target/arm: Convert SMAX, SMIN, UMAX, UMIN to decodetree
[qemu/armbru.git] / target / arm / tcg / translate-a64.c
blobdb6f59df176062cab73560d429d6556d58762a54
1 /*
2 * AArch64 translation
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "exec/exec-all.h"
22 #include "translate.h"
23 #include "translate-a64.h"
24 #include "qemu/log.h"
25 #include "arm_ldst.h"
26 #include "semihosting/semihost.h"
27 #include "cpregs.h"
29 static TCGv_i64 cpu_X[32];
30 static TCGv_i64 cpu_pc;
32 /* Load/store exclusive handling */
33 static TCGv_i64 cpu_exclusive_high;
35 static const char *regnames[] = {
36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
42 enum a64_shift_type {
43 A64_SHIFT_TYPE_LSL = 0,
44 A64_SHIFT_TYPE_LSR = 1,
45 A64_SHIFT_TYPE_ASR = 2,
46 A64_SHIFT_TYPE_ROR = 3
50 * Helpers for extracting complex instruction fields
54 * For load/store with an unsigned 12 bit immediate scaled by the element
55 * size. The input has the immediate field in bits [14:3] and the element
56 * size in [2:0].
58 static int uimm_scaled(DisasContext *s, int x)
60 unsigned imm = x >> 3;
61 unsigned scale = extract32(x, 0, 3);
62 return imm << scale;
65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */
66 static int scale_by_log2_tag_granule(DisasContext *s, int x)
68 return x << LOG2_TAG_GRANULE;
72 * Include the generated decoders.
75 #include "decode-sme-fa64.c.inc"
76 #include "decode-a64.c.inc"
78 /* Table based decoder typedefs - used when the relevant bits for decode
79 * are too awkwardly scattered across the instruction (eg SIMD).
81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
83 typedef struct AArch64DecodeTable {
84 uint32_t pattern;
85 uint32_t mask;
86 AArch64DecodeFn *disas_fn;
87 } AArch64DecodeTable;
89 /* initialize TCG globals. */
90 void a64_translate_init(void)
92 int i;
94 cpu_pc = tcg_global_mem_new_i64(tcg_env,
95 offsetof(CPUARMState, pc),
96 "pc");
97 for (i = 0; i < 32; i++) {
98 cpu_X[i] = tcg_global_mem_new_i64(tcg_env,
99 offsetof(CPUARMState, xregs[i]),
100 regnames[i]);
103 cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env,
104 offsetof(CPUARMState, exclusive_high), "exclusive_high");
108 * Return the core mmu_idx to use for A64 load/store insns which
109 * have a "unprivileged load/store" variant. Those insns access
110 * EL0 if executed from an EL which has control over EL0 (usually
111 * EL1) but behave like normal loads and stores if executed from
112 * elsewhere (eg EL3).
114 * @unpriv : true for the unprivileged encoding; false for the
115 * normal encoding (in which case we will return the same
116 * thing as get_mem_index().
118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv)
121 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
122 * which is the usual mmu_idx for this cpu state.
124 ARMMMUIdx useridx = s->mmu_idx;
126 if (unpriv && s->unpriv) {
128 * We have pre-computed the condition for AccType_UNPRIV.
129 * Therefore we should never get here with a mmu_idx for
130 * which we do not know the corresponding user mmu_idx.
132 switch (useridx) {
133 case ARMMMUIdx_E10_1:
134 case ARMMMUIdx_E10_1_PAN:
135 useridx = ARMMMUIdx_E10_0;
136 break;
137 case ARMMMUIdx_E20_2:
138 case ARMMMUIdx_E20_2_PAN:
139 useridx = ARMMMUIdx_E20_0;
140 break;
141 default:
142 g_assert_not_reached();
145 return arm_to_core_mmu_idx(useridx);
148 static void set_btype_raw(int val)
150 tcg_gen_st_i32(tcg_constant_i32(val), tcg_env,
151 offsetof(CPUARMState, btype));
154 static void set_btype(DisasContext *s, int val)
156 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */
157 tcg_debug_assert(val >= 1 && val <= 3);
158 set_btype_raw(val);
159 s->btype = -1;
162 static void reset_btype(DisasContext *s)
164 if (s->btype != 0) {
165 set_btype_raw(0);
166 s->btype = 0;
170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
172 assert(s->pc_save != -1);
173 if (tb_cflags(s->base.tb) & CF_PCREL) {
174 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
175 } else {
176 tcg_gen_movi_i64(dest, s->pc_curr + diff);
180 void gen_a64_update_pc(DisasContext *s, target_long diff)
182 gen_pc_plus_diff(s, cpu_pc, diff);
183 s->pc_save = s->pc_curr + diff;
187 * Handle Top Byte Ignore (TBI) bits.
189 * If address tagging is enabled via the TCR TBI bits:
190 * + for EL2 and EL3 there is only one TBI bit, and if it is set
191 * then the address is zero-extended, clearing bits [63:56]
192 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
193 * and TBI1 controls addresses with bit 55 == 1.
194 * If the appropriate TBI bit is set for the address then
195 * the address is sign-extended from bit 55 into bits [63:56]
197 * Here We have concatenated TBI{1,0} into tbi.
199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
200 TCGv_i64 src, int tbi)
202 if (tbi == 0) {
203 /* Load unmodified address */
204 tcg_gen_mov_i64(dst, src);
205 } else if (!regime_has_2_ranges(s->mmu_idx)) {
206 /* Force tag byte to all zero */
207 tcg_gen_extract_i64(dst, src, 0, 56);
208 } else {
209 /* Sign-extend from bit 55. */
210 tcg_gen_sextract_i64(dst, src, 0, 56);
212 switch (tbi) {
213 case 1:
214 /* tbi0 but !tbi1: only use the extension if positive */
215 tcg_gen_and_i64(dst, dst, src);
216 break;
217 case 2:
218 /* !tbi0 but tbi1: only use the extension if negative */
219 tcg_gen_or_i64(dst, dst, src);
220 break;
221 case 3:
222 /* tbi0 and tbi1: always use the extension */
223 break;
224 default:
225 g_assert_not_reached();
230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
233 * If address tagging is enabled for instructions via the TCR TBI bits,
234 * then loading an address into the PC will clear out any tag.
236 gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
237 s->pc_save = -1;
241 * Handle MTE and/or TBI.
243 * For TBI, ideally, we would do nothing. Proper behaviour on fault is
244 * for the tag to be present in the FAR_ELx register. But for user-only
245 * mode we do not have a TLB with which to implement this, so we must
246 * remove the top byte now.
248 * Always return a fresh temporary that we can increment independently
249 * of the write-back address.
252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
254 TCGv_i64 clean = tcg_temp_new_i64();
255 #ifdef CONFIG_USER_ONLY
256 gen_top_byte_ignore(s, clean, addr, s->tbid);
257 #else
258 tcg_gen_mov_i64(clean, addr);
259 #endif
260 return clean;
263 /* Insert a zero tag into src, with the result at dst. */
264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
266 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
270 MMUAccessType acc, int log2_size)
272 gen_helper_probe_access(tcg_env, ptr,
273 tcg_constant_i32(acc),
274 tcg_constant_i32(get_mem_index(s)),
275 tcg_constant_i32(1 << log2_size));
279 * For MTE, check a single logical or atomic access. This probes a single
280 * address, the exact one specified. The size and alignment of the access
281 * is not relevant to MTE, per se, but watchpoints do require the size,
282 * and we want to recognize those before making any other changes to state.
284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
285 bool is_write, bool tag_checked,
286 MemOp memop, bool is_unpriv,
287 int core_idx)
289 if (tag_checked && s->mte_active[is_unpriv]) {
290 TCGv_i64 ret;
291 int desc = 0;
293 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
294 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
295 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
296 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
297 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop));
298 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
300 ret = tcg_temp_new_i64();
301 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
303 return ret;
305 return clean_data_tbi(s, addr);
308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
309 bool tag_checked, MemOp memop)
311 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
312 false, get_mem_index(s));
316 * For MTE, check multiple logical sequential accesses.
318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
319 bool tag_checked, int total_size, MemOp single_mop)
321 if (tag_checked && s->mte_active[0]) {
322 TCGv_i64 ret;
323 int desc = 0;
325 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
326 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
327 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
328 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
329 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop));
330 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
332 ret = tcg_temp_new_i64();
333 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
335 return ret;
337 return clean_data_tbi(s, addr);
341 * Generate the special alignment check that applies to AccType_ATOMIC
342 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be
343 * naturally aligned, but it must not cross a 16-byte boundary.
344 * See AArch64.CheckAlignment().
346 static void check_lse2_align(DisasContext *s, int rn, int imm,
347 bool is_write, MemOp mop)
349 TCGv_i32 tmp;
350 TCGv_i64 addr;
351 TCGLabel *over_label;
352 MMUAccessType type;
353 int mmu_idx;
355 tmp = tcg_temp_new_i32();
356 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
357 tcg_gen_addi_i32(tmp, tmp, imm & 15);
358 tcg_gen_andi_i32(tmp, tmp, 15);
359 tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
361 over_label = gen_new_label();
362 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
364 addr = tcg_temp_new_i64();
365 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
367 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
368 mmu_idx = get_mem_index(s);
369 gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type),
370 tcg_constant_i32(mmu_idx));
372 gen_set_label(over_label);
376 /* Handle the alignment check for AccType_ATOMIC instructions. */
377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
379 MemOp size = mop & MO_SIZE;
381 if (size == MO_8) {
382 return mop;
386 * If size == MO_128, this is a LDXP, and the operation is single-copy
387 * atomic for each doubleword, not the entire quadword; it still must
388 * be quadword aligned.
390 if (size == MO_128) {
391 return finalize_memop_atom(s, MO_128 | MO_ALIGN,
392 MO_ATOM_IFALIGN_PAIR);
394 if (dc_isar_feature(aa64_lse2, s)) {
395 check_lse2_align(s, rn, 0, true, mop);
396 } else {
397 mop |= MO_ALIGN;
399 return finalize_memop(s, mop);
402 /* Handle the alignment check for AccType_ORDERED instructions. */
403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
404 bool is_write, MemOp mop)
406 MemOp size = mop & MO_SIZE;
408 if (size == MO_8) {
409 return mop;
411 if (size == MO_128) {
412 return finalize_memop_atom(s, MO_128 | MO_ALIGN,
413 MO_ATOM_IFALIGN_PAIR);
415 if (!dc_isar_feature(aa64_lse2, s)) {
416 mop |= MO_ALIGN;
417 } else if (!s->naa) {
418 check_lse2_align(s, rn, imm, is_write, mop);
420 return finalize_memop(s, mop);
423 typedef struct DisasCompare64 {
424 TCGCond cond;
425 TCGv_i64 value;
426 } DisasCompare64;
428 static void a64_test_cc(DisasCompare64 *c64, int cc)
430 DisasCompare c32;
432 arm_test_cc(&c32, cc);
435 * Sign-extend the 32-bit value so that the GE/LT comparisons work
436 * properly. The NE/EQ comparisons are also fine with this choice.
438 c64->cond = c32.cond;
439 c64->value = tcg_temp_new_i64();
440 tcg_gen_ext_i32_i64(c64->value, c32.value);
443 static void gen_rebuild_hflags(DisasContext *s)
445 gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el));
448 static void gen_exception_internal(int excp)
450 assert(excp_is_internal(excp));
451 gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp));
454 static void gen_exception_internal_insn(DisasContext *s, int excp)
456 gen_a64_update_pc(s, 0);
457 gen_exception_internal(excp);
458 s->base.is_jmp = DISAS_NORETURN;
461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
463 gen_a64_update_pc(s, 0);
464 gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome));
465 s->base.is_jmp = DISAS_NORETURN;
468 static void gen_step_complete_exception(DisasContext *s)
470 /* We just completed step of an insn. Move from Active-not-pending
471 * to Active-pending, and then also take the swstep exception.
472 * This corresponds to making the (IMPDEF) choice to prioritize
473 * swstep exceptions over asynchronous exceptions taken to an exception
474 * level where debug is disabled. This choice has the advantage that
475 * we do not need to maintain internal state corresponding to the
476 * ISV/EX syndrome bits between completion of the step and generation
477 * of the exception, and our syndrome information is always correct.
479 gen_ss_advance(s);
480 gen_swstep_exception(s, 1, s->is_ldex);
481 s->base.is_jmp = DISAS_NORETURN;
484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
486 if (s->ss_active) {
487 return false;
489 return translator_use_goto_tb(&s->base, dest);
492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
494 if (use_goto_tb(s, s->pc_curr + diff)) {
496 * For pcrel, the pc must always be up-to-date on entry to
497 * the linked TB, so that it can use simple additions for all
498 * further adjustments. For !pcrel, the linked TB is compiled
499 * to know its full virtual address, so we can delay the
500 * update to pc to the unlinked path. A long chain of links
501 * can thus avoid many updates to the PC.
503 if (tb_cflags(s->base.tb) & CF_PCREL) {
504 gen_a64_update_pc(s, diff);
505 tcg_gen_goto_tb(n);
506 } else {
507 tcg_gen_goto_tb(n);
508 gen_a64_update_pc(s, diff);
510 tcg_gen_exit_tb(s->base.tb, n);
511 s->base.is_jmp = DISAS_NORETURN;
512 } else {
513 gen_a64_update_pc(s, diff);
514 if (s->ss_active) {
515 gen_step_complete_exception(s);
516 } else {
517 tcg_gen_lookup_and_goto_ptr();
518 s->base.is_jmp = DISAS_NORETURN;
524 * Register access functions
526 * These functions are used for directly accessing a register in where
527 * changes to the final register value are likely to be made. If you
528 * need to use a register for temporary calculation (e.g. index type
529 * operations) use the read_* form.
531 * B1.2.1 Register mappings
533 * In instruction register encoding 31 can refer to ZR (zero register) or
534 * the SP (stack pointer) depending on context. In QEMU's case we map SP
535 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
536 * This is the point of the _sp forms.
538 TCGv_i64 cpu_reg(DisasContext *s, int reg)
540 if (reg == 31) {
541 TCGv_i64 t = tcg_temp_new_i64();
542 tcg_gen_movi_i64(t, 0);
543 return t;
544 } else {
545 return cpu_X[reg];
549 /* register access for when 31 == SP */
550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
552 return cpu_X[reg];
555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
556 * representing the register contents. This TCGv is an auto-freed
557 * temporary so it need not be explicitly freed, and may be modified.
559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
561 TCGv_i64 v = tcg_temp_new_i64();
562 if (reg != 31) {
563 if (sf) {
564 tcg_gen_mov_i64(v, cpu_X[reg]);
565 } else {
566 tcg_gen_ext32u_i64(v, cpu_X[reg]);
568 } else {
569 tcg_gen_movi_i64(v, 0);
571 return v;
574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
576 TCGv_i64 v = tcg_temp_new_i64();
577 if (sf) {
578 tcg_gen_mov_i64(v, cpu_X[reg]);
579 } else {
580 tcg_gen_ext32u_i64(v, cpu_X[reg]);
582 return v;
585 /* Return the offset into CPUARMState of a slice (from
586 * the least significant end) of FP register Qn (ie
587 * Dn, Sn, Hn or Bn).
588 * (Note that this is not the same mapping as for A32; see cpu.h)
590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
592 return vec_reg_offset(s, regno, 0, size);
595 /* Offset of the high half of the 128 bit vector Qn */
596 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
598 return vec_reg_offset(s, regno, 1, MO_64);
601 /* Convenience accessors for reading and writing single and double
602 * FP registers. Writing clears the upper parts of the associated
603 * 128 bit vector register, as required by the architecture.
604 * Note that unlike the GP register accessors, the values returned
605 * by the read functions must be manually freed.
607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
609 TCGv_i64 v = tcg_temp_new_i64();
611 tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64));
612 return v;
615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
617 TCGv_i32 v = tcg_temp_new_i32();
619 tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
620 return v;
623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
625 TCGv_i32 v = tcg_temp_new_i32();
627 tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
628 return v;
631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
632 * If SVE is not enabled, then there are only 128 bits in the vector.
634 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
636 unsigned ofs = fp_reg_offset(s, rd, MO_64);
637 unsigned vsz = vec_full_reg_size(s);
639 /* Nop move, with side effect of clearing the tail. */
640 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
645 unsigned ofs = fp_reg_offset(s, reg, MO_64);
647 tcg_gen_st_i64(v, tcg_env, ofs);
648 clear_vec_high(s, false, reg);
651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
653 TCGv_i64 tmp = tcg_temp_new_i64();
655 tcg_gen_extu_i32_i64(tmp, v);
656 write_fp_dreg(s, reg, tmp);
659 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */
660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
661 GVecGen2Fn *gvec_fn, int vece)
663 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
664 is_q ? 16 : 8, vec_full_reg_size(s));
667 /* Expand a 2-operand + immediate AdvSIMD vector operation using
668 * an expander function.
670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
671 int64_t imm, GVecGen2iFn *gvec_fn, int vece)
673 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
674 imm, is_q ? 16 : 8, vec_full_reg_size(s));
677 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */
678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
679 GVecGen3Fn *gvec_fn, int vece)
681 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
682 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
685 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */
686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
687 int rx, GVecGen4Fn *gvec_fn, int vece)
689 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
690 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
691 is_q ? 16 : 8, vec_full_reg_size(s));
694 /* Expand a 2-operand operation using an out-of-line helper. */
695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
696 int rn, int data, gen_helper_gvec_2 *fn)
698 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
699 vec_full_reg_offset(s, rn),
700 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
703 /* Expand a 3-operand operation using an out-of-line helper. */
704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
705 int rn, int rm, int data, gen_helper_gvec_3 *fn)
707 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
708 vec_full_reg_offset(s, rn),
709 vec_full_reg_offset(s, rm),
710 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
714 * an out-of-line helper.
716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
717 int rm, bool is_fp16, int data,
718 gen_helper_gvec_3_ptr *fn)
720 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
721 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
722 vec_full_reg_offset(s, rn),
723 vec_full_reg_offset(s, rm), fpst,
724 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
727 /* Expand a 3-operand + qc + operation using an out-of-line helper. */
728 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn,
729 int rm, gen_helper_gvec_3_ptr *fn)
731 TCGv_ptr qc_ptr = tcg_temp_new_ptr();
733 tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc));
734 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
735 vec_full_reg_offset(s, rn),
736 vec_full_reg_offset(s, rm), qc_ptr,
737 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
740 /* Expand a 4-operand operation using an out-of-line helper. */
741 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
742 int rm, int ra, int data, gen_helper_gvec_4 *fn)
744 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
745 vec_full_reg_offset(s, rn),
746 vec_full_reg_offset(s, rm),
747 vec_full_reg_offset(s, ra),
748 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
752 * Expand a 4-operand + fpstatus pointer + simd data value operation using
753 * an out-of-line helper.
755 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
756 int rm, int ra, bool is_fp16, int data,
757 gen_helper_gvec_4_ptr *fn)
759 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
760 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
761 vec_full_reg_offset(s, rn),
762 vec_full_reg_offset(s, rm),
763 vec_full_reg_offset(s, ra), fpst,
764 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
767 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
768 * than the 32 bit equivalent.
770 static inline void gen_set_NZ64(TCGv_i64 result)
772 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
773 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
776 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
777 static inline void gen_logic_CC(int sf, TCGv_i64 result)
779 if (sf) {
780 gen_set_NZ64(result);
781 } else {
782 tcg_gen_extrl_i64_i32(cpu_ZF, result);
783 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
785 tcg_gen_movi_i32(cpu_CF, 0);
786 tcg_gen_movi_i32(cpu_VF, 0);
789 /* dest = T0 + T1; compute C, N, V and Z flags */
790 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
792 TCGv_i64 result, flag, tmp;
793 result = tcg_temp_new_i64();
794 flag = tcg_temp_new_i64();
795 tmp = tcg_temp_new_i64();
797 tcg_gen_movi_i64(tmp, 0);
798 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
800 tcg_gen_extrl_i64_i32(cpu_CF, flag);
802 gen_set_NZ64(result);
804 tcg_gen_xor_i64(flag, result, t0);
805 tcg_gen_xor_i64(tmp, t0, t1);
806 tcg_gen_andc_i64(flag, flag, tmp);
807 tcg_gen_extrh_i64_i32(cpu_VF, flag);
809 tcg_gen_mov_i64(dest, result);
812 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
814 TCGv_i32 t0_32 = tcg_temp_new_i32();
815 TCGv_i32 t1_32 = tcg_temp_new_i32();
816 TCGv_i32 tmp = tcg_temp_new_i32();
818 tcg_gen_movi_i32(tmp, 0);
819 tcg_gen_extrl_i64_i32(t0_32, t0);
820 tcg_gen_extrl_i64_i32(t1_32, t1);
821 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
822 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
823 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
824 tcg_gen_xor_i32(tmp, t0_32, t1_32);
825 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
826 tcg_gen_extu_i32_i64(dest, cpu_NF);
829 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
831 if (sf) {
832 gen_add64_CC(dest, t0, t1);
833 } else {
834 gen_add32_CC(dest, t0, t1);
838 /* dest = T0 - T1; compute C, N, V and Z flags */
839 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
841 /* 64 bit arithmetic */
842 TCGv_i64 result, flag, tmp;
844 result = tcg_temp_new_i64();
845 flag = tcg_temp_new_i64();
846 tcg_gen_sub_i64(result, t0, t1);
848 gen_set_NZ64(result);
850 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
851 tcg_gen_extrl_i64_i32(cpu_CF, flag);
853 tcg_gen_xor_i64(flag, result, t0);
854 tmp = tcg_temp_new_i64();
855 tcg_gen_xor_i64(tmp, t0, t1);
856 tcg_gen_and_i64(flag, flag, tmp);
857 tcg_gen_extrh_i64_i32(cpu_VF, flag);
858 tcg_gen_mov_i64(dest, result);
861 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
863 /* 32 bit arithmetic */
864 TCGv_i32 t0_32 = tcg_temp_new_i32();
865 TCGv_i32 t1_32 = tcg_temp_new_i32();
866 TCGv_i32 tmp;
868 tcg_gen_extrl_i64_i32(t0_32, t0);
869 tcg_gen_extrl_i64_i32(t1_32, t1);
870 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
871 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
872 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
873 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
874 tmp = tcg_temp_new_i32();
875 tcg_gen_xor_i32(tmp, t0_32, t1_32);
876 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
877 tcg_gen_extu_i32_i64(dest, cpu_NF);
880 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
882 if (sf) {
883 gen_sub64_CC(dest, t0, t1);
884 } else {
885 gen_sub32_CC(dest, t0, t1);
889 /* dest = T0 + T1 + CF; do not compute flags. */
890 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
892 TCGv_i64 flag = tcg_temp_new_i64();
893 tcg_gen_extu_i32_i64(flag, cpu_CF);
894 tcg_gen_add_i64(dest, t0, t1);
895 tcg_gen_add_i64(dest, dest, flag);
897 if (!sf) {
898 tcg_gen_ext32u_i64(dest, dest);
902 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
903 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
905 if (sf) {
906 TCGv_i64 result = tcg_temp_new_i64();
907 TCGv_i64 cf_64 = tcg_temp_new_i64();
908 TCGv_i64 vf_64 = tcg_temp_new_i64();
909 TCGv_i64 tmp = tcg_temp_new_i64();
910 TCGv_i64 zero = tcg_constant_i64(0);
912 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
913 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
914 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
915 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
916 gen_set_NZ64(result);
918 tcg_gen_xor_i64(vf_64, result, t0);
919 tcg_gen_xor_i64(tmp, t0, t1);
920 tcg_gen_andc_i64(vf_64, vf_64, tmp);
921 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
923 tcg_gen_mov_i64(dest, result);
924 } else {
925 TCGv_i32 t0_32 = tcg_temp_new_i32();
926 TCGv_i32 t1_32 = tcg_temp_new_i32();
927 TCGv_i32 tmp = tcg_temp_new_i32();
928 TCGv_i32 zero = tcg_constant_i32(0);
930 tcg_gen_extrl_i64_i32(t0_32, t0);
931 tcg_gen_extrl_i64_i32(t1_32, t1);
932 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
933 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
935 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
936 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
937 tcg_gen_xor_i32(tmp, t0_32, t1_32);
938 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
939 tcg_gen_extu_i32_i64(dest, cpu_NF);
944 * Load/Store generators
948 * Store from GPR register to memory.
950 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
951 TCGv_i64 tcg_addr, MemOp memop, int memidx,
952 bool iss_valid,
953 unsigned int iss_srt,
954 bool iss_sf, bool iss_ar)
956 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
958 if (iss_valid) {
959 uint32_t syn;
961 syn = syn_data_abort_with_iss(0,
962 (memop & MO_SIZE),
963 false,
964 iss_srt,
965 iss_sf,
966 iss_ar,
967 0, 0, 0, 0, 0, false);
968 disas_set_insn_syndrome(s, syn);
972 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
973 TCGv_i64 tcg_addr, MemOp memop,
974 bool iss_valid,
975 unsigned int iss_srt,
976 bool iss_sf, bool iss_ar)
978 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
979 iss_valid, iss_srt, iss_sf, iss_ar);
983 * Load from memory to GPR register
985 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
986 MemOp memop, bool extend, int memidx,
987 bool iss_valid, unsigned int iss_srt,
988 bool iss_sf, bool iss_ar)
990 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
992 if (extend && (memop & MO_SIGN)) {
993 g_assert((memop & MO_SIZE) <= MO_32);
994 tcg_gen_ext32u_i64(dest, dest);
997 if (iss_valid) {
998 uint32_t syn;
1000 syn = syn_data_abort_with_iss(0,
1001 (memop & MO_SIZE),
1002 (memop & MO_SIGN) != 0,
1003 iss_srt,
1004 iss_sf,
1005 iss_ar,
1006 0, 0, 0, 0, 0, false);
1007 disas_set_insn_syndrome(s, syn);
1011 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
1012 MemOp memop, bool extend,
1013 bool iss_valid, unsigned int iss_srt,
1014 bool iss_sf, bool iss_ar)
1016 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
1017 iss_valid, iss_srt, iss_sf, iss_ar);
1021 * Store from FP register to memory
1023 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
1025 /* This writes the bottom N bits of a 128 bit wide vector to memory */
1026 TCGv_i64 tmplo = tcg_temp_new_i64();
1028 tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64));
1030 if ((mop & MO_SIZE) < MO_128) {
1031 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1032 } else {
1033 TCGv_i64 tmphi = tcg_temp_new_i64();
1034 TCGv_i128 t16 = tcg_temp_new_i128();
1036 tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx));
1037 tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
1039 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
1044 * Load from memory to FP register
1046 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
1048 /* This always zero-extends and writes to a full 128 bit wide vector */
1049 TCGv_i64 tmplo = tcg_temp_new_i64();
1050 TCGv_i64 tmphi = NULL;
1052 if ((mop & MO_SIZE) < MO_128) {
1053 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1054 } else {
1055 TCGv_i128 t16 = tcg_temp_new_i128();
1057 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
1059 tmphi = tcg_temp_new_i64();
1060 tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
1063 tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64));
1065 if (tmphi) {
1066 tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx));
1068 clear_vec_high(s, tmphi != NULL, destidx);
1072 * Vector load/store helpers.
1074 * The principal difference between this and a FP load is that we don't
1075 * zero extend as we are filling a partial chunk of the vector register.
1076 * These functions don't support 128 bit loads/stores, which would be
1077 * normal load/store operations.
1079 * The _i32 versions are useful when operating on 32 bit quantities
1080 * (eg for floating point single or using Neon helper functions).
1083 /* Get value of an element within a vector register */
1084 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1085 int element, MemOp memop)
1087 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1088 switch ((unsigned)memop) {
1089 case MO_8:
1090 tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off);
1091 break;
1092 case MO_16:
1093 tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off);
1094 break;
1095 case MO_32:
1096 tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off);
1097 break;
1098 case MO_8|MO_SIGN:
1099 tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off);
1100 break;
1101 case MO_16|MO_SIGN:
1102 tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off);
1103 break;
1104 case MO_32|MO_SIGN:
1105 tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off);
1106 break;
1107 case MO_64:
1108 case MO_64|MO_SIGN:
1109 tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off);
1110 break;
1111 default:
1112 g_assert_not_reached();
1116 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1117 int element, MemOp memop)
1119 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1120 switch (memop) {
1121 case MO_8:
1122 tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off);
1123 break;
1124 case MO_16:
1125 tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off);
1126 break;
1127 case MO_8|MO_SIGN:
1128 tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off);
1129 break;
1130 case MO_16|MO_SIGN:
1131 tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off);
1132 break;
1133 case MO_32:
1134 case MO_32|MO_SIGN:
1135 tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off);
1136 break;
1137 default:
1138 g_assert_not_reached();
1142 /* Set value of an element within a vector register */
1143 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1144 int element, MemOp memop)
1146 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1147 switch (memop) {
1148 case MO_8:
1149 tcg_gen_st8_i64(tcg_src, tcg_env, vect_off);
1150 break;
1151 case MO_16:
1152 tcg_gen_st16_i64(tcg_src, tcg_env, vect_off);
1153 break;
1154 case MO_32:
1155 tcg_gen_st32_i64(tcg_src, tcg_env, vect_off);
1156 break;
1157 case MO_64:
1158 tcg_gen_st_i64(tcg_src, tcg_env, vect_off);
1159 break;
1160 default:
1161 g_assert_not_reached();
1165 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1166 int destidx, int element, MemOp memop)
1168 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1169 switch (memop) {
1170 case MO_8:
1171 tcg_gen_st8_i32(tcg_src, tcg_env, vect_off);
1172 break;
1173 case MO_16:
1174 tcg_gen_st16_i32(tcg_src, tcg_env, vect_off);
1175 break;
1176 case MO_32:
1177 tcg_gen_st_i32(tcg_src, tcg_env, vect_off);
1178 break;
1179 default:
1180 g_assert_not_reached();
1184 /* Store from vector register to memory */
1185 static void do_vec_st(DisasContext *s, int srcidx, int element,
1186 TCGv_i64 tcg_addr, MemOp mop)
1188 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1190 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1191 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1194 /* Load from memory to vector register */
1195 static void do_vec_ld(DisasContext *s, int destidx, int element,
1196 TCGv_i64 tcg_addr, MemOp mop)
1198 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1200 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1201 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1204 /* Check that FP/Neon access is enabled. If it is, return
1205 * true. If not, emit code to generate an appropriate exception,
1206 * and return false; the caller should not emit any code for
1207 * the instruction. Note that this check must happen after all
1208 * unallocated-encoding checks (otherwise the syndrome information
1209 * for the resulting exception will be incorrect).
1211 static bool fp_access_check_only(DisasContext *s)
1213 if (s->fp_excp_el) {
1214 assert(!s->fp_access_checked);
1215 s->fp_access_checked = true;
1217 gen_exception_insn_el(s, 0, EXCP_UDEF,
1218 syn_fp_access_trap(1, 0xe, false, 0),
1219 s->fp_excp_el);
1220 return false;
1222 s->fp_access_checked = true;
1223 return true;
1226 static bool fp_access_check(DisasContext *s)
1228 if (!fp_access_check_only(s)) {
1229 return false;
1231 if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1232 gen_exception_insn(s, 0, EXCP_UDEF,
1233 syn_smetrap(SME_ET_Streaming, false));
1234 return false;
1236 return true;
1240 * Check that SVE access is enabled. If it is, return true.
1241 * If not, emit code to generate an appropriate exception and return false.
1242 * This function corresponds to CheckSVEEnabled().
1244 bool sve_access_check(DisasContext *s)
1246 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1247 assert(dc_isar_feature(aa64_sme, s));
1248 if (!sme_sm_enabled_check(s)) {
1249 goto fail_exit;
1251 } else if (s->sve_excp_el) {
1252 gen_exception_insn_el(s, 0, EXCP_UDEF,
1253 syn_sve_access_trap(), s->sve_excp_el);
1254 goto fail_exit;
1256 s->sve_access_checked = true;
1257 return fp_access_check(s);
1259 fail_exit:
1260 /* Assert that we only raise one exception per instruction. */
1261 assert(!s->sve_access_checked);
1262 s->sve_access_checked = true;
1263 return false;
1267 * Check that SME access is enabled, raise an exception if not.
1268 * Note that this function corresponds to CheckSMEAccess and is
1269 * only used directly for cpregs.
1271 static bool sme_access_check(DisasContext *s)
1273 if (s->sme_excp_el) {
1274 gen_exception_insn_el(s, 0, EXCP_UDEF,
1275 syn_smetrap(SME_ET_AccessTrap, false),
1276 s->sme_excp_el);
1277 return false;
1279 return true;
1282 /* This function corresponds to CheckSMEEnabled. */
1283 bool sme_enabled_check(DisasContext *s)
1286 * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1287 * to be zero when fp_excp_el has priority. This is because we need
1288 * sme_excp_el by itself for cpregs access checks.
1290 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1291 s->fp_access_checked = true;
1292 return sme_access_check(s);
1294 return fp_access_check_only(s);
1297 /* Common subroutine for CheckSMEAnd*Enabled. */
1298 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1300 if (!sme_enabled_check(s)) {
1301 return false;
1303 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1304 gen_exception_insn(s, 0, EXCP_UDEF,
1305 syn_smetrap(SME_ET_NotStreaming, false));
1306 return false;
1308 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1309 gen_exception_insn(s, 0, EXCP_UDEF,
1310 syn_smetrap(SME_ET_InactiveZA, false));
1311 return false;
1313 return true;
1317 * Expanders for AdvSIMD translation functions.
