
, tcg_rt
, tcg_rt2
);
3097 tcg_gen_concat_i64_i128(tmp
, tcg_rt2
, tcg_rt
);
3099 tcg_gen_qemu_st_i128(tmp
, clean_addr
, get_mem_index(s
), mop
);
3101 op_addr_ldstpair_post(s
, a
, dirty_addr
, offset
);
3105 static bool trans_LDP(DisasContext
*s
, arg_ldstpair
*a
)
3107 uint64_t offset
= a
->imm
<< a
->sz
;
3108 TCGv_i64 clean_addr
, dirty_addr
, tcg_rt
, tcg_rt2
;
3109 MemOp mop
= finalize_memop(s
, a
->sz
);
3111 op_addr_ldstpair_pre(s
, a
, &clean_addr
, &dirty_addr
, offset
, false, mop
);
3112 tcg_rt
= cpu_reg(s
, a
->rt
);
3113 tcg_rt2
= cpu_reg(s
, a
->rt2
);
3116 * We built mop above for the single logical access -- rebuild it
3117 * now for the paired operation.
3119 * With LSE2, non-sign-extending pairs are treated atomically if
3120 * aligned, and if unaligned one of the pair will be completely
3121 * within a 16-byte block and that element will be atomic.
3122 * Otherwise each element is separately atomic.
3123 * In all cases, issue one operation with the correct atomicity.
3125 * This treats sign-extending loads like zero-extending loads,
3126 * since that reuses the most code below.
3130 mop
|= (a
->sz
== 2 ? MO_ALIGN_4
: MO_ALIGN_8
);
3132 mop
= finalize_memop_pair(s
, mop
);
3134 int o2
= s
->be_data
== MO_LE
? 32 : 0;
3137 tcg_gen_qemu_ld_i64(tcg_rt
, clean_addr
, get_mem_index(s
), mop
);
3139 tcg_gen_sextract_i64(tcg_rt2
, tcg_rt
, o2
, 32);
3140 tcg_gen_sextract_i64(tcg_rt
, tcg_rt
, o1
, 32);
3142 tcg_gen_extract_i64(tcg_rt2
, tcg_rt
, o2
, 32);
3143 tcg_gen_extract_i64(tcg_rt
, tcg_rt
, o1
, 32);
3146 TCGv_i128 tmp
= tcg_temp_new_i128();
3148 tcg_gen_qemu_ld_i128(tmp
, clean_addr
, get_mem_index(s
), mop
);
3149 if (s
->be_data
== MO_LE
) {
3150 tcg_gen_extr_i128_i64(tcg_rt
, tcg_rt2
, tmp
);
3152 tcg_gen_extr_i128_i64(tcg_rt2
, tcg_rt
, tmp
);
3155 op_addr_ldstpair_post(s
, a
, dirty_addr
, offset
);
3159 static bool trans_STP_v(DisasContext
*s
, arg_ldstpair
*a
)
3161 uint64_t offset
= a
->imm
<< a
->sz
;
3162 TCGv_i64 clean_addr
, dirty_addr
;
3165 if (!fp_access_check(s
)) {
3169 /* LSE2 does not merge FP pairs; leave these as separate operations. */
3170 mop
= finalize_memop_asimd(s
, a
->sz
);
3171 op_addr_ldstpair_pre(s
, a
, &clean_addr
, &dirty_addr
, offset
, true, mop
);
3172 do_fp_st(s
, a
->rt
, clean_addr
, mop
);
3173 tcg_gen_addi_i64(clean_addr
, clean_addr
, 1 << a
->sz
);
3174 do_fp_st(s
, a
->rt2
, clean_addr
, mop
);
3175 op_addr_ldstpair_post(s
, a
, dirty_addr
, offset
);
3179 static bool trans_LDP_v(DisasContext
*s
, arg_ldstpair
*a
)
3181 uint64_t offset
= a
->imm
<< a
->sz
;
3182 TCGv_i64 clean_addr
, dirty_addr
;
3185 if (!fp_access_check(s
)) {
3189 /* LSE2 does not merge FP pairs; leave these as separate operations. */
3190 mop
= finalize_memop_asimd(s
, a
->sz
);
3191 op_addr_ldstpair_pre(s
, a
, &clean_addr
, &dirty_addr
, offset
, false, mop
);
3192 do_fp_ld(s
, a
->rt
, clean_addr
, mop
);
3193 tcg_gen_addi_i64(clean_addr
, clean_addr
, 1 << a
->sz
);
3194 do_fp_ld(s
, a
->rt2
, clean_addr
, mop
);
3195 op_addr_ldstpair_post(s
, a
, dirty_addr
, offset
);
3199 static bool trans_STGP(DisasContext
*s
, arg_ldstpair
*a
)
3201 TCGv_i64 clean_addr
, dirty_addr
, tcg_rt
, tcg_rt2
;
3202 uint64_t offset
= a
->imm
<< LOG2_TAG_GRANULE
;
3206 /* STGP only comes in one size. */
3207 tcg_debug_assert(a
->sz
== MO_64
);
3209 if (!dc_isar_feature(aa64_mte_insn_reg
, s
)) {
3214 gen_check_sp_alignment(s
);
3217 dirty_addr
= read_cpu_reg_sp(s
, a
->rn
, 1);
3219 tcg_gen_addi_i64(dirty_addr
, dirty_addr
, offset
);
3222 clean_addr
= clean_data_tbi(s
, dirty_addr
);
3223 tcg_rt
= cpu_reg(s
, a
->rt
);
3224 tcg_rt2
= cpu_reg(s
, a
->rt2
);
3227 * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE,
3228 * and one tag operation. We implement it as one single aligned 16-byte
3229 * memory operation for convenience. Note that the alignment ensures
3230 * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store.
3232 mop
= finalize_memop_atom(s
, MO_128
| MO_ALIGN
, MO_ATOM_IFALIGN_PAIR
);
3234 tmp
= tcg_temp_new_i128();
3235 if (s
->be_data
== MO_LE
) {
3236 tcg_gen_concat_i64_i128(tmp
, tcg_rt
, tcg_rt2
);
3238 tcg_gen_concat_i64_i128(tmp
, tcg_rt2
, tcg_rt
);
3240 tcg_gen_qemu_st_i128(tmp
, clean_addr
, get_mem_index(s
), mop
);
3242 /* Perform the tag store, if tag access enabled. */
3244 if (tb_cflags(s
->base
.tb
) & CF_PARALLEL
) {
3245 gen_helper_stg_parallel(tcg_env
, dirty_addr
, dirty_addr
);
3247 gen_helper_stg(tcg_env
, dirty_addr
, dirty_addr
);
3251 op_addr_ldstpair_post(s
, a
, dirty_addr
, offset
);
3255 static void op_addr_ldst_imm_pre(DisasContext
*s
, arg_ldst_imm
*a
,
3256 TCGv_i64
*clean_addr
, TCGv_i64
*dirty_addr
,
3257 uint64_t offset
, bool is_store
, MemOp mop
)
3262 gen_check_sp_alignment(s
);
3265 *dirty_addr
= read_cpu_reg_sp(s
, a
->rn
, 1);
3267 tcg_gen_addi_i64(*dirty_addr
, *dirty_addr
, offset
);
3269 memidx
= get_a64_user_mem_index(s
, a
->unpriv
);
3270 *clean_addr
= gen_mte_check1_mmuidx(s
, *dirty_addr
, is_store
,
3271 a
->w
|| a
->rn
!= 31,
3272 mop
, a
->unpriv
, memidx
);
3275 static void op_addr_ldst_imm_post(DisasContext
*s
, arg_ldst_imm
*a
,
3276 TCGv_i64 dirty_addr
, uint64_t offset
)
3280 tcg_gen_addi_i64(dirty_addr
, dirty_addr
, offset
);
3282 tcg_gen_mov_i64(cpu_reg_sp(s
, a
->rn
), dirty_addr
);
3286 static bool trans_STR_i(DisasContext
*s
, arg_ldst_imm
*a
)
3288 bool iss_sf
, iss_valid
= !a
->w
;
3289 TCGv_i64 clean_addr
, dirty_addr
, tcg_rt
;
3290 int memidx
= get_a64_user_mem_index(s
, a
->unpriv
);
3291 MemOp mop
= finalize_memop(s
, a
->sz
+ a
->sign
* MO_SIGN
);
3293 op_addr_ldst_imm_pre(s
, a
, &clean_addr
, &dirty_addr
, a
->imm
, true, mop
);
3295 tcg_rt
= cpu_reg(s
, a
->rt
);
3296 iss_sf
= ldst_iss_sf(a
->sz
, a
->sign
, a
->ext
);
3298 do_gpr_st_memidx(s
, tcg_rt
, clean_addr
, mop
, memidx
,
3299 iss_valid
, a
->rt
, iss_sf
, false);
3300 op_addr_ldst_imm_post(s
, a
, dirty_addr
, a
->imm
);
3304 static bool trans_LDR_i(DisasContext
*s
, arg_ldst_imm
*a
)
3306 bool iss_sf
, iss_valid
= !a
->w
;
3307 TCGv_i64 clean_addr
, dirty_addr
, tcg_rt
;
3308 int memidx
= get_a64_user_mem_index(s
, a
->unpriv
);
3309 MemOp mop
= finalize_memop(s
, a
->sz
+ a
->sign
* MO_SIGN
);
3311 op_addr_ldst_imm_pre(s
, a
, &clean_addr
, &dirty_addr
, a
->imm
, false, mop
);
3313 tcg_rt
= cpu_reg(s
, a
->rt
);
3314 iss_sf
= ldst_iss_sf(a
->sz
, a
->sign
, a
->ext
);
3316 do_gpr_ld_memidx(s
, tcg_rt
, clean_addr
, mop
,
3317 a
->ext
, memidx
, iss_valid
, a
->rt
, iss_sf
, false);
3318 op_addr_ldst_imm_post(s
, a
, dirty_addr
, a
->imm
);
3322 static bool trans_STR_v_i(DisasContext
*s
, arg_ldst_imm
*a
)
3324 TCGv_i64 clean_addr
, dirty_addr
;
3327 if (!fp_access_check(s
)) {
3330 mop
= finalize_memop_asimd(s
, a
->sz
);
3331 op_addr_ldst_imm_pre(s
, a
, &clean_addr
, &dirty_addr
, a
->imm
, true, mop
);
3332 do_fp_st(s
, a
->rt
, clean_addr
, mop
);
3333 op_addr_ldst_imm_post(s
, a
, dirty_addr
, a
->imm
);
3337 static bool trans_LDR_v_i(DisasContext
*s
, arg_ldst_imm
*a
)
3339 TCGv_i64 clean_addr
, dirty_addr
;
3342 if (!fp_access_check(s
)) {
3345 mop
= finalize_memop_asimd(s
, a
->sz
);
3346 op_addr_ldst_imm_pre(s
, a
, &clean_addr
, &dirty_addr
, a
->imm
, false, mop
);
3347 do_fp_ld(s
, a
->rt
, clean_addr
, mop
);
3348 op_addr_ldst_imm_post(s
, a
, dirty_addr
, a
->imm
);
3352 static void op_addr_ldst_pre(DisasContext
*s
, arg_ldst
*a
,
3353 TCGv_i64
*clean_addr
, TCGv_i64
*dirty_addr
,
3354 bool is_store
, MemOp memop
)
3359 gen_check_sp_alignment(s
);
3361 *dirty_addr
= read_cpu_reg_sp(s
, a
->rn
, 1);
3363 tcg_rm
= read_cpu_reg(s
, a
->rm
, 1);
3364 ext_and_shift_reg(tcg_rm
, tcg_rm
, a
->opt
, a
->s
? a
->sz
: 0);
3366 tcg_gen_add_i64(*dirty_addr
, *dirty_addr
, tcg_rm
);
3367 *clean_addr
= gen_mte_check1(s
, *dirty_addr
, is_store
, true, memop
);
3370 static bool trans_LDR(DisasContext
*s
, arg_ldst
*a
)
3372 TCGv_i64 clean_addr
, dirty_addr
, tcg_rt
;
3373 bool iss_sf
= ldst_iss_sf(a
->sz
, a
->sign
, a
->ext
);
3376 if (extract32(a
->opt
, 1, 1) == 0) {
3380 memop
= finalize_memop(s
, a
->sz
+ a
->sign
* MO_SIGN
);
3381 op_addr_ldst_pre(s
, a
, &clean_addr
, &dirty_addr
, false, memop
);
3382 tcg_rt
= cpu_reg(s
, a
->rt
);
3383 do_gpr_ld(s
, tcg_rt
, clean_addr
, memop
,
3384 a
->ext
, true, a
->rt
, iss_sf
, false);
3388 static bool trans_STR(DisasContext
*s
, arg_ldst
*a
)
3390 TCGv_i64 clean_addr
, dirty_addr
, tcg_rt
;
3391 bool iss_sf
= ldst_iss_sf(a
->sz
, a
->sign
, a
->ext
);
3394 if (extract32(a
->opt
, 1, 1) == 0) {
3398 memop
= finalize_memop(s
, a
->sz
);
3399 op_addr_ldst_pre(s
, a
, &clean_addr
, &dirty_addr
, true, memop
);
3400 tcg_rt
= cpu_reg(s
, a
->rt
);
3401 do_gpr_st(s
, tcg_rt
, clean_addr
, memop
, true, a
->rt
, iss_sf
, false);
3405 static bool trans_LDR_v(DisasContext
*s
, arg_ldst
*a
)
3407 TCGv_i64 clean_addr
, dirty_addr
;
3410 if (extract32(a
->opt
, 1, 1) == 0) {
3414 if (!fp_access_check(s
)) {
3418 memop
= finalize_memop_asimd(s
, a
->sz
);
3419 op_addr_ldst_pre(s
, a
, &clean_addr
, &dirty_addr
, false, memop
);
3420 do_fp_ld(s
, a
->rt
, clean_addr
, memop
);
3424 static bool trans_STR_v(DisasContext
*s
, arg_ldst
*a
)
3426 TCGv_i64 clean_addr
, dirty_addr
;
3429 if (extract32(a
->opt
, 1, 1) == 0) {
3433 if (!fp_access_check(s
)) {
3437 memop
= finalize_memop_asimd(s
, a
->sz
);
3438 op_addr_ldst_pre(s
, a
, &clean_addr
, &dirty_addr
, true, memop
);
3439 do_fp_st(s
, a
->rt
, clean_addr
, memop
);
3444 static bool do_atomic_ld(DisasContext
*s
, arg_atomic
*a
, AtomicThreeOpFn
*fn
,
3445 int sign
, bool invert
)
3447 MemOp mop
= a
->sz
| sign
;
3448 TCGv_i64 clean_addr
, tcg_rs
, tcg_rt
;
3451 gen_check_sp_alignment(s
);
3453 mop
= check_atomic_align(s
, a
->rn
, mop
);
3454 clean_addr
= gen_mte_check1(s
, cpu_reg_sp(s
, a
->rn
), false,
3456 tcg_rs
= read_cpu_reg(s
, a
->rs
, true);
3457 tcg_rt
= cpu_reg(s
, a
->rt
);
3459 tcg_gen_not_i64(tcg_rs
, tcg_rs
);
3462 * The tcg atomic primitives are all full barriers. Therefore we
3463 * can ignore the Acquire and Release bits of this instruction.
3465 fn(tcg_rt
, clean_addr
, tcg_rs
, get_mem_index(s
), mop
);
3467 if (mop
& MO_SIGN
) {
3470 tcg_gen_ext8u_i64(tcg_rt
, tcg_rt
);
3473 tcg_gen_ext16u_i64(tcg_rt
, tcg_rt
);
3476 tcg_gen_ext32u_i64(tcg_rt
, tcg_rt
);
3481 g_assert_not_reached();
3487 TRANS_FEAT(LDADD
, aa64_atomics
, do_atomic_ld
, a
, tcg_gen_atomic_fetch_add_i64
, 0, false)
3488 TRANS_FEAT(LDCLR
, aa64_atomics
, do_atomic_ld
, a
, tcg_gen_atomic_fetch_and_i64
, 0, true)
3489 TRANS_FEAT(LDEOR
, aa64_atomics
, do_atomic_ld
, a
, tcg_gen_atomic_fetch_xor_i64
, 0, false)
3490 TRANS_FEAT(LDSET
, aa64_atomics
, do_atomic_ld
, a
, tcg_gen_atomic_fetch_or_i64
, 0, false)
3491 TRANS_FEAT(LDSMAX
, aa64_atomics
, do_atomic_ld
, a
, tcg_gen_atomic_fetch_smax_i64
, MO_SIGN
, false)
3492 TRANS_FEAT(LDSMIN
, aa64_atomics
, do_atomic_ld
, a
, tcg_gen_atomic_fetch_smin_i64
, MO_SIGN
, false)
3493 TRANS_FEAT(LDUMAX
, aa64_atomics
, do_atomic_ld
, a
, tcg_gen_atomic_fetch_umax_i64
, 0, false)
3494 TRANS_FEAT(LDUMIN
, aa64_atomics
, do_atomic_ld
, a
, tcg_gen_atomic_fetch_umin_i64
, 0, false)
3495 TRANS_FEAT(SWP
, aa64_atomics
, do_atomic_ld
, a
, tcg_gen_atomic_xchg_i64
, 0, false)
3497 static bool trans_LDAPR(DisasContext
*s
, arg_LDAPR
*a
)
3499 bool iss_sf
= ldst_iss_sf(a
->sz
, false, false);
3500 TCGv_i64 clean_addr
;
3503 if (!dc_isar_feature(aa64_atomics
, s
) ||
3504 !dc_isar_feature(aa64_rcpc_8_3
, s
)) {
3508 gen_check_sp_alignment(s
);
3510 mop
= check_atomic_align(s
, a
->rn
, a
->sz
);
3511 clean_addr
= gen_mte_check1(s
, cpu_reg_sp(s
, a
->rn
), false,
3514 * LDAPR* are a special case because they are a simple load, not a
3515 * fetch-and-do-something op.
3516 * The architectural consistency requirements here are weaker than
3517 * full load-acquire (we only need "load-acquire processor consistent"),
3518 * but we choose to implement them as full LDAQ.
3520 do_gpr_ld(s
, cpu_reg(s
, a
->rt
), clean_addr
, mop
, false,
3521 true, a
->rt
, iss_sf
, true);
3522 tcg_gen_mb(TCG_MO_ALL
| TCG_BAR_LDAQ
);
3526 static bool trans_LDRA(DisasContext
*s
, arg_LDRA
*a
)
3528 TCGv_i64 clean_addr
, dirty_addr
, tcg_rt
;
3531 /* Load with pointer authentication */
3532 if (!dc_isar_feature(aa64_pauth
, s
)) {
3537 gen_check_sp_alignment(s
);
3539 dirty_addr
= read_cpu_reg_sp(s
, a
->rn
, 1);
3541 if (s
->pauth_active
) {
3543 gen_helper_autda_combined(dirty_addr
, tcg_env
, dirty_addr
,
3544 tcg_constant_i64(0));
3546 gen_helper_autdb_combined(dirty_addr
, tcg_env
, dirty_addr
,
3547 tcg_constant_i64(0));
3551 tcg_gen_addi_i64(dirty_addr
, dirty_addr
, a
->imm
);
3553 memop
= finalize_memop(s
, MO_64
);
3555 /* Note that "clean" and "dirty" here refer to TBI not PAC. */
3556 clean_addr
= gen_mte_check1(s
, dirty_addr
, false,
3557 a
->w
|| a
->rn
!= 31, memop
);
3559 tcg_rt
= cpu_reg(s
, a
->rt
);
3560 do_gpr_ld(s
, tcg_rt
, clean_addr
, memop
,
3561 /* extend */ false, /* iss_valid */ !a
->w
,
3562 /* iss_srt */ a
->rt
, /* iss_sf */ true, /* iss_ar */ false);
3565 tcg_gen_mov_i64(cpu_reg_sp(s
, a
->rn
), dirty_addr
);
3570 static bool trans_LDAPR_i(DisasContext
*s
, arg_ldapr_stlr_i
*a
)
3572 TCGv_i64 clean_addr
, dirty_addr
;
3573 MemOp mop
= a
->sz
| (a
->sign
? MO_SIGN
: 0);
3574 bool iss_sf
= ldst_iss_sf(a
->sz
, a
->sign
, a
->ext
);
3576 if (!dc_isar_feature(aa64_rcpc_8_4
, s
)) {
3581 gen_check_sp_alignment(s
);
3584 mop
= check_ordered_align(s
, a
->rn
, a
->imm
, false, mop
);
3585 dirty_addr
= read_cpu_reg_sp(s
, a
->rn
, 1);
3586 tcg_gen_addi_i64(dirty_addr
, dirty_addr
, a
->imm
);
3587 clean_addr
= clean_data_tbi(s
, dirty_addr
);
3590 * Load-AcquirePC semantics; we implement as the slightly more
3591 * restrictive Load-Acquire.
3593 do_gpr_ld(s
, cpu_reg(s
, a
->rt
), clean_addr
, mop
, a
->ext
, true,
3594 a
->rt
, iss_sf
, true);
3595 tcg_gen_mb(TCG_MO_ALL
| TCG_BAR_LDAQ
);
3599 static bool trans_STLR_i(DisasContext
*s
, arg_ldapr_stlr_i
*a
)
3601 TCGv_i64 clean_addr
, dirty_addr
;
3603 bool iss_sf
= ldst_iss_sf(a
->sz
, a
->sign
, a
->ext
);
3605 if (!dc_isar_feature(aa64_rcpc_8_4
, s
)) {
3609 /* TODO: ARMv8.4-LSE SCTLR.nAA */
3612 gen_check_sp_alignment(s
);
3615 mop
= check_ordered_align(s
, a
->rn
, a
->imm
, true, mop
);
3616 dirty_addr
= read_cpu_reg_sp(s
, a
->rn
, 1);
3617 tcg_gen_addi_i64(dirty_addr
, dirty_addr
, a
->imm
);
3618 clean_addr
= clean_data_tbi(s
, dirty_addr
);
3620 /* Store-Release semantics */
3621 tcg_gen_mb(TCG_MO_ALL
| TCG_BAR_STRL
);
3622 do_gpr_st(s
, cpu_reg(s
, a
->rt
), clean_addr
, mop
, true, a
->rt
, iss_sf
, true);
3626 static bool trans_LD_mult(DisasContext
*s
, arg_ldst_mult
*a
)
3628 TCGv_i64 clean_addr
, tcg_rn
, tcg_ebytes
;
3629 MemOp endian
, align
, mop
;
3631 int total
; /* total bytes */
3632 int elements
; /* elements per vector */
3636 if (!a
->p
&& a
->rm
!= 0) {
3637 /* For non-postindexed accesses the Rm field must be 0 */
3640 if (size
== 3 && !a
->q
&& a
->selem
!= 1) {
3643 if (!fp_access_check(s
)) {
3648 gen_check_sp_alignment(s
);
3651 /* For our purposes, bytes are always little-endian. */
3652 endian
= s
->be_data
;
3657 total
= a
->rpt
* a
->selem
* (a
->q
? 16 : 8);
3658 tcg_rn
= cpu_reg_sp(s
, a
->rn
);
3661 * Issue the MTE check vs the logical repeat count, before we
3662 * promote consecutive little-endian elements below.
3664 clean_addr
= gen_mte_checkN(s
, tcg_rn
, false, a
->p
|| a
->rn
!= 31, total
,
3665 finalize_memop_asimd(s
, size
));
3668 * Consecutive little-endian elements from a single register
3669 * can be promoted to a larger little-endian operation.
3672 if (a
->selem
== 1 && endian
== MO_LE
) {
3673 align
= pow2_align(size
);
3676 if (!s
->align_mem
) {
3679 mop
= endian
| size
| align
;
3681 elements
= (a
->q
? 16 : 8) >> size
;
3682 tcg_ebytes
= tcg_constant_i64(1 << size
);
3683 for (r
= 0; r
< a
->rpt
; r
++) {
3685 for (e
= 0; e
< elements
; e
++) {
3687 for (xs
= 0; xs
< a
->selem
; xs
++) {
3688 int tt
= (a
->rt
+ r
+ xs
) % 32;
3689 do_vec_ld(s
, tt
, e
, clean_addr
, mop
);
3690 tcg_gen_add_i64(clean_addr
, clean_addr
, tcg_ebytes
);
3696 * For non-quad operations, setting a slice of the low 64 bits of
3697 * the register clears the high 64 bits (in the ARM ARM pseudocode
3698 * this is implicit in the fact that 'rval' is a 64 bit wide
3699 * variable). For quad operations, we might still need to zero
3700 * the high bits of SVE.
3702 for (r
= 0; r
< a
->rpt
* a
->selem
; r
++) {
3703 int tt
= (a
->rt
+ r
) % 32;
3704 clear_vec_high(s
, a
->q
, tt
);
3709 tcg_gen_addi_i64(tcg_rn
, tcg_rn
, total
);
3711 tcg_gen_add_i64(tcg_rn
, tcg_rn
, cpu_reg(s
, a
->rm
));
3717 static bool trans_ST_mult(DisasContext
*s
, arg_ldst_mult
*a
)
3719 TCGv_i64 clean_addr
, tcg_rn
, tcg_ebytes
;
3720 MemOp endian
, align
, mop
;
3722 int total
; /* total bytes */
3723 int elements
; /* elements per vector */
3727 if (!a
->p
&& a
->rm
!= 0) {
3728 /* For non-postindexed accesses the Rm field must be 0 */
3731 if (size
== 3 && !a
->q
&& a
->selem
!= 1) {
3734 if (!fp_access_check(s
)) {
3739 gen_check_sp_alignment(s
);
3742 /* For our purposes, bytes are always little-endian. */
3743 endian
= s
->be_data
;
3748 total
= a
->rpt
* a
->selem
* (a
->q
? 16 : 8);
3749 tcg_rn
= cpu_reg_sp(s
, a
->rn
);
3752 * Issue the MTE check vs the logical repeat count, before we
3753 * promote consecutive little-endian elements below.
3755 clean_addr
= gen_mte_checkN(s
, tcg_rn
, true, a
->p
|| a
->rn
!= 31, total
,
3756 finalize_memop_asimd(s
, size
));
3759 * Consecutive little-endian elements from a single register
3760 * can be promoted to a larger little-endian operation.
3763 if (a
->selem
== 1 && endian
== MO_LE
) {
3764 align
= pow2_align(size
);
3767 if (!s
->align_mem
) {
3770 mop
= endian
| size
| align
;
3772 elements
= (a
->q
? 16 : 8) >> size
;
3773 tcg_ebytes
= tcg_constant_i64(1 << size
);
3774 for (r
= 0; r
< a
->rpt
; r
++) {
3776 for (e
= 0; e
< elements
; e
++) {
3778 for (xs
= 0; xs
< a
->selem
; xs
++) {
3779 int tt
= (a
->rt
+ r
+ xs
) % 32;
3780 do_vec_st(s
, tt
, e
, clean_addr
, mop
);
3781 tcg_gen_add_i64(clean_addr
, clean_addr
, tcg_ebytes
);
3788 tcg_gen_addi_i64(tcg_rn
, tcg_rn
, total
);
3790 tcg_gen_add_i64(tcg_rn
, tcg_rn
, cpu_reg(s
, a
->rm
));
3796 static bool trans_ST_single(DisasContext
*s
, arg_ldst_single
*a
)
3799 TCGv_i64 clean_addr
, tcg_rn
, tcg_ebytes
;
3802 if (!a
->p
&& a
->rm
!= 0) {
3805 if (!fp_access_check(s
)) {
3810 gen_check_sp_alignment(s
);
3813 total
= a
->selem
<< a
->scale
;
3814 tcg_rn
= cpu_reg_sp(s
, a
->rn
);
3816 mop
= finalize_memop_asimd(s
, a
->scale
);
3817 clean_addr
= gen_mte_checkN(s
, tcg_rn
, true, a
->p
|| a
->rn
!= 31,
3820 tcg_ebytes
= tcg_constant_i64(1 << a
->scale
);
3821 for (xs
= 0, rt
= a
->rt
; xs
< a
->selem
; xs
++, rt
= (rt
+ 1) % 32) {
3822 do_vec_st(s
, rt
, a
->index
, clean_addr
, mop
);
3823 tcg_gen_add_i64(clean_addr
, clean_addr
, tcg_ebytes
);
3828 tcg_gen_addi_i64(tcg_rn
, tcg_rn
, total
);
3830 tcg_gen_add_i64(tcg_rn
, tcg_rn
, cpu_reg(s
, a
->rm
));
3836 static bool trans_LD_single(DisasContext
*s
, arg_ldst_single
*a
)
3839 TCGv_i64 clean_addr
, tcg_rn
, tcg_ebytes
;
3842 if (!a
->p
&& a
->rm
!= 0) {
3845 if (!fp_access_check(s
)) {
3850 gen_check_sp_alignment(s
);
3853 total
= a
->selem
<< a
->scale
;
3854 tcg_rn
= cpu_reg_sp(s
, a
->rn
);
3856 mop
= finalize_memop_asimd(s
, a
->scale
);
3857 clean_addr
= gen_mte_checkN(s
, tcg_rn
, false, a
->p
|| a
->rn
!= 31,
3860 tcg_ebytes
= tcg_constant_i64(1 << a
->scale
);
3861 for (xs
= 0, rt
= a
->rt
; xs
< a
->selem
; xs
++, rt
= (rt
+ 1) % 32) {
3862 do_vec_ld(s
, rt
, a
->index
, clean_addr
, mop
);
3863 tcg_gen_add_i64(clean_addr
, clean_addr
, tcg_ebytes
);
3868 tcg_gen_addi_i64(tcg_rn
, tcg_rn
, total
);
3870 tcg_gen_add_i64(tcg_rn
, tcg_rn
, cpu_reg(s
, a
->rm
));
3876 static bool trans_LD_single_repl(DisasContext
*s
, arg_LD_single_repl
*a
)
3879 TCGv_i64 clean_addr
, tcg_rn
, tcg_ebytes
;
3882 if (!a
->p
&& a
->rm
!= 0) {
3885 if (!fp_access_check(s
)) {
3890 gen_check_sp_alignment(s
);
3893 total
= a
->selem
<< a
->scale
;
3894 tcg_rn
= cpu_reg_sp(s
, a
->rn
);
3896 mop
= finalize_memop_asimd(s
, a
->scale
);
3897 clean_addr
= gen_mte_checkN(s
, tcg_rn
, false, a
->p
|| a
->rn
!= 31,
3900 tcg_ebytes
= tcg_constant_i64(1 << a
->scale
);
3901 for (xs
= 0, rt
= a
->rt
; xs
< a
->selem
; xs
++, rt
= (rt
+ 1) % 32) {
3902 /* Load and replicate to all elements */
3903 TCGv_i64 tcg_tmp
= tcg_temp_new_i64();
3905 tcg_gen_qemu_ld_i64(tcg_tmp
, clean_addr
, get_mem_index(s
), mop
);
3906 tcg_gen_gvec_dup_i64(a
->scale
, vec_full_reg_offset(s
, rt
),
3907 (a
->q
+ 1) * 8, vec_full_reg_size(s
), tcg_tmp
);
3908 tcg_gen_add_i64(clean_addr
, clean_addr
, tcg_ebytes
);
3913 tcg_gen_addi_i64(tcg_rn
, tcg_rn
, total
);
3915 tcg_gen_add_i64(tcg_rn
, tcg_rn
, cpu_reg(s
, a
->rm
));
3921 static bool trans_STZGM(DisasContext
*s
, arg_ldst_tag
*a
)
3923 TCGv_i64 addr
, clean_addr
, tcg_rt
;
3924 int size
= 4 << s
->dcz_blocksize
;
3926 if (!dc_isar_feature(aa64_mte
, s
)) {
3929 if (s
->current_el
== 0) {
3934 gen_check_sp_alignment(s
);
3937 addr
= read_cpu_reg_sp(s
, a
->rn
, true);
3938 tcg_gen_addi_i64(addr
, addr
, a
->imm
);
3939 tcg_rt
= cpu_reg(s
, a
->rt
);
3942 gen_helper_stzgm_tags(tcg_env
, addr
, tcg_rt
);
3945 * The non-tags portion of STZGM is mostly like DC_ZVA,
3946 * except the alignment happens before the access.
3948 clean_addr
= clean_data_tbi(s
, addr
);
3949 tcg_gen_andi_i64(clean_addr
, clean_addr
, -size
);
3950 gen_helper_dc_zva(tcg_env
, clean_addr
);
3954 static bool trans_STGM(DisasContext
*s
, arg_ldst_tag
*a
)
3956 TCGv_i64 addr
, clean_addr
, tcg_rt
;
3958 if (!dc_isar_feature(aa64_mte
, s
)) {
3961 if (s
->current_el
== 0) {
3966 gen_check_sp_alignment(s
);
3969 addr
= read_cpu_reg_sp(s
, a
->rn
, true);
3970 tcg_gen_addi_i64(addr
, addr
, a
->imm
);
3971 tcg_rt
= cpu_reg(s
, a
->rt
);
3974 gen_helper_stgm(tcg_env
, addr
, tcg_rt
);
3976 MMUAccessType acc
= MMU_DATA_STORE
;
3977 int size
= 4 << s
->gm_blocksize
;
3979 clean_addr
= clean_data_tbi(s
, addr
);
3980 tcg_gen_andi_i64(clean_addr
, clean_addr
, -size
);
3981 gen_probe_access(s
, clean_addr
, acc
, size
);
3986 static bool trans_LDGM(DisasContext
*s
, arg_ldst_tag
*a
)
3988 TCGv_i64 addr
, clean_addr
, tcg_rt
;
3990 if (!dc_isar_feature(aa64_mte
, s
)) {
3993 if (s
->current_el
== 0) {
3998 gen_check_sp_alignment(s
);
4001 addr
= read_cpu_reg_sp(s
, a
->rn
, true);
4002 tcg_gen_addi_i64(addr
, addr
, a
->imm
);
4003 tcg_rt
= cpu_reg(s
, a
->rt
);
4006 gen_helper_ldgm(tcg_rt
, tcg_env
, addr
);
4008 MMUAccessType acc
= MMU_DATA_LOAD
;
4009 int size
= 4 << s
->gm_blocksize
;
4011 clean_addr
= clean_data_tbi(s
, addr
);
4012 tcg_gen_andi_i64(clean_addr
, clean_addr
, -size
);
4013 gen_probe_access(s
, clean_addr
, acc
, size
);
4014 /* The result tags are zeros. */
4015 tcg_gen_movi_i64(tcg_rt
, 0);
4020 static bool trans_LDG(DisasContext
*s
, arg_ldst_tag
*a
)
4022 TCGv_i64 addr
, clean_addr
, tcg_rt
;
4024 if (!dc_isar_feature(aa64_mte_insn_reg
, s
)) {
4029 gen_check_sp_alignment(s
);
4032 addr
= read_cpu_reg_sp(s
, a
->rn
, true);
4034 /* pre-index or signed offset */
4035 tcg_gen_addi_i64(addr
, addr
, a
->imm
);
4038 tcg_gen_andi_i64(addr
, addr
, -TAG_GRANULE
);
4039 tcg_rt
= cpu_reg(s
, a
->rt
);
4041 gen_helper_ldg(tcg_rt
, tcg_env
, addr
, tcg_rt
);
4044 * Tag access disabled: we must check for aborts on the load
4045 * load from [rn+offset], and then insert a 0 tag into rt.
4047 clean_addr
= clean_data_tbi(s
, addr
);
4048 gen_probe_access(s
, clean_addr
, MMU_DATA_LOAD
, MO_8
);
4049 gen_address_with_allocation_tag0(tcg_rt
, tcg_rt
);
4053 /* pre-index or post-index */
4056 tcg_gen_addi_i64(addr
, addr
, a
->imm
);
4058 tcg_gen_mov_i64(cpu_reg_sp(s
, a
->rn
), addr
);
4063 static bool do_STG(DisasContext
*s
, arg_ldst_tag
*a
, bool is_zero
, bool is_pair
)
4065 TCGv_i64 addr
, tcg_rt
;
4068 gen_check_sp_alignment(s
);
4071 addr
= read_cpu_reg_sp(s
, a
->rn
, true);
4073 /* pre-index or signed offset */
4074 tcg_gen_addi_i64(addr
, addr
, a
->imm
);
4076 tcg_rt
= cpu_reg_sp(s
, a
->rt
);
4079 * For STG and ST2G, we need to check alignment and probe memory.
4080 * TODO: For STZG and STZ2G, we could rely on the stores below,
4081 * at least for system mode; user-only won't enforce alignment.
4084 gen_helper_st2g_stub(tcg_env
, addr
);
4086 gen_helper_stg_stub(tcg_env
, addr
);
4088 } else if (tb_cflags(s
->base
.tb
) & CF_PARALLEL
) {
4090 gen_helper_st2g_parallel(tcg_env
, addr
, tcg_rt
);
4092 gen_helper_stg_parallel(tcg_env
, addr
, tcg_rt
);
4096 gen_helper_st2g(tcg_env
, addr
, tcg_rt
);
4098 gen_helper_stg(tcg_env
, addr
, tcg_rt
);
4103 TCGv_i64 clean_addr
= clean_data_tbi(s
, addr
);
4104 TCGv_i64 zero64
= tcg_constant_i64(0);
4105 TCGv_i128 zero128
= tcg_temp_new_i128();
4106 int mem_index
= get_mem_index(s
);
4107 MemOp mop
= finalize_memop(s
, MO_128
| MO_ALIGN
);
4109 tcg_gen_concat_i64_i128(zero128
, zero64
, zero64
);
4111 /* This is 1 or 2 atomic 16-byte operations. */
4112 tcg_gen_qemu_st_i128(zero128
, clean_addr
, mem_index
, mop
);
4114 tcg_gen_addi_i64(clean_addr
, clean_addr
, 16);
4115 tcg_gen_qemu_st_i128(zero128
, clean_addr
, mem_index
, mop
);
4120 /* pre-index or post-index */
4123 tcg_gen_addi_i64(addr
, addr
, a
->imm
);
4125 tcg_gen_mov_i64(cpu_reg_sp(s
, a
->rn
), addr
);
4130 TRANS_FEAT(STG
, aa64_mte_insn_reg
, do_STG
, a
, false, false)
4131 TRANS_FEAT(STZG
, aa64_mte_insn_reg
, do_STG
, a
, true, false)
4132 TRANS_FEAT(ST2G
, aa64_mte_insn_reg
, do_STG
, a
, false, true)
4133 TRANS_FEAT(STZ2G
, aa64_mte_insn_reg
, do_STG
, a
, true, true)
4135 typedef void SetFn(TCGv_env
, TCGv_i32
, TCGv_i32
);
4137 static bool do_SET(DisasContext
*s
, arg_set
*a
, bool is_epilogue
,
4138 bool is_setg
, SetFn fn
)
4141 uint32_t syndrome
, desc
= 0;
4143 if (is_setg
&& !dc_isar_feature(aa64_mte
, s
)) {
4148 * UNPREDICTABLE cases: we choose to UNDEF, which allows
4149 * us to pull this check before the CheckMOPSEnabled() test
4150 * (which we do in the helper function)
4152 if (a
->rs
== a
->rn
|| a
->rs
== a
->rd
|| a
->rn
== a
->rd
||
4153 a
->rd
== 31 || a
->rn
== 31) {
4157 memidx
= get_a64_user_mem_index(s
, a
->unpriv
);
4160 * We pass option_a == true, matching our implementation;
4161 * we pass wrong_option == false: helper function may set that bit.
4163 syndrome
= syn_mop(true, is_setg
, (a
->nontemp
<< 1) | a
->unpriv
,
4164 is_epilogue
, false, true, a
->rd
, a
->rs
, a
->rn
);
4166 if (is_setg
? s
->ata
[a
->unpriv
] : s
->mte_active
[a
->unpriv
]) {
4167 /* We may need to do MTE tag checking, so assemble the descriptor */
4168 desc
= FIELD_DP32(desc
, MTEDESC
, TBI
, s
->tbid
);
4169 desc
= FIELD_DP32(desc
, MTEDESC
, TCMA
, s
->tcma
);
4170 desc
= FIELD_DP32(desc
, MTEDESC
, WRITE
, true);
4171 /* SIZEM1 and ALIGN we leave 0 (byte write) */
4173 /* The helper function always needs the memidx even with MTE disabled */
4174 desc
= FIELD_DP32(desc
, MTEDESC
, MIDX
, memidx
);
4177 * The helper needs the register numbers, but since they're in
4178 * the syndrome anyway, we let it extract them from there rather
4179 * than passing in an extra three integer arguments.
4181 fn(tcg_env
, tcg_constant_i32(syndrome
), tcg_constant_i32(desc
));
4185 TRANS_FEAT(SETP
, aa64_mops
, do_SET
, a
, false, false, gen_helper_setp
)
4186 TRANS_FEAT(SETM
, aa64_mops
, do_SET
, a
, false, false, gen_helper_setm
)
4187 TRANS_FEAT(SETE
, aa64_mops
, do_SET
, a
, true, false, gen_helper_sete
)
4188 TRANS_FEAT(SETGP
, aa64_mops
, do_SET
, a
, false, true, gen_helper_setgp
)
4189 TRANS_FEAT(SETGM
, aa64_mops
, do_SET
, a
, false, true, gen_helper_setgm
)
4190 TRANS_FEAT(SETGE
, aa64_mops
, do_SET
, a
, true, true, gen_helper_setge
)
4192 typedef void CpyFn(TCGv_env
, TCGv_i32
, TCGv_i32
, TCGv_i32
);
4194 static bool do_CPY(DisasContext
*s
, arg_cpy
*a
, bool is_epilogue
, CpyFn fn
)
4196 int rmemidx
, wmemidx
;
4197 uint32_t syndrome
, rdesc
= 0, wdesc
= 0;
4198 bool wunpriv
= extract32(a
->options
, 0, 1);
4199 bool runpriv
= extract32(a
->options
, 1, 1);
4202 * UNPREDICTABLE cases: we choose to UNDEF, which allows
4203 * us to pull this check before the CheckMOPSEnabled() test
4204 * (which we do in the helper function)
4206 if (a
->rs
== a
->rn
|| a
->rs
== a
->rd
|| a
->rn
== a
->rd
||
4207 a
->rd
== 31 || a
->rs
== 31 || a
->rn
== 31) {
4211 rmemidx
= get_a64_user_mem_index(s
, runpriv
);
4212 wmemidx
= get_a64_user_mem_index(s
, wunpriv
);
4215 * We pass option_a == true, matching our implementation;
4216 * we pass wrong_option == false: helper function may set that bit.
4218 syndrome
= syn_mop(false, false, a
->options
, is_epilogue
,
4219 false, true, a
->rd
, a
->rs
, a
->rn
);
4221 /* If we need to do MTE tag checking, assemble the descriptors */
4222 if (s
->mte_active
[runpriv
]) {
4223 rdesc
= FIELD_DP32(rdesc
, MTEDESC
, TBI
, s
->tbid
);
4224 rdesc
= FIELD_DP32(rdesc
, MTEDESC
, TCMA
, s
->tcma
);
4226 if (s
->mte_active
[wunpriv
]) {
4227 wdesc
= FIELD_DP32(wdesc
, MTEDESC
, TBI
, s
->tbid
);
4228 wdesc
= FIELD_DP32(wdesc
, MTEDESC
, TCMA
, s
->tcma
);
4229 wdesc
= FIELD_DP32(wdesc
, MTEDESC
, WRITE
, true);
4231 /* The helper function needs these parts of the descriptor regardless */
4232 rdesc
= FIELD_DP32(rdesc
, MTEDESC
, MIDX
, rmemidx
);
4233 wdesc
= FIELD_DP32(wdesc
, MTEDESC
, MIDX
, wmemidx
);
4236 * The helper needs the register numbers, but since they're in
4237 * the syndrome anyway, we let it extract them from there rather
4238 * than passing in an extra three integer arguments.