1320 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data,
1321 gen_helper_gvec_2 *fn)
1323 if (!a->q && a->esz == MO_64) {
1324 return false;
1326 if (fp_access_check(s)) {
1327 gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn);
1329 return true;
1332 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data,
1333 gen_helper_gvec_3 *fn)
1335 if (!a->q && a->esz == MO_64) {
1336 return false;
1338 if (fp_access_check(s)) {
1339 gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn);
1341 return true;
1344 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1346 if (!a->q && a->esz == MO_64) {
1347 return false;
1349 if (fp_access_check(s)) {
1350 gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1352 return true;
1355 static bool do_gvec_fn3_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1357 if (a->esz == MO_64) {
1358 return false;
1360 if (fp_access_check(s)) {
1361 gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1363 return true;
1366 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn)
1368 if (!a->q && a->esz == MO_64) {
1369 return false;
1371 if (fp_access_check(s)) {
1372 gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz);
1374 return true;
1378 * This utility function is for doing register extension with an
1379 * optional shift. You will likely want to pass a temporary for the
1380 * destination register. See DecodeRegExtend() in the ARM ARM.
1382 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1383 int option, unsigned int shift)
1385 int extsize = extract32(option, 0, 2);
1386 bool is_signed = extract32(option, 2, 1);
1388 tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0));
1389 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1392 static inline void gen_check_sp_alignment(DisasContext *s)
1394 /* The AArch64 architecture mandates that (if enabled via PSTATE
1395 * or SCTLR bits) there is a check that SP is 16-aligned on every
1396 * SP-relative load or store (with an exception generated if it is not).
1397 * In line with general QEMU practice regarding misaligned accesses,
1398 * we omit these checks for the sake of guest program performance.
1399 * This function is provided as a hook so we can more easily add these
1400 * checks in future (possibly as a "favour catching guest program bugs
1401 * over speed" user selectable option).
1406 * This provides a simple table based table lookup decoder. It is
1407 * intended to be used when the relevant bits for decode are too
1408 * awkwardly placed and switch/if based logic would be confusing and
1409 * deeply nested. Since it's a linear search through the table, tables
1410 * should be kept small.
1412 * It returns the first handler where insn & mask == pattern, or
1413 * NULL if there is no match.
1414 * The table is terminated by an empty mask (i.e. 0)
1416 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1417 uint32_t insn)
1419 const AArch64DecodeTable *tptr = table;
1421 while (tptr->mask) {
1422 if ((insn & tptr->mask) == tptr->pattern) {
1423 return tptr->disas_fn;
1425 tptr++;
1427 return NULL;
1431 * The instruction disassembly implemented here matches
1432 * the instruction encoding classifications in chapter C4
1433 * of the ARM Architecture Reference Manual (DDI0487B_a);
1434 * classification names and decode diagrams here should generally
1435 * match up with those in the manual.
1438 static bool trans_B(DisasContext *s, arg_i *a)
1440 reset_btype(s);
1441 gen_goto_tb(s, 0, a->imm);
1442 return true;
1445 static bool trans_BL(DisasContext *s, arg_i *a)
1447 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1448 reset_btype(s);
1449 gen_goto_tb(s, 0, a->imm);
1450 return true;
1454 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1456 DisasLabel match;
1457 TCGv_i64 tcg_cmp;
1459 tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1460 reset_btype(s);
1462 match = gen_disas_label(s);
1463 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1464 tcg_cmp, 0, match.label);
1465 gen_goto_tb(s, 0, 4);
1466 set_disas_label(s, match);
1467 gen_goto_tb(s, 1, a->imm);
1468 return true;
1471 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1473 DisasLabel match;
1474 TCGv_i64 tcg_cmp;
1476 tcg_cmp = tcg_temp_new_i64();
1477 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1479 reset_btype(s);
1481 match = gen_disas_label(s);
1482 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1483 tcg_cmp, 0, match.label);
1484 gen_goto_tb(s, 0, 4);
1485 set_disas_label(s, match);
1486 gen_goto_tb(s, 1, a->imm);
1487 return true;
1490 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1492 /* BC.cond is only present with FEAT_HBC */
1493 if (a->c && !dc_isar_feature(aa64_hbc, s)) {
1494 return false;
1496 reset_btype(s);
1497 if (a->cond < 0x0e) {
1498 /* genuinely conditional branches */
1499 DisasLabel match = gen_disas_label(s);
1500 arm_gen_test_cc(a->cond, match.label);
1501 gen_goto_tb(s, 0, 4);
1502 set_disas_label(s, match);
1503 gen_goto_tb(s, 1, a->imm);
1504 } else {
1505 /* 0xe and 0xf are both "always" conditions */
1506 gen_goto_tb(s, 0, a->imm);
1508 return true;
1511 static void set_btype_for_br(DisasContext *s, int rn)
1513 if (dc_isar_feature(aa64_bti, s)) {
1514 /* BR to {x16,x17} or !guard -> 1, else 3. */
1515 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
1519 static void set_btype_for_blr(DisasContext *s)
1521 if (dc_isar_feature(aa64_bti, s)) {
1522 /* BLR sets BTYPE to 2, regardless of source guarded page. */
1523 set_btype(s, 2);
1527 static bool trans_BR(DisasContext *s, arg_r *a)
1529 gen_a64_set_pc(s, cpu_reg(s, a->rn));
1530 set_btype_for_br(s, a->rn);
1531 s->base.is_jmp = DISAS_JUMP;
1532 return true;
1535 static bool trans_BLR(DisasContext *s, arg_r *a)
1537 TCGv_i64 dst = cpu_reg(s, a->rn);
1538 TCGv_i64 lr = cpu_reg(s, 30);
1539 if (dst == lr) {
1540 TCGv_i64 tmp = tcg_temp_new_i64();
1541 tcg_gen_mov_i64(tmp, dst);
1542 dst = tmp;
1544 gen_pc_plus_diff(s, lr, curr_insn_len(s));
1545 gen_a64_set_pc(s, dst);
1546 set_btype_for_blr(s);
1547 s->base.is_jmp = DISAS_JUMP;
1548 return true;
1551 static bool trans_RET(DisasContext *s, arg_r *a)
1553 gen_a64_set_pc(s, cpu_reg(s, a->rn));
1554 s->base.is_jmp = DISAS_JUMP;
1555 return true;
1558 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1559 TCGv_i64 modifier, bool use_key_a)
1561 TCGv_i64 truedst;
1563 * Return the branch target for a BRAA/RETA/etc, which is either
1564 * just the destination dst, or that value with the pauth check
1565 * done and the code removed from the high bits.
1567 if (!s->pauth_active) {
1568 return dst;
1571 truedst = tcg_temp_new_i64();
1572 if (use_key_a) {
1573 gen_helper_autia_combined(truedst, tcg_env, dst, modifier);
1574 } else {
1575 gen_helper_autib_combined(truedst, tcg_env, dst, modifier);
1577 return truedst;
1580 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1582 TCGv_i64 dst;
1584 if (!dc_isar_feature(aa64_pauth, s)) {
1585 return false;
1588 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1589 gen_a64_set_pc(s, dst);
1590 set_btype_for_br(s, a->rn);
1591 s->base.is_jmp = DISAS_JUMP;
1592 return true;
1595 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1597 TCGv_i64 dst, lr;
1599 if (!dc_isar_feature(aa64_pauth, s)) {
1600 return false;
1603 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1604 lr = cpu_reg(s, 30);
1605 if (dst == lr) {
1606 TCGv_i64 tmp = tcg_temp_new_i64();
1607 tcg_gen_mov_i64(tmp, dst);
1608 dst = tmp;
1610 gen_pc_plus_diff(s, lr, curr_insn_len(s));
1611 gen_a64_set_pc(s, dst);
1612 set_btype_for_blr(s);
1613 s->base.is_jmp = DISAS_JUMP;
1614 return true;
1617 static bool trans_RETA(DisasContext *s, arg_reta *a)
1619 TCGv_i64 dst;
1621 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1622 gen_a64_set_pc(s, dst);
1623 s->base.is_jmp = DISAS_JUMP;
1624 return true;
1627 static bool trans_BRA(DisasContext *s, arg_bra *a)
1629 TCGv_i64 dst;
1631 if (!dc_isar_feature(aa64_pauth, s)) {
1632 return false;
1634 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1635 gen_a64_set_pc(s, dst);
1636 set_btype_for_br(s, a->rn);
1637 s->base.is_jmp = DISAS_JUMP;
1638 return true;
1641 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1643 TCGv_i64 dst, lr;
1645 if (!dc_isar_feature(aa64_pauth, s)) {
1646 return false;
1648 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1649 lr = cpu_reg(s, 30);
1650 if (dst == lr) {
1651 TCGv_i64 tmp = tcg_temp_new_i64();
1652 tcg_gen_mov_i64(tmp, dst);
1653 dst = tmp;
1655 gen_pc_plus_diff(s, lr, curr_insn_len(s));
1656 gen_a64_set_pc(s, dst);
1657 set_btype_for_blr(s);
1658 s->base.is_jmp = DISAS_JUMP;
1659 return true;
1662 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1664 TCGv_i64 dst;
1666 if (s->current_el == 0) {
1667 return false;
1669 if (s->trap_eret) {
1670 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2);
1671 return true;
1673 dst = tcg_temp_new_i64();
1674 tcg_gen_ld_i64(dst, tcg_env,
1675 offsetof(CPUARMState, elr_el[s->current_el]));
1677 translator_io_start(&s->base);
1679 gen_helper_exception_return(tcg_env, dst);
1680 /* Must exit loop to check un-masked IRQs */
1681 s->base.is_jmp = DISAS_EXIT;
1682 return true;
1685 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1687 TCGv_i64 dst;
1689 if (!dc_isar_feature(aa64_pauth, s)) {
1690 return false;
1692 if (s->current_el == 0) {
1693 return false;
1695 /* The FGT trap takes precedence over an auth trap. */
1696 if (s->trap_eret) {
1697 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2);
1698 return true;
1700 dst = tcg_temp_new_i64();
1701 tcg_gen_ld_i64(dst, tcg_env,
1702 offsetof(CPUARMState, elr_el[s->current_el]));
1704 dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1706 translator_io_start(&s->base);
1708 gen_helper_exception_return(tcg_env, dst);
1709 /* Must exit loop to check un-masked IRQs */
1710 s->base.is_jmp = DISAS_EXIT;
1711 return true;
1714 static bool trans_NOP(DisasContext *s, arg_NOP *a)
1716 return true;
1719 static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
1722 * When running in MTTCG we don't generate jumps to the yield and
1723 * WFE helpers as it won't affect the scheduling of other vCPUs.
1724 * If we wanted to more completely model WFE/SEV so we don't busy
1725 * spin unnecessarily we would need to do something more involved.
1727 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1728 s->base.is_jmp = DISAS_YIELD;
1730 return true;
1733 static bool trans_WFI(DisasContext *s, arg_WFI *a)
1735 s->base.is_jmp = DISAS_WFI;
1736 return true;
1739 static bool trans_WFE(DisasContext *s, arg_WFI *a)
1742 * When running in MTTCG we don't generate jumps to the yield and
1743 * WFE helpers as it won't affect the scheduling of other vCPUs.
1744 * If we wanted to more completely model WFE/SEV so we don't busy
1745 * spin unnecessarily we would need to do something more involved.
1747 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1748 s->base.is_jmp = DISAS_WFE;
1750 return true;
1753 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a)
1755 if (s->pauth_active) {
1756 gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]);
1758 return true;
1761 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a)
1763 if (s->pauth_active) {
1764 gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1766 return true;
1769 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a)
1771 if (s->pauth_active) {
1772 gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1774 return true;
1777 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a)
1779 if (s->pauth_active) {
1780 gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1782 return true;
1785 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a)
1787 if (s->pauth_active) {
1788 gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1790 return true;
1793 static bool trans_ESB(DisasContext *s, arg_ESB *a)
1795 /* Without RAS, we must implement this as NOP. */
1796 if (dc_isar_feature(aa64_ras, s)) {
1798 * QEMU does not have a source of physical SErrors,
1799 * so we are only concerned with virtual SErrors.
1800 * The pseudocode in the ARM for this case is
1801 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1802 * AArch64.vESBOperation();
1803 * Most of the condition can be evaluated at translation time.
1804 * Test for EL2 present, and defer test for SEL2 to runtime.
1806 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1807 gen_helper_vesb(tcg_env);
1810 return true;
1813 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a)
1815 if (s->pauth_active) {
1816 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1818 return true;
1821 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a)
1823 if (s->pauth_active) {
1824 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1826 return true;
1829 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a)
1831 if (s->pauth_active) {
1832 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1834 return true;
1837 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a)
1839 if (s->pauth_active) {
1840 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1842 return true;
1845 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a)
1847 if (s->pauth_active) {
1848 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1850 return true;
1853 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a)
1855 if (s->pauth_active) {
1856 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1858 return true;
1861 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a)
1863 if (s->pauth_active) {
1864 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1866 return true;
1869 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a)
1871 if (s->pauth_active) {
1872 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1874 return true;
1877 static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
1879 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1880 return true;
1883 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a)
1885 /* We handle DSB and DMB the same way */
1886 TCGBar bar;
1888 switch (a->types) {
1889 case 1: /* MBReqTypes_Reads */
1890 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1891 break;
1892 case 2: /* MBReqTypes_Writes */
1893 bar = TCG_BAR_SC | TCG_MO_ST_ST;
1894 break;
1895 default: /* MBReqTypes_All */
1896 bar = TCG_BAR_SC | TCG_MO_ALL;
1897 break;
1899 tcg_gen_mb(bar);
1900 return true;
1903 static bool trans_ISB(DisasContext *s, arg_ISB *a)
1906 * We need to break the TB after this insn to execute
1907 * self-modifying code correctly and also to take
1908 * any pending interrupts immediately.
1910 reset_btype(s);
1911 gen_goto_tb(s, 0, 4);
1912 return true;
1915 static bool trans_SB(DisasContext *s, arg_SB *a)
1917 if (!dc_isar_feature(aa64_sb, s)) {
1918 return false;
1921 * TODO: There is no speculation barrier opcode for TCG;
1922 * MB and end the TB instead.
1924 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1925 gen_goto_tb(s, 0, 4);
1926 return true;
1929 static bool trans_CFINV(DisasContext *s, arg_CFINV *a)
1931 if (!dc_isar_feature(aa64_condm_4, s)) {
1932 return false;
1934 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1935 return true;
1938 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a)
1940 TCGv_i32 z;
1942 if (!dc_isar_feature(aa64_condm_5, s)) {
1943 return false;
1946 z = tcg_temp_new_i32();
1948 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1951 * (!C & !Z) << 31
1952 * (!(C | Z)) << 31
1953 * ~((C | Z) << 31)
1954 * ~-(C | Z)
1955 * (C | Z) - 1
1957 tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1958 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1960 /* !(Z & C) */
1961 tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1962 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1964 /* (!C & Z) << 31 -> -(Z & ~C) */
1965 tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1966 tcg_gen_neg_i32(cpu_VF, cpu_VF);
1968 /* C | Z */
1969 tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1971 return true;
1974 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a)
1976 if (!dc_isar_feature(aa64_condm_5, s)) {
1977 return false;
1980 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */
1981 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */
1983 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1984 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1986 tcg_gen_movi_i32(cpu_NF, 0);
1987 tcg_gen_movi_i32(cpu_VF, 0);
1989 return true;
1992 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a)
1994 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
1995 return false;
1997 if (a->imm & 1) {
1998 set_pstate_bits(PSTATE_UAO);
1999 } else {
2000 clear_pstate_bits(PSTATE_UAO);
2002 gen_rebuild_hflags(s);
2003 s->base.is_jmp = DISAS_TOO_MANY;
2004 return true;
2007 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a)
2009 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
2010 return false;
2012 if (a->imm & 1) {
2013 set_pstate_bits(PSTATE_PAN);
2014 } else {
2015 clear_pstate_bits(PSTATE_PAN);
2017 gen_rebuild_hflags(s);
2018 s->base.is_jmp = DISAS_TOO_MANY;
2019 return true;
2022 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a)
2024 if (s->current_el == 0) {
2025 return false;
2027 gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP));
2028 s->base.is_jmp = DISAS_TOO_MANY;
2029 return true;
2032 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a)
2034 if (!dc_isar_feature(aa64_ssbs, s)) {
2035 return false;
2037 if (a->imm & 1) {
2038 set_pstate_bits(PSTATE_SSBS);
2039 } else {
2040 clear_pstate_bits(PSTATE_SSBS);
2042 /* Don't need to rebuild hflags since SSBS is a nop */
2043 s->base.is_jmp = DISAS_TOO_MANY;
2044 return true;
2047 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a)
2049 if (!dc_isar_feature(aa64_dit, s)) {
2050 return false;
2052 if (a->imm & 1) {
2053 set_pstate_bits(PSTATE_DIT);
2054 } else {
2055 clear_pstate_bits(PSTATE_DIT);
2057 /* There's no need to rebuild hflags because DIT is a nop */
2058 s->base.is_jmp = DISAS_TOO_MANY;
2059 return true;
2062 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a)
2064 if (dc_isar_feature(aa64_mte, s)) {
2065 /* Full MTE is enabled -- set the TCO bit as directed. */
2066 if (a->imm & 1) {
2067 set_pstate_bits(PSTATE_TCO);
2068 } else {
2069 clear_pstate_bits(PSTATE_TCO);
2071 gen_rebuild_hflags(s);
2072 /* Many factors, including TCO, go into MTE_ACTIVE. */
2073 s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2074 return true;
2075 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
2076 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */
2077 return true;
2078 } else {
2079 /* Insn not present */
2080 return false;
2084 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a)
2086 gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm));
2087 s->base.is_jmp = DISAS_TOO_MANY;
2088 return true;
2091 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a)
2093 gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm));
2094 /* Exit the cpu loop to re-evaluate pending IRQs. */
2095 s->base.is_jmp = DISAS_UPDATE_EXIT;
2096 return true;
2099 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a)
2101 if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) {
2102 return false;
2105 if (a->imm == 0) {
2106 clear_pstate_bits(PSTATE_ALLINT);
2107 } else if (s->current_el > 1) {
2108 set_pstate_bits(PSTATE_ALLINT);
2109 } else {
2110 gen_helper_msr_set_allint_el1(tcg_env);
2113 /* Exit the cpu loop to re-evaluate pending IRQs. */
2114 s->base.is_jmp = DISAS_UPDATE_EXIT;
2115 return true;
2118 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a)
2120 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) {
2121 return false;
2123 if (sme_access_check(s)) {
2124 int old = s->pstate_sm | (s->pstate_za << 1);
2125 int new = a->imm * 3;
2127 if ((old ^ new) & a->mask) {
2128 /* At least one bit changes. */
2129 gen_helper_set_svcr(tcg_env, tcg_constant_i32(new),
2130 tcg_constant_i32(a->mask));
2131 s->base.is_jmp = DISAS_TOO_MANY;
2134 return true;
2137 static void gen_get_nzcv(TCGv_i64 tcg_rt)
2139 TCGv_i32 tmp = tcg_temp_new_i32();
2140 TCGv_i32 nzcv = tcg_temp_new_i32();
2142 /* build bit 31, N */
2143 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
2144 /* build bit 30, Z */
2145 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
2146 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
2147 /* build bit 29, C */
2148 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
2149 /* build bit 28, V */
2150 tcg_gen_shri_i32(tmp, cpu_VF, 31);
2151 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
2152 /* generate result */
2153 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
2156 static void gen_set_nzcv(TCGv_i64 tcg_rt)
2158 TCGv_i32 nzcv = tcg_temp_new_i32();
2160 /* take NZCV from R[t] */
2161 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
2163 /* bit 31, N */
2164 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
2165 /* bit 30, Z */
2166 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
2167 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
2168 /* bit 29, C */
2169 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
2170 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
2171 /* bit 28, V */
2172 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
2173 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
2176 static void gen_sysreg_undef(DisasContext *s, bool isread,
2177 uint8_t op0, uint8_t op1, uint8_t op2,
2178 uint8_t crn, uint8_t crm, uint8_t rt)
2181 * Generate code to emit an UNDEF with correct syndrome
2182 * information for a failed system register access.
2183 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2184 * but if FEAT_IDST is implemented then read accesses to registers
2185 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2186 * syndrome.
2188 uint32_t syndrome;
2190 if (isread && dc_isar_feature(aa64_ids, s) &&
2191 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2192 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2193 } else {
2194 syndrome = syn_uncategorized();
2196 gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2199 /* MRS - move from system register
2200 * MSR (register) - move to system register
2201 * SYS
2202 * SYSL
2203 * These are all essentially the same insn in 'read' and 'write'
2204 * versions, with varying op0 fields.
2206 static void handle_sys(DisasContext *s, bool isread,
2207 unsigned int op0, unsigned int op1, unsigned int op2,
2208 unsigned int crn, unsigned int crm, unsigned int rt)
2210 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2211 crn, crm, op0, op1, op2);
2212 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2213 bool need_exit_tb = false;
2214 bool nv_trap_to_el2 = false;
2215 bool nv_redirect_reg = false;
2216 bool skip_fp_access_checks = false;
2217 bool nv2_mem_redirect = false;
2218 TCGv_ptr tcg_ri = NULL;
2219 TCGv_i64 tcg_rt;
2220 uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2222 if (crn == 11 || crn == 15) {
2224 * Check for TIDCP trap, which must take precedence over
2225 * the UNDEF for "no such register" etc.
2227 switch (s->current_el) {
2228 case 0:
2229 if (dc_isar_feature(aa64_tidcp1, s)) {
2230 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome));
2232 break;
2233 case 1:
2234 gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome));
2235 break;
2239 if (!ri) {
2240 /* Unknown register; this might be a guest error or a QEMU
2241 * unimplemented feature.
2243 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2244 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2245 isread ? "read" : "write", op0, op1, crn, crm, op2);
2246 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2247 return;
2250 if (s->nv2 && ri->nv2_redirect_offset) {
2252 * Some registers always redirect to memory; some only do so if
2253 * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in
2254 * pairs which share an offset; see the table in R_CSRPQ).
2256 if (ri->nv2_redirect_offset & NV2_REDIR_NV1) {
2257 nv2_mem_redirect = s->nv1;
2258 } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) {
2259 nv2_mem_redirect = !s->nv1;
2260 } else {
2261 nv2_mem_redirect = true;
2265 /* Check access permissions */
2266 if (!cp_access_ok(s->current_el, ri, isread)) {
2268 * FEAT_NV/NV2 handling does not do the usual FP access checks
2269 * for registers only accessible at EL2 (though it *does* do them
2270 * for registers accessible at EL1).
2272 skip_fp_access_checks = true;
2273 if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) {
2275 * This is one of the few EL2 registers which should redirect
2276 * to the equivalent EL1 register. We do that after running
2277 * the EL2 register's accessfn.
2279 nv_redirect_reg = true;
2280 assert(!nv2_mem_redirect);
2281 } else if (nv2_mem_redirect) {
2283 * NV2 redirect-to-memory takes precedence over trap to EL2 or
2284 * UNDEF to EL1.
2286 } else if (s->nv && arm_cpreg_traps_in_nv(ri)) {
2288 * This register / instruction exists and is an EL2 register, so
2289 * we must trap to EL2 if accessed in nested virtualization EL1
2290 * instead of UNDEFing. We'll do that after the usual access checks.
2291 * (This makes a difference only for a couple of registers like
2292 * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority
2293 * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have
2294 * an accessfn which does nothing when called from EL1, because
2295 * the trap-to-EL3 controls which would apply to that register
2296 * at EL2 don't take priority over the FEAT_NV trap-to-EL2.)
2298 nv_trap_to_el2 = true;
2299 } else {
2300 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2301 return;
2305 if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2306 /* Emit code to perform further access permissions checks at
2307 * runtime; this may result in an exception.
2309 gen_a64_update_pc(s, 0);
2310 tcg_ri = tcg_temp_new_ptr();
2311 gen_helper_access_check_cp_reg(tcg_ri, tcg_env,
2312 tcg_constant_i32(key),
2313 tcg_constant_i32(syndrome),
2314 tcg_constant_i32(isread));
2315 } else if (ri->type & ARM_CP_RAISES_EXC) {
2317 * The readfn or writefn might raise an exception;
2318 * synchronize the CPU state in case it does.
2320 gen_a64_update_pc(s, 0);
2323 if (!skip_fp_access_checks) {
2324 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2325 return;
2326 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2327 return;
2328 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2329 return;
2333 if (nv_trap_to_el2) {
2334 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2335 return;
2338 if (nv_redirect_reg) {
2340 * FEAT_NV2 redirection of an EL2 register to an EL1 register.
2341 * Conveniently in all cases the encoding of the EL1 register is
2342 * identical to the EL2 register except that opc1 is 0.
2343 * Get the reginfo for the EL1 register to use for the actual access.
2344 * We don't use the EL1 register's access function, and
2345 * fine-grained-traps on EL1 also do not apply here.
2347 key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2348 crn, crm, op0, 0, op2);
2349 ri = get_arm_cp_reginfo(s->cp_regs, key);
2350 assert(ri);
2351 assert(cp_access_ok(s->current_el, ri, isread));
2353 * We might not have done an update_pc earlier, so check we don't
2354 * need it. We could support this in future if necessary.
2356 assert(!(ri->type & ARM_CP_RAISES_EXC));
2359 if (nv2_mem_redirect) {
2361 * This system register is being redirected into an EL2 memory access.
2362 * This means it is not an IO operation, doesn't change hflags,
2363 * and need not end the TB, because it has no side effects.
2365 * The access is 64-bit single copy atomic, guaranteed aligned because
2366 * of the definition of VCNR_EL2. Its endianness depends on
2367 * SCTLR_EL2.EE, not on the data endianness of EL1.
2368 * It is done under either the EL2 translation regime or the EL2&0
2369 * translation regime, depending on HCR_EL2.E2H. It behaves as if
2370 * PSTATE.PAN is 0.
2372 TCGv_i64 ptr = tcg_temp_new_i64();
2373 MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN;
2374 ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
2375 int memidx = arm_to_core_mmu_idx(armmemidx);
2376 uint32_t syn;
2378 mop |= (s->nv2_mem_be ? MO_BE : MO_LE);
2380 tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2));
2381 tcg_gen_addi_i64(ptr, ptr,
2382 (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK));
2383 tcg_rt = cpu_reg(s, rt);
2385 syn = syn_data_abort_vncr(0, !isread, 0);
2386 disas_set_insn_syndrome(s, syn);
2387 if (isread) {
2388 tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop);
2389 } else {
2390 tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop);
2392 return;
2395 /* Handle special cases first */
2396 switch (ri->type & ARM_CP_SPECIAL_MASK) {
2397 case 0:
2398 break;
2399 case ARM_CP_NOP:
2400 return;
2401 case ARM_CP_NZCV:
2402 tcg_rt = cpu_reg(s, rt);
2403 if (isread) {
2404 gen_get_nzcv(tcg_rt);
2405 } else {
2406 gen_set_nzcv(tcg_rt);
2408 return;
2409 case ARM_CP_CURRENTEL:
2412 * Reads as current EL value from pstate, which is
2413 * guaranteed to be constant by the tb flags.
2414 * For nested virt we should report EL2.
2416 int el = s->nv ? 2 : s->current_el;
2417 tcg_rt = cpu_reg(s, rt);
2418 tcg_gen_movi_i64(tcg_rt, el << 2);
2419 return;
2421 case ARM_CP_DC_ZVA:
2422 /* Writes clear the aligned block of memory which rt points into. */
2423 if (s->mte_active[0]) {
2424 int desc = 0;
2426 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2427 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2428 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2430 tcg_rt = tcg_temp_new_i64();
2431 gen_helper_mte_check_zva(tcg_rt, tcg_env,
2432 tcg_constant_i32(desc), cpu_reg(s, rt));
2433 } else {
2434 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2436 gen_helper_dc_zva(tcg_env, tcg_rt);
2437 return;
2438 case ARM_CP_DC_GVA:
2440 TCGv_i64 clean_addr, tag;
2443 * DC_GVA, like DC_ZVA, requires that we supply the original
2444 * pointer for an invalid page. Probe that address first.
2446 tcg_rt = cpu_reg(s, rt);
2447 clean_addr = clean_data_tbi(s, tcg_rt);
2448 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2450 if (s->ata[0]) {
2451 /* Extract the tag from the register to match STZGM. */
2452 tag = tcg_temp_new_i64();
2453 tcg_gen_shri_i64(tag, tcg_rt, 56);
2454 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2457 return;
2458 case ARM_CP_DC_GZVA:
2460 TCGv_i64 clean_addr, tag;
2462 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2463 tcg_rt = cpu_reg(s, rt);
2464 clean_addr = clean_data_tbi(s, tcg_rt);
2465 gen_helper_dc_zva(tcg_env, clean_addr);
2467 if (s->ata[0]) {
2468 /* Extract the tag from the register to match STZGM. */
2469 tag = tcg_temp_new_i64();
2470 tcg_gen_shri_i64(tag, tcg_rt, 56);
2471 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2474 return;
2475 default:
2476 g_assert_not_reached();
2479 if (ri->type & ARM_CP_IO) {
2480 /* I/O operations must end the TB here (whether read or write) */
2481 need_exit_tb = translator_io_start(&s->base);
2484 tcg_rt = cpu_reg(s, rt);
2486 if (isread) {
2487 if (ri->type & ARM_CP_CONST) {
2488 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2489 } else if (ri->readfn) {
2490 if (!tcg_ri) {
2491 tcg_ri = gen_lookup_cp_reg(key);
2493 gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri);
2494 } else {
2495 tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset);
2497 } else {
2498 if (ri->type & ARM_CP_CONST) {
2499 /* If not forbidden by access permissions, treat as WI */
2500 return;
2501 } else if (ri->writefn) {
2502 if (!tcg_ri) {
2503 tcg_ri = gen_lookup_cp_reg(key);
2505 gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt);
2506 } else {
2507 tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset);
2511 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2513 * A write to any coprocessor register that ends a TB
2514 * must rebuild the hflags for the next TB.
2516 gen_rebuild_hflags(s);
2518 * We default to ending the TB on a coprocessor register write,
2519 * but allow this to be suppressed by the register definition
2520 * (usually only necessary to work around guest bugs).
2522 need_exit_tb = true;
2524 if (need_exit_tb) {
2525 s->base.is_jmp = DISAS_UPDATE_EXIT;
2529 static bool trans_SYS(DisasContext *s, arg_SYS *a)
2531 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt);
2532 return true;
2535 static bool trans_SVC(DisasContext *s, arg_i *a)
2538 * For SVC, HVC and SMC we advance the single-step state
2539 * machine before taking the exception. This is architecturally
2540 * mandated, to ensure that single-stepping a system call
2541 * instruction works properly.
2543 uint32_t syndrome = syn_aa64_svc(a->imm);
2544 if (s->fgt_svc) {
2545 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2546 return true;
2548 gen_ss_advance(s);
2549 gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2550 return true;
2553 static bool trans_HVC(DisasContext *s, arg_i *a)
2555 int target_el = s->current_el == 3 ? 3 : 2;
2557 if (s->current_el == 0) {
2558 unallocated_encoding(s);
2559 return true;
2562 * The pre HVC helper handles cases when HVC gets trapped
2563 * as an undefined insn by runtime configuration.
2565 gen_a64_update_pc(s, 0);
2566 gen_helper_pre_hvc(tcg_env);
2567 /* Architecture requires ss advance before we do the actual work */
2568 gen_ss_advance(s);
2569 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el);
2570 return true;
2573 static bool trans_SMC(DisasContext *s, arg_i *a)
2575 if (s->current_el == 0) {
2576 unallocated_encoding(s);
2577 return true;
2579 gen_a64_update_pc(s, 0);
2580 gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm)));
2581 /* Architecture requires ss advance before we do the actual work */
2582 gen_ss_advance(s);
2583 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3);
2584 return true;
2587 static bool trans_BRK(DisasContext *s, arg_i *a)
2589 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm));
2590 return true;
2593 static bool trans_HLT(DisasContext *s, arg_i *a)
2596 * HLT. This has two purposes.
2597 * Architecturally, it is an external halting debug instruction.
2598 * Since QEMU doesn't implement external debug, we treat this as
2599 * it is required for halting debug disabled: it will UNDEF.
2600 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2602 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) {
2603 gen_exception_internal_insn(s, EXCP_SEMIHOST);
2604 } else {
2605 unallocated_encoding(s);
2607 return true;
2611 * Load/Store exclusive instructions are implemented by remembering
2612 * the value/address loaded, and seeing if these are the same
2613 * when the store is performed. This is not actually the architecturally
2614 * mandated semantics, but it works for typical guest code sequences
2615 * and avoids having to monitor regular stores.
2617 * The store exclusive uses the atomic cmpxchg primitives to avoid
2618 * races in multi-threaded linux-user and when MTTCG softmmu is
2619 * enabled.
2621 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2622 int size, bool is_pair)
2624 int idx = get_mem_index(s);
2625 TCGv_i64 dirty_addr, clean_addr;
2626 MemOp memop = check_atomic_align(s, rn, size + is_pair);
2628 s->is_ldex = true;
2629 dirty_addr = cpu_reg_sp(s, rn);
2630 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2632 g_assert(size <= 3);
2633 if (is_pair) {
2634 g_assert(size >= 2);
2635 if (size == 2) {
2636 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2637 if (s->be_data == MO_LE) {
2638 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2639 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2640 } else {
2641 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2642 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2644 } else {
2645 TCGv_i128 t16 = tcg_temp_new_i128();
2647 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2649 if (s->be_data == MO_LE) {
2650 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2651 cpu_exclusive_high, t16);
2652 } else {
2653 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2654 cpu_exclusive_val, t16);
2656 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2657 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2659 } else {
2660 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2661 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2663 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2666 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2667 int rn, int size, int is_pair)
2669 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2670 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
2671 * [addr] = {Rt};
2672 * if (is_pair) {
2673 * [addr + datasize] = {Rt2};
2675 * {Rd} = 0;
2676 * } else {
2677 * {Rd} = 1;
2679 * env->exclusive_addr = -1;
2681 TCGLabel *fail_label = gen_new_label();
2682 TCGLabel *done_label = gen_new_label();
2683 TCGv_i64 tmp, clean_addr;
2684 MemOp memop;
2687 * FIXME: We are out of spec here. We have recorded only the address
2688 * from load_exclusive, not the entire range, and we assume that the
2689 * size of the access on both sides match. The architecture allows the
2690 * store to be smaller than the load, so long as the stored bytes are
2691 * within the range recorded by the load.
2694 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
2695 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2696 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2699 * The write, and any associated faults, only happen if the virtual
2700 * and physical addresses pass the exclusive monitor check. These
2701 * faults are exceedingly unlikely, because normally the guest uses
2702 * the exact same address register for the load_exclusive, and we
2703 * would have recognized these faults there.
2705 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an
2706 * unaligned 4-byte write within the range of an aligned 8-byte load.
2707 * With LSE2, the store would need to cross a 16-byte boundary when the
2708 * load did not, which would mean the store is outside the range
2709 * recorded for the monitor, which would have failed a corrected monitor
2710 * check above. For now, we assume no size change and retain the
2711 * MO_ALIGN to let tcg know what we checked in the load_exclusive.
2713 * It is possible to trigger an MTE fault, by performing the load with
2714 * a virtual address with a valid tag and performing the store with the
2715 * same virtual address and a different invalid tag.
2717 memop = size + is_pair;
2718 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
2719 memop |= MO_ALIGN;
2721 memop = finalize_memop(s, memop);
2722 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2724 tmp = tcg_temp_new_i64();
2725 if (is_pair) {
2726 if (size == 2) {
2727 if (s->be_data == MO_LE) {
2728 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2729 } else {
2730 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2732 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2733 cpu_exclusive_val, tmp,
2734 get_mem_index(s), memop);
2735 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2736 } else {
2737 TCGv_i128 t16 = tcg_temp_new_i128();
2738 TCGv_i128 c16 = tcg_temp_new_i128();
2739 TCGv_i64 a, b;
2741 if (s->be_data == MO_LE) {
2742 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2743 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2744 cpu_exclusive_high);
2745 } else {
2746 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2747 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2748 cpu_exclusive_val);
2751 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2752 get_mem_index(s), memop);
2754 a = tcg_temp_new_i64();
2755 b = tcg_temp_new_i64();
2756 if (s->be_data == MO_LE) {
2757 tcg_gen_extr_i128_i64(a, b, t16);
2758 } else {
2759 tcg_gen_extr_i128_i64(b, a, t16);
2762 tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2763 tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2764 tcg_gen_or_i64(tmp, a, b);
2766 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2768 } else {
2769 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2770 cpu_reg(s, rt), get_mem_index(s), memop);
2771 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2773 tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2774 tcg_gen_br(done_label);
2776 gen_set_label(fail_label);
2777 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2778 gen_set_label(done_label);
2779 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2782 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2783 int rn, int size)
2785 TCGv_i64 tcg_rs = cpu_reg(s, rs);
2786 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2787 int memidx = get_mem_index(s);
2788 TCGv_i64 clean_addr;
2789 MemOp memop;
2791 if (rn == 31) {
2792 gen_check_sp_alignment(s);
2794 memop = check_atomic_align(s, rn, size);
2795 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2796 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
2797 memidx, memop);
2800 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2801 int rn, int size)
2803 TCGv_i64 s1 = cpu_reg(s, rs);
2804 TCGv_i64 s2 = cpu_reg(s, rs + 1);
2805 TCGv_i64 t1 = cpu_reg(s, rt);
2806 TCGv_i64 t2 = cpu_reg(s, rt + 1);
2807 TCGv_i64 clean_addr;
2808 int memidx = get_mem_index(s);
2809 MemOp memop;
2811 if (rn == 31) {
2812 gen_check_sp_alignment(s);
2815 /* This is a single atomic access, despite the "pair". */
2816 memop = check_atomic_align(s, rn, size + 1);
2817 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2819 if (size == 2) {
2820 TCGv_i64 cmp = tcg_temp_new_i64();
2821 TCGv_i64 val = tcg_temp_new_i64();
2823 if (s->be_data == MO_LE) {
2824 tcg_gen_concat32_i64(val, t1, t2);
2825 tcg_gen_concat32_i64(cmp, s1, s2);
2826 } else {
2827 tcg_gen_concat32_i64(val, t2, t1);
2828 tcg_gen_concat32_i64(cmp, s2, s1);
2831 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
2833 if (s->be_data == MO_LE) {
2834 tcg_gen_extr32_i64(s1, s2, cmp);
2835 } else {
2836 tcg_gen_extr32_i64(s2, s1, cmp);
2838 } else {
2839 TCGv_i128 cmp = tcg_temp_new_i128();
2840 TCGv_i128 val = tcg_temp_new_i128();
2842 if (s->be_data == MO_LE) {
2843 tcg_gen_concat_i64_i128(val, t1, t2);
2844 tcg_gen_concat_i64_i128(cmp, s1, s2);
2845 } else {
2846 tcg_gen_concat_i64_i128(val, t2, t1);
2847 tcg_gen_concat_i64_i128(cmp, s2, s1);
2850 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
2852 if (s->be_data == MO_LE) {
2853 tcg_gen_extr_i128_i64(s1, s2, cmp);
2854 } else {
2855 tcg_gen_extr_i128_i64(s2, s1, cmp);
2861 * Compute the ISS.SF bit for syndrome information if an exception
2862 * is taken on a load or store. This indicates whether the instruction
2863 * is accessing a 32-bit or 64-bit register. This logic is derived
2864 * from the ARMv8 specs for LDR (Shared decode for all encodings).
2866 static bool ldst_iss_sf(int size, bool sign, bool ext)
2869 if (sign) {
2871 * Signed loads are 64 bit results if we are not going to
2872 * do a zero-extend from 32 to 64 after the load.
2873 * (For a store, sign and ext are always false.)
2875 return !ext;
2876 } else {
2877 /* Unsigned loads/stores work at the specified size */
2878 return size == MO_64;
2882 static bool trans_STXR(DisasContext *s, arg_stxr *a)
2884 if (a->rn == 31) {
2885 gen_check_sp_alignment(s);
2887 if (a->lasr) {
2888 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2890 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false);
2891 return true;
2894 static bool trans_LDXR(DisasContext *s, arg_stxr *a)
2896 if (a->rn == 31) {
2897 gen_check_sp_alignment(s);
2899 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false);
2900 if (a->lasr) {
2901 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2903 return true;
2906 static bool trans_STLR(DisasContext *s, arg_stlr *a)
2908 TCGv_i64 clean_addr;
2909 MemOp memop;
2910 bool iss_sf = ldst_iss_sf(a->sz, false, false);
2913 * StoreLORelease is the same as Store-Release for QEMU, but
2914 * needs the feature-test.
2916 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2917 return false;
2919 /* Generate ISS for non-exclusive accesses including LASR. */
2920 if (a->rn == 31) {
2921 gen_check_sp_alignment(s);
2923 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2924 memop = check_ordered_align(s, a->rn, 0, true, a->sz);
2925 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2926 true, a->rn != 31, memop);
2927 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt,
2928 iss_sf, a->lasr);
2929 return true;
2932 static bool trans_LDAR(DisasContext *s, arg_stlr *a)
2934 TCGv_i64 clean_addr;
2935 MemOp memop;
2936 bool iss_sf = ldst_iss_sf(a->sz, false, false);
2938 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */
2939 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2940 return false;
2942 /* Generate ISS for non-exclusive accesses including LASR. */
2943 if (a->rn == 31) {
2944 gen_check_sp_alignment(s);
2946 memop = check_ordered_align(s, a->rn, 0, false, a->sz);
2947 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2948 false, a->rn != 31, memop);
2949 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true,
2950 a->rt, iss_sf, a->lasr);
2951 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2952 return true;
2955 static bool trans_STXP(DisasContext *s, arg_stxr *a)
2957 if (a->rn == 31) {
2958 gen_check_sp_alignment(s);
2960 if (a->lasr) {
2961 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2963 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true);
2964 return true;
2967 static bool trans_LDXP(DisasContext *s, arg_stxr *a)
2969 if (a->rn == 31) {
2970 gen_check_sp_alignment(s);
2972 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true);
2973 if (a->lasr) {
2974 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2976 return true;
2979 static bool trans_CASP(DisasContext *s, arg_CASP *a)
2981 if (!dc_isar_feature(aa64_atomics, s)) {
2982 return false;
2984 if (((a->rt | a->rs) & 1) != 0) {
2985 return false;
2988 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz);
2989 return true;
2992 static bool trans_CAS(DisasContext *s, arg_CAS *a)
2994 if (!dc_isar_feature(aa64_atomics, s)) {
2995 return false;
2997 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz);
2998 return true;
3001 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a)
3003 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false);
3004 TCGv_i64 tcg_rt = cpu_reg(s, a->rt);
3005 TCGv_i64 clean_addr = tcg_temp_new_i64();
3006 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3008 gen_pc_plus_diff(s, clean_addr, a->imm);
3009 do_gpr_ld(s, tcg_rt, clean_addr, memop,
3010 false, true, a->rt, iss_sf, false);
3011 return true;
3014 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a)
3016 /* Load register (literal), vector version */
3017 TCGv_i64 clean_addr;
3018 MemOp memop;
3020 if (!fp_access_check(s)) {
3021 return true;
3023 memop = finalize_memop_asimd(s, a->sz);
3024 clean_addr = tcg_temp_new_i64();
3025 gen_pc_plus_diff(s, clean_addr, a->imm);
3026 do_fp_ld(s, a->rt, clean_addr, memop);
3027 return true;
3030 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a,
3031 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3032 uint64_t offset, bool is_store, MemOp mop)
3034 if (a->rn == 31) {
3035 gen_check_sp_alignment(s);
3038 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3039 if (!a->p) {
3040 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3043 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store,
3044 (a->w || a->rn != 31), 2 << a->sz, mop);
3047 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a,
3048 TCGv_i64 dirty_addr, uint64_t offset)
3050 if (a->w) {
3051 if (a->p) {
3052 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3054 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3058 static bool trans_STP(DisasContext *s, arg_ldstpair *a)
3060 uint64_t offset = a->imm << a->sz;
3061 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3062 MemOp mop = finalize_memop(s, a->sz);
3064 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3065 tcg_rt = cpu_reg(s, a->rt);
3066 tcg_rt2 = cpu_reg(s, a->rt2);
3068 * We built mop above for the single logical access -- rebuild it
3069 * now for the paired operation.
3071 * With LSE2, non-sign-extending pairs are treated atomically if
3072 * aligned, and if unaligned one of the pair will be completely
3073 * within a 16-byte block and that element will be atomic.
3074 * Otherwise each element is separately atomic.
3075 * In all cases, issue one operation with the correct atomicity.
3077 mop = a->sz + 1;
3078 if (s->align_mem) {
3079 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3081 mop = finalize_memop_pair(s, mop);
3082 if (a->sz == 2) {
3083 TCGv_i64 tmp = tcg_temp_new_i64();
3085 if (s->be_data == MO_LE) {
3086 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
3087 } else {
3088 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
3090 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
3091 } else {
3092 TCGv_i128 tmp = tcg_temp_new_i128();
3094 if (s->be_data == MO_LE) {
3095 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3096 } else {
3097 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3099 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3101 op_addr_ldstpair_post(s, a, dirty_addr, offset);
3102 return true;
3105 static bool trans_LDP(DisasContext *s, arg_ldstpair *a)
3107 uint64_t offset = a->imm << a->sz;
3108 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3109 MemOp mop = finalize_memop(s, a->sz);
3111 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3112 tcg_rt = cpu_reg(s, a->rt);
3113 tcg_rt2 = cpu_reg(s, a->rt2);
3116 * We built mop above for the single logical access -- rebuild it
3117 * now for the paired operation.
3119 * With LSE2, non-sign-extending pairs are treated atomically if
3120 * aligned, and if unaligned one of the pair will be completely
3121 * within a 16-byte block and that element will be atomic.
3122 * Otherwise each element is separately atomic.
3123 * In all cases, issue one operation with the correct atomicity.
3125 * This treats sign-extending loads like zero-extending loads,
3126 * since that reuses the most code below.
3128 mop = a->sz + 1;
3129 if (s->align_mem) {
3130 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3132 mop = finalize_memop_pair(s, mop);
3133 if (a->sz == 2) {
3134 int o2 = s->be_data == MO_LE ? 32 : 0;
3135 int o1 = o2 ^ 32;
3137 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
3138 if (a->sign) {
3139 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
3140 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
3141 } else {
3142 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
3143 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
3145 } else {
3146 TCGv_i128 tmp = tcg_temp_new_i128();
3148 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
3149 if (s->be_data == MO_LE) {
3150 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
3151 } else {
3152 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
3155 op_addr_ldstpair_post(s, a, dirty_addr, offset);
3156 return true;
3159 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a)
3161 uint64_t offset = a->imm << a->sz;
3162 TCGv_i64 clean_addr, dirty_addr;
3163 MemOp mop;
3165 if (!fp_access_check(s)) {
3166 return true;
3169 /* LSE2 does not merge FP pairs; leave these as separate operations. */
3170 mop = finalize_memop_asimd(s, a->sz);
3171 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3172 do_fp_st(s, a->rt, clean_addr, mop);
3173 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3174 do_fp_st(s, a->rt2, clean_addr, mop);
3175 op_addr_ldstpair_post(s, a, dirty_addr, offset);
3176 return true;
3179 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a)
3181 uint64_t offset = a->imm << a->sz;
3182 TCGv_i64 clean_addr, dirty_addr;
3183 MemOp mop;
3185 if (!fp_access_check(s)) {
3186 return true;
3189 /* LSE2 does not merge FP pairs; leave these as separate operations. */
3190 mop = finalize_memop_asimd(s, a->sz);
3191 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3192 do_fp_ld(s, a->rt, clean_addr, mop);
3193 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3194 do_fp_ld(s, a->rt2, clean_addr, mop);
3195 op_addr_ldstpair_post(s, a, dirty_addr, offset);
3196 return true;
3199 static bool trans_STGP(DisasContext *s, arg_ldstpair *a)
3201 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3202 uint64_t offset = a->imm << LOG2_TAG_GRANULE;
3203 MemOp mop;
3204 TCGv_i128 tmp;
3206 /* STGP only comes in one size. */
3207 tcg_debug_assert(a->sz == MO_64);
3209 if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3210 return false;
3213 if (a->rn == 31) {
3214 gen_check_sp_alignment(s);
3217 dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3218 if (!a->p) {
3219 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3222 clean_addr = clean_data_tbi(s, dirty_addr);
3223 tcg_rt = cpu_reg(s, a->rt);
3224 tcg_rt2 = cpu_reg(s, a->rt2);
3227 * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE,
3228 * and one tag operation. We implement it as one single aligned 16-byte
3229 * memory operation for convenience. Note that the alignment ensures
3230 * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store.
3232 mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR);
3234 tmp = tcg_temp_new_i128();
3235 if (s->be_data == MO_LE) {
3236 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3237 } else {
3238 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3240 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3242 /* Perform the tag store, if tag access enabled. */
3243 if (s->ata[0]) {
3244 if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3245 gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr);
3246 } else {
3247 gen_helper_stg(tcg_env, dirty_addr, dirty_addr);
3251 op_addr_ldstpair_post(s, a, dirty_addr, offset);
3252 return true;
3255 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a,
3256 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3257 uint64_t offset, bool is_store, MemOp mop)
3259 int memidx;
3261 if (a->rn == 31) {
3262 gen_check_sp_alignment(s);
3265 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3266 if (!a->p) {
3267 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3269 memidx = get_a64_user_mem_index(s, a->unpriv);
3270 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store,
3271 a->w || a->rn != 31,
3272 mop, a->unpriv, memidx);
3275 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a,
3276 TCGv_i64 dirty_addr, uint64_t offset)
3278 if (a->w) {
3279 if (a->p) {
3280 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3282 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3286 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a)
3288 bool iss_sf, iss_valid = !a->w;
3289 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3290 int memidx = get_a64_user_mem_index(s, a->unpriv);
3291 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3293 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3295 tcg_rt = cpu_reg(s, a->rt);
3296 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3298 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx,
3299 iss_valid, a->rt, iss_sf, false);
3300 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3301 return true;
3304 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a)
3306 bool iss_sf, iss_valid = !a->w;
3307 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3308 int memidx = get_a64_user_mem_index(s, a->unpriv);
3309 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3311 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3313 tcg_rt = cpu_reg(s, a->rt);
3314 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3316 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop,
3317 a->ext, memidx, iss_valid, a->rt, iss_sf, false);
3318 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3319 return true;
3322 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a)
3324 TCGv_i64 clean_addr, dirty_addr;
3325 MemOp mop;
3327 if (!fp_access_check(s)) {
3328 return true;
3330 mop = finalize_memop_asimd(s, a->sz);
3331 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3332 do_fp_st(s, a->rt, clean_addr, mop);
3333 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3334 return true;
3337 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a)
3339 TCGv_i64 clean_addr, dirty_addr;
3340 MemOp mop;
3342 if (!fp_access_check(s)) {
3343 return true;
3345 mop = finalize_memop_asimd(s, a->sz);
3346 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3347 do_fp_ld(s, a->rt, clean_addr, mop);
3348 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3349 return true;
3352 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a,
3353 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3354 bool is_store, MemOp memop)
3356 TCGv_i64 tcg_rm;
3358 if (a->rn == 31) {
3359 gen_check_sp_alignment(s);
3361 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3363 tcg_rm = read_cpu_reg(s, a->rm, 1);
3364 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0);
3366 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm);
3367 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop);
3370 static bool trans_LDR(DisasContext *s, arg_ldst *a)
3372 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3373 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3374 MemOp memop;
3376 if (extract32(a->opt, 1, 1) == 0) {
3377 return false;
3380 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3381 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3382 tcg_rt = cpu_reg(s, a->rt);
3383 do_gpr_ld(s, tcg_rt, clean_addr, memop,
3384 a->ext, true, a->rt, iss_sf, false);
3385 return true;
3388 static bool trans_STR(DisasContext *s, arg_ldst *a)
3390 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3391 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3392 MemOp memop;
3394 if (extract32(a->opt, 1, 1) == 0) {
3395 return false;
3398 memop = finalize_memop(s, a->sz);
3399 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3400 tcg_rt = cpu_reg(s, a->rt);
3401 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false);
3402 return true;
3405 static bool trans_LDR_v(DisasContext *s, arg_ldst *a)
3407 TCGv_i64 clean_addr, dirty_addr;
3408 MemOp memop;
3410 if (extract32(a->opt, 1, 1) == 0) {
3411 return false;
3414 if (!fp_access_check(s)) {
3415 return true;
3418 memop = finalize_memop_asimd(s, a->sz);
3419 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3420 do_fp_ld(s, a->rt, clean_addr, memop);
3421 return true;
3424 static bool trans_STR_v(DisasContext *s, arg_ldst *a)
3426 TCGv_i64 clean_addr, dirty_addr;
3427 MemOp memop;
3429 if (extract32(a->opt, 1, 1) == 0) {
3430 return false;
3433 if (!fp_access_check(s)) {
3434 return true;
3437 memop = finalize_memop_asimd(s, a->sz);
3438 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3439 do_fp_st(s, a->rt, clean_addr, memop);
3440 return true;
3444 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn,
3445 int sign, bool invert)
3447 MemOp mop = a->sz | sign;
3448 TCGv_i64 clean_addr, tcg_rs, tcg_rt;
3450 if (a->rn == 31) {
3451 gen_check_sp_alignment(s);
3453 mop = check_atomic_align(s, a->rn, mop);
3454 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3455 a->rn != 31, mop);
3456 tcg_rs = read_cpu_reg(s, a->rs, true);
3457 tcg_rt = cpu_reg(s, a->rt);
3458 if (invert) {
3459 tcg_gen_not_i64(tcg_rs, tcg_rs);
3462 * The tcg atomic primitives are all full barriers. Therefore we
3463 * can ignore the Acquire and Release bits of this instruction.
3465 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3467 if (mop & MO_SIGN) {
3468 switch (a->sz) {
3469 case MO_8:
3470 tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
3471 break;
3472 case MO_16:
3473 tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
3474 break;
3475 case MO_32:
3476 tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3477 break;
3478 case MO_64:
3479 break;
3480 default:
3481 g_assert_not_reached();
3484 return true;
3487 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false)
3488 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true)
3489 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false)
3490 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false)
3491 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false)
3492 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false)
3493 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false)
3494 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false)
3495 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false)
3497 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a)
3499 bool iss_sf = ldst_iss_sf(a->sz, false, false);
3500 TCGv_i64 clean_addr;
3501 MemOp mop;
3503 if (!dc_isar_feature(aa64_atomics, s) ||
3504 !dc_isar_feature(aa64_rcpc_8_3, s)) {
3505 return false;
3507 if (a->rn == 31) {
3508 gen_check_sp_alignment(s);
3510 mop = check_atomic_align(s, a->rn, a->sz);
3511 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3512 a->rn != 31, mop);
3514 * LDAPR* are a special case because they are a simple load, not a
3515 * fetch-and-do-something op.
3516 * The architectural consistency requirements here are weaker than
3517 * full load-acquire (we only need "load-acquire processor consistent"),
3518 * but we choose to implement them as full LDAQ.
3520 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false,
3521 true, a->rt, iss_sf, true);
3522 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3523 return true;
3526 static bool trans_LDRA(DisasContext *s, arg_LDRA *a)
3528 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3529 MemOp memop;
3531 /* Load with pointer authentication */
3532 if (!dc_isar_feature(aa64_pauth, s)) {
3533 return false;
3536 if (a->rn == 31) {
3537 gen_check_sp_alignment(s);
3539 dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3541 if (s->pauth_active) {
3542 if (!a->m) {
3543 gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr,
3544 tcg_constant_i64(0));
3545 } else {
3546 gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr,
3547 tcg_constant_i64(0));
3551 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3553 memop = finalize_memop(s, MO_64);
3555 /* Note that "clean" and "dirty" here refer to TBI not PAC. */
3556 clean_addr = gen_mte_check1(s, dirty_addr, false,
3557 a->w || a->rn != 31, memop);
3559 tcg_rt = cpu_reg(s, a->rt);
3560 do_gpr_ld(s, tcg_rt, clean_addr, memop,
3561 /* extend */ false, /* iss_valid */ !a->w,
3562 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false);
3564 if (a->w) {
3565 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3567 return true;
3570 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3572 TCGv_i64 clean_addr, dirty_addr;
3573 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0);
3574 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3576 if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3577 return false;
3580 if (a->rn == 31) {
3581 gen_check_sp_alignment(s);
3584 mop = check_ordered_align(s, a->rn, a->imm, false, mop);
3585 dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3586 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3587 clean_addr = clean_data_tbi(s, dirty_addr);
3590 * Load-AcquirePC semantics; we implement as the slightly more
3591 * restrictive Load-Acquire.
3593 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true,
3594 a->rt, iss_sf, true);
3595 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3596 return true;
3599 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3601 TCGv_i64 clean_addr, dirty_addr;
3602 MemOp mop = a->sz;
3603 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3605 if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3606 return false;
3609 /* TODO: ARMv8.4-LSE SCTLR.nAA */
3611 if (a->rn == 31) {
3612 gen_check_sp_alignment(s);
3615 mop = check_ordered_align(s, a->rn, a->imm, true, mop);
3616 dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3617 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3618 clean_addr = clean_data_tbi(s, dirty_addr);
3620 /* Store-Release semantics */
3621 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3622 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true);
3623 return true;
3626 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a)
3628 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3629 MemOp endian, align, mop;
3631 int total; /* total bytes */
3632 int elements; /* elements per vector */
3633 int r;
3634 int size = a->sz;
3636 if (!a->p && a->rm != 0) {
3637 /* For non-postindexed accesses the Rm field must be 0 */
3638 return false;
3640 if (size == 3 && !a->q && a->selem != 1) {
3641 return false;
3643 if (!fp_access_check(s)) {
3644 return true;
3647 if (a->rn == 31) {
3648 gen_check_sp_alignment(s);
3651 /* For our purposes, bytes are always little-endian. */
3652 endian = s->be_data;
3653 if (size == 0) {
3654 endian = MO_LE;
3657 total = a->rpt * a->selem * (a->q ? 16 : 8);
3658 tcg_rn = cpu_reg_sp(s, a->rn);
3661 * Issue the MTE check vs the logical repeat count, before we
3662 * promote consecutive little-endian elements below.
3664 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total,
3665 finalize_memop_asimd(s, size));
3668 * Consecutive little-endian elements from a single register
3669 * can be promoted to a larger little-endian operation.
3671 align = MO_ALIGN;
3672 if (a->selem == 1 && endian == MO_LE) {
3673 align = pow2_align(size);
3674 size = 3;
3676 if (!s->align_mem) {
3677 align = 0;
3679 mop = endian | size | align;
3681 elements = (a->q ? 16 : 8) >> size;
3682 tcg_ebytes = tcg_constant_i64(1 << size);
3683 for (r = 0; r < a->rpt; r++) {
3684 int e;
3685 for (e = 0; e < elements; e++) {
3686 int xs;
3687 for (xs = 0; xs < a->selem; xs++) {
3688 int tt = (a->rt + r + xs) % 32;
3689 do_vec_ld(s, tt, e, clean_addr, mop);
3690 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3696 * For non-quad operations, setting a slice of the low 64 bits of
3697 * the register clears the high 64 bits (in the ARM ARM pseudocode
3698 * this is implicit in the fact that 'rval' is a 64 bit wide
3699 * variable). For quad operations, we might still need to zero
3700 * the high bits of SVE.
3702 for (r = 0; r < a->rpt * a->selem; r++) {
3703 int tt = (a->rt + r) % 32;
3704 clear_vec_high(s, a->q, tt);
3707 if (a->p) {
3708 if (a->rm == 31) {
3709 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3710 } else {
3711 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3714 return true;
3717 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a)
3719 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3720 MemOp endian, align, mop;
3722 int total; /* total bytes */
3723 int elements; /* elements per vector */
3724 int r;
3725 int size = a->sz;
3727 if (!a->p && a->rm != 0) {
3728 /* For non-postindexed accesses the Rm field must be 0 */
3729 return false;
3731 if (size == 3 && !a->q && a->selem != 1) {
3732 return false;
3734 if (!fp_access_check(s)) {
3735 return true;
3738 if (a->rn == 31) {
3739 gen_check_sp_alignment(s);
3742 /* For our purposes, bytes are always little-endian. */
3743 endian = s->be_data;
3744 if (size == 0) {
3745 endian = MO_LE;
3748 total = a->rpt * a->selem * (a->q ? 16 : 8);
3749 tcg_rn = cpu_reg_sp(s, a->rn);
3752 * Issue the MTE check vs the logical repeat count, before we
3753 * promote consecutive little-endian elements below.
3755 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total,
3756 finalize_memop_asimd(s, size));
3759 * Consecutive little-endian elements from a single register
3760 * can be promoted to a larger little-endian operation.
3762 align = MO_ALIGN;
3763 if (a->selem == 1 && endian == MO_LE) {
3764 align = pow2_align(size);
3765 size = 3;
3767 if (!s->align_mem) {
3768 align = 0;
3770 mop = endian | size | align;
3772 elements = (a->q ? 16 : 8) >> size;
3773 tcg_ebytes = tcg_constant_i64(1 << size);
3774 for (r = 0; r < a->rpt; r++) {
3775 int e;
3776 for (e = 0; e < elements; e++) {
3777 int xs;
3778 for (xs = 0; xs < a->selem; xs++) {
3779 int tt = (a->rt + r + xs) % 32;
3780 do_vec_st(s, tt, e, clean_addr, mop);
3781 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3786 if (a->p) {
3787 if (a->rm == 31) {
3788 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3789 } else {
3790 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3793 return true;
3796 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a)
3798 int xs, total, rt;
3799 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3800 MemOp mop;
3802 if (!a->p && a->rm != 0) {
3803 return false;
3805 if (!fp_access_check(s)) {
3806 return true;
3809 if (a->rn == 31) {
3810 gen_check_sp_alignment(s);
3813 total = a->selem << a->scale;
3814 tcg_rn = cpu_reg_sp(s, a->rn);
3816 mop = finalize_memop_asimd(s, a->scale);
3817 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31,
3818 total, mop);
3820 tcg_ebytes = tcg_constant_i64(1 << a->scale);
3821 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3822 do_vec_st(s, rt, a->index, clean_addr, mop);
3823 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3826 if (a->p) {
3827 if (a->rm == 31) {
3828 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3829 } else {
3830 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3833 return true;
3836 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a)
3838 int xs, total, rt;
3839 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3840 MemOp mop;
3842 if (!a->p && a->rm != 0) {
3843 return false;
3845 if (!fp_access_check(s)) {
3846 return true;
3849 if (a->rn == 31) {
3850 gen_check_sp_alignment(s);
3853 total = a->selem << a->scale;
3854 tcg_rn = cpu_reg_sp(s, a->rn);
3856 mop = finalize_memop_asimd(s, a->scale);
3857 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3858 total, mop);
3860 tcg_ebytes = tcg_constant_i64(1 << a->scale);
3861 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3862 do_vec_ld(s, rt, a->index, clean_addr, mop);
3863 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3866 if (a->p) {
3867 if (a->rm == 31) {
3868 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3869 } else {
3870 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3873 return true;
3876 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a)
3878 int xs, total, rt;
3879 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3880 MemOp mop;
3882 if (!a->p && a->rm != 0) {
3883 return false;
3885 if (!fp_access_check(s)) {
3886 return true;
3889 if (a->rn == 31) {
3890 gen_check_sp_alignment(s);
3893 total = a->selem << a->scale;
3894 tcg_rn = cpu_reg_sp(s, a->rn);
3896 mop = finalize_memop_asimd(s, a->scale);
3897 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3898 total, mop);
3900 tcg_ebytes = tcg_constant_i64(1 << a->scale);
3901 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3902 /* Load and replicate to all elements */
3903 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3905 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3906 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt),
3907 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp);
3908 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3911 if (a->p) {
3912 if (a->rm == 31) {
3913 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3914 } else {
3915 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3918 return true;
3921 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a)
3923 TCGv_i64 addr, clean_addr, tcg_rt;
3924 int size = 4 << s->dcz_blocksize;
3926 if (!dc_isar_feature(aa64_mte, s)) {
3927 return false;
3929 if (s->current_el == 0) {
3930 return false;
3933 if (a->rn == 31) {
3934 gen_check_sp_alignment(s);
3937 addr = read_cpu_reg_sp(s, a->rn, true);
3938 tcg_gen_addi_i64(addr, addr, a->imm);
3939 tcg_rt = cpu_reg(s, a->rt);
3941 if (s->ata[0]) {
3942 gen_helper_stzgm_tags(tcg_env, addr, tcg_rt);
3945 * The non-tags portion of STZGM is mostly like DC_ZVA,
3946 * except the alignment happens before the access.
3948 clean_addr = clean_data_tbi(s, addr);
3949 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3950 gen_helper_dc_zva(tcg_env, clean_addr);
3951 return true;
3954 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a)
3956 TCGv_i64 addr, clean_addr, tcg_rt;
3958 if (!dc_isar_feature(aa64_mte, s)) {
3959 return false;
3961 if (s->current_el == 0) {
3962 return false;
3965 if (a->rn == 31) {
3966 gen_check_sp_alignment(s);
3969 addr = read_cpu_reg_sp(s, a->rn, true);
3970 tcg_gen_addi_i64(addr, addr, a->imm);
3971 tcg_rt = cpu_reg(s, a->rt);
3973 if (s->ata[0]) {
3974 gen_helper_stgm(tcg_env, addr, tcg_rt);
3975 } else {
3976 MMUAccessType acc = MMU_DATA_STORE;
3977 int size = 4 << s->gm_blocksize;
3979 clean_addr = clean_data_tbi(s, addr);
3980 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3981 gen_probe_access(s, clean_addr, acc, size);
3983 return true;
3986 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a)
3988 TCGv_i64 addr, clean_addr, tcg_rt;
3990 if (!dc_isar_feature(aa64_mte, s)) {
3991 return false;
3993 if (s->current_el == 0) {
3994 return false;
3997 if (a->rn == 31) {
3998 gen_check_sp_alignment(s);
4001 addr = read_cpu_reg_sp(s, a->rn, true);
4002 tcg_gen_addi_i64(addr, addr, a->imm);
4003 tcg_rt = cpu_reg(s, a->rt);
4005 if (s->ata[0]) {
4006 gen_helper_ldgm(tcg_rt, tcg_env, addr);
4007 } else {
4008 MMUAccessType acc = MMU_DATA_LOAD;
4009 int size = 4 << s->gm_blocksize;
4011 clean_addr = clean_data_tbi(s, addr);
4012 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4013 gen_probe_access(s, clean_addr, acc, size);
4014 /* The result tags are zeros. */
4015 tcg_gen_movi_i64(tcg_rt, 0);
4017 return true;
4020 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a)
4022 TCGv_i64 addr, clean_addr, tcg_rt;
4024 if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
4025 return false;
4028 if (a->rn == 31) {
4029 gen_check_sp_alignment(s);
4032 addr = read_cpu_reg_sp(s, a->rn, true);
4033 if (!a->p) {
4034 /* pre-index or signed offset */
4035 tcg_gen_addi_i64(addr, addr, a->imm);
4038 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4039 tcg_rt = cpu_reg(s, a->rt);
4040 if (s->ata[0]) {
4041 gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt);
4042 } else {
4044 * Tag access disabled: we must check for aborts on the load
4045 * load from [rn+offset], and then insert a 0 tag into rt.
4047 clean_addr = clean_data_tbi(s, addr);
4048 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4049 gen_address_with_allocation_tag0(tcg_rt, tcg_rt);
4052 if (a->w) {
4053 /* pre-index or post-index */
4054 if (a->p) {
4055 /* post-index */
4056 tcg_gen_addi_i64(addr, addr, a->imm);
4058 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4060 return true;
4063 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair)
4065 TCGv_i64 addr, tcg_rt;
4067 if (a->rn == 31) {
4068 gen_check_sp_alignment(s);
4071 addr = read_cpu_reg_sp(s, a->rn, true);
4072 if (!a->p) {
4073 /* pre-index or signed offset */
4074 tcg_gen_addi_i64(addr, addr, a->imm);
4076 tcg_rt = cpu_reg_sp(s, a->rt);
4077 if (!s->ata[0]) {
4079 * For STG and ST2G, we need to check alignment and probe memory.