4240 fn(tcg_env
, tcg_constant_i32(syndrome
), tcg_constant_i32(wdesc
),
4241 tcg_constant_i32(rdesc
));
4245 TRANS_FEAT(CPYP
, aa64_mops
, do_CPY
, a
, false, gen_helper_cpyp
)
4246 TRANS_FEAT(CPYM
, aa64_mops
, do_CPY
, a
, false, gen_helper_cpym
)
4247 TRANS_FEAT(CPYE
, aa64_mops
, do_CPY
, a
, true, gen_helper_cpye
)
4248 TRANS_FEAT(CPYFP
, aa64_mops
, do_CPY
, a
, false, gen_helper_cpyfp
)
4249 TRANS_FEAT(CPYFM
, aa64_mops
, do_CPY
, a
, false, gen_helper_cpyfm
)
4250 TRANS_FEAT(CPYFE
, aa64_mops
, do_CPY
, a
, true, gen_helper_cpyfe
)
4252 typedef void ArithTwoOp(TCGv_i64
, TCGv_i64
, TCGv_i64
);
4254 static bool gen_rri(DisasContext
*s
, arg_rri_sf
*a
,
4255 bool rd_sp
, bool rn_sp
, ArithTwoOp
*fn
)
4257 TCGv_i64 tcg_rn
= rn_sp
? cpu_reg_sp(s
, a
->rn
) : cpu_reg(s
, a
->rn
);
4258 TCGv_i64 tcg_rd
= rd_sp
? cpu_reg_sp(s
, a
->rd
) : cpu_reg(s
, a
->rd
);
4259 TCGv_i64 tcg_imm
= tcg_constant_i64(a
->imm
);
4261 fn(tcg_rd
, tcg_rn
, tcg_imm
);
4263 tcg_gen_ext32u_i64(tcg_rd
, tcg_rd
);
4269 * PC-rel. addressing
4272 static bool trans_ADR(DisasContext
*s
, arg_ri
*a
)
4274 gen_pc_plus_diff(s
, cpu_reg(s
, a
->rd
), a
->imm
);
4278 static bool trans_ADRP(DisasContext
*s
, arg_ri
*a
)
4280 int64_t offset
= (int64_t)a
->imm
<< 12;
4282 /* The page offset is ok for CF_PCREL. */
4283 offset
-= s
->pc_curr
& 0xfff;
4284 gen_pc_plus_diff(s
, cpu_reg(s
, a
->rd
), offset
);
4289 * Add/subtract (immediate)
4291 TRANS(ADD_i
, gen_rri
, a
, 1, 1, tcg_gen_add_i64
)
4292 TRANS(SUB_i
, gen_rri
, a
, 1, 1, tcg_gen_sub_i64
)
4293 TRANS(ADDS_i
, gen_rri
, a
, 0, 1, a
->sf
? gen_add64_CC
: gen_add32_CC
)
4294 TRANS(SUBS_i
, gen_rri
, a
, 0, 1, a
->sf
? gen_sub64_CC
: gen_sub32_CC
)
4297 * Add/subtract (immediate, with tags)
4300 static bool gen_add_sub_imm_with_tags(DisasContext
*s
, arg_rri_tag
*a
,
4303 TCGv_i64 tcg_rn
, tcg_rd
;
4306 imm
= a
->uimm6
<< LOG2_TAG_GRANULE
;
4311 tcg_rn
= cpu_reg_sp(s
, a
->rn
);
4312 tcg_rd
= cpu_reg_sp(s
, a
->rd
);
4315 gen_helper_addsubg(tcg_rd
, tcg_env
, tcg_rn
,
4316 tcg_constant_i32(imm
),
4317 tcg_constant_i32(a
->uimm4
));
4319 tcg_gen_addi_i64(tcg_rd
, tcg_rn
, imm
);
4320 gen_address_with_allocation_tag0(tcg_rd
, tcg_rd
);
4325 TRANS_FEAT(ADDG_i
, aa64_mte_insn_reg
, gen_add_sub_imm_with_tags
, a
, false)
4326 TRANS_FEAT(SUBG_i
, aa64_mte_insn_reg
, gen_add_sub_imm_with_tags
, a
, true)
4328 /* The input should be a value in the bottom e bits (with higher
4329 * bits zero); returns that value replicated into every element
4330 * of size e in a 64 bit integer.
4332 static uint64_t bitfield_replicate(uint64_t mask
, unsigned int e
)
4343 * Logical (immediate)
4347 * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4348 * only require the wmask. Returns false if the imms/immr/immn are a reserved
4349 * value (ie should cause a guest UNDEF exception), and true if they are
4350 * valid, in which case the decoded bit pattern is written to result.
4352 bool logic_imm_decode_wmask(uint64_t *result
, unsigned int immn
,
4353 unsigned int imms
, unsigned int immr
)
4356 unsigned e
, levels
, s
, r
;
4359 assert(immn
< 2 && imms
< 64 && immr
< 64);
4361 /* The bit patterns we create here are 64 bit patterns which
4362 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4363 * 64 bits each. Each element contains the same value: a run
4364 * of between 1 and e-1 non-zero bits, rotated within the
4365 * element by between 0 and e-1 bits.
4367 * The element size and run length are encoded into immn (1 bit)
4368 * and imms (6 bits) as follows:
4369 * 64 bit elements: immn = 1, imms = <length of run - 1>
4370 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4371 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4372 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4373 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4374 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4375 * Notice that immn = 0, imms = 11111x is the only combination
4376 * not covered by one of the above options; this is reserved.
4377 * Further, <length of run - 1> all-ones is a reserved pattern.
4379 * In all cases the rotation is by immr % e (and immr is 6 bits).
4382 /* First determine the element size */
4383 len
= 31 - clz32((immn
<< 6) | (~imms
& 0x3f));
4385 /* This is the immn == 0, imms == 0x11111x case */
4395 /* <length of run - 1> mustn't be all-ones. */
4399 /* Create the value of one element: s+1 set bits rotated
4400 * by r within the element (which is e bits wide)...
4402 mask
= MAKE_64BIT_MASK(0, s
+ 1);
4404 mask
= (mask
>> r
) | (mask
<< (e
- r
));
4405 mask
&= MAKE_64BIT_MASK(0, e
);
4407 /* ...then replicate the element over the whole 64 bit value */
4408 mask
= bitfield_replicate(mask
, e
);
4413 static bool gen_rri_log(DisasContext
*s
, arg_rri_log
*a
, bool set_cc
,
4414 void (*fn
)(TCGv_i64
, TCGv_i64
, int64_t))
4416 TCGv_i64 tcg_rd
, tcg_rn
;
4419 /* Some immediate field values are reserved. */
4420 if (!logic_imm_decode_wmask(&imm
, extract32(a
->dbm
, 12, 1),
4421 extract32(a
->dbm
, 0, 6),
4422 extract32(a
->dbm
, 6, 6))) {
4426 imm
&= 0xffffffffull
;
4429 tcg_rd
= set_cc
? cpu_reg(s
, a
->rd
) : cpu_reg_sp(s
, a
->rd
);
4430 tcg_rn
= cpu_reg(s
, a
->rn
);
4432 fn(tcg_rd
, tcg_rn
, imm
);
4434 gen_logic_CC(a
->sf
, tcg_rd
);
4437 tcg_gen_ext32u_i64(tcg_rd
, tcg_rd
);
4442 TRANS(AND_i
, gen_rri_log
, a
, false, tcg_gen_andi_i64
)
4443 TRANS(ORR_i
, gen_rri_log
, a
, false, tcg_gen_ori_i64
)
4444 TRANS(EOR_i
, gen_rri_log
, a
, false, tcg_gen_xori_i64
)
4445 TRANS(ANDS_i
, gen_rri_log
, a
, true, tcg_gen_andi_i64
)
4448 * Move wide (immediate)
4451 static bool trans_MOVZ(DisasContext
*s
, arg_movw
*a
)
4453 int pos
= a
->hw
<< 4;
4454 tcg_gen_movi_i64(cpu_reg(s
, a
->rd
), (uint64_t)a
->imm
<< pos
);
4458 static bool trans_MOVN(DisasContext
*s
, arg_movw
*a
)
4460 int pos
= a
->hw
<< 4;
4461 uint64_t imm
= a
->imm
;
4463 imm
= ~(imm
<< pos
);
4465 imm
= (uint32_t)imm
;
4467 tcg_gen_movi_i64(cpu_reg(s
, a
->rd
), imm
);
4471 static bool trans_MOVK(DisasContext
*s
, arg_movw
*a
)
4473 int pos
= a
->hw
<< 4;
4474 TCGv_i64 tcg_rd
, tcg_im
;
4476 tcg_rd
= cpu_reg(s
, a
->rd
);
4477 tcg_im
= tcg_constant_i64(a
->imm
);
4478 tcg_gen_deposit_i64(tcg_rd
, tcg_rd
, tcg_im
, pos
, 16);
4480 tcg_gen_ext32u_i64(tcg_rd
, tcg_rd
);
4489 static bool trans_SBFM(DisasContext
*s
, arg_SBFM
*a
)
4491 TCGv_i64 tcg_rd
= cpu_reg(s
, a
->rd
);
4492 TCGv_i64 tcg_tmp
= read_cpu_reg(s
, a
->rn
, 1);
4493 unsigned int bitsize
= a
->sf
? 64 : 32;
4494 unsigned int ri
= a
->immr
;
4495 unsigned int si
= a
->imms
;
4496 unsigned int pos
, len
;
4499 /* Wd<s-r:0> = Wn<s:r> */
4500 len
= (si
- ri
) + 1;
4501 tcg_gen_sextract_i64(tcg_rd
, tcg_tmp
, ri
, len
);
4503 tcg_gen_ext32u_i64(tcg_rd
, tcg_rd
);
4506 /* Wd<32+s-r,32-r> = Wn<s:0> */
4508 pos
= (bitsize
- ri
) & (bitsize
- 1);
4512 * Sign extend the destination field from len to fill the
4513 * balance of the word. Let the deposit below insert all
4514 * of those sign bits.
4516 tcg_gen_sextract_i64(tcg_tmp
, tcg_tmp
, 0, len
);
4521 * We start with zero, and we haven't modified any bits outside
4522 * bitsize, therefore no final zero-extension is unneeded for !sf.
4524 tcg_gen_deposit_z_i64(tcg_rd
, tcg_tmp
, pos
, len
);
4529 static bool trans_UBFM(DisasContext
*s
, arg_UBFM
*a
)
4531 TCGv_i64 tcg_rd
= cpu_reg(s
, a
->rd
);
4532 TCGv_i64 tcg_tmp
= read_cpu_reg(s
, a
->rn
, 1);
4533 unsigned int bitsize
= a
->sf
? 64 : 32;
4534 unsigned int ri
= a
->immr
;
4535 unsigned int si
= a
->imms
;
4536 unsigned int pos
, len
;
4538 tcg_rd
= cpu_reg(s
, a
->rd
);
4539 tcg_tmp
= read_cpu_reg(s
, a
->rn
, 1);
4542 /* Wd<s-r:0> = Wn<s:r> */
4543 len
= (si
- ri
) + 1;
4544 tcg_gen_extract_i64(tcg_rd
, tcg_tmp
, ri
, len
);
4546 /* Wd<32+s-r,32-r> = Wn<s:0> */
4548 pos
= (bitsize
- ri
) & (bitsize
- 1);
4549 tcg_gen_deposit_z_i64(tcg_rd
, tcg_tmp
, pos
, len
);
4554 static bool trans_BFM(DisasContext
*s
, arg_BFM
*a
)
4556 TCGv_i64 tcg_rd
= cpu_reg(s
, a
->rd
);
4557 TCGv_i64 tcg_tmp
= read_cpu_reg(s
, a
->rn
, 1);
4558 unsigned int bitsize
= a
->sf
? 64 : 32;
4559 unsigned int ri
= a
->immr
;
4560 unsigned int si
= a
->imms
;
4561 unsigned int pos
, len
;
4563 tcg_rd
= cpu_reg(s
, a
->rd
);
4564 tcg_tmp
= read_cpu_reg(s
, a
->rn
, 1);
4567 /* Wd<s-r:0> = Wn<s:r> */
4568 tcg_gen_shri_i64(tcg_tmp
, tcg_tmp
, ri
);
4569 len
= (si
- ri
) + 1;
4572 /* Wd<32+s-r,32-r> = Wn<s:0> */
4574 pos
= (bitsize
- ri
) & (bitsize
- 1);
4577 tcg_gen_deposit_i64(tcg_rd
, tcg_rd
, tcg_tmp
, pos
, len
);
4579 tcg_gen_ext32u_i64(tcg_rd
, tcg_rd
);
4584 static bool trans_EXTR(DisasContext
*s
, arg_extract
*a
)
4586 TCGv_i64 tcg_rd
, tcg_rm
, tcg_rn
;
4588 tcg_rd
= cpu_reg(s
, a
->rd
);
4590 if (unlikely(a
->imm
== 0)) {
4592 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4593 * so an extract from bit 0 is a special case.
4596 tcg_gen_mov_i64(tcg_rd
, cpu_reg(s
, a
->rm
));
4598 tcg_gen_ext32u_i64(tcg_rd
, cpu_reg(s
, a
->rm
));
4601 tcg_rm
= cpu_reg(s
, a
->rm
);
4602 tcg_rn
= cpu_reg(s
, a
->rn
);
4605 /* Specialization to ROR happens in EXTRACT2. */
4606 tcg_gen_extract2_i64(tcg_rd
, tcg_rm
, tcg_rn
, a
->imm
);
4608 TCGv_i32 t0
= tcg_temp_new_i32();
4610 tcg_gen_extrl_i64_i32(t0
, tcg_rm
);
4611 if (a
->rm
== a
->rn
) {
4612 tcg_gen_rotri_i32(t0
, t0
, a
->imm
);
4614 TCGv_i32 t1
= tcg_temp_new_i32();
4615 tcg_gen_extrl_i64_i32(t1
, tcg_rn
);
4616 tcg_gen_extract2_i32(t0
, t0
, t1
, a
->imm
);
4618 tcg_gen_extu_i32_i64(tcg_rd
, t0
);
4625 * Cryptographic AES, SHA, SHA512
4628 TRANS_FEAT(AESE
, aa64_aes
, do_gvec_op3_ool
, a
, 0, gen_helper_crypto_aese
)
4629 TRANS_FEAT(AESD
, aa64_aes
, do_gvec_op3_ool
, a
, 0, gen_helper_crypto_aesd
)
4630 TRANS_FEAT(AESMC
, aa64_aes
, do_gvec_op2_ool
, a
, 0, gen_helper_crypto_aesmc
)
4631 TRANS_FEAT(AESIMC
, aa64_aes
, do_gvec_op2_ool
, a
, 0, gen_helper_crypto_aesimc
)
4633 TRANS_FEAT(SHA1C
, aa64_sha1
, do_gvec_op3_ool
, a
, 0, gen_helper_crypto_sha1c
)
4634 TRANS_FEAT(SHA1P
, aa64_sha1
, do_gvec_op3_ool
, a
, 0, gen_helper_crypto_sha1p
)
4635 TRANS_FEAT(SHA1M
, aa64_sha1
, do_gvec_op3_ool
, a
, 0, gen_helper_crypto_sha1m
)
4636 TRANS_FEAT(SHA1SU0
, aa64_sha1
, do_gvec_op3_ool
, a
, 0, gen_helper_crypto_sha1su0
)
4638 TRANS_FEAT(SHA256H
, aa64_sha256
, do_gvec_op3_ool
, a
, 0, gen_helper_crypto_sha256h
)
4639 TRANS_FEAT(SHA256H2
, aa64_sha256
, do_gvec_op3_ool
, a
, 0, gen_helper_crypto_sha256h2
)
4640 TRANS_FEAT(SHA256SU1
, aa64_sha256
, do_gvec_op3_ool
, a
, 0, gen_helper_crypto_sha256su1
)
4642 TRANS_FEAT(SHA1H
, aa64_sha1
, do_gvec_op2_ool
, a
, 0, gen_helper_crypto_sha1h
)
4643 TRANS_FEAT(SHA1SU1
, aa64_sha1
, do_gvec_op2_ool
, a
, 0, gen_helper_crypto_sha1su1
)
4644 TRANS_FEAT(SHA256SU0
, aa64_sha256
, do_gvec_op2_ool
, a
, 0, gen_helper_crypto_sha256su0
)
4646 TRANS_FEAT(SHA512H
, aa64_sha512
, do_gvec_op3_ool
, a
, 0, gen_helper_crypto_sha512h
)
4647 TRANS_FEAT(SHA512H2
, aa64_sha512
, do_gvec_op3_ool
, a
, 0, gen_helper_crypto_sha512h2
)
4648 TRANS_FEAT(SHA512SU1
, aa64_sha512
, do_gvec_op3_ool
, a
, 0, gen_helper_crypto_sha512su1
)
4649 TRANS_FEAT(RAX1
, aa64_sha3
, do_gvec_fn3
, a
, gen_gvec_rax1
)
4650 TRANS_FEAT(SM3PARTW1
, aa64_sm3
, do_gvec_op3_ool
, a
, 0, gen_helper_crypto_sm3partw1
)
4651 TRANS_FEAT(SM3PARTW2
, aa64_sm3
, do_gvec_op3_ool
, a
, 0, gen_helper_crypto_sm3partw2
)
4652 TRANS_FEAT(SM4EKEY
, aa64_sm4
, do_gvec_op3_ool
, a
, 0, gen_helper_crypto_sm4ekey
)
4654 TRANS_FEAT(SHA512SU0
, aa64_sha512
, do_gvec_op2_ool
, a
, 0, gen_helper_crypto_sha512su0
)
4655 TRANS_FEAT(SM4E
, aa64_sm4
, do_gvec_op3_ool
, a
, 0, gen_helper_crypto_sm4e
)
4657 TRANS_FEAT(EOR3
, aa64_sha3
, do_gvec_fn4
, a
, gen_gvec_eor3
)
4658 TRANS_FEAT(BCAX
, aa64_sha3
, do_gvec_fn4
, a
, gen_gvec_bcax
)
4660 static bool trans_SM3SS1(DisasContext
*s
, arg_SM3SS1
*a
)
4662 if (!dc_isar_feature(aa64_sm3
, s
)) {
4665 if (fp_access_check(s
)) {
4666 TCGv_i32 tcg_op1
= tcg_temp_new_i32();
4667 TCGv_i32 tcg_op2
= tcg_temp_new_i32();
4668 TCGv_i32 tcg_op3
= tcg_temp_new_i32();
4669 TCGv_i32 tcg_res
= tcg_temp_new_i32();
4672 read_vec_element_i32(s
, tcg_op1
, a
->rn
, 3, MO_32
);
4673 read_vec_element_i32(s
, tcg_op2
, a
->rm
, 3, MO_32
);
4674 read_vec_element_i32(s
, tcg_op3
, a
->ra
, 3, MO_32
);
4676 tcg_gen_rotri_i32(tcg_res
, tcg_op1
, 20);
4677 tcg_gen_add_i32(tcg_res
, tcg_res
, tcg_op2
);
4678 tcg_gen_add_i32(tcg_res
, tcg_res
, tcg_op3
);
4679 tcg_gen_rotri_i32(tcg_res
, tcg_res
, 25);
4681 /* Clear the whole register first, then store bits [127:96]. */
4682 vsz
= vec_full_reg_size(s
);
4683 dofs
= vec_full_reg_offset(s
, a
->rd
);
4684 tcg_gen_gvec_dup_imm(MO_64
, dofs
, vsz
, vsz
, 0);
4685 write_vec_element_i32(s
, tcg_res
, a
->rd
, 3, MO_32
);
4690 static bool do_crypto3i(DisasContext
*s
, arg_crypto3i
*a
, gen_helper_gvec_3
*fn
)
4692 if (fp_access_check(s
)) {
4693 gen_gvec_op3_ool(s
, true, a
->rd
, a
->rn
, a
->rm
, a
->imm
, fn
);
4697 TRANS_FEAT(SM3TT1A
, aa64_sm3
, do_crypto3i
, a
, gen_helper_crypto_sm3tt1a
)
4698 TRANS_FEAT(SM3TT1B
, aa64_sm3
, do_crypto3i
, a
, gen_helper_crypto_sm3tt1b
)
4699 TRANS_FEAT(SM3TT2A
, aa64_sm3
, do_crypto3i
, a
, gen_helper_crypto_sm3tt2a
)
4700 TRANS_FEAT(SM3TT2B
, aa64_sm3
, do_crypto3i
, a
, gen_helper_crypto_sm3tt2b
)
4702 static bool trans_XAR(DisasContext
*s
, arg_XAR
*a
)
4704 if (!dc_isar_feature(aa64_sha3
, s
)) {
4707 if (fp_access_check(s
)) {
4708 gen_gvec_xar(MO_64
, vec_full_reg_offset(s
, a
->rd
),
4709 vec_full_reg_offset(s
, a
->rn
),
4710 vec_full_reg_offset(s
, a
->rm
), a
->imm
, 16,
4711 vec_full_reg_size(s
));
4717 * Advanced SIMD copy
4720 static bool decode_esz_idx(int imm
, MemOp
*pesz
, unsigned *pidx
)
4722 unsigned esz
= ctz32(imm
);
4725 *pidx
= imm
>> (esz
+ 1);
4731 static bool trans_DUP_element_s(DisasContext
*s
, arg_DUP_element_s
*a
)
4736 if (!decode_esz_idx(a
->imm
, &esz
, &idx
)) {
4739 if (fp_access_check(s
)) {
4741 * This instruction just extracts the specified element and
4742 * zero-extends it into the bottom of the destination register.
4744 TCGv_i64 tmp
= tcg_temp_new_i64();
4745 read_vec_element(s
, tmp
, a
->rn
, idx
, esz
);
4746 write_fp_dreg(s
, a
->rd
, tmp
);
4751 static bool trans_DUP_element_v(DisasContext
*s
, arg_DUP_element_v
*a
)
4756 if (!decode_esz_idx(a
->imm
, &esz
, &idx
)) {
4759 if (esz
== MO_64
&& !a
->q
) {
4762 if (fp_access_check(s
)) {
4763 tcg_gen_gvec_dup_mem(esz
, vec_full_reg_offset(s
, a
->rd
),
4764 vec_reg_offset(s
, a
->rn
, idx
, esz
),
4765 a
->q
? 16 : 8, vec_full_reg_size(s
));
4770 static bool trans_DUP_general(DisasContext
*s
, arg_DUP_general
*a
)
4775 if (!decode_esz_idx(a
->imm
, &esz
, &idx
)) {
4778 if (esz
== MO_64
&& !a
->q
) {
4781 if (fp_access_check(s
)) {
4782 tcg_gen_gvec_dup_i64(esz
, vec_full_reg_offset(s
, a
->rd
),
4783 a
->q
? 16 : 8, vec_full_reg_size(s
),
4789 static bool do_smov_umov(DisasContext
*s
, arg_SMOV
*a
, MemOp is_signed
)
4794 if (!decode_esz_idx(a
->imm
, &esz
, &idx
)) {
4798 if (esz
== MO_64
|| (esz
== MO_32
&& !a
->q
)) {
4802 if (esz
== MO_64
? !a
->q
: a
->q
) {
4806 if (fp_access_check(s
)) {
4807 TCGv_i64 tcg_rd
= cpu_reg(s
, a
->rd
);
4808 read_vec_element(s
, tcg_rd
, a
->rn
, idx
, esz
| is_signed
);
4809 if (is_signed
&& !a
->q
) {
4810 tcg_gen_ext32u_i64(tcg_rd
, tcg_rd
);
4816 TRANS(SMOV
, do_smov_umov
, a
, MO_SIGN
)
4817 TRANS(UMOV
, do_smov_umov
, a
, 0)
4819 static bool trans_INS_general(DisasContext
*s
, arg_INS_general
*a
)
4824 if (!decode_esz_idx(a
->imm
, &esz
, &idx
)) {
4827 if (fp_access_check(s
)) {
4828 write_vec_element(s
, cpu_reg(s
, a
->rn
), a
->rd
, idx
, esz
);
4829 clear_vec_high(s
, true, a
->rd
);
4834 static bool trans_INS_element(DisasContext
*s
, arg_INS_element
*a
)
4837 unsigned didx
, sidx
;
4839 if (!decode_esz_idx(a
->di
, &esz
, &didx
)) {
4842 sidx
= a
->si
>> esz
;
4843 if (fp_access_check(s
)) {
4844 TCGv_i64 tmp
= tcg_temp_new_i64();
4846 read_vec_element(s
, tmp
, a
->rn
, sidx
, esz
);
4847 write_vec_element(s
, tmp
, a
->rd
, didx
, esz
);
4849 /* INS is considered a 128-bit write for SVE. */
4850 clear_vec_high(s
, true, a
->rd
);
4856 * Advanced SIMD three same
4859 typedef struct FPScalar
{
4860 void (*gen_h
)(TCGv_i32
, TCGv_i32
, TCGv_i32
, TCGv_ptr
);
4861 void (*gen_s
)(TCGv_i32
, TCGv_i32
, TCGv_i32
, TCGv_ptr
);
4862 void (*gen_d
)(TCGv_i64
, TCGv_i64
, TCGv_i64
, TCGv_ptr
);
4865 static bool do_fp3_scalar(DisasContext
*s
, arg_rrr_e
*a
, const FPScalar
*f
)
4869 if (fp_access_check(s
)) {
4870 TCGv_i64 t0
= read_fp_dreg(s
, a
->rn
);
4871 TCGv_i64 t1
= read_fp_dreg(s
, a
->rm
);
4872 f
->gen_d(t0
, t0
, t1
, fpstatus_ptr(FPST_FPCR
));
4873 write_fp_dreg(s
, a
->rd
, t0
);
4877 if (fp_access_check(s
)) {
4878 TCGv_i32 t0
= read_fp_sreg(s
, a
->rn
);
4879 TCGv_i32 t1
= read_fp_sreg(s
, a
->rm
);
4880 f
->gen_s(t0
, t0
, t1
, fpstatus_ptr(FPST_FPCR
));
4881 write_fp_sreg(s
, a
->rd
, t0
);
4885 if (!dc_isar_feature(aa64_fp16
, s
)) {
4888 if (fp_access_check(s
)) {
4889 TCGv_i32 t0
= read_fp_hreg(s
, a
->rn
);
4890 TCGv_i32 t1
= read_fp_hreg(s
, a
->rm
);
4891 f
->gen_h(t0
, t0
, t1
, fpstatus_ptr(FPST_FPCR_F16
));
4892 write_fp_sreg(s
, a
->rd
, t0
);
4901 static const FPScalar f_scalar_fadd
= {
4902 gen_helper_vfp_addh
,
4903 gen_helper_vfp_adds
,
4904 gen_helper_vfp_addd
,
4906 TRANS(FADD_s
, do_fp3_scalar
, a
, &f_scalar_fadd
)
4908 static const FPScalar f_scalar_fsub
= {
4909 gen_helper_vfp_subh
,
4910 gen_helper_vfp_subs
,
4911 gen_helper_vfp_subd
,
4913 TRANS(FSUB_s
, do_fp3_scalar
, a
, &f_scalar_fsub
)
4915 static const FPScalar f_scalar_fdiv
= {
4916 gen_helper_vfp_divh
,
4917 gen_helper_vfp_divs
,
4918 gen_helper_vfp_divd
,
4920 TRANS(FDIV_s
, do_fp3_scalar
, a
, &f_scalar_fdiv
)
4922 static const FPScalar f_scalar_fmul
= {
4923 gen_helper_vfp_mulh
,
4924 gen_helper_vfp_muls
,
4925 gen_helper_vfp_muld
,
4927 TRANS(FMUL_s
, do_fp3_scalar
, a
, &f_scalar_fmul
)
4929 static const FPScalar f_scalar_fmax
= {
4930 gen_helper_advsimd_maxh
,
4931 gen_helper_vfp_maxs
,
4932 gen_helper_vfp_maxd
,
4934 TRANS(FMAX_s
, do_fp3_scalar
, a
, &f_scalar_fmax
)
4936 static const FPScalar f_scalar_fmin
= {
4937 gen_helper_advsimd_minh
,
4938 gen_helper_vfp_mins
,
4939 gen_helper_vfp_mind
,
4941 TRANS(FMIN_s
, do_fp3_scalar
, a
, &f_scalar_fmin
)
4943 static const FPScalar f_scalar_fmaxnm
= {
4944 gen_helper_advsimd_maxnumh
,
4945 gen_helper_vfp_maxnums
,
4946 gen_helper_vfp_maxnumd
,
4948 TRANS(FMAXNM_s
, do_fp3_scalar
, a
, &f_scalar_fmaxnm
)
4950 static const FPScalar f_scalar_fminnm
= {
4951 gen_helper_advsimd_minnumh
,
4952 gen_helper_vfp_minnums
,
4953 gen_helper_vfp_minnumd
,
4955 TRANS(FMINNM_s
, do_fp3_scalar
, a
, &f_scalar_fminnm
)
4957 static const FPScalar f_scalar_fmulx
= {
4958 gen_helper_advsimd_mulxh
,
4959 gen_helper_vfp_mulxs
,
4960 gen_helper_vfp_mulxd
,
4962 TRANS(FMULX_s
, do_fp3_scalar
, a
, &f_scalar_fmulx
)
4964 static void gen_fnmul_h(TCGv_i32 d
, TCGv_i32 n
, TCGv_i32 m
, TCGv_ptr s
)
4966 gen_helper_vfp_mulh(d
, n
, m
, s
);
4970 static void gen_fnmul_s(TCGv_i32 d
, TCGv_i32 n
, TCGv_i32 m
, TCGv_ptr s
)
4972 gen_helper_vfp_muls(d
, n
, m
, s
);
4976 static void gen_fnmul_d(TCGv_i64 d
, TCGv_i64 n
, TCGv_i64 m
, TCGv_ptr s
)
4978 gen_helper_vfp_muld(d
, n
, m
, s
);
4982 static const FPScalar f_scalar_fnmul
= {
4987 TRANS(FNMUL_s
, do_fp3_scalar
, a
, &f_scalar_fnmul
)
4989 static const FPScalar f_scalar_fcmeq
= {
4990 gen_helper_advsimd_ceq_f16
,
4991 gen_helper_neon_ceq_f32
,
4992 gen_helper_neon_ceq_f64
,
4994 TRANS(FCMEQ_s
, do_fp3_scalar
, a
, &f_scalar_fcmeq
)
4996 static const FPScalar f_scalar_fcmge
= {
4997 gen_helper_advsimd_cge_f16
,
4998 gen_helper_neon_cge_f32
,
4999 gen_helper_neon_cge_f64
,
5001 TRANS(FCMGE_s
, do_fp3_scalar
, a
, &f_scalar_fcmge
)
5003 static const FPScalar f_scalar_fcmgt
= {
5004 gen_helper_advsimd_cgt_f16
,
5005 gen_helper_neon_cgt_f32
,
5006 gen_helper_neon_cgt_f64
,
5008 TRANS(FCMGT_s
, do_fp3_scalar
, a
, &f_scalar_fcmgt
)
5010 static const FPScalar f_scalar_facge
= {
5011 gen_helper_advsimd_acge_f16
,
5012 gen_helper_neon_acge_f32
,
5013 gen_helper_neon_acge_f64
,
5015 TRANS(FACGE_s
, do_fp3_scalar
, a
, &f_scalar_facge
)
5017 static const FPScalar f_scalar_facgt
= {
5018 gen_helper_advsimd_acgt_f16
,
5019 gen_helper_neon_acgt_f32
,
5020 gen_helper_neon_acgt_f64
,
5022 TRANS(FACGT_s
, do_fp3_scalar
, a
, &f_scalar_facgt
)
5024 static void gen_fabd_h(TCGv_i32 d
, TCGv_i32 n
, TCGv_i32 m
, TCGv_ptr s
)
5026 gen_helper_vfp_subh(d
, n
, m
, s
);
5030 static void gen_fabd_s(TCGv_i32 d
, TCGv_i32 n
, TCGv_i32 m
, TCGv_ptr s
)
5032 gen_helper_vfp_subs(d
, n
, m
, s
);
5036 static void gen_fabd_d(TCGv_i64 d
, TCGv_i64 n
, TCGv_i64 m
, TCGv_ptr s
)
5038 gen_helper_vfp_subd(d
, n
, m
, s
);
5042 static const FPScalar f_scalar_fabd
= {
5047 TRANS(FABD_s
, do_fp3_scalar
, a
, &f_scalar_fabd
)
5049 static const FPScalar f_scalar_frecps
= {
5050 gen_helper_recpsf_f16
,
5051 gen_helper_recpsf_f32
,
5052 gen_helper_recpsf_f64
,
5054 TRANS(FRECPS_s
, do_fp3_scalar
, a
, &f_scalar_frecps
)
5056 static const FPScalar f_scalar_frsqrts
= {
5057 gen_helper_rsqrtsf_f16
,
5058 gen_helper_rsqrtsf_f32
,
5059 gen_helper_rsqrtsf_f64
,
5061 TRANS(FRSQRTS_s
, do_fp3_scalar
, a
, &f_scalar_frsqrts
)
5063 static bool do_satacc_s(DisasContext
*s
, arg_rrr_e
*a
,
5064 MemOp sgn_n
, MemOp sgn_m
,
5065 void (*gen_bhs
)(TCGv_i64
, TCGv_i64
, TCGv_i64
, TCGv_i64
, MemOp
),
5066 void (*gen_d
)(TCGv_i64
, TCGv_i64
, TCGv_i64
, TCGv_i64
))
5068 TCGv_i64 t0
, t1
, t2
, qc
;
5071 if (!fp_access_check(s
)) {
5075 t0
= tcg_temp_new_i64();
5076 t1
= tcg_temp_new_i64();
5077 t2
= tcg_temp_new_i64();
5078 qc
= tcg_temp_new_i64();
5079 read_vec_element(s
, t1
, a
->rn
, 0, esz
| sgn_n
);
5080 read_vec_element(s
, t2
, a
->rm
, 0, esz
| sgn_m
);
5081 tcg_gen_ld_i64(qc
, tcg_env
, offsetof(CPUARMState
, vfp
.qc
));
5084 gen_d(t0
, qc
, t1
, t2
);
5086 gen_bhs(t0
, qc
, t1
, t2
, esz
);
5087 tcg_gen_ext_i64(t0
, t0
, esz
);
5090 write_fp_dreg(s
, a
->rd
, t0
);
5091 tcg_gen_st_i64(qc
, tcg_env
, offsetof(CPUARMState
, vfp
.qc
));
5095 TRANS(SQADD_s
, do_satacc_s
, a
, MO_SIGN
, MO_SIGN
, gen_sqadd_bhs
, gen_sqadd_d
)
5096 TRANS(SQSUB_s
, do_satacc_s
, a
, MO_SIGN
, MO_SIGN
, gen_sqsub_bhs
, gen_sqsub_d
)
5097 TRANS(UQADD_s
, do_satacc_s
, a
, 0, 0, gen_uqadd_bhs
, gen_uqadd_d
)
5098 TRANS(UQSUB_s
, do_satacc_s
, a
, 0, 0, gen_uqsub_bhs
, gen_uqsub_d
)
5099 TRANS(SUQADD_s
, do_satacc_s
, a
, MO_SIGN
, 0, gen_suqadd_bhs
, gen_suqadd_d
)
5100 TRANS(USQADD_s
, do_satacc_s
, a
, 0, MO_SIGN
, gen_usqadd_bhs
, gen_usqadd_d
)
5102 static bool do_int3_scalar_d(DisasContext
*s
, arg_rrr_e
*a
,
5103 void (*fn
)(TCGv_i64
, TCGv_i64
, TCGv_i64
))
5105 if (fp_access_check(s
)) {
5106 TCGv_i64 t0
= tcg_temp_new_i64();
5107 TCGv_i64 t1
= tcg_temp_new_i64();
5109 read_vec_element(s
, t0
, a
->rn
, 0, MO_64
);
5110 read_vec_element(s
, t1
, a
->rm
, 0, MO_64
);
5112 write_fp_dreg(s
, a
->rd
, t0
);
5117 TRANS(SSHL_s
, do_int3_scalar_d
, a
, gen_sshl_i64
)
5118 TRANS(USHL_s
, do_int3_scalar_d
, a
, gen_ushl_i64
)
5119 TRANS(SRSHL_s
, do_int3_scalar_d
, a
, gen_helper_neon_rshl_s64
)
5120 TRANS(URSHL_s
, do_int3_scalar_d
, a
, gen_helper_neon_rshl_u64
)
5121 TRANS(ADD_s
, do_int3_scalar_d
, a
, tcg_gen_add_i64
)
5122 TRANS(SUB_s
, do_int3_scalar_d
, a
, tcg_gen_sub_i64
)
5124 typedef struct ENVScalar2
{
5125 NeonGenTwoOpEnvFn
*gen_bhs
[3];
5126 NeonGenTwo64OpEnvFn
*gen_d
;
5129 static bool do_env_scalar2(DisasContext
*s
, arg_rrr_e
*a
, const ENVScalar2
*f
)
5131 if (!fp_access_check(s
)) {
5134 if (a
->esz
== MO_64
) {
5135 TCGv_i64 t0
= read_fp_dreg(s
, a
->rn
);
5136 TCGv_i64 t1
= read_fp_dreg(s
, a
->rm
);
5137 f
->gen_d(t0
, tcg_env
, t0
, t1
);
5138 write_fp_dreg(s
, a
->rd
, t0
);
5140 TCGv_i32 t0
= tcg_temp_new_i32();
5141 TCGv_i32 t1
= tcg_temp_new_i32();
5143 read_vec_element_i32(s
, t0
, a
->rn
, 0, a
->esz
);
5144 read_vec_element_i32(s
, t1
, a
->rm
, 0, a
->esz
);
5145 f
->gen_bhs
[a
->esz
](t0
, tcg_env
, t0
, t1
);
5146 write_fp_sreg(s
, a
->rd
, t0
);
5151 static const ENVScalar2 f_scalar_sqshl
= {
5152 { gen_helper_neon_qshl_s8
,
5153 gen_helper_neon_qshl_s16
,
5154 gen_helper_neon_qshl_s32
},
5155 gen_helper_neon_qshl_s64
,
5157 TRANS(SQSHL_s
, do_env_scalar2
, a
, &f_scalar_sqshl
)
5159 static const ENVScalar2 f_scalar_uqshl
= {
5160 { gen_helper_neon_qshl_u8
,
5161 gen_helper_neon_qshl_u16
,
5162 gen_helper_neon_qshl_u32
},
5163 gen_helper_neon_qshl_u64
,
5165 TRANS(UQSHL_s
, do_env_scalar2
, a
, &f_scalar_uqshl
)
5167 static const ENVScalar2 f_scalar_sqrshl
= {
5168 { gen_helper_neon_qrshl_s8
,
5169 gen_helper_neon_qrshl_s16
,
5170 gen_helper_neon_qrshl_s32
},
5171 gen_helper_neon_qrshl_s64
,
5173 TRANS(SQRSHL_s
, do_env_scalar2
, a
, &f_scalar_sqrshl
)
5175 static const ENVScalar2 f_scalar_uqrshl
= {
5176 { gen_helper_neon_qrshl_u8
,
5177 gen_helper_neon_qrshl_u16
,
5178 gen_helper_neon_qrshl_u32
},
5179 gen_helper_neon_qrshl_u64
,
5181 TRANS(UQRSHL_s
, do_env_scalar2
, a
, &f_scalar_uqrshl
)
5183 static bool do_cmop_d(DisasContext
*s
, arg_rrr_e
*a
, TCGCond cond
)
5185 if (fp_access_check(s
)) {
5186 TCGv_i64 t0
= read_fp_dreg(s
, a
->rn
);
5187 TCGv_i64 t1
= read_fp_dreg(s
, a
->rm
);
5188 tcg_gen_negsetcond_i64(cond
, t0
, t0
, t1
);
5189 write_fp_dreg(s
, a
->rd
, t0
);
5194 TRANS(CMGT_s
, do_cmop_d
, a
, TCG_COND_GT
)
5195 TRANS(CMHI_s
, do_cmop_d
, a
, TCG_COND_GTU
)
5196 TRANS(CMGE_s
, do_cmop_d
, a
, TCG_COND_GE
)
5197 TRANS(CMHS_s
, do_cmop_d
, a
, TCG_COND_GEU
)
5198 TRANS(CMEQ_s
, do_cmop_d
, a
, TCG_COND_EQ
)
5199 TRANS(CMTST_s
, do_cmop_d
, a
, TCG_COND_TSTNE
)
5201 static bool do_fp3_vector(DisasContext
*s
, arg_qrrr_e
*a
,
5202 gen_helper_gvec_3_ptr
* const fns
[3])
5215 if (!dc_isar_feature(aa64_fp16
, s
)) {
5222 if (fp_access_check(s
)) {
5223 gen_gvec_op3_fpst(s
, a
->q
, a
->rd
, a
->rn
, a
->rm
,
5224 esz
== MO_16
, 0, fns
[esz
- 1]);
5229 static gen_helper_gvec_3_ptr
* const f_vector_fadd
[3] = {
5230 gen_helper_gvec_fadd_h
,
5231 gen_helper_gvec_fadd_s
,
5232 gen_helper_gvec_fadd_d
,
5234 TRANS(FADD_v
, do_fp3_vector
, a
, f_vector_fadd
)
5236 static gen_helper_gvec_3_ptr
* const f_vector_fsub
[3] = {
5237 gen_helper_gvec_fsub_h
,
5238 gen_helper_gvec_fsub_s
,
5239 gen_helper_gvec_fsub_d
,
5241 TRANS(FSUB_v
, do_fp3_vector
, a
, f_vector_fsub
)
5243 static gen_helper_gvec_3_ptr
* const f_vector_fdiv
[3] = {
5244 gen_helper_gvec_fdiv_h
,
5245 gen_helper_gvec_fdiv_s
,
5246 gen_helper_gvec_fdiv_d
,
5248 TRANS(FDIV_v
, do_fp3_vector
, a
, f_vector_fdiv
)
5250 static gen_helper_gvec_3_ptr
* const f_vector_fmul
[3] = {
5251 gen_helper_gvec_fmul_h
,
5252 gen_helper_gvec_fmul_s
,
5253 gen_helper_gvec_fmul_d
,
5255 TRANS(FMUL_v
, do_fp3_vector
, a
, f_vector_fmul
)
5257 static gen_helper_gvec_3_ptr
* const f_vector_fmax
[3] = {
5258 gen_helper_gvec_fmax_h
,
5259 gen_helper_gvec_fmax_s
,
5260 gen_helper_gvec_fmax_d
,
5262 TRANS(FMAX_v
, do_fp3_vector
, a
, f_vector_fmax
)
5264 static gen_helper_gvec_3_ptr
* const f_vector_fmin
[3] = {
5265 gen_helper_gvec_fmin_h
,
5266 gen_helper_gvec_fmin_s
,
5267 gen_helper_gvec_fmin_d
,
5269 TRANS(FMIN_v
, do_fp3_vector
, a
, f_vector_fmin
)
5271 static gen_helper_gvec_3_ptr
* const f_vector_fmaxnm
[3] = {
5272 gen_helper_gvec_fmaxnum_h
,
5273 gen_helper_gvec_fmaxnum_s
,
5274 gen_helper_gvec_fmaxnum_d
,
5276 TRANS(FMAXNM_v
, do_fp3_vector
, a
, f_vector_fmaxnm
)
5278 static gen_helper_gvec_3_ptr
* const f_vector_fminnm
[3] = {
5279 gen_helper_gvec_fminnum_h
,
5280 gen_helper_gvec_fminnum_s
,
5281 gen_helper_gvec_fminnum_d
,
5283 TRANS(FMINNM_v
, do_fp3_vector
, a
, f_vector_fminnm
)
5285 static gen_helper_gvec_3_ptr
* const f_vector_fmulx
[3] = {
5286 gen_helper_gvec_fmulx_h
,
5287 gen_helper_gvec_fmulx_s
,
5288 gen_helper_gvec_fmulx_d
,
5290 TRANS(FMULX_v
, do_fp3_vector
, a
, f_vector_fmulx
)
5292 static gen_helper_gvec_3_ptr
* const f_vector_fmla
[3] = {
5293 gen_helper_gvec_vfma_h
,
5294 gen_helper_gvec_vfma_s
,
5295 gen_helper_gvec_vfma_d
,
5297 TRANS(FMLA_v
, do_fp3_vector
, a
, f_vector_fmla
)
5299 static gen_helper_gvec_3_ptr
* const f_vector_fmls
[3] = {
5300 gen_helper_gvec_vfms_h
,
5301 gen_helper_gvec_vfms_s
,
5302 gen_helper_gvec_vfms_d
,
5304 TRANS(FMLS_v
, do_fp3_vector
, a
, f_vector_fmls
)
5306 static gen_helper_gvec_3_ptr
* const f_vector_fcmeq
[3] = {
5307 gen_helper_gvec_fceq_h
,
5308 gen_helper_gvec_fceq_s
,
5309 gen_helper_gvec_fceq_d
,
5311 TRANS(FCMEQ_v
, do_fp3_vector
, a
, f_vector_fcmeq
)
5313 static gen_helper_gvec_3_ptr
* const f_vector_fcmge
[3] = {
5314 gen_helper_gvec_fcge_h
,
5315 gen_helper_gvec_fcge_s
,
5316 gen_helper_gvec_fcge_d
,
5318 TRANS(FCMGE_v
, do_fp3_vector
, a
, f_vector_fcmge
)
5320 static gen_helper_gvec_3_ptr
* const f_vector_fcmgt
[3] = {
5321 gen_helper_gvec_fcgt_h
,
5322 gen_helper_gvec_fcgt_s
,
5323 gen_helper_gvec_fcgt_d
,
5325 TRANS(FCMGT_v
, do_fp3_vector
, a
, f_vector_fcmgt
)
5327 static gen_helper_gvec_3_ptr
* const f_vector_facge
[3] = {
5328 gen_helper_gvec_facge_h
,
5329 gen_helper_gvec_facge_s
,
5330 gen_helper_gvec_facge_d
,
5332 TRANS(FACGE_v
, do_fp3_vector
, a
, f_vector_facge
)
5334 static gen_helper_gvec_3_ptr
* const f_vector_facgt
[3] = {
5335 gen_helper_gvec_facgt_h
,
5336 gen_helper_gvec_facgt_s
,
5337 gen_helper_gvec_facgt_d
,
5339 TRANS(FACGT_v
, do_fp3_vector
, a
, f_vector_facgt
)
5341 static gen_helper_gvec_3_ptr
* const f_vector_fabd
[3] = {
5342 gen_helper_gvec_fabd_h
,
5343 gen_helper_gvec_fabd_s
,
5344 gen_helper_gvec_fabd_d
,
5346 TRANS(FABD_v
, do_fp3_vector
, a
, f_vector_fabd
)
5348 static gen_helper_gvec_3_ptr
* const f_vector_frecps
[3] = {
5349 gen_helper_gvec_recps_h
,
5350 gen_helper_gvec_recps_s
,
5351 gen_helper_gvec_recps_d
,
5353 TRANS(FRECPS_v
, do_fp3_vector
, a
, f_vector_frecps
)
5355 static gen_helper_gvec_3_ptr
* const f_vector_frsqrts
[3] = {
5356 gen_helper_gvec_rsqrts_h
,
5357 gen_helper_gvec_rsqrts_s
,
5358 gen_helper_gvec_rsqrts_d
,
5360 TRANS(FRSQRTS_v
, do_fp3_vector
, a
, f_vector_frsqrts
)
5362 static gen_helper_gvec_3_ptr
* const f_vector_faddp
[3] = {
5363 gen_helper_gvec_faddp_h
,
5364 gen_helper_gvec_faddp_s
,
5365 gen_helper_gvec_faddp_d
,
5367 TRANS(FADDP_v
, do_fp3_vector
, a
, f_vector_faddp
)
5369 static gen_helper_gvec_3_ptr
* const f_vector_fmaxp
[3] = {
5370 gen_helper_gvec_fmaxp_h
,
5371 gen_helper_gvec_fmaxp_s
,
5372 gen_helper_gvec_fmaxp_d
,
5374 TRANS(FMAXP_v
, do_fp3_vector
, a
, f_vector_fmaxp
)
5376 static gen_helper_gvec_3_ptr
* const f_vector_fminp
[3] = {
5377 gen_helper_gvec_fminp_h
,
5378 gen_helper_gvec_fminp_s
,
5379 gen_helper_gvec_fminp_d
,
5381 TRANS(FMINP_v
, do_fp3_vector
, a
, f_vector_fminp
)
5383 static gen_helper_gvec_3_ptr
* const f_vector_fmaxnmp
[3] = {
5384 gen_helper_gvec_fmaxnump_h
,
5385 gen_helper_gvec_fmaxnump_s
,
5386 gen_helper_gvec_fmaxnump_d
,
5388 TRANS(FMAXNMP_v
, do_fp3_vector
, a
, f_vector_fmaxnmp
)
5390 static gen_helper_gvec_3_ptr
* const f_vector_fminnmp
[3] = {
5391 gen_helper_gvec_fminnump_h
,
5392 gen_helper_gvec_fminnump_s
,
5393 gen_helper_gvec_fminnump_d
,
5395 TRANS(FMINNMP_v
, do_fp3_vector
, a
, f_vector_fminnmp
)
5397 static bool do_fmlal(DisasContext
*s
, arg_qrrr_e
*a
, bool is_s
, bool is_2
)
5399 if (fp_access_check(s
)) {
5400 int data
= (is_2
<< 1) | is_s
;
5401 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s
, a
->rd
),
5402 vec_full_reg_offset(s
, a
->rn
),
5403 vec_full_reg_offset(s
, a
->rm
), tcg_env
,
5404 a
->q
? 16 : 8, vec_full_reg_size(s
),
5405 data
, gen_helper_gvec_fmlal_a64
);
5410 TRANS_FEAT(FMLAL_v
, aa64_fhm
, do_fmlal
, a
, false, false)
5411 TRANS_FEAT(FMLSL_v
, aa64_fhm
, do_fmlal
, a
, true, false)
5412 TRANS_FEAT(FMLAL2_v
, aa64_fhm
, do_fmlal
, a
, false, true)
5413 TRANS_FEAT(FMLSL2_v
, aa64_fhm
, do_fmlal
, a
, true, true)
5415 TRANS(ADDP_v
, do_gvec_fn3
, a
, gen_gvec_addp
)
5416 TRANS(SMAXP_v
, do_gvec_fn3_no64
, a
, gen_gvec_smaxp
)
5417 TRANS(SMINP_v
, do_gvec_fn3_no64
, a
, gen_gvec_sminp
)
5418 TRANS(UMAXP_v
, do_gvec_fn3_no64
, a
, gen_gvec_umaxp
)
5419 TRANS(UMINP_v
, do_gvec_fn3_no64
, a
, gen_gvec_uminp
)
5421 TRANS(AND_v
, do_gvec_fn3
, a
, tcg_gen_gvec_and
)
5422 TRANS(BIC_v
, do_gvec_fn3
, a
, tcg_gen_gvec_andc
)
5423 TRANS(ORR_v
, do_gvec_fn3
, a
, tcg_gen_gvec_or
)
5424 TRANS(ORN_v
, do_gvec_fn3
, a
, tcg_gen_gvec_orc
)
5425 TRANS(EOR_v
, do_gvec_fn3
, a
, tcg_gen_gvec_xor
)
5427 static bool do_bitsel(DisasContext
*s
, bool is_q
, int d
, int a
, int b
, int c
)
5429 if (fp_access_check(s
)) {
5430 gen_gvec_fn4(s
, is_q
, d
, a
, b
, c
, tcg_gen_gvec_bitsel
, 0);
5435 TRANS(BSL_v
, do_bitsel
, a
->q
, a
->rd
, a
->rd
, a
->rn
, a
->rm
)
5436 TRANS(BIT_v
, do_bitsel
, a
->q
, a
->rd
, a
->rm
, a
->rn
, a
->rd
)
5437 TRANS(BIF_v
, do_bitsel
, a
->q
, a
->rd
, a
->rm
, a
->rd
, a
->rn
)
5439 TRANS(SQADD_v
, do_gvec_fn3
, a
, gen_gvec_sqadd_qc
)
5440 TRANS(UQADD_v
, do_gvec_fn3
, a
, gen_gvec_uqadd_qc
)
5441 TRANS(SQSUB_v
, do_gvec_fn3
, a
, gen_gvec_sqsub_qc
)
5442 TRANS(UQSUB_v
, do_gvec_fn3
, a
, gen_gvec_uqsub_qc
)
5443 TRANS(SUQADD_v
, do_gvec_fn3
, a
, gen_gvec_suqadd_qc
)
5444 TRANS(USQADD_v
, do_gvec_fn3
, a
, gen_gvec_usqadd_qc
)
5446 TRANS(SSHL_v
, do_gvec_fn3
, a
, gen_gvec_sshl
)
5447 TRANS(USHL_v
, do_gvec_fn3
, a
, gen_gvec_ushl
)
5448 TRANS(SRSHL_v
, do_gvec_fn3
, a
, gen_gvec_srshl
)
5449 TRANS(URSHL_v
, do_gvec_fn3
, a
, gen_gvec_urshl
)
5450 TRANS(SQSHL_v
, do_gvec_fn3
, a
, gen_neon_sqshl
)
5451 TRANS(UQSHL_v
, do_gvec_fn3
, a
, gen_neon_uqshl
)
5452 TRANS(SQRSHL_v
, do_gvec_fn3
, a
, gen_neon_sqrshl
)
5453 TRANS(UQRSHL_v
, do_gvec_fn3
, a
, gen_neon_uqrshl
)
5455 TRANS(ADD_v
, do_gvec_fn3
, a
, tcg_gen_gvec_add
)
5456 TRANS(SUB_v
, do_gvec_fn3
, a
, tcg_gen_gvec_sub
)
5457 TRANS(SHADD_v
, do_gvec_fn3_no64
, a
, gen_gvec_shadd
)
5458 TRANS(UHADD_v
, do_gvec_fn3_no64
, a
, gen_gvec_uhadd
)
5459 TRANS(SHSUB_v
, do_gvec_fn3_no64
, a
, gen_gvec_shsub
)
5460 TRANS(UHSUB_v
, do_gvec_fn3_no64
, a
, gen_gvec_uhsub
)
5461 TRANS(SRHADD_v
, do_gvec_fn3_no64
, a
, gen_gvec_srhadd
)
5462 TRANS(URHADD_v
, do_gvec_fn3_no64
, a
, gen_gvec_urhadd
)
5463 TRANS(SMAX_v
, do_gvec_fn3_no64
, a
, tcg_gen_gvec_smax
)
5464 TRANS(UMAX_v
, do_gvec_fn3_no64
, a
, tcg_gen_gvec_umax
)
5465 TRANS(SMIN_v
, do_gvec_fn3_no64
, a
, tcg_gen_gvec_smin
)
5466 TRANS(UMIN_v
, do_gvec_fn3_no64
, a
, tcg_gen_gvec_umin
)
5468 static bool do_cmop_v(DisasContext
*s
, arg_qrrr_e
*a
, TCGCond cond
)
5470 if (a
->esz
== MO_64
&& !a
->q
) {
5473 if (fp_access_check(s
)) {
5474 tcg_gen_gvec_cmp(cond
, a
->esz
,
5475 vec_full_reg_offset(s
, a
->rd
),
5476 vec_full_reg_offset(s
, a
->rn
),
5477 vec_full_reg_offset(s
, a
->rm
),
5478 a
->q
? 16 : 8, vec_full_reg_size(s
));
5483 TRANS(CMGT_v
, do_cmop_v
, a
, TCG_COND_GT
)
5484 TRANS(CMHI_v
, do_cmop_v
, a
, TCG_COND_GTU
)
5485 TRANS(CMGE_v
, do_cmop_v
, a
, TCG_COND_GE
)
5486 TRANS(CMHS_v
, do_cmop_v
, a
, TCG_COND_GEU
)
5487 TRANS(CMEQ_v
, do_cmop_v
, a
, TCG_COND_EQ
)
5488 TRANS(CMTST_v
, do_gvec_fn3
, a
, gen_gvec_cmtst
)
5491 * Advanced SIMD scalar/vector x indexed element
5494 static bool do_fp3_scalar_idx(DisasContext
*s
, arg_rrx_e
*a
, const FPScalar
*f
)
5498 if (fp_access_check(s
)) {
5499 TCGv_i64 t0
= read_fp_dreg(s
, a
->rn
);
5500 TCGv_i64 t1
= tcg_temp_new_i64();
5502 read_vec_element(s
, t1
, a
->rm
, a
->idx
, MO_64
);
5503 f
->gen_d(t0
, t0
, t1
, fpstatus_ptr(FPST_FPCR
));
5504 write_fp_dreg(s
, a
->rd
, t0
);
5508 if (fp_access_check(s
)) {
5509 TCGv_i32 t0
= read_fp_sreg(s
, a
->rn
);
5510 TCGv_i32 t1
= tcg_temp_new_i32();
5512 read_vec_element_i32(s
, t1
, a
->rm
, a
->idx
, MO_32
);
5513 f
->gen_s(t0
, t0
, t1
, fpstatus_ptr(FPST_FPCR
));
5514 write_fp_sreg(s
, a
->rd
, t0
);
5518 if (!dc_isar_feature(aa64_fp16
, s
)) {
5521 if (fp_access_check(s
)) {
5522 TCGv_i32 t0
= read_fp_hreg(s
, a
->rn
);
5523 TCGv_i32 t1
= tcg_temp_new_i32();
5525 read_vec_element_i32(s
, t1
, a
->rm
, a
->idx
, MO_16
);
5526 f
->gen_h(t0
, t0
, t1
, fpstatus_ptr(FPST_FPCR_F16
));
5527 write_fp_sreg(s
, a
->rd
, t0
);
5531 g_assert_not_reached();
5536 TRANS(FMUL_si
, do_fp3_scalar_idx
, a
, &f_scalar_fmul
)
5537 TRANS(FMULX_si
, do_fp3_scalar_idx
, a
, &f_scalar_fmulx
)
5539 static bool do_fmla_scalar_idx(DisasContext
*s
, arg_rrx_e
*a
, bool neg
)
5543 if (fp_access_check(s
)) {
5544 TCGv_i64 t0
= read_fp_dreg(s
, a
->rd
);
5545 TCGv_i64 t1
= read_fp_dreg(s
, a
->rn
);
5546 TCGv_i64 t2
= tcg_temp_new_i64();
5548 read_vec_element(s
, t2
, a
->rm
, a
->idx
, MO_64
);
5550 gen_vfp_negd(t1
, t1
);
5552 gen_helper_vfp_muladdd(t0
, t1
, t2
, t0
, fpstatus_ptr(FPST_FPCR
));
5553 write_fp_dreg(s
, a
->rd
, t0
);
5557 if (fp_access_check(s
)) {
5558 TCGv_i32 t0
= read_fp_sreg(s
, a
->rd
);
5559 TCGv_i32 t1
= read_fp_sreg(s
, a
->rn
);
5560 TCGv_i32 t2
= tcg_temp_new_i32();
5562 read_vec_element_i32(s
, t2
, a
->rm
, a
->idx
, MO_32
);
5564 gen_vfp_negs(t1
, t1
);
5566 gen_helper_vfp_muladds(t0
, t1
, t2
, t0
, fpstatus_ptr(FPST_FPCR
));
5567 write_fp_sreg(s
, a
->rd
, t0
);
5571 if (!dc_isar_feature(aa64_fp16
, s
)) {
5574 if (fp_access_check(s
)) {
5575 TCGv_i32 t0
= read_fp_hreg(s
, a
->rd
);
5576 TCGv_i32 t1
= read_fp_hreg(s
, a
->rn
);
5577 TCGv_i32 t2
= tcg_temp_new_i32();
5579 read_vec_element_i32(s
, t2
, a
->rm
, a
->idx
, MO_16
);
5581 gen_vfp_negh(t1
, t1
);
5583 gen_helper_advsimd_muladdh(t0
, t1
, t2
, t0
,
5584 fpstatus_ptr(FPST_FPCR_F16
));
5585 write_fp_sreg(s
, a
->rd
, t0
);
5589 g_assert_not_reached();
5594 TRANS(FMLA_si
, do_fmla_scalar_idx
, a
, false)
5595 TRANS(FMLS_si
, do_fmla_scalar_idx
, a
, true)
5597 static bool do_fp3_vector_idx(DisasContext
*s
, arg_qrrx_e
*a
,
5598 gen_helper_gvec_3_ptr
* const fns
[3])
5611 if (!dc_isar_feature(aa64_fp16
, s
)) {
5616 g_assert_not_reached();
5618 if (fp_access_check(s
)) {
5619 gen_gvec_op3_fpst(s
, a
->q
, a
->rd
, a
->rn
, a
->rm
,
5620 esz
== MO_16
, a
->idx
, fns
[esz
- 1]);
5625 static gen_helper_gvec_3_ptr
* const f_vector_idx_fmul
[3] = {
5626 gen_helper_gvec_fmul_idx_h
,
5627 gen_helper_gvec_fmul_idx_s
,
5628 gen_helper_gvec_fmul_idx_d
,
5630 TRANS(FMUL_vi
, do_fp3_vector_idx
, a
, f_vector_idx_fmul
)
5632 static gen_helper_gvec_3_ptr
* const f_vector_idx_fmulx
[3] = {
5633 gen_helper_gvec_fmulx_idx_h
,
5634 gen_helper_gvec_fmulx_idx_s
,
5635 gen_helper_gvec_fmulx_idx_d
,
5637 TRANS(FMULX_vi
, do_fp3_vector_idx
, a
, f_vector_idx_fmulx
)
5639 static bool do_fmla_vector_idx(DisasContext
*s
, arg_qrrx_e
*a
, bool neg
)
5641 static gen_helper_gvec_4_ptr
* const fns
[3] = {
5642 gen_helper_gvec_fmla_idx_h
,
5643 gen_helper_gvec_fmla_idx_s
,
5644 gen_helper_gvec_fmla_idx_d
,
5657 if (!dc_isar_feature(aa64_fp16
, s
)) {
5662 g_assert_not_reached();
5664 if (fp_access_check(s
)) {
5665 gen_gvec_op4_fpst(s
, a
->q
, a
->rd
, a
->rn
, a
->rm
, a
->rd
,
5666 esz
== MO_16
, (a
->idx
<< 1) | neg
,
5672 TRANS(FMLA_vi
, do_fmla_vector_idx
, a
, false)
5673 TRANS(FMLS_vi
, do_fmla_vector_idx
, a
, true)
5675 static bool do_fmlal_idx(DisasContext
*s
, arg_qrrx_e
*a
, bool is_s
, bool is_2
)
5677 if (fp_access_check(s
)) {
5678 int data
= (a
->idx
<< 2) | (is_2
<< 1) | is_s
;
5679 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s
, a
->rd
),
5680 vec_full_reg_offset(s
, a
->rn
),
5681 vec_full_reg_offset(s
, a
->rm
), tcg_env
,
5682 a
->q
? 16 : 8, vec_full_reg_size(s
),
5683 data
, gen_helper_gvec_fmlal_idx_a64
);
5688 TRANS_FEAT(FMLAL_vi
, aa64_fhm
, do_fmlal_idx
, a
, false, false)
5689 TRANS_FEAT(FMLSL_vi
, aa64_fhm
, do_fmlal_idx
, a
, true, false)
5690 TRANS_FEAT(FMLAL2_vi
, aa64_fhm
, do_fmlal_idx
, a
, false, true)
5691 TRANS_FEAT(FMLSL2_vi
, aa64_fhm
, do_fmlal_idx
, a
, true, true)
5694 * Advanced SIMD scalar pairwise
5697 static bool do_fp3_scalar_pair(DisasContext
*s
, arg_rr_e
*a
, const FPScalar
*f
)
5701 if (fp_access_check(s
)) {
5702 TCGv_i64 t0
= tcg_temp_new_i64();
5703 TCGv_i64 t1
= tcg_temp_new_i64();
5705 read_vec_element(s
, t0
, a
->rn
, 0, MO_64
);
5706 read_vec_element(s
, t1
, a
->rn
, 1, MO_64
);
5707 f
->gen_d(t0
, t0
, t1
, fpstatus_ptr(FPST_FPCR
));
5708 write_fp_dreg(s
, a
->rd
, t0
);
5712 if (fp_access_check(s
)) {
5713 TCGv_i32 t0
= tcg_temp_new_i32();
5714 TCGv_i32 t1
= tcg_temp_new_i32();
5716 read_vec_element_i32(s
, t0
, a
->rn
, 0, MO_32
);
5717 read_vec_element_i32(s
, t1
, a
->rn
, 1, MO_32
);
5718 f
->gen_s(t0
, t0
, t1
, fpstatus_ptr(FPST_FPCR
));
5719 write_fp_sreg(s
, a
->rd
, t0
);
5723 if (!dc_isar_feature(aa64_fp16
, s
)) {
5726 if (fp_access_check(s
)) {
5727 TCGv_i32 t0
= tcg_temp_new_i32();
5728 TCGv_i32 t1
= tcg_temp_new_i32();
5730 read_vec_element_i32(s
, t0
, a
->rn
, 0, MO_16
);
5731 read_vec_element_i32(s
, t1
, a
->rn
, 1, MO_16
);
5732 f
->gen_h(t0
, t0
, t1
, fpstatus_ptr(FPST_FPCR_F16
));
5733 write_fp_sreg(s
, a
->rd
, t0
);
5737 g_assert_not_reached();
5742 TRANS(FADDP_s
, do_fp3_scalar_pair
, a
, &f_scalar_fadd
)
5743 TRANS(FMAXP_s
, do_fp3_scalar_pair
, a
, &f_scalar_fmax
)
5744 TRANS(FMINP_s
, do_fp3_scalar_pair
, a
, &f_scalar_fmin
)
5745 TRANS(FMAXNMP_s
, do_fp3_scalar_pair
, a
, &f_scalar_fmaxnm
)
5746 TRANS(FMINNMP_s
, do_fp3_scalar_pair
, a
, &f_scalar_fminnm
)
5748 static bool trans_ADDP_s(DisasContext
*s
, arg_rr_e
*a
)
5750 if (fp_access_check(s
)) {
5751 TCGv_i64 t0
= tcg_temp_new_i64();
5752 TCGv_i64 t1
= tcg_temp_new_i64();
5754 read_vec_element(s
, t0
, a
->rn
, 0, MO_64
);
5755 read_vec_element(s
, t1
, a
->rn
, 1, MO_64
);
5756 tcg_gen_add_i64(t0
, t0
, t1
);
5757 write_fp_dreg(s
, a
->rd
, t0
);
5762 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
5763 * Note that it is the caller's responsibility to ensure that the
5764 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
5765 * mandated semantics for out of range shifts.
5767 static void shift_reg(TCGv_i64 dst
, TCGv_i64 src
, int sf
,
5768 enum a64_shift_type shift_type
, TCGv_i64 shift_amount
)
5770 switch (shift_type
) {
5771 case A64_SHIFT_TYPE_LSL
:
5772 tcg_gen_shl_i64(dst
, src
, shift_amount
);
5774 case A64_SHIFT_TYPE_LSR
:
5775 tcg_gen_shr_i64(dst
, src
, shift_amount
);
5777 case A64_SHIFT_TYPE_ASR
:
5779 tcg_gen_ext32s_i64(dst
, src
);
5781 tcg_gen_sar_i64(dst
, sf
? src
: dst
, shift_amount
);
5783 case A64_SHIFT_TYPE_ROR
:
5785 tcg_gen_rotr_i64(dst
, src
, shift_amount
);
5788 t0
= tcg_temp_new_i32();
5789 t1
= tcg_temp_new_i32();
5790 tcg_gen_extrl_i64_i32(t0
, src
);
5791 tcg_gen_extrl_i64_i32(t1
, shift_amount
);
5792 tcg_gen_rotr_i32(t0
, t0
, t1
);
5793 tcg_gen_extu_i32_i64(dst
, t0
);
5797 assert(FALSE
); /* all shift types should be handled */
5801 if (!sf
) { /* zero extend final result */
5802 tcg_gen_ext32u_i64(dst
, dst
);
5806 /* Shift a TCGv src by immediate, put result in dst.
5807 * The shift amount must be in range (this should always be true as the
5808 * relevant instructions will UNDEF on bad shift immediates).
5810 static void shift_reg_imm(TCGv_i64 dst
, TCGv_i64 src
, int sf
,
5811 enum a64_shift_type shift_type
, unsigned int shift_i
)
5813 assert(shift_i
< (sf
? 64 : 32));
5816 tcg_gen_mov_i64(dst
, src
);
5818 shift_reg(dst
, src
, sf
, shift_type
, tcg_constant_i64(shift_i
));
5822 /* Logical (shifted register)
5823 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
5824 * +----+-----+-----------+-------+---+------+--------+------+------+
5825 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
5826 * +----+-----+-----------+-------+---+------+--------+------+------+
5828 static void disas_logic_reg(DisasContext
*s
, uint32_t insn
)
5830 TCGv_i64 tcg_rd
, tcg_rn
, tcg_rm
;
5831 unsigned int sf
, opc
, shift_type
, invert
, rm
, shift_amount
, rn
, rd
;
5833 sf
= extract32(insn
, 31, 1);
5834 opc
= extract32(insn
, 29, 2);
5835 shift_type
= extract32(insn
, 22, 2);
5836 invert
= extract32(insn
, 21, 1);
5837 rm
= extract32(insn
, 16, 5);
5838 shift_amount
= extract32(insn
, 10, 6);
5839 rn
= extract32(insn
, 5, 5);
5840 rd
= extract32(insn
, 0, 5);
5842 if (!sf
&& (shift_amount
& (1 << 5))) {
5843 unallocated_encoding(s
);
5847 tcg_rd
= cpu_reg(s
, rd
);
5849 if (opc
== 1 && shift_amount
== 0 && shift_type
== 0 && rn
== 31) {
5850 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
5851 * register-register MOV and MVN, so it is worth special casing.
5853 tcg_rm
= cpu_reg(s
, rm
);
5855 tcg_gen_not_i64(tcg_rd
, tcg_rm
);
5857 tcg_gen_ext32u_i64(tcg_rd
, tcg_rd
);
5861 tcg_gen_mov_i64(tcg_rd
, tcg_rm
);
5863 tcg_gen_ext32u_i64(tcg_rd
, tcg_rm
);
5869 tcg_rm
= read_cpu_reg(s
, rm
, sf
);
5872 shift_reg_imm(tcg_rm
, tcg_rm
, sf
, shift_type
, shift_amount
);
5875 tcg_rn
= cpu_reg(s
, rn
);
5877 switch (opc
| (invert
<< 2)) {
5880 tcg_gen_and_i64(tcg_rd
, tcg_rn
, tcg_rm
);
5883 tcg_gen_or_i64(tcg_rd
, tcg_rn
, tcg_rm
);
5886 tcg_gen_xor_i64(tcg_rd
, tcg_rn
, tcg_rm
);
5890 tcg_gen_andc_i64(tcg_rd
, tcg_rn
, tcg_rm
);
5893 tcg_gen_orc_i64(tcg_rd
, tcg_rn
, tcg_rm
);
5896 tcg_gen_eqv_i64(tcg_rd
, tcg_rn
, tcg_rm
);
5904 tcg_gen_ext32u_i64(tcg_rd
, tcg_rd
);
5908 gen_logic_CC(sf
, tcg_rd
);
5913 * Add/subtract (extended register)
5915 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
5916 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
5917 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
5918 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
5920 * sf: 0 -> 32bit, 1 -> 64bit
5921 * op: 0 -> add , 1 -> sub
5924 * option: extension type (see DecodeRegExtend)
5925 * imm3: optional shift to Rm
5927 * Rd = Rn + LSL(extend(Rm), amount)
5929 static void disas_add_sub_ext_reg(DisasContext
*s
, uint32_t insn
)
5931 int rd
= extract32(insn
, 0, 5);
5932 int rn
= extract32(insn
, 5, 5);
5933 int imm3
= extract32(insn
, 10, 3);
5934 int option
= extract32(insn
, 13, 3);
5935 int rm
= extract32(insn
, 16, 5);
5936 int opt
= extract32(insn
, 22, 2);
5937 bool setflags
= extract32(insn
, 29, 1);
5938 bool sub_op
= extract32(insn
, 30, 1);
5939 bool sf
= extract32(insn
, 31, 1);
5941 TCGv_i64 tcg_rm
, tcg_rn
; /* temps */
5943 TCGv_i64 tcg_result
;
5945 if (imm3
> 4 || opt
!= 0) {
5946 unallocated_encoding(s
);
5950 /* non-flag setting ops may use SP */
5952 tcg_rd
= cpu_reg_sp(s
, rd
);
5954 tcg_rd
= cpu_reg(s
, rd
);
5956 tcg_rn
= read_cpu_reg_sp(s
, rn
, sf
);
5958 tcg_rm
= read_cpu_reg(s
, rm
, sf
);
5959 ext_and_shift_reg(tcg_rm
, tcg_rm
, option
, imm3
);
5961 tcg_result
= tcg_temp_new_i64();
5965 tcg_gen_sub_i64(tcg_result
, tcg_rn
, tcg_rm
);
5967 tcg_gen_add_i64(tcg_result
, tcg_rn
, tcg_rm
);
5971 gen_sub_CC(sf
, tcg_result
, tcg_rn
, tcg_rm
);
5973 gen_add_CC(sf
, tcg_result
, tcg_rn
, tcg_rm
);
5978 tcg_gen_mov_i64(tcg_rd
, tcg_result
);
5980 tcg_gen_ext32u_i64(tcg_rd
, tcg_result
);
5985 * Add/subtract (shifted register)
5987 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
5988 * +--+--+--+-----------+-----+--+-------+---------+------+------+
5989 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
5990 * +--+--+--+-----------+-----+--+-------+---------+------+------+
5992 * sf: 0 -> 32bit, 1 -> 64bit
5993 * op: 0 -> add , 1 -> sub
5995 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
5996 * imm6: Shift amount to apply to Rm before the add/sub
5998 static void disas_add_sub_reg(DisasContext
*s
, uint32_t insn
)
6000 int rd
= extract32(insn
, 0, 5);
6001 int rn
= extract32(insn
, 5, 5);
6002 int imm6
= extract32(insn
, 10, 6);
6003 int rm
= extract32(insn
, 16, 5);
6004 int shift_type
= extract32(insn
, 22, 2);
6005 bool setflags
= extract32(insn
, 29, 1);
6006 bool sub_op
= extract32(insn
, 30, 1);
6007 bool sf
= extract32(insn
, 31, 1);
6009 TCGv_i64 tcg_rd
= cpu_reg(s
, rd
);
6010 TCGv_i64 tcg_rn
, tcg_rm
;
6011 TCGv_i64 tcg_result
;
6013 if ((shift_type
== 3) || (!sf
&& (imm6
> 31))) {
6014 unallocated_encoding(s
);
6018 tcg_rn
= read_cpu_reg(s
, rn
, sf
);
6019 tcg_rm
= read_cpu_reg(s
, rm
, sf
);
6021 shift_reg_imm(tcg_rm
, tcg_rm
, sf
, shift_type
, imm6
);
6023 tcg_result
= tcg_temp_new_i64();
6027 tcg_gen_sub_i64(tcg_result
, tcg_rn
, tcg_rm
);
6029 tcg_gen_add_i64(tcg_result
, tcg_rn
, tcg_rm
);
6033 gen_sub_CC(sf
, tcg_result
, tcg_rn
, tcg_rm
);
6035 gen_add_CC(sf
, tcg_result
, tcg_rn
, tcg_rm
);
6040 tcg_gen_mov_i64(tcg_rd
, tcg_result
);
6042 tcg_gen_ext32u_i64(tcg_rd
, tcg_result
);
6046 /* Data-processing (3 source)
6048 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
6049 * +--+------+-----------+------+------+----+------+------+------+
6050 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
6051 * +--+------+-----------+------+------+----+------+------+------+
6053 static void disas_data_proc_3src(DisasContext
*s
, uint32_t insn
)
6055 int rd
= extract32(insn
, 0, 5);
6056 int rn
= extract32(insn
, 5, 5);
6057 int ra
= extract32(insn
, 10, 5);
6058 int rm
= extract32(insn
, 16, 5);
6059 int op_id
= (extract32(insn
, 29, 3) << 4) |
6060 (extract32(insn
, 21, 3) << 1) |
6061 extract32(insn
, 15, 1);
6062 bool sf
= extract32(insn
, 31, 1);
6063 bool is_sub
= extract32(op_id
, 0, 1);
6064 bool is_high
= extract32(op_id
, 2, 1);
6065 bool is_signed
= false;
6070 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
6072 case 0x42: /* SMADDL */
6073 case 0x43: /* SMSUBL */
6074 case 0x44: /* SMULH */
6077 case 0x0: /* MADD (32bit) */
6078 case 0x1: /* MSUB (32bit) */
6079 case 0x40: /* MADD (64bit) */
6080 case 0x41: /* MSUB (64bit) */
6081 case 0x4a: /* UMADDL */
6082 case 0x4b: /* UMSUBL */
6083 case 0x4c: /* UMULH */
6086 unallocated_encoding(s
);
6091 TCGv_i64 low_bits
= tcg_temp_new_i64(); /* low bits discarded */
6092 TCGv_i64 tcg_rd
= cpu_reg(s
, rd
);
6093 TCGv_i64 tcg_rn
= cpu_reg(s
, rn
);
6094 TCGv_i64 tcg_rm
= cpu_reg(s
, rm
);
6097 tcg_gen_muls2_i64(low_bits
, tcg_rd
, tcg_rn
, tcg_rm
);
6099 tcg_gen_mulu2_i64(low_bits
, tcg_rd
, tcg_rn
, tcg_rm
);
6104 tcg_op1
= tcg_temp_new_i64();
6105 tcg_op2
= tcg_temp_new_i64();
6106 tcg_tmp
= tcg_temp_new_i64();
6109 tcg_gen_mov_i64(tcg_op1
, cpu_reg(s
, rn
));
6110 tcg_gen_mov_i64(tcg_op2
, cpu_reg(s
, rm
));
6113 tcg_gen_ext32s_i64(tcg_op1
, cpu_reg(s
, rn
));
6114 tcg_gen_ext32s_i64(tcg_op2
, cpu_reg(s
, rm
));
6116 tcg_gen_ext32u_i64(tcg_op1
, cpu_reg(s
, rn
));
6117 tcg_gen_ext32u_i64(tcg_op2
, cpu_reg(s
, rm
));
6121 if (ra
== 31 && !is_sub
) {
6122 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
6123 tcg_gen_mul_i64(cpu_reg(s
, rd
), tcg_op1
, tcg_op2
);
6125 tcg_gen_mul_i64(tcg_tmp
, tcg_op1
, tcg_op2
);
6127 tcg_gen_sub_i64(cpu_reg(s
, rd
), cpu_reg(s
, ra
), tcg_tmp
);
6129 tcg_gen_add_i64(cpu_reg(s
, rd
), cpu_reg(s
, ra
), tcg_tmp
);
6134 tcg_gen_ext32u_i64(cpu_reg(s
, rd
), cpu_reg(s
, rd
));
6138 /* Add/subtract (with carry)
6139 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
6140 * +--+--+--+------------------------+------+-------------+------+-----+
6141 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd |
6142 * +--+--+--+------------------------+------+-------------+------+-----+
6145 static void disas_adc_sbc(DisasContext
*s
, uint32_t insn
)
6147 unsigned int sf
, op
, setflags
, rm
, rn
, rd
;
6148 TCGv_i64 tcg_y
, tcg_rn
, tcg_rd
;
6150 sf
= extract32(insn
, 31, 1);
6151 op
= extract32(insn
, 30, 1);
6152 setflags
= extract32(insn
, 29, 1);
6153 rm
= extract32(insn
, 16, 5);
6154 rn
= extract32(insn
, 5, 5);
6155 rd
= extract32(insn
, 0, 5);
6157 tcg_rd
= cpu_reg(s
, rd
);
6158 tcg_rn
= cpu_reg(s
, rn
);
6161 tcg_y
= tcg_temp_new_i64();
6162 tcg_gen_not_i64(tcg_y
, cpu_reg(s
, rm
));
6164 tcg_y
= cpu_reg(s
, rm
);
6168 gen_adc_CC(sf
, tcg_rd
, tcg_rn
, tcg_y
);
6170 gen_adc(sf
, tcg_rd
, tcg_rn
, tcg_y
);
6175 * Rotate right into flags
6176 * 31 30 29 21 15 10 5 4 0
6177 * +--+--+--+-----------------+--------+-----------+------+--+------+
6178 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask |
6179 * +--+--+--+-----------------+--------+-----------+------+--+------+
6181 static void disas_rotate_right_into_flags(DisasContext
*s
, uint32_t insn
)
6183 int mask
= extract32(insn
, 0, 4);
6184 int o2
= extract32(insn
, 4, 1);
6185 int rn
= extract32(insn
, 5, 5);
6186 int imm6
= extract32(insn
, 15, 6);
6187 int sf_op_s
= extract32(insn
, 29, 3);
6191 if (sf_op_s
!= 5 || o2
!= 0 || !dc_isar_feature(aa64_condm_4
, s
)) {
6192 unallocated_encoding(s
);
6196 tcg_rn
= read_cpu_reg(s
, rn
, 1);
6197 tcg_gen_rotri_i64(tcg_rn
, tcg_rn
, imm6
);
6199 nzcv
= tcg_temp_new_i32();
6200 tcg_gen_extrl_i64_i32(nzcv
, tcg_rn
);
6202 if (mask
& 8) { /* N */
6203 tcg_gen_shli_i32(cpu_NF
, nzcv
, 31 - 3);
6205 if (mask
& 4) { /* Z */
6206 tcg_gen_not_i32(cpu_ZF
, nzcv
);
6207 tcg_gen_andi_i32(cpu_ZF
, cpu_ZF
, 4);
6209 if (mask
& 2) { /* C */
6210 tcg_gen_extract_i32(cpu_CF
, nzcv
, 1, 1);
6212 if (mask
& 1) { /* V */
6213 tcg_gen_shli_i32(cpu_VF
, nzcv
, 31 - 0);
6218 * Evaluate into flags
6219 * 31 30 29 21 15 14 10 5 4 0
6220 * +--+--+--+-----------------+---------+----+---------+------+--+------+
6221 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask |
6222 * +--+--+--+-----------------+---------+----+---------+------+--+------+
6224 static void disas_evaluate_into_flags(DisasContext
*s
, uint32_t insn
)
6226 int o3_mask
= extract32(insn
, 0, 5);
6227 int rn
= extract32(insn
, 5, 5);
6228 int o2
= extract32(insn
, 15, 6);
6229 int sz
= extract32(insn
, 14, 1);
6230 int sf_op_s
= extract32(insn
, 29, 3);
6234 if (sf_op_s
!= 1 || o2
!= 0 || o3_mask
!= 0xd ||
6235 !dc_isar_feature(aa64_condm_4
, s
)) {
6236 unallocated_encoding(s
);
6239 shift
= sz
? 16 : 24; /* SETF16 or SETF8 */
6241 tmp
= tcg_temp_new_i32();
6242 tcg_gen_extrl_i64_i32(tmp
, cpu_reg(s
, rn
));
6243 tcg_gen_shli_i32(cpu_NF
, tmp
, shift
);
6244 tcg_gen_shli_i32(cpu_VF
, tmp
, shift
- 1);
6245 tcg_gen_mov_i32(cpu_ZF
, cpu_NF
);
6246 tcg_gen_xor_i32(cpu_VF
, cpu_VF
, cpu_NF
);
6249 /* Conditional compare (immediate / register)
6250 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
6251 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
6252 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
6253 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
6256 static void disas_cc(DisasContext
*s
, uint32_t insn
)
6258 unsigned int sf
, op
, y
, cond
, rn
, nzcv
, is_imm
;
6259 TCGv_i32 tcg_t0
, tcg_t1
, tcg_t2
;
6260 TCGv_i64 tcg_tmp
, tcg_y
, tcg_rn
;
6263 if (!extract32(insn
, 29, 1)) {
6264 unallocated_encoding(s
);
6267 if (insn
& (1 << 10 | 1 << 4)) {
6268 unallocated_encoding(s
);
6271 sf
= extract32(insn
, 31, 1);
6272 op
= extract32(insn
, 30, 1);
6273 is_imm
= extract32(insn
, 11, 1);
6274 y
= extract32(insn
, 16, 5); /* y = rm (reg) or imm5 (imm) */
6275 cond
= extract32(insn
, 12, 4);
6276 rn
= extract32(insn
, 5, 5);
6277 nzcv
= extract32(insn
, 0, 4);
6279 /* Set T0 = !COND. */
6280 tcg_t0
= tcg_temp_new_i32();
6281 arm_test_cc(&c
, cond
);
6282 tcg_gen_setcondi_i32(tcg_invert_cond(c
.cond
), tcg_t0
, c
.value
, 0);
6284 /* Load the arguments for the new comparison. */
6286 tcg_y
= tcg_temp_new_i64();
6287 tcg_gen_movi_i64(tcg_y
, y
);
6289 tcg_y
= cpu_reg(s
, y
);
6291 tcg_rn
= cpu_reg(s
, rn
);
6293 /* Set the flags for the new comparison. */
6294 tcg_tmp
= tcg_temp_new_i64();
6296 gen_sub_CC(sf
, tcg_tmp
, tcg_rn
, tcg_y
);
6298 gen_add_CC(sf
, tcg_tmp
, tcg_rn
, tcg_y
);
6301 /* If COND was false, force the flags to #nzcv. Compute two masks
6302 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
6303 * For tcg hosts that support ANDC, we can make do with just T1.
6304 * In either case, allow the tcg optimizer to delete any unused mask.