4080 * TODO: For STZG and STZ2G, we could rely on the stores below,
4081 * at least for system mode; user-only won't enforce alignment.
4083 if (is_pair) {
4084 gen_helper_st2g_stub(tcg_env, addr);
4085 } else {
4086 gen_helper_stg_stub(tcg_env, addr);
4088 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4089 if (is_pair) {
4090 gen_helper_st2g_parallel(tcg_env, addr, tcg_rt);
4091 } else {
4092 gen_helper_stg_parallel(tcg_env, addr, tcg_rt);
4094 } else {
4095 if (is_pair) {
4096 gen_helper_st2g(tcg_env, addr, tcg_rt);
4097 } else {
4098 gen_helper_stg(tcg_env, addr, tcg_rt);
4102 if (is_zero) {
4103 TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4104 TCGv_i64 zero64 = tcg_constant_i64(0);
4105 TCGv_i128 zero128 = tcg_temp_new_i128();
4106 int mem_index = get_mem_index(s);
4107 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
4109 tcg_gen_concat_i64_i128(zero128, zero64, zero64);
4111 /* This is 1 or 2 atomic 16-byte operations. */
4112 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4113 if (is_pair) {
4114 tcg_gen_addi_i64(clean_addr, clean_addr, 16);
4115 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4119 if (a->w) {
4120 /* pre-index or post-index */
4121 if (a->p) {
4122 /* post-index */
4123 tcg_gen_addi_i64(addr, addr, a->imm);
4125 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4127 return true;
4130 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false)
4131 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false)
4132 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true)
4133 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true)
4135 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32);
4137 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue,
4138 bool is_setg, SetFn fn)
4140 int memidx;
4141 uint32_t syndrome, desc = 0;
4143 if (is_setg && !dc_isar_feature(aa64_mte, s)) {
4144 return false;
4148 * UNPREDICTABLE cases: we choose to UNDEF, which allows
4149 * us to pull this check before the CheckMOPSEnabled() test
4150 * (which we do in the helper function)
4152 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4153 a->rd == 31 || a->rn == 31) {
4154 return false;
4157 memidx = get_a64_user_mem_index(s, a->unpriv);
4160 * We pass option_a == true, matching our implementation;
4161 * we pass wrong_option == false: helper function may set that bit.
4163 syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv,
4164 is_epilogue, false, true, a->rd, a->rs, a->rn);
4166 if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) {
4167 /* We may need to do MTE tag checking, so assemble the descriptor */
4168 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
4169 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
4170 desc = FIELD_DP32(desc, MTEDESC, WRITE, true);
4171 /* SIZEM1 and ALIGN we leave 0 (byte write) */
4173 /* The helper function always needs the memidx even with MTE disabled */
4174 desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx);
4177 * The helper needs the register numbers, but since they're in
4178 * the syndrome anyway, we let it extract them from there rather
4179 * than passing in an extra three integer arguments.
4181 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc));
4182 return true;
4185 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp)
4186 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm)
4187 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete)
4188 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp)
4189 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm)
4190 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge)
4192 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32);
4194 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn)
4196 int rmemidx, wmemidx;
4197 uint32_t syndrome, rdesc = 0, wdesc = 0;
4198 bool wunpriv = extract32(a->options, 0, 1);
4199 bool runpriv = extract32(a->options, 1, 1);
4202 * UNPREDICTABLE cases: we choose to UNDEF, which allows
4203 * us to pull this check before the CheckMOPSEnabled() test
4204 * (which we do in the helper function)
4206 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4207 a->rd == 31 || a->rs == 31 || a->rn == 31) {
4208 return false;
4211 rmemidx = get_a64_user_mem_index(s, runpriv);
4212 wmemidx = get_a64_user_mem_index(s, wunpriv);
4215 * We pass option_a == true, matching our implementation;
4216 * we pass wrong_option == false: helper function may set that bit.
4218 syndrome = syn_mop(false, false, a->options, is_epilogue,
4219 false, true, a->rd, a->rs, a->rn);
4221 /* If we need to do MTE tag checking, assemble the descriptors */
4222 if (s->mte_active[runpriv]) {
4223 rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid);
4224 rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma);
4226 if (s->mte_active[wunpriv]) {
4227 wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid);
4228 wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma);
4229 wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true);
4231 /* The helper function needs these parts of the descriptor regardless */
4232 rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx);
4233 wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx);
4236 * The helper needs the register numbers, but since they're in
4237 * the syndrome anyway, we let it extract them from there rather
4238 * than passing in an extra three integer arguments.
4240 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc),
4241 tcg_constant_i32(rdesc));
4242 return true;
4245 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp)
4246 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym)
4247 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye)
4248 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp)
4249 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm)
4250 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe)
4252 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4254 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4255 bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4257 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4258 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4259 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4261 fn(tcg_rd, tcg_rn, tcg_imm);
4262 if (!a->sf) {
4263 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4265 return true;
4269 * PC-rel. addressing
4272 static bool trans_ADR(DisasContext *s, arg_ri *a)
4274 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4275 return true;
4278 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4280 int64_t offset = (int64_t)a->imm << 12;
4282 /* The page offset is ok for CF_PCREL. */
4283 offset -= s->pc_curr & 0xfff;
4284 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4285 return true;
4289 * Add/subtract (immediate)
4291 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4292 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4293 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4294 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4297 * Add/subtract (immediate, with tags)
4300 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4301 bool sub_op)
4303 TCGv_i64 tcg_rn, tcg_rd;
4304 int imm;
4306 imm = a->uimm6 << LOG2_TAG_GRANULE;
4307 if (sub_op) {
4308 imm = -imm;
4311 tcg_rn = cpu_reg_sp(s, a->rn);
4312 tcg_rd = cpu_reg_sp(s, a->rd);
4314 if (s->ata[0]) {
4315 gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn,
4316 tcg_constant_i32(imm),
4317 tcg_constant_i32(a->uimm4));
4318 } else {
4319 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4320 gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4322 return true;
4325 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4326 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4328 /* The input should be a value in the bottom e bits (with higher
4329 * bits zero); returns that value replicated into every element
4330 * of size e in a 64 bit integer.
4332 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4334 assert(e != 0);
4335 while (e < 64) {
4336 mask |= mask << e;
4337 e *= 2;
4339 return mask;
4343 * Logical (immediate)
4347 * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4348 * only require the wmask. Returns false if the imms/immr/immn are a reserved
4349 * value (ie should cause a guest UNDEF exception), and true if they are
4350 * valid, in which case the decoded bit pattern is written to result.
4352 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4353 unsigned int imms, unsigned int immr)
4355 uint64_t mask;
4356 unsigned e, levels, s, r;
4357 int len;
4359 assert(immn < 2 && imms < 64 && immr < 64);
4361 /* The bit patterns we create here are 64 bit patterns which
4362 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4363 * 64 bits each. Each element contains the same value: a run
4364 * of between 1 and e-1 non-zero bits, rotated within the
4365 * element by between 0 and e-1 bits.
4367 * The element size and run length are encoded into immn (1 bit)
4368 * and imms (6 bits) as follows:
4369 * 64 bit elements: immn = 1, imms = <length of run - 1>
4370 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4371 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4372 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4373 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4374 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4375 * Notice that immn = 0, imms = 11111x is the only combination
4376 * not covered by one of the above options; this is reserved.
4377 * Further, <length of run - 1> all-ones is a reserved pattern.
4379 * In all cases the rotation is by immr % e (and immr is 6 bits).
4382 /* First determine the element size */
4383 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4384 if (len < 1) {
4385 /* This is the immn == 0, imms == 0x11111x case */
4386 return false;
4388 e = 1 << len;
4390 levels = e - 1;
4391 s = imms & levels;
4392 r = immr & levels;
4394 if (s == levels) {
4395 /* <length of run - 1> mustn't be all-ones. */
4396 return false;
4399 /* Create the value of one element: s+1 set bits rotated
4400 * by r within the element (which is e bits wide)...
4402 mask = MAKE_64BIT_MASK(0, s + 1);
4403 if (r) {
4404 mask = (mask >> r) | (mask << (e - r));
4405 mask &= MAKE_64BIT_MASK(0, e);
4407 /* ...then replicate the element over the whole 64 bit value */
4408 mask = bitfield_replicate(mask, e);
4409 *result = mask;
4410 return true;
4413 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4414 void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4416 TCGv_i64 tcg_rd, tcg_rn;
4417 uint64_t imm;
4419 /* Some immediate field values are reserved. */
4420 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4421 extract32(a->dbm, 0, 6),
4422 extract32(a->dbm, 6, 6))) {
4423 return false;
4425 if (!a->sf) {
4426 imm &= 0xffffffffull;
4429 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4430 tcg_rn = cpu_reg(s, a->rn);
4432 fn(tcg_rd, tcg_rn, imm);
4433 if (set_cc) {
4434 gen_logic_CC(a->sf, tcg_rd);
4436 if (!a->sf) {
4437 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4439 return true;
4442 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4443 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4444 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4445 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4448 * Move wide (immediate)
4451 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4453 int pos = a->hw << 4;
4454 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4455 return true;
4458 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4460 int pos = a->hw << 4;
4461 uint64_t imm = a->imm;
4463 imm = ~(imm << pos);
4464 if (!a->sf) {
4465 imm = (uint32_t)imm;
4467 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4468 return true;
4471 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4473 int pos = a->hw << 4;
4474 TCGv_i64 tcg_rd, tcg_im;
4476 tcg_rd = cpu_reg(s, a->rd);
4477 tcg_im = tcg_constant_i64(a->imm);
4478 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4479 if (!a->sf) {
4480 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4482 return true;
4486 * Bitfield
4489 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4491 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4492 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4493 unsigned int bitsize = a->sf ? 64 : 32;
4494 unsigned int ri = a->immr;
4495 unsigned int si = a->imms;
4496 unsigned int pos, len;
4498 if (si >= ri) {
4499 /* Wd<s-r:0> = Wn<s:r> */
4500 len = (si - ri) + 1;
4501 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4502 if (!a->sf) {
4503 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4505 } else {
4506 /* Wd<32+s-r,32-r> = Wn<s:0> */
4507 len = si + 1;
4508 pos = (bitsize - ri) & (bitsize - 1);
4510 if (len < ri) {
4512 * Sign extend the destination field from len to fill the
4513 * balance of the word. Let the deposit below insert all
4514 * of those sign bits.
4516 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4517 len = ri;
4521 * We start with zero, and we haven't modified any bits outside
4522 * bitsize, therefore no final zero-extension is unneeded for !sf.
4524 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4526 return true;
4529 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4531 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4532 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4533 unsigned int bitsize = a->sf ? 64 : 32;
4534 unsigned int ri = a->immr;
4535 unsigned int si = a->imms;
4536 unsigned int pos, len;
4538 tcg_rd = cpu_reg(s, a->rd);
4539 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4541 if (si >= ri) {
4542 /* Wd<s-r:0> = Wn<s:r> */
4543 len = (si - ri) + 1;
4544 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4545 } else {
4546 /* Wd<32+s-r,32-r> = Wn<s:0> */
4547 len = si + 1;
4548 pos = (bitsize - ri) & (bitsize - 1);
4549 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4551 return true;
4554 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4556 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4557 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4558 unsigned int bitsize = a->sf ? 64 : 32;
4559 unsigned int ri = a->immr;
4560 unsigned int si = a->imms;
4561 unsigned int pos, len;
4563 tcg_rd = cpu_reg(s, a->rd);
4564 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4566 if (si >= ri) {
4567 /* Wd<s-r:0> = Wn<s:r> */
4568 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4569 len = (si - ri) + 1;
4570 pos = 0;
4571 } else {
4572 /* Wd<32+s-r,32-r> = Wn<s:0> */
4573 len = si + 1;
4574 pos = (bitsize - ri) & (bitsize - 1);
4577 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4578 if (!a->sf) {
4579 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4581 return true;
4584 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4586 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4588 tcg_rd = cpu_reg(s, a->rd);
4590 if (unlikely(a->imm == 0)) {
4592 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4593 * so an extract from bit 0 is a special case.
4595 if (a->sf) {
4596 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4597 } else {
4598 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4600 } else {
4601 tcg_rm = cpu_reg(s, a->rm);
4602 tcg_rn = cpu_reg(s, a->rn);
4604 if (a->sf) {
4605 /* Specialization to ROR happens in EXTRACT2. */
4606 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4607 } else {
4608 TCGv_i32 t0 = tcg_temp_new_i32();
4610 tcg_gen_extrl_i64_i32(t0, tcg_rm);
4611 if (a->rm == a->rn) {
4612 tcg_gen_rotri_i32(t0, t0, a->imm);
4613 } else {
4614 TCGv_i32 t1 = tcg_temp_new_i32();
4615 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4616 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4618 tcg_gen_extu_i32_i64(tcg_rd, t0);
4621 return true;
4625 * Cryptographic AES, SHA, SHA512
4628 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese)
4629 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd)
4630 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc)
4631 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc)
4633 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c)
4634 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p)
4635 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m)
4636 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0)
4638 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h)
4639 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2)
4640 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1)
4642 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h)
4643 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1)
4644 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0)
4646 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h)
4647 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2)
4648 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1)
4649 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1)
4650 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1)
4651 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2)
4652 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey)
4654 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0)
4655 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e)
4657 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3)
4658 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax)
4660 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a)
4662 if (!dc_isar_feature(aa64_sm3, s)) {
4663 return false;
4665 if (fp_access_check(s)) {
4666 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
4667 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
4668 TCGv_i32 tcg_op3 = tcg_temp_new_i32();
4669 TCGv_i32 tcg_res = tcg_temp_new_i32();
4670 unsigned vsz, dofs;
4672 read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32);
4673 read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32);
4674 read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32);
4676 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
4677 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
4678 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
4679 tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
4681 /* Clear the whole register first, then store bits [127:96]. */
4682 vsz = vec_full_reg_size(s);
4683 dofs = vec_full_reg_offset(s, a->rd);
4684 tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0);
4685 write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32);
4687 return true;
4690 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn)
4692 if (fp_access_check(s)) {
4693 gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn);
4695 return true;
4697 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a)
4698 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b)
4699 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a)
4700 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b)
4702 static bool trans_XAR(DisasContext *s, arg_XAR *a)
4704 if (!dc_isar_feature(aa64_sha3, s)) {
4705 return false;
4707 if (fp_access_check(s)) {
4708 gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd),
4709 vec_full_reg_offset(s, a->rn),
4710 vec_full_reg_offset(s, a->rm), a->imm, 16,
4711 vec_full_reg_size(s));
4713 return true;
4717 * Advanced SIMD copy
4720 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx)
4722 unsigned esz = ctz32(imm);
4723 if (esz <= MO_64) {
4724 *pesz = esz;
4725 *pidx = imm >> (esz + 1);
4726 return true;
4728 return false;
4731 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a)
4733 MemOp esz;
4734 unsigned idx;
4736 if (!decode_esz_idx(a->imm, &esz, &idx)) {
4737 return false;
4739 if (fp_access_check(s)) {
4741 * This instruction just extracts the specified element and
4742 * zero-extends it into the bottom of the destination register.
4744 TCGv_i64 tmp = tcg_temp_new_i64();
4745 read_vec_element(s, tmp, a->rn, idx, esz);
4746 write_fp_dreg(s, a->rd, tmp);
4748 return true;
4751 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a)
4753 MemOp esz;
4754 unsigned idx;
4756 if (!decode_esz_idx(a->imm, &esz, &idx)) {
4757 return false;
4759 if (esz == MO_64 && !a->q) {
4760 return false;
4762 if (fp_access_check(s)) {
4763 tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd),
4764 vec_reg_offset(s, a->rn, idx, esz),
4765 a->q ? 16 : 8, vec_full_reg_size(s));
4767 return true;
4770 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a)
4772 MemOp esz;
4773 unsigned idx;
4775 if (!decode_esz_idx(a->imm, &esz, &idx)) {
4776 return false;
4778 if (esz == MO_64 && !a->q) {
4779 return false;
4781 if (fp_access_check(s)) {
4782 tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd),
4783 a->q ? 16 : 8, vec_full_reg_size(s),
4784 cpu_reg(s, a->rn));
4786 return true;
4789 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed)
4791 MemOp esz;
4792 unsigned idx;
4794 if (!decode_esz_idx(a->imm, &esz, &idx)) {
4795 return false;
4797 if (is_signed) {
4798 if (esz == MO_64 || (esz == MO_32 && !a->q)) {
4799 return false;
4801 } else {
4802 if (esz == MO_64 ? !a->q : a->q) {
4803 return false;
4806 if (fp_access_check(s)) {
4807 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4808 read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed);
4809 if (is_signed && !a->q) {
4810 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4813 return true;
4816 TRANS(SMOV, do_smov_umov, a, MO_SIGN)
4817 TRANS(UMOV, do_smov_umov, a, 0)
4819 static bool trans_INS_general(DisasContext *s, arg_INS_general *a)
4821 MemOp esz;
4822 unsigned idx;
4824 if (!decode_esz_idx(a->imm, &esz, &idx)) {
4825 return false;
4827 if (fp_access_check(s)) {
4828 write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz);
4829 clear_vec_high(s, true, a->rd);
4831 return true;
4834 static bool trans_INS_element(DisasContext *s, arg_INS_element *a)
4836 MemOp esz;
4837 unsigned didx, sidx;
4839 if (!decode_esz_idx(a->di, &esz, &didx)) {
4840 return false;
4842 sidx = a->si >> esz;
4843 if (fp_access_check(s)) {
4844 TCGv_i64 tmp = tcg_temp_new_i64();
4846 read_vec_element(s, tmp, a->rn, sidx, esz);
4847 write_vec_element(s, tmp, a->rd, didx, esz);
4849 /* INS is considered a 128-bit write for SVE. */
4850 clear_vec_high(s, true, a->rd);
4852 return true;
4856 * Advanced SIMD three same
4859 typedef struct FPScalar {
4860 void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4861 void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4862 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
4863 } FPScalar;
4865 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f)
4867 switch (a->esz) {
4868 case MO_64:
4869 if (fp_access_check(s)) {
4870 TCGv_i64 t0 = read_fp_dreg(s, a->rn);
4871 TCGv_i64 t1 = read_fp_dreg(s, a->rm);
4872 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4873 write_fp_dreg(s, a->rd, t0);
4875 break;
4876 case MO_32:
4877 if (fp_access_check(s)) {
4878 TCGv_i32 t0 = read_fp_sreg(s, a->rn);
4879 TCGv_i32 t1 = read_fp_sreg(s, a->rm);
4880 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4881 write_fp_sreg(s, a->rd, t0);
4883 break;
4884 case MO_16:
4885 if (!dc_isar_feature(aa64_fp16, s)) {
4886 return false;
4888 if (fp_access_check(s)) {
4889 TCGv_i32 t0 = read_fp_hreg(s, a->rn);
4890 TCGv_i32 t1 = read_fp_hreg(s, a->rm);
4891 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
4892 write_fp_sreg(s, a->rd, t0);
4894 break;
4895 default:
4896 return false;
4898 return true;
4901 static const FPScalar f_scalar_fadd = {
4902 gen_helper_vfp_addh,
4903 gen_helper_vfp_adds,
4904 gen_helper_vfp_addd,
4906 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd)
4908 static const FPScalar f_scalar_fsub = {
4909 gen_helper_vfp_subh,
4910 gen_helper_vfp_subs,
4911 gen_helper_vfp_subd,
4913 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub)
4915 static const FPScalar f_scalar_fdiv = {
4916 gen_helper_vfp_divh,
4917 gen_helper_vfp_divs,
4918 gen_helper_vfp_divd,
4920 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv)
4922 static const FPScalar f_scalar_fmul = {
4923 gen_helper_vfp_mulh,
4924 gen_helper_vfp_muls,
4925 gen_helper_vfp_muld,
4927 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul)
4929 static const FPScalar f_scalar_fmax = {
4930 gen_helper_advsimd_maxh,
4931 gen_helper_vfp_maxs,
4932 gen_helper_vfp_maxd,
4934 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax)
4936 static const FPScalar f_scalar_fmin = {
4937 gen_helper_advsimd_minh,
4938 gen_helper_vfp_mins,
4939 gen_helper_vfp_mind,
4941 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin)
4943 static const FPScalar f_scalar_fmaxnm = {
4944 gen_helper_advsimd_maxnumh,
4945 gen_helper_vfp_maxnums,
4946 gen_helper_vfp_maxnumd,
4948 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm)
4950 static const FPScalar f_scalar_fminnm = {
4951 gen_helper_advsimd_minnumh,
4952 gen_helper_vfp_minnums,
4953 gen_helper_vfp_minnumd,
4955 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm)
4957 static const FPScalar f_scalar_fmulx = {
4958 gen_helper_advsimd_mulxh,
4959 gen_helper_vfp_mulxs,
4960 gen_helper_vfp_mulxd,
4962 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx)
4964 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
4966 gen_helper_vfp_mulh(d, n, m, s);
4967 gen_vfp_negh(d, d);
4970 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
4972 gen_helper_vfp_muls(d, n, m, s);
4973 gen_vfp_negs(d, d);
4976 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
4978 gen_helper_vfp_muld(d, n, m, s);
4979 gen_vfp_negd(d, d);
4982 static const FPScalar f_scalar_fnmul = {
4983 gen_fnmul_h,
4984 gen_fnmul_s,
4985 gen_fnmul_d,
4987 TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul)
4989 static const FPScalar f_scalar_fcmeq = {
4990 gen_helper_advsimd_ceq_f16,
4991 gen_helper_neon_ceq_f32,
4992 gen_helper_neon_ceq_f64,
4994 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq)
4996 static const FPScalar f_scalar_fcmge = {
4997 gen_helper_advsimd_cge_f16,
4998 gen_helper_neon_cge_f32,
4999 gen_helper_neon_cge_f64,
5001 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge)
5003 static const FPScalar f_scalar_fcmgt = {
5004 gen_helper_advsimd_cgt_f16,
5005 gen_helper_neon_cgt_f32,
5006 gen_helper_neon_cgt_f64,
5008 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt)
5010 static const FPScalar f_scalar_facge = {
5011 gen_helper_advsimd_acge_f16,
5012 gen_helper_neon_acge_f32,
5013 gen_helper_neon_acge_f64,
5015 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge)
5017 static const FPScalar f_scalar_facgt = {
5018 gen_helper_advsimd_acgt_f16,
5019 gen_helper_neon_acgt_f32,
5020 gen_helper_neon_acgt_f64,
5022 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt)
5024 static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5026 gen_helper_vfp_subh(d, n, m, s);
5027 gen_vfp_absh(d, d);
5030 static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5032 gen_helper_vfp_subs(d, n, m, s);
5033 gen_vfp_abss(d, d);
5036 static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5038 gen_helper_vfp_subd(d, n, m, s);
5039 gen_vfp_absd(d, d);
5042 static const FPScalar f_scalar_fabd = {
5043 gen_fabd_h,
5044 gen_fabd_s,
5045 gen_fabd_d,
5047 TRANS(FABD_s, do_fp3_scalar, a, &f_scalar_fabd)
5049 static const FPScalar f_scalar_frecps = {
5050 gen_helper_recpsf_f16,
5051 gen_helper_recpsf_f32,
5052 gen_helper_recpsf_f64,
5054 TRANS(FRECPS_s, do_fp3_scalar, a, &f_scalar_frecps)
5056 static const FPScalar f_scalar_frsqrts = {
5057 gen_helper_rsqrtsf_f16,
5058 gen_helper_rsqrtsf_f32,
5059 gen_helper_rsqrtsf_f64,
5061 TRANS(FRSQRTS_s, do_fp3_scalar, a, &f_scalar_frsqrts)
5063 static bool do_satacc_s(DisasContext *s, arg_rrr_e *a,
5064 MemOp sgn_n, MemOp sgn_m,
5065 void (*gen_bhs)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64, MemOp),
5066 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
5068 TCGv_i64 t0, t1, t2, qc;
5069 MemOp esz = a->esz;
5071 if (!fp_access_check(s)) {
5072 return true;
5075 t0 = tcg_temp_new_i64();
5076 t1 = tcg_temp_new_i64();
5077 t2 = tcg_temp_new_i64();
5078 qc = tcg_temp_new_i64();
5079 read_vec_element(s, t1, a->rn, 0, esz | sgn_n);
5080 read_vec_element(s, t2, a->rm, 0, esz | sgn_m);
5081 tcg_gen_ld_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc));
5083 if (esz == MO_64) {
5084 gen_d(t0, qc, t1, t2);
5085 } else {
5086 gen_bhs(t0, qc, t1, t2, esz);
5087 tcg_gen_ext_i64(t0, t0, esz);
5090 write_fp_dreg(s, a->rd, t0);
5091 tcg_gen_st_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc));
5092 return true;
5095 TRANS(SQADD_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqadd_bhs, gen_sqadd_d)
5096 TRANS(SQSUB_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqsub_bhs, gen_sqsub_d)
5097 TRANS(UQADD_s, do_satacc_s, a, 0, 0, gen_uqadd_bhs, gen_uqadd_d)
5098 TRANS(UQSUB_s, do_satacc_s, a, 0, 0, gen_uqsub_bhs, gen_uqsub_d)
5099 TRANS(SUQADD_s, do_satacc_s, a, MO_SIGN, 0, gen_suqadd_bhs, gen_suqadd_d)
5100 TRANS(USQADD_s, do_satacc_s, a, 0, MO_SIGN, gen_usqadd_bhs, gen_usqadd_d)
5102 static bool do_int3_scalar_d(DisasContext *s, arg_rrr_e *a,
5103 void (*fn)(TCGv_i64, TCGv_i64, TCGv_i64))
5105 if (fp_access_check(s)) {
5106 TCGv_i64 t0 = tcg_temp_new_i64();
5107 TCGv_i64 t1 = tcg_temp_new_i64();
5109 read_vec_element(s, t0, a->rn, 0, MO_64);
5110 read_vec_element(s, t1, a->rm, 0, MO_64);
5111 fn(t0, t0, t1);
5112 write_fp_dreg(s, a->rd, t0);
5114 return true;
5117 TRANS(SSHL_s, do_int3_scalar_d, a, gen_sshl_i64)
5118 TRANS(USHL_s, do_int3_scalar_d, a, gen_ushl_i64)
5119 TRANS(SRSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_s64)
5120 TRANS(URSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_u64)
5121 TRANS(ADD_s, do_int3_scalar_d, a, tcg_gen_add_i64)
5122 TRANS(SUB_s, do_int3_scalar_d, a, tcg_gen_sub_i64)
5124 typedef struct ENVScalar2 {
5125 NeonGenTwoOpEnvFn *gen_bhs[3];
5126 NeonGenTwo64OpEnvFn *gen_d;
5127 } ENVScalar2;
5129 static bool do_env_scalar2(DisasContext *s, arg_rrr_e *a, const ENVScalar2 *f)
5131 if (!fp_access_check(s)) {
5132 return true;
5134 if (a->esz == MO_64) {
5135 TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5136 TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5137 f->gen_d(t0, tcg_env, t0, t1);
5138 write_fp_dreg(s, a->rd, t0);
5139 } else {
5140 TCGv_i32 t0 = tcg_temp_new_i32();
5141 TCGv_i32 t1 = tcg_temp_new_i32();
5143 read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5144 read_vec_element_i32(s, t1, a->rm, 0, a->esz);
5145 f->gen_bhs[a->esz](t0, tcg_env, t0, t1);
5146 write_fp_sreg(s, a->rd, t0);
5148 return true;
5151 static const ENVScalar2 f_scalar_sqshl = {
5152 { gen_helper_neon_qshl_s8,
5153 gen_helper_neon_qshl_s16,
5154 gen_helper_neon_qshl_s32 },
5155 gen_helper_neon_qshl_s64,
5157 TRANS(SQSHL_s, do_env_scalar2, a, &f_scalar_sqshl)
5159 static const ENVScalar2 f_scalar_uqshl = {
5160 { gen_helper_neon_qshl_u8,
5161 gen_helper_neon_qshl_u16,
5162 gen_helper_neon_qshl_u32 },
5163 gen_helper_neon_qshl_u64,
5165 TRANS(UQSHL_s, do_env_scalar2, a, &f_scalar_uqshl)
5167 static const ENVScalar2 f_scalar_sqrshl = {
5168 { gen_helper_neon_qrshl_s8,
5169 gen_helper_neon_qrshl_s16,
5170 gen_helper_neon_qrshl_s32 },
5171 gen_helper_neon_qrshl_s64,
5173 TRANS(SQRSHL_s, do_env_scalar2, a, &f_scalar_sqrshl)
5175 static const ENVScalar2 f_scalar_uqrshl = {
5176 { gen_helper_neon_qrshl_u8,
5177 gen_helper_neon_qrshl_u16,
5178 gen_helper_neon_qrshl_u32 },
5179 gen_helper_neon_qrshl_u64,
5181 TRANS(UQRSHL_s, do_env_scalar2, a, &f_scalar_uqrshl)
5183 static bool do_cmop_d(DisasContext *s, arg_rrr_e *a, TCGCond cond)
5185 if (fp_access_check(s)) {
5186 TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5187 TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5188 tcg_gen_negsetcond_i64(cond, t0, t0, t1);
5189 write_fp_dreg(s, a->rd, t0);
5191 return true;
5194 TRANS(CMGT_s, do_cmop_d, a, TCG_COND_GT)
5195 TRANS(CMHI_s, do_cmop_d, a, TCG_COND_GTU)
5196 TRANS(CMGE_s, do_cmop_d, a, TCG_COND_GE)
5197 TRANS(CMHS_s, do_cmop_d, a, TCG_COND_GEU)