6306 tcg_t1
= tcg_temp_new_i32();
6307 tcg_t2
= tcg_temp_new_i32();
6308 tcg_gen_neg_i32(tcg_t1
, tcg_t0
);
6309 tcg_gen_subi_i32(tcg_t2
, tcg_t0
, 1);
6311 if (nzcv
& 8) { /* N */
6312 tcg_gen_or_i32(cpu_NF
, cpu_NF
, tcg_t1
);
6314 if (TCG_TARGET_HAS_andc_i32
) {
6315 tcg_gen_andc_i32(cpu_NF
, cpu_NF
, tcg_t1
);
6317 tcg_gen_and_i32(cpu_NF
, cpu_NF
, tcg_t2
);
6320 if (nzcv
& 4) { /* Z */
6321 if (TCG_TARGET_HAS_andc_i32
) {
6322 tcg_gen_andc_i32(cpu_ZF
, cpu_ZF
, tcg_t1
);
6324 tcg_gen_and_i32(cpu_ZF
, cpu_ZF
, tcg_t2
);
6327 tcg_gen_or_i32(cpu_ZF
, cpu_ZF
, tcg_t0
);
6329 if (nzcv
& 2) { /* C */
6330 tcg_gen_or_i32(cpu_CF
, cpu_CF
, tcg_t0
);
6332 if (TCG_TARGET_HAS_andc_i32
) {
6333 tcg_gen_andc_i32(cpu_CF
, cpu_CF
, tcg_t1
);
6335 tcg_gen_and_i32(cpu_CF
, cpu_CF
, tcg_t2
);
6338 if (nzcv
& 1) { /* V */
6339 tcg_gen_or_i32(cpu_VF
, cpu_VF
, tcg_t1
);
6341 if (TCG_TARGET_HAS_andc_i32
) {
6342 tcg_gen_andc_i32(cpu_VF
, cpu_VF
, tcg_t1
);
6344 tcg_gen_and_i32(cpu_VF
, cpu_VF
, tcg_t2
);
6349 /* Conditional select
6350 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
6351 * +----+----+---+-----------------+------+------+-----+------+------+
6352 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
6353 * +----+----+---+-----------------+------+------+-----+------+------+
6355 static void disas_cond_select(DisasContext
*s
, uint32_t insn
)
6357 unsigned int sf
, else_inv
, rm
, cond
, else_inc
, rn
, rd
;
6358 TCGv_i64 tcg_rd
, zero
;
6361 if (extract32(insn
, 29, 1) || extract32(insn
, 11, 1)) {
6362 /* S == 1 or op2<1> == 1 */
6363 unallocated_encoding(s
);
6366 sf
= extract32(insn
, 31, 1);
6367 else_inv
= extract32(insn
, 30, 1);
6368 rm
= extract32(insn
, 16, 5);
6369 cond
= extract32(insn
, 12, 4);
6370 else_inc
= extract32(insn
, 10, 1);
6371 rn
= extract32(insn
, 5, 5);
6372 rd
= extract32(insn
, 0, 5);
6374 tcg_rd
= cpu_reg(s
, rd
);
6376 a64_test_cc(&c
, cond
);
6377 zero
= tcg_constant_i64(0);
6379 if (rn
== 31 && rm
== 31 && (else_inc
^ else_inv
)) {
6382 tcg_gen_negsetcond_i64(tcg_invert_cond(c
.cond
),
6383 tcg_rd
, c
.value
, zero
);
6385 tcg_gen_setcond_i64(tcg_invert_cond(c
.cond
),
6386 tcg_rd
, c
.value
, zero
);
6389 TCGv_i64 t_true
= cpu_reg(s
, rn
);
6390 TCGv_i64 t_false
= read_cpu_reg(s
, rm
, 1);
6391 if (else_inv
&& else_inc
) {
6392 tcg_gen_neg_i64(t_false
, t_false
);
6393 } else if (else_inv
) {
6394 tcg_gen_not_i64(t_false
, t_false
);
6395 } else if (else_inc
) {
6396 tcg_gen_addi_i64(t_false
, t_false
, 1);
6398 tcg_gen_movcond_i64(c
.cond
, tcg_rd
, c
.value
, zero
, t_true
, t_false
);
6402 tcg_gen_ext32u_i64(tcg_rd
, tcg_rd
);
6406 static void handle_clz(DisasContext
*s
, unsigned int sf
,
6407 unsigned int rn
, unsigned int rd
)
6409 TCGv_i64 tcg_rd
, tcg_rn
;
6410 tcg_rd
= cpu_reg(s
, rd
);
6411 tcg_rn
= cpu_reg(s
, rn
);
6414 tcg_gen_clzi_i64(tcg_rd
, tcg_rn
, 64);
6416 TCGv_i32 tcg_tmp32
= tcg_temp_new_i32();
6417 tcg_gen_extrl_i64_i32(tcg_tmp32
, tcg_rn
);
6418 tcg_gen_clzi_i32(tcg_tmp32
, tcg_tmp32
, 32);
6419 tcg_gen_extu_i32_i64(tcg_rd
, tcg_tmp32
);
6423 static void handle_cls(DisasContext
*s
, unsigned int sf
,
6424 unsigned int rn
, unsigned int rd
)
6426 TCGv_i64 tcg_rd
, tcg_rn
;
6427 tcg_rd
= cpu_reg(s
, rd
);
6428 tcg_rn
= cpu_reg(s
, rn
);
6431 tcg_gen_clrsb_i64(tcg_rd
, tcg_rn
);
6433 TCGv_i32 tcg_tmp32
= tcg_temp_new_i32();
6434 tcg_gen_extrl_i64_i32(tcg_tmp32
, tcg_rn
);
6435 tcg_gen_clrsb_i32(tcg_tmp32
, tcg_tmp32
);
6436 tcg_gen_extu_i32_i64(tcg_rd
, tcg_tmp32
);
6440 static void handle_rbit(DisasContext
*s
, unsigned int sf
,
6441 unsigned int rn
, unsigned int rd
)
6443 TCGv_i64 tcg_rd
, tcg_rn
;
6444 tcg_rd
= cpu_reg(s
, rd
);
6445 tcg_rn
= cpu_reg(s
, rn
);
6448 gen_helper_rbit64(tcg_rd
, tcg_rn
);
6450 TCGv_i32 tcg_tmp32
= tcg_temp_new_i32();
6451 tcg_gen_extrl_i64_i32(tcg_tmp32
, tcg_rn
);
6452 gen_helper_rbit(tcg_tmp32
, tcg_tmp32
);
6453 tcg_gen_extu_i32_i64(tcg_rd
, tcg_tmp32
);
6457 /* REV with sf==1, opcode==3 ("REV64") */
6458 static void handle_rev64(DisasContext
*s
, unsigned int sf
,
6459 unsigned int rn
, unsigned int rd
)
6462 unallocated_encoding(s
);
6465 tcg_gen_bswap64_i64(cpu_reg(s
, rd
), cpu_reg(s
, rn
));
6468 /* REV with sf==0, opcode==2
6469 * REV32 (sf==1, opcode==2)
6471 static void handle_rev32(DisasContext
*s
, unsigned int sf
,
6472 unsigned int rn
, unsigned int rd
)
6474 TCGv_i64 tcg_rd
= cpu_reg(s
, rd
);
6475 TCGv_i64 tcg_rn
= cpu_reg(s
, rn
);
6478 tcg_gen_bswap64_i64(tcg_rd
, tcg_rn
);
6479 tcg_gen_rotri_i64(tcg_rd
, tcg_rd
, 32);
6481 tcg_gen_bswap32_i64(tcg_rd
, tcg_rn
, TCG_BSWAP_OZ
);
6485 /* REV16 (opcode==1) */
6486 static void handle_rev16(DisasContext
*s
, unsigned int sf
,
6487 unsigned int rn
, unsigned int rd
)
6489 TCGv_i64 tcg_rd
= cpu_reg(s
, rd
);
6490 TCGv_i64 tcg_tmp
= tcg_temp_new_i64();
6491 TCGv_i64 tcg_rn
= read_cpu_reg(s
, rn
, sf
);
6492 TCGv_i64 mask
= tcg_constant_i64(sf
? 0x00ff00ff00ff00ffull
: 0x00ff00ff);
6494 tcg_gen_shri_i64(tcg_tmp
, tcg_rn
, 8);
6495 tcg_gen_and_i64(tcg_rd
, tcg_rn
, mask
);
6496 tcg_gen_and_i64(tcg_tmp
, tcg_tmp
, mask
);
6497 tcg_gen_shli_i64(tcg_rd
, tcg_rd
, 8);
6498 tcg_gen_or_i64(tcg_rd
, tcg_rd
, tcg_tmp
);
6501 /* Data-processing (1 source)
6502 * 31 30 29 28 21 20 16 15 10 9 5 4 0
6503 * +----+---+---+-----------------+---------+--------+------+------+
6504 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
6505 * +----+---+---+-----------------+---------+--------+------+------+
6507 static void disas_data_proc_1src(DisasContext
*s
, uint32_t insn
)
6509 unsigned int sf
, opcode
, opcode2
, rn
, rd
;
6512 if (extract32(insn
, 29, 1)) {
6513 unallocated_encoding(s
);
6517 sf
= extract32(insn
, 31, 1);
6518 opcode
= extract32(insn
, 10, 6);
6519 opcode2
= extract32(insn
, 16, 5);
6520 rn
= extract32(insn
, 5, 5);
6521 rd
= extract32(insn
, 0, 5);
6523 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
6525 switch (MAP(sf
, opcode2
, opcode
)) {
6526 case MAP(0, 0x00, 0x00): /* RBIT */
6527 case MAP(1, 0x00, 0x00):
6528 handle_rbit(s
, sf
, rn
, rd
);
6530 case MAP(0, 0x00, 0x01): /* REV16 */
6531 case MAP(1, 0x00, 0x01):
6532 handle_rev16(s
, sf
, rn
, rd
);
6534 case MAP(0, 0x00, 0x02): /* REV/REV32 */
6535 case MAP(1, 0x00, 0x02):
6536 handle_rev32(s
, sf
, rn
, rd
);
6538 case MAP(1, 0x00, 0x03): /* REV64 */
6539 handle_rev64(s
, sf
, rn
, rd
);
6541 case MAP(0, 0x00, 0x04): /* CLZ */
6542 case MAP(1, 0x00, 0x04):
6543 handle_clz(s
, sf
, rn
, rd
);
6545 case MAP(0, 0x00, 0x05): /* CLS */
6546 case MAP(1, 0x00, 0x05):
6547 handle_cls(s
, sf
, rn
, rd
);
6549 case MAP(1, 0x01, 0x00): /* PACIA */
6550 if (s
->pauth_active
) {
6551 tcg_rd
= cpu_reg(s
, rd
);
6552 gen_helper_pacia(tcg_rd
, tcg_env
, tcg_rd
, cpu_reg_sp(s
, rn
));
6553 } else if (!dc_isar_feature(aa64_pauth
, s
)) {
6554 goto do_unallocated
;
6557 case MAP(1, 0x01, 0x01): /* PACIB */
6558 if (s
->pauth_active
) {
6559 tcg_rd
= cpu_reg(s
, rd
);
6560 gen_helper_pacib(tcg_rd
, tcg_env
, tcg_rd
, cpu_reg_sp(s
, rn
));
6561 } else if (!dc_isar_feature(aa64_pauth
, s
)) {
6562 goto do_unallocated
;
6565 case MAP(1, 0x01, 0x02): /* PACDA */
6566 if (s
->pauth_active
) {
6567 tcg_rd
= cpu_reg(s
, rd
);
6568 gen_helper_pacda(tcg_rd
, tcg_env
, tcg_rd
, cpu_reg_sp(s
, rn
));
6569 } else if (!dc_isar_feature(aa64_pauth
, s
)) {
6570 goto do_unallocated
;
6573 case MAP(1, 0x01, 0x03): /* PACDB */
6574 if (s
->pauth_active
) {
6575 tcg_rd
= cpu_reg(s
, rd
);
6576 gen_helper_pacdb(tcg_rd
, tcg_env
, tcg_rd
, cpu_reg_sp(s
, rn
));
6577 } else if (!dc_isar_feature(aa64_pauth
, s
)) {
6578 goto do_unallocated
;
6581 case MAP(1, 0x01, 0x04): /* AUTIA */
6582 if (s
->pauth_active
) {
6583 tcg_rd
= cpu_reg(s
, rd
);
6584 gen_helper_autia(tcg_rd
, tcg_env
, tcg_rd
, cpu_reg_sp(s
, rn
));
6585 } else if (!dc_isar_feature(aa64_pauth
, s
)) {
6586 goto do_unallocated
;
6589 case MAP(1, 0x01, 0x05): /* AUTIB */
6590 if (s
->pauth_active
) {
6591 tcg_rd
= cpu_reg(s
, rd
);
6592 gen_helper_autib(tcg_rd
, tcg_env
, tcg_rd
, cpu_reg_sp(s
, rn
));
6593 } else if (!dc_isar_feature(aa64_pauth
, s
)) {
6594 goto do_unallocated
;
6597 case MAP(1, 0x01, 0x06): /* AUTDA */
6598 if (s
->pauth_active
) {
6599 tcg_rd
= cpu_reg(s
, rd
);
6600 gen_helper_autda(tcg_rd
, tcg_env
, tcg_rd
, cpu_reg_sp(s
, rn
));
6601 } else if (!dc_isar_feature(aa64_pauth
, s
)) {
6602 goto do_unallocated
;
6605 case MAP(1, 0x01, 0x07): /* AUTDB */
6606 if (s
->pauth_active
) {
6607 tcg_rd
= cpu_reg(s
, rd
);
6608 gen_helper_autdb(tcg_rd
, tcg_env
, tcg_rd
, cpu_reg_sp(s
, rn
));
6609 } else if (!dc_isar_feature(aa64_pauth
, s
)) {
6610 goto do_unallocated
;
6613 case MAP(1, 0x01, 0x08): /* PACIZA */
6614 if (!dc_isar_feature(aa64_pauth
, s
) || rn
!= 31) {
6615 goto do_unallocated
;
6616 } else if (s
->pauth_active
) {
6617 tcg_rd
= cpu_reg(s
, rd
);
6618 gen_helper_pacia(tcg_rd
, tcg_env
, tcg_rd
, tcg_constant_i64(0));
6621 case MAP(1, 0x01, 0x09): /* PACIZB */
6622 if (!dc_isar_feature(aa64_pauth
, s
) || rn
!= 31) {
6623 goto do_unallocated
;
6624 } else if (s
->pauth_active
) {
6625 tcg_rd
= cpu_reg(s
, rd
);
6626 gen_helper_pacib(tcg_rd
, tcg_env
, tcg_rd
, tcg_constant_i64(0));
6629 case MAP(1, 0x01, 0x0a): /* PACDZA */
6630 if (!dc_isar_feature(aa64_pauth
, s
) || rn
!= 31) {
6631 goto do_unallocated
;
6632 } else if (s
->pauth_active
) {
6633 tcg_rd
= cpu_reg(s
, rd
);
6634 gen_helper_pacda(tcg_rd
, tcg_env
, tcg_rd
, tcg_constant_i64(0));
6637 case MAP(1, 0x01, 0x0b): /* PACDZB */
6638 if (!dc_isar_feature(aa64_pauth
, s
) || rn
!= 31) {
6639 goto do_unallocated
;
6640 } else if (s
->pauth_active
) {
6641 tcg_rd
= cpu_reg(s
, rd
);
6642 gen_helper_pacdb(tcg_rd
, tcg_env
, tcg_rd
, tcg_constant_i64(0));
6645 case MAP(1, 0x01, 0x0c): /* AUTIZA */
6646 if (!dc_isar_feature(aa64_pauth
, s
) || rn
!= 31) {
6647 goto do_unallocated
;
6648 } else if (s
->pauth_active
) {
6649 tcg_rd
= cpu_reg(s
, rd
);
6650 gen_helper_autia(tcg_rd
, tcg_env
, tcg_rd
, tcg_constant_i64(0));
6653 case MAP(1, 0x01, 0x0d): /* AUTIZB */
6654 if (!dc_isar_feature(aa64_pauth
, s
) || rn
!= 31) {
6655 goto do_unallocated
;
6656 } else if (s
->pauth_active
) {
6657 tcg_rd
= cpu_reg(s
, rd
);
6658 gen_helper_autib(tcg_rd
, tcg_env
, tcg_rd
, tcg_constant_i64(0));
6661 case MAP(1, 0x01, 0x0e): /* AUTDZA */
6662 if (!dc_isar_feature(aa64_pauth
, s
) || rn
!= 31) {
6663 goto do_unallocated
;
6664 } else if (s
->pauth_active
) {
6665 tcg_rd
= cpu_reg(s
, rd
);
6666 gen_helper_autda(tcg_rd
, tcg_env
, tcg_rd
, tcg_constant_i64(0));
6669 case MAP(1, 0x01, 0x0f): /* AUTDZB */
6670 if (!dc_isar_feature(aa64_pauth
, s
) || rn
!= 31) {
6671 goto do_unallocated
;
6672 } else if (s
->pauth_active
) {
6673 tcg_rd
= cpu_reg(s
, rd
);
6674 gen_helper_autdb(tcg_rd
, tcg_env
, tcg_rd
, tcg_constant_i64(0));
6677 case MAP(1, 0x01, 0x10): /* XPACI */
6678 if (!dc_isar_feature(aa64_pauth
, s
) || rn
!= 31) {
6679 goto do_unallocated
;
6680 } else if (s
->pauth_active
) {
6681 tcg_rd
= cpu_reg(s
, rd
);
6682 gen_helper_xpaci(tcg_rd
, tcg_env
, tcg_rd
);
6685 case MAP(1, 0x01, 0x11): /* XPACD */
6686 if (!dc_isar_feature(aa64_pauth
, s
) || rn
!= 31) {
6687 goto do_unallocated
;
6688 } else if (s
->pauth_active
) {
6689 tcg_rd
= cpu_reg(s
, rd
);
6690 gen_helper_xpacd(tcg_rd
, tcg_env
, tcg_rd
);
6695 unallocated_encoding(s
);
6702 static void handle_div(DisasContext
*s
, bool is_signed
, unsigned int sf
,
6703 unsigned int rm
, unsigned int rn
, unsigned int rd
)
6705 TCGv_i64 tcg_n
, tcg_m
, tcg_rd
;
6706 tcg_rd
= cpu_reg(s
, rd
);
6708 if (!sf
&& is_signed
) {
6709 tcg_n
= tcg_temp_new_i64();
6710 tcg_m
= tcg_temp_new_i64();
6711 tcg_gen_ext32s_i64(tcg_n
, cpu_reg(s
, rn
));
6712 tcg_gen_ext32s_i64(tcg_m
, cpu_reg(s
, rm
));
6714 tcg_n
= read_cpu_reg(s
, rn
, sf
);
6715 tcg_m
= read_cpu_reg(s
, rm
, sf
);
6719 gen_helper_sdiv64(tcg_rd
, tcg_n
, tcg_m
);
6721 gen_helper_udiv64(tcg_rd
, tcg_n
, tcg_m
);
6724 if (!sf
) { /* zero extend final result */
6725 tcg_gen_ext32u_i64(tcg_rd
, tcg_rd
);
6729 /* LSLV, LSRV, ASRV, RORV */
6730 static void handle_shift_reg(DisasContext
*s
,
6731 enum a64_shift_type shift_type
, unsigned int sf
,
6732 unsigned int rm
, unsigned int rn
, unsigned int rd
)
6734 TCGv_i64 tcg_shift
= tcg_temp_new_i64();
6735 TCGv_i64 tcg_rd
= cpu_reg(s
, rd
);
6736 TCGv_i64 tcg_rn
= read_cpu_reg(s
, rn
, sf
);
6738 tcg_gen_andi_i64(tcg_shift
, cpu_reg(s
, rm
), sf
? 63 : 31);
6739 shift_reg(tcg_rd
, tcg_rn
, sf
, shift_type
, tcg_shift
);
6742 /* CRC32[BHWX], CRC32C[BHWX] */
6743 static void handle_crc32(DisasContext
*s
,
6744 unsigned int sf
, unsigned int sz
, bool crc32c
,
6745 unsigned int rm
, unsigned int rn
, unsigned int rd
)
6747 TCGv_i64 tcg_acc
, tcg_val
;
6750 if (!dc_isar_feature(aa64_crc32
, s
)
6751 || (sf
== 1 && sz
!= 3)
6752 || (sf
== 0 && sz
== 3)) {
6753 unallocated_encoding(s
);
6758 tcg_val
= cpu_reg(s
, rm
);
6772 g_assert_not_reached();
6774 tcg_val
= tcg_temp_new_i64();
6775 tcg_gen_andi_i64(tcg_val
, cpu_reg(s
, rm
), mask
);
6778 tcg_acc
= cpu_reg(s
, rn
);
6779 tcg_bytes
= tcg_constant_i32(1 << sz
);
6782 gen_helper_crc32c_64(cpu_reg(s
, rd
), tcg_acc
, tcg_val
, tcg_bytes
);
6784 gen_helper_crc32_64(cpu_reg(s
, rd
), tcg_acc
, tcg_val
, tcg_bytes
);
6788 /* Data-processing (2 source)
6789 * 31 30 29 28 21 20 16 15 10 9 5 4 0
6790 * +----+---+---+-----------------+------+--------+------+------+
6791 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
6792 * +----+---+---+-----------------+------+--------+------+------+
6794 static void disas_data_proc_2src(DisasContext
*s
, uint32_t insn
)
6796 unsigned int sf
, rm
, opcode
, rn
, rd
, setflag
;
6797 sf
= extract32(insn
, 31, 1);
6798 setflag
= extract32(insn
, 29, 1);
6799 rm
= extract32(insn
, 16, 5);
6800 opcode
= extract32(insn
, 10, 6);
6801 rn
= extract32(insn
, 5, 5);
6802 rd
= extract32(insn
, 0, 5);
6804 if (setflag
&& opcode
!= 0) {
6805 unallocated_encoding(s
);
6810 case 0: /* SUBP(S) */
6811 if (sf
== 0 || !dc_isar_feature(aa64_mte_insn_reg
, s
)) {
6812 goto do_unallocated
;
6814 TCGv_i64 tcg_n
, tcg_m
, tcg_d
;
6816 tcg_n
= read_cpu_reg_sp(s
, rn
, true);
6817 tcg_m
= read_cpu_reg_sp(s
, rm
, true);
6818 tcg_gen_sextract_i64(tcg_n
, tcg_n
, 0, 56);
6819 tcg_gen_sextract_i64(tcg_m
, tcg_m
, 0, 56);
6820 tcg_d
= cpu_reg(s
, rd
);
6823 gen_sub_CC(true, tcg_d
, tcg_n
, tcg_m
);
6825 tcg_gen_sub_i64(tcg_d
, tcg_n
, tcg_m
);
6830 handle_div(s
, false, sf
, rm
, rn
, rd
);
6833 handle_div(s
, true, sf
, rm
, rn
, rd
);
6836 if (sf
== 0 || !dc_isar_feature(aa64_mte_insn_reg
, s
)) {
6837 goto do_unallocated
;
6840 gen_helper_irg(cpu_reg_sp(s
, rd
), tcg_env
,
6841 cpu_reg_sp(s
, rn
), cpu_reg(s
, rm
));
6843 gen_address_with_allocation_tag0(cpu_reg_sp(s
, rd
),
6848 if (sf
== 0 || !dc_isar_feature(aa64_mte_insn_reg
, s
)) {
6849 goto do_unallocated
;
6851 TCGv_i64 t
= tcg_temp_new_i64();
6853 tcg_gen_extract_i64(t
, cpu_reg_sp(s
, rn
), 56, 4);
6854 tcg_gen_shl_i64(t
, tcg_constant_i64(1), t
);
6855 tcg_gen_or_i64(cpu_reg(s
, rd
), cpu_reg(s
, rm
), t
);
6859 handle_shift_reg(s
, A64_SHIFT_TYPE_LSL
, sf
, rm
, rn
, rd
);
6862 handle_shift_reg(s
, A64_SHIFT_TYPE_LSR
, sf
, rm
, rn
, rd
);
6865 handle_shift_reg(s
, A64_SHIFT_TYPE_ASR
, sf
, rm
, rn
, rd
);
6868 handle_shift_reg(s
, A64_SHIFT_TYPE_ROR
, sf
, rm
, rn
, rd
);
6870 case 12: /* PACGA */
6871 if (sf
== 0 || !dc_isar_feature(aa64_pauth
, s
)) {
6872 goto do_unallocated
;
6874 gen_helper_pacga(cpu_reg(s
, rd
), tcg_env
,
6875 cpu_reg(s
, rn
), cpu_reg_sp(s
, rm
));
6884 case 23: /* CRC32 */
6886 int sz
= extract32(opcode
, 0, 2);
6887 bool crc32c
= extract32(opcode
, 2, 1);
6888 handle_crc32(s
, sf
, sz
, crc32c
, rm
, rn
, rd
);
6893 unallocated_encoding(s
);
6899 * Data processing - register
6900 * 31 30 29 28 25 21 20 16 10 0
6901 * +--+---+--+---+-------+-----+-------+-------+---------+
6902 * | |op0| |op1| 1 0 1 | op2 | | op3 | |
6903 * +--+---+--+---+-------+-----+-------+-------+---------+
6905 static void disas_data_proc_reg(DisasContext
*s
, uint32_t insn
)
6907 int op0
= extract32(insn
, 30, 1);
6908 int op1
= extract32(insn
, 28, 1);
6909 int op2
= extract32(insn
, 21, 4);
6910 int op3
= extract32(insn
, 10, 6);
6915 /* Add/sub (extended register) */
6916 disas_add_sub_ext_reg(s
, insn
);
6918 /* Add/sub (shifted register) */
6919 disas_add_sub_reg(s
, insn
);
6922 /* Logical (shifted register) */
6923 disas_logic_reg(s
, insn
);
6931 case 0x00: /* Add/subtract (with carry) */
6932 disas_adc_sbc(s
, insn
);
6935 case 0x01: /* Rotate right into flags */
6937 disas_rotate_right_into_flags(s
, insn
);
6940 case 0x02: /* Evaluate into flags */
6944 disas_evaluate_into_flags(s
, insn
);
6948 goto do_unallocated
;
6952 case 0x2: /* Conditional compare */
6953 disas_cc(s
, insn
); /* both imm and reg forms */
6956 case 0x4: /* Conditional select */
6957 disas_cond_select(s
, insn
);
6960 case 0x6: /* Data-processing */
6961 if (op0
) { /* (1 source) */
6962 disas_data_proc_1src(s
, insn
);
6963 } else { /* (2 source) */
6964 disas_data_proc_2src(s
, insn
);
6967 case 0x8 ... 0xf: /* (3 source) */
6968 disas_data_proc_3src(s
, insn
);
6973 unallocated_encoding(s
);
6978 static void handle_fp_compare(DisasContext
*s
, int size
,
6979 unsigned int rn
, unsigned int rm
,
6980 bool cmp_with_zero
, bool signal_all_nans
)
6982 TCGv_i64 tcg_flags
= tcg_temp_new_i64();
6983 TCGv_ptr fpst
= fpstatus_ptr(size
== MO_16
? FPST_FPCR_F16
: FPST_FPCR
);
6985 if (size
== MO_64
) {
6986 TCGv_i64 tcg_vn
, tcg_vm
;
6988 tcg_vn
= read_fp_dreg(s
, rn
);
6989 if (cmp_with_zero
) {
6990 tcg_vm
= tcg_constant_i64(0);
6992 tcg_vm
= read_fp_dreg(s
, rm
);
6994 if (signal_all_nans
) {
6995 gen_helper_vfp_cmped_a64(tcg_flags
, tcg_vn
, tcg_vm
, fpst
);
6997 gen_helper_vfp_cmpd_a64(tcg_flags
, tcg_vn
, tcg_vm
, fpst
);
7000 TCGv_i32 tcg_vn
= tcg_temp_new_i32();
7001 TCGv_i32 tcg_vm
= tcg_temp_new_i32();
7003 read_vec_element_i32(s
, tcg_vn
, rn
, 0, size
);
7004 if (cmp_with_zero
) {
7005 tcg_gen_movi_i32(tcg_vm
, 0);
7007 read_vec_element_i32(s
, tcg_vm
, rm
, 0, size
);
7012 if (signal_all_nans
) {
7013 gen_helper_vfp_cmpes_a64(tcg_flags
, tcg_vn
, tcg_vm
, fpst
);
7015 gen_helper_vfp_cmps_a64(tcg_flags
, tcg_vn
, tcg_vm
, fpst
);
7019 if (signal_all_nans
) {
7020 gen_helper_vfp_cmpeh_a64(tcg_flags
, tcg_vn
, tcg_vm
, fpst
);
7022 gen_helper_vfp_cmph_a64(tcg_flags
, tcg_vn
, tcg_vm
, fpst
);
7026 g_assert_not_reached();
7030 gen_set_nzcv(tcg_flags
);
7033 /* Floating point compare
7034 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
7035 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
7036 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
7037 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
7039 static void disas_fp_compare(DisasContext
*s
, uint32_t insn
)
7041 unsigned int mos
, type
, rm
, op
, rn
, opc
, op2r
;
7044 mos
= extract32(insn
, 29, 3);
7045 type
= extract32(insn
, 22, 2);
7046 rm
= extract32(insn
, 16, 5);
7047 op
= extract32(insn
, 14, 2);
7048 rn
= extract32(insn
, 5, 5);
7049 opc
= extract32(insn
, 3, 2);
7050 op2r
= extract32(insn
, 0, 3);
7052 if (mos
|| op
|| op2r
) {
7053 unallocated_encoding(s
);
7066 if (dc_isar_feature(aa64_fp16
, s
)) {
7071 unallocated_encoding(s
);
7075 if (!fp_access_check(s
)) {
7079 handle_fp_compare(s
, size
, rn
, rm
, opc
& 1, opc
& 2);
7082 /* Floating point conditional compare
7083 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
7084 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
7085 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
7086 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
7088 static void disas_fp_ccomp(DisasContext
*s
, uint32_t insn
)
7090 unsigned int mos
, type
, rm
, cond
, rn
, op
, nzcv
;
7091 TCGLabel
*label_continue
= NULL
;
7094 mos
= extract32(insn
, 29, 3);
7095 type
= extract32(insn
, 22, 2);
7096 rm
= extract32(insn
, 16, 5);
7097 cond
= extract32(insn
, 12, 4);
7098 rn
= extract32(insn
, 5, 5);
7099 op
= extract32(insn
, 4, 1);
7100 nzcv
= extract32(insn
, 0, 4);
7103 unallocated_encoding(s
);
7116 if (dc_isar_feature(aa64_fp16
, s
)) {
7121 unallocated_encoding(s
);
7125 if (!fp_access_check(s
)) {
7129 if (cond
< 0x0e) { /* not always */
7130 TCGLabel
*label_match
= gen_new_label();
7131 label_continue
= gen_new_label();
7132 arm_gen_test_cc(cond
, label_match
);
7134 gen_set_nzcv(tcg_constant_i64(nzcv
<< 28));
7135 tcg_gen_br(label_continue
);
7136 gen_set_label(label_match
);
7139 handle_fp_compare(s
, size
, rn
, rm
, false, op
);
7142 gen_set_label(label_continue
);
7146 /* Floating point conditional select
7147 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
7148 * +---+---+---+-----------+------+---+------+------+-----+------+------+
7149 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
7150 * +---+---+---+-----------+------+---+------+------+-----+------+------+
7152 static void disas_fp_csel(DisasContext
*s
, uint32_t insn
)
7154 unsigned int mos
, type
, rm
, cond
, rn
, rd
;
7155 TCGv_i64 t_true
, t_false
;
7159 mos
= extract32(insn
, 29, 3);
7160 type
= extract32(insn
, 22, 2);
7161 rm
= extract32(insn
, 16, 5);
7162 cond
= extract32(insn
, 12, 4);
7163 rn
= extract32(insn
, 5, 5);
7164 rd
= extract32(insn
, 0, 5);
7167 unallocated_encoding(s
);
7180 if (dc_isar_feature(aa64_fp16
, s
)) {
7185 unallocated_encoding(s
);
7189 if (!fp_access_check(s
)) {
7193 /* Zero extend sreg & hreg inputs to 64 bits now. */
7194 t_true
= tcg_temp_new_i64();
7195 t_false
= tcg_temp_new_i64();
7196 read_vec_element(s
, t_true
, rn
, 0, sz
);
7197 read_vec_element(s
, t_false
, rm
, 0, sz
);
7199 a64_test_cc(&c
, cond
);
7200 tcg_gen_movcond_i64(c
.cond
, t_true
, c
.value
, tcg_constant_i64(0),
7203 /* Note that sregs & hregs write back zeros to the high bits,
7204 and we've already done the zero-extension. */
7205 write_fp_dreg(s
, rd
, t_true
);
7208 /* Floating-point data-processing (1 source) - half precision */
7209 static void handle_fp_1src_half(DisasContext
*s
, int opcode
, int rd
, int rn
)
7211 TCGv_ptr fpst
= NULL
;
7212 TCGv_i32 tcg_op
= read_fp_hreg(s
, rn
);
7213 TCGv_i32 tcg_res
= tcg_temp_new_i32();
7216 case 0x0: /* FMOV */
7217 tcg_gen_mov_i32(tcg_res
, tcg_op
);
7219 case 0x1: /* FABS */
7220 gen_vfp_absh(tcg_res
, tcg_op
);
7222 case 0x2: /* FNEG */
7223 gen_vfp_negh(tcg_res
, tcg_op
);
7225 case 0x3: /* FSQRT */
7226 fpst
= fpstatus_ptr(FPST_FPCR_F16
);
7227 gen_helper_sqrt_f16(tcg_res
, tcg_op
, fpst
);
7229 case 0x8: /* FRINTN */
7230 case 0x9: /* FRINTP */
7231 case 0xa: /* FRINTM */
7232 case 0xb: /* FRINTZ */
7233 case 0xc: /* FRINTA */
7237 fpst
= fpstatus_ptr(FPST_FPCR_F16
);
7238 tcg_rmode
= gen_set_rmode(opcode
& 7, fpst
);
7239 gen_helper_advsimd_rinth(tcg_res
, tcg_op
, fpst
);
7240 gen_restore_rmode(tcg_rmode
, fpst
);
7243 case 0xe: /* FRINTX */
7244 fpst
= fpstatus_ptr(FPST_FPCR_F16
);
7245 gen_helper_advsimd_rinth_exact(tcg_res
, tcg_op
, fpst
);
7247 case 0xf: /* FRINTI */
7248 fpst
= fpstatus_ptr(FPST_FPCR_F16
);
7249 gen_helper_advsimd_rinth(tcg_res
, tcg_op
, fpst
);
7252 g_assert_not_reached();
7255 write_fp_sreg(s
, rd
, tcg_res
);
7258 /* Floating-point data-processing (1 source) - single precision */
7259 static void handle_fp_1src_single(DisasContext
*s
, int opcode
, int rd
, int rn
)
7261 void (*gen_fpst
)(TCGv_i32
, TCGv_i32
, TCGv_ptr
);
7262 TCGv_i32 tcg_op
, tcg_res
;
7266 tcg_op
= read_fp_sreg(s
, rn
);
7267 tcg_res
= tcg_temp_new_i32();
7270 case 0x0: /* FMOV */
7271 tcg_gen_mov_i32(tcg_res
, tcg_op
);
7273 case 0x1: /* FABS */
7274 gen_vfp_abss(tcg_res
, tcg_op
);
7276 case 0x2: /* FNEG */
7277 gen_vfp_negs(tcg_res
, tcg_op
);
7279 case 0x3: /* FSQRT */
7280 gen_helper_vfp_sqrts(tcg_res
, tcg_op
, tcg_env
);
7282 case 0x6: /* BFCVT */
7283 gen_fpst
= gen_helper_bfcvt
;
7285 case 0x8: /* FRINTN */
7286 case 0x9: /* FRINTP */
7287 case 0xa: /* FRINTM */
7288 case 0xb: /* FRINTZ */
7289 case 0xc: /* FRINTA */
7291 gen_fpst
= gen_helper_rints
;
7293 case 0xe: /* FRINTX */
7294 gen_fpst
= gen_helper_rints_exact
;
7296 case 0xf: /* FRINTI */
7297 gen_fpst
= gen_helper_rints
;
7299 case 0x10: /* FRINT32Z */
7300 rmode
= FPROUNDING_ZERO
;
7301 gen_fpst
= gen_helper_frint32_s
;
7303 case 0x11: /* FRINT32X */
7304 gen_fpst
= gen_helper_frint32_s
;
7306 case 0x12: /* FRINT64Z */
7307 rmode
= FPROUNDING_ZERO
;
7308 gen_fpst
= gen_helper_frint64_s
;
7310 case 0x13: /* FRINT64X */
7311 gen_fpst
= gen_helper_frint64_s
;
7314 g_assert_not_reached();
7317 fpst
= fpstatus_ptr(FPST_FPCR
);
7319 TCGv_i32 tcg_rmode
= gen_set_rmode(rmode
, fpst
);
7320 gen_fpst(tcg_res
, tcg_op
, fpst
);
7321 gen_restore_rmode(tcg_rmode
, fpst
);
7323 gen_fpst(tcg_res
, tcg_op
, fpst
);
7327 write_fp_sreg(s
, rd
, tcg_res
);
7330 /* Floating-point data-processing (1 source) - double precision */
7331 static void handle_fp_1src_double(DisasContext
*s
, int opcode
, int rd
, int rn
)
7333 void (*gen_fpst
)(TCGv_i64
, TCGv_i64
, TCGv_ptr
);
7334 TCGv_i64 tcg_op
, tcg_res
;
7339 case 0x0: /* FMOV */
7340 gen_gvec_fn2(s
, false, rd
, rn
, tcg_gen_gvec_mov
, 0);
7344 tcg_op
= read_fp_dreg(s
, rn
);
7345 tcg_res
= tcg_temp_new_i64();
7348 case 0x1: /* FABS */
7349 gen_vfp_absd(tcg_res
, tcg_op
);
7351 case 0x2: /* FNEG */
7352 gen_vfp_negd(tcg_res
, tcg_op
);
7354 case 0x3: /* FSQRT */
7355 gen_helper_vfp_sqrtd(tcg_res
, tcg_op
, tcg_env
);
7357 case 0x8: /* FRINTN */
7358 case 0x9: /* FRINTP */
7359 case 0xa: /* FRINTM */
7360 case 0xb: /* FRINTZ */
7361 case 0xc: /* FRINTA */
7363 gen_fpst
= gen_helper_rintd
;
7365 case 0xe: /* FRINTX */
7366 gen_fpst
= gen_helper_rintd_exact
;
7368 case 0xf: /* FRINTI */
7369 gen_fpst
= gen_helper_rintd
;
7371 case 0x10: /* FRINT32Z */
7372 rmode
= FPROUNDING_ZERO
;
7373 gen_fpst
= gen_helper_frint32_d
;
7375 case 0x11: /* FRINT32X */
7376 gen_fpst
= gen_helper_frint32_d
;
7378 case 0x12: /* FRINT64Z */
7379 rmode
= FPROUNDING_ZERO
;
7380 gen_fpst
= gen_helper_frint64_d
;
7382 case 0x13: /* FRINT64X */
7383 gen_fpst
= gen_helper_frint64_d
;
7386 g_assert_not_reached();
7389 fpst
= fpstatus_ptr(FPST_FPCR
);
7391 TCGv_i32 tcg_rmode
= gen_set_rmode(rmode
, fpst
);
7392 gen_fpst(tcg_res
, tcg_op
, fpst
);
7393 gen_restore_rmode(tcg_rmode
, fpst
);
7395 gen_fpst(tcg_res
, tcg_op
, fpst
);
7399 write_fp_dreg(s
, rd
, tcg_res
);
7402 static void handle_fp_fcvt(DisasContext
*s
, int opcode
,
7403 int rd
, int rn
, int dtype
, int ntype
)
7408 TCGv_i32 tcg_rn
= read_fp_sreg(s
, rn
);
7410 /* Single to double */
7411 TCGv_i64 tcg_rd
= tcg_temp_new_i64();
7412 gen_helper_vfp_fcvtds(tcg_rd
, tcg_rn
, tcg_env
);
7413 write_fp_dreg(s
, rd
, tcg_rd
);
7415 /* Single to half */
7416 TCGv_i32 tcg_rd
= tcg_temp_new_i32();
7417 TCGv_i32 ahp
= get_ahp_flag();
7418 TCGv_ptr fpst
= fpstatus_ptr(FPST_FPCR
);
7420 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd
, tcg_rn
, fpst
, ahp
);
7421 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
7422 write_fp_sreg(s
, rd
, tcg_rd
);
7428 TCGv_i64 tcg_rn
= read_fp_dreg(s
, rn
);
7429 TCGv_i32 tcg_rd
= tcg_temp_new_i32();
7431 /* Double to single */
7432 gen_helper_vfp_fcvtsd(tcg_rd
, tcg_rn
, tcg_env
);
7434 TCGv_ptr fpst
= fpstatus_ptr(FPST_FPCR
);
7435 TCGv_i32 ahp
= get_ahp_flag();
7436 /* Double to half */
7437 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd
, tcg_rn
, fpst
, ahp
);
7438 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
7440 write_fp_sreg(s
, rd
, tcg_rd
);
7445 TCGv_i32 tcg_rn
= read_fp_sreg(s
, rn
);
7446 TCGv_ptr tcg_fpst
= fpstatus_ptr(FPST_FPCR
);
7447 TCGv_i32 tcg_ahp
= get_ahp_flag();
7448 tcg_gen_ext16u_i32(tcg_rn
, tcg_rn
);
7450 /* Half to single */
7451 TCGv_i32 tcg_rd
= tcg_temp_new_i32();
7452 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd
, tcg_rn
, tcg_fpst
, tcg_ahp
);
7453 write_fp_sreg(s
, rd
, tcg_rd
);
7455 /* Half to double */
7456 TCGv_i64 tcg_rd
= tcg_temp_new_i64();
7457 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd
, tcg_rn
, tcg_fpst
, tcg_ahp
);
7458 write_fp_dreg(s
, rd
, tcg_rd
);
7463 g_assert_not_reached();
7467 /* Floating point data-processing (1 source)
7468 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
7469 * +---+---+---+-----------+------+---+--------+-----------+------+------+
7470 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
7471 * +---+---+---+-----------+------+---+--------+-----------+------+------+
7473 static void disas_fp_1src(DisasContext
*s
, uint32_t insn
)
7475 int mos
= extract32(insn
, 29, 3);
7476 int type
= extract32(insn
, 22, 2);
7477 int opcode
= extract32(insn
, 15, 6);
7478 int rn
= extract32(insn
, 5, 5);
7479 int rd
= extract32(insn
, 0, 5);
7482 goto do_unallocated
;
7486 case 0x4: case 0x5: case 0x7:
7488 /* FCVT between half, single and double precision */
7489 int dtype
= extract32(opcode
, 0, 2);
7490 if (type
== 2 || dtype
== type
) {
7491 goto do_unallocated
;
7493 if (!fp_access_check(s
)) {
7497 handle_fp_fcvt(s
, opcode
, rd
, rn
, dtype
, type
);
7501 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
7502 if (type
> 1 || !dc_isar_feature(aa64_frint
, s
)) {
7503 goto do_unallocated
;
7509 /* 32-to-32 and 64-to-64 ops */
7512 if (!fp_access_check(s
)) {
7515 handle_fp_1src_single(s
, opcode
, rd
, rn
);
7518 if (!fp_access_check(s
)) {
7521 handle_fp_1src_double(s
, opcode
, rd
, rn
);
7524 if (!dc_isar_feature(aa64_fp16
, s
)) {
7525 goto do_unallocated
;
7528 if (!fp_access_check(s
)) {
7531 handle_fp_1src_half(s
, opcode
, rd
, rn
);
7534 goto do_unallocated
;
7541 if (!dc_isar_feature(aa64_bf16
, s
)) {
7542 goto do_unallocated
;
7544 if (!fp_access_check(s
)) {
7547 handle_fp_1src_single(s
, opcode
, rd
, rn
);
7550 goto do_unallocated
;
7556 unallocated_encoding(s
);
7561 /* Floating-point data-processing (3 source) - single precision */
7562 static void handle_fp_3src_single(DisasContext
*s
, bool o0
, bool o1
,
7563 int rd
, int rn
, int rm
, int ra
)
7565 TCGv_i32 tcg_op1
, tcg_op2
, tcg_op3
;
7566 TCGv_i32 tcg_res
= tcg_temp_new_i32();
7567 TCGv_ptr fpst
= fpstatus_ptr(FPST_FPCR
);
7569 tcg_op1
= read_fp_sreg(s
, rn
);
7570 tcg_op2
= read_fp_sreg(s
, rm
);
7571 tcg_op3
= read_fp_sreg(s
, ra
);
7573 /* These are fused multiply-add, and must be done as one
7574 * floating point operation with no rounding between the
7575 * multiplication and addition steps.
7576 * NB that doing the negations here as separate steps is
7577 * correct : an input NaN should come out with its sign bit
7578 * flipped if it is a negated-input.
7581 gen_vfp_negs(tcg_op3
, tcg_op3
);
7585 gen_vfp_negs(tcg_op1
, tcg_op1
);
7588 gen_helper_vfp_muladds(tcg_res
, tcg_op1
, tcg_op2
, tcg_op3
, fpst
);
7590 write_fp_sreg(s
, rd
, tcg_res
);
7593 /* Floating-point data-processing (3 source) - double precision */
7594 static void handle_fp_3src_double(DisasContext
*s
, bool o0
, bool o1
,
7595 int rd
, int rn
, int rm
, int ra
)
7597 TCGv_i64 tcg_op1
, tcg_op2
, tcg_op3
;
7598 TCGv_i64 tcg_res
= tcg_temp_new_i64();
7599 TCGv_ptr fpst
= fpstatus_ptr(FPST_FPCR
);
7601 tcg_op1
= read_fp_dreg(s
, rn
);
7602 tcg_op2
= read_fp_dreg(s
, rm
);
7603 tcg_op3
= read_fp_dreg(s
, ra
);
7605 /* These are fused multiply-add, and must be done as one
7606 * floating point operation with no rounding between the
7607 * multiplication and addition steps.
7608 * NB that doing the negations here as separate steps is
7609 * correct : an input NaN should come out with its sign bit
7610 * flipped if it is a negated-input.
7613 gen_vfp_negd(tcg_op3
, tcg_op3
);
7617 gen_vfp_negd(tcg_op1
, tcg_op1
);
7620 gen_helper_vfp_muladdd(tcg_res
, tcg_op1
, tcg_op2
, tcg_op3
, fpst
);
7622 write_fp_dreg(s
, rd
, tcg_res
);
7625 /* Floating-point data-processing (3 source) - half precision */
7626 static void handle_fp_3src_half(DisasContext
*s
, bool o0
, bool o1
,
7627 int rd
, int rn
, int rm
, int ra
)
7629 TCGv_i32 tcg_op1
, tcg_op2
, tcg_op3
;
7630 TCGv_i32 tcg_res
= tcg_temp_new_i32();
7631 TCGv_ptr fpst
= fpstatus_ptr(FPST_FPCR_F16
);
7633 tcg_op1
= read_fp_hreg(s
, rn
);
7634 tcg_op2
= read_fp_hreg(s
, rm
);
7635 tcg_op3
= read_fp_hreg(s
, ra
);
7637 /* These are fused multiply-add, and must be done as one
7638 * floating point operation with no rounding between the
7639 * multiplication and addition steps.
7640 * NB that doing the negations here as separate steps is
7641 * correct : an input NaN should come out with its sign bit
7642 * flipped if it is a negated-input.
7645 tcg_gen_xori_i32(tcg_op3
, tcg_op3
, 0x8000);
7649 tcg_gen_xori_i32(tcg_op1
, tcg_op1
, 0x8000);
7652 gen_helper_advsimd_muladdh(tcg_res
, tcg_op1
, tcg_op2
, tcg_op3
, fpst
);
7654 write_fp_sreg(s
, rd
, tcg_res
);
7657 /* Floating point data-processing (3 source)
7658 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
7659 * +---+---+---+-----------+------+----+------+----+------+------+------+
7660 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
7661 * +---+---+---+-----------+------+----+------+----+------+------+------+
7663 static void disas_fp_3src(DisasContext
*s
, uint32_t insn
)
7665 int mos
= extract32(insn
, 29, 3);
7666 int type
= extract32(insn
, 22, 2);
7667 int rd
= extract32(insn
, 0, 5);
7668 int rn
= extract32(insn
, 5, 5);
7669 int ra
= extract32(insn
, 10, 5);
7670 int rm
= extract32(insn
, 16, 5);
7671 bool o0
= extract32(insn
, 15, 1);
7672 bool o1
= extract32(insn
, 21, 1);
7675 unallocated_encoding(s
);
7681 if (!fp_access_check(s
)) {
7684 handle_fp_3src_single(s
, o0
, o1
, rd
, rn
, rm
, ra
);
7687 if (!fp_access_check(s
)) {
7690 handle_fp_3src_double(s
, o0
, o1
, rd
, rn
, rm
, ra
);
7693 if (!dc_isar_feature(aa64_fp16
, s
)) {
7694 unallocated_encoding(s
);
7697 if (!fp_access_check(s
)) {
7700 handle_fp_3src_half(s
, o0
, o1
, rd
, rn
, rm
, ra
);
7703 unallocated_encoding(s
);
7707 /* Floating point immediate
7708 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
7709 * +---+---+---+-----------+------+---+------------+-------+------+------+
7710 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
7711 * +---+---+---+-----------+------+---+------------+-------+------+------+
7713 static void disas_fp_imm(DisasContext
*s
, uint32_t insn
)
7715 int rd
= extract32(insn
, 0, 5);
7716 int imm5
= extract32(insn
, 5, 5);
7717 int imm8
= extract32(insn
, 13, 8);
7718 int type
= extract32(insn
, 22, 2);
7719 int mos
= extract32(insn
, 29, 3);
7724 unallocated_encoding(s
);
7737 if (dc_isar_feature(aa64_fp16
, s
)) {
7742 unallocated_encoding(s
);
7746 if (!fp_access_check(s
)) {
7750 imm
= vfp_expand_imm(sz
, imm8
);
7751 write_fp_dreg(s
, rd
, tcg_constant_i64(imm
));
7754 /* Handle floating point <=> fixed point conversions. Note that we can
7755 * also deal with fp <=> integer conversions as a special case (scale == 64)
7756 * OPTME: consider handling that special case specially or at least skipping
7757 * the call to scalbn in the helpers for zero shifts.