5198 TRANS(CMEQ_s, do_cmop_d, a, TCG_COND_EQ)
5199 TRANS(CMTST_s, do_cmop_d, a, TCG_COND_TSTNE)
5201 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a,
5202 gen_helper_gvec_3_ptr * const fns[3])
5204 MemOp esz = a->esz;
5206 switch (esz) {
5207 case MO_64:
5208 if (!a->q) {
5209 return false;
5211 break;
5212 case MO_32:
5213 break;
5214 case MO_16:
5215 if (!dc_isar_feature(aa64_fp16, s)) {
5216 return false;
5218 break;
5219 default:
5220 return false;
5222 if (fp_access_check(s)) {
5223 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5224 esz == MO_16, 0, fns[esz - 1]);
5226 return true;
5229 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = {
5230 gen_helper_gvec_fadd_h,
5231 gen_helper_gvec_fadd_s,
5232 gen_helper_gvec_fadd_d,
5234 TRANS(FADD_v, do_fp3_vector, a, f_vector_fadd)
5236 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = {
5237 gen_helper_gvec_fsub_h,
5238 gen_helper_gvec_fsub_s,
5239 gen_helper_gvec_fsub_d,
5241 TRANS(FSUB_v, do_fp3_vector, a, f_vector_fsub)
5243 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = {
5244 gen_helper_gvec_fdiv_h,
5245 gen_helper_gvec_fdiv_s,
5246 gen_helper_gvec_fdiv_d,
5248 TRANS(FDIV_v, do_fp3_vector, a, f_vector_fdiv)
5250 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = {
5251 gen_helper_gvec_fmul_h,
5252 gen_helper_gvec_fmul_s,
5253 gen_helper_gvec_fmul_d,
5255 TRANS(FMUL_v, do_fp3_vector, a, f_vector_fmul)
5257 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = {
5258 gen_helper_gvec_fmax_h,
5259 gen_helper_gvec_fmax_s,
5260 gen_helper_gvec_fmax_d,
5262 TRANS(FMAX_v, do_fp3_vector, a, f_vector_fmax)
5264 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = {
5265 gen_helper_gvec_fmin_h,
5266 gen_helper_gvec_fmin_s,
5267 gen_helper_gvec_fmin_d,
5269 TRANS(FMIN_v, do_fp3_vector, a, f_vector_fmin)
5271 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = {
5272 gen_helper_gvec_fmaxnum_h,
5273 gen_helper_gvec_fmaxnum_s,
5274 gen_helper_gvec_fmaxnum_d,
5276 TRANS(FMAXNM_v, do_fp3_vector, a, f_vector_fmaxnm)
5278 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = {
5279 gen_helper_gvec_fminnum_h,
5280 gen_helper_gvec_fminnum_s,
5281 gen_helper_gvec_fminnum_d,
5283 TRANS(FMINNM_v, do_fp3_vector, a, f_vector_fminnm)
5285 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = {
5286 gen_helper_gvec_fmulx_h,
5287 gen_helper_gvec_fmulx_s,
5288 gen_helper_gvec_fmulx_d,
5290 TRANS(FMULX_v, do_fp3_vector, a, f_vector_fmulx)
5292 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = {
5293 gen_helper_gvec_vfma_h,
5294 gen_helper_gvec_vfma_s,
5295 gen_helper_gvec_vfma_d,
5297 TRANS(FMLA_v, do_fp3_vector, a, f_vector_fmla)
5299 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = {
5300 gen_helper_gvec_vfms_h,
5301 gen_helper_gvec_vfms_s,
5302 gen_helper_gvec_vfms_d,
5304 TRANS(FMLS_v, do_fp3_vector, a, f_vector_fmls)
5306 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = {
5307 gen_helper_gvec_fceq_h,
5308 gen_helper_gvec_fceq_s,
5309 gen_helper_gvec_fceq_d,
5311 TRANS(FCMEQ_v, do_fp3_vector, a, f_vector_fcmeq)
5313 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = {
5314 gen_helper_gvec_fcge_h,
5315 gen_helper_gvec_fcge_s,
5316 gen_helper_gvec_fcge_d,
5318 TRANS(FCMGE_v, do_fp3_vector, a, f_vector_fcmge)
5320 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = {
5321 gen_helper_gvec_fcgt_h,
5322 gen_helper_gvec_fcgt_s,
5323 gen_helper_gvec_fcgt_d,
5325 TRANS(FCMGT_v, do_fp3_vector, a, f_vector_fcmgt)
5327 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = {
5328 gen_helper_gvec_facge_h,
5329 gen_helper_gvec_facge_s,
5330 gen_helper_gvec_facge_d,
5332 TRANS(FACGE_v, do_fp3_vector, a, f_vector_facge)
5334 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = {
5335 gen_helper_gvec_facgt_h,
5336 gen_helper_gvec_facgt_s,
5337 gen_helper_gvec_facgt_d,
5339 TRANS(FACGT_v, do_fp3_vector, a, f_vector_facgt)
5341 static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = {
5342 gen_helper_gvec_fabd_h,
5343 gen_helper_gvec_fabd_s,
5344 gen_helper_gvec_fabd_d,
5346 TRANS(FABD_v, do_fp3_vector, a, f_vector_fabd)
5348 static gen_helper_gvec_3_ptr * const f_vector_frecps[3] = {
5349 gen_helper_gvec_recps_h,
5350 gen_helper_gvec_recps_s,
5351 gen_helper_gvec_recps_d,
5353 TRANS(FRECPS_v, do_fp3_vector, a, f_vector_frecps)
5355 static gen_helper_gvec_3_ptr * const f_vector_frsqrts[3] = {
5356 gen_helper_gvec_rsqrts_h,
5357 gen_helper_gvec_rsqrts_s,
5358 gen_helper_gvec_rsqrts_d,
5360 TRANS(FRSQRTS_v, do_fp3_vector, a, f_vector_frsqrts)
5362 static gen_helper_gvec_3_ptr * const f_vector_faddp[3] = {
5363 gen_helper_gvec_faddp_h,
5364 gen_helper_gvec_faddp_s,
5365 gen_helper_gvec_faddp_d,
5367 TRANS(FADDP_v, do_fp3_vector, a, f_vector_faddp)
5369 static gen_helper_gvec_3_ptr * const f_vector_fmaxp[3] = {
5370 gen_helper_gvec_fmaxp_h,
5371 gen_helper_gvec_fmaxp_s,
5372 gen_helper_gvec_fmaxp_d,
5374 TRANS(FMAXP_v, do_fp3_vector, a, f_vector_fmaxp)
5376 static gen_helper_gvec_3_ptr * const f_vector_fminp[3] = {
5377 gen_helper_gvec_fminp_h,
5378 gen_helper_gvec_fminp_s,
5379 gen_helper_gvec_fminp_d,
5381 TRANS(FMINP_v, do_fp3_vector, a, f_vector_fminp)
5383 static gen_helper_gvec_3_ptr * const f_vector_fmaxnmp[3] = {
5384 gen_helper_gvec_fmaxnump_h,
5385 gen_helper_gvec_fmaxnump_s,
5386 gen_helper_gvec_fmaxnump_d,
5388 TRANS(FMAXNMP_v, do_fp3_vector, a, f_vector_fmaxnmp)
5390 static gen_helper_gvec_3_ptr * const f_vector_fminnmp[3] = {
5391 gen_helper_gvec_fminnump_h,
5392 gen_helper_gvec_fminnump_s,
5393 gen_helper_gvec_fminnump_d,
5395 TRANS(FMINNMP_v, do_fp3_vector, a, f_vector_fminnmp)
5397 static bool do_fmlal(DisasContext *s, arg_qrrr_e *a, bool is_s, bool is_2)
5399 if (fp_access_check(s)) {
5400 int data = (is_2 << 1) | is_s;
5401 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
5402 vec_full_reg_offset(s, a->rn),
5403 vec_full_reg_offset(s, a->rm), tcg_env,
5404 a->q ? 16 : 8, vec_full_reg_size(s),
5405 data, gen_helper_gvec_fmlal_a64);
5407 return true;
5410 TRANS_FEAT(FMLAL_v, aa64_fhm, do_fmlal, a, false, false)
5411 TRANS_FEAT(FMLSL_v, aa64_fhm, do_fmlal, a, true, false)
5412 TRANS_FEAT(FMLAL2_v, aa64_fhm, do_fmlal, a, false, true)
5413 TRANS_FEAT(FMLSL2_v, aa64_fhm, do_fmlal, a, true, true)
5415 TRANS(ADDP_v, do_gvec_fn3, a, gen_gvec_addp)
5416 TRANS(SMAXP_v, do_gvec_fn3_no64, a, gen_gvec_smaxp)
5417 TRANS(SMINP_v, do_gvec_fn3_no64, a, gen_gvec_sminp)
5418 TRANS(UMAXP_v, do_gvec_fn3_no64, a, gen_gvec_umaxp)
5419 TRANS(UMINP_v, do_gvec_fn3_no64, a, gen_gvec_uminp)
5421 TRANS(AND_v, do_gvec_fn3, a, tcg_gen_gvec_and)
5422 TRANS(BIC_v, do_gvec_fn3, a, tcg_gen_gvec_andc)
5423 TRANS(ORR_v, do_gvec_fn3, a, tcg_gen_gvec_or)
5424 TRANS(ORN_v, do_gvec_fn3, a, tcg_gen_gvec_orc)
5425 TRANS(EOR_v, do_gvec_fn3, a, tcg_gen_gvec_xor)
5427 static bool do_bitsel(DisasContext *s, bool is_q, int d, int a, int b, int c)
5429 if (fp_access_check(s)) {
5430 gen_gvec_fn4(s, is_q, d, a, b, c, tcg_gen_gvec_bitsel, 0);
5432 return true;
5435 TRANS(BSL_v, do_bitsel, a->q, a->rd, a->rd, a->rn, a->rm)
5436 TRANS(BIT_v, do_bitsel, a->q, a->rd, a->rm, a->rn, a->rd)
5437 TRANS(BIF_v, do_bitsel, a->q, a->rd, a->rm, a->rd, a->rn)
5439 TRANS(SQADD_v, do_gvec_fn3, a, gen_gvec_sqadd_qc)
5440 TRANS(UQADD_v, do_gvec_fn3, a, gen_gvec_uqadd_qc)
5441 TRANS(SQSUB_v, do_gvec_fn3, a, gen_gvec_sqsub_qc)
5442 TRANS(UQSUB_v, do_gvec_fn3, a, gen_gvec_uqsub_qc)
5443 TRANS(SUQADD_v, do_gvec_fn3, a, gen_gvec_suqadd_qc)
5444 TRANS(USQADD_v, do_gvec_fn3, a, gen_gvec_usqadd_qc)
5446 TRANS(SSHL_v, do_gvec_fn3, a, gen_gvec_sshl)
5447 TRANS(USHL_v, do_gvec_fn3, a, gen_gvec_ushl)
5448 TRANS(SRSHL_v, do_gvec_fn3, a, gen_gvec_srshl)
5449 TRANS(URSHL_v, do_gvec_fn3, a, gen_gvec_urshl)
5450 TRANS(SQSHL_v, do_gvec_fn3, a, gen_neon_sqshl)
5451 TRANS(UQSHL_v, do_gvec_fn3, a, gen_neon_uqshl)
5452 TRANS(SQRSHL_v, do_gvec_fn3, a, gen_neon_sqrshl)
5453 TRANS(UQRSHL_v, do_gvec_fn3, a, gen_neon_uqrshl)
5455 TRANS(ADD_v, do_gvec_fn3, a, tcg_gen_gvec_add)
5456 TRANS(SUB_v, do_gvec_fn3, a, tcg_gen_gvec_sub)
5457 TRANS(SHADD_v, do_gvec_fn3_no64, a, gen_gvec_shadd)
5458 TRANS(UHADD_v, do_gvec_fn3_no64, a, gen_gvec_uhadd)
5459 TRANS(SHSUB_v, do_gvec_fn3_no64, a, gen_gvec_shsub)
5460 TRANS(UHSUB_v, do_gvec_fn3_no64, a, gen_gvec_uhsub)
5461 TRANS(SRHADD_v, do_gvec_fn3_no64, a, gen_gvec_srhadd)
5462 TRANS(URHADD_v, do_gvec_fn3_no64, a, gen_gvec_urhadd)
5463 TRANS(SMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smax)
5464 TRANS(UMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umax)
5465 TRANS(SMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smin)
5466 TRANS(UMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umin)
5468 static bool do_cmop_v(DisasContext *s, arg_qrrr_e *a, TCGCond cond)
5470 if (a->esz == MO_64 && !a->q) {
5471 return false;
5473 if (fp_access_check(s)) {
5474 tcg_gen_gvec_cmp(cond, a->esz,
5475 vec_full_reg_offset(s, a->rd),
5476 vec_full_reg_offset(s, a->rn),
5477 vec_full_reg_offset(s, a->rm),
5478 a->q ? 16 : 8, vec_full_reg_size(s));
5480 return true;
5483 TRANS(CMGT_v, do_cmop_v, a, TCG_COND_GT)
5484 TRANS(CMHI_v, do_cmop_v, a, TCG_COND_GTU)
5485 TRANS(CMGE_v, do_cmop_v, a, TCG_COND_GE)
5486 TRANS(CMHS_v, do_cmop_v, a, TCG_COND_GEU)
5487 TRANS(CMEQ_v, do_cmop_v, a, TCG_COND_EQ)
5488 TRANS(CMTST_v, do_gvec_fn3, a, gen_gvec_cmtst)
5491 * Advanced SIMD scalar/vector x indexed element
5494 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f)
5496 switch (a->esz) {
5497 case MO_64:
5498 if (fp_access_check(s)) {
5499 TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5500 TCGv_i64 t1 = tcg_temp_new_i64();
5502 read_vec_element(s, t1, a->rm, a->idx, MO_64);
5503 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5504 write_fp_dreg(s, a->rd, t0);
5506 break;
5507 case MO_32:
5508 if (fp_access_check(s)) {
5509 TCGv_i32 t0 = read_fp_sreg(s, a->rn);
5510 TCGv_i32 t1 = tcg_temp_new_i32();
5512 read_vec_element_i32(s, t1, a->rm, a->idx, MO_32);
5513 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5514 write_fp_sreg(s, a->rd, t0);
5516 break;
5517 case MO_16:
5518 if (!dc_isar_feature(aa64_fp16, s)) {
5519 return false;
5521 if (fp_access_check(s)) {
5522 TCGv_i32 t0 = read_fp_hreg(s, a->rn);
5523 TCGv_i32 t1 = tcg_temp_new_i32();
5525 read_vec_element_i32(s, t1, a->rm, a->idx, MO_16);
5526 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
5527 write_fp_sreg(s, a->rd, t0);
5529 break;
5530 default:
5531 g_assert_not_reached();
5533 return true;
5536 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul)
5537 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx)
5539 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg)
5541 switch (a->esz) {
5542 case MO_64:
5543 if (fp_access_check(s)) {
5544 TCGv_i64 t0 = read_fp_dreg(s, a->rd);
5545 TCGv_i64 t1 = read_fp_dreg(s, a->rn);
5546 TCGv_i64 t2 = tcg_temp_new_i64();
5548 read_vec_element(s, t2, a->rm, a->idx, MO_64);
5549 if (neg) {
5550 gen_vfp_negd(t1, t1);
5552 gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
5553 write_fp_dreg(s, a->rd, t0);
5555 break;
5556 case MO_32:
5557 if (fp_access_check(s)) {
5558 TCGv_i32 t0 = read_fp_sreg(s, a->rd);
5559 TCGv_i32 t1 = read_fp_sreg(s, a->rn);
5560 TCGv_i32 t2 = tcg_temp_new_i32();
5562 read_vec_element_i32(s, t2, a->rm, a->idx, MO_32);
5563 if (neg) {
5564 gen_vfp_negs(t1, t1);
5566 gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
5567 write_fp_sreg(s, a->rd, t0);
5569 break;
5570 case MO_16:
5571 if (!dc_isar_feature(aa64_fp16, s)) {
5572 return false;
5574 if (fp_access_check(s)) {
5575 TCGv_i32 t0 = read_fp_hreg(s, a->rd);
5576 TCGv_i32 t1 = read_fp_hreg(s, a->rn);
5577 TCGv_i32 t2 = tcg_temp_new_i32();
5579 read_vec_element_i32(s, t2, a->rm, a->idx, MO_16);
5580 if (neg) {
5581 gen_vfp_negh(t1, t1);
5583 gen_helper_advsimd_muladdh(t0, t1, t2, t0,
5584 fpstatus_ptr(FPST_FPCR_F16));
5585 write_fp_sreg(s, a->rd, t0);
5587 break;
5588 default:
5589 g_assert_not_reached();
5591 return true;
5594 TRANS(FMLA_si, do_fmla_scalar_idx, a, false)
5595 TRANS(FMLS_si, do_fmla_scalar_idx, a, true)
5597 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a,
5598 gen_helper_gvec_3_ptr * const fns[3])
5600 MemOp esz = a->esz;
5602 switch (esz) {
5603 case MO_64:
5604 if (!a->q) {
5605 return false;
5607 break;
5608 case MO_32:
5609 break;
5610 case MO_16:
5611 if (!dc_isar_feature(aa64_fp16, s)) {
5612 return false;
5614 break;
5615 default:
5616 g_assert_not_reached();
5618 if (fp_access_check(s)) {
5619 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5620 esz == MO_16, a->idx, fns[esz - 1]);
5622 return true;
5625 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = {
5626 gen_helper_gvec_fmul_idx_h,
5627 gen_helper_gvec_fmul_idx_s,
5628 gen_helper_gvec_fmul_idx_d,
5630 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul)
5632 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = {
5633 gen_helper_gvec_fmulx_idx_h,
5634 gen_helper_gvec_fmulx_idx_s,
5635 gen_helper_gvec_fmulx_idx_d,
5637 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx)
5639 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg)
5641 static gen_helper_gvec_4_ptr * const fns[3] = {
5642 gen_helper_gvec_fmla_idx_h,
5643 gen_helper_gvec_fmla_idx_s,
5644 gen_helper_gvec_fmla_idx_d,
5646 MemOp esz = a->esz;
5648 switch (esz) {
5649 case MO_64:
5650 if (!a->q) {
5651 return false;
5653 break;
5654 case MO_32:
5655 break;
5656 case MO_16:
5657 if (!dc_isar_feature(aa64_fp16, s)) {
5658 return false;
5660 break;
5661 default:
5662 g_assert_not_reached();
5664 if (fp_access_check(s)) {
5665 gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
5666 esz == MO_16, (a->idx << 1) | neg,
5667 fns[esz - 1]);
5669 return true;
5672 TRANS(FMLA_vi, do_fmla_vector_idx, a, false)
5673 TRANS(FMLS_vi, do_fmla_vector_idx, a, true)
5675 static bool do_fmlal_idx(DisasContext *s, arg_qrrx_e *a, bool is_s, bool is_2)
5677 if (fp_access_check(s)) {
5678 int data = (a->idx << 2) | (is_2 << 1) | is_s;
5679 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
5680 vec_full_reg_offset(s, a->rn),
5681 vec_full_reg_offset(s, a->rm), tcg_env,
5682 a->q ? 16 : 8, vec_full_reg_size(s),
5683 data, gen_helper_gvec_fmlal_idx_a64);
5685 return true;
5688 TRANS_FEAT(FMLAL_vi, aa64_fhm, do_fmlal_idx, a, false, false)
5689 TRANS_FEAT(FMLSL_vi, aa64_fhm, do_fmlal_idx, a, true, false)
5690 TRANS_FEAT(FMLAL2_vi, aa64_fhm, do_fmlal_idx, a, false, true)
5691 TRANS_FEAT(FMLSL2_vi, aa64_fhm, do_fmlal_idx, a, true, true)
5694 * Advanced SIMD scalar pairwise
5697 static bool do_fp3_scalar_pair(DisasContext *s, arg_rr_e *a, const FPScalar *f)
5699 switch (a->esz) {
5700 case MO_64:
5701 if (fp_access_check(s)) {
5702 TCGv_i64 t0 = tcg_temp_new_i64();
5703 TCGv_i64 t1 = tcg_temp_new_i64();
5705 read_vec_element(s, t0, a->rn, 0, MO_64);
5706 read_vec_element(s, t1, a->rn, 1, MO_64);
5707 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5708 write_fp_dreg(s, a->rd, t0);
5710 break;
5711 case MO_32:
5712 if (fp_access_check(s)) {
5713 TCGv_i32 t0 = tcg_temp_new_i32();
5714 TCGv_i32 t1 = tcg_temp_new_i32();
5716 read_vec_element_i32(s, t0, a->rn, 0, MO_32);
5717 read_vec_element_i32(s, t1, a->rn, 1, MO_32);
5718 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5719 write_fp_sreg(s, a->rd, t0);
5721 break;
5722 case MO_16:
5723 if (!dc_isar_feature(aa64_fp16, s)) {
5724 return false;
5726 if (fp_access_check(s)) {
5727 TCGv_i32 t0 = tcg_temp_new_i32();
5728 TCGv_i32 t1 = tcg_temp_new_i32();
5730 read_vec_element_i32(s, t0, a->rn, 0, MO_16);
5731 read_vec_element_i32(s, t1, a->rn, 1, MO_16);
5732 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
5733 write_fp_sreg(s, a->rd, t0);
5735 break;
5736 default:
5737 g_assert_not_reached();
5739 return true;
5742 TRANS(FADDP_s, do_fp3_scalar_pair, a, &f_scalar_fadd)
5743 TRANS(FMAXP_s, do_fp3_scalar_pair, a, &f_scalar_fmax)
5744 TRANS(FMINP_s, do_fp3_scalar_pair, a, &f_scalar_fmin)
5745 TRANS(FMAXNMP_s, do_fp3_scalar_pair, a, &f_scalar_fmaxnm)
5746 TRANS(FMINNMP_s, do_fp3_scalar_pair, a, &f_scalar_fminnm)
5748 static bool trans_ADDP_s(DisasContext *s, arg_rr_e *a)
5750 if (fp_access_check(s)) {
5751 TCGv_i64 t0 = tcg_temp_new_i64();
5752 TCGv_i64 t1 = tcg_temp_new_i64();
5754 read_vec_element(s, t0, a->rn, 0, MO_64);
5755 read_vec_element(s, t1, a->rn, 1, MO_64);
5756 tcg_gen_add_i64(t0, t0, t1);
5757 write_fp_dreg(s, a->rd, t0);
5759 return true;
5762 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
5763 * Note that it is the caller's responsibility to ensure that the
5764 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
5765 * mandated semantics for out of range shifts.
5767 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
5768 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
5770 switch (shift_type) {
5771 case A64_SHIFT_TYPE_LSL:
5772 tcg_gen_shl_i64(dst, src, shift_amount);
5773 break;
5774 case A64_SHIFT_TYPE_LSR:
5775 tcg_gen_shr_i64(dst, src, shift_amount);
5776 break;
5777 case A64_SHIFT_TYPE_ASR:
5778 if (!sf) {
5779 tcg_gen_ext32s_i64(dst, src);
5781 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
5782 break;
5783 case A64_SHIFT_TYPE_ROR:
5784 if (sf) {
5785 tcg_gen_rotr_i64(dst, src, shift_amount);
5786 } else {
5787 TCGv_i32 t0, t1;
5788 t0 = tcg_temp_new_i32();
5789 t1 = tcg_temp_new_i32();
5790 tcg_gen_extrl_i64_i32(t0, src);
5791 tcg_gen_extrl_i64_i32(t1, shift_amount);
5792 tcg_gen_rotr_i32(t0, t0, t1);
5793 tcg_gen_extu_i32_i64(dst, t0);
5795 break;
5796 default:
5797 assert(FALSE); /* all shift types should be handled */
5798 break;
5801 if (!sf) { /* zero extend final result */
5802 tcg_gen_ext32u_i64(dst, dst);
5806 /* Shift a TCGv src by immediate, put result in dst.
5807 * The shift amount must be in range (this should always be true as the
5808 * relevant instructions will UNDEF on bad shift immediates).
5810 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
5811 enum a64_shift_type shift_type, unsigned int shift_i)
5813 assert(shift_i < (sf ? 64 : 32));
5815 if (shift_i == 0) {
5816 tcg_gen_mov_i64(dst, src);
5817 } else {
5818 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
5822 /* Logical (shifted register)
5823 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
5824 * +----+-----+-----------+-------+---+------+--------+------+------+
5825 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
5826 * +----+-----+-----------+-------+---+------+--------+------+------+
5828 static void disas_logic_reg(DisasContext *s, uint32_t insn)
5830 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
5831 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
5833 sf = extract32(insn, 31, 1);
5834 opc = extract32(insn, 29, 2);
5835 shift_type = extract32(insn, 22, 2);
5836 invert = extract32(insn, 21, 1);
5837 rm = extract32(insn, 16, 5);
5838 shift_amount = extract32(insn, 10, 6);
5839 rn = extract32(insn, 5, 5);
5840 rd = extract32(insn, 0, 5);
5842 if (!sf && (shift_amount & (1 << 5))) {
5843 unallocated_encoding(s);
5844 return;
5847 tcg_rd = cpu_reg(s, rd);
5849 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
5850 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
5851 * register-register MOV and MVN, so it is worth special casing.
5853 tcg_rm = cpu_reg(s, rm);
5854 if (invert) {
5855 tcg_gen_not_i64(tcg_rd, tcg_rm);
5856 if (!sf) {
5857 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5859 } else {
5860 if (sf) {
5861 tcg_gen_mov_i64(tcg_rd, tcg_rm);
5862 } else {
5863 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
5866 return;
5869 tcg_rm = read_cpu_reg(s, rm, sf);
5871 if (shift_amount) {
5872 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
5875 tcg_rn = cpu_reg(s, rn);
5877 switch (opc | (invert << 2)) {
5878 case 0: /* AND */
5879 case 3: /* ANDS */
5880 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
5881 break;
5882 case 1: /* ORR */
5883 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
5884 break;
5885 case 2: /* EOR */
5886 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
5887 break;
5888 case 4: /* BIC */
5889 case 7: /* BICS */
5890 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
5891 break;
5892 case 5: /* ORN */
5893 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
5894 break;
5895 case 6: /* EON */
5896 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
5897 break;
5898 default:
5899 assert(FALSE);
5900 break;
5903 if (!sf) {
5904 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5907 if (opc == 3) {
5908 gen_logic_CC(sf, tcg_rd);
5913 * Add/subtract (extended register)
5915 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
5916 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
5917 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
5918 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
5920 * sf: 0 -> 32bit, 1 -> 64bit
5921 * op: 0 -> add , 1 -> sub
5922 * S: 1 -> set flags
5923 * opt: 00
5924 * option: extension type (see DecodeRegExtend)
5925 * imm3: optional shift to Rm
5927 * Rd = Rn + LSL(extend(Rm), amount)
5929 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
5931 int rd = extract32(insn, 0, 5);
5932 int rn = extract32(insn, 5, 5);
5933 int imm3 = extract32(insn, 10, 3);
5934 int option = extract32(insn, 13, 3);
5935 int rm = extract32(insn, 16, 5);
5936 int opt = extract32(insn, 22, 2);
5937 bool setflags = extract32(insn, 29, 1);
5938 bool sub_op = extract32(insn, 30, 1);
5939 bool sf = extract32(insn, 31, 1);
5941 TCGv_i64 tcg_rm, tcg_rn; /* temps */
5942 TCGv_i64 tcg_rd;
5943 TCGv_i64 tcg_result;
5945 if (imm3 > 4 || opt != 0) {
5946 unallocated_encoding(s);
5947 return;
5950 /* non-flag setting ops may use SP */
5951 if (!setflags) {
5952 tcg_rd = cpu_reg_sp(s, rd);
5953 } else {
5954 tcg_rd = cpu_reg(s, rd);
5956 tcg_rn = read_cpu_reg_sp(s, rn, sf);
5958 tcg_rm = read_cpu_reg(s, rm, sf);
5959 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
5961 tcg_result = tcg_temp_new_i64();
5963 if (!setflags) {
5964 if (sub_op) {
5965 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
5966 } else {
5967 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
5969 } else {
5970 if (sub_op) {
5971 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
5972 } else {
5973 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
5977 if (sf) {
5978 tcg_gen_mov_i64(tcg_rd, tcg_result);
5979 } else {
5980 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
5985 * Add/subtract (shifted register)
5987 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
5988 * +--+--+--+-----------+-----+--+-------+---------+------+------+
5989 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
5990 * +--+--+--+-----------+-----+--+-------+---------+------+------+
5992 * sf: 0 -> 32bit, 1 -> 64bit
5993 * op: 0 -> add , 1 -> sub
5994 * S: 1 -> set flags
5995 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
5996 * imm6: Shift amount to apply to Rm before the add/sub
5998 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
6000 int rd = extract32(insn, 0, 5);
6001 int rn = extract32(insn, 5, 5);
6002 int imm6 = extract32(insn, 10, 6);
6003 int rm = extract32(insn, 16, 5);
6004 int shift_type = extract32(insn, 22, 2);
6005 bool setflags = extract32(insn, 29, 1);
6006 bool sub_op = extract32(insn, 30, 1);
6007 bool sf = extract32(insn, 31, 1);
6009 TCGv_i64 tcg_rd = cpu_reg(s, rd);
6010 TCGv_i64 tcg_rn, tcg_rm;
6011 TCGv_i64 tcg_result;
6013 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
6014 unallocated_encoding(s);
6015 return;
6018 tcg_rn = read_cpu_reg(s, rn, sf);
6019 tcg_rm = read_cpu_reg(s, rm, sf);
6021 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
6023 tcg_result = tcg_temp_new_i64();
6025 if (!setflags) {
6026 if (sub_op) {
6027 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
6028 } else {
6029 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
6031 } else {
6032 if (sub_op) {
6033 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
6034 } else {
6035 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
6039 if (sf) {
6040 tcg_gen_mov_i64(tcg_rd, tcg_result);
6041 } else {
6042 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
6046 /* Data-processing (3 source)
6048 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
6049 * +--+------+-----------+------+------+----+------+------+------+
6050 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
6051 * +--+------+-----------+------+------+----+------+------+------+
6053 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
6055 int rd = extract32(insn, 0, 5);
6056 int rn = extract32(insn, 5, 5);
6057 int ra = extract32(insn, 10, 5);
6058 int rm = extract32(insn, 16, 5);
6059 int op_id = (extract32(insn, 29, 3) << 4) |
6060 (extract32(insn, 21, 3) << 1) |
6061 extract32(insn, 15, 1);
6062 bool sf = extract32(insn, 31, 1);
6063 bool is_sub = extract32(op_id, 0, 1);
6064 bool is_high = extract32(op_id, 2, 1);
6065 bool is_signed = false;
6066 TCGv_i64 tcg_op1;
6067 TCGv_i64 tcg_op2;
6068 TCGv_i64 tcg_tmp;
6070 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
6071 switch (op_id) {
6072 case 0x42: /* SMADDL */
6073 case 0x43: /* SMSUBL */
6074 case 0x44: /* SMULH */
6075 is_signed = true;
6076 break;
6077 case 0x0: /* MADD (32bit) */
6078 case 0x1: /* MSUB (32bit) */
6079 case 0x40: /* MADD (64bit) */
6080 case 0x41: /* MSUB (64bit) */
6081 case 0x4a: /* UMADDL */
6082 case 0x4b: /* UMSUBL */
6083 case 0x4c: /* UMULH */
6084 break;
6085 default:
6086 unallocated_encoding(s);
6087 return;
6090 if (is_high) {
6091 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
6092 TCGv_i64 tcg_rd = cpu_reg(s, rd);
6093 TCGv_i64 tcg_rn = cpu_reg(s, rn);
6094 TCGv_i64 tcg_rm = cpu_reg(s, rm);
6096 if (is_signed) {
6097 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
6098 } else {
6099 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
6101 return;
6104 tcg_op1 = tcg_temp_new_i64();
6105 tcg_op2 = tcg_temp_new_i64();
6106 tcg_tmp = tcg_temp_new_i64();
6108 if (op_id < 0x42) {
6109 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
6110 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
6111 } else {
6112 if (is_signed) {
6113 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
6114 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
6115 } else {
6116 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
6117 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
6121 if (ra == 31 && !is_sub) {
6122 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
6123 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
6124 } else {
6125 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
6126 if (is_sub) {
6127 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
6128 } else {
6129 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
6133 if (!sf) {
6134 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
6138 /* Add/subtract (with carry)
6139 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
6140 * +--+--+--+------------------------+------+-------------+------+-----+
6141 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd |
6142 * +--+--+--+------------------------+------+-------------+------+-----+
6145 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
6147 unsigned int sf, op, setflags, rm, rn, rd;
6148 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
6150 sf = extract32(insn, 31, 1);
6151 op = extract32(insn, 30, 1);
6152 setflags = extract32(insn, 29, 1);
6153 rm = extract32(insn, 16, 5);
6154 rn = extract32(insn, 5, 5);
6155 rd = extract32(insn, 0, 5);
6157 tcg_rd = cpu_reg(s, rd);
6158 tcg_rn = cpu_reg(s, rn);
6160 if (op) {
6161 tcg_y = tcg_temp_new_i64();
6162 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
6163 } else {
6164 tcg_y = cpu_reg(s, rm);
6167 if (setflags) {
6168 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
6169 } else {
6170 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
6175 * Rotate right into flags
6176 * 31 30 29 21 15 10 5 4 0
6177 * +--+--+--+-----------------+--------+-----------+------+--+------+
6178 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask |
6179 * +--+--+--+-----------------+--------+-----------+------+--+------+
6181 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
6183 int mask = extract32(insn, 0, 4);
6184 int o2 = extract32(insn, 4, 1);
6185 int rn = extract32(insn, 5, 5);
6186 int imm6 = extract32(insn, 15, 6);
6187 int sf_op_s = extract32(insn, 29, 3);
6188 TCGv_i64 tcg_rn;
6189 TCGv_i32 nzcv;
6191 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
6192 unallocated_encoding(s);
6193 return;
6196 tcg_rn = read_cpu_reg(s, rn, 1);
6197 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
6199 nzcv = tcg_temp_new_i32();
6200 tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
6202 if (mask & 8) { /* N */
6203 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
6205 if (mask & 4) { /* Z */
6206 tcg_gen_not_i32(cpu_ZF, nzcv);
6207 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
6209 if (mask & 2) { /* C */
6210 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
6212 if (mask & 1) { /* V */
6213 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
6218 * Evaluate into flags
6219 * 31 30 29 21 15 14 10 5 4 0
6220 * +--+--+--+-----------------+---------+----+---------+------+--+------+
6221 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask |
6222 * +--+--+--+-----------------+---------+----+---------+------+--+------+
6224 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
6226 int o3_mask = extract32(insn, 0, 5);
6227 int rn = extract32(insn, 5, 5);
6228 int o2 = extract32(insn, 15, 6);
6229 int sz = extract32(insn, 14, 1);
6230 int sf_op_s = extract32(insn, 29, 3);
6231 TCGv_i32 tmp;
6232 int shift;
6234 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
6235 !dc_isar_feature(aa64_condm_4, s)) {
6236 unallocated_encoding(s);
6237 return;
6239 shift = sz ? 16 : 24; /* SETF16 or SETF8 */
6241 tmp = tcg_temp_new_i32();
6242 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
6243 tcg_gen_shli_i32(cpu_NF, tmp, shift);
6244 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
6245 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
6246 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
6249 /* Conditional compare (immediate / register)
6250 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
6251 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
6252 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
6253 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
6254 * [1] y [0] [0]
6256 static void disas_cc(DisasContext *s, uint32_t insn)
6258 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
6259 TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
6260 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
6261 DisasCompare c;
6263 if (!extract32(insn, 29, 1)) {
6264 unallocated_encoding(s);
6265 return;
6267 if (insn & (1 << 10 | 1 << 4)) {
6268 unallocated_encoding(s);
6269 return;
6271 sf = extract32(insn, 31, 1);
6272 op = extract32(insn, 30, 1);
6273 is_imm = extract32(insn, 11, 1);
6274 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
6275 cond = extract32(insn, 12, 4);
6276 rn = extract32(insn, 5, 5);
6277 nzcv = extract32(insn, 0, 4);
6279 /* Set T0 = !COND. */
6280 tcg_t0 = tcg_temp_new_i32();
6281 arm_test_cc(&c, cond);
6282 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
6284 /* Load the arguments for the new comparison. */
6285 if (is_imm) {
6286 tcg_y = tcg_temp_new_i64();
6287 tcg_gen_movi_i64(tcg_y, y);
6288 } else {
6289 tcg_y = cpu_reg(s, y);
6291 tcg_rn = cpu_reg(s, rn);
6293 /* Set the flags for the new comparison. */
6294 tcg_tmp = tcg_temp_new_i64();
6295 if (op) {
6296 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
6297 } else {
6298 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
6301 /* If COND was false, force the flags to #nzcv. Compute two masks
6302 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
6303 * For tcg hosts that support ANDC, we can make do with just T1.
6304 * In either case, allow the tcg optimizer to delete any unused mask.