7759 static void handle_fpfpcvt(DisasContext
*s
, int rd
, int rn
, int opcode
,
7760 bool itof
, int rmode
, int scale
, int sf
, int type
)
7762 bool is_signed
= !(opcode
& 1);
7763 TCGv_ptr tcg_fpstatus
;
7764 TCGv_i32 tcg_shift
, tcg_single
;
7765 TCGv_i64 tcg_double
;
7767 tcg_fpstatus
= fpstatus_ptr(type
== 3 ? FPST_FPCR_F16
: FPST_FPCR
);
7769 tcg_shift
= tcg_constant_i32(64 - scale
);
7772 TCGv_i64 tcg_int
= cpu_reg(s
, rn
);
7774 TCGv_i64 tcg_extend
= tcg_temp_new_i64();
7777 tcg_gen_ext32s_i64(tcg_extend
, tcg_int
);
7779 tcg_gen_ext32u_i64(tcg_extend
, tcg_int
);
7782 tcg_int
= tcg_extend
;
7786 case 1: /* float64 */
7787 tcg_double
= tcg_temp_new_i64();
7789 gen_helper_vfp_sqtod(tcg_double
, tcg_int
,
7790 tcg_shift
, tcg_fpstatus
);
7792 gen_helper_vfp_uqtod(tcg_double
, tcg_int
,
7793 tcg_shift
, tcg_fpstatus
);
7795 write_fp_dreg(s
, rd
, tcg_double
);
7798 case 0: /* float32 */
7799 tcg_single
= tcg_temp_new_i32();
7801 gen_helper_vfp_sqtos(tcg_single
, tcg_int
,
7802 tcg_shift
, tcg_fpstatus
);
7804 gen_helper_vfp_uqtos(tcg_single
, tcg_int
,
7805 tcg_shift
, tcg_fpstatus
);
7807 write_fp_sreg(s
, rd
, tcg_single
);
7810 case 3: /* float16 */
7811 tcg_single
= tcg_temp_new_i32();
7813 gen_helper_vfp_sqtoh(tcg_single
, tcg_int
,
7814 tcg_shift
, tcg_fpstatus
);
7816 gen_helper_vfp_uqtoh(tcg_single
, tcg_int
,
7817 tcg_shift
, tcg_fpstatus
);
7819 write_fp_sreg(s
, rd
, tcg_single
);
7823 g_assert_not_reached();
7826 TCGv_i64 tcg_int
= cpu_reg(s
, rd
);
7829 if (extract32(opcode
, 2, 1)) {
7830 /* There are too many rounding modes to all fit into rmode,
7831 * so FCVTA[US] is a special case.
7833 rmode
= FPROUNDING_TIEAWAY
;
7836 tcg_rmode
= gen_set_rmode(rmode
, tcg_fpstatus
);
7839 case 1: /* float64 */
7840 tcg_double
= read_fp_dreg(s
, rn
);
7843 gen_helper_vfp_tosld(tcg_int
, tcg_double
,
7844 tcg_shift
, tcg_fpstatus
);
7846 gen_helper_vfp_tosqd(tcg_int
, tcg_double
,
7847 tcg_shift
, tcg_fpstatus
);
7851 gen_helper_vfp_tould(tcg_int
, tcg_double
,
7852 tcg_shift
, tcg_fpstatus
);
7854 gen_helper_vfp_touqd(tcg_int
, tcg_double
,
7855 tcg_shift
, tcg_fpstatus
);
7859 tcg_gen_ext32u_i64(tcg_int
, tcg_int
);
7863 case 0: /* float32 */
7864 tcg_single
= read_fp_sreg(s
, rn
);
7867 gen_helper_vfp_tosqs(tcg_int
, tcg_single
,
7868 tcg_shift
, tcg_fpstatus
);
7870 gen_helper_vfp_touqs(tcg_int
, tcg_single
,
7871 tcg_shift
, tcg_fpstatus
);
7874 TCGv_i32 tcg_dest
= tcg_temp_new_i32();
7876 gen_helper_vfp_tosls(tcg_dest
, tcg_single
,
7877 tcg_shift
, tcg_fpstatus
);
7879 gen_helper_vfp_touls(tcg_dest
, tcg_single
,
7880 tcg_shift
, tcg_fpstatus
);
7882 tcg_gen_extu_i32_i64(tcg_int
, tcg_dest
);
7886 case 3: /* float16 */
7887 tcg_single
= read_fp_sreg(s
, rn
);
7890 gen_helper_vfp_tosqh(tcg_int
, tcg_single
,
7891 tcg_shift
, tcg_fpstatus
);
7893 gen_helper_vfp_touqh(tcg_int
, tcg_single
,
7894 tcg_shift
, tcg_fpstatus
);
7897 TCGv_i32 tcg_dest
= tcg_temp_new_i32();
7899 gen_helper_vfp_toslh(tcg_dest
, tcg_single
,
7900 tcg_shift
, tcg_fpstatus
);
7902 gen_helper_vfp_toulh(tcg_dest
, tcg_single
,
7903 tcg_shift
, tcg_fpstatus
);
7905 tcg_gen_extu_i32_i64(tcg_int
, tcg_dest
);
7910 g_assert_not_reached();
7913 gen_restore_rmode(tcg_rmode
, tcg_fpstatus
);
7917 /* Floating point <-> fixed point conversions
7918 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
7919 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7920 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
7921 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7923 static void disas_fp_fixed_conv(DisasContext
*s
, uint32_t insn
)
7925 int rd
= extract32(insn
, 0, 5);
7926 int rn
= extract32(insn
, 5, 5);
7927 int scale
= extract32(insn
, 10, 6);
7928 int opcode
= extract32(insn
, 16, 3);
7929 int rmode
= extract32(insn
, 19, 2);
7930 int type
= extract32(insn
, 22, 2);
7931 bool sbit
= extract32(insn
, 29, 1);
7932 bool sf
= extract32(insn
, 31, 1);
7935 if (sbit
|| (!sf
&& scale
< 32)) {
7936 unallocated_encoding(s
);
7941 case 0: /* float32 */
7942 case 1: /* float64 */
7944 case 3: /* float16 */
7945 if (dc_isar_feature(aa64_fp16
, s
)) {
7950 unallocated_encoding(s
);
7954 switch ((rmode
<< 3) | opcode
) {
7955 case 0x2: /* SCVTF */
7956 case 0x3: /* UCVTF */
7959 case 0x18: /* FCVTZS */
7960 case 0x19: /* FCVTZU */
7964 unallocated_encoding(s
);
7968 if (!fp_access_check(s
)) {
7972 handle_fpfpcvt(s
, rd
, rn
, opcode
, itof
, FPROUNDING_ZERO
, scale
, sf
, type
);
7975 static void handle_fmov(DisasContext
*s
, int rd
, int rn
, int type
, bool itof
)
7977 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
7978 * without conversion.
7982 TCGv_i64 tcg_rn
= cpu_reg(s
, rn
);
7988 tmp
= tcg_temp_new_i64();
7989 tcg_gen_ext32u_i64(tmp
, tcg_rn
);
7990 write_fp_dreg(s
, rd
, tmp
);
7994 write_fp_dreg(s
, rd
, tcg_rn
);
7997 /* 64 bit to top half. */
7998 tcg_gen_st_i64(tcg_rn
, tcg_env
, fp_reg_hi_offset(s
, rd
));
7999 clear_vec_high(s
, true, rd
);
8003 tmp
= tcg_temp_new_i64();
8004 tcg_gen_ext16u_i64(tmp
, tcg_rn
);
8005 write_fp_dreg(s
, rd
, tmp
);
8008 g_assert_not_reached();
8011 TCGv_i64 tcg_rd
= cpu_reg(s
, rd
);
8016 tcg_gen_ld32u_i64(tcg_rd
, tcg_env
, fp_reg_offset(s
, rn
, MO_32
));
8020 tcg_gen_ld_i64(tcg_rd
, tcg_env
, fp_reg_offset(s
, rn
, MO_64
));
8023 /* 64 bits from top half */
8024 tcg_gen_ld_i64(tcg_rd
, tcg_env
, fp_reg_hi_offset(s
, rn
));
8028 tcg_gen_ld16u_i64(tcg_rd
, tcg_env
, fp_reg_offset(s
, rn
, MO_16
));
8031 g_assert_not_reached();
8036 static void handle_fjcvtzs(DisasContext
*s
, int rd
, int rn
)
8038 TCGv_i64 t
= read_fp_dreg(s
, rn
);
8039 TCGv_ptr fpstatus
= fpstatus_ptr(FPST_FPCR
);
8041 gen_helper_fjcvtzs(t
, t
, fpstatus
);
8043 tcg_gen_ext32u_i64(cpu_reg(s
, rd
), t
);
8044 tcg_gen_extrh_i64_i32(cpu_ZF
, t
);
8045 tcg_gen_movi_i32(cpu_CF
, 0);
8046 tcg_gen_movi_i32(cpu_NF
, 0);
8047 tcg_gen_movi_i32(cpu_VF
, 0);
8050 /* Floating point <-> integer conversions
8051 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
8052 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
8053 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
8054 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
8056 static void disas_fp_int_conv(DisasContext
*s
, uint32_t insn
)
8058 int rd
= extract32(insn
, 0, 5);
8059 int rn
= extract32(insn
, 5, 5);
8060 int opcode
= extract32(insn
, 16, 3);
8061 int rmode
= extract32(insn
, 19, 2);
8062 int type
= extract32(insn
, 22, 2);
8063 bool sbit
= extract32(insn
, 29, 1);
8064 bool sf
= extract32(insn
, 31, 1);
8068 goto do_unallocated
;
8076 case 4: /* FCVTAS */
8077 case 5: /* FCVTAU */
8079 goto do_unallocated
;
8082 case 0: /* FCVT[NPMZ]S */
8083 case 1: /* FCVT[NPMZ]U */
8085 case 0: /* float32 */
8086 case 1: /* float64 */
8088 case 3: /* float16 */
8089 if (!dc_isar_feature(aa64_fp16
, s
)) {
8090 goto do_unallocated
;
8094 goto do_unallocated
;
8096 if (!fp_access_check(s
)) {
8099 handle_fpfpcvt(s
, rd
, rn
, opcode
, itof
, rmode
, 64, sf
, type
);
8103 switch (sf
<< 7 | type
<< 5 | rmode
<< 3 | opcode
) {
8104 case 0b01100110: /* FMOV half <-> 32-bit int */
8106 case 0b11100110: /* FMOV half <-> 64-bit int */
8108 if (!dc_isar_feature(aa64_fp16
, s
)) {
8109 goto do_unallocated
;
8112 case 0b00000110: /* FMOV 32-bit */
8114 case 0b10100110: /* FMOV 64-bit */
8116 case 0b11001110: /* FMOV top half of 128-bit */
8118 if (!fp_access_check(s
)) {
8122 handle_fmov(s
, rd
, rn
, type
, itof
);
8125 case 0b00111110: /* FJCVTZS */
8126 if (!dc_isar_feature(aa64_jscvt
, s
)) {
8127 goto do_unallocated
;
8128 } else if (fp_access_check(s
)) {
8129 handle_fjcvtzs(s
, rd
, rn
);
8135 unallocated_encoding(s
);
8142 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
8143 * 31 30 29 28 25 24 0
8144 * +---+---+---+---------+-----------------------------+
8145 * | | 0 | | 1 1 1 1 | |
8146 * +---+---+---+---------+-----------------------------+
8148 static void disas_data_proc_fp(DisasContext
*s
, uint32_t insn
)
8150 if (extract32(insn
, 24, 1)) {
8151 /* Floating point data-processing (3 source) */
8152 disas_fp_3src(s
, insn
);
8153 } else if (extract32(insn
, 21, 1) == 0) {
8154 /* Floating point to fixed point conversions */
8155 disas_fp_fixed_conv(s
, insn
);
8157 switch (extract32(insn
, 10, 2)) {
8159 /* Floating point conditional compare */
8160 disas_fp_ccomp(s
, insn
);
8163 /* Floating point data-processing (2 source) */
8164 unallocated_encoding(s
); /* in decodetree */
8167 /* Floating point conditional select */
8168 disas_fp_csel(s
, insn
);
8171 switch (ctz32(extract32(insn
, 12, 4))) {
8172 case 0: /* [15:12] == xxx1 */
8173 /* Floating point immediate */
8174 disas_fp_imm(s
, insn
);
8176 case 1: /* [15:12] == xx10 */
8177 /* Floating point compare */
8178 disas_fp_compare(s
, insn
);
8180 case 2: /* [15:12] == x100 */
8181 /* Floating point data-processing (1 source) */
8182 disas_fp_1src(s
, insn
);
8184 case 3: /* [15:12] == 1000 */
8185 unallocated_encoding(s
);
8187 default: /* [15:12] == 0000 */
8188 /* Floating point <-> integer conversions */
8189 disas_fp_int_conv(s
, insn
);
8197 static void do_ext64(DisasContext
*s
, TCGv_i64 tcg_left
, TCGv_i64 tcg_right
,
8200 /* Extract 64 bits from the middle of two concatenated 64 bit
8201 * vector register slices left:right. The extracted bits start
8202 * at 'pos' bits into the right (least significant) side.
8203 * We return the result in tcg_right, and guarantee not to
8206 TCGv_i64 tcg_tmp
= tcg_temp_new_i64();
8207 assert(pos
> 0 && pos
< 64);
8209 tcg_gen_shri_i64(tcg_right
, tcg_right
, pos
);
8210 tcg_gen_shli_i64(tcg_tmp
, tcg_left
, 64 - pos
);
8211 tcg_gen_or_i64(tcg_right
, tcg_right
, tcg_tmp
);
8215 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
8216 * +---+---+-------------+-----+---+------+---+------+---+------+------+
8217 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
8218 * +---+---+-------------+-----+---+------+---+------+---+------+------+
8220 static void disas_simd_ext(DisasContext
*s
, uint32_t insn
)
8222 int is_q
= extract32(insn
, 30, 1);
8223 int op2
= extract32(insn
, 22, 2);
8224 int imm4
= extract32(insn
, 11, 4);
8225 int rm
= extract32(insn
, 16, 5);
8226 int rn
= extract32(insn
, 5, 5);
8227 int rd
= extract32(insn
, 0, 5);
8228 int pos
= imm4
<< 3;
8229 TCGv_i64 tcg_resl
, tcg_resh
;
8231 if (op2
!= 0 || (!is_q
&& extract32(imm4
, 3, 1))) {
8232 unallocated_encoding(s
);
8236 if (!fp_access_check(s
)) {
8240 tcg_resh
= tcg_temp_new_i64();
8241 tcg_resl
= tcg_temp_new_i64();
8243 /* Vd gets bits starting at pos bits into Vm:Vn. This is
8244 * either extracting 128 bits from a 128:128 concatenation, or
8245 * extracting 64 bits from a 64:64 concatenation.
8248 read_vec_element(s
, tcg_resl
, rn
, 0, MO_64
);
8250 read_vec_element(s
, tcg_resh
, rm
, 0, MO_64
);
8251 do_ext64(s
, tcg_resh
, tcg_resl
, pos
);
8259 EltPosns eltposns
[] = { {rn
, 0}, {rn
, 1}, {rm
, 0}, {rm
, 1} };
8260 EltPosns
*elt
= eltposns
;
8267 read_vec_element(s
, tcg_resl
, elt
->reg
, elt
->elt
, MO_64
);
8269 read_vec_element(s
, tcg_resh
, elt
->reg
, elt
->elt
, MO_64
);
8272 do_ext64(s
, tcg_resh
, tcg_resl
, pos
);
8273 tcg_hh
= tcg_temp_new_i64();
8274 read_vec_element(s
, tcg_hh
, elt
->reg
, elt
->elt
, MO_64
);
8275 do_ext64(s
, tcg_hh
, tcg_resh
, pos
);
8279 write_vec_element(s
, tcg_resl
, rd
, 0, MO_64
);
8281 write_vec_element(s
, tcg_resh
, rd
, 1, MO_64
);
8283 clear_vec_high(s
, is_q
, rd
);
8287 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
8288 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
8289 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
8290 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
8292 static void disas_simd_tb(DisasContext
*s
, uint32_t insn
)
8294 int op2
= extract32(insn
, 22, 2);
8295 int is_q
= extract32(insn
, 30, 1);
8296 int rm
= extract32(insn
, 16, 5);
8297 int rn
= extract32(insn
, 5, 5);
8298 int rd
= extract32(insn
, 0, 5);
8299 int is_tbx
= extract32(insn
, 12, 1);
8300 int len
= (extract32(insn
, 13, 2) + 1) * 16;
8303 unallocated_encoding(s
);
8307 if (!fp_access_check(s
)) {
8311 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s
, rd
),
8312 vec_full_reg_offset(s
, rm
), tcg_env
,
8313 is_q
? 16 : 8, vec_full_reg_size(s
),
8314 (len
<< 6) | (is_tbx
<< 5) | rn
,
8315 gen_helper_simd_tblx
);
8319 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
8320 * +---+---+-------------+------+---+------+---+------------------+------+
8321 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
8322 * +---+---+-------------+------+---+------+---+------------------+------+
8324 static void disas_simd_zip_trn(DisasContext
*s
, uint32_t insn
)
8326 int rd
= extract32(insn
, 0, 5);
8327 int rn
= extract32(insn
, 5, 5);
8328 int rm
= extract32(insn
, 16, 5);
8329 int size
= extract32(insn
, 22, 2);
8330 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
8331 * bit 2 indicates 1 vs 2 variant of the insn.
8333 int opcode
= extract32(insn
, 12, 2);
8334 bool part
= extract32(insn
, 14, 1);
8335 bool is_q
= extract32(insn
, 30, 1);
8336 int esize
= 8 << size
;
8338 int datasize
= is_q
? 128 : 64;
8339 int elements
= datasize
/ esize
;
8340 TCGv_i64 tcg_res
[2], tcg_ele
;
8342 if (opcode
== 0 || (size
== 3 && !is_q
)) {
8343 unallocated_encoding(s
);
8347 if (!fp_access_check(s
)) {
8351 tcg_res
[0] = tcg_temp_new_i64();
8352 tcg_res
[1] = is_q
? tcg_temp_new_i64() : NULL
;
8353 tcg_ele
= tcg_temp_new_i64();
8355 for (i
= 0; i
< elements
; i
++) {
8359 case 1: /* UZP1/2 */
8361 int midpoint
= elements
/ 2;
8363 read_vec_element(s
, tcg_ele
, rn
, 2 * i
+ part
, size
);
8365 read_vec_element(s
, tcg_ele
, rm
,
8366 2 * (i
- midpoint
) + part
, size
);
8370 case 2: /* TRN1/2 */
8372 read_vec_element(s
, tcg_ele
, rm
, (i
& ~1) + part
, size
);
8374 read_vec_element(s
, tcg_ele
, rn
, (i
& ~1) + part
, size
);
8377 case 3: /* ZIP1/2 */
8379 int base
= part
* elements
/ 2;
8381 read_vec_element(s
, tcg_ele
, rm
, base
+ (i
>> 1), size
);
8383 read_vec_element(s
, tcg_ele
, rn
, base
+ (i
>> 1), size
);
8388 g_assert_not_reached();
8391 w
= (i
* esize
) / 64;
8392 o
= (i
* esize
) % 64;
8394 tcg_gen_mov_i64(tcg_res
[w
], tcg_ele
);
8396 tcg_gen_shli_i64(tcg_ele
, tcg_ele
, o
);
8397 tcg_gen_or_i64(tcg_res
[w
], tcg_res
[w
], tcg_ele
);
8401 for (i
= 0; i
<= is_q
; ++i
) {
8402 write_vec_element(s
, tcg_res
[i
], rd
, i
, MO_64
);
8404 clear_vec_high(s
, is_q
, rd
);
8408 * do_reduction_op helper
8410 * This mirrors the Reduce() pseudocode in the ARM ARM. It is
8411 * important for correct NaN propagation that we do these
8412 * operations in exactly the order specified by the pseudocode.
8414 * This is a recursive function, TCG temps should be freed by the
8415 * calling function once it is done with the values.
8417 static TCGv_i32
do_reduction_op(DisasContext
*s
, int fpopcode
, int rn
,
8418 int esize
, int size
, int vmap
, TCGv_ptr fpst
)
8420 if (esize
== size
) {
8422 MemOp msize
= esize
== 16 ? MO_16
: MO_32
;
8425 /* We should have one register left here */
8426 assert(ctpop8(vmap
) == 1);
8427 element
= ctz32(vmap
);
8428 assert(element
< 8);
8430 tcg_elem
= tcg_temp_new_i32();
8431 read_vec_element_i32(s
, tcg_elem
, rn
, element
, msize
);
8434 int bits
= size
/ 2;
8435 int shift
= ctpop8(vmap
) / 2;
8436 int vmap_lo
= (vmap
>> shift
) & vmap
;
8437 int vmap_hi
= (vmap
& ~vmap_lo
);
8438 TCGv_i32 tcg_hi
, tcg_lo
, tcg_res
;
8440 tcg_hi
= do_reduction_op(s
, fpopcode
, rn
, esize
, bits
, vmap_hi
, fpst
);
8441 tcg_lo
= do_reduction_op(s
, fpopcode
, rn
, esize
, bits
, vmap_lo
, fpst
);
8442 tcg_res
= tcg_temp_new_i32();
8445 case 0x0c: /* fmaxnmv half-precision */
8446 gen_helper_advsimd_maxnumh(tcg_res
, tcg_lo
, tcg_hi
, fpst
);
8448 case 0x0f: /* fmaxv half-precision */
8449 gen_helper_advsimd_maxh(tcg_res
, tcg_lo
, tcg_hi
, fpst
);
8451 case 0x1c: /* fminnmv half-precision */
8452 gen_helper_advsimd_minnumh(tcg_res
, tcg_lo
, tcg_hi
, fpst
);
8454 case 0x1f: /* fminv half-precision */
8455 gen_helper_advsimd_minh(tcg_res
, tcg_lo
, tcg_hi
, fpst
);
8457 case 0x2c: /* fmaxnmv */
8458 gen_helper_vfp_maxnums(tcg_res
, tcg_lo
, tcg_hi
, fpst
);
8460 case 0x2f: /* fmaxv */
8461 gen_helper_vfp_maxs(tcg_res
, tcg_lo
, tcg_hi
, fpst
);
8463 case 0x3c: /* fminnmv */
8464 gen_helper_vfp_minnums(tcg_res
, tcg_lo
, tcg_hi
, fpst
);
8466 case 0x3f: /* fminv */
8467 gen_helper_vfp_mins(tcg_res
, tcg_lo
, tcg_hi
, fpst
);
8470 g_assert_not_reached();
8476 /* AdvSIMD across lanes
8477 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
8478 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
8479 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
8480 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
8482 static void disas_simd_across_lanes(DisasContext
*s
, uint32_t insn
)
8484 int rd
= extract32(insn
, 0, 5);
8485 int rn
= extract32(insn
, 5, 5);
8486 int size
= extract32(insn
, 22, 2);
8487 int opcode
= extract32(insn
, 12, 5);
8488 bool is_q
= extract32(insn
, 30, 1);
8489 bool is_u
= extract32(insn
, 29, 1);
8491 bool is_min
= false;
8495 TCGv_i64 tcg_res
, tcg_elt
;
8498 case 0x1b: /* ADDV */
8500 unallocated_encoding(s
);
8504 case 0x3: /* SADDLV, UADDLV */
8505 case 0xa: /* SMAXV, UMAXV */
8506 case 0x1a: /* SMINV, UMINV */
8507 if (size
== 3 || (size
== 2 && !is_q
)) {
8508 unallocated_encoding(s
);
8512 case 0xc: /* FMAXNMV, FMINNMV */
8513 case 0xf: /* FMAXV, FMINV */
8514 /* Bit 1 of size field encodes min vs max and the actual size
8515 * depends on the encoding of the U bit. If not set (and FP16
8516 * enabled) then we do half-precision float instead of single
8519 is_min
= extract32(size
, 1, 1);
8521 if (!is_u
&& dc_isar_feature(aa64_fp16
, s
)) {
8523 } else if (!is_u
|| !is_q
|| extract32(size
, 0, 1)) {
8524 unallocated_encoding(s
);
8531 unallocated_encoding(s
);
8535 if (!fp_access_check(s
)) {
8540 elements
= (is_q
? 128 : 64) / esize
;
8542 tcg_res
= tcg_temp_new_i64();
8543 tcg_elt
= tcg_temp_new_i64();
8545 /* These instructions operate across all lanes of a vector
8546 * to produce a single result. We can guarantee that a 64
8547 * bit intermediate is sufficient:
8548 * + for [US]ADDLV the maximum element size is 32 bits, and
8549 * the result type is 64 bits
8550 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
8551 * same as the element size, which is 32 bits at most
8552 * For the integer operations we can choose to work at 64
8553 * or 32 bits and truncate at the end; for simplicity
8554 * we use 64 bits always. The floating point
8555 * ops do require 32 bit intermediates, though.
8558 read_vec_element(s
, tcg_res
, rn
, 0, size
| (is_u
? 0 : MO_SIGN
));
8560 for (i
= 1; i
< elements
; i
++) {
8561 read_vec_element(s
, tcg_elt
, rn
, i
, size
| (is_u
? 0 : MO_SIGN
));
8564 case 0x03: /* SADDLV / UADDLV */
8565 case 0x1b: /* ADDV */
8566 tcg_gen_add_i64(tcg_res
, tcg_res
, tcg_elt
);
8568 case 0x0a: /* SMAXV / UMAXV */
8570 tcg_gen_umax_i64(tcg_res
, tcg_res
, tcg_elt
);
8572 tcg_gen_smax_i64(tcg_res
, tcg_res
, tcg_elt
);
8575 case 0x1a: /* SMINV / UMINV */
8577 tcg_gen_umin_i64(tcg_res
, tcg_res
, tcg_elt
);
8579 tcg_gen_smin_i64(tcg_res
, tcg_res
, tcg_elt
);
8583 g_assert_not_reached();
8588 /* Floating point vector reduction ops which work across 32
8589 * bit (single) or 16 bit (half-precision) intermediates.
8590 * Note that correct NaN propagation requires that we do these
8591 * operations in exactly the order specified by the pseudocode.
8593 TCGv_ptr fpst
= fpstatus_ptr(size
== MO_16
? FPST_FPCR_F16
: FPST_FPCR
);
8594 int fpopcode
= opcode
| is_min
<< 4 | is_u
<< 5;
8595 int vmap
= (1 << elements
) - 1;
8596 TCGv_i32 tcg_res32
= do_reduction_op(s
, fpopcode
, rn
, esize
,
8597 (is_q
? 128 : 64), vmap
, fpst
);
8598 tcg_gen_extu_i32_i64(tcg_res
, tcg_res32
);
8601 /* Now truncate the result to the width required for the final output */
8602 if (opcode
== 0x03) {
8603 /* SADDLV, UADDLV: result is 2*esize */
8609 tcg_gen_ext8u_i64(tcg_res
, tcg_res
);
8612 tcg_gen_ext16u_i64(tcg_res
, tcg_res
);
8615 tcg_gen_ext32u_i64(tcg_res
, tcg_res
);
8620 g_assert_not_reached();
8623 write_fp_dreg(s
, rd
, tcg_res
);
8626 /* AdvSIMD modified immediate
8627 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
8628 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8629 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
8630 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8632 * There are a number of operations that can be carried out here:
8633 * MOVI - move (shifted) imm into register
8634 * MVNI - move inverted (shifted) imm into register
8635 * ORR - bitwise OR of (shifted) imm with register
8636 * BIC - bitwise clear of (shifted) imm with register
8637 * With ARMv8.2 we also have:
8638 * FMOV half-precision
8640 static void disas_simd_mod_imm(DisasContext
*s
, uint32_t insn
)
8642 int rd
= extract32(insn
, 0, 5);
8643 int cmode
= extract32(insn
, 12, 4);
8644 int o2
= extract32(insn
, 11, 1);
8645 uint64_t abcdefgh
= extract32(insn
, 5, 5) | (extract32(insn
, 16, 3) << 5);
8646 bool is_neg
= extract32(insn
, 29, 1);
8647 bool is_q
= extract32(insn
, 30, 1);
8651 if (cmode
!= 0xf || is_neg
) {
8652 unallocated_encoding(s
);
8655 /* FMOV (vector, immediate) - half-precision */
8656 if (!dc_isar_feature(aa64_fp16
, s
)) {
8657 unallocated_encoding(s
);
8660 imm
= vfp_expand_imm(MO_16
, abcdefgh
);
8661 /* now duplicate across the lanes */
8662 imm
= dup_const(MO_16
, imm
);
8664 if (cmode
== 0xf && is_neg
&& !is_q
) {
8665 unallocated_encoding(s
);
8668 imm
= asimd_imm_const(abcdefgh
, cmode
, is_neg
);
8671 if (!fp_access_check(s
)) {
8675 if (!((cmode
& 0x9) == 0x1 || (cmode
& 0xd) == 0x9)) {
8676 /* MOVI or MVNI, with MVNI negation handled above. */
8677 tcg_gen_gvec_dup_imm(MO_64
, vec_full_reg_offset(s
, rd
), is_q
? 16 : 8,
8678 vec_full_reg_size(s
), imm
);
8680 /* ORR or BIC, with BIC negation to AND handled above. */
8682 gen_gvec_fn2i(s
, is_q
, rd
, rd
, imm
, tcg_gen_gvec_andi
, MO_64
);
8684 gen_gvec_fn2i(s
, is_q
, rd
, rd
, imm
, tcg_gen_gvec_ori
, MO_64
);
8690 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8692 * This code is handles the common shifting code and is used by both
8693 * the vector and scalar code.
8695 static void handle_shri_with_rndacc(TCGv_i64 tcg_res
, TCGv_i64 tcg_src
,
8696 TCGv_i64 tcg_rnd
, bool accumulate
,
8697 bool is_u
, int size
, int shift
)
8699 bool extended_result
= false;
8700 bool round
= tcg_rnd
!= NULL
;
8702 TCGv_i64 tcg_src_hi
;
8704 if (round
&& size
== 3) {
8705 extended_result
= true;
8706 ext_lshift
= 64 - shift
;
8707 tcg_src_hi
= tcg_temp_new_i64();
8708 } else if (shift
== 64) {
8709 if (!accumulate
&& is_u
) {
8710 /* result is zero */
8711 tcg_gen_movi_i64(tcg_res
, 0);
8716 /* Deal with the rounding step */
8718 if (extended_result
) {
8719 TCGv_i64 tcg_zero
= tcg_constant_i64(0);
8721 /* take care of sign extending tcg_res */
8722 tcg_gen_sari_i64(tcg_src_hi
, tcg_src
, 63);
8723 tcg_gen_add2_i64(tcg_src
, tcg_src_hi
,
8724 tcg_src
, tcg_src_hi
,
8727 tcg_gen_add2_i64(tcg_src
, tcg_src_hi
,
8732 tcg_gen_add_i64(tcg_src
, tcg_src
, tcg_rnd
);
8736 /* Now do the shift right */
8737 if (round
&& extended_result
) {
8738 /* extended case, >64 bit precision required */
8739 if (ext_lshift
== 0) {
8740 /* special case, only high bits matter */
8741 tcg_gen_mov_i64(tcg_src
, tcg_src_hi
);
8743 tcg_gen_shri_i64(tcg_src
, tcg_src
, shift
);
8744 tcg_gen_shli_i64(tcg_src_hi
, tcg_src_hi
, ext_lshift
);
8745 tcg_gen_or_i64(tcg_src
, tcg_src
, tcg_src_hi
);
8750 /* essentially shifting in 64 zeros */
8751 tcg_gen_movi_i64(tcg_src
, 0);
8753 tcg_gen_shri_i64(tcg_src
, tcg_src
, shift
);
8757 /* effectively extending the sign-bit */
8758 tcg_gen_sari_i64(tcg_src
, tcg_src
, 63);
8760 tcg_gen_sari_i64(tcg_src
, tcg_src
, shift
);
8766 tcg_gen_add_i64(tcg_res
, tcg_res
, tcg_src
);
8768 tcg_gen_mov_i64(tcg_res
, tcg_src
);
8772 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8773 static void handle_scalar_simd_shri(DisasContext
*s
,
8774 bool is_u
, int immh
, int immb
,
8775 int opcode
, int rn
, int rd
)
8778 int immhb
= immh
<< 3 | immb
;
8779 int shift
= 2 * (8 << size
) - immhb
;
8780 bool accumulate
= false;
8782 bool insert
= false;
8787 if (!extract32(immh
, 3, 1)) {
8788 unallocated_encoding(s
);
8792 if (!fp_access_check(s
)) {
8797 case 0x02: /* SSRA / USRA (accumulate) */
8800 case 0x04: /* SRSHR / URSHR (rounding) */
8803 case 0x06: /* SRSRA / URSRA (accum + rounding) */
8804 accumulate
= round
= true;
8806 case 0x08: /* SRI */
8812 tcg_round
= tcg_constant_i64(1ULL << (shift
- 1));
8817 tcg_rn
= read_fp_dreg(s
, rn
);
8818 tcg_rd
= (accumulate
|| insert
) ? read_fp_dreg(s
, rd
) : tcg_temp_new_i64();
8821 /* shift count same as element size is valid but does nothing;
8822 * special case to avoid potential shift by 64.
8824 int esize
= 8 << size
;
8825 if (shift
!= esize
) {
8826 tcg_gen_shri_i64(tcg_rn
, tcg_rn
, shift
);
8827 tcg_gen_deposit_i64(tcg_rd
, tcg_rd
, tcg_rn
, 0, esize
- shift
);
8830 handle_shri_with_rndacc(tcg_rd
, tcg_rn
, tcg_round
,
8831 accumulate
, is_u
, size
, shift
);
8834 write_fp_dreg(s
, rd
, tcg_rd
);
8837 /* SHL/SLI - Scalar shift left */
8838 static void handle_scalar_simd_shli(DisasContext
*s
, bool insert
,
8839 int immh
, int immb
, int opcode
,
8842 int size
= 32 - clz32(immh
) - 1;
8843 int immhb
= immh
<< 3 | immb
;
8844 int shift
= immhb
- (8 << size
);
8848 if (!extract32(immh
, 3, 1)) {
8849 unallocated_encoding(s
);
8853 if (!fp_access_check(s
)) {
8857 tcg_rn
= read_fp_dreg(s
, rn
);
8858 tcg_rd
= insert
? read_fp_dreg(s
, rd
) : tcg_temp_new_i64();
8861 tcg_gen_deposit_i64(tcg_rd
, tcg_rd
, tcg_rn
, shift
, 64 - shift
);
8863 tcg_gen_shli_i64(tcg_rd
, tcg_rn
, shift
);
8866 write_fp_dreg(s
, rd
, tcg_rd
);
8869 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8870 * (signed/unsigned) narrowing */
8871 static void handle_vec_simd_sqshrn(DisasContext
*s
, bool is_scalar
, bool is_q
,
8872 bool is_u_shift
, bool is_u_narrow
,
8873 int immh
, int immb
, int opcode
,
8876 int immhb
= immh
<< 3 | immb
;
8877 int size
= 32 - clz32(immh
) - 1;
8878 int esize
= 8 << size
;
8879 int shift
= (2 * esize
) - immhb
;
8880 int elements
= is_scalar
? 1 : (64 / esize
);
8881 bool round
= extract32(opcode
, 0, 1);
8882 MemOp ldop
= (size
+ 1) | (is_u_shift
? 0 : MO_SIGN
);
8883 TCGv_i64 tcg_rn
, tcg_rd
, tcg_round
;
8884 TCGv_i32 tcg_rd_narrowed
;
8887 static NeonGenNarrowEnvFn
* const signed_narrow_fns
[4][2] = {
8888 { gen_helper_neon_narrow_sat_s8
,
8889 gen_helper_neon_unarrow_sat8
},
8890 { gen_helper_neon_narrow_sat_s16
,
8891 gen_helper_neon_unarrow_sat16
},
8892 { gen_helper_neon_narrow_sat_s32
,
8893 gen_helper_neon_unarrow_sat32
},
8896 static NeonGenNarrowEnvFn
* const unsigned_narrow_fns
[4] = {
8897 gen_helper_neon_narrow_sat_u8
,
8898 gen_helper_neon_narrow_sat_u16
,
8899 gen_helper_neon_narrow_sat_u32
,
8902 NeonGenNarrowEnvFn
*narrowfn
;
8908 if (extract32(immh
, 3, 1)) {
8909 unallocated_encoding(s
);
8913 if (!fp_access_check(s
)) {
8918 narrowfn
= unsigned_narrow_fns
[size
];
8920 narrowfn
= signed_narrow_fns
[size
][is_u_narrow
? 1 : 0];
8923 tcg_rn
= tcg_temp_new_i64();
8924 tcg_rd
= tcg_temp_new_i64();
8925 tcg_rd_narrowed
= tcg_temp_new_i32();
8926 tcg_final
= tcg_temp_new_i64();
8929 tcg_round
= tcg_constant_i64(1ULL << (shift
- 1));
8934 for (i
= 0; i
< elements
; i
++) {
8935 read_vec_element(s
, tcg_rn
, rn
, i
, ldop
);
8936 handle_shri_with_rndacc(tcg_rd
, tcg_rn
, tcg_round
,
8937 false, is_u_shift
, size
+1, shift
);
8938 narrowfn(tcg_rd_narrowed
, tcg_env
, tcg_rd
);
8939 tcg_gen_extu_i32_i64(tcg_rd
, tcg_rd_narrowed
);
8941 tcg_gen_extract_i64(tcg_final
, tcg_rd
, 0, esize
);
8943 tcg_gen_deposit_i64(tcg_final
, tcg_final
, tcg_rd
, esize
* i
, esize
);
8948 write_vec_element(s
, tcg_final
, rd
, 0, MO_64
);
8950 write_vec_element(s
, tcg_final
, rd
, 1, MO_64
);
8952 clear_vec_high(s
, is_q
, rd
);
8955 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8956 static void handle_simd_qshl(DisasContext
*s
, bool scalar
, bool is_q
,
8957 bool src_unsigned
, bool dst_unsigned
,
8958 int immh
, int immb
, int rn
, int rd
)
8960 int immhb
= immh
<< 3 | immb
;
8961 int size
= 32 - clz32(immh
) - 1;
8962 int shift
= immhb
- (8 << size
);
8966 assert(!(scalar
&& is_q
));
8969 if (!is_q
&& extract32(immh
, 3, 1)) {
8970 unallocated_encoding(s
);
8974 /* Since we use the variable-shift helpers we must
8975 * replicate the shift count into each element of
8976 * the tcg_shift value.