6306 tcg_t1 = tcg_temp_new_i32();
6307 tcg_t2 = tcg_temp_new_i32();
6308 tcg_gen_neg_i32(tcg_t1, tcg_t0);
6309 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
6311 if (nzcv & 8) { /* N */
6312 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
6313 } else {
6314 if (TCG_TARGET_HAS_andc_i32) {
6315 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
6316 } else {
6317 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
6320 if (nzcv & 4) { /* Z */
6321 if (TCG_TARGET_HAS_andc_i32) {
6322 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
6323 } else {
6324 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
6326 } else {
6327 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
6329 if (nzcv & 2) { /* C */
6330 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
6331 } else {
6332 if (TCG_TARGET_HAS_andc_i32) {
6333 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
6334 } else {
6335 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
6338 if (nzcv & 1) { /* V */
6339 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
6340 } else {
6341 if (TCG_TARGET_HAS_andc_i32) {
6342 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
6343 } else {
6344 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
6349 /* Conditional select
6350 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
6351 * +----+----+---+-----------------+------+------+-----+------+------+
6352 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
6353 * +----+----+---+-----------------+------+------+-----+------+------+
6355 static void disas_cond_select(DisasContext *s, uint32_t insn)
6357 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
6358 TCGv_i64 tcg_rd, zero;
6359 DisasCompare64 c;
6361 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
6362 /* S == 1 or op2<1> == 1 */
6363 unallocated_encoding(s);
6364 return;
6366 sf = extract32(insn, 31, 1);
6367 else_inv = extract32(insn, 30, 1);
6368 rm = extract32(insn, 16, 5);
6369 cond = extract32(insn, 12, 4);
6370 else_inc = extract32(insn, 10, 1);
6371 rn = extract32(insn, 5, 5);
6372 rd = extract32(insn, 0, 5);
6374 tcg_rd = cpu_reg(s, rd);
6376 a64_test_cc(&c, cond);
6377 zero = tcg_constant_i64(0);
6379 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
6380 /* CSET & CSETM. */
6381 if (else_inv) {
6382 tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond),
6383 tcg_rd, c.value, zero);
6384 } else {
6385 tcg_gen_setcond_i64(tcg_invert_cond(c.cond),
6386 tcg_rd, c.value, zero);
6388 } else {
6389 TCGv_i64 t_true = cpu_reg(s, rn);
6390 TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
6391 if (else_inv && else_inc) {
6392 tcg_gen_neg_i64(t_false, t_false);
6393 } else if (else_inv) {
6394 tcg_gen_not_i64(t_false, t_false);
6395 } else if (else_inc) {
6396 tcg_gen_addi_i64(t_false, t_false, 1);
6398 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
6401 if (!sf) {
6402 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6406 static void handle_clz(DisasContext *s, unsigned int sf,
6407 unsigned int rn, unsigned int rd)
6409 TCGv_i64 tcg_rd, tcg_rn;
6410 tcg_rd = cpu_reg(s, rd);
6411 tcg_rn = cpu_reg(s, rn);
6413 if (sf) {
6414 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
6415 } else {
6416 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6417 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6418 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
6419 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6423 static void handle_cls(DisasContext *s, unsigned int sf,
6424 unsigned int rn, unsigned int rd)
6426 TCGv_i64 tcg_rd, tcg_rn;
6427 tcg_rd = cpu_reg(s, rd);
6428 tcg_rn = cpu_reg(s, rn);
6430 if (sf) {
6431 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
6432 } else {
6433 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6434 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6435 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
6436 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6440 static void handle_rbit(DisasContext *s, unsigned int sf,
6441 unsigned int rn, unsigned int rd)
6443 TCGv_i64 tcg_rd, tcg_rn;
6444 tcg_rd = cpu_reg(s, rd);
6445 tcg_rn = cpu_reg(s, rn);
6447 if (sf) {
6448 gen_helper_rbit64(tcg_rd, tcg_rn);
6449 } else {
6450 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6451 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6452 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
6453 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6457 /* REV with sf==1, opcode==3 ("REV64") */
6458 static void handle_rev64(DisasContext *s, unsigned int sf,
6459 unsigned int rn, unsigned int rd)
6461 if (!sf) {
6462 unallocated_encoding(s);
6463 return;
6465 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
6468 /* REV with sf==0, opcode==2
6469 * REV32 (sf==1, opcode==2)
6471 static void handle_rev32(DisasContext *s, unsigned int sf,
6472 unsigned int rn, unsigned int rd)
6474 TCGv_i64 tcg_rd = cpu_reg(s, rd);
6475 TCGv_i64 tcg_rn = cpu_reg(s, rn);
6477 if (sf) {
6478 tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
6479 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
6480 } else {
6481 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
6485 /* REV16 (opcode==1) */
6486 static void handle_rev16(DisasContext *s, unsigned int sf,
6487 unsigned int rn, unsigned int rd)
6489 TCGv_i64 tcg_rd = cpu_reg(s, rd);
6490 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
6491 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
6492 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
6494 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
6495 tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
6496 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
6497 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
6498 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
6501 /* Data-processing (1 source)
6502 * 31 30 29 28 21 20 16 15 10 9 5 4 0
6503 * +----+---+---+-----------------+---------+--------+------+------+
6504 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
6505 * +----+---+---+-----------------+---------+--------+------+------+
6507 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
6509 unsigned int sf, opcode, opcode2, rn, rd;
6510 TCGv_i64 tcg_rd;
6512 if (extract32(insn, 29, 1)) {
6513 unallocated_encoding(s);
6514 return;
6517 sf = extract32(insn, 31, 1);
6518 opcode = extract32(insn, 10, 6);
6519 opcode2 = extract32(insn, 16, 5);
6520 rn = extract32(insn, 5, 5);
6521 rd = extract32(insn, 0, 5);
6523 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
6525 switch (MAP(sf, opcode2, opcode)) {
6526 case MAP(0, 0x00, 0x00): /* RBIT */
6527 case MAP(1, 0x00, 0x00):
6528 handle_rbit(s, sf, rn, rd);
6529 break;
6530 case MAP(0, 0x00, 0x01): /* REV16 */
6531 case MAP(1, 0x00, 0x01):
6532 handle_rev16(s, sf, rn, rd);
6533 break;
6534 case MAP(0, 0x00, 0x02): /* REV/REV32 */
6535 case MAP(1, 0x00, 0x02):
6536 handle_rev32(s, sf, rn, rd);
6537 break;
6538 case MAP(1, 0x00, 0x03): /* REV64 */
6539 handle_rev64(s, sf, rn, rd);
6540 break;
6541 case MAP(0, 0x00, 0x04): /* CLZ */
6542 case MAP(1, 0x00, 0x04):
6543 handle_clz(s, sf, rn, rd);
6544 break;
6545 case MAP(0, 0x00, 0x05): /* CLS */
6546 case MAP(1, 0x00, 0x05):
6547 handle_cls(s, sf, rn, rd);
6548 break;
6549 case MAP(1, 0x01, 0x00): /* PACIA */
6550 if (s->pauth_active) {
6551 tcg_rd = cpu_reg(s, rd);
6552 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6553 } else if (!dc_isar_feature(aa64_pauth, s)) {
6554 goto do_unallocated;
6556 break;
6557 case MAP(1, 0x01, 0x01): /* PACIB */
6558 if (s->pauth_active) {
6559 tcg_rd = cpu_reg(s, rd);
6560 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6561 } else if (!dc_isar_feature(aa64_pauth, s)) {
6562 goto do_unallocated;
6564 break;
6565 case MAP(1, 0x01, 0x02): /* PACDA */
6566 if (s->pauth_active) {
6567 tcg_rd = cpu_reg(s, rd);
6568 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6569 } else if (!dc_isar_feature(aa64_pauth, s)) {
6570 goto do_unallocated;
6572 break;
6573 case MAP(1, 0x01, 0x03): /* PACDB */
6574 if (s->pauth_active) {
6575 tcg_rd = cpu_reg(s, rd);
6576 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6577 } else if (!dc_isar_feature(aa64_pauth, s)) {
6578 goto do_unallocated;
6580 break;
6581 case MAP(1, 0x01, 0x04): /* AUTIA */
6582 if (s->pauth_active) {
6583 tcg_rd = cpu_reg(s, rd);
6584 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6585 } else if (!dc_isar_feature(aa64_pauth, s)) {
6586 goto do_unallocated;
6588 break;
6589 case MAP(1, 0x01, 0x05): /* AUTIB */
6590 if (s->pauth_active) {
6591 tcg_rd = cpu_reg(s, rd);
6592 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6593 } else if (!dc_isar_feature(aa64_pauth, s)) {
6594 goto do_unallocated;
6596 break;
6597 case MAP(1, 0x01, 0x06): /* AUTDA */
6598 if (s->pauth_active) {
6599 tcg_rd = cpu_reg(s, rd);
6600 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6601 } else if (!dc_isar_feature(aa64_pauth, s)) {
6602 goto do_unallocated;
6604 break;
6605 case MAP(1, 0x01, 0x07): /* AUTDB */
6606 if (s->pauth_active) {
6607 tcg_rd = cpu_reg(s, rd);
6608 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6609 } else if (!dc_isar_feature(aa64_pauth, s)) {
6610 goto do_unallocated;
6612 break;
6613 case MAP(1, 0x01, 0x08): /* PACIZA */
6614 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6615 goto do_unallocated;
6616 } else if (s->pauth_active) {
6617 tcg_rd = cpu_reg(s, rd);
6618 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6620 break;
6621 case MAP(1, 0x01, 0x09): /* PACIZB */
6622 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6623 goto do_unallocated;
6624 } else if (s->pauth_active) {
6625 tcg_rd = cpu_reg(s, rd);
6626 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6628 break;
6629 case MAP(1, 0x01, 0x0a): /* PACDZA */
6630 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6631 goto do_unallocated;
6632 } else if (s->pauth_active) {
6633 tcg_rd = cpu_reg(s, rd);
6634 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6636 break;
6637 case MAP(1, 0x01, 0x0b): /* PACDZB */
6638 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6639 goto do_unallocated;
6640 } else if (s->pauth_active) {
6641 tcg_rd = cpu_reg(s, rd);
6642 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6644 break;
6645 case MAP(1, 0x01, 0x0c): /* AUTIZA */
6646 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6647 goto do_unallocated;
6648 } else if (s->pauth_active) {
6649 tcg_rd = cpu_reg(s, rd);
6650 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6652 break;
6653 case MAP(1, 0x01, 0x0d): /* AUTIZB */
6654 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6655 goto do_unallocated;
6656 } else if (s->pauth_active) {
6657 tcg_rd = cpu_reg(s, rd);
6658 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6660 break;
6661 case MAP(1, 0x01, 0x0e): /* AUTDZA */
6662 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6663 goto do_unallocated;
6664 } else if (s->pauth_active) {
6665 tcg_rd = cpu_reg(s, rd);
6666 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6668 break;
6669 case MAP(1, 0x01, 0x0f): /* AUTDZB */
6670 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6671 goto do_unallocated;
6672 } else if (s->pauth_active) {
6673 tcg_rd = cpu_reg(s, rd);
6674 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6676 break;
6677 case MAP(1, 0x01, 0x10): /* XPACI */
6678 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6679 goto do_unallocated;
6680 } else if (s->pauth_active) {
6681 tcg_rd = cpu_reg(s, rd);
6682 gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd);
6684 break;
6685 case MAP(1, 0x01, 0x11): /* XPACD */
6686 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6687 goto do_unallocated;
6688 } else if (s->pauth_active) {
6689 tcg_rd = cpu_reg(s, rd);
6690 gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd);
6692 break;
6693 default:
6694 do_unallocated:
6695 unallocated_encoding(s);
6696 break;
6699 #undef MAP
6702 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
6703 unsigned int rm, unsigned int rn, unsigned int rd)
6705 TCGv_i64 tcg_n, tcg_m, tcg_rd;
6706 tcg_rd = cpu_reg(s, rd);
6708 if (!sf && is_signed) {
6709 tcg_n = tcg_temp_new_i64();
6710 tcg_m = tcg_temp_new_i64();
6711 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
6712 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
6713 } else {
6714 tcg_n = read_cpu_reg(s, rn, sf);
6715 tcg_m = read_cpu_reg(s, rm, sf);
6718 if (is_signed) {
6719 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
6720 } else {
6721 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
6724 if (!sf) { /* zero extend final result */
6725 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6729 /* LSLV, LSRV, ASRV, RORV */
6730 static void handle_shift_reg(DisasContext *s,
6731 enum a64_shift_type shift_type, unsigned int sf,
6732 unsigned int rm, unsigned int rn, unsigned int rd)
6734 TCGv_i64 tcg_shift = tcg_temp_new_i64();
6735 TCGv_i64 tcg_rd = cpu_reg(s, rd);
6736 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
6738 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
6739 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
6742 /* CRC32[BHWX], CRC32C[BHWX] */
6743 static void handle_crc32(DisasContext *s,
6744 unsigned int sf, unsigned int sz, bool crc32c,
6745 unsigned int rm, unsigned int rn, unsigned int rd)
6747 TCGv_i64 tcg_acc, tcg_val;
6748 TCGv_i32 tcg_bytes;
6750 if (!dc_isar_feature(aa64_crc32, s)
6751 || (sf == 1 && sz != 3)
6752 || (sf == 0 && sz == 3)) {
6753 unallocated_encoding(s);
6754 return;
6757 if (sz == 3) {
6758 tcg_val = cpu_reg(s, rm);
6759 } else {
6760 uint64_t mask;
6761 switch (sz) {
6762 case 0:
6763 mask = 0xFF;
6764 break;
6765 case 1:
6766 mask = 0xFFFF;
6767 break;
6768 case 2:
6769 mask = 0xFFFFFFFF;
6770 break;
6771 default:
6772 g_assert_not_reached();
6774 tcg_val = tcg_temp_new_i64();
6775 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
6778 tcg_acc = cpu_reg(s, rn);
6779 tcg_bytes = tcg_constant_i32(1 << sz);
6781 if (crc32c) {
6782 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
6783 } else {
6784 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
6788 /* Data-processing (2 source)
6789 * 31 30 29 28 21 20 16 15 10 9 5 4 0
6790 * +----+---+---+-----------------+------+--------+------+------+
6791 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
6792 * +----+---+---+-----------------+------+--------+------+------+
6794 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
6796 unsigned int sf, rm, opcode, rn, rd, setflag;
6797 sf = extract32(insn, 31, 1);
6798 setflag = extract32(insn, 29, 1);
6799 rm = extract32(insn, 16, 5);
6800 opcode = extract32(insn, 10, 6);
6801 rn = extract32(insn, 5, 5);
6802 rd = extract32(insn, 0, 5);
6804 if (setflag && opcode != 0) {
6805 unallocated_encoding(s);
6806 return;
6809 switch (opcode) {
6810 case 0: /* SUBP(S) */
6811 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
6812 goto do_unallocated;
6813 } else {
6814 TCGv_i64 tcg_n, tcg_m, tcg_d;
6816 tcg_n = read_cpu_reg_sp(s, rn, true);
6817 tcg_m = read_cpu_reg_sp(s, rm, true);
6818 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
6819 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
6820 tcg_d = cpu_reg(s, rd);
6822 if (setflag) {
6823 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
6824 } else {
6825 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
6828 break;
6829 case 2: /* UDIV */
6830 handle_div(s, false, sf, rm, rn, rd);
6831 break;
6832 case 3: /* SDIV */
6833 handle_div(s, true, sf, rm, rn, rd);
6834 break;
6835 case 4: /* IRG */
6836 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
6837 goto do_unallocated;
6839 if (s->ata[0]) {
6840 gen_helper_irg(cpu_reg_sp(s, rd), tcg_env,
6841 cpu_reg_sp(s, rn), cpu_reg(s, rm));
6842 } else {
6843 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
6844 cpu_reg_sp(s, rn));
6846 break;
6847 case 5: /* GMI */
6848 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
6849 goto do_unallocated;
6850 } else {
6851 TCGv_i64 t = tcg_temp_new_i64();
6853 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
6854 tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
6855 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
6857 break;
6858 case 8: /* LSLV */
6859 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
6860 break;
6861 case 9: /* LSRV */
6862 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
6863 break;
6864 case 10: /* ASRV */
6865 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
6866 break;
6867 case 11: /* RORV */
6868 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
6869 break;
6870 case 12: /* PACGA */
6871 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
6872 goto do_unallocated;
6874 gen_helper_pacga(cpu_reg(s, rd), tcg_env,
6875 cpu_reg(s, rn), cpu_reg_sp(s, rm));
6876 break;
6877 case 16:
6878 case 17:
6879 case 18:
6880 case 19:
6881 case 20:
6882 case 21:
6883 case 22:
6884 case 23: /* CRC32 */
6886 int sz = extract32(opcode, 0, 2);
6887 bool crc32c = extract32(opcode, 2, 1);
6888 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
6889 break;
6891 default:
6892 do_unallocated:
6893 unallocated_encoding(s);
6894 break;
6899 * Data processing - register
6900 * 31 30 29 28 25 21 20 16 10 0
6901 * +--+---+--+---+-------+-----+-------+-------+---------+
6902 * | |op0| |op1| 1 0 1 | op2 | | op3 | |
6903 * +--+---+--+---+-------+-----+-------+-------+---------+
6905 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
6907 int op0 = extract32(insn, 30, 1);
6908 int op1 = extract32(insn, 28, 1);
6909 int op2 = extract32(insn, 21, 4);
6910 int op3 = extract32(insn, 10, 6);
6912 if (!op1) {
6913 if (op2 & 8) {
6914 if (op2 & 1) {
6915 /* Add/sub (extended register) */
6916 disas_add_sub_ext_reg(s, insn);
6917 } else {
6918 /* Add/sub (shifted register) */
6919 disas_add_sub_reg(s, insn);
6921 } else {
6922 /* Logical (shifted register) */
6923 disas_logic_reg(s, insn);
6925 return;
6928 switch (op2) {
6929 case 0x0:
6930 switch (op3) {
6931 case 0x00: /* Add/subtract (with carry) */
6932 disas_adc_sbc(s, insn);
6933 break;
6935 case 0x01: /* Rotate right into flags */
6936 case 0x21:
6937 disas_rotate_right_into_flags(s, insn);
6938 break;
6940 case 0x02: /* Evaluate into flags */
6941 case 0x12:
6942 case 0x22:
6943 case 0x32:
6944 disas_evaluate_into_flags(s, insn);
6945 break;
6947 default:
6948 goto do_unallocated;
6950 break;
6952 case 0x2: /* Conditional compare */
6953 disas_cc(s, insn); /* both imm and reg forms */
6954 break;
6956 case 0x4: /* Conditional select */
6957 disas_cond_select(s, insn);
6958 break;
6960 case 0x6: /* Data-processing */
6961 if (op0) { /* (1 source) */
6962 disas_data_proc_1src(s, insn);
6963 } else { /* (2 source) */
6964 disas_data_proc_2src(s, insn);
6966 break;
6967 case 0x8 ... 0xf: /* (3 source) */
6968 disas_data_proc_3src(s, insn);
6969 break;
6971 default:
6972 do_unallocated:
6973 unallocated_encoding(s);
6974 break;
6978 static void handle_fp_compare(DisasContext *s, int size,
6979 unsigned int rn, unsigned int rm,
6980 bool cmp_with_zero, bool signal_all_nans)
6982 TCGv_i64 tcg_flags = tcg_temp_new_i64();
6983 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
6985 if (size == MO_64) {
6986 TCGv_i64 tcg_vn, tcg_vm;
6988 tcg_vn = read_fp_dreg(s, rn);
6989 if (cmp_with_zero) {
6990 tcg_vm = tcg_constant_i64(0);
6991 } else {
6992 tcg_vm = read_fp_dreg(s, rm);
6994 if (signal_all_nans) {
6995 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6996 } else {
6997 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6999 } else {
7000 TCGv_i32 tcg_vn = tcg_temp_new_i32();
7001 TCGv_i32 tcg_vm = tcg_temp_new_i32();
7003 read_vec_element_i32(s, tcg_vn, rn, 0, size);
7004 if (cmp_with_zero) {
7005 tcg_gen_movi_i32(tcg_vm, 0);
7006 } else {
7007 read_vec_element_i32(s, tcg_vm, rm, 0, size);
7010 switch (size) {
7011 case MO_32:
7012 if (signal_all_nans) {
7013 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7014 } else {
7015 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7017 break;
7018 case MO_16:
7019 if (signal_all_nans) {
7020 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7021 } else {
7022 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7024 break;
7025 default:
7026 g_assert_not_reached();
7030 gen_set_nzcv(tcg_flags);
7033 /* Floating point compare
7034 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
7035 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
7036 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
7037 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
7039 static void disas_fp_compare(DisasContext *s, uint32_t insn)
7041 unsigned int mos, type, rm, op, rn, opc, op2r;
7042 int size;
7044 mos = extract32(insn, 29, 3);
7045 type = extract32(insn, 22, 2);
7046 rm = extract32(insn, 16, 5);
7047 op = extract32(insn, 14, 2);
7048 rn = extract32(insn, 5, 5);
7049 opc = extract32(insn, 3, 2);
7050 op2r = extract32(insn, 0, 3);
7052 if (mos || op || op2r) {
7053 unallocated_encoding(s);
7054 return;
7057 switch (type) {
7058 case 0:
7059 size = MO_32;
7060 break;
7061 case 1:
7062 size = MO_64;
7063 break;
7064 case 3:
7065 size = MO_16;
7066 if (dc_isar_feature(aa64_fp16, s)) {
7067 break;
7069 /* fallthru */
7070 default:
7071 unallocated_encoding(s);
7072 return;
7075 if (!fp_access_check(s)) {
7076 return;
7079 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
7082 /* Floating point conditional compare
7083 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
7084 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
7085 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
7086 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
7088 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
7090 unsigned int mos, type, rm, cond, rn, op, nzcv;
7091 TCGLabel *label_continue = NULL;
7092 int size;
7094 mos = extract32(insn, 29, 3);
7095 type = extract32(insn, 22, 2);
7096 rm = extract32(insn, 16, 5);
7097 cond = extract32(insn, 12, 4);
7098 rn = extract32(insn, 5, 5);
7099 op = extract32(insn, 4, 1);
7100 nzcv = extract32(insn, 0, 4);
7102 if (mos) {
7103 unallocated_encoding(s);
7104 return;
7107 switch (type) {
7108 case 0:
7109 size = MO_32;
7110 break;
7111 case 1:
7112 size = MO_64;
7113 break;
7114 case 3:
7115 size = MO_16;
7116 if (dc_isar_feature(aa64_fp16, s)) {
7117 break;
7119 /* fallthru */
7120 default:
7121 unallocated_encoding(s);
7122 return;
7125 if (!fp_access_check(s)) {
7126 return;
7129 if (cond < 0x0e) { /* not always */
7130 TCGLabel *label_match = gen_new_label();
7131 label_continue = gen_new_label();
7132 arm_gen_test_cc(cond, label_match);
7133 /* nomatch: */
7134 gen_set_nzcv(tcg_constant_i64(nzcv << 28));
7135 tcg_gen_br(label_continue);
7136 gen_set_label(label_match);
7139 handle_fp_compare(s, size, rn, rm, false, op);
7141 if (cond < 0x0e) {
7142 gen_set_label(label_continue);
7146 /* Floating point conditional select
7147 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
7148 * +---+---+---+-----------+------+---+------+------+-----+------+------+
7149 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
7150 * +---+---+---+-----------+------+---+------+------+-----+------+------+
7152 static void disas_fp_csel(DisasContext *s, uint32_t insn)
7154 unsigned int mos, type, rm, cond, rn, rd;
7155 TCGv_i64 t_true, t_false;
7156 DisasCompare64 c;
7157 MemOp sz;
7159 mos = extract32(insn, 29, 3);
7160 type = extract32(insn, 22, 2);
7161 rm = extract32(insn, 16, 5);
7162 cond = extract32(insn, 12, 4);
7163 rn = extract32(insn, 5, 5);
7164 rd = extract32(insn, 0, 5);
7166 if (mos) {
7167 unallocated_encoding(s);
7168 return;
7171 switch (type) {
7172 case 0:
7173 sz = MO_32;
7174 break;
7175 case 1:
7176 sz = MO_64;
7177 break;
7178 case 3:
7179 sz = MO_16;
7180 if (dc_isar_feature(aa64_fp16, s)) {
7181 break;
7183 /* fallthru */
7184 default:
7185 unallocated_encoding(s);
7186 return;
7189 if (!fp_access_check(s)) {
7190 return;
7193 /* Zero extend sreg & hreg inputs to 64 bits now. */
7194 t_true = tcg_temp_new_i64();
7195 t_false = tcg_temp_new_i64();
7196 read_vec_element(s, t_true, rn, 0, sz);
7197 read_vec_element(s, t_false, rm, 0, sz);
7199 a64_test_cc(&c, cond);
7200 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
7201 t_true, t_false);
7203 /* Note that sregs & hregs write back zeros to the high bits,
7204 and we've already done the zero-extension. */
7205 write_fp_dreg(s, rd, t_true);
7208 /* Floating-point data-processing (1 source) - half precision */
7209 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
7211 TCGv_ptr fpst = NULL;
7212 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
7213 TCGv_i32 tcg_res = tcg_temp_new_i32();
7215 switch (opcode) {
7216 case 0x0: /* FMOV */
7217 tcg_gen_mov_i32(tcg_res, tcg_op);
7218 break;
7219 case 0x1: /* FABS */
7220 gen_vfp_absh(tcg_res, tcg_op);
7221 break;
7222 case 0x2: /* FNEG */
7223 gen_vfp_negh(tcg_res, tcg_op);
7224 break;
7225 case 0x3: /* FSQRT */
7226 fpst = fpstatus_ptr(FPST_FPCR_F16);
7227 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
7228 break;
7229 case 0x8: /* FRINTN */
7230 case 0x9: /* FRINTP */
7231 case 0xa: /* FRINTM */
7232 case 0xb: /* FRINTZ */
7233 case 0xc: /* FRINTA */
7235 TCGv_i32 tcg_rmode;
7237 fpst = fpstatus_ptr(FPST_FPCR_F16);
7238 tcg_rmode = gen_set_rmode(opcode & 7, fpst);
7239 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
7240 gen_restore_rmode(tcg_rmode, fpst);
7241 break;
7243 case 0xe: /* FRINTX */
7244 fpst = fpstatus_ptr(FPST_FPCR_F16);
7245 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
7246 break;
7247 case 0xf: /* FRINTI */
7248 fpst = fpstatus_ptr(FPST_FPCR_F16);
7249 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
7250 break;
7251 default:
7252 g_assert_not_reached();
7255 write_fp_sreg(s, rd, tcg_res);
7258 /* Floating-point data-processing (1 source) - single precision */
7259 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
7261 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
7262 TCGv_i32 tcg_op, tcg_res;
7263 TCGv_ptr fpst;
7264 int rmode = -1;
7266 tcg_op = read_fp_sreg(s, rn);
7267 tcg_res = tcg_temp_new_i32();
7269 switch (opcode) {
7270 case 0x0: /* FMOV */
7271 tcg_gen_mov_i32(tcg_res, tcg_op);
7272 goto done;
7273 case 0x1: /* FABS */
7274 gen_vfp_abss(tcg_res, tcg_op);
7275 goto done;
7276 case 0x2: /* FNEG */
7277 gen_vfp_negs(tcg_res, tcg_op);
7278 goto done;
7279 case 0x3: /* FSQRT */
7280 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
7281 goto done;
7282 case 0x6: /* BFCVT */
7283 gen_fpst = gen_helper_bfcvt;
7284 break;
7285 case 0x8: /* FRINTN */
7286 case 0x9: /* FRINTP */
7287 case 0xa: /* FRINTM */
7288 case 0xb: /* FRINTZ */
7289 case 0xc: /* FRINTA */
7290 rmode = opcode & 7;
7291 gen_fpst = gen_helper_rints;
7292 break;
7293 case 0xe: /* FRINTX */
7294 gen_fpst = gen_helper_rints_exact;
7295 break;
7296 case 0xf: /* FRINTI */
7297 gen_fpst = gen_helper_rints;
7298 break;
7299 case 0x10: /* FRINT32Z */
7300 rmode = FPROUNDING_ZERO;
7301 gen_fpst = gen_helper_frint32_s;
7302 break;
7303 case 0x11: /* FRINT32X */
7304 gen_fpst = gen_helper_frint32_s;
7305 break;
7306 case 0x12: /* FRINT64Z */
7307 rmode = FPROUNDING_ZERO;
7308 gen_fpst = gen_helper_frint64_s;
7309 break;
7310 case 0x13: /* FRINT64X */
7311 gen_fpst = gen_helper_frint64_s;
7312 break;
7313 default:
7314 g_assert_not_reached();
7317 fpst = fpstatus_ptr(FPST_FPCR);
7318 if (rmode >= 0) {
7319 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
7320 gen_fpst(tcg_res, tcg_op, fpst);
7321 gen_restore_rmode(tcg_rmode, fpst);
7322 } else {
7323 gen_fpst(tcg_res, tcg_op, fpst);
7326 done:
7327 write_fp_sreg(s, rd, tcg_res);
7330 /* Floating-point data-processing (1 source) - double precision */
7331 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
7333 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
7334 TCGv_i64 tcg_op, tcg_res;
7335 TCGv_ptr fpst;
7336 int rmode = -1;
7338 switch (opcode) {
7339 case 0x0: /* FMOV */
7340 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
7341 return;
7344 tcg_op = read_fp_dreg(s, rn);
7345 tcg_res = tcg_temp_new_i64();
7347 switch (opcode) {
7348 case 0x1: /* FABS */
7349 gen_vfp_absd(tcg_res, tcg_op);
7350 goto done;
7351 case 0x2: /* FNEG */
7352 gen_vfp_negd(tcg_res, tcg_op);
7353 goto done;
7354 case 0x3: /* FSQRT */
7355 gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env);
7356 goto done;
7357 case 0x8: /* FRINTN */
7358 case 0x9: /* FRINTP */
7359 case 0xa: /* FRINTM */
7360 case 0xb: /* FRINTZ */
7361 case 0xc: /* FRINTA */
7362 rmode = opcode & 7;
7363 gen_fpst = gen_helper_rintd;
7364 break;
7365 case 0xe: /* FRINTX */
7366 gen_fpst = gen_helper_rintd_exact;
7367 break;
7368 case 0xf: /* FRINTI */
7369 gen_fpst = gen_helper_rintd;
7370 break;
7371 case 0x10: /* FRINT32Z */
7372 rmode = FPROUNDING_ZERO;
7373 gen_fpst = gen_helper_frint32_d;
7374 break;
7375 case 0x11: /* FRINT32X */
7376 gen_fpst = gen_helper_frint32_d;
7377 break;
7378 case 0x12: /* FRINT64Z */
7379 rmode = FPROUNDING_ZERO;
7380 gen_fpst = gen_helper_frint64_d;
7381 break;
7382 case 0x13: /* FRINT64X */
7383 gen_fpst = gen_helper_frint64_d;
7384 break;
7385 default:
7386 g_assert_not_reached();
7389 fpst = fpstatus_ptr(FPST_FPCR);
7390 if (rmode >= 0) {
7391 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
7392 gen_fpst(tcg_res, tcg_op, fpst);
7393 gen_restore_rmode(tcg_rmode, fpst);
7394 } else {
7395 gen_fpst(tcg_res, tcg_op, fpst);
7398 done:
7399 write_fp_dreg(s, rd, tcg_res);
7402 static void handle_fp_fcvt(DisasContext *s, int opcode,
7403 int rd, int rn, int dtype, int ntype)
7405 switch (ntype) {
7406 case 0x0:
7408 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
7409 if (dtype == 1) {
7410 /* Single to double */
7411 TCGv_i64 tcg_rd = tcg_temp_new_i64();
7412 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env);
7413 write_fp_dreg(s, rd, tcg_rd);
7414 } else {
7415 /* Single to half */
7416 TCGv_i32 tcg_rd = tcg_temp_new_i32();
7417 TCGv_i32 ahp = get_ahp_flag();
7418 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7420 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
7421 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
7422 write_fp_sreg(s, rd, tcg_rd);
7424 break;
7426 case 0x1:
7428 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
7429 TCGv_i32 tcg_rd = tcg_temp_new_i32();
7430 if (dtype == 0) {
7431 /* Double to single */
7432 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env);
7433 } else {
7434 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7435 TCGv_i32 ahp = get_ahp_flag();
7436 /* Double to half */
7437 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
7438 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
7440 write_fp_sreg(s, rd, tcg_rd);
7441 break;
7443 case 0x3:
7445 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
7446 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
7447 TCGv_i32 tcg_ahp = get_ahp_flag();
7448 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
7449 if (dtype == 0) {
7450 /* Half to single */
7451 TCGv_i32 tcg_rd = tcg_temp_new_i32();
7452 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
7453 write_fp_sreg(s, rd, tcg_rd);
7454 } else {
7455 /* Half to double */
7456 TCGv_i64 tcg_rd = tcg_temp_new_i64();
7457 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
7458 write_fp_dreg(s, rd, tcg_rd);
7460 break;
7462 default:
7463 g_assert_not_reached();
7467 /* Floating point data-processing (1 source)
7468 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
7469 * +---+---+---+-----------+------+---+--------+-----------+------+------+
7470 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
7471 * +---+---+---+-----------+------+---+--------+-----------+------+------+
7473 static void disas_fp_1src(DisasContext *s, uint32_t insn)
7475 int mos = extract32(insn, 29, 3);
7476 int type = extract32(insn, 22, 2);
7477 int opcode = extract32(insn, 15, 6);
7478 int rn = extract32(insn, 5, 5);
7479 int rd = extract32(insn, 0, 5);
7481 if (mos) {
7482 goto do_unallocated;
7485 switch (opcode) {
7486 case 0x4: case 0x5: case 0x7:
7488 /* FCVT between half, single and double precision */
7489 int dtype = extract32(opcode, 0, 2);
7490 if (type == 2 || dtype == type) {
7491 goto do_unallocated;
7493 if (!fp_access_check(s)) {
7494 return;
7497 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
7498 break;
7501 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
7502 if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
7503 goto do_unallocated;
7505 /* fall through */
7506 case 0x0 ... 0x3:
7507 case 0x8 ... 0xc:
7508 case 0xe ... 0xf:
7509 /* 32-to-32 and 64-to-64 ops */
7510 switch (type) {
7511 case 0:
7512 if (!fp_access_check(s)) {
7513 return;
7515 handle_fp_1src_single(s, opcode, rd, rn);
7516 break;
7517 case 1:
7518 if (!fp_access_check(s)) {
7519 return;
7521 handle_fp_1src_double(s, opcode, rd, rn);
7522 break;
7523 case 3:
7524 if (!dc_isar_feature(aa64_fp16, s)) {
7525 goto do_unallocated;
7528 if (!fp_access_check(s)) {
7529 return;
7531 handle_fp_1src_half(s, opcode, rd, rn);
7532 break;
7533 default:
7534 goto do_unallocated;
7536 break;
7538 case 0x6:
7539 switch (type) {
7540 case 1: /* BFCVT */
7541 if (!dc_isar_feature(aa64_bf16, s)) {
7542 goto do_unallocated;
7544 if (!fp_access_check(s)) {
7545 return;
7547 handle_fp_1src_single(s, opcode, rd, rn);
7548 break;
7549 default:
7550 goto do_unallocated;
7552 break;
7554 default:
7555 do_unallocated:
7556 unallocated_encoding(s);
7557 break;
7561 /* Floating-point data-processing (3 source) - single precision */
7562 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
7563 int rd, int rn, int rm, int ra)
7565 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
7566 TCGv_i32 tcg_res = tcg_temp_new_i32();
7567 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7569 tcg_op1 = read_fp_sreg(s, rn);
7570 tcg_op2 = read_fp_sreg(s, rm);
7571 tcg_op3 = read_fp_sreg(s, ra);
7573 /* These are fused multiply-add, and must be done as one
7574 * floating point operation with no rounding between the
7575 * multiplication and addition steps.