8980 shift
|= shift
<< 8;
8983 shift
|= shift
<< 16;
8989 g_assert_not_reached();
8993 if (!fp_access_check(s
)) {
8998 TCGv_i64 tcg_shift
= tcg_constant_i64(shift
);
8999 static NeonGenTwo64OpEnvFn
* const fns
[2][2] = {
9000 { gen_helper_neon_qshl_s64
, gen_helper_neon_qshlu_s64
},
9001 { NULL
, gen_helper_neon_qshl_u64
},
9003 NeonGenTwo64OpEnvFn
*genfn
= fns
[src_unsigned
][dst_unsigned
];
9004 int maxpass
= is_q
? 2 : 1;
9006 for (pass
= 0; pass
< maxpass
; pass
++) {
9007 TCGv_i64 tcg_op
= tcg_temp_new_i64();
9009 read_vec_element(s
, tcg_op
, rn
, pass
, MO_64
);
9010 genfn(tcg_op
, tcg_env
, tcg_op
, tcg_shift
);
9011 write_vec_element(s
, tcg_op
, rd
, pass
, MO_64
);
9013 clear_vec_high(s
, is_q
, rd
);
9015 TCGv_i32 tcg_shift
= tcg_constant_i32(shift
);
9016 static NeonGenTwoOpEnvFn
* const fns
[2][2][3] = {
9018 { gen_helper_neon_qshl_s8
,
9019 gen_helper_neon_qshl_s16
,
9020 gen_helper_neon_qshl_s32
},
9021 { gen_helper_neon_qshlu_s8
,
9022 gen_helper_neon_qshlu_s16
,
9023 gen_helper_neon_qshlu_s32
}
9025 { NULL
, NULL
, NULL
},
9026 { gen_helper_neon_qshl_u8
,
9027 gen_helper_neon_qshl_u16
,
9028 gen_helper_neon_qshl_u32
}
9031 NeonGenTwoOpEnvFn
*genfn
= fns
[src_unsigned
][dst_unsigned
][size
];
9032 MemOp memop
= scalar
? size
: MO_32
;
9033 int maxpass
= scalar
? 1 : is_q
? 4 : 2;
9035 for (pass
= 0; pass
< maxpass
; pass
++) {
9036 TCGv_i32 tcg_op
= tcg_temp_new_i32();
9038 read_vec_element_i32(s
, tcg_op
, rn
, pass
, memop
);
9039 genfn(tcg_op
, tcg_env
, tcg_op
, tcg_shift
);
9043 tcg_gen_ext8u_i32(tcg_op
, tcg_op
);
9046 tcg_gen_ext16u_i32(tcg_op
, tcg_op
);
9051 g_assert_not_reached();
9053 write_fp_sreg(s
, rd
, tcg_op
);
9055 write_vec_element_i32(s
, tcg_op
, rd
, pass
, MO_32
);
9060 clear_vec_high(s
, is_q
, rd
);
9065 /* Common vector code for handling integer to FP conversion */
9066 static void handle_simd_intfp_conv(DisasContext
*s
, int rd
, int rn
,
9067 int elements
, int is_signed
,
9068 int fracbits
, int size
)
9070 TCGv_ptr tcg_fpst
= fpstatus_ptr(size
== MO_16
? FPST_FPCR_F16
: FPST_FPCR
);
9071 TCGv_i32 tcg_shift
= NULL
;
9073 MemOp mop
= size
| (is_signed
? MO_SIGN
: 0);
9076 if (fracbits
|| size
== MO_64
) {
9077 tcg_shift
= tcg_constant_i32(fracbits
);
9080 if (size
== MO_64
) {
9081 TCGv_i64 tcg_int64
= tcg_temp_new_i64();
9082 TCGv_i64 tcg_double
= tcg_temp_new_i64();
9084 for (pass
= 0; pass
< elements
; pass
++) {
9085 read_vec_element(s
, tcg_int64
, rn
, pass
, mop
);
9088 gen_helper_vfp_sqtod(tcg_double
, tcg_int64
,
9089 tcg_shift
, tcg_fpst
);
9091 gen_helper_vfp_uqtod(tcg_double
, tcg_int64
,
9092 tcg_shift
, tcg_fpst
);
9094 if (elements
== 1) {
9095 write_fp_dreg(s
, rd
, tcg_double
);
9097 write_vec_element(s
, tcg_double
, rd
, pass
, MO_64
);
9101 TCGv_i32 tcg_int32
= tcg_temp_new_i32();
9102 TCGv_i32 tcg_float
= tcg_temp_new_i32();
9104 for (pass
= 0; pass
< elements
; pass
++) {
9105 read_vec_element_i32(s
, tcg_int32
, rn
, pass
, mop
);
9111 gen_helper_vfp_sltos(tcg_float
, tcg_int32
,
9112 tcg_shift
, tcg_fpst
);
9114 gen_helper_vfp_ultos(tcg_float
, tcg_int32
,
9115 tcg_shift
, tcg_fpst
);
9119 gen_helper_vfp_sitos(tcg_float
, tcg_int32
, tcg_fpst
);
9121 gen_helper_vfp_uitos(tcg_float
, tcg_int32
, tcg_fpst
);
9128 gen_helper_vfp_sltoh(tcg_float
, tcg_int32
,
9129 tcg_shift
, tcg_fpst
);
9131 gen_helper_vfp_ultoh(tcg_float
, tcg_int32
,
9132 tcg_shift
, tcg_fpst
);
9136 gen_helper_vfp_sitoh(tcg_float
, tcg_int32
, tcg_fpst
);
9138 gen_helper_vfp_uitoh(tcg_float
, tcg_int32
, tcg_fpst
);
9143 g_assert_not_reached();
9146 if (elements
== 1) {
9147 write_fp_sreg(s
, rd
, tcg_float
);
9149 write_vec_element_i32(s
, tcg_float
, rd
, pass
, size
);
9154 clear_vec_high(s
, elements
<< size
== 16, rd
);
9157 /* UCVTF/SCVTF - Integer to FP conversion */
9158 static void handle_simd_shift_intfp_conv(DisasContext
*s
, bool is_scalar
,
9159 bool is_q
, bool is_u
,
9160 int immh
, int immb
, int opcode
,
9163 int size
, elements
, fracbits
;
9164 int immhb
= immh
<< 3 | immb
;
9168 if (!is_scalar
&& !is_q
) {
9169 unallocated_encoding(s
);
9172 } else if (immh
& 4) {
9174 } else if (immh
& 2) {
9176 if (!dc_isar_feature(aa64_fp16
, s
)) {
9177 unallocated_encoding(s
);
9181 /* immh == 0 would be a failure of the decode logic */
9182 g_assert(immh
== 1);
9183 unallocated_encoding(s
);
9190 elements
= (8 << is_q
) >> size
;
9192 fracbits
= (16 << size
) - immhb
;
9194 if (!fp_access_check(s
)) {
9198 handle_simd_intfp_conv(s
, rd
, rn
, elements
, !is_u
, fracbits
, size
);
9201 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
9202 static void handle_simd_shift_fpint_conv(DisasContext
*s
, bool is_scalar
,
9203 bool is_q
, bool is_u
,
9204 int immh
, int immb
, int rn
, int rd
)
9206 int immhb
= immh
<< 3 | immb
;
9207 int pass
, size
, fracbits
;
9208 TCGv_ptr tcg_fpstatus
;
9209 TCGv_i32 tcg_rmode
, tcg_shift
;
9213 if (!is_scalar
&& !is_q
) {
9214 unallocated_encoding(s
);
9217 } else if (immh
& 0x4) {
9219 } else if (immh
& 0x2) {
9221 if (!dc_isar_feature(aa64_fp16
, s
)) {
9222 unallocated_encoding(s
);
9226 /* Should have split out AdvSIMD modified immediate earlier. */
9228 unallocated_encoding(s
);
9232 if (!fp_access_check(s
)) {
9236 assert(!(is_scalar
&& is_q
));
9238 tcg_fpstatus
= fpstatus_ptr(size
== MO_16
? FPST_FPCR_F16
: FPST_FPCR
);
9239 tcg_rmode
= gen_set_rmode(FPROUNDING_ZERO
, tcg_fpstatus
);
9240 fracbits
= (16 << size
) - immhb
;
9241 tcg_shift
= tcg_constant_i32(fracbits
);
9243 if (size
== MO_64
) {
9244 int maxpass
= is_scalar
? 1 : 2;
9246 for (pass
= 0; pass
< maxpass
; pass
++) {
9247 TCGv_i64 tcg_op
= tcg_temp_new_i64();
9249 read_vec_element(s
, tcg_op
, rn
, pass
, MO_64
);
9251 gen_helper_vfp_touqd(tcg_op
, tcg_op
, tcg_shift
, tcg_fpstatus
);
9253 gen_helper_vfp_tosqd(tcg_op
, tcg_op
, tcg_shift
, tcg_fpstatus
);
9255 write_vec_element(s
, tcg_op
, rd
, pass
, MO_64
);
9257 clear_vec_high(s
, is_q
, rd
);
9259 void (*fn
)(TCGv_i32
, TCGv_i32
, TCGv_i32
, TCGv_ptr
);
9260 int maxpass
= is_scalar
? 1 : ((8 << is_q
) >> size
);
9265 fn
= gen_helper_vfp_touhh
;
9267 fn
= gen_helper_vfp_toshh
;
9272 fn
= gen_helper_vfp_touls
;
9274 fn
= gen_helper_vfp_tosls
;
9278 g_assert_not_reached();
9281 for (pass
= 0; pass
< maxpass
; pass
++) {
9282 TCGv_i32 tcg_op
= tcg_temp_new_i32();
9284 read_vec_element_i32(s
, tcg_op
, rn
, pass
, size
);
9285 fn(tcg_op
, tcg_op
, tcg_shift
, tcg_fpstatus
);
9287 if (size
== MO_16
&& !is_u
) {
9288 tcg_gen_ext16u_i32(tcg_op
, tcg_op
);
9290 write_fp_sreg(s
, rd
, tcg_op
);
9292 write_vec_element_i32(s
, tcg_op
, rd
, pass
, size
);
9296 clear_vec_high(s
, is_q
, rd
);
9300 gen_restore_rmode(tcg_rmode
, tcg_fpstatus
);
9303 /* AdvSIMD scalar shift by immediate
9304 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
9305 * +-----+---+-------------+------+------+--------+---+------+------+
9306 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
9307 * +-----+---+-------------+------+------+--------+---+------+------+
9309 * This is the scalar version so it works on a fixed sized registers
9311 static void disas_simd_scalar_shift_imm(DisasContext
*s
, uint32_t insn
)
9313 int rd
= extract32(insn
, 0, 5);
9314 int rn
= extract32(insn
, 5, 5);
9315 int opcode
= extract32(insn
, 11, 5);
9316 int immb
= extract32(insn
, 16, 3);
9317 int immh
= extract32(insn
, 19, 4);
9318 bool is_u
= extract32(insn
, 29, 1);
9321 unallocated_encoding(s
);
9326 case 0x08: /* SRI */
9328 unallocated_encoding(s
);
9332 case 0x00: /* SSHR / USHR */
9333 case 0x02: /* SSRA / USRA */
9334 case 0x04: /* SRSHR / URSHR */
9335 case 0x06: /* SRSRA / URSRA */
9336 handle_scalar_simd_shri(s
, is_u
, immh
, immb
, opcode
, rn
, rd
);
9338 case 0x0a: /* SHL / SLI */
9339 handle_scalar_simd_shli(s
, is_u
, immh
, immb
, opcode
, rn
, rd
);
9341 case 0x1c: /* SCVTF, UCVTF */
9342 handle_simd_shift_intfp_conv(s
, true, false, is_u
, immh
, immb
,
9345 case 0x10: /* SQSHRUN, SQSHRUN2 */
9346 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
9348 unallocated_encoding(s
);
9351 handle_vec_simd_sqshrn(s
, true, false, false, true,
9352 immh
, immb
, opcode
, rn
, rd
);
9354 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
9355 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
9356 handle_vec_simd_sqshrn(s
, true, false, is_u
, is_u
,
9357 immh
, immb
, opcode
, rn
, rd
);
9359 case 0xc: /* SQSHLU */
9361 unallocated_encoding(s
);
9364 handle_simd_qshl(s
, true, false, false, true, immh
, immb
, rn
, rd
);
9366 case 0xe: /* SQSHL, UQSHL */
9367 handle_simd_qshl(s
, true, false, is_u
, is_u
, immh
, immb
, rn
, rd
);
9369 case 0x1f: /* FCVTZS, FCVTZU */
9370 handle_simd_shift_fpint_conv(s
, true, false, is_u
, immh
, immb
, rn
, rd
);
9373 unallocated_encoding(s
);
9378 /* AdvSIMD scalar three different
9379 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
9380 * +-----+---+-----------+------+---+------+--------+-----+------+------+
9381 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
9382 * +-----+---+-----------+------+---+------+--------+-----+------+------+
9384 static void disas_simd_scalar_three_reg_diff(DisasContext
*s
, uint32_t insn
)
9386 bool is_u
= extract32(insn
, 29, 1);
9387 int size
= extract32(insn
, 22, 2);
9388 int opcode
= extract32(insn
, 12, 4);
9389 int rm
= extract32(insn
, 16, 5);
9390 int rn
= extract32(insn
, 5, 5);
9391 int rd
= extract32(insn
, 0, 5);
9394 unallocated_encoding(s
);
9399 case 0x9: /* SQDMLAL, SQDMLAL2 */
9400 case 0xb: /* SQDMLSL, SQDMLSL2 */
9401 case 0xd: /* SQDMULL, SQDMULL2 */
9402 if (size
== 0 || size
== 3) {
9403 unallocated_encoding(s
);
9408 unallocated_encoding(s
);
9412 if (!fp_access_check(s
)) {
9417 TCGv_i64 tcg_op1
= tcg_temp_new_i64();
9418 TCGv_i64 tcg_op2
= tcg_temp_new_i64();
9419 TCGv_i64 tcg_res
= tcg_temp_new_i64();
9421 read_vec_element(s
, tcg_op1
, rn
, 0, MO_32
| MO_SIGN
);
9422 read_vec_element(s
, tcg_op2
, rm
, 0, MO_32
| MO_SIGN
);
9424 tcg_gen_mul_i64(tcg_res
, tcg_op1
, tcg_op2
);
9425 gen_helper_neon_addl_saturate_s64(tcg_res
, tcg_env
, tcg_res
, tcg_res
);
9428 case 0xd: /* SQDMULL, SQDMULL2 */
9430 case 0xb: /* SQDMLSL, SQDMLSL2 */
9431 tcg_gen_neg_i64(tcg_res
, tcg_res
);
9433 case 0x9: /* SQDMLAL, SQDMLAL2 */
9434 read_vec_element(s
, tcg_op1
, rd
, 0, MO_64
);
9435 gen_helper_neon_addl_saturate_s64(tcg_res
, tcg_env
,
9439 g_assert_not_reached();
9442 write_fp_dreg(s
, rd
, tcg_res
);
9444 TCGv_i32 tcg_op1
= read_fp_hreg(s
, rn
);
9445 TCGv_i32 tcg_op2
= read_fp_hreg(s
, rm
);
9446 TCGv_i64 tcg_res
= tcg_temp_new_i64();
9448 gen_helper_neon_mull_s16(tcg_res
, tcg_op1
, tcg_op2
);
9449 gen_helper_neon_addl_saturate_s32(tcg_res
, tcg_env
, tcg_res
, tcg_res
);
9452 case 0xd: /* SQDMULL, SQDMULL2 */
9454 case 0xb: /* SQDMLSL, SQDMLSL2 */
9455 gen_helper_neon_negl_u32(tcg_res
, tcg_res
);
9457 case 0x9: /* SQDMLAL, SQDMLAL2 */
9459 TCGv_i64 tcg_op3
= tcg_temp_new_i64();
9460 read_vec_element(s
, tcg_op3
, rd
, 0, MO_32
);
9461 gen_helper_neon_addl_saturate_s32(tcg_res
, tcg_env
,
9466 g_assert_not_reached();
9469 tcg_gen_ext32u_i64(tcg_res
, tcg_res
);
9470 write_fp_dreg(s
, rd
, tcg_res
);
9474 /* AdvSIMD scalar three same
9475 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
9476 * +-----+---+-----------+------+---+------+--------+---+------+------+
9477 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
9478 * +-----+---+-----------+------+---+------+--------+---+------+------+
9480 static void disas_simd_scalar_three_reg_same(DisasContext
*s
, uint32_t insn
)
9482 int rd
= extract32(insn
, 0, 5);
9483 int rn
= extract32(insn
, 5, 5);
9484 int opcode
= extract32(insn
, 11, 5);
9485 int rm
= extract32(insn
, 16, 5);
9486 int size
= extract32(insn
, 22, 2);
9487 bool u
= extract32(insn
, 29, 1);
9491 case 0x16: /* SQDMULH, SQRDMULH (vector) */
9492 if (size
!= 1 && size
!= 2) {
9493 unallocated_encoding(s
);
9498 case 0x1: /* SQADD, UQADD */
9499 case 0x5: /* SQSUB, UQSUB */
9500 case 0x6: /* CMGT, CMHI */
9501 case 0x7: /* CMGE, CMHS */
9502 case 0x8: /* SSHL, USHL */
9503 case 0x9: /* SQSHL, UQSHL */
9504 case 0xa: /* SRSHL, URSHL */
9505 case 0xb: /* SQRSHL, UQRSHL */
9506 case 0x10: /* ADD, SUB (vector) */
9507 case 0x11: /* CMTST, CMEQ */
9508 unallocated_encoding(s
);
9512 if (!fp_access_check(s
)) {
9516 tcg_rd
= tcg_temp_new_i64();
9519 g_assert_not_reached();
9521 /* Do a single operation on the lowest element in the vector.
9522 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9523 * no side effects for all these operations.
9524 * OPTME: special-purpose helpers would avoid doing some
9525 * unnecessary work in the helper for the 8 and 16 bit cases.
9527 NeonGenTwoOpEnvFn
*genenvfn
= NULL
;
9528 void (*genfn
)(TCGv_i64
, TCGv_i64
, TCGv_i64
, TCGv_i64
, MemOp
) = NULL
;
9531 case 0x16: /* SQDMULH, SQRDMULH */
9533 static NeonGenTwoOpEnvFn
* const fns
[2][2] = {
9534 { gen_helper_neon_qdmulh_s16
, gen_helper_neon_qrdmulh_s16
},
9535 { gen_helper_neon_qdmulh_s32
, gen_helper_neon_qrdmulh_s32
},
9537 assert(size
== 1 || size
== 2);
9538 genenvfn
= fns
[size
- 1][u
];
9542 case 0x1: /* SQADD, UQADD */
9543 case 0x5: /* SQSUB, UQSUB */
9544 case 0x9: /* SQSHL, UQSHL */
9545 case 0xb: /* SQRSHL, UQRSHL */
9546 g_assert_not_reached();
9550 TCGv_i32 tcg_rn
= tcg_temp_new_i32();
9551 TCGv_i32 tcg_rm
= tcg_temp_new_i32();
9553 read_vec_element_i32(s
, tcg_rn
, rn
, 0, size
);
9554 read_vec_element_i32(s
, tcg_rm
, rm
, 0, size
);
9555 genenvfn(tcg_rn
, tcg_env
, tcg_rn
, tcg_rm
);
9556 tcg_gen_extu_i32_i64(tcg_rd
, tcg_rn
);
9558 TCGv_i64 tcg_rn
= tcg_temp_new_i64();
9559 TCGv_i64 tcg_rm
= tcg_temp_new_i64();
9560 TCGv_i64 qc
= tcg_temp_new_i64();
9562 read_vec_element(s
, tcg_rn
, rn
, 0, size
| (u
? 0 : MO_SIGN
));
9563 read_vec_element(s
, tcg_rm
, rm
, 0, size
| (u
? 0 : MO_SIGN
));
9564 tcg_gen_ld_i64(qc
, tcg_env
, offsetof(CPUARMState
, vfp
.qc
));
9565 genfn(tcg_rd
, qc
, tcg_rn
, tcg_rm
, size
);
9566 tcg_gen_st_i64(qc
, tcg_env
, offsetof(CPUARMState
, vfp
.qc
));
9568 /* Truncate signed 64-bit result for writeback. */
9569 tcg_gen_ext_i64(tcg_rd
, tcg_rd
, size
);
9574 write_fp_dreg(s
, rd
, tcg_rd
);
9577 /* AdvSIMD scalar three same extra
9578 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
9579 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9580 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
9581 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9583 static void disas_simd_scalar_three_reg_same_extra(DisasContext
*s
,
9586 int rd
= extract32(insn
, 0, 5);
9587 int rn
= extract32(insn
, 5, 5);
9588 int opcode
= extract32(insn
, 11, 4);
9589 int rm
= extract32(insn
, 16, 5);
9590 int size
= extract32(insn
, 22, 2);
9591 bool u
= extract32(insn
, 29, 1);
9592 TCGv_i32 ele1
, ele2
, ele3
;
9596 switch (u
* 16 + opcode
) {
9597 case 0x10: /* SQRDMLAH (vector) */
9598 case 0x11: /* SQRDMLSH (vector) */
9599 if (size
!= 1 && size
!= 2) {
9600 unallocated_encoding(s
);
9603 feature
= dc_isar_feature(aa64_rdm
, s
);
9606 unallocated_encoding(s
);
9610 unallocated_encoding(s
);
9613 if (!fp_access_check(s
)) {
9617 /* Do a single operation on the lowest element in the vector.
9618 * We use the standard Neon helpers and rely on 0 OP 0 == 0
9619 * with no side effects for all these operations.
9620 * OPTME: special-purpose helpers would avoid doing some
9621 * unnecessary work in the helper for the 16 bit cases.
9623 ele1
= tcg_temp_new_i32();
9624 ele2
= tcg_temp_new_i32();
9625 ele3
= tcg_temp_new_i32();
9627 read_vec_element_i32(s
, ele1
, rn
, 0, size
);
9628 read_vec_element_i32(s
, ele2
, rm
, 0, size
);
9629 read_vec_element_i32(s
, ele3
, rd
, 0, size
);
9632 case 0x0: /* SQRDMLAH */
9634 gen_helper_neon_qrdmlah_s16(ele3
, tcg_env
, ele1
, ele2
, ele3
);
9636 gen_helper_neon_qrdmlah_s32(ele3
, tcg_env
, ele1
, ele2
, ele3
);
9639 case 0x1: /* SQRDMLSH */
9641 gen_helper_neon_qrdmlsh_s16(ele3
, tcg_env
, ele1
, ele2
, ele3
);
9643 gen_helper_neon_qrdmlsh_s32(ele3
, tcg_env
, ele1
, ele2
, ele3
);
9647 g_assert_not_reached();
9650 res
= tcg_temp_new_i64();
9651 tcg_gen_extu_i32_i64(res
, ele3
);
9652 write_fp_dreg(s
, rd
, res
);
9655 static void handle_2misc_64(DisasContext
*s
, int opcode
, bool u
,
9656 TCGv_i64 tcg_rd
, TCGv_i64 tcg_rn
,
9657 TCGv_i32 tcg_rmode
, TCGv_ptr tcg_fpstatus
)
9659 /* Handle 64->64 opcodes which are shared between the scalar and
9660 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9661 * is valid in either group and also the double-precision fp ops.
9662 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9668 case 0x4: /* CLS, CLZ */
9670 tcg_gen_clzi_i64(tcg_rd
, tcg_rn
, 64);
9672 tcg_gen_clrsb_i64(tcg_rd
, tcg_rn
);
9676 /* This opcode is shared with CNT and RBIT but we have earlier
9677 * enforced that size == 3 if and only if this is the NOT insn.
9679 tcg_gen_not_i64(tcg_rd
, tcg_rn
);
9681 case 0x7: /* SQABS, SQNEG */
9683 gen_helper_neon_qneg_s64(tcg_rd
, tcg_env
, tcg_rn
);
9685 gen_helper_neon_qabs_s64(tcg_rd
, tcg_env
, tcg_rn
);
9688 case 0xa: /* CMLT */
9691 /* 64 bit integer comparison against zero, result is test ? -1 : 0. */
9692 tcg_gen_negsetcond_i64(cond
, tcg_rd
, tcg_rn
, tcg_constant_i64(0));
9694 case 0x8: /* CMGT, CMGE */
9695 cond
= u
? TCG_COND_GE
: TCG_COND_GT
;
9697 case 0x9: /* CMEQ, CMLE */
9698 cond
= u
? TCG_COND_LE
: TCG_COND_EQ
;
9700 case 0xb: /* ABS, NEG */
9702 tcg_gen_neg_i64(tcg_rd
, tcg_rn
);
9704 tcg_gen_abs_i64(tcg_rd
, tcg_rn
);
9707 case 0x2f: /* FABS */
9708 gen_vfp_absd(tcg_rd
, tcg_rn
);
9710 case 0x6f: /* FNEG */
9711 gen_vfp_negd(tcg_rd
, tcg_rn
);
9713 case 0x7f: /* FSQRT */
9714 gen_helper_vfp_sqrtd(tcg_rd
, tcg_rn
, tcg_env
);
9716 case 0x1a: /* FCVTNS */
9717 case 0x1b: /* FCVTMS */
9718 case 0x1c: /* FCVTAS */
9719 case 0x3a: /* FCVTPS */
9720 case 0x3b: /* FCVTZS */
9721 gen_helper_vfp_tosqd(tcg_rd
, tcg_rn
, tcg_constant_i32(0), tcg_fpstatus
);
9723 case 0x5a: /* FCVTNU */
9724 case 0x5b: /* FCVTMU */
9725 case 0x5c: /* FCVTAU */
9726 case 0x7a: /* FCVTPU */
9727 case 0x7b: /* FCVTZU */
9728 gen_helper_vfp_touqd(tcg_rd
, tcg_rn
, tcg_constant_i32(0), tcg_fpstatus
);
9730 case 0x18: /* FRINTN */
9731 case 0x19: /* FRINTM */
9732 case 0x38: /* FRINTP */
9733 case 0x39: /* FRINTZ */
9734 case 0x58: /* FRINTA */
9735 case 0x79: /* FRINTI */
9736 gen_helper_rintd(tcg_rd
, tcg_rn
, tcg_fpstatus
);
9738 case 0x59: /* FRINTX */
9739 gen_helper_rintd_exact(tcg_rd
, tcg_rn
, tcg_fpstatus
);
9741 case 0x1e: /* FRINT32Z */
9742 case 0x5e: /* FRINT32X */
9743 gen_helper_frint32_d(tcg_rd
, tcg_rn
, tcg_fpstatus
);
9745 case 0x1f: /* FRINT64Z */
9746 case 0x5f: /* FRINT64X */
9747 gen_helper_frint64_d(tcg_rd
, tcg_rn
, tcg_fpstatus
);
9750 g_assert_not_reached();
9754 static void handle_2misc_fcmp_zero(DisasContext
*s
, int opcode
,
9755 bool is_scalar
, bool is_u
, bool is_q
,
9756 int size
, int rn
, int rd
)
9758 bool is_double
= (size
== MO_64
);
9761 if (!fp_access_check(s
)) {
9765 fpst
= fpstatus_ptr(size
== MO_16
? FPST_FPCR_F16
: FPST_FPCR
);
9768 TCGv_i64 tcg_op
= tcg_temp_new_i64();
9769 TCGv_i64 tcg_zero
= tcg_constant_i64(0);
9770 TCGv_i64 tcg_res
= tcg_temp_new_i64();
9771 NeonGenTwoDoubleOpFn
*genfn
;
9776 case 0x2e: /* FCMLT (zero) */
9779 case 0x2c: /* FCMGT (zero) */
9780 genfn
= gen_helper_neon_cgt_f64
;
9782 case 0x2d: /* FCMEQ (zero) */
9783 genfn
= gen_helper_neon_ceq_f64
;
9785 case 0x6d: /* FCMLE (zero) */
9788 case 0x6c: /* FCMGE (zero) */
9789 genfn
= gen_helper_neon_cge_f64
;
9792 g_assert_not_reached();
9795 for (pass
= 0; pass
< (is_scalar
? 1 : 2); pass
++) {
9796 read_vec_element(s
, tcg_op
, rn
, pass
, MO_64
);
9798 genfn(tcg_res
, tcg_zero
, tcg_op
, fpst
);
9800 genfn(tcg_res
, tcg_op
, tcg_zero
, fpst
);
9802 write_vec_element(s
, tcg_res
, rd
, pass
, MO_64
);
9805 clear_vec_high(s
, !is_scalar
, rd
);
9807 TCGv_i32 tcg_op
= tcg_temp_new_i32();
9808 TCGv_i32 tcg_zero
= tcg_constant_i32(0);
9809 TCGv_i32 tcg_res
= tcg_temp_new_i32();
9810 NeonGenTwoSingleOpFn
*genfn
;
9812 int pass
, maxpasses
;
9814 if (size
== MO_16
) {
9816 case 0x2e: /* FCMLT (zero) */
9819 case 0x2c: /* FCMGT (zero) */
9820 genfn
= gen_helper_advsimd_cgt_f16
;
9822 case 0x2d: /* FCMEQ (zero) */
9823 genfn
= gen_helper_advsimd_ceq_f16
;
9825 case 0x6d: /* FCMLE (zero) */
9828 case 0x6c: /* FCMGE (zero) */
9829 genfn
= gen_helper_advsimd_cge_f16
;
9832 g_assert_not_reached();
9836 case 0x2e: /* FCMLT (zero) */
9839 case 0x2c: /* FCMGT (zero) */
9840 genfn
= gen_helper_neon_cgt_f32
;
9842 case 0x2d: /* FCMEQ (zero) */
9843 genfn
= gen_helper_neon_ceq_f32
;
9845 case 0x6d: /* FCMLE (zero) */
9848 case 0x6c: /* FCMGE (zero) */
9849 genfn
= gen_helper_neon_cge_f32
;
9852 g_assert_not_reached();
9859 int vector_size
= 8 << is_q
;
9860 maxpasses
= vector_size
>> size
;
9863 for (pass
= 0; pass
< maxpasses
; pass
++) {
9864 read_vec_element_i32(s
, tcg_op
, rn
, pass
, size
);
9866 genfn(tcg_res
, tcg_zero
, tcg_op
, fpst
);
9868 genfn(tcg_res
, tcg_op
, tcg_zero
, fpst
);
9871 write_fp_sreg(s
, rd
, tcg_res
);
9873 write_vec_element_i32(s
, tcg_res
, rd
, pass
, size
);
9878 clear_vec_high(s
, is_q
, rd
);
9883 static void handle_2misc_reciprocal(DisasContext
*s
, int opcode
,
9884 bool is_scalar
, bool is_u
, bool is_q
,
9885 int size
, int rn
, int rd
)
9887 bool is_double
= (size
== 3);
9888 TCGv_ptr fpst
= fpstatus_ptr(FPST_FPCR
);
9891 TCGv_i64 tcg_op
= tcg_temp_new_i64();
9892 TCGv_i64 tcg_res
= tcg_temp_new_i64();
9895 for (pass
= 0; pass
< (is_scalar
? 1 : 2); pass
++) {
9896 read_vec_element(s
, tcg_op
, rn
, pass
, MO_64
);
9898 case 0x3d: /* FRECPE */
9899 gen_helper_recpe_f64(tcg_res
, tcg_op
, fpst
);
9901 case 0x3f: /* FRECPX */
9902 gen_helper_frecpx_f64(tcg_res
, tcg_op
, fpst
);
9904 case 0x7d: /* FRSQRTE */
9905 gen_helper_rsqrte_f64(tcg_res
, tcg_op
, fpst
);
9908 g_assert_not_reached();
9910 write_vec_element(s
, tcg_res
, rd
, pass
, MO_64
);
9912 clear_vec_high(s
, !is_scalar
, rd
);
9914 TCGv_i32 tcg_op
= tcg_temp_new_i32();
9915 TCGv_i32 tcg_res
= tcg_temp_new_i32();
9916 int pass
, maxpasses
;
9921 maxpasses
= is_q
? 4 : 2;
9924 for (pass
= 0; pass
< maxpasses
; pass
++) {
9925 read_vec_element_i32(s
, tcg_op
, rn
, pass
, MO_32
);
9928 case 0x3c: /* URECPE */
9929 gen_helper_recpe_u32(tcg_res
, tcg_op
);
9931 case 0x3d: /* FRECPE */
9932 gen_helper_recpe_f32(tcg_res
, tcg_op
, fpst
);
9934 case 0x3f: /* FRECPX */
9935 gen_helper_frecpx_f32(tcg_res
, tcg_op
, fpst
);
9937 case 0x7d: /* FRSQRTE */
9938 gen_helper_rsqrte_f32(tcg_res
, tcg_op
, fpst
);
9941 g_assert_not_reached();
9945 write_fp_sreg(s
, rd
, tcg_res
);
9947 write_vec_element_i32(s
, tcg_res
, rd
, pass
, MO_32
);
9951 clear_vec_high(s
, is_q
, rd
);
9956 static void handle_2misc_narrow(DisasContext
*s
, bool scalar
,
9957 int opcode
, bool u
, bool is_q
,
9958 int size
, int rn
, int rd
)
9960 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9961 * in the source becomes a size element in the destination).
9964 TCGv_i32 tcg_res
[2];
9965 int destelt
= is_q
? 2 : 0;
9966 int passes
= scalar
? 1 : 2;
9969 tcg_res
[1] = tcg_constant_i32(0);
9972 for (pass
= 0; pass
< passes
; pass
++) {
9973 TCGv_i64 tcg_op
= tcg_temp_new_i64();
9974 NeonGenNarrowFn
*genfn
= NULL
;
9975 NeonGenNarrowEnvFn
*genenvfn
= NULL
;
9978 read_vec_element(s
, tcg_op
, rn
, pass
, size
+ 1);
9980 read_vec_element(s
, tcg_op
, rn
, pass
, MO_64
);
9982 tcg_res
[pass
] = tcg_temp_new_i32();
9985 case 0x12: /* XTN, SQXTUN */
9987 static NeonGenNarrowFn
* const xtnfns
[3] = {
9988 gen_helper_neon_narrow_u8
,
9989 gen_helper_neon_narrow_u16
,
9990 tcg_gen_extrl_i64_i32
,
9992 static NeonGenNarrowEnvFn
* const sqxtunfns
[3] = {
9993 gen_helper_neon_unarrow_sat8
,
9994 gen_helper_neon_unarrow_sat16
,
9995 gen_helper_neon_unarrow_sat32
,
9998 genenvfn
= sqxtunfns
[size
];
10000 genfn
= xtnfns
[size
];
10004 case 0x14: /* SQXTN, UQXTN */
10006 static NeonGenNarrowEnvFn
* const fns
[3][2] = {
10007 { gen_helper_neon_narrow_sat_s8
,
10008 gen_helper_neon_narrow_sat_u8
},
10009 { gen_helper_neon_narrow_sat_s16
,
10010 gen_helper_neon_narrow_sat_u16
},
10011 { gen_helper_neon_narrow_sat_s32
,
10012 gen_helper_neon_narrow_sat_u32
},
10014 genenvfn
= fns
[size
][u
];
10017 case 0x16: /* FCVTN, FCVTN2 */
10018 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
10020 gen_helper_vfp_fcvtsd(tcg_res
[pass
], tcg_op
, tcg_env
);
10022 TCGv_i32 tcg_lo
= tcg_temp_new_i32();
10023 TCGv_i32 tcg_hi
= tcg_temp_new_i32();
10024 TCGv_ptr fpst
= fpstatus_ptr(FPST_FPCR
);
10025 TCGv_i32 ahp
= get_ahp_flag();
10027 tcg_gen_extr_i64_i32(tcg_lo
, tcg_hi
, tcg_op
);
10028 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo
, tcg_lo
, fpst
, ahp
);
10029 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi
, tcg_hi
, fpst
, ahp
);
10030 tcg_gen_deposit_i32(tcg_res
[pass
], tcg_lo
, tcg_hi
, 16, 16);
10033 case 0x36: /* BFCVTN, BFCVTN2 */
10035 TCGv_ptr fpst
= fpstatus_ptr(FPST_FPCR
);
10036 gen_helper_bfcvt_pair(tcg_res
[pass
], tcg_op
, fpst
);
10039 case 0x56: /* FCVTXN, FCVTXN2 */
10040 /* 64 bit to 32 bit float conversion
10041 * with von Neumann rounding (round to odd)
10044 gen_helper_fcvtx_f64_to_f32(tcg_res
[pass
], tcg_op
, tcg_env
);
10047 g_assert_not_reached();
10051 genfn(tcg_res
[pass
], tcg_op
);
10052 } else if (genenvfn
) {
10053 genenvfn(tcg_res
[pass
], tcg_env
, tcg_op
);
10057 for (pass
= 0; pass
< 2; pass
++) {
10058 write_vec_element_i32(s
, tcg_res
[pass
], rd
, destelt
+ pass
, MO_32
);
10060 clear_vec_high(s
, is_q
, rd
);
10063 /* AdvSIMD scalar two reg misc
10064 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
10065 * +-----+---+-----------+------+-----------+--------+-----+------+------+
10066 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
10067 * +-----+---+-----------+------+-----------+--------+-----+------+------+
10069 static void disas_simd_scalar_two_reg_misc(DisasContext
*s
, uint32_t insn
)
10071 int rd
= extract32(insn
, 0, 5);
10072 int rn
= extract32(insn
, 5, 5);
10073 int opcode
= extract32(insn
, 12, 5);
10074 int size
= extract32(insn
, 22, 2);
10075 bool u
= extract32(insn
, 29, 1);
10076 bool is_fcvt
= false;
10078 TCGv_i32 tcg_rmode
;
10079 TCGv_ptr tcg_fpstatus
;
10082 case 0x7: /* SQABS / SQNEG */
10084 case 0xa: /* CMLT */
10086 unallocated_encoding(s
);
10090 case 0x8: /* CMGT, CMGE */
10091 case 0x9: /* CMEQ, CMLE */
10092 case 0xb: /* ABS, NEG */
10094 unallocated_encoding(s
);
10098 case 0x12: /* SQXTUN */
10100 unallocated_encoding(s
);
10104 case 0x14: /* SQXTN, UQXTN */
10106 unallocated_encoding(s
);
10109 if (!fp_access_check(s
)) {
10112 handle_2misc_narrow(s
, true, opcode
, u
, false, size
, rn
, rd
);
10115 case 0x16 ... 0x1d:
10117 /* Floating point: U, size[1] and opcode indicate operation;
10118 * size[0] indicates single or double precision.
10120 opcode
|= (extract32(size
, 1, 1) << 5) | (u
<< 6);
10121 size
= extract32(size
, 0, 1) ? 3 : 2;
10123 case 0x2c: /* FCMGT (zero) */
10124 case 0x2d: /* FCMEQ (zero) */
10125 case 0x2e: /* FCMLT (zero) */
10126 case 0x6c: /* FCMGE (zero) */
10127 case 0x6d: /* FCMLE (zero) */
10128 handle_2misc_fcmp_zero(s
, opcode
, true, u
, true, size
, rn
, rd
);
10130 case 0x1d: /* SCVTF */
10131 case 0x5d: /* UCVTF */
10133 bool is_signed
= (opcode
== 0x1d);
10134 if (!fp_access_check(s
)) {
10137 handle_simd_intfp_conv(s
, rd
, rn
, 1, is_signed
, 0, size
);
10140 case 0x3d: /* FRECPE */
10141 case 0x3f: /* FRECPX */
10142 case 0x7d: /* FRSQRTE */
10143 if (!fp_access_check(s
)) {
10146 handle_2misc_reciprocal(s
, opcode
, true, u
, true, size
, rn
, rd
);
10148 case 0x1a: /* FCVTNS */
10149 case 0x1b: /* FCVTMS */
10150 case 0x3a: /* FCVTPS */
10151 case 0x3b: /* FCVTZS */
10152 case 0x5a: /* FCVTNU */
10153 case 0x5b: /* FCVTMU */
10154 case 0x7a: /* FCVTPU */
10155 case 0x7b: /* FCVTZU */
10157 rmode
= extract32(opcode
, 5, 1) | (extract32(opcode
, 0, 1) << 1);
10159 case 0x1c: /* FCVTAS */
10160 case 0x5c: /* FCVTAU */
10161 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10163 rmode
= FPROUNDING_TIEAWAY
;
10165 case 0x56: /* FCVTXN, FCVTXN2 */
10167 unallocated_encoding(s
);
10170 if (!fp_access_check(s
)) {
10173 handle_2misc_narrow(s
, true, opcode
, u
, false, size
- 1, rn
, rd
);
10176 unallocated_encoding(s
);
10181 case 0x3: /* USQADD / SUQADD */
10182 unallocated_encoding(s
);
10186 if (!fp_access_check(s
)) {
10191 tcg_fpstatus
= fpstatus_ptr(FPST_FPCR
);
10192 tcg_rmode
= gen_set_rmode(rmode
, tcg_fpstatus
);
10194 tcg_fpstatus
= NULL
;
10199 TCGv_i64 tcg_rn
= read_fp_dreg(s
, rn
);
10200 TCGv_i64 tcg_rd
= tcg_temp_new_i64();
10202 handle_2misc_64(s
, opcode
, u
, tcg_rd
, tcg_rn
, tcg_rmode
, tcg_fpstatus
);
10203 write_fp_dreg(s
, rd
, tcg_rd
);
10205 TCGv_i32 tcg_rn
= tcg_temp_new_i32();
10206 TCGv_i32 tcg_rd
= tcg_temp_new_i32();
10208 read_vec_element_i32(s
, tcg_rn
, rn
, 0, size
);
10211 case 0x7: /* SQABS, SQNEG */
10213 NeonGenOneOpEnvFn
*genfn
;
10214 static NeonGenOneOpEnvFn
* const fns
[3][2] = {
10215 { gen_helper_neon_qabs_s8
, gen_helper_neon_qneg_s8
},
10216 { gen_helper_neon_qabs_s16
, gen_helper_neon_qneg_s16
},
10217 { gen_helper_neon_qabs_s32
, gen_helper_neon_qneg_s32
},
10219 genfn
= fns
[size
][u
];
10220 genfn(tcg_rd
, tcg_env
, tcg_rn
);
10223 case 0x1a: /* FCVTNS */
10224 case 0x1b: /* FCVTMS */
10225 case 0x1c: /* FCVTAS */
10226 case 0x3a: /* FCVTPS */
10227 case 0x3b: /* FCVTZS */
10228 gen_helper_vfp_tosls(tcg_rd
, tcg_rn
, tcg_constant_i32(0),
10231 case 0x5a: /* FCVTNU */
10232 case 0x5b: /* FCVTMU */
10233 case 0x5c: /* FCVTAU */
10234 case 0x7a: /* FCVTPU */
10235 case 0x7b: /* FCVTZU */
10236 gen_helper_vfp_touls(tcg_rd
, tcg_rn
, tcg_constant_i32(0),
10240 g_assert_not_reached();
10243 write_fp_sreg(s
, rd
, tcg_rd
);
10247 gen_restore_rmode(tcg_rmode
, tcg_fpstatus
);
10251 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10252 static void handle_vec_simd_shri(DisasContext
*s
, bool is_q
, bool is_u
,
10253 int immh
, int immb
, int opcode
, int rn
, int rd
)
10255 int size
= 32 - clz32(immh
) - 1;
10256 int immhb
= immh
<< 3 | immb
;
10257 int shift
= 2 * (8 << size
) - immhb
;
10258 GVecGen2iFn
*gvec_fn
;
10260 if (extract32(immh
, 3, 1) && !is_q
) {
10261 unallocated_encoding(s
);
10264 tcg_debug_assert(size
<= 3);
10266 if (!fp_access_check(s
)) {
10271 case 0x02: /* SSRA / USRA (accumulate) */
10272 gvec_fn
= is_u
? gen_gvec_usra
: gen_gvec_ssra
;
10275 case 0x08: /* SRI */
10276 gvec_fn
= gen_gvec_sri
;
10279 case 0x00: /* SSHR / USHR */
10281 if (shift
== 8 << size
) {
10282 /* Shift count the same size as element size produces zero. */
10283 tcg_gen_gvec_dup_imm(size
, vec_full_reg_offset(s
, rd
),
10284 is_q
? 16 : 8, vec_full_reg_size(s
), 0);
10287 gvec_fn
= tcg_gen_gvec_shri
;
10289 /* Shift count the same size as element size produces all sign. */
10290 if (shift
== 8 << size
) {
10293 gvec_fn
= tcg_gen_gvec_sari
;
10297 case 0x04: /* SRSHR / URSHR (rounding) */
10298 gvec_fn
= is_u
? gen_gvec_urshr
: gen_gvec_srshr
;
10301 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10302 gvec_fn
= is_u
? gen_gvec_ursra
: gen_gvec_srsra
;
10306 g_assert_not_reached();
10309 gen_gvec_fn2i(s
, is_q
, rd
, rn
, shift
, gvec_fn
, size
);
10312 /* SHL/SLI - Vector shift left */
10313 static void handle_vec_simd_shli(DisasContext
*s
, bool is_q
, bool insert
,
10314 int immh
, int immb
, int opcode
, int rn
, int rd
)
10316 int size
= 32 - clz32(immh
) - 1;
10317 int immhb
= immh
<< 3 | immb
;
10318 int shift
= immhb
- (8 << size
);
10320 /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10321 assert(size
>= 0 && size
<= 3);
10323 if (extract32(immh
, 3, 1) && !is_q
) {
10324 unallocated_encoding(s
);
10328 if (!fp_access_check(s
)) {
10333 gen_gvec_fn2i(s
, is_q
, rd
, rn
, shift
, gen_gvec_sli
, size
);
10335 gen_gvec_fn2i(s
, is_q
, rd
, rn
, shift
, tcg_gen_gvec_shli
, size
);
10339 /* USHLL/SHLL - Vector shift left with widening */
10340 static void handle_vec_simd_wshli(DisasContext
*s
, bool is_q
, bool is_u
,
10341 int immh
, int immb
, int opcode
, int rn
, int rd
)
10343 int size
= 32 - clz32(immh
) - 1;
10344 int immhb
= immh
<< 3 | immb
;
10345 int shift
= immhb
- (8 << size
);
10347 int esize
= 8 << size
;
10348 int elements
= dsize
/esize
;
10349 TCGv_i64 tcg_rn
= tcg_temp_new_i64();
10350 TCGv_i64 tcg_rd
= tcg_temp_new_i64();
10354 unallocated_encoding(s
);
10358 if (!fp_access_check(s
)) {
10362 /* For the LL variants the store is larger than the load,
10363 * so if rd == rn we would overwrite parts of our input.
10364 * So load everything right now and use shifts in the main loop.
10366 read_vec_element(s
, tcg_rn
, rn
, is_q
? 1 : 0, MO_64
);
10368 for (i
= 0; i
< elements
; i
++) {
10369 tcg_gen_shri_i64(tcg_rd
, tcg_rn
, i
* esize
);
10370 ext_and_shift_reg(tcg_rd
, tcg_rd
, size
| (!is_u
<< 2), 0);
10371 tcg_gen_shli_i64(tcg_rd
, tcg_rd
, shift
);
10372 write_vec_element(s
, tcg_rd
, rd
, i
, size
+ 1);
10376 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10377 static void handle_vec_simd_shrn(DisasContext
*s
, bool is_q
,
10378 int immh
, int immb
, int opcode
, int rn
, int rd
)
10380 int immhb
= immh
<< 3 | immb
;
10381 int size
= 32 - clz32(immh
) - 1;
10383 int esize
= 8 << size
;
10384 int elements
= dsize
/esize
;
10385 int shift
= (2 * esize
) - immhb
;
10386 bool round
= extract32(opcode
, 0, 1);
10387 TCGv_i64 tcg_rn
, tcg_rd
, tcg_final
;
10388 TCGv_i64 tcg_round
;
10391 if (extract32(immh
, 3, 1)) {
10392 unallocated_encoding(s
);
10396 if (!fp_access_check(s
)) {
10400 tcg_rn
= tcg_temp_new_i64();
10401 tcg_rd
= tcg_temp_new_i64();
10402 tcg_final
= tcg_temp_new_i64();
10403 read_vec_element(s
, tcg_final
, rd
, is_q
? 1 : 0, MO_64
);
10406 tcg_round
= tcg_constant_i64(1ULL << (shift
- 1));
10411 for (i
= 0; i
< elements
; i
++) {
10412 read_vec_element(s
, tcg_rn
, rn
, i
, size
+1);
10413 handle_shri_with_rndacc(tcg_rd
, tcg_rn
, tcg_round
,
10414 false, true, size
+1, shift
);
10416 tcg_gen_deposit_i64(tcg_final
, tcg_final
, tcg_rd
, esize
* i
, esize
);
10420 write_vec_element(s
, tcg_final
, rd
, 0, MO_64
);
10422 write_vec_element(s
, tcg_final
, rd
, 1, MO_64
);
10425 clear_vec_high(s
, is_q
, rd
);
10429 /* AdvSIMD shift by immediate
10430 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
10431 * +---+---+---+-------------+------+------+--------+---+------+------+
10432 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
10433 * +---+---+---+-------------+------+------+--------+---+------+------+
10435 static void disas_simd_shift_imm(DisasContext
*s
, uint32_t insn
)
10437 int rd
= extract32(insn
, 0, 5);
10438 int rn
= extract32(insn
, 5, 5);
10439 int opcode
= extract32(insn
, 11, 5);
10440 int immb
= extract32(insn
, 16, 3);
10441 int immh
= extract32(insn
, 19, 4);
10442 bool is_u
= extract32(insn
, 29, 1);
10443 bool is_q
= extract32(insn
, 30, 1);
10445 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10449 case 0x08: /* SRI */
10451 unallocated_encoding(s
);
10455 case 0x00: /* SSHR / USHR */
10456 case 0x02: /* SSRA / USRA (accumulate) */
10457 case 0x04: /* SRSHR / URSHR (rounding) */
10458 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10459 handle_vec_simd_shri(s
, is_q
, is_u
, immh
, immb
, opcode
, rn
, rd
);
10461 case 0x0a: /* SHL / SLI */
10462 handle_vec_simd_shli(s
, is_q
, is_u
, immh
, immb
, opcode
, rn
, rd
);
10464 case 0x10: /* SHRN */
10465 case 0x11: /* RSHRN / SQRSHRUN */
10467 handle_vec_simd_sqshrn(s
, false, is_q
, false, true, immh
, immb
,
10470 handle_vec_simd_shrn(s
, is_q
, immh
, immb
, opcode
, rn
, rd
);
10473 case 0x12: /* SQSHRN / UQSHRN */
10474 case 0x13: /* SQRSHRN / UQRSHRN */
10475 handle_vec_simd_sqshrn(s
, false, is_q
, is_u
, is_u
, immh
, immb
,
10478 case 0x14: /* SSHLL / USHLL */
10479 handle_vec_simd_wshli(s
, is_q
, is_u
, immh
, immb
, opcode
, rn
, rd
);
10481 case 0x1c: /* SCVTF / UCVTF */
10482 handle_simd_shift_intfp_conv(s
, false, is_q
, is_u
, immh
, immb
,
10485 case 0xc: /* SQSHLU */
10487 unallocated_encoding(s
);
10490 handle_simd_qshl(s
, false, is_q
, false, true, immh
, immb
, rn
, rd
);
10492 case 0xe: /* SQSHL, UQSHL */
10493 handle_simd_qshl(s
, false, is_q
, is_u
, is_u
, immh
, immb
, rn
, rd
);
10495 case 0x1f: /* FCVTZS/ FCVTZU */
10496 handle_simd_shift_fpint_conv(s
, false, is_q
, is_u
, immh
, immb
, rn
, rd
);
10499 unallocated_encoding(s
);
10504 /* Generate code to do a "long" addition or subtraction, ie one done in
10505 * TCGv_i64 on vector lanes twice the width specified by size.
10507 static void gen_neon_addl(int size
, bool is_sub
, TCGv_i64 tcg_res
,
10508 TCGv_i64 tcg_op1
, TCGv_i64 tcg_op2
)
10510 static NeonGenTwo64OpFn
* const fns
[3][2] = {
10511 { gen_helper_neon_addl_u16
, gen_helper_neon_subl_u16
},
10512 { gen_helper_neon_addl_u32
, gen_helper_neon_subl_u32
},
10513 { tcg_gen_add_i64
, tcg_gen_sub_i64
},
10515 NeonGenTwo64OpFn
*genfn
;
10518 genfn
= fns
[size
][is_sub
];
10519 genfn(tcg_res
, tcg_op1
, tcg_op2
);
10522 static void handle_3rd_widening(DisasContext
*s
, int is_q
, int is_u
, int size
,
10523 int opcode
, int rd
, int rn
, int rm
)
10525 /* 3-reg-different widening insns: 64 x 64 -> 128 */
10526 TCGv_i64 tcg_res
[2];
10529 tcg_res
[0] = tcg_temp_new_i64();
10530 tcg_res
[1] = tcg_temp_new_i64();
10532 /* Does this op do an adding accumulate, a subtracting accumulate,
10533 * or no accumulate at all?