7576 * NB that doing the negations here as separate steps is
7577 * correct : an input NaN should come out with its sign bit
7578 * flipped if it is a negated-input.
7580 if (o1 == true) {
7581 gen_vfp_negs(tcg_op3, tcg_op3);
7584 if (o0 != o1) {
7585 gen_vfp_negs(tcg_op1, tcg_op1);
7588 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
7590 write_fp_sreg(s, rd, tcg_res);
7593 /* Floating-point data-processing (3 source) - double precision */
7594 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
7595 int rd, int rn, int rm, int ra)
7597 TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
7598 TCGv_i64 tcg_res = tcg_temp_new_i64();
7599 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7601 tcg_op1 = read_fp_dreg(s, rn);
7602 tcg_op2 = read_fp_dreg(s, rm);
7603 tcg_op3 = read_fp_dreg(s, ra);
7605 /* These are fused multiply-add, and must be done as one
7606 * floating point operation with no rounding between the
7607 * multiplication and addition steps.
7608 * NB that doing the negations here as separate steps is
7609 * correct : an input NaN should come out with its sign bit
7610 * flipped if it is a negated-input.
7612 if (o1 == true) {
7613 gen_vfp_negd(tcg_op3, tcg_op3);
7616 if (o0 != o1) {
7617 gen_vfp_negd(tcg_op1, tcg_op1);
7620 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
7622 write_fp_dreg(s, rd, tcg_res);
7625 /* Floating-point data-processing (3 source) - half precision */
7626 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
7627 int rd, int rn, int rm, int ra)
7629 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
7630 TCGv_i32 tcg_res = tcg_temp_new_i32();
7631 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16);
7633 tcg_op1 = read_fp_hreg(s, rn);
7634 tcg_op2 = read_fp_hreg(s, rm);
7635 tcg_op3 = read_fp_hreg(s, ra);
7637 /* These are fused multiply-add, and must be done as one
7638 * floating point operation with no rounding between the
7639 * multiplication and addition steps.
7640 * NB that doing the negations here as separate steps is
7641 * correct : an input NaN should come out with its sign bit
7642 * flipped if it is a negated-input.
7644 if (o1 == true) {
7645 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
7648 if (o0 != o1) {
7649 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
7652 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
7654 write_fp_sreg(s, rd, tcg_res);
7657 /* Floating point data-processing (3 source)
7658 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
7659 * +---+---+---+-----------+------+----+------+----+------+------+------+
7660 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
7661 * +---+---+---+-----------+------+----+------+----+------+------+------+
7663 static void disas_fp_3src(DisasContext *s, uint32_t insn)
7665 int mos = extract32(insn, 29, 3);
7666 int type = extract32(insn, 22, 2);
7667 int rd = extract32(insn, 0, 5);
7668 int rn = extract32(insn, 5, 5);
7669 int ra = extract32(insn, 10, 5);
7670 int rm = extract32(insn, 16, 5);
7671 bool o0 = extract32(insn, 15, 1);
7672 bool o1 = extract32(insn, 21, 1);
7674 if (mos) {
7675 unallocated_encoding(s);
7676 return;
7679 switch (type) {
7680 case 0:
7681 if (!fp_access_check(s)) {
7682 return;
7684 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
7685 break;
7686 case 1:
7687 if (!fp_access_check(s)) {
7688 return;
7690 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
7691 break;
7692 case 3:
7693 if (!dc_isar_feature(aa64_fp16, s)) {
7694 unallocated_encoding(s);
7695 return;
7697 if (!fp_access_check(s)) {
7698 return;
7700 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
7701 break;
7702 default:
7703 unallocated_encoding(s);
7707 /* Floating point immediate
7708 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
7709 * +---+---+---+-----------+------+---+------------+-------+------+------+
7710 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
7711 * +---+---+---+-----------+------+---+------------+-------+------+------+
7713 static void disas_fp_imm(DisasContext *s, uint32_t insn)
7715 int rd = extract32(insn, 0, 5);
7716 int imm5 = extract32(insn, 5, 5);
7717 int imm8 = extract32(insn, 13, 8);
7718 int type = extract32(insn, 22, 2);
7719 int mos = extract32(insn, 29, 3);
7720 uint64_t imm;
7721 MemOp sz;
7723 if (mos || imm5) {
7724 unallocated_encoding(s);
7725 return;
7728 switch (type) {
7729 case 0:
7730 sz = MO_32;
7731 break;
7732 case 1:
7733 sz = MO_64;
7734 break;
7735 case 3:
7736 sz = MO_16;
7737 if (dc_isar_feature(aa64_fp16, s)) {
7738 break;
7740 /* fallthru */
7741 default:
7742 unallocated_encoding(s);
7743 return;
7746 if (!fp_access_check(s)) {
7747 return;
7750 imm = vfp_expand_imm(sz, imm8);
7751 write_fp_dreg(s, rd, tcg_constant_i64(imm));
7754 /* Handle floating point <=> fixed point conversions. Note that we can
7755 * also deal with fp <=> integer conversions as a special case (scale == 64)
7756 * OPTME: consider handling that special case specially or at least skipping
7757 * the call to scalbn in the helpers for zero shifts.
7759 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
7760 bool itof, int rmode, int scale, int sf, int type)
7762 bool is_signed = !(opcode & 1);
7763 TCGv_ptr tcg_fpstatus;
7764 TCGv_i32 tcg_shift, tcg_single;
7765 TCGv_i64 tcg_double;
7767 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
7769 tcg_shift = tcg_constant_i32(64 - scale);
7771 if (itof) {
7772 TCGv_i64 tcg_int = cpu_reg(s, rn);
7773 if (!sf) {
7774 TCGv_i64 tcg_extend = tcg_temp_new_i64();
7776 if (is_signed) {
7777 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
7778 } else {
7779 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
7782 tcg_int = tcg_extend;
7785 switch (type) {
7786 case 1: /* float64 */
7787 tcg_double = tcg_temp_new_i64();
7788 if (is_signed) {
7789 gen_helper_vfp_sqtod(tcg_double, tcg_int,
7790 tcg_shift, tcg_fpstatus);
7791 } else {
7792 gen_helper_vfp_uqtod(tcg_double, tcg_int,
7793 tcg_shift, tcg_fpstatus);
7795 write_fp_dreg(s, rd, tcg_double);
7796 break;
7798 case 0: /* float32 */
7799 tcg_single = tcg_temp_new_i32();
7800 if (is_signed) {
7801 gen_helper_vfp_sqtos(tcg_single, tcg_int,
7802 tcg_shift, tcg_fpstatus);
7803 } else {
7804 gen_helper_vfp_uqtos(tcg_single, tcg_int,
7805 tcg_shift, tcg_fpstatus);
7807 write_fp_sreg(s, rd, tcg_single);
7808 break;
7810 case 3: /* float16 */
7811 tcg_single = tcg_temp_new_i32();
7812 if (is_signed) {
7813 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
7814 tcg_shift, tcg_fpstatus);
7815 } else {
7816 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
7817 tcg_shift, tcg_fpstatus);
7819 write_fp_sreg(s, rd, tcg_single);
7820 break;
7822 default:
7823 g_assert_not_reached();
7825 } else {
7826 TCGv_i64 tcg_int = cpu_reg(s, rd);
7827 TCGv_i32 tcg_rmode;
7829 if (extract32(opcode, 2, 1)) {
7830 /* There are too many rounding modes to all fit into rmode,
7831 * so FCVTA[US] is a special case.
7833 rmode = FPROUNDING_TIEAWAY;
7836 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
7838 switch (type) {
7839 case 1: /* float64 */
7840 tcg_double = read_fp_dreg(s, rn);
7841 if (is_signed) {
7842 if (!sf) {
7843 gen_helper_vfp_tosld(tcg_int, tcg_double,
7844 tcg_shift, tcg_fpstatus);
7845 } else {
7846 gen_helper_vfp_tosqd(tcg_int, tcg_double,
7847 tcg_shift, tcg_fpstatus);
7849 } else {
7850 if (!sf) {
7851 gen_helper_vfp_tould(tcg_int, tcg_double,
7852 tcg_shift, tcg_fpstatus);
7853 } else {
7854 gen_helper_vfp_touqd(tcg_int, tcg_double,
7855 tcg_shift, tcg_fpstatus);
7858 if (!sf) {
7859 tcg_gen_ext32u_i64(tcg_int, tcg_int);
7861 break;
7863 case 0: /* float32 */
7864 tcg_single = read_fp_sreg(s, rn);
7865 if (sf) {
7866 if (is_signed) {
7867 gen_helper_vfp_tosqs(tcg_int, tcg_single,
7868 tcg_shift, tcg_fpstatus);
7869 } else {
7870 gen_helper_vfp_touqs(tcg_int, tcg_single,
7871 tcg_shift, tcg_fpstatus);
7873 } else {
7874 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7875 if (is_signed) {
7876 gen_helper_vfp_tosls(tcg_dest, tcg_single,
7877 tcg_shift, tcg_fpstatus);
7878 } else {
7879 gen_helper_vfp_touls(tcg_dest, tcg_single,
7880 tcg_shift, tcg_fpstatus);
7882 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7884 break;
7886 case 3: /* float16 */
7887 tcg_single = read_fp_sreg(s, rn);
7888 if (sf) {
7889 if (is_signed) {
7890 gen_helper_vfp_tosqh(tcg_int, tcg_single,
7891 tcg_shift, tcg_fpstatus);
7892 } else {
7893 gen_helper_vfp_touqh(tcg_int, tcg_single,
7894 tcg_shift, tcg_fpstatus);
7896 } else {
7897 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7898 if (is_signed) {
7899 gen_helper_vfp_toslh(tcg_dest, tcg_single,
7900 tcg_shift, tcg_fpstatus);
7901 } else {
7902 gen_helper_vfp_toulh(tcg_dest, tcg_single,
7903 tcg_shift, tcg_fpstatus);
7905 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7907 break;
7909 default:
7910 g_assert_not_reached();
7913 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
7917 /* Floating point <-> fixed point conversions
7918 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
7919 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7920 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
7921 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7923 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
7925 int rd = extract32(insn, 0, 5);
7926 int rn = extract32(insn, 5, 5);
7927 int scale = extract32(insn, 10, 6);
7928 int opcode = extract32(insn, 16, 3);
7929 int rmode = extract32(insn, 19, 2);
7930 int type = extract32(insn, 22, 2);
7931 bool sbit = extract32(insn, 29, 1);
7932 bool sf = extract32(insn, 31, 1);
7933 bool itof;
7935 if (sbit || (!sf && scale < 32)) {
7936 unallocated_encoding(s);
7937 return;
7940 switch (type) {
7941 case 0: /* float32 */
7942 case 1: /* float64 */
7943 break;
7944 case 3: /* float16 */
7945 if (dc_isar_feature(aa64_fp16, s)) {
7946 break;
7948 /* fallthru */
7949 default:
7950 unallocated_encoding(s);
7951 return;
7954 switch ((rmode << 3) | opcode) {
7955 case 0x2: /* SCVTF */
7956 case 0x3: /* UCVTF */
7957 itof = true;
7958 break;
7959 case 0x18: /* FCVTZS */
7960 case 0x19: /* FCVTZU */
7961 itof = false;
7962 break;
7963 default:
7964 unallocated_encoding(s);
7965 return;
7968 if (!fp_access_check(s)) {
7969 return;
7972 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
7975 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
7977 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
7978 * without conversion.
7981 if (itof) {
7982 TCGv_i64 tcg_rn = cpu_reg(s, rn);
7983 TCGv_i64 tmp;
7985 switch (type) {
7986 case 0:
7987 /* 32 bit */
7988 tmp = tcg_temp_new_i64();
7989 tcg_gen_ext32u_i64(tmp, tcg_rn);
7990 write_fp_dreg(s, rd, tmp);
7991 break;
7992 case 1:
7993 /* 64 bit */
7994 write_fp_dreg(s, rd, tcg_rn);
7995 break;
7996 case 2:
7997 /* 64 bit to top half. */
7998 tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd));
7999 clear_vec_high(s, true, rd);
8000 break;
8001 case 3:
8002 /* 16 bit */
8003 tmp = tcg_temp_new_i64();
8004 tcg_gen_ext16u_i64(tmp, tcg_rn);
8005 write_fp_dreg(s, rd, tmp);
8006 break;
8007 default:
8008 g_assert_not_reached();
8010 } else {
8011 TCGv_i64 tcg_rd = cpu_reg(s, rd);
8013 switch (type) {
8014 case 0:
8015 /* 32 bit */
8016 tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32));
8017 break;
8018 case 1:
8019 /* 64 bit */
8020 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64));
8021 break;
8022 case 2:
8023 /* 64 bits from top half */
8024 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn));
8025 break;
8026 case 3:
8027 /* 16 bit */
8028 tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16));
8029 break;
8030 default:
8031 g_assert_not_reached();
8036 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
8038 TCGv_i64 t = read_fp_dreg(s, rn);
8039 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
8041 gen_helper_fjcvtzs(t, t, fpstatus);
8043 tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
8044 tcg_gen_extrh_i64_i32(cpu_ZF, t);
8045 tcg_gen_movi_i32(cpu_CF, 0);
8046 tcg_gen_movi_i32(cpu_NF, 0);
8047 tcg_gen_movi_i32(cpu_VF, 0);
8050 /* Floating point <-> integer conversions
8051 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
8052 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
8053 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
8054 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
8056 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
8058 int rd = extract32(insn, 0, 5);
8059 int rn = extract32(insn, 5, 5);
8060 int opcode = extract32(insn, 16, 3);
8061 int rmode = extract32(insn, 19, 2);
8062 int type = extract32(insn, 22, 2);
8063 bool sbit = extract32(insn, 29, 1);
8064 bool sf = extract32(insn, 31, 1);
8065 bool itof = false;
8067 if (sbit) {
8068 goto do_unallocated;
8071 switch (opcode) {
8072 case 2: /* SCVTF */
8073 case 3: /* UCVTF */
8074 itof = true;
8075 /* fallthru */
8076 case 4: /* FCVTAS */
8077 case 5: /* FCVTAU */
8078 if (rmode != 0) {
8079 goto do_unallocated;
8081 /* fallthru */
8082 case 0: /* FCVT[NPMZ]S */
8083 case 1: /* FCVT[NPMZ]U */
8084 switch (type) {
8085 case 0: /* float32 */
8086 case 1: /* float64 */
8087 break;
8088 case 3: /* float16 */
8089 if (!dc_isar_feature(aa64_fp16, s)) {
8090 goto do_unallocated;
8092 break;
8093 default:
8094 goto do_unallocated;
8096 if (!fp_access_check(s)) {
8097 return;
8099 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
8100 break;
8102 default:
8103 switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
8104 case 0b01100110: /* FMOV half <-> 32-bit int */
8105 case 0b01100111:
8106 case 0b11100110: /* FMOV half <-> 64-bit int */
8107 case 0b11100111:
8108 if (!dc_isar_feature(aa64_fp16, s)) {
8109 goto do_unallocated;
8111 /* fallthru */
8112 case 0b00000110: /* FMOV 32-bit */
8113 case 0b00000111:
8114 case 0b10100110: /* FMOV 64-bit */
8115 case 0b10100111:
8116 case 0b11001110: /* FMOV top half of 128-bit */
8117 case 0b11001111:
8118 if (!fp_access_check(s)) {
8119 return;
8121 itof = opcode & 1;
8122 handle_fmov(s, rd, rn, type, itof);
8123 break;
8125 case 0b00111110: /* FJCVTZS */
8126 if (!dc_isar_feature(aa64_jscvt, s)) {
8127 goto do_unallocated;
8128 } else if (fp_access_check(s)) {
8129 handle_fjcvtzs(s, rd, rn);
8131 break;
8133 default:
8134 do_unallocated:
8135 unallocated_encoding(s);
8136 return;
8138 break;
8142 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
8143 * 31 30 29 28 25 24 0
8144 * +---+---+---+---------+-----------------------------+
8145 * | | 0 | | 1 1 1 1 | |
8146 * +---+---+---+---------+-----------------------------+
8148 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
8150 if (extract32(insn, 24, 1)) {
8151 /* Floating point data-processing (3 source) */
8152 disas_fp_3src(s, insn);
8153 } else if (extract32(insn, 21, 1) == 0) {
8154 /* Floating point to fixed point conversions */
8155 disas_fp_fixed_conv(s, insn);
8156 } else {
8157 switch (extract32(insn, 10, 2)) {
8158 case 1:
8159 /* Floating point conditional compare */
8160 disas_fp_ccomp(s, insn);
8161 break;
8162 case 2:
8163 /* Floating point data-processing (2 source) */
8164 unallocated_encoding(s); /* in decodetree */
8165 break;
8166 case 3:
8167 /* Floating point conditional select */
8168 disas_fp_csel(s, insn);
8169 break;
8170 case 0:
8171 switch (ctz32(extract32(insn, 12, 4))) {
8172 case 0: /* [15:12] == xxx1 */
8173 /* Floating point immediate */
8174 disas_fp_imm(s, insn);
8175 break;
8176 case 1: /* [15:12] == xx10 */
8177 /* Floating point compare */
8178 disas_fp_compare(s, insn);
8179 break;
8180 case 2: /* [15:12] == x100 */
8181 /* Floating point data-processing (1 source) */
8182 disas_fp_1src(s, insn);
8183 break;
8184 case 3: /* [15:12] == 1000 */
8185 unallocated_encoding(s);
8186 break;
8187 default: /* [15:12] == 0000 */
8188 /* Floating point <-> integer conversions */
8189 disas_fp_int_conv(s, insn);
8190 break;
8192 break;
8197 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
8198 int pos)
8200 /* Extract 64 bits from the middle of two concatenated 64 bit
8201 * vector register slices left:right. The extracted bits start
8202 * at 'pos' bits into the right (least significant) side.
8203 * We return the result in tcg_right, and guarantee not to
8204 * trash tcg_left.
8206 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
8207 assert(pos > 0 && pos < 64);
8209 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
8210 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
8211 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
8214 /* EXT
8215 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
8216 * +---+---+-------------+-----+---+------+---+------+---+------+------+
8217 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
8218 * +---+---+-------------+-----+---+------+---+------+---+------+------+
8220 static void disas_simd_ext(DisasContext *s, uint32_t insn)
8222 int is_q = extract32(insn, 30, 1);
8223 int op2 = extract32(insn, 22, 2);
8224 int imm4 = extract32(insn, 11, 4);
8225 int rm = extract32(insn, 16, 5);
8226 int rn = extract32(insn, 5, 5);
8227 int rd = extract32(insn, 0, 5);
8228 int pos = imm4 << 3;
8229 TCGv_i64 tcg_resl, tcg_resh;
8231 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
8232 unallocated_encoding(s);
8233 return;
8236 if (!fp_access_check(s)) {
8237 return;
8240 tcg_resh = tcg_temp_new_i64();
8241 tcg_resl = tcg_temp_new_i64();
8243 /* Vd gets bits starting at pos bits into Vm:Vn. This is
8244 * either extracting 128 bits from a 128:128 concatenation, or
8245 * extracting 64 bits from a 64:64 concatenation.
8247 if (!is_q) {
8248 read_vec_element(s, tcg_resl, rn, 0, MO_64);
8249 if (pos != 0) {
8250 read_vec_element(s, tcg_resh, rm, 0, MO_64);
8251 do_ext64(s, tcg_resh, tcg_resl, pos);
8253 } else {
8254 TCGv_i64 tcg_hh;
8255 typedef struct {
8256 int reg;
8257 int elt;
8258 } EltPosns;
8259 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
8260 EltPosns *elt = eltposns;
8262 if (pos >= 64) {
8263 elt++;
8264 pos -= 64;
8267 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
8268 elt++;
8269 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
8270 elt++;
8271 if (pos != 0) {
8272 do_ext64(s, tcg_resh, tcg_resl, pos);
8273 tcg_hh = tcg_temp_new_i64();
8274 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
8275 do_ext64(s, tcg_hh, tcg_resh, pos);
8279 write_vec_element(s, tcg_resl, rd, 0, MO_64);
8280 if (is_q) {
8281 write_vec_element(s, tcg_resh, rd, 1, MO_64);
8283 clear_vec_high(s, is_q, rd);
8286 /* TBL/TBX
8287 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
8288 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
8289 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
8290 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
8292 static void disas_simd_tb(DisasContext *s, uint32_t insn)
8294 int op2 = extract32(insn, 22, 2);
8295 int is_q = extract32(insn, 30, 1);
8296 int rm = extract32(insn, 16, 5);
8297 int rn = extract32(insn, 5, 5);
8298 int rd = extract32(insn, 0, 5);
8299 int is_tbx = extract32(insn, 12, 1);
8300 int len = (extract32(insn, 13, 2) + 1) * 16;
8302 if (op2 != 0) {
8303 unallocated_encoding(s);
8304 return;
8307 if (!fp_access_check(s)) {
8308 return;
8311 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
8312 vec_full_reg_offset(s, rm), tcg_env,
8313 is_q ? 16 : 8, vec_full_reg_size(s),
8314 (len << 6) | (is_tbx << 5) | rn,
8315 gen_helper_simd_tblx);
8318 /* ZIP/UZP/TRN
8319 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
8320 * +---+---+-------------+------+---+------+---+------------------+------+
8321 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
8322 * +---+---+-------------+------+---+------+---+------------------+------+
8324 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
8326 int rd = extract32(insn, 0, 5);
8327 int rn = extract32(insn, 5, 5);
8328 int rm = extract32(insn, 16, 5);
8329 int size = extract32(insn, 22, 2);
8330 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
8331 * bit 2 indicates 1 vs 2 variant of the insn.
8333 int opcode = extract32(insn, 12, 2);
8334 bool part = extract32(insn, 14, 1);
8335 bool is_q = extract32(insn, 30, 1);
8336 int esize = 8 << size;
8337 int i;
8338 int datasize = is_q ? 128 : 64;
8339 int elements = datasize / esize;
8340 TCGv_i64 tcg_res[2], tcg_ele;
8342 if (opcode == 0 || (size == 3 && !is_q)) {
8343 unallocated_encoding(s);
8344 return;
8347 if (!fp_access_check(s)) {
8348 return;
8351 tcg_res[0] = tcg_temp_new_i64();
8352 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
8353 tcg_ele = tcg_temp_new_i64();
8355 for (i = 0; i < elements; i++) {
8356 int o, w;
8358 switch (opcode) {
8359 case 1: /* UZP1/2 */
8361 int midpoint = elements / 2;
8362 if (i < midpoint) {
8363 read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
8364 } else {
8365 read_vec_element(s, tcg_ele, rm,
8366 2 * (i - midpoint) + part, size);
8368 break;
8370 case 2: /* TRN1/2 */
8371 if (i & 1) {
8372 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
8373 } else {
8374 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
8376 break;
8377 case 3: /* ZIP1/2 */
8379 int base = part * elements / 2;
8380 if (i & 1) {
8381 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
8382 } else {
8383 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
8385 break;
8387 default:
8388 g_assert_not_reached();
8391 w = (i * esize) / 64;
8392 o = (i * esize) % 64;
8393 if (o == 0) {
8394 tcg_gen_mov_i64(tcg_res[w], tcg_ele);
8395 } else {
8396 tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
8397 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
8401 for (i = 0; i <= is_q; ++i) {
8402 write_vec_element(s, tcg_res[i], rd, i, MO_64);
8404 clear_vec_high(s, is_q, rd);
8408 * do_reduction_op helper
8410 * This mirrors the Reduce() pseudocode in the ARM ARM. It is
8411 * important for correct NaN propagation that we do these
8412 * operations in exactly the order specified by the pseudocode.
8414 * This is a recursive function, TCG temps should be freed by the
8415 * calling function once it is done with the values.
8417 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
8418 int esize, int size, int vmap, TCGv_ptr fpst)
8420 if (esize == size) {
8421 int element;
8422 MemOp msize = esize == 16 ? MO_16 : MO_32;
8423 TCGv_i32 tcg_elem;
8425 /* We should have one register left here */
8426 assert(ctpop8(vmap) == 1);
8427 element = ctz32(vmap);
8428 assert(element < 8);
8430 tcg_elem = tcg_temp_new_i32();
8431 read_vec_element_i32(s, tcg_elem, rn, element, msize);
8432 return tcg_elem;
8433 } else {
8434 int bits = size / 2;
8435 int shift = ctpop8(vmap) / 2;
8436 int vmap_lo = (vmap >> shift) & vmap;
8437 int vmap_hi = (vmap & ~vmap_lo);
8438 TCGv_i32 tcg_hi, tcg_lo, tcg_res;
8440 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
8441 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
8442 tcg_res = tcg_temp_new_i32();
8444 switch (fpopcode) {
8445 case 0x0c: /* fmaxnmv half-precision */
8446 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
8447 break;
8448 case 0x0f: /* fmaxv half-precision */
8449 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
8450 break;
8451 case 0x1c: /* fminnmv half-precision */
8452 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
8453 break;
8454 case 0x1f: /* fminv half-precision */
8455 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
8456 break;
8457 case 0x2c: /* fmaxnmv */
8458 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
8459 break;
8460 case 0x2f: /* fmaxv */
8461 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
8462 break;
8463 case 0x3c: /* fminnmv */
8464 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
8465 break;
8466 case 0x3f: /* fminv */
8467 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
8468 break;
8469 default:
8470 g_assert_not_reached();
8472 return tcg_res;
8476 /* AdvSIMD across lanes
8477 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
8478 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
8479 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
8480 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
8482 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
8484 int rd = extract32(insn, 0, 5);
8485 int rn = extract32(insn, 5, 5);
8486 int size = extract32(insn, 22, 2);
8487 int opcode = extract32(insn, 12, 5);
8488 bool is_q = extract32(insn, 30, 1);
8489 bool is_u = extract32(insn, 29, 1);
8490 bool is_fp = false;
8491 bool is_min = false;
8492 int esize;
8493 int elements;
8494 int i;
8495 TCGv_i64 tcg_res, tcg_elt;
8497 switch (opcode) {
8498 case 0x1b: /* ADDV */
8499 if (is_u) {
8500 unallocated_encoding(s);
8501 return;
8503 /* fall through */
8504 case 0x3: /* SADDLV, UADDLV */
8505 case 0xa: /* SMAXV, UMAXV */
8506 case 0x1a: /* SMINV, UMINV */
8507 if (size == 3 || (size == 2 && !is_q)) {
8508 unallocated_encoding(s);
8509 return;
8511 break;
8512 case 0xc: /* FMAXNMV, FMINNMV */
8513 case 0xf: /* FMAXV, FMINV */
8514 /* Bit 1 of size field encodes min vs max and the actual size
8515 * depends on the encoding of the U bit. If not set (and FP16
8516 * enabled) then we do half-precision float instead of single
8517 * precision.
8519 is_min = extract32(size, 1, 1);
8520 is_fp = true;
8521 if (!is_u && dc_isar_feature(aa64_fp16, s)) {
8522 size = 1;
8523 } else if (!is_u || !is_q || extract32(size, 0, 1)) {
8524 unallocated_encoding(s);
8525 return;
8526 } else {
8527 size = 2;
8529 break;
8530 default:
8531 unallocated_encoding(s);
8532 return;
8535 if (!fp_access_check(s)) {
8536 return;
8539 esize = 8 << size;
8540 elements = (is_q ? 128 : 64) / esize;
8542 tcg_res = tcg_temp_new_i64();
8543 tcg_elt = tcg_temp_new_i64();
8545 /* These instructions operate across all lanes of a vector
8546 * to produce a single result. We can guarantee that a 64
8547 * bit intermediate is sufficient:
8548 * + for [US]ADDLV the maximum element size is 32 bits, and
8549 * the result type is 64 bits
8550 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
8551 * same as the element size, which is 32 bits at most
8552 * For the integer operations we can choose to work at 64
8553 * or 32 bits and truncate at the end; for simplicity
8554 * we use 64 bits always. The floating point
8555 * ops do require 32 bit intermediates, though.
8557 if (!is_fp) {
8558 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
8560 for (i = 1; i < elements; i++) {
8561 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
8563 switch (opcode) {
8564 case 0x03: /* SADDLV / UADDLV */
8565 case 0x1b: /* ADDV */
8566 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
8567 break;
8568 case 0x0a: /* SMAXV / UMAXV */
8569 if (is_u) {
8570 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
8571 } else {
8572 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
8574 break;
8575 case 0x1a: /* SMINV / UMINV */
8576 if (is_u) {
8577 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
8578 } else {
8579 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
8581 break;
8582 default:
8583 g_assert_not_reached();
8587 } else {
8588 /* Floating point vector reduction ops which work across 32
8589 * bit (single) or 16 bit (half-precision) intermediates.
8590 * Note that correct NaN propagation requires that we do these
8591 * operations in exactly the order specified by the pseudocode.
8593 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8594 int fpopcode = opcode | is_min << 4 | is_u << 5;
8595 int vmap = (1 << elements) - 1;
8596 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
8597 (is_q ? 128 : 64), vmap, fpst);
8598 tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
8601 /* Now truncate the result to the width required for the final output */
8602 if (opcode == 0x03) {
8603 /* SADDLV, UADDLV: result is 2*esize */
8604 size++;
8607 switch (size) {
8608 case 0:
8609 tcg_gen_ext8u_i64(tcg_res, tcg_res);
8610 break;
8611 case 1:
8612 tcg_gen_ext16u_i64(tcg_res, tcg_res);
8613 break;
8614 case 2:
8615 tcg_gen_ext32u_i64(tcg_res, tcg_res);
8616 break;
8617 case 3:
8618 break;
8619 default:
8620 g_assert_not_reached();
8623 write_fp_dreg(s, rd, tcg_res);
8626 /* AdvSIMD modified immediate
8627 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
8628 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8629 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
8630 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8632 * There are a number of operations that can be carried out here:
8633 * MOVI - move (shifted) imm into register
8634 * MVNI - move inverted (shifted) imm into register
8635 * ORR - bitwise OR of (shifted) imm with register
8636 * BIC - bitwise clear of (shifted) imm with register
8637 * With ARMv8.2 we also have:
8638 * FMOV half-precision
8640 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
8642 int rd = extract32(insn, 0, 5);
8643 int cmode = extract32(insn, 12, 4);
8644 int o2 = extract32(insn, 11, 1);
8645 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
8646 bool is_neg = extract32(insn, 29, 1);
8647 bool is_q = extract32(insn, 30, 1);
8648 uint64_t imm = 0;
8650 if (o2) {
8651 if (cmode != 0xf || is_neg) {
8652 unallocated_encoding(s);
8653 return;
8655 /* FMOV (vector, immediate) - half-precision */
8656 if (!dc_isar_feature(aa64_fp16, s)) {
8657 unallocated_encoding(s);
8658 return;
8660 imm = vfp_expand_imm(MO_16, abcdefgh);
8661 /* now duplicate across the lanes */
8662 imm = dup_const(MO_16, imm);
8663 } else {
8664 if (cmode == 0xf && is_neg && !is_q) {
8665 unallocated_encoding(s);
8666 return;
8668 imm = asimd_imm_const(abcdefgh, cmode, is_neg);
8671 if (!fp_access_check(s)) {
8672 return;
8675 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
8676 /* MOVI or MVNI, with MVNI negation handled above. */
8677 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
8678 vec_full_reg_size(s), imm);
8679 } else {
8680 /* ORR or BIC, with BIC negation to AND handled above. */
8681 if (is_neg) {
8682 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
8683 } else {
8684 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
8690 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8692 * This code is handles the common shifting code and is used by both
8693 * the vector and scalar code.
8695 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8696 TCGv_i64 tcg_rnd, bool accumulate,
8697 bool is_u, int size, int shift)
8699 bool extended_result = false;
8700 bool round = tcg_rnd != NULL;
8701 int ext_lshift = 0;
8702 TCGv_i64 tcg_src_hi;
8704 if (round && size == 3) {
8705 extended_result = true;
8706 ext_lshift = 64 - shift;
8707 tcg_src_hi = tcg_temp_new_i64();
8708 } else if (shift == 64) {
8709 if (!accumulate && is_u) {
8710 /* result is zero */
8711 tcg_gen_movi_i64(tcg_res, 0);
8712 return;
8716 /* Deal with the rounding step */
8717 if (round) {
8718 if (extended_result) {
8719 TCGv_i64 tcg_zero = tcg_constant_i64(0);
8720 if (!is_u) {
8721 /* take care of sign extending tcg_res */
8722 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8723 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8724 tcg_src, tcg_src_hi,
8725 tcg_rnd, tcg_zero);
8726 } else {
8727 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8728 tcg_src, tcg_zero,
8729 tcg_rnd, tcg_zero);
8731 } else {
8732 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8736 /* Now do the shift right */
8737 if (round && extended_result) {
8738 /* extended case, >64 bit precision required */
8739 if (ext_lshift == 0) {
8740 /* special case, only high bits matter */
8741 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8742 } else {
8743 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8744 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8745 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8747 } else {
8748 if (is_u) {
8749 if (shift == 64) {
8750 /* essentially shifting in 64 zeros */
8751 tcg_gen_movi_i64(tcg_src, 0);
8752 } else {
8753 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8755 } else {
8756 if (shift == 64) {
8757 /* effectively extending the sign-bit */
8758 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8759 } else {
8760 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8765 if (accumulate) {
8766 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8767 } else {
8768 tcg_gen_mov_i64(tcg_res, tcg_src);
8772 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8773 static void handle_scalar_simd_shri(DisasContext *s,
8774 bool is_u, int immh, int immb,
8775 int opcode, int rn, int rd)
8777 const int size = 3;
8778 int immhb = immh << 3 | immb;
8779 int shift = 2 * (8 << size) - immhb;
8780 bool accumulate = false;
8781 bool round = false;
8782 bool insert = false;
8783 TCGv_i64 tcg_rn;
8784 TCGv_i64 tcg_rd;
8785 TCGv_i64 tcg_round;
8787 if (!extract32(immh, 3, 1)) {
8788 unallocated_encoding(s);
8789 return;
8792 if (!fp_access_check(s)) {
8793 return;
8796 switch (opcode) {
8797 case 0x02: /* SSRA / USRA (accumulate) */
8798 accumulate = true;
8799 break;
8800 case 0x04: /* SRSHR / URSHR (rounding) */
8801 round = true;
8802 break;
8803 case 0x06: /* SRSRA / URSRA (accum + rounding) */
8804 accumulate = round = true;
8805 break;
8806 case 0x08: /* SRI */
8807 insert = true;
8808 break;
8811 if (round) {
8812 tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8813 } else {
8814 tcg_round = NULL;
8817 tcg_rn = read_fp_dreg(s, rn);
8818 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8820 if (insert) {
8821 /* shift count same as element size is valid but does nothing;
8822 * special case to avoid potential shift by 64.
8824 int esize = 8 << size;
8825 if (shift != esize) {
8826 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8827 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8829 } else {
8830 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8831 accumulate, is_u, size, shift);
8834 write_fp_dreg(s, rd, tcg_rd);
8837 /* SHL/SLI - Scalar shift left */
8838 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8839 int immh, int immb, int opcode,
8840 int rn, int rd)
8842 int size = 32 - clz32(immh) - 1;
8843 int immhb = immh << 3 | immb;
8844 int shift = immhb - (8 << size);
8845 TCGv_i64 tcg_rn;
8846 TCGv_i64 tcg_rd;
8848 if (!extract32(immh, 3, 1)) {
8849 unallocated_encoding(s);
8850 return;
8853 if (!fp_access_check(s)) {
8854 return;
8857 tcg_rn = read_fp_dreg(s, rn);
8858 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8860 if (insert) {
8861 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8862 } else {
8863 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8866 write_fp_dreg(s, rd, tcg_rd);
8869 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8870 * (signed/unsigned) narrowing */
8871 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8872 bool is_u_shift, bool is_u_narrow,
8873 int immh, int immb, int opcode,
8874 int rn, int rd)
8876 int immhb = immh << 3 | immb;
8877 int size = 32 - clz32(immh) - 1;
8878 int esize = 8 << size;
8879 int shift = (2 * esize) - immhb;
8880 int elements = is_scalar ? 1 : (64 / esize);
8881 bool round = extract32(opcode, 0, 1);
8882 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8883 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8884 TCGv_i32 tcg_rd_narrowed;
8885 TCGv_i64 tcg_final;
8887 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8888 { gen_helper_neon_narrow_sat_s8,
8889 gen_helper_neon_unarrow_sat8 },
8890 { gen_helper_neon_narrow_sat_s16,
8891 gen_helper_neon_unarrow_sat16 },
8892 { gen_helper_neon_narrow_sat_s32,
8893 gen_helper_neon_unarrow_sat32 },
8894 { NULL, NULL },
8896 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8897 gen_helper_neon_narrow_sat_u8,
8898 gen_helper_neon_narrow_sat_u16,
8899 gen_helper_neon_narrow_sat_u32,
8900 NULL
8902 NeonGenNarrowEnvFn *narrowfn;
8904 int i;
8906 assert(size < 4);
8908 if (extract32(immh, 3, 1)) {
8909 unallocated_encoding(s);
8910 return;
8913 if (!fp_access_check(s)) {
8914 return;
8917 if (is_u_shift) {
8918 narrowfn = unsigned_narrow_fns[size];
8919 } else {
8920 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8923 tcg_rn = tcg_temp_new_i64();
8924 tcg_rd = tcg_temp_new_i64();
8925 tcg_rd_narrowed = tcg_temp_new_i32();
8926 tcg_final = tcg_temp_new_i64();
8928 if (round) {
8929 tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8930 } else {
8931 tcg_round = NULL;
8934 for (i = 0; i < elements; i++) {
8935 read_vec_element(s, tcg_rn, rn, i, ldop);
8936 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8937 false, is_u_shift, size+1, shift);
8938 narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd);
8939 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8940 if (i == 0) {
8941 tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize);
8942 } else {
8943 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8947 if (!is_q) {
8948 write_vec_element(s, tcg_final, rd, 0, MO_64);
8949 } else {
8950 write_vec_element(s, tcg_final, rd, 1, MO_64);
8952 clear_vec_high(s, is_q, rd);
8955 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8956 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8957 bool src_unsigned, bool dst_unsigned,
8958 int immh, int immb, int rn, int rd)
8960 int immhb = immh << 3 | immb;
8961 int size = 32 - clz32(immh) - 1;
8962 int shift = immhb - (8 << size);
8963 int pass;
8965 assert(immh != 0);
8966 assert(!(scalar && is_q));
8968 if (!scalar) {
8969 if (!is_q && extract32(immh, 3, 1)) {
8970 unallocated_encoding(s);
8971 return;
8974 /* Since we use the variable-shift helpers we must
8975 * replicate the shift count into each element of
8976 * the tcg_shift value.
8978 switch (size) {
8979 case 0:
8980 shift |= shift << 8;
8981 /* fall through */
8982 case 1:
8983 shift |= shift << 16;
8984 break;
8985 case 2:
8986 case 3:
8987 break;
8988 default:
8989 g_assert_not_reached();
8993 if (!fp_access_check(s)) {
8994 return;
8997 if (size == 3) {
8998 TCGv_i64 tcg_shift = tcg_constant_i64(shift);
8999 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
9000 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
9001 { NULL, gen_helper_neon_qshl_u64 },
9003 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
9004 int maxpass = is_q ? 2 : 1;
9006 for (pass = 0; pass < maxpass; pass++) {
9007 TCGv_i64 tcg_op = tcg_temp_new_i64();
9009 read_vec_element(s, tcg_op, rn, pass, MO_64);
9010 genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
9011 write_vec_element(s, tcg_op, rd, pass, MO_64);
9013 clear_vec_high(s, is_q, rd);
9014 } else {
9015 TCGv_i32 tcg_shift = tcg_constant_i32(shift);
9016 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
9018 { gen_helper_neon_qshl_s8,
9019 gen_helper_neon_qshl_s16,
9020 gen_helper_neon_qshl_s32 },
9021 { gen_helper_neon_qshlu_s8,
9022 gen_helper_neon_qshlu_s16,
9023 gen_helper_neon_qshlu_s32 }
9024 }, {
9025 { NULL, NULL, NULL },
9026 { gen_helper_neon_qshl_u8,
9027 gen_helper_neon_qshl_u16,
9028 gen_helper_neon_qshl_u32 }
9031 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
9032 MemOp memop = scalar ? size : MO_32;
9033 int maxpass = scalar ? 1 : is_q ? 4 : 2;
9035 for (pass = 0; pass < maxpass; pass++) {
9036 TCGv_i32 tcg_op = tcg_temp_new_i32();
9038 read_vec_element_i32(s, tcg_op, rn, pass, memop);
9039 genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
9040 if (scalar) {
9041 switch (size) {
9042 case 0:
9043 tcg_gen_ext8u_i32(tcg_op, tcg_op);
9044 break;
9045 case 1:
9046 tcg_gen_ext16u_i32(tcg_op, tcg_op);
9047 break;
9048 case 2:
9049 break;
9050 default:
9051 g_assert_not_reached();
9053 write_fp_sreg(s, rd, tcg_op);
9054 } else {
9055 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
9059 if (!scalar) {
9060 clear_vec_high(s, is_q, rd);
9065 /* Common vector code for handling integer to FP conversion */
9066 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
9067 int elements, int is_signed,
9068 int fracbits, int size)
9070 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9071 TCGv_i32 tcg_shift = NULL;
9073 MemOp mop = size | (is_signed ? MO_SIGN : 0);
9074 int pass;
9076 if (fracbits || size == MO_64) {
9077 tcg_shift = tcg_constant_i32(fracbits);
9080 if (size == MO_64) {
9081 TCGv_i64 tcg_int64 = tcg_temp_new_i64();
9082 TCGv_i64 tcg_double = tcg_temp_new_i64();
9084 for (pass = 0; pass < elements; pass++) {
9085 read_vec_element(s, tcg_int64, rn, pass, mop);
9087 if (is_signed) {
9088 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
9089 tcg_shift, tcg_fpst);
9090 } else {
9091 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
9092 tcg_shift, tcg_fpst);
9094 if (elements == 1) {
9095 write_fp_dreg(s, rd, tcg_double);
9096 } else {
9097 write_vec_element(s, tcg_double, rd, pass, MO_64);
9100 } else {
9101 TCGv_i32 tcg_int32 = tcg_temp_new_i32();
9102 TCGv_i32 tcg_float = tcg_temp_new_i32();
9104 for (pass = 0; pass < elements; pass++) {
9105 read_vec_element_i32(s, tcg_int32, rn, pass, mop);
9107 switch (size) {
9108 case MO_32:
9109 if (fracbits) {
9110 if (is_signed) {
9111 gen_helper_vfp_sltos(tcg_float, tcg_int32,
9112 tcg_shift, tcg_fpst);
9113 } else {
9114 gen_helper_vfp_ultos(tcg_float, tcg_int32,
9115 tcg_shift, tcg_fpst);
9117 } else {
9118 if (is_signed) {
9119 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
9120 } else {
9121 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
9124 break;
9125 case MO_16:
9126 if (fracbits) {
9127 if (is_signed) {
9128 gen_helper_vfp_sltoh(tcg_float, tcg_int32,
9129 tcg_shift, tcg_fpst);
9130 } else {
9131 gen_helper_vfp_ultoh(tcg_float, tcg_int32,
9132 tcg_shift, tcg_fpst);
9134 } else {
9135 if (is_signed) {
9136 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
9137 } else {
9138 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
9141 break;
9142 default:
9143 g_assert_not_reached();
9146 if (elements == 1) {
9147 write_fp_sreg(s, rd, tcg_float);
9148 } else {
9149 write_vec_element_i32(s, tcg_float, rd, pass, size);
9154 clear_vec_high(s, elements << size == 16, rd);
9157 /* UCVTF/SCVTF - Integer to FP conversion */
9158 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
9159 bool is_q, bool is_u,
9160 int immh, int immb, int opcode,
9161 int rn, int rd)
9163 int size, elements, fracbits;
9164 int immhb = immh << 3 | immb;
9166 if (immh & 8) {
9167 size = MO_64;
9168 if (!is_scalar && !is_q) {
9169 unallocated_encoding(s);
9170 return;
9172 } else if (immh & 4) {
9173 size = MO_32;
9174 } else if (immh & 2) {
9175 size = MO_16;
9176 if (!dc_isar_feature(aa64_fp16, s)) {
9177 unallocated_encoding(s);
9178 return;
9180 } else {
9181 /* immh == 0 would be a failure of the decode logic */
9182 g_assert(immh == 1);
9183 unallocated_encoding(s);
9184 return;
9187 if (is_scalar) {
9188 elements = 1;
9189 } else {
9190 elements = (8 << is_q) >> size;
9192 fracbits = (16 << size) - immhb;
9194 if (!fp_access_check(s)) {
9195 return;
9198 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
9201 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
9202 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
9203 bool is_q, bool is_u,
9204 int immh, int immb, int rn, int rd)
9206 int immhb = immh << 3 | immb;
9207 int pass, size, fracbits;
9208 TCGv_ptr tcg_fpstatus;
9209 TCGv_i32 tcg_rmode, tcg_shift;
9211 if (immh & 0x8) {
9212 size = MO_64;
9213 if (!is_scalar && !is_q) {
9214 unallocated_encoding(s);
9215 return;
9217 } else if (immh & 0x4) {
9218 size = MO_32;
9219 } else if (immh & 0x2) {
9220 size = MO_16;
9221 if (!dc_isar_feature(aa64_fp16, s)) {
9222 unallocated_encoding(s);
9223 return;
9225 } else {
9226 /* Should have split out AdvSIMD modified immediate earlier. */
9227 assert(immh == 1);
9228 unallocated_encoding(s);
9229 return;
9232 if (!fp_access_check(s)) {
9233 return;
9236 assert(!(is_scalar && is_q));
9238 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9239 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
9240 fracbits = (16 << size) - immhb;
9241 tcg_shift = tcg_constant_i32(fracbits);
9243 if (size == MO_64) {
9244 int maxpass = is_scalar ? 1 : 2;
9246 for (pass = 0; pass < maxpass; pass++) {
9247 TCGv_i64 tcg_op = tcg_temp_new_i64();
9249 read_vec_element(s, tcg_op, rn, pass, MO_64);
9250 if (is_u) {
9251 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9252 } else {
9253 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9255 write_vec_element(s, tcg_op, rd, pass, MO_64);
9257 clear_vec_high(s, is_q, rd);
9258 } else {
9259 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
9260 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
9262 switch (size) {
9263 case MO_16:
9264 if (is_u) {
9265 fn = gen_helper_vfp_touhh;
9266 } else {
9267 fn = gen_helper_vfp_toshh;
9269 break;
9270 case MO_32:
9271 if (is_u) {
9272 fn = gen_helper_vfp_touls;
9273 } else {
9274 fn = gen_helper_vfp_tosls;
9276 break;
9277 default:
9278 g_assert_not_reached();
9281 for (pass = 0; pass < maxpass; pass++) {
9282 TCGv_i32 tcg_op = tcg_temp_new_i32();
9284 read_vec_element_i32(s, tcg_op, rn, pass, size);
9285 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9286 if (is_scalar) {
9287 if (size == MO_16 && !is_u) {
9288 tcg_gen_ext16u_i32(tcg_op, tcg_op);
9290 write_fp_sreg(s, rd, tcg_op);
9291 } else {
9292 write_vec_element_i32(s, tcg_op, rd, pass, size);
9295 if (!is_scalar) {
9296 clear_vec_high(s, is_q, rd);
9300 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
9303 /* AdvSIMD scalar shift by immediate
9304 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
9305 * +-----+---+-------------+------+------+--------+---+------+------+
9306 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
9307 * +-----+---+-------------+------+------+--------+---+------+------+
9309 * This is the scalar version so it works on a fixed sized registers
9311 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
9313 int rd = extract32(insn, 0, 5);
9314 int rn = extract32(insn, 5, 5);
9315 int opcode = extract32(insn, 11, 5);
9316 int immb = extract32(insn, 16, 3);
9317 int immh = extract32(insn, 19, 4);
9318 bool is_u = extract32(insn, 29, 1);
9320 if (immh == 0) {
9321 unallocated_encoding(s);
9322 return;
9325 switch (opcode) {
9326 case 0x08: /* SRI */
9327 if (!is_u) {
9328 unallocated_encoding(s);
9329 return;
9331 /* fall through */
9332 case 0x00: /* SSHR / USHR */
9333 case 0x02: /* SSRA / USRA */
9334 case 0x04: /* SRSHR / URSHR */
9335 case 0x06: /* SRSRA / URSRA */
9336 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
9337 break;
9338 case 0x0a: /* SHL / SLI */
9339 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
9340 break;
9341 case 0x1c: /* SCVTF, UCVTF */
9342 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
9343 opcode, rn, rd);
9344 break;
9345 case 0x10: /* SQSHRUN, SQSHRUN2 */
9346 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
9347 if (!is_u) {
9348 unallocated_encoding(s);
9349 return;
9351 handle_vec_simd_sqshrn(s, true, false, false, true,
9352 immh, immb, opcode, rn, rd);
9353 break;
9354 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
9355 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
9356 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
9357 immh, immb, opcode, rn, rd);
9358 break;
9359 case 0xc: /* SQSHLU */
9360 if (!is_u) {
9361 unallocated_encoding(s);
9362 return;
9364 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
9365 break;
9366 case 0xe: /* SQSHL, UQSHL */
9367 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
9368 break;
9369 case 0x1f: /* FCVTZS, FCVTZU */
9370 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
9371 break;
9372 default:
9373 unallocated_encoding(s);
9374 break;
9378 /* AdvSIMD scalar three different
9379 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
9380 * +-----+---+-----------+------+---+------+--------+-----+------+------+
9381 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
9382 * +-----+---+-----------+------+---+------+--------+-----+------+------+
9384 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
9386 bool is_u = extract32(insn, 29, 1);
9387 int size = extract32(insn, 22, 2);
9388 int opcode = extract32(insn, 12, 4);
9389 int rm = extract32(insn, 16, 5);
9390 int rn = extract32(insn, 5, 5);
9391 int rd = extract32(insn, 0, 5);
9393 if (is_u) {
9394 unallocated_encoding(s);
9395 return;
9398 switch (opcode) {
9399 case 0x9: /* SQDMLAL, SQDMLAL2 */
9400 case 0xb: /* SQDMLSL, SQDMLSL2 */
9401 case 0xd: /* SQDMULL, SQDMULL2 */
9402 if (size == 0 || size == 3) {
9403 unallocated_encoding(s);
9404 return;
9406 break;
9407 default:
9408 unallocated_encoding(s);
9409 return;
9412 if (!fp_access_check(s)) {
9413 return;
9416 if (size == 2) {
9417 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9418 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9419 TCGv_i64 tcg_res = tcg_temp_new_i64();
9421 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
9422 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
9424 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
9425 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res);
9427 switch (opcode) {
9428 case 0xd: /* SQDMULL, SQDMULL2 */
9429 break;
9430 case 0xb: /* SQDMLSL, SQDMLSL2 */
9431 tcg_gen_neg_i64(tcg_res, tcg_res);
9432 /* fall through */
9433 case 0x9: /* SQDMLAL, SQDMLAL2 */
9434 read_vec_element(s, tcg_op1, rd, 0, MO_64);
9435 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env,
9436 tcg_res, tcg_op1);
9437 break;
9438 default:
9439 g_assert_not_reached();
9442 write_fp_dreg(s, rd, tcg_res);
9443 } else {
9444 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
9445 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
9446 TCGv_i64 tcg_res = tcg_temp_new_i64();
9448 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
9449 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res);
9451 switch (opcode) {
9452 case 0xd: /* SQDMULL, SQDMULL2 */
9453 break;
9454 case 0xb: /* SQDMLSL, SQDMLSL2 */
9455 gen_helper_neon_negl_u32(tcg_res, tcg_res);
9456 /* fall through */
9457 case 0x9: /* SQDMLAL, SQDMLAL2 */
9459 TCGv_i64 tcg_op3 = tcg_temp_new_i64();
9460 read_vec_element(s, tcg_op3, rd, 0, MO_32);
9461 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env,
9462 tcg_res, tcg_op3);
9463 break;
9465 default:
9466 g_assert_not_reached();
9469 tcg_gen_ext32u_i64(tcg_res, tcg_res);
9470 write_fp_dreg(s, rd, tcg_res);
9474 /* AdvSIMD scalar three same
9475 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
9476 * +-----+---+-----------+------+---+------+--------+---+------+------+
9477 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
9478 * +-----+---+-----------+------+---+------+--------+---+------+------+
9480 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
9482 int rd = extract32(insn, 0, 5);
9483 int rn = extract32(insn, 5, 5);
9484 int opcode = extract32(insn, 11, 5);
9485 int rm = extract32(insn, 16, 5);
9486 int size = extract32(insn, 22, 2);
9487 bool u = extract32(insn, 29, 1);
9488 TCGv_i64 tcg_rd;
9490 switch (opcode) {
9491 case 0x16: /* SQDMULH, SQRDMULH (vector) */
9492 if (size != 1 && size != 2) {
9493 unallocated_encoding(s);
9494 return;
9496 break;
9497 default:
9498 case 0x1: /* SQADD, UQADD */
9499 case 0x5: /* SQSUB, UQSUB */
9500 case 0x6: /* CMGT, CMHI */
9501 case 0x7: /* CMGE, CMHS */
9502 case 0x8: /* SSHL, USHL */
9503 case 0x9: /* SQSHL, UQSHL */
9504 case 0xa: /* SRSHL, URSHL */
9505 case 0xb: /* SQRSHL, UQRSHL */
9506 case 0x10: /* ADD, SUB (vector) */
9507 case 0x11: /* CMTST, CMEQ */
9508 unallocated_encoding(s);
9509 return;
9512 if (!fp_access_check(s)) {
9513 return;
9516 tcg_rd = tcg_temp_new_i64();
9518 if (size == 3) {
9519 g_assert_not_reached();
9520 } else {
9521 /* Do a single operation on the lowest element in the vector.
9522 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9523 * no side effects for all these operations.
9524 * OPTME: special-purpose helpers would avoid doing some
9525 * unnecessary work in the helper for the 8 and 16 bit cases.
9527 NeonGenTwoOpEnvFn *genenvfn = NULL;
9528 void (*genfn)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64, MemOp) = NULL;
9530 switch (opcode) {
9531 case 0x16: /* SQDMULH, SQRDMULH */
9533 static NeonGenTwoOpEnvFn * const fns[2][2] = {
9534 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9535 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9537 assert(size == 1 || size == 2);
9538 genenvfn = fns[size - 1][u];
9539 break;
9541 default:
9542 case 0x1: /* SQADD, UQADD */
9543 case 0x5: /* SQSUB, UQSUB */
9544 case 0x9: /* SQSHL, UQSHL */
9545 case 0xb: /* SQRSHL, UQRSHL */
9546 g_assert_not_reached();
9549 if (genenvfn) {
9550 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9551 TCGv_i32 tcg_rm = tcg_temp_new_i32();
9553 read_vec_element_i32(s, tcg_rn, rn, 0, size);
9554 read_vec_element_i32(s, tcg_rm, rm, 0, size);
9555 genenvfn(tcg_rn, tcg_env, tcg_rn, tcg_rm);
9556 tcg_gen_extu_i32_i64(tcg_rd, tcg_rn);
9557 } else {
9558 TCGv_i64 tcg_rn = tcg_temp_new_i64();
9559 TCGv_i64 tcg_rm = tcg_temp_new_i64();
9560 TCGv_i64 qc = tcg_temp_new_i64();
9562 read_vec_element(s, tcg_rn, rn, 0, size | (u ? 0 : MO_SIGN));
9563 read_vec_element(s, tcg_rm, rm, 0, size | (u ? 0 : MO_SIGN));
9564 tcg_gen_ld_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc));
9565 genfn(tcg_rd, qc, tcg_rn, tcg_rm, size);
9566 tcg_gen_st_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc));
9567 if (!u) {
9568 /* Truncate signed 64-bit result for writeback. */
9569 tcg_gen_ext_i64(tcg_rd, tcg_rd, size);
9574 write_fp_dreg(s, rd, tcg_rd);
9577 /* AdvSIMD scalar three same extra
9578 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
9579 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9580 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
9581 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9583 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9584 uint32_t insn)
9586 int rd = extract32(insn, 0, 5);
9587 int rn = extract32(insn, 5, 5);
9588 int opcode = extract32(insn, 11, 4);
9589 int rm = extract32(insn, 16, 5);
9590 int size = extract32(insn, 22, 2);
9591 bool u = extract32(insn, 29, 1);
9592 TCGv_i32 ele1, ele2, ele3;
9593 TCGv_i64 res;
9594 bool feature;
9596 switch (u * 16 + opcode) {
9597 case 0x10: /* SQRDMLAH (vector) */
9598 case 0x11: /* SQRDMLSH (vector) */
9599 if (size != 1 && size != 2) {
9600 unallocated_encoding(s);
9601 return;
9603 feature = dc_isar_feature(aa64_rdm, s);
9604 break;
9605 default:
9606 unallocated_encoding(s);
9607 return;
9609 if (!feature) {
9610 unallocated_encoding(s);
9611 return;
9613 if (!fp_access_check(s)) {
9614 return;
9617 /* Do a single operation on the lowest element in the vector.
9618 * We use the standard Neon helpers and rely on 0 OP 0 == 0
9619 * with no side effects for all these operations.
9620 * OPTME: special-purpose helpers would avoid doing some
9621 * unnecessary work in the helper for the 16 bit cases.
9623 ele1 = tcg_temp_new_i32();
9624 ele2 = tcg_temp_new_i32();
9625 ele3 = tcg_temp_new_i32();
9627 read_vec_element_i32(s, ele1, rn, 0, size);
9628 read_vec_element_i32(s, ele2, rm, 0, size);
9629 read_vec_element_i32(s, ele3, rd, 0, size);
9631 switch (opcode) {
9632 case 0x0: /* SQRDMLAH */
9633 if (size == 1) {
9634 gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3);
9635 } else {
9636 gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3);
9638 break;
9639 case 0x1: /* SQRDMLSH */
9640 if (size == 1) {
9641 gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3);
9642 } else {
9643 gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3);
9645 break;
9646 default:
9647 g_assert_not_reached();
9650 res = tcg_temp_new_i64();
9651 tcg_gen_extu_i32_i64(res, ele3);
9652 write_fp_dreg(s, rd, res);
9655 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9656 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9657 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9659 /* Handle 64->64 opcodes which are shared between the scalar and
9660 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9661 * is valid in either group and also the double-precision fp ops.
9662 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9663 * requires them.
9665 TCGCond cond;
9667 switch (opcode) {
9668 case 0x4: /* CLS, CLZ */
9669 if (u) {
9670 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9671 } else {
9672 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9674 break;
9675 case 0x5: /* NOT */
9676 /* This opcode is shared with CNT and RBIT but we have earlier
9677 * enforced that size == 3 if and only if this is the NOT insn.
9679 tcg_gen_not_i64(tcg_rd, tcg_rn);
9680 break;
9681 case 0x7: /* SQABS, SQNEG */
9682 if (u) {
9683 gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn);
9684 } else {
9685 gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn);
9687 break;
9688 case 0xa: /* CMLT */
9689 cond = TCG_COND_LT;
9690 do_cmop:
9691 /* 64 bit integer comparison against zero, result is test ? -1 : 0. */
9692 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0));
9693 break;
9694 case 0x8: /* CMGT, CMGE */
9695 cond = u ? TCG_COND_GE : TCG_COND_GT;
9696 goto do_cmop;
9697 case 0x9: /* CMEQ, CMLE */
9698 cond = u ? TCG_COND_LE : TCG_COND_EQ;
9699 goto do_cmop;
9700 case 0xb: /* ABS, NEG */
9701 if (u) {
9702 tcg_gen_neg_i64(tcg_rd, tcg_rn);
9703 } else {
9704 tcg_gen_abs_i64(tcg_rd, tcg_rn);
9706 break;
9707 case 0x2f: /* FABS */
9708 gen_vfp_absd(tcg_rd, tcg_rn);
9709 break;
9710 case 0x6f: /* FNEG */
9711 gen_vfp_negd(tcg_rd, tcg_rn);
9712 break;
9713 case 0x7f: /* FSQRT */
9714 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env);
9715 break;
9716 case 0x1a: /* FCVTNS */
9717 case 0x1b: /* FCVTMS */
9718 case 0x1c: /* FCVTAS */
9719 case 0x3a: /* FCVTPS */
9720 case 0x3b: /* FCVTZS */
9721 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9722 break;
9723 case 0x5a: /* FCVTNU */
9724 case 0x5b: /* FCVTMU */
9725 case 0x5c: /* FCVTAU */
9726 case 0x7a: /* FCVTPU */
9727 case 0x7b: /* FCVTZU */
9728 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9729 break;
9730 case 0x18: /* FRINTN */
9731 case 0x19: /* FRINTM */
9732 case 0x38: /* FRINTP */
9733 case 0x39: /* FRINTZ */
9734 case 0x58: /* FRINTA */
9735 case 0x79: /* FRINTI */
9736 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9737 break;
9738 case 0x59: /* FRINTX */
9739 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9740 break;
9741 case 0x1e: /* FRINT32Z */
9742 case 0x5e: /* FRINT32X */
9743 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9744 break;
9745 case 0x1f: /* FRINT64Z */
9746 case 0x5f: /* FRINT64X */
9747 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9748 break;
9749 default:
9750 g_assert_not_reached();
9754 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9755 bool is_scalar, bool is_u, bool is_q,
9756 int size, int rn, int rd)
9758 bool is_double = (size == MO_64);
9759 TCGv_ptr fpst;
9761 if (!fp_access_check(s)) {
9762 return;
9765 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9767 if (is_double) {
9768 TCGv_i64 tcg_op = tcg_temp_new_i64();
9769 TCGv_i64 tcg_zero = tcg_constant_i64(0);
9770 TCGv_i64 tcg_res = tcg_temp_new_i64();
9771 NeonGenTwoDoubleOpFn *genfn;
9772 bool swap = false;
9773 int pass;
9775 switch (opcode) {
9776 case 0x2e: /* FCMLT (zero) */
9777 swap = true;
9778 /* fallthrough */
9779 case 0x2c: /* FCMGT (zero) */
9780 genfn = gen_helper_neon_cgt_f64;
9781 break;
9782 case 0x2d: /* FCMEQ (zero) */
9783 genfn = gen_helper_neon_ceq_f64;
9784 break;
9785 case 0x6d: /* FCMLE (zero) */
9786 swap = true;
9787 /* fall through */
9788 case 0x6c: /* FCMGE (zero) */
9789 genfn = gen_helper_neon_cge_f64;
9790 break;
9791 default:
9792 g_assert_not_reached();
9795 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9796 read_vec_element(s, tcg_op, rn, pass, MO_64);
9797 if (swap) {
9798 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9799 } else {
9800 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9802 write_vec_element(s, tcg_res, rd, pass, MO_64);
9805 clear_vec_high(s, !is_scalar, rd);
9806 } else {
9807 TCGv_i32 tcg_op = tcg_temp_new_i32();
9808 TCGv_i32 tcg_zero = tcg_constant_i32(0);
9809 TCGv_i32 tcg_res = tcg_temp_new_i32();
9810 NeonGenTwoSingleOpFn *genfn;
9811 bool swap = false;
9812 int pass, maxpasses;
9814 if (size == MO_16) {
9815 switch (opcode) {
9816 case 0x2e: /* FCMLT (zero) */
9817 swap = true;
9818 /* fall through */
9819 case 0x2c: /* FCMGT (zero) */
9820 genfn = gen_helper_advsimd_cgt_f16;
9821 break;
9822 case 0x2d: /* FCMEQ (zero) */
9823 genfn = gen_helper_advsimd_ceq_f16;
9824 break;
9825 case 0x6d: /* FCMLE (zero) */
9826 swap = true;
9827 /* fall through */
9828 case 0x6c: /* FCMGE (zero) */
9829 genfn = gen_helper_advsimd_cge_f16;
9830 break;
9831 default:
9832 g_assert_not_reached();
9834 } else {
9835 switch (opcode) {
9836 case 0x2e: /* FCMLT (zero) */
9837 swap = true;
9838 /* fall through */
9839 case 0x2c: /* FCMGT (zero) */
9840 genfn = gen_helper_neon_cgt_f32;
9841 break;
9842 case 0x2d: /* FCMEQ (zero) */
9843 genfn = gen_helper_neon_ceq_f32;
9844 break;
9845 case 0x6d: /* FCMLE (zero) */
9846 swap = true;
9847 /* fall through */
9848 case 0x6c: /* FCMGE (zero) */
9849 genfn = gen_helper_neon_cge_f32;
9850 break;
9851 default:
9852 g_assert_not_reached();
9856 if (is_scalar) {
9857 maxpasses = 1;
9858 } else {
9859 int vector_size = 8 << is_q;
9860 maxpasses = vector_size >> size;
9863 for (pass = 0; pass < maxpasses; pass++) {
9864 read_vec_element_i32(s, tcg_op, rn, pass, size);
9865 if (swap) {
9866 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9867 } else {
9868 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9870 if (is_scalar) {
9871 write_fp_sreg(s, rd, tcg_res);
9872 } else {
9873 write_vec_element_i32(s, tcg_res, rd, pass, size);
9877 if (!is_scalar) {
9878 clear_vec_high(s, is_q, rd);
9883 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9884 bool is_scalar, bool is_u, bool is_q,
9885 int size, int rn, int rd)
9887 bool is_double = (size == 3);
9888 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9890 if (is_double) {
9891 TCGv_i64 tcg_op = tcg_temp_new_i64();
9892 TCGv_i64 tcg_res = tcg_temp_new_i64();
9893 int pass;
9895 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9896 read_vec_element(s, tcg_op, rn, pass, MO_64);
9897 switch (opcode) {
9898 case 0x3d: /* FRECPE */
9899 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9900 break;
9901 case 0x3f: /* FRECPX */
9902 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9903 break;
9904 case 0x7d: /* FRSQRTE */
9905 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9906 break;
9907 default:
9908 g_assert_not_reached();
9910 write_vec_element(s, tcg_res, rd, pass, MO_64);
9912 clear_vec_high(s, !is_scalar, rd);
9913 } else {
9914 TCGv_i32 tcg_op = tcg_temp_new_i32();
9915 TCGv_i32 tcg_res = tcg_temp_new_i32();
9916 int pass, maxpasses;
9918 if (is_scalar) {
9919 maxpasses = 1;
9920 } else {
9921 maxpasses = is_q ? 4 : 2;
9924 for (pass = 0; pass < maxpasses; pass++) {
9925 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9927 switch (opcode) {
9928 case 0x3c: /* URECPE */
9929 gen_helper_recpe_u32(tcg_res, tcg_op);
9930 break;
9931 case 0x3d: /* FRECPE */
9932 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9933 break;
9934 case 0x3f: /* FRECPX */
9935 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9936 break;
9937 case 0x7d: /* FRSQRTE */
9938 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9939 break;
9940 default:
9941 g_assert_not_reached();
9944 if (is_scalar) {
9945 write_fp_sreg(s, rd, tcg_res);
9946 } else {
9947 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9950 if (!is_scalar) {
9951 clear_vec_high(s, is_q, rd);
9956 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9957 int opcode, bool u, bool is_q,
9958 int size, int rn, int rd)
9960 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9961 * in the source becomes a size element in the destination