10551 read_vec_element(s
, tcg_res
[0], rd
, 0, MO_64
);
10552 read_vec_element(s
, tcg_res
[1], rd
, 1, MO_64
);
10555 /* size == 2 means two 32x32->64 operations; this is worth special
10556 * casing because we can generally handle it inline.
10559 for (pass
= 0; pass
< 2; pass
++) {
10560 TCGv_i64 tcg_op1
= tcg_temp_new_i64();
10561 TCGv_i64 tcg_op2
= tcg_temp_new_i64();
10562 TCGv_i64 tcg_passres
;
10563 MemOp memop
= MO_32
| (is_u
? 0 : MO_SIGN
);
10565 int elt
= pass
+ is_q
* 2;
10567 read_vec_element(s
, tcg_op1
, rn
, elt
, memop
);
10568 read_vec_element(s
, tcg_op2
, rm
, elt
, memop
);
10571 tcg_passres
= tcg_res
[pass
];
10573 tcg_passres
= tcg_temp_new_i64();
10577 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10578 tcg_gen_add_i64(tcg_passres
, tcg_op1
, tcg_op2
);
10580 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10581 tcg_gen_sub_i64(tcg_passres
, tcg_op1
, tcg_op2
);
10583 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10584 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10586 TCGv_i64 tcg_tmp1
= tcg_temp_new_i64();
10587 TCGv_i64 tcg_tmp2
= tcg_temp_new_i64();
10589 tcg_gen_sub_i64(tcg_tmp1
, tcg_op1
, tcg_op2
);
10590 tcg_gen_sub_i64(tcg_tmp2
, tcg_op2
, tcg_op1
);
10591 tcg_gen_movcond_i64(is_u
? TCG_COND_GEU
: TCG_COND_GE
,
10593 tcg_op1
, tcg_op2
, tcg_tmp1
, tcg_tmp2
);
10596 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10597 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10598 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10599 tcg_gen_mul_i64(tcg_passres
, tcg_op1
, tcg_op2
);
10601 case 9: /* SQDMLAL, SQDMLAL2 */
10602 case 11: /* SQDMLSL, SQDMLSL2 */
10603 case 13: /* SQDMULL, SQDMULL2 */
10604 tcg_gen_mul_i64(tcg_passres
, tcg_op1
, tcg_op2
);
10605 gen_helper_neon_addl_saturate_s64(tcg_passres
, tcg_env
,
10606 tcg_passres
, tcg_passres
);
10609 g_assert_not_reached();
10612 if (opcode
== 9 || opcode
== 11) {
10613 /* saturating accumulate ops */
10615 tcg_gen_neg_i64(tcg_passres
, tcg_passres
);
10617 gen_helper_neon_addl_saturate_s64(tcg_res
[pass
], tcg_env
,
10618 tcg_res
[pass
], tcg_passres
);
10619 } else if (accop
> 0) {
10620 tcg_gen_add_i64(tcg_res
[pass
], tcg_res
[pass
], tcg_passres
);
10621 } else if (accop
< 0) {
10622 tcg_gen_sub_i64(tcg_res
[pass
], tcg_res
[pass
], tcg_passres
);
10626 /* size 0 or 1, generally helper functions */
10627 for (pass
= 0; pass
< 2; pass
++) {
10628 TCGv_i32 tcg_op1
= tcg_temp_new_i32();
10629 TCGv_i32 tcg_op2
= tcg_temp_new_i32();
10630 TCGv_i64 tcg_passres
;
10631 int elt
= pass
+ is_q
* 2;
10633 read_vec_element_i32(s
, tcg_op1
, rn
, elt
, MO_32
);
10634 read_vec_element_i32(s
, tcg_op2
, rm
, elt
, MO_32
);
10637 tcg_passres
= tcg_res
[pass
];
10639 tcg_passres
= tcg_temp_new_i64();
10643 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10644 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10646 TCGv_i64 tcg_op2_64
= tcg_temp_new_i64();
10647 static NeonGenWidenFn
* const widenfns
[2][2] = {
10648 { gen_helper_neon_widen_s8
, gen_helper_neon_widen_u8
},
10649 { gen_helper_neon_widen_s16
, gen_helper_neon_widen_u16
},
10651 NeonGenWidenFn
*widenfn
= widenfns
[size
][is_u
];
10653 widenfn(tcg_op2_64
, tcg_op2
);
10654 widenfn(tcg_passres
, tcg_op1
);
10655 gen_neon_addl(size
, (opcode
== 2), tcg_passres
,
10656 tcg_passres
, tcg_op2_64
);
10659 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10660 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10663 gen_helper_neon_abdl_u16(tcg_passres
, tcg_op1
, tcg_op2
);
10665 gen_helper_neon_abdl_s16(tcg_passres
, tcg_op1
, tcg_op2
);
10669 gen_helper_neon_abdl_u32(tcg_passres
, tcg_op1
, tcg_op2
);
10671 gen_helper_neon_abdl_s32(tcg_passres
, tcg_op1
, tcg_op2
);
10675 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10676 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10677 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10680 gen_helper_neon_mull_u8(tcg_passres
, tcg_op1
, tcg_op2
);
10682 gen_helper_neon_mull_s8(tcg_passres
, tcg_op1
, tcg_op2
);
10686 gen_helper_neon_mull_u16(tcg_passres
, tcg_op1
, tcg_op2
);
10688 gen_helper_neon_mull_s16(tcg_passres
, tcg_op1
, tcg_op2
);
10692 case 9: /* SQDMLAL, SQDMLAL2 */
10693 case 11: /* SQDMLSL, SQDMLSL2 */
10694 case 13: /* SQDMULL, SQDMULL2 */
10696 gen_helper_neon_mull_s16(tcg_passres
, tcg_op1
, tcg_op2
);
10697 gen_helper_neon_addl_saturate_s32(tcg_passres
, tcg_env
,
10698 tcg_passres
, tcg_passres
);
10701 g_assert_not_reached();
10705 if (opcode
== 9 || opcode
== 11) {
10706 /* saturating accumulate ops */
10708 gen_helper_neon_negl_u32(tcg_passres
, tcg_passres
);
10710 gen_helper_neon_addl_saturate_s32(tcg_res
[pass
], tcg_env
,
10714 gen_neon_addl(size
, (accop
< 0), tcg_res
[pass
],
10715 tcg_res
[pass
], tcg_passres
);
10721 write_vec_element(s
, tcg_res
[0], rd
, 0, MO_64
);
10722 write_vec_element(s
, tcg_res
[1], rd
, 1, MO_64
);
10725 static void handle_3rd_wide(DisasContext
*s
, int is_q
, int is_u
, int size
,
10726 int opcode
, int rd
, int rn
, int rm
)
10728 TCGv_i64 tcg_res
[2];
10729 int part
= is_q
? 2 : 0;
10732 for (pass
= 0; pass
< 2; pass
++) {
10733 TCGv_i64 tcg_op1
= tcg_temp_new_i64();
10734 TCGv_i32 tcg_op2
= tcg_temp_new_i32();
10735 TCGv_i64 tcg_op2_wide
= tcg_temp_new_i64();
10736 static NeonGenWidenFn
* const widenfns
[3][2] = {
10737 { gen_helper_neon_widen_s8
, gen_helper_neon_widen_u8
},
10738 { gen_helper_neon_widen_s16
, gen_helper_neon_widen_u16
},
10739 { tcg_gen_ext_i32_i64
, tcg_gen_extu_i32_i64
},
10741 NeonGenWidenFn
*widenfn
= widenfns
[size
][is_u
];
10743 read_vec_element(s
, tcg_op1
, rn
, pass
, MO_64
);
10744 read_vec_element_i32(s
, tcg_op2
, rm
, part
+ pass
, MO_32
);
10745 widenfn(tcg_op2_wide
, tcg_op2
);
10746 tcg_res
[pass
] = tcg_temp_new_i64();
10747 gen_neon_addl(size
, (opcode
== 3),
10748 tcg_res
[pass
], tcg_op1
, tcg_op2_wide
);
10751 for (pass
= 0; pass
< 2; pass
++) {
10752 write_vec_element(s
, tcg_res
[pass
], rd
, pass
, MO_64
);
10756 static void do_narrow_round_high_u32(TCGv_i32 res
, TCGv_i64 in
)
10758 tcg_gen_addi_i64(in
, in
, 1U << 31);
10759 tcg_gen_extrh_i64_i32(res
, in
);
10762 static void handle_3rd_narrowing(DisasContext
*s
, int is_q
, int is_u
, int size
,
10763 int opcode
, int rd
, int rn
, int rm
)
10765 TCGv_i32 tcg_res
[2];
10766 int part
= is_q
? 2 : 0;
10769 for (pass
= 0; pass
< 2; pass
++) {
10770 TCGv_i64 tcg_op1
= tcg_temp_new_i64();
10771 TCGv_i64 tcg_op2
= tcg_temp_new_i64();
10772 TCGv_i64 tcg_wideres
= tcg_temp_new_i64();
10773 static NeonGenNarrowFn
* const narrowfns
[3][2] = {
10774 { gen_helper_neon_narrow_high_u8
,
10775 gen_helper_neon_narrow_round_high_u8
},
10776 { gen_helper_neon_narrow_high_u16
,
10777 gen_helper_neon_narrow_round_high_u16
},
10778 { tcg_gen_extrh_i64_i32
, do_narrow_round_high_u32
},
10780 NeonGenNarrowFn
*gennarrow
= narrowfns
[size
][is_u
];
10782 read_vec_element(s
, tcg_op1
, rn
, pass
, MO_64
);
10783 read_vec_element(s
, tcg_op2
, rm
, pass
, MO_64
);
10785 gen_neon_addl(size
, (opcode
== 6), tcg_wideres
, tcg_op1
, tcg_op2
);
10787 tcg_res
[pass
] = tcg_temp_new_i32();
10788 gennarrow(tcg_res
[pass
], tcg_wideres
);
10791 for (pass
= 0; pass
< 2; pass
++) {
10792 write_vec_element_i32(s
, tcg_res
[pass
], rd
, pass
+ part
, MO_32
);
10794 clear_vec_high(s
, is_q
, rd
);
10797 /* AdvSIMD three different
10798 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
10799 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10800 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
10801 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10803 static void disas_simd_three_reg_diff(DisasContext
*s
, uint32_t insn
)
10805 /* Instructions in this group fall into three basic classes
10806 * (in each case with the operation working on each element in
10807 * the input vectors):
10808 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10810 * (2) wide 64 x 128 -> 128
10811 * (3) narrowing 128 x 128 -> 64
10812 * Here we do initial decode, catch unallocated cases and
10813 * dispatch to separate functions for each class.
10815 int is_q
= extract32(insn
, 30, 1);
10816 int is_u
= extract32(insn
, 29, 1);
10817 int size
= extract32(insn
, 22, 2);
10818 int opcode
= extract32(insn
, 12, 4);
10819 int rm
= extract32(insn
, 16, 5);
10820 int rn
= extract32(insn
, 5, 5);
10821 int rd
= extract32(insn
, 0, 5);
10824 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10825 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10826 /* 64 x 128 -> 128 */
10828 unallocated_encoding(s
);
10831 if (!fp_access_check(s
)) {
10834 handle_3rd_wide(s
, is_q
, is_u
, size
, opcode
, rd
, rn
, rm
);
10836 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10837 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10838 /* 128 x 128 -> 64 */
10840 unallocated_encoding(s
);
10843 if (!fp_access_check(s
)) {
10846 handle_3rd_narrowing(s
, is_q
, is_u
, size
, opcode
, rd
, rn
, rm
);
10848 case 14: /* PMULL, PMULL2 */
10850 unallocated_encoding(s
);
10854 case 0: /* PMULL.P8 */
10855 if (!fp_access_check(s
)) {
10858 /* The Q field specifies lo/hi half input for this insn. */
10859 gen_gvec_op3_ool(s
, true, rd
, rn
, rm
, is_q
,
10860 gen_helper_neon_pmull_h
);
10863 case 3: /* PMULL.P64 */
10864 if (!dc_isar_feature(aa64_pmull
, s
)) {
10865 unallocated_encoding(s
);
10868 if (!fp_access_check(s
)) {
10871 /* The Q field specifies lo/hi half input for this insn. */
10872 gen_gvec_op3_ool(s
, true, rd
, rn
, rm
, is_q
,
10873 gen_helper_gvec_pmull_q
);
10877 unallocated_encoding(s
);
10881 case 9: /* SQDMLAL, SQDMLAL2 */
10882 case 11: /* SQDMLSL, SQDMLSL2 */
10883 case 13: /* SQDMULL, SQDMULL2 */
10884 if (is_u
|| size
== 0) {
10885 unallocated_encoding(s
);
10889 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10890 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10891 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10892 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10893 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10894 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10895 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10896 /* 64 x 64 -> 128 */
10898 unallocated_encoding(s
);
10901 if (!fp_access_check(s
)) {
10905 handle_3rd_widening(s
, is_q
, is_u
, size
, opcode
, rd
, rn
, rm
);
10908 /* opcode 15 not allocated */
10909 unallocated_encoding(s
);
10914 /* Integer op subgroup of C3.6.16. */
10915 static void disas_simd_3same_int(DisasContext
*s
, uint32_t insn
)
10917 int is_q
= extract32(insn
, 30, 1);
10918 int u
= extract32(insn
, 29, 1);
10919 int size
= extract32(insn
, 22, 2);
10920 int opcode
= extract32(insn
, 11, 5);
10921 int rm
= extract32(insn
, 16, 5);
10922 int rn
= extract32(insn
, 5, 5);
10923 int rd
= extract32(insn
, 0, 5);
10926 case 0x13: /* MUL, PMUL */
10927 if (u
&& size
!= 0) {
10928 unallocated_encoding(s
);
10932 case 0xe: /* SABD, UABD */
10933 case 0xf: /* SABA, UABA */
10934 case 0x12: /* MLA, MLS */
10936 unallocated_encoding(s
);
10940 case 0x16: /* SQDMULH, SQRDMULH */
10941 if (size
== 0 || size
== 3) {
10942 unallocated_encoding(s
);
10947 if (size
== 3 && !is_q
) {
10948 unallocated_encoding(s
);
10953 case 0x0: /* SHADD, UHADD */
10954 case 0x01: /* SQADD, UQADD */
10955 case 0x02: /* SRHADD, URHADD */
10956 case 0x04: /* SHSUB, UHSUB */
10957 case 0x05: /* SQSUB, UQSUB */
10958 case 0x06: /* CMGT, CMHI */
10959 case 0x07: /* CMGE, CMHS */
10960 case 0x08: /* SSHL, USHL */
10961 case 0x09: /* SQSHL, UQSHL */
10962 case 0x0a: /* SRSHL, URSHL */
10963 case 0x0b: /* SQRSHL, UQRSHL */
10964 case 0x0c: /* SMAX, UMAX */
10965 case 0x0d: /* SMIN, UMIN */
10966 case 0x10: /* ADD, SUB */
10967 case 0x11: /* CMTST, CMEQ */
10968 unallocated_encoding(s
);
10972 if (!fp_access_check(s
)) {
10977 case 0xe: /* SABD, UABD */
10979 gen_gvec_fn3(s
, is_q
, rd
, rn
, rm
, gen_gvec_uabd
, size
);
10981 gen_gvec_fn3(s
, is_q
, rd
, rn
, rm
, gen_gvec_sabd
, size
);
10984 case 0xf: /* SABA, UABA */
10986 gen_gvec_fn3(s
, is_q
, rd
, rn
, rm
, gen_gvec_uaba
, size
);
10988 gen_gvec_fn3(s
, is_q
, rd
, rn
, rm
, gen_gvec_saba
, size
);
10991 case 0x13: /* MUL, PMUL */
10992 if (!u
) { /* MUL */
10993 gen_gvec_fn3(s
, is_q
, rd
, rn
, rm
, tcg_gen_gvec_mul
, size
);
10994 } else { /* PMUL */
10995 gen_gvec_op3_ool(s
, is_q
, rd
, rn
, rm
, 0, gen_helper_gvec_pmul_b
);
10998 case 0x12: /* MLA, MLS */
11000 gen_gvec_fn3(s
, is_q
, rd
, rn
, rm
, gen_gvec_mls
, size
);
11002 gen_gvec_fn3(s
, is_q
, rd
, rn
, rm
, gen_gvec_mla
, size
);
11005 case 0x16: /* SQDMULH, SQRDMULH */
11007 static gen_helper_gvec_3_ptr
* const fns
[2][2] = {
11008 { gen_helper_neon_sqdmulh_h
, gen_helper_neon_sqrdmulh_h
},
11009 { gen_helper_neon_sqdmulh_s
, gen_helper_neon_sqrdmulh_s
},
11011 gen_gvec_op3_qc(s
, is_q
, rd
, rn
, rm
, fns
[size
- 1][u
]);
11015 g_assert_not_reached();
11018 /* AdvSIMD three same
11019 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
11020 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11021 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
11022 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11024 static void disas_simd_three_reg_same(DisasContext
*s
, uint32_t insn
)
11026 int opcode
= extract32(insn
, 11, 5);
11030 disas_simd_3same_int(s
, insn
);
11032 case 0x3: /* logic ops */
11033 case 0x14: /* SMAXP, UMAXP */
11034 case 0x15: /* SMINP, UMINP */
11035 case 0x17: /* ADDP */
11036 case 0x18 ... 0x31: /* floating point ops */
11037 unallocated_encoding(s
);
11042 /* AdvSIMD three same extra
11043 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
11044 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11045 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
11046 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11048 static void disas_simd_three_reg_same_extra(DisasContext
*s
, uint32_t insn
)
11050 int rd
= extract32(insn
, 0, 5);
11051 int rn
= extract32(insn
, 5, 5);
11052 int opcode
= extract32(insn
, 11, 4);
11053 int rm
= extract32(insn
, 16, 5);
11054 int size
= extract32(insn
, 22, 2);
11055 bool u
= extract32(insn
, 29, 1);
11056 bool is_q
= extract32(insn
, 30, 1);
11060 switch (u
* 16 + opcode
) {
11061 case 0x10: /* SQRDMLAH (vector) */
11062 case 0x11: /* SQRDMLSH (vector) */
11063 if (size
!= 1 && size
!= 2) {
11064 unallocated_encoding(s
);
11067 feature
= dc_isar_feature(aa64_rdm
, s
);
11069 case 0x02: /* SDOT (vector) */
11070 case 0x12: /* UDOT (vector) */
11071 if (size
!= MO_32
) {
11072 unallocated_encoding(s
);
11075 feature
= dc_isar_feature(aa64_dp
, s
);
11077 case 0x03: /* USDOT */
11078 if (size
!= MO_32
) {
11079 unallocated_encoding(s
);
11082 feature
= dc_isar_feature(aa64_i8mm
, s
);
11084 case 0x04: /* SMMLA */
11085 case 0x14: /* UMMLA */
11086 case 0x05: /* USMMLA */
11087 if (!is_q
|| size
!= MO_32
) {
11088 unallocated_encoding(s
);
11091 feature
= dc_isar_feature(aa64_i8mm
, s
);
11093 case 0x18: /* FCMLA, #0 */
11094 case 0x19: /* FCMLA, #90 */
11095 case 0x1a: /* FCMLA, #180 */
11096 case 0x1b: /* FCMLA, #270 */
11097 case 0x1c: /* FCADD, #90 */
11098 case 0x1e: /* FCADD, #270 */
11100 || (size
== 1 && !dc_isar_feature(aa64_fp16
, s
))
11101 || (size
== 3 && !is_q
)) {
11102 unallocated_encoding(s
);
11105 feature
= dc_isar_feature(aa64_fcma
, s
);
11107 case 0x1d: /* BFMMLA */
11108 if (size
!= MO_16
|| !is_q
) {
11109 unallocated_encoding(s
);
11112 feature
= dc_isar_feature(aa64_bf16
, s
);
11116 case 1: /* BFDOT */
11117 case 3: /* BFMLAL{B,T} */
11118 feature
= dc_isar_feature(aa64_bf16
, s
);
11121 unallocated_encoding(s
);
11126 unallocated_encoding(s
);
11130 unallocated_encoding(s
);
11133 if (!fp_access_check(s
)) {
11138 case 0x0: /* SQRDMLAH (vector) */
11139 gen_gvec_fn3(s
, is_q
, rd
, rn
, rm
, gen_gvec_sqrdmlah_qc
, size
);
11142 case 0x1: /* SQRDMLSH (vector) */
11143 gen_gvec_fn3(s
, is_q
, rd
, rn
, rm
, gen_gvec_sqrdmlsh_qc
, size
);
11146 case 0x2: /* SDOT / UDOT */
11147 gen_gvec_op4_ool(s
, is_q
, rd
, rn
, rm
, rd
, 0,
11148 u
? gen_helper_gvec_udot_b
: gen_helper_gvec_sdot_b
);
11151 case 0x3: /* USDOT */
11152 gen_gvec_op4_ool(s
, is_q
, rd
, rn
, rm
, rd
, 0, gen_helper_gvec_usdot_b
);
11155 case 0x04: /* SMMLA, UMMLA */
11156 gen_gvec_op4_ool(s
, 1, rd
, rn
, rm
, rd
, 0,
11157 u
? gen_helper_gvec_ummla_b
11158 : gen_helper_gvec_smmla_b
);
11160 case 0x05: /* USMMLA */
11161 gen_gvec_op4_ool(s
, 1, rd
, rn
, rm
, rd
, 0, gen_helper_gvec_usmmla_b
);
11164 case 0x8: /* FCMLA, #0 */
11165 case 0x9: /* FCMLA, #90 */
11166 case 0xa: /* FCMLA, #180 */
11167 case 0xb: /* FCMLA, #270 */
11168 rot
= extract32(opcode
, 0, 2);
11171 gen_gvec_op4_fpst(s
, is_q
, rd
, rn
, rm
, rd
, true, rot
,
11172 gen_helper_gvec_fcmlah
);
11175 gen_gvec_op4_fpst(s
, is_q
, rd
, rn
, rm
, rd
, false, rot
,
11176 gen_helper_gvec_fcmlas
);
11179 gen_gvec_op4_fpst(s
, is_q
, rd
, rn
, rm
, rd
, false, rot
,
11180 gen_helper_gvec_fcmlad
);
11183 g_assert_not_reached();
11187 case 0xc: /* FCADD, #90 */
11188 case 0xe: /* FCADD, #270 */
11189 rot
= extract32(opcode
, 1, 1);
11192 gen_gvec_op3_fpst(s
, is_q
, rd
, rn
, rm
, size
== 1, rot
,
11193 gen_helper_gvec_fcaddh
);
11196 gen_gvec_op3_fpst(s
, is_q
, rd
, rn
, rm
, size
== 1, rot
,
11197 gen_helper_gvec_fcadds
);
11200 gen_gvec_op3_fpst(s
, is_q
, rd
, rn
, rm
, size
== 1, rot
,
11201 gen_helper_gvec_fcaddd
);
11204 g_assert_not_reached();
11208 case 0xd: /* BFMMLA */
11209 gen_gvec_op4_ool(s
, is_q
, rd
, rn
, rm
, rd
, 0, gen_helper_gvec_bfmmla
);
11213 case 1: /* BFDOT */
11214 gen_gvec_op4_ool(s
, is_q
, rd
, rn
, rm
, rd
, 0, gen_helper_gvec_bfdot
);
11216 case 3: /* BFMLAL{B,T} */
11217 gen_gvec_op4_fpst(s
, 1, rd
, rn
, rm
, rd
, false, is_q
,
11218 gen_helper_gvec_bfmlal
);
11221 g_assert_not_reached();
11226 g_assert_not_reached();
11230 static void handle_2misc_widening(DisasContext
*s
, int opcode
, bool is_q
,
11231 int size
, int rn
, int rd
)
11233 /* Handle 2-reg-misc ops which are widening (so each size element
11234 * in the source becomes a 2*size element in the destination.
11235 * The only instruction like this is FCVTL.
11240 /* 32 -> 64 bit fp conversion */
11241 TCGv_i64 tcg_res
[2];
11242 int srcelt
= is_q
? 2 : 0;
11244 for (pass
= 0; pass
< 2; pass
++) {
11245 TCGv_i32 tcg_op
= tcg_temp_new_i32();
11246 tcg_res
[pass
] = tcg_temp_new_i64();
11248 read_vec_element_i32(s
, tcg_op
, rn
, srcelt
+ pass
, MO_32
);
11249 gen_helper_vfp_fcvtds(tcg_res
[pass
], tcg_op
, tcg_env
);
11251 for (pass
= 0; pass
< 2; pass
++) {
11252 write_vec_element(s
, tcg_res
[pass
], rd
, pass
, MO_64
);
11255 /* 16 -> 32 bit fp conversion */
11256 int srcelt
= is_q
? 4 : 0;
11257 TCGv_i32 tcg_res
[4];
11258 TCGv_ptr fpst
= fpstatus_ptr(FPST_FPCR
);
11259 TCGv_i32 ahp
= get_ahp_flag();
11261 for (pass
= 0; pass
< 4; pass
++) {
11262 tcg_res
[pass
] = tcg_temp_new_i32();
11264 read_vec_element_i32(s
, tcg_res
[pass
], rn
, srcelt
+ pass
, MO_16
);
11265 gen_helper_vfp_fcvt_f16_to_f32(tcg_res
[pass
], tcg_res
[pass
],
11268 for (pass
= 0; pass
< 4; pass
++) {
11269 write_vec_element_i32(s
, tcg_res
[pass
], rd
, pass
, MO_32
);
11274 static void handle_rev(DisasContext
*s
, int opcode
, bool u
,
11275 bool is_q
, int size
, int rn
, int rd
)
11277 int op
= (opcode
<< 1) | u
;
11278 int opsz
= op
+ size
;
11279 int grp_size
= 3 - opsz
;
11280 int dsize
= is_q
? 128 : 64;
11284 unallocated_encoding(s
);
11288 if (!fp_access_check(s
)) {
11293 /* Special case bytes, use bswap op on each group of elements */
11294 int groups
= dsize
/ (8 << grp_size
);
11296 for (i
= 0; i
< groups
; i
++) {
11297 TCGv_i64 tcg_tmp
= tcg_temp_new_i64();
11299 read_vec_element(s
, tcg_tmp
, rn
, i
, grp_size
);
11300 switch (grp_size
) {
11302 tcg_gen_bswap16_i64(tcg_tmp
, tcg_tmp
, TCG_BSWAP_IZ
);
11305 tcg_gen_bswap32_i64(tcg_tmp
, tcg_tmp
, TCG_BSWAP_IZ
);
11308 tcg_gen_bswap64_i64(tcg_tmp
, tcg_tmp
);
11311 g_assert_not_reached();
11313 write_vec_element(s
, tcg_tmp
, rd
, i
, grp_size
);
11315 clear_vec_high(s
, is_q
, rd
);
11317 int revmask
= (1 << grp_size
) - 1;
11318 int esize
= 8 << size
;
11319 int elements
= dsize
/ esize
;
11320 TCGv_i64 tcg_rn
= tcg_temp_new_i64();
11321 TCGv_i64 tcg_rd
[2];
11323 for (i
= 0; i
< 2; i
++) {
11324 tcg_rd
[i
] = tcg_temp_new_i64();
11325 tcg_gen_movi_i64(tcg_rd
[i
], 0);
11328 for (i
= 0; i
< elements
; i
++) {
11329 int e_rev
= (i
& 0xf) ^ revmask
;
11330 int w
= (e_rev
* esize
) / 64;
11331 int o
= (e_rev
* esize
) % 64;
11333 read_vec_element(s
, tcg_rn
, rn
, i
, size
);
11334 tcg_gen_deposit_i64(tcg_rd
[w
], tcg_rd
[w
], tcg_rn
, o
, esize
);
11337 for (i
= 0; i
< 2; i
++) {
11338 write_vec_element(s
, tcg_rd
[i
], rd
, i
, MO_64
);
11340 clear_vec_high(s
, true, rd
);
11344 static void handle_2misc_pairwise(DisasContext
*s
, int opcode
, bool u
,
11345 bool is_q
, int size
, int rn
, int rd
)
11347 /* Implement the pairwise operations from 2-misc:
11348 * SADDLP, UADDLP, SADALP, UADALP.
11349 * These all add pairs of elements in the input to produce a
11350 * double-width result element in the output (possibly accumulating).
11352 bool accum
= (opcode
== 0x6);
11353 int maxpass
= is_q
? 2 : 1;
11355 TCGv_i64 tcg_res
[2];
11358 /* 32 + 32 -> 64 op */
11359 MemOp memop
= size
+ (u
? 0 : MO_SIGN
);
11361 for (pass
= 0; pass
< maxpass
; pass
++) {
11362 TCGv_i64 tcg_op1
= tcg_temp_new_i64();
11363 TCGv_i64 tcg_op2
= tcg_temp_new_i64();
11365 tcg_res
[pass
] = tcg_temp_new_i64();
11367 read_vec_element(s
, tcg_op1
, rn
, pass
* 2, memop
);
11368 read_vec_element(s
, tcg_op2
, rn
, pass
* 2 + 1, memop
);
11369 tcg_gen_add_i64(tcg_res
[pass
], tcg_op1
, tcg_op2
);
11371 read_vec_element(s
, tcg_op1
, rd
, pass
, MO_64
);
11372 tcg_gen_add_i64(tcg_res
[pass
], tcg_res
[pass
], tcg_op1
);
11376 for (pass
= 0; pass
< maxpass
; pass
++) {
11377 TCGv_i64 tcg_op
= tcg_temp_new_i64();
11378 NeonGenOne64OpFn
*genfn
;
11379 static NeonGenOne64OpFn
* const fns
[2][2] = {
11380 { gen_helper_neon_addlp_s8
, gen_helper_neon_addlp_u8
},
11381 { gen_helper_neon_addlp_s16
, gen_helper_neon_addlp_u16
},
11384 genfn
= fns
[size
][u
];
11386 tcg_res
[pass
] = tcg_temp_new_i64();
11388 read_vec_element(s
, tcg_op
, rn
, pass
, MO_64
);
11389 genfn(tcg_res
[pass
], tcg_op
);
11392 read_vec_element(s
, tcg_op
, rd
, pass
, MO_64
);
11394 gen_helper_neon_addl_u16(tcg_res
[pass
],
11395 tcg_res
[pass
], tcg_op
);
11397 gen_helper_neon_addl_u32(tcg_res
[pass
],
11398 tcg_res
[pass
], tcg_op
);
11404 tcg_res
[1] = tcg_constant_i64(0);
11406 for (pass
= 0; pass
< 2; pass
++) {
11407 write_vec_element(s
, tcg_res
[pass
], rd
, pass
, MO_64
);
11411 static void handle_shll(DisasContext
*s
, bool is_q
, int size
, int rn
, int rd
)
11413 /* Implement SHLL and SHLL2 */
11415 int part
= is_q
? 2 : 0;
11416 TCGv_i64 tcg_res
[2];
11418 for (pass
= 0; pass
< 2; pass
++) {
11419 static NeonGenWidenFn
* const widenfns
[3] = {
11420 gen_helper_neon_widen_u8
,
11421 gen_helper_neon_widen_u16
,
11422 tcg_gen_extu_i32_i64
,
11424 NeonGenWidenFn
*widenfn
= widenfns
[size
];
11425 TCGv_i32 tcg_op
= tcg_temp_new_i32();
11427 read_vec_element_i32(s
, tcg_op
, rn
, part
+ pass
, MO_32
);
11428 tcg_res
[pass
] = tcg_temp_new_i64();
11429 widenfn(tcg_res
[pass
], tcg_op
);
11430 tcg_gen_shli_i64(tcg_res
[pass
], tcg_res
[pass
], 8 << size
);
11433 for (pass
= 0; pass
< 2; pass
++) {
11434 write_vec_element(s
, tcg_res
[pass
], rd
, pass
, MO_64
);
11438 /* AdvSIMD two reg misc
11439 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
11440 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11441 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
11442 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11444 static void disas_simd_two_reg_misc(DisasContext
*s
, uint32_t insn
)
11446 int size
= extract32(insn
, 22, 2);
11447 int opcode
= extract32(insn
, 12, 5);
11448 bool u
= extract32(insn
, 29, 1);
11449 bool is_q
= extract32(insn
, 30, 1);
11450 int rn
= extract32(insn
, 5, 5);
11451 int rd
= extract32(insn
, 0, 5);
11452 bool need_fpstatus
= false;
11454 TCGv_i32 tcg_rmode
;
11455 TCGv_ptr tcg_fpstatus
;
11458 case 0x0: /* REV64, REV32 */
11459 case 0x1: /* REV16 */
11460 handle_rev(s
, opcode
, u
, is_q
, size
, rn
, rd
);
11462 case 0x5: /* CNT, NOT, RBIT */
11463 if (u
&& size
== 0) {
11466 } else if (u
&& size
== 1) {
11469 } else if (!u
&& size
== 0) {
11473 unallocated_encoding(s
);
11475 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
11476 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
11478 unallocated_encoding(s
);
11481 if (!fp_access_check(s
)) {
11485 handle_2misc_narrow(s
, false, opcode
, u
, is_q
, size
, rn
, rd
);
11487 case 0x4: /* CLS, CLZ */
11489 unallocated_encoding(s
);
11493 case 0x2: /* SADDLP, UADDLP */
11494 case 0x6: /* SADALP, UADALP */
11496 unallocated_encoding(s
);
11499 if (!fp_access_check(s
)) {
11502 handle_2misc_pairwise(s
, opcode
, u
, is_q
, size
, rn
, rd
);
11504 case 0x13: /* SHLL, SHLL2 */
11505 if (u
== 0 || size
== 3) {
11506 unallocated_encoding(s
);
11509 if (!fp_access_check(s
)) {
11512 handle_shll(s
, is_q
, size
, rn
, rd
);
11514 case 0xa: /* CMLT */
11516 unallocated_encoding(s
);
11520 case 0x8: /* CMGT, CMGE */
11521 case 0x9: /* CMEQ, CMLE */
11522 case 0xb: /* ABS, NEG */
11523 if (size
== 3 && !is_q
) {
11524 unallocated_encoding(s
);
11528 case 0x7: /* SQABS, SQNEG */
11529 if (size
== 3 && !is_q
) {
11530 unallocated_encoding(s
);
11535 case 0x16 ... 0x1f:
11537 /* Floating point: U, size[1] and opcode indicate operation;
11538 * size[0] indicates single or double precision.
11540 int is_double
= extract32(size
, 0, 1);
11541 opcode
|= (extract32(size
, 1, 1) << 5) | (u
<< 6);
11542 size
= is_double
? 3 : 2;
11544 case 0x2f: /* FABS */
11545 case 0x6f: /* FNEG */
11546 if (size
== 3 && !is_q
) {
11547 unallocated_encoding(s
);
11551 case 0x1d: /* SCVTF */
11552 case 0x5d: /* UCVTF */
11554 bool is_signed
= (opcode
== 0x1d) ? true : false;
11555 int elements
= is_double
? 2 : is_q
? 4 : 2;
11556 if (is_double
&& !is_q
) {
11557 unallocated_encoding(s
);
11560 if (!fp_access_check(s
)) {
11563 handle_simd_intfp_conv(s
, rd
, rn
, elements
, is_signed
, 0, size
);
11566 case 0x2c: /* FCMGT (zero) */
11567 case 0x2d: /* FCMEQ (zero) */
11568 case 0x2e: /* FCMLT (zero) */
11569 case 0x6c: /* FCMGE (zero) */
11570 case 0x6d: /* FCMLE (zero) */
11571 if (size
== 3 && !is_q
) {
11572 unallocated_encoding(s
);
11575 handle_2misc_fcmp_zero(s
, opcode
, false, u
, is_q
, size
, rn
, rd
);
11577 case 0x7f: /* FSQRT */
11578 if (size
== 3 && !is_q
) {
11579 unallocated_encoding(s
);
11583 case 0x1a: /* FCVTNS */
11584 case 0x1b: /* FCVTMS */
11585 case 0x3a: /* FCVTPS */
11586 case 0x3b: /* FCVTZS */
11587 case 0x5a: /* FCVTNU */
11588 case 0x5b: /* FCVTMU */
11589 case 0x7a: /* FCVTPU */
11590 case 0x7b: /* FCVTZU */
11591 need_fpstatus
= true;
11592 rmode
= extract32(opcode
, 5, 1) | (extract32(opcode
, 0, 1) << 1);
11593 if (size
== 3 && !is_q
) {
11594 unallocated_encoding(s
);
11598 case 0x5c: /* FCVTAU */
11599 case 0x1c: /* FCVTAS */
11600 need_fpstatus
= true;
11601 rmode
= FPROUNDING_TIEAWAY
;
11602 if (size
== 3 && !is_q
) {
11603 unallocated_encoding(s
);
11607 case 0x3c: /* URECPE */
11609 unallocated_encoding(s
);
11613 case 0x3d: /* FRECPE */
11614 case 0x7d: /* FRSQRTE */
11615 if (size
== 3 && !is_q
) {
11616 unallocated_encoding(s
);
11619 if (!fp_access_check(s
)) {
11622 handle_2misc_reciprocal(s
, opcode
, false, u
, is_q
, size
, rn
, rd
);
11624 case 0x56: /* FCVTXN, FCVTXN2 */
11626 unallocated_encoding(s
);
11630 case 0x16: /* FCVTN, FCVTN2 */
11631 /* handle_2misc_narrow does a 2*size -> size operation, but these
11632 * instructions encode the source size rather than dest size.
11634 if (!fp_access_check(s
)) {
11637 handle_2misc_narrow(s
, false, opcode
, 0, is_q
, size
- 1, rn
, rd
);
11639 case 0x36: /* BFCVTN, BFCVTN2 */
11640 if (!dc_isar_feature(aa64_bf16
, s
) || size
!= 2) {
11641 unallocated_encoding(s
);
11644 if (!fp_access_check(s
)) {
11647 handle_2misc_narrow(s
, false, opcode
, 0, is_q
, size
- 1, rn
, rd
);
11649 case 0x17: /* FCVTL, FCVTL2 */
11650 if (!fp_access_check(s
)) {
11653 handle_2misc_widening(s
, opcode
, is_q
, size
, rn
, rd
);
11655 case 0x18: /* FRINTN */
11656 case 0x19: /* FRINTM */
11657 case 0x38: /* FRINTP */
11658 case 0x39: /* FRINTZ */
11659 rmode
= extract32(opcode
, 5, 1) | (extract32(opcode
, 0, 1) << 1);
11661 case 0x59: /* FRINTX */
11662 case 0x79: /* FRINTI */
11663 need_fpstatus
= true;
11664 if (size
== 3 && !is_q
) {
11665 unallocated_encoding(s
);
11669 case 0x58: /* FRINTA */
11670 rmode
= FPROUNDING_TIEAWAY
;
11671 need_fpstatus
= true;
11672 if (size
== 3 && !is_q
) {
11673 unallocated_encoding(s
);
11677 case 0x7c: /* URSQRTE */
11679 unallocated_encoding(s
);
11683 case 0x1e: /* FRINT32Z */
11684 case 0x1f: /* FRINT64Z */
11685 rmode
= FPROUNDING_ZERO
;
11687 case 0x5e: /* FRINT32X */
11688 case 0x5f: /* FRINT64X */
11689 need_fpstatus
= true;
11690 if ((size
== 3 && !is_q
) || !dc_isar_feature(aa64_frint
, s
)) {
11691 unallocated_encoding(s
);
11696 unallocated_encoding(s
);
11702 case 0x3: /* SUQADD, USQADD */
11703 unallocated_encoding(s
);
11707 if (!fp_access_check(s
)) {
11711 if (need_fpstatus
|| rmode
>= 0) {
11712 tcg_fpstatus
= fpstatus_ptr(FPST_FPCR
);
11714 tcg_fpstatus
= NULL
;
11717 tcg_rmode
= gen_set_rmode(rmode
, tcg_fpstatus
);
11724 if (u
&& size
== 0) { /* NOT */
11725 gen_gvec_fn2(s
, is_q
, rd
, rn
, tcg_gen_gvec_not
, 0);
11729 case 0x8: /* CMGT, CMGE */
11731 gen_gvec_fn2(s
, is_q
, rd
, rn
, gen_gvec_cge0
, size
);
11733 gen_gvec_fn2(s
, is_q
, rd
, rn
, gen_gvec_cgt0
, size
);
11736 case 0x9: /* CMEQ, CMLE */
11738 gen_gvec_fn2(s
, is_q
, rd
, rn
, gen_gvec_cle0
, size
);
11740 gen_gvec_fn2(s
, is_q
, rd
, rn
, gen_gvec_ceq0
, size
);
11743 case 0xa: /* CMLT */
11744 gen_gvec_fn2(s
, is_q
, rd
, rn
, gen_gvec_clt0
, size
);
11747 if (u
) { /* ABS, NEG */
11748 gen_gvec_fn2(s
, is_q
, rd
, rn
, tcg_gen_gvec_neg
, size
);
11750 gen_gvec_fn2(s
, is_q
, rd
, rn
, tcg_gen_gvec_abs
, size
);
11756 /* All 64-bit element operations can be shared with scalar 2misc */
11759 /* Coverity claims (size == 3 && !is_q) has been eliminated
11760 * from all paths leading to here.
11762 tcg_debug_assert(is_q
);
11763 for (pass
= 0; pass
< 2; pass
++) {
11764 TCGv_i64 tcg_op
= tcg_temp_new_i64();
11765 TCGv_i64 tcg_res
= tcg_temp_new_i64();
11767 read_vec_element(s
, tcg_op
, rn
, pass
, MO_64
);
11769 handle_2misc_64(s
, opcode
, u
, tcg_res
, tcg_op
,
11770 tcg_rmode
, tcg_fpstatus
);
11772 write_vec_element(s
, tcg_res
, rd
, pass
, MO_64
);
11777 for (pass
= 0; pass
< (is_q
? 4 : 2); pass
++) {
11778 TCGv_i32 tcg_op
= tcg_temp_new_i32();
11779 TCGv_i32 tcg_res
= tcg_temp_new_i32();
11781 read_vec_element_i32(s
, tcg_op
, rn
, pass
, MO_32
);
11784 /* Special cases for 32 bit elements */
11786 case 0x4: /* CLS */
11788 tcg_gen_clzi_i32(tcg_res
, tcg_op
, 32);
11790 tcg_gen_clrsb_i32(tcg_res
, tcg_op
);
11793 case 0x7: /* SQABS, SQNEG */
11795 gen_helper_neon_qneg_s32(tcg_res
, tcg_env
, tcg_op
);
11797 gen_helper_neon_qabs_s32(tcg_res
, tcg_env
, tcg_op
);
11800 case 0x2f: /* FABS */
11801 gen_vfp_abss(tcg_res
, tcg_op
);
11803 case 0x6f: /* FNEG */
11804 gen_vfp_negs(tcg_res
, tcg_op
);
11806 case 0x7f: /* FSQRT */
11807 gen_helper_vfp_sqrts(tcg_res
, tcg_op
, tcg_env
);
11809 case 0x1a: /* FCVTNS */
11810 case 0x1b: /* FCVTMS */
11811 case 0x1c: /* FCVTAS */
11812 case 0x3a: /* FCVTPS */
11813 case 0x3b: /* FCVTZS */
11814 gen_helper_vfp_tosls(tcg_res
, tcg_op
,
11815 tcg_constant_i32(0), tcg_fpstatus
);
11817 case 0x5a: /* FCVTNU */
11818 case 0x5b: /* FCVTMU */
11819 case 0x5c: /* FCVTAU */
11820 case 0x7a: /* FCVTPU */
11821 case 0x7b: /* FCVTZU */
11822 gen_helper_vfp_touls(tcg_res
, tcg_op
,
11823 tcg_constant_i32(0), tcg_fpstatus
);
11825 case 0x18: /* FRINTN */
11826 case 0x19: /* FRINTM */
11827 case 0x38: /* FRINTP */
11828 case 0x39: /* FRINTZ */
11829 case 0x58: /* FRINTA */
11830 case 0x79: /* FRINTI */
11831 gen_helper_rints(tcg_res
, tcg_op
, tcg_fpstatus
);
11833 case 0x59: /* FRINTX */
11834 gen_helper_rints_exact(tcg_res
, tcg_op
, tcg_fpstatus
);
11836 case 0x7c: /* URSQRTE */
11837 gen_helper_rsqrte_u32(tcg_res
, tcg_op
);
11839 case 0x1e: /* FRINT32Z */
11840 case 0x5e: /* FRINT32X */
11841 gen_helper_frint32_s(tcg_res
, tcg_op
, tcg_fpstatus
);
11843 case 0x1f: /* FRINT64Z */
11844 case 0x5f: /* FRINT64X */
11845 gen_helper_frint64_s(tcg_res
, tcg_op
, tcg_fpstatus
);
11848 g_assert_not_reached();
11851 /* Use helpers for 8 and 16 bit elements */
11853 case 0x5: /* CNT, RBIT */
11854 /* For these two insns size is part of the opcode specifier
11855 * (handled earlier); they always operate on byte elements.
11858 gen_helper_neon_rbit_u8(tcg_res
, tcg_op
);
11860 gen_helper_neon_cnt_u8(tcg_res
, tcg_op
);
11863 case 0x7: /* SQABS, SQNEG */
11865 NeonGenOneOpEnvFn
*genfn
;
11866 static NeonGenOneOpEnvFn
* const fns
[2][2] = {
11867 { gen_helper_neon_qabs_s8
, gen_helper_neon_qneg_s8
},
11868 { gen_helper_neon_qabs_s16
, gen_helper_neon_qneg_s16
},
11870 genfn
= fns
[size
][u
];
11871 genfn(tcg_res
, tcg_env
, tcg_op
);
11874 case 0x4: /* CLS, CLZ */
11877 gen_helper_neon_clz_u8(tcg_res
, tcg_op
);
11879 gen_helper_neon_clz_u16(tcg_res
, tcg_op
);
11883 gen_helper_neon_cls_s8(tcg_res
, tcg_op
);
11885 gen_helper_neon_cls_s16(tcg_res
, tcg_op
);
11890 g_assert_not_reached();
11894 write_vec_element_i32(s
, tcg_res
, rd
, pass
, MO_32
);
11897 clear_vec_high(s
, is_q
, rd
);
11900 gen_restore_rmode(tcg_rmode
, tcg_fpstatus
);
11904 /* AdvSIMD [scalar] two register miscellaneous (FP16)
11906 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0
11907 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
11908 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd |
11909 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
11910 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
11911 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
11913 * This actually covers two groups where scalar access is governed by
11914 * bit 28. A bunch of the instructions (float to integral) only exist
11915 * in the vector form and are un-allocated for the scalar decode. Also
11916 * in the scalar decode Q is always 1.
11918 static void disas_simd_two_reg_misc_fp16(DisasContext
*s
, uint32_t insn
)
11920 int fpop
, opcode
, a
, u
;
11924 bool only_in_vector
= false;
11927 TCGv_i32 tcg_rmode
= NULL
;
11928 TCGv_ptr tcg_fpstatus
= NULL
;
11929 bool need_fpst
= true;
11932 if (!dc_isar_feature(aa64_fp16
, s
)) {
11933 unallocated_encoding(s
);
11937 rd
= extract32(insn
, 0, 5);
11938 rn
= extract32(insn
, 5, 5);
11940 a
= extract32(insn
, 23, 1);
11941 u
= extract32(insn
, 29, 1);
11942 is_scalar
= extract32(insn
, 28, 1);
11943 is_q
= extract32(insn
, 30, 1);
11945 opcode
= extract32(insn
, 12, 5);
11946 fpop
= deposit32(opcode
, 5, 1, a
);
11947 fpop
= deposit32(fpop
, 6, 1, u
);
11950 case 0x1d: /* SCVTF */
11951 case 0x5d: /* UCVTF */
11958 elements
= (is_q
? 8 : 4);
11961 if (!fp_access_check(s
)) {
11964 handle_simd_intfp_conv(s
, rd
, rn
, elements
, !u
, 0, MO_16
);
11968 case 0x2c: /* FCMGT (zero) */
11969 case 0x2d: /* FCMEQ (zero) */
11970 case 0x2e: /* FCMLT (zero) */
11971 case 0x6c: /* FCMGE (zero) */
11972 case 0x6d: /* FCMLE (zero) */
11973 handle_2misc_fcmp_zero(s
, fpop
, is_scalar
, 0, is_q
, MO_16
, rn
, rd
);
11975 case 0x3d: /* FRECPE */
11976 case 0x3f: /* FRECPX */
11978 case 0x18: /* FRINTN */
11979 only_in_vector
= true;
11980 rmode
= FPROUNDING_TIEEVEN
;
11982 case 0x19: /* FRINTM */
11983 only_in_vector
= true;
11984 rmode
= FPROUNDING_NEGINF
;
11986 case 0x38: /* FRINTP */
11987 only_in_vector
= true;
11988 rmode
= FPROUNDING_POSINF
;
11990 case 0x39: /* FRINTZ */
11991 only_in_vector
= true;
11992 rmode
= FPROUNDING_ZERO
;
11994 case 0x58: /* FRINTA */
11995 only_in_vector
= true;
11996 rmode
= FPROUNDING_TIEAWAY
;
11998 case 0x59: /* FRINTX */
11999 case 0x79: /* FRINTI */
12000 only_in_vector
= true;
12001 /* current rounding mode */
12003 case 0x1a: /* FCVTNS */
12004 rmode
= FPROUNDING_TIEEVEN
;
12006 case 0x1b: /* FCVTMS */
12007 rmode
= FPROUNDING_NEGINF
;
12009 case 0x1c: /* FCVTAS */
12010 rmode
= FPROUNDING_TIEAWAY
;
12012 case 0x3a: /* FCVTPS */
12013 rmode
= FPROUNDING_POSINF
;
12015 case 0x3b: /* FCVTZS */
12016 rmode
= FPROUNDING_ZERO
;
12018 case 0x5a: /* FCVTNU */
12019 rmode
= FPROUNDING_TIEEVEN
;
12021 case 0x5b: /* FCVTMU */
12022 rmode
= FPROUNDING_NEGINF
;
12024 case 0x5c: /* FCVTAU */
12025 rmode
= FPROUNDING_TIEAWAY
;
12027 case 0x7a: /* FCVTPU */
12028 rmode
= FPROUNDING_POSINF
;
12030 case 0x7b: /* FCVTZU */
12031 rmode
= FPROUNDING_ZERO
;
12033 case 0x2f: /* FABS */
12034 case 0x6f: /* FNEG */
12037 case 0x7d: /* FRSQRTE */
12038 case 0x7f: /* FSQRT (vector) */
12041 unallocated_encoding(s
);
12046 /* Check additional constraints for the scalar encoding */
12049 unallocated_encoding(s
);
12052 /* FRINTxx is only in the vector form */
12053 if (only_in_vector
) {
12054 unallocated_encoding(s
);
12059 if (!fp_access_check(s
)) {
12063 if (rmode
>= 0 || need_fpst
) {
12064 tcg_fpstatus
= fpstatus_ptr(FPST_FPCR_F16
);
12068 tcg_rmode
= gen_set_rmode(rmode
, tcg_fpstatus
);
12072 TCGv_i32 tcg_op
= read_fp_hreg(s
, rn
);
12073 TCGv_i32 tcg_res
= tcg_temp_new_i32();
12076 case 0x1a: /* FCVTNS */
12077 case 0x1b: /* FCVTMS */
12078 case 0x1c: /* FCVTAS */
12079 case 0x3a: /* FCVTPS */
12080 case 0x3b: /* FCVTZS */
12081 gen_helper_advsimd_f16tosinth(tcg_res
, tcg_op
, tcg_fpstatus
);
12083 case 0x3d: /* FRECPE */
12084 gen_helper_recpe_f16(tcg_res
, tcg_op
, tcg_fpstatus
);
12086 case 0x3f: /* FRECPX */
12087 gen_helper_frecpx_f16(tcg_res
, tcg_op
, tcg_fpstatus
);
12089 case 0x5a: /* FCVTNU */
12090 case 0x5b: /* FCVTMU */
12091 case 0x5c: /* FCVTAU */
12092 case 0x7a: /* FCVTPU */
12093 case 0x7b: /* FCVTZU */
12094 gen_helper_advsimd_f16touinth(tcg_res
, tcg_op
, tcg_fpstatus
);
12096 case 0x6f: /* FNEG */
12097 tcg_gen_xori_i32(tcg_res
, tcg_op
, 0x8000);
12099 case 0x7d: /* FRSQRTE */
12100 gen_helper_rsqrte_f16(tcg_res
, tcg_op
, tcg_fpstatus
);
12103 g_assert_not_reached();
12106 /* limit any sign extension going on */
12107 tcg_gen_andi_i32(tcg_res
, tcg_res
, 0xffff);
12108 write_fp_sreg(s
, rd
, tcg_res
);
12110 for (pass
= 0; pass
< (is_q
? 8 : 4); pass
++) {
12111 TCGv_i32 tcg_op
= tcg_temp_new_i32();
12112 TCGv_i32 tcg_res
= tcg_temp_new_i32();
12114 read_vec_element_i32(s
, tcg_op
, rn
, pass
, MO_16
);
12117 case 0x1a: /* FCVTNS */
12118 case 0x1b: /* FCVTMS */
12119 case 0x1c: /* FCVTAS */
12120 case 0x3a: /* FCVTPS */
12121 case 0x3b: /* FCVTZS */
12122 gen_helper_advsimd_f16tosinth(tcg_res
, tcg_op
, tcg_fpstatus
);
12124 case 0x3d: /* FRECPE */
12125 gen_helper_recpe_f16(tcg_res
, tcg_op
, tcg_fpstatus
);
12127 case 0x5a: /* FCVTNU */
12128 case 0x5b: /* FCVTMU */
12129 case 0x5c: /* FCVTAU */
12130 case 0x7a: /* FCVTPU */
12131 case 0x7b: /* FCVTZU */
12132 gen_helper_advsimd_f16touinth(tcg_res
, tcg_op
, tcg_fpstatus
);
12134 case 0x18: /* FRINTN */
12135 case 0x19: /* FRINTM */
12136 case 0x38: /* FRINTP */
12137 case 0x39: /* FRINTZ */
12138 case 0x58: /* FRINTA */
12139 case 0x79: /* FRINTI */
12140 gen_helper_advsimd_rinth(tcg_res
, tcg_op
, tcg_fpstatus
);
12142 case 0x59: /* FRINTX */
12143 gen_helper_advsimd_rinth_exact(tcg_res
, tcg_op
, tcg_fpstatus
);
12145 case 0x2f: /* FABS */
12146 tcg_gen_andi_i32(tcg_res
, tcg_op
, 0x7fff);
12148 case 0x6f: /* FNEG */
12149 tcg_gen_xori_i32(tcg_res
, tcg_op
, 0x8000);
12151 case 0x7d: /* FRSQRTE */
12152 gen_helper_rsqrte_f16(tcg_res
, tcg_op
, tcg_fpstatus
);
12154 case 0x7f: /* FSQRT */
12155 gen_helper_sqrt_f16(tcg_res
, tcg_op
, tcg_fpstatus
);
12158 g_assert_not_reached();
12161 write_vec_element_i32(s
, tcg_res
, rd
, pass
, MO_16
);
12164 clear_vec_high(s
, is_q
, rd
);
12168 gen_restore_rmode(tcg_rmode
, tcg_fpstatus
);
12172 /* AdvSIMD scalar x indexed element
12173 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12174 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12175 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12176 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12177 * AdvSIMD vector x indexed element
12178 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12179 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12180 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12181 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12183 static void disas_simd_indexed(DisasContext
*s
, uint32_t insn
)
12185 /* This encoding has two kinds of instruction:
12186 * normal, where we perform elt x idxelt => elt for each
12187 * element in the vector
12188 * long, where we perform elt x idxelt and generate a result of
12189 * double the width of the input element
12190 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12192 bool is_scalar
= extract32(insn
, 28, 1);
12193 bool is_q
= extract32(insn
, 30, 1);
12194 bool u
= extract32(insn
, 29, 1);
12195 int size
= extract32(insn
, 22, 2);
12196 int l
= extract32(insn
, 21, 1);
12197 int m
= extract32(insn
, 20, 1);
12198 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12199 int rm
= extract32(insn
, 16, 4);
12200 int opcode
= extract32(insn
, 12, 4);
12201 int h
= extract32(insn
, 11, 1);
12202 int rn
= extract32(insn
, 5, 5);
12203 int rd
= extract32(insn
, 0, 5);
12204 bool is_long
= false;
12206 bool is_fp16
= false;
12210 switch (16 * u
+ opcode
) {
12211 case 0x08: /* MUL */
12212 case 0x10: /* MLA */
12213 case 0x14: /* MLS */
12215 unallocated_encoding(s
);
12219 case 0x02: /* SMLAL, SMLAL2 */
12220 case 0x12: /* UMLAL, UMLAL2 */
12221 case 0x06: /* SMLSL, SMLSL2 */
12222 case 0x16: /* UMLSL, UMLSL2 */
12223 case 0x0a: /* SMULL, SMULL2 */
12224 case 0x1a: /* UMULL, UMULL2 */
12226 unallocated_encoding(s
);
12231 case 0x03: /* SQDMLAL, SQDMLAL2 */
12232 case 0x07: /* SQDMLSL, SQDMLSL2 */
12233 case 0x0b: /* SQDMULL, SQDMULL2 */
12236 case 0x0c: /* SQDMULH */
12237 case 0x0d: /* SQRDMULH */
12239 case 0x1d: /* SQRDMLAH */
12240 case 0x1f: /* SQRDMLSH */
12241 if (!dc_isar_feature(aa64_rdm
, s
)) {
12242 unallocated_encoding(s
);
12246 case 0x0e: /* SDOT */
12247 case 0x1e: /* UDOT */
12248 if (is_scalar
|| size
!= MO_32
|| !dc_isar_feature(aa64_dp
, s
)) {
12249 unallocated_encoding(s
);
12255 case 0: /* SUDOT */
12256 case 2: /* USDOT */
12257 if (is_scalar
|| !dc_isar_feature(aa64_i8mm
, s
)) {
12258 unallocated_encoding(s
);
12263 case 1: /* BFDOT */
12264 if (is_scalar
|| !dc_isar_feature(aa64_bf16
, s
)) {
12265 unallocated_encoding(s
);
12270 case 3: /* BFMLAL{B,T} */
12271 if (is_scalar
|| !dc_isar_feature(aa64_bf16
, s
)) {
12272 unallocated_encoding(s
);
12275 /* can't set is_fp without other incorrect size checks */
12279 unallocated_encoding(s
);
12283 case 0x11: /* FCMLA #0 */
12284 case 0x13: /* FCMLA #90 */
12285 case 0x15: /* FCMLA #180 */
12286 case 0x17: /* FCMLA #270 */
12287 if (is_scalar
|| !dc_isar_feature(aa64_fcma
, s
)) {
12288 unallocated_encoding(s
);
12294 case 0x00: /* FMLAL */
12295 case 0x01: /* FMLA */
12296 case 0x04: /* FMLSL */
12297 case 0x05: /* FMLS */
12298 case 0x09: /* FMUL */
12299 case 0x18: /* FMLAL2 */
12300 case 0x19: /* FMULX */
12301 case 0x1c: /* FMLSL2 */
12302 unallocated_encoding(s
);
12307 case 1: /* normal fp */
12308 unallocated_encoding(s
); /* in decodetree */
12311 case 2: /* complex fp */
12312 /* Each indexable element is a complex pair. */
12317 unallocated_encoding(s
);
12325 unallocated_encoding(s
);
12330 default: /* integer */
12334 unallocated_encoding(s
);
12339 if (is_fp16
&& !dc_isar_feature(aa64_fp16
, s
)) {
12340 unallocated_encoding(s
);
12344 /* Given MemOp size, adjust register and indexing. */
12347 index
= h
<< 2 | l
<< 1 | m
;
12350 index
= h
<< 1 | l
;
12355 unallocated_encoding(s
);
12362 g_assert_not_reached();
12365 if (!fp_access_check(s
)) {
12370 fpst
= fpstatus_ptr(is_fp16
? FPST_FPCR_F16
: FPST_FPCR
);
12375 switch (16 * u
+ opcode
) {
12376 case 0x0e: /* SDOT */
12377 case 0x1e: /* UDOT */
12378 gen_gvec_op4_ool(s
, is_q
, rd
, rn
, rm
, rd
, index
,
12379 u
? gen_helper_gvec_udot_idx_b
12380 : gen_helper_gvec_sdot_idx_b
);
12383 switch (extract32(insn
, 22, 2)) {
12384 case 0: /* SUDOT */
12385 gen_gvec_op4_ool(s
, is_q
, rd
, rn
, rm
, rd
, index
,
12386 gen_helper_gvec_sudot_idx_b
);
12388 case 1: /* BFDOT */
12389 gen_gvec_op4_ool(s
, is_q
, rd
, rn
, rm
, rd
, index
,
12390 gen_helper_gvec_bfdot_idx
);
12392 case 2: /* USDOT */
12393 gen_gvec_op4_ool(s
, is_q
, rd
, rn
, rm
, rd
, index
,
12394 gen_helper_gvec_usdot_idx_b
);
12396 case 3: /* BFMLAL{B,T} */
12397 gen_gvec_op4_fpst(s
, 1, rd
, rn
, rm
, rd
, 0, (index
<< 1) | is_q
,
12398 gen_helper_gvec_bfmlal_idx
);
12401 g_assert_not_reached();
12402 case 0x11: /* FCMLA #0 */
12403 case 0x13: /* FCMLA #90 */
12404 case 0x15: /* FCMLA #180 */
12405 case 0x17: /* FCMLA #270 */
12407 int rot
= extract32(insn
, 13, 2);
12408 int data
= (index
<< 2) | rot
;
12409 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s
, rd
),
12410 vec_full_reg_offset(s
, rn
),
12411 vec_full_reg_offset(s
, rm
),
12412 vec_full_reg_offset(s
, rd
), fpst
,
12413 is_q
? 16 : 8, vec_full_reg_size(s
), data
,
12415 ? gen_helper_gvec_fcmlas_idx
12416 : gen_helper_gvec_fcmlah_idx
);
12420 case 0x08: /* MUL */
12421 if (!is_long
&& !is_scalar
) {
12422 static gen_helper_gvec_3
* const fns
[3] = {
12423 gen_helper_gvec_mul_idx_h
,
12424 gen_helper_gvec_mul_idx_s
,
12425 gen_helper_gvec_mul_idx_d
,
12427 tcg_gen_gvec_3_ool(vec_full_reg_offset(s
, rd
),
12428 vec_full_reg_offset(s
, rn
),
12429 vec_full_reg_offset(s
, rm
),
12430 is_q
? 16 : 8, vec_full_reg_size(s
),
12431 index
, fns
[size
- 1]);
12436 case 0x10: /* MLA */
12437 if (!is_long
&& !is_scalar
) {
12438 static gen_helper_gvec_4
* const fns
[3] = {
12439 gen_helper_gvec_mla_idx_h
,
12440 gen_helper_gvec_mla_idx_s
,
12441 gen_helper_gvec_mla_idx_d
,
12443 tcg_gen_gvec_4_ool(vec_full_reg_offset(s
, rd
),
12444 vec_full_reg_offset(s
, rn
),
12445 vec_full_reg_offset(s
, rm
),
12446 vec_full_reg_offset(s
, rd
),
12447 is_q
? 16 : 8, vec_full_reg_size(s
),
12448 index
, fns
[size
- 1]);
12453 case 0x14: /* MLS */
12454 if (!is_long
&& !is_scalar
) {
12455 static gen_helper_gvec_4
* const fns
[3] = {
12456 gen_helper_gvec_mls_idx_h
,
12457 gen_helper_gvec_mls_idx_s
,
12458 gen_helper_gvec_mls_idx_d
,
12460 tcg_gen_gvec_4_ool(vec_full_reg_offset(s
, rd
),
12461 vec_full_reg_offset(s
, rn
),
12462 vec_full_reg_offset(s
, rm
),
12463 vec_full_reg_offset(s
, rd
),
12464 is_q
? 16 : 8, vec_full_reg_size(s
),
12465 index
, fns
[size
- 1]);
12472 g_assert_not_reached();
12473 } else if (!is_long
) {
12474 /* 32 bit floating point, or 16 or 32 bit integer.
12475 * For the 16 bit scalar case we use the usual Neon helpers and
12476 * rely on the fact that 0 op 0 == 0 with no side effects.
12478 TCGv_i32 tcg_idx
= tcg_temp_new_i32();
12479 int pass
, maxpasses
;
12484 maxpasses
= is_q
? 4 : 2;
12487 read_vec_element_i32(s
, tcg_idx
, rm
, index
, size
);
12489 if (size
== 1 && !is_scalar
) {
12490 /* The simplest way to handle the 16x16 indexed ops is to duplicate
12491 * the index into both halves of the 32 bit tcg_idx and then use
12492 * the usual Neon helpers.
12494 tcg_gen_deposit_i32(tcg_idx
, tcg_idx
, tcg_idx
, 16, 16);
12497 for (pass
= 0; pass
< maxpasses
; pass
++) {
12498 TCGv_i32 tcg_op
= tcg_temp_new_i32();
12499 TCGv_i32 tcg_res
= tcg_temp_new_i32();
12501 read_vec_element_i32(s
, tcg_op
, rn
, pass
, is_scalar
? size
: MO_32
);
12503 switch (16 * u
+ opcode
) {
12504 case 0x08: /* MUL */
12505 case 0x10: /* MLA */
12506 case 0x14: /* MLS */
12508 static NeonGenTwoOpFn
* const fns
[2][2] = {
12509 { gen_helper_neon_add_u16
, gen_helper_neon_sub_u16
},
12510 { tcg_gen_add_i32
, tcg_gen_sub_i32
},
12512 NeonGenTwoOpFn
*genfn
;
12513 bool is_sub
= opcode
== 0x4;
12516 gen_helper_neon_mul_u16(tcg_res
, tcg_op
, tcg_idx
);
12518 tcg_gen_mul_i32(tcg_res
, tcg_op
, tcg_idx
);
12520 if (opcode
== 0x8) {
12523 read_vec_element_i32(s
, tcg_op
, rd
, pass
, MO_32
);
12524 genfn
= fns
[size
- 1][is_sub
];
12525 genfn(tcg_res
, tcg_op
, tcg_res
);
12528 case 0x0c: /* SQDMULH */
12530 gen_helper_neon_qdmulh_s16(tcg_res
, tcg_env
,
12533 gen_helper_neon_qdmulh_s32(tcg_res
, tcg_env
,
12537 case 0x0d: /* SQRDMULH */
12539 gen_helper_neon_qrdmulh_s16(tcg_res
, tcg_env
,
12542 gen_helper_neon_qrdmulh_s32(tcg_res
, tcg_env
,
12546 case 0x1d: /* SQRDMLAH */
12547 read_vec_element_i32(s
, tcg_res
, rd
, pass
,
12548 is_scalar
? size
: MO_32
);
12550 gen_helper_neon_qrdmlah_s16(tcg_res
, tcg_env
,
12551 tcg_op
, tcg_idx
, tcg_res
);
12553 gen_helper_neon_qrdmlah_s32(tcg_res
, tcg_env
,
12554 tcg_op
, tcg_idx
, tcg_res
);
12557 case 0x1f: /* SQRDMLSH */
12558 read_vec_element_i32(s
, tcg_res
, rd
, pass
,
12559 is_scalar
? size
: MO_32
);
12561 gen_helper_neon_qrdmlsh_s16(tcg_res
, tcg_env
,
12562 tcg_op
, tcg_idx
, tcg_res
);
12564 gen_helper_neon_qrdmlsh_s32(tcg_res
, tcg_env
,
12565 tcg_op
, tcg_idx
, tcg_res
);
12569 case 0x01: /* FMLA */
12570 case 0x05: /* FMLS */
12571 case 0x09: /* FMUL */
12572 case 0x19: /* FMULX */
12573 g_assert_not_reached();
12577 write_fp_sreg(s
, rd
, tcg_res
);
12579 write_vec_element_i32(s
, tcg_res
, rd
, pass
, MO_32
);
12583 clear_vec_high(s
, is_q
, rd
);
12585 /* long ops: 16x16->32 or 32x32->64 */
12586 TCGv_i64 tcg_res
[2];
12588 bool satop
= extract32(opcode
, 0, 1);
12589 MemOp memop
= MO_32
;
12596 TCGv_i64 tcg_idx
= tcg_temp_new_i64();
12598 read_vec_element(s
, tcg_idx
, rm
, index
, memop
);
12600 for (pass
= 0; pass
< (is_scalar
? 1 : 2); pass
++) {
12601 TCGv_i64 tcg_op
= tcg_temp_new_i64();
12602 TCGv_i64 tcg_passres
;
12608 passelt
= pass
+ (is_q
* 2);
12611 read_vec_element(s
, tcg_op
, rn
, passelt
, memop
);
12613 tcg_res
[pass
] = tcg_temp_new_i64();
12615 if (opcode
== 0xa || opcode
== 0xb) {
12616 /* Non-accumulating ops */
12617 tcg_passres
= tcg_res
[pass
];
12619 tcg_passres
= tcg_temp_new_i64();
12622 tcg_gen_mul_i64(tcg_passres
, tcg_op
, tcg_idx
);
12625 /* saturating, doubling */
12626 gen_helper_neon_addl_saturate_s64(tcg_passres
, tcg_env
,
12627 tcg_passres
, tcg_passres
);
12630 if (opcode
== 0xa || opcode
== 0xb) {
12634 /* Accumulating op: handle accumulate step */
12635 read_vec_element(s
, tcg_res
[pass
], rd
, pass
, MO_64
);
12638 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
12639 tcg_gen_add_i64(tcg_res
[pass
], tcg_res
[pass
], tcg_passres
);
12641 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
12642 tcg_gen_sub_i64(tcg_res
[pass
], tcg_res
[pass
], tcg_passres
);
12644 case 0x7: /* SQDMLSL, SQDMLSL2 */
12645 tcg_gen_neg_i64(tcg_passres
, tcg_passres
);
12647 case 0x3: /* SQDMLAL, SQDMLAL2 */
12648 gen_helper_neon_addl_saturate_s64(tcg_res
[pass
], tcg_env
,
12653 g_assert_not_reached();
12657 clear_vec_high(s
, !is_scalar
, rd
);
12659 TCGv_i32 tcg_idx
= tcg_temp_new_i32();
12662 read_vec_element_i32(s
, tcg_idx
, rm
, index
, size
);
12665 /* The simplest way to handle the 16x16 indexed ops is to
12666 * duplicate the index into both halves of the 32 bit tcg_idx
12667 * and then use the usual Neon helpers.
12669 tcg_gen_deposit_i32(tcg_idx
, tcg_idx
, tcg_idx
, 16, 16);
12672 for (pass
= 0; pass
< (is_scalar
? 1 : 2); pass
++) {
12673 TCGv_i32 tcg_op
= tcg_temp_new_i32();
12674 TCGv_i64 tcg_passres
;
12677 read_vec_element_i32(s
, tcg_op
, rn
, pass
, size
);
12679 read_vec_element_i32(s
, tcg_op
, rn
,
12680 pass
+ (is_q
* 2), MO_32
);
12683 tcg_res
[pass
] = tcg_temp_new_i64();
12685 if (opcode
== 0xa || opcode
== 0xb) {
12686 /* Non-accumulating ops */
12687 tcg_passres
= tcg_res
[pass
];
12689 tcg_passres
= tcg_temp_new_i64();
12692 if (memop
& MO_SIGN
) {
12693 gen_helper_neon_mull_s16(tcg_passres
, tcg_op
, tcg_idx
);
12695 gen_helper_neon_mull_u16(tcg_passres
, tcg_op
, tcg_idx
);
12698 gen_helper_neon_addl_saturate_s32(tcg_passres
, tcg_env
,
12699 tcg_passres
, tcg_passres
);
12702 if (opcode
== 0xa || opcode
== 0xb) {
12706 /* Accumulating op: handle accumulate step */
12707 read_vec_element(s
, tcg_res
[pass
], rd
, pass
, MO_64
);
12710 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
12711 gen_helper_neon_addl_u32(tcg_res
[pass
], tcg_res
[pass
],
12714 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
12715 gen_helper_neon_subl_u32(tcg_res
[pass
], tcg_res
[pass
],
12718 case 0x7: /* SQDMLSL, SQDMLSL2 */
12719 gen_helper_neon_negl_u32(tcg_passres
, tcg_passres
);
12721 case 0x3: /* SQDMLAL, SQDMLAL2 */
12722 gen_helper_neon_addl_saturate_s32(tcg_res
[pass
], tcg_env
,
12727 g_assert_not_reached();
12732 tcg_gen_ext32u_i64(tcg_res
[0], tcg_res
[0]);
12737 tcg_res
[1] = tcg_constant_i64(0);
12740 for (pass
= 0; pass
< 2; pass
++) {
12741 write_vec_element(s
, tcg_res
[pass
], rd
, pass
, MO_64
);
12746 /* C3.6 Data processing - SIMD, inc Crypto
12748 * As the decode gets a little complex we are using a table based
12749 * approach for this part of the decode.
12751 static const AArch64DecodeTable data_proc_simd
[] = {
12752 /* pattern , mask , fn */
12753 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same
},
12754 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra
},
12755 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff
},
12756 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc
},
12757 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes
},
12758 { 0x0f000000, 0x9f000400, disas_simd_indexed
}, /* vector indexed */
12759 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
12760 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm
},
12761 { 0x0f000400, 0x9f800400, disas_simd_shift_imm
},
12762 { 0x0e000000, 0xbf208c00, disas_simd_tb
},
12763 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn
},
12764 { 0x2e000000, 0xbf208400, disas_simd_ext
},
12765 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same
},
12766 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra
},
12767 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff
},
12768 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc
},
12769 { 0x5f000000, 0xdf000400, disas_simd_indexed
}, /* scalar indexed */
12770 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm
},
12771 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16
},
12772 { 0x00000000, 0x00000000, NULL
}
12775 static void disas_data_proc_simd(DisasContext
*s
, uint32_t insn
)
12777 /* Note that this is called with all non-FP cases from
12778 * table C3-6 so it must UNDEF for entries not specifically
12779 * allocated to instructions in that table.
12781 AArch64DecodeFn
*fn
= lookup_disas_fn(&data_proc_simd
[0], insn
);
12785 unallocated_encoding(s
);
12789 /* C3.6 Data processing - SIMD and floating point */
12790 static void disas_data_proc_simd_fp(DisasContext
*s
, uint32_t insn
)
12792 if (extract32(insn
, 28, 1) == 1 && extract32(insn
, 30, 1) == 0) {
12793 disas_data_proc_fp(s
, insn
);
12795 /* SIMD, including crypto */
12796 disas_data_proc_simd(s
, insn
);
12800 static bool trans_OK(DisasContext
*s
, arg_OK
*a
)
12805 static bool trans_FAIL(DisasContext
*s
, arg_OK
*a
)
12807 s
->is_nonstreaming
= true;
12813 * @env: The cpu environment
12814 * @s: The DisasContext
12816 * Return true if the page is guarded.
12818 static bool is_guarded_page(CPUARMState
*env
, DisasContext
*s
)
12820 uint64_t addr
= s
->base
.pc_first
;
12821 #ifdef CONFIG_USER_ONLY
12822 return page_get_flags(addr
) & PAGE_BTI
;
12824 CPUTLBEntryFull
*full
;
12826 int mmu_idx
= arm_to_core_mmu_idx(s
->mmu_idx
);
12830 * We test this immediately after reading an insn, which means
12831 * that the TLB entry must be present and valid, and thus this
12832 * access will never raise an exception.
12834 flags
= probe_access_full(env
, addr
, 0, MMU_INST_FETCH
, mmu_idx
,
12835 false, &host
, &full
, 0);
12836 assert(!(flags
& TLB_INVALID_MASK
));
12838 return full
->extra
.arm
.guarded
;
12843 * btype_destination_ok:
12844 * @insn: The instruction at the branch destination
12845 * @bt: SCTLR_ELx.BT
12846 * @btype: PSTATE.BTYPE, and is non-zero
12848 * On a guarded page, there are a limited number of insns
12849 * that may be present at the branch target:
12850 * - branch target identifiers,
12851 * - paciasp, pacibsp,
12854 * Anything else causes a Branch Target Exception.
12856 * Return true if the branch is compatible, false to raise BTITRAP.
12858 static bool btype_destination_ok(uint32_t insn
, bool bt
, int btype
)
12860 if ((insn
& 0xfffff01fu
) == 0xd503201fu
) {
12862 switch (extract32(insn
, 5, 7)) {
12863 case 0b011001: /* PACIASP */
12864 case 0b011011: /* PACIBSP */
12866 * If SCTLR_ELx.BT, then PACI*SP are not compatible
12867 * with btype == 3. Otherwise all btype are ok.
12869 return !bt
|| btype
!= 3;
12870 case 0b100000: /* BTI */
12871 /* Not compatible with any btype. */
12873 case 0b100010: /* BTI c */
12874 /* Not compatible with btype == 3 */
12876 case 0b100100: /* BTI j */
12877 /* Not compatible with btype == 2 */
12879 case 0b100110: /* BTI jc */
12880 /* Compatible with any btype. */
12884 switch (insn
& 0xffe0001fu
) {
12885 case 0xd4200000u
: /* BRK */
12886 case 0xd4400000u
: /* HLT */
12887 /* Give priority to the breakpoint exception. */
12894 /* C3.1 A64 instruction index by encoding */
12895 static void disas_a64_legacy(DisasContext
*s
, uint32_t insn
)
12897 switch (extract32(insn
, 25, 4)) {
12899 case 0xd: /* Data processing - register */
12900 disas_data_proc_reg(s
, insn
);
12903 case 0xf: /* Data processing - SIMD and floating point */
12904 disas_data_proc_simd_fp(s
, insn
);
12907 unallocated_encoding(s
);
12912 static void aarch64_tr_init_disas_context(DisasContextBase
*dcbase
,
12915 DisasContext
*dc
= container_of(dcbase
, DisasContext
, base
);
12916 CPUARMState
*env
= cpu_env(cpu
);
12917 ARMCPU
*arm_cpu
= env_archcpu(env
);
12918 CPUARMTBFlags tb_flags
= arm_tbflags_from_tb(dc
->base
.tb
);
12919 int bound
, core_mmu_idx
;
12921 dc
->isar
= &arm_cpu
->isar
;
12923 dc
->pc_save
= dc
->base
.pc_first
;
12924 dc
->aarch64
= true;
12927 dc
->be_data
= EX_TBFLAG_ANY(tb_flags
, BE_DATA
) ? MO_BE
: MO_LE
;
12928 dc
->condexec_mask
= 0;
12929 dc
->condexec_cond
= 0;
12930 core_mmu_idx
= EX_TBFLAG_ANY(tb_flags
, MMUIDX
);
12931 dc
->mmu_idx
= core_to_aa64_mmu_idx(core_mmu_idx
);
12932 dc
->tbii
= EX_TBFLAG_A64(tb_flags
, TBII
);
12933 dc
->tbid
= EX_TBFLAG_A64(tb_flags
, TBID
);
12934 dc
->tcma
= EX_TBFLAG_A64(tb_flags
, TCMA
);
12935 dc
->current_el
= arm_mmu_idx_to_el(dc
->mmu_idx
);
12936 #if !defined(CONFIG_USER_ONLY)
12937 dc
->user
= (dc
->current_el
== 0);
12939 dc
->fp_excp_el
= EX_TBFLAG_ANY(tb_flags
, FPEXC_EL
);
12940 dc
->align_mem
= EX_TBFLAG_ANY(tb_flags
, ALIGN_MEM
);
12941 dc
->pstate_il
= EX_TBFLAG_ANY(tb_flags
, PSTATE__IL
);
12942 dc
->fgt_active
= EX_TBFLAG_ANY(tb_flags
, FGT_ACTIVE
);
12943 dc
->fgt_svc
= EX_TBFLAG_ANY(tb_flags
, FGT_SVC
);
12944 dc
->trap_eret
= EX_TBFLAG_A64(tb_flags
, TRAP_ERET
);
12945 dc
->sve_excp_el
= EX_TBFLAG_A64(tb_flags
, SVEEXC_EL
);
12946 dc
->sme_excp_el
= EX_TBFLAG_A64(tb_flags
, SMEEXC_EL
);
12947 dc
->vl
= (EX_TBFLAG_A64(tb_flags
, VL
) + 1) * 16;
12948 dc
->svl
= (EX_TBFLAG_A64(tb_flags
, SVL
) + 1) * 16;
12949 dc
->pauth_active
= EX_TBFLAG_A64(tb_flags
, PAUTH_ACTIVE
);
12950 dc
->bt
= EX_TBFLAG_A64(tb_flags
, BT
);
12951 dc
->btype
= EX_TBFLAG_A64(tb_flags
, BTYPE
);
12952 dc
->unpriv
= EX_TBFLAG_A64(tb_flags
, UNPRIV
);
12953 dc
->ata
[0] = EX_TBFLAG_A64(tb_flags
, ATA
);
12954 dc
->ata
[1] = EX_TBFLAG_A64(tb_flags
, ATA0
);
12955 dc
->mte_active
[0] = EX_TBFLAG_A64(tb_flags
, MTE_ACTIVE
);
12956 dc
->mte_active
[1] = EX_TBFLAG_A64(tb_flags
, MTE0_ACTIVE
);
12957 dc
->pstate_sm
= EX_TBFLAG_A64(tb_flags
, PSTATE_SM
);
12958 dc
->pstate_za
= EX_TBFLAG_A64(tb_flags
, PSTATE_ZA
);
12959 dc
->sme_trap_nonstreaming
= EX_TBFLAG_A64(tb_flags
, SME_TRAP_NONSTREAMING
);
12960 dc
->naa
= EX_TBFLAG_A64(tb_flags
, NAA
);
12961 dc
->nv
= EX_TBFLAG_A64(tb_flags
, NV
);
12962 dc
->nv1
= EX_TBFLAG_A64(tb_flags
, NV1
);
12963 dc
->nv2
= EX_TBFLAG_A64(tb_flags
, NV2
);
12964 dc
->nv2_mem_e20
= EX_TBFLAG_A64(tb_flags
, NV2_MEM_E20
);
12965 dc
->nv2_mem_be
= EX_TBFLAG_A64(tb_flags
, NV2_MEM_BE
);
12967 dc
->vec_stride
= 0;
12968 dc
->cp_regs
= arm_cpu
->cp_regs
;
12969 dc
->features
= env
->features
;
12970 dc
->dcz_blocksize
= arm_cpu
->dcz_blocksize
;
12971 dc
->gm_blocksize
= arm_cpu
->gm_blocksize
;
12973 #ifdef CONFIG_USER_ONLY
12974 /* In sve_probe_page, we assume TBI is enabled. */
12975 tcg_debug_assert(dc
->tbid
& 1);
12978 dc
->lse2
= dc_isar_feature(aa64_lse2
, dc
);
12980 /* Single step state. The code-generation logic here is:
12982 * generate code with no special handling for single-stepping (except
12983 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
12984 * this happens anyway because those changes are all system register or
12986 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
12987 * emit code for one insn
12988 * emit code to clear PSTATE.SS
12989 * emit code to generate software step exception for completed step
12990 * end TB (as usual for having generated an exception)
12991 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
12992 * emit code to generate a software step exception
12995 dc
->ss_active
= EX_TBFLAG_ANY(tb_flags
, SS_ACTIVE
);
12996 dc
->pstate_ss
= EX_TBFLAG_ANY(tb_flags
, PSTATE__SS
);
12997 dc
->is_ldex
= false;
12999 /* Bound the number of insns to execute to those left on the page. */
13000 bound
= -(dc
->base
.pc_first
| TARGET_PAGE_MASK
) / 4;
13002 /* If architectural single step active, limit to 1. */
13003 if (dc
->ss_active
) {
13006 dc
->base
.max_insns
= MIN(dc
->base
.max_insns
, bound
);
13009 static void aarch64_tr_tb_start(DisasContextBase
*db
, CPUState
*cpu
)
13013 static void aarch64_tr_insn_start(DisasContextBase
*dcbase
, CPUState
*cpu
)
13015 DisasContext
*dc
= container_of(dcbase
, DisasContext
, base
);
13016 target_ulong pc_arg
= dc
->base
.pc_next
;
13018 if (tb_cflags(dcbase
->tb
) & CF_PCREL
) {
13019 pc_arg
&= ~TARGET_PAGE_MASK
;
13021 tcg_gen_insn_start(pc_arg
, 0, 0);
13022 dc
->insn_start_updated
= false;
13025 static void aarch64_tr_translate_insn(DisasContextBase
*dcbase
, CPUState
*cpu
)
13027 DisasContext
*s
= container_of(dcbase
, DisasContext
, base
);
13028 CPUARMState
*env
= cpu_env(cpu
);
13029 uint64_t pc
= s
->base
.pc_next
;
13032 /* Singlestep exceptions have the highest priority. */
13033 if (s
->ss_active
&& !s
->pstate_ss
) {
13034 /* Singlestep state is Active-pending.
13035 * If we're in this state at the start of a TB then either
13036 * a) we just took an exception to an EL which is being debugged
13037 * and this is the first insn in the exception handler
13038 * b) debug exceptions were masked and we just unmasked them
13039 * without changing EL (eg by clearing PSTATE.D)
13040 * In either case we're going to take a swstep exception in the
13041 * "did not step an insn" case, and so the syndrome ISV and EX
13042 * bits should be zero.
13044 assert(s
->base
.num_insns
== 1);
13045 gen_swstep_exception(s
, 0, 0);
13046 s
->base
.is_jmp
= DISAS_NORETURN
;
13047 s
->base
.pc_next
= pc
+ 4;
13053 * PC alignment fault. This has priority over the instruction abort
13054 * that we would receive from a translation fault via arm_ldl_code.
13055 * This should only be possible after an indirect branch, at the
13058 assert(s
->base
.num_insns
== 1);
13059 gen_helper_exception_pc_alignment(tcg_env
, tcg_constant_tl(pc
));
13060 s
->base
.is_jmp
= DISAS_NORETURN
;
13061 s
->base
.pc_next
= QEMU_ALIGN_UP(pc
, 4);
13066 insn
= arm_ldl_code(env
, &s
->base
, pc
, s
->sctlr_b
);
13068 s
->base
.pc_next
= pc
+ 4;
13070 s
->fp_access_checked
= false;
13071 s
->sve_access_checked
= false;
13073 if (s
->pstate_il
) {
13075 * Illegal execution state. This has priority over BTI
13076 * exceptions, but comes after instruction abort exceptions.
13078 gen_exception_insn(s
, 0, EXCP_UDEF
, syn_illegalstate());
13082 if (dc_isar_feature(aa64_bti
, s
)) {
13083 if (s
->base
.num_insns
== 1) {
13085 * At the first insn of the TB, compute s->guarded_page.
13086 * We delayed computing this until successfully reading
13087 * the first insn of the TB, above. This (mostly) ensures
13088 * that the softmmu tlb entry has been populated, and the
13089 * page table GP bit is available.
13091 * Note that we need to compute this even if btype == 0,
13092 * because this value is used for BR instructions later
13093 * where ENV is not available.
13095 s
->guarded_page
= is_guarded_page(env
, s
);
13097 /* First insn can have btype set to non-zero. */
13098 tcg_debug_assert(s
->btype
>= 0);
13101 * Note that the Branch Target Exception has fairly high
13102 * priority -- below debugging exceptions but above most
13103 * everything else. This allows us to handle this now
13104 * instead of waiting until the insn is otherwise decoded.
13108 && !btype_destination_ok(insn
, s
->bt
, s
->btype
)) {
13109 gen_exception_insn(s
, 0, EXCP_UDEF
, syn_btitrap(s
->btype
));
13113 /* Not the first insn: btype must be 0. */
13114 tcg_debug_assert(s
->btype
== 0);
13118 s
->is_nonstreaming
= false;
13119 if (s
->sme_trap_nonstreaming
) {
13120 disas_sme_fa64(s
, insn
);
13123 if (!disas_a64(s
, insn
) &&
13124 !disas_sme(s
, insn
) &&
13125 !disas_sve(s
, insn
)) {
13126 disas_a64_legacy(s
, insn
);
13130 * After execution of most insns, btype is reset to 0.
13131 * Note that we set btype == -1 when the insn sets btype.
13133 if (s
->btype
> 0 && s
->base
.is_jmp
!= DISAS_NORETURN
) {
13138 static void aarch64_tr_tb_stop(DisasContextBase
*dcbase
, CPUState
*cpu
)
13140 DisasContext
*dc
= container_of(dcbase
, DisasContext
, base
);
13142 if (unlikely(dc
->ss_active
)) {
13143 /* Note that this means single stepping WFI doesn't halt the CPU.
13144 * For conditional branch insns this is harmless unreachable code as
13145 * gen_goto_tb() has already handled emitting the debug exception
13146 * (and thus a tb-jump is not possible when singlestepping).
13148 switch (dc
->base
.is_jmp
) {
13150 gen_a64_update_pc(dc
, 4);
13154 gen_step_complete_exception(dc
);
13156 case DISAS_NORETURN
:
13160 switch (dc
->base
.is_jmp
) {
13162 case DISAS_TOO_MANY
:
13163 gen_goto_tb(dc
, 1, 4);
13166 case DISAS_UPDATE_EXIT
:
13167 gen_a64_update_pc(dc
, 4);
13170 tcg_gen_exit_tb(NULL
, 0);
13172 case DISAS_UPDATE_NOCHAIN
:
13173 gen_a64_update_pc(dc
, 4);
13176 tcg_gen_lookup_and_goto_ptr();
13178 case DISAS_NORETURN
:
13182 gen_a64_update_pc(dc
, 4);
13183 gen_helper_wfe(tcg_env
);
13186 gen_a64_update_pc(dc
, 4);
13187 gen_helper_yield(tcg_env
);
13191 * This is a special case because we don't want to just halt
13192 * the CPU if trying to debug across a WFI.
13194 gen_a64_update_pc(dc
, 4);
13195 gen_helper_wfi(tcg_env
, tcg_constant_i32(4));
13197 * The helper doesn't necessarily throw an exception, but we
13198 * must go back to the main loop to check for interrupts anyway.
13200 tcg_gen_exit_tb(NULL
, 0);
13206 const TranslatorOps aarch64_translator_ops
= {
13207 .init_disas_context
= aarch64_tr_init_disas_context
,
13208 .tb_start
= aarch64_tr_tb_start
,
13209 .insn_start
= aarch64_tr_insn_start
,
13210 .translate_insn
= aarch64_tr_translate_insn
,
13211 .tb_stop
= aarch64_tr_tb_stop
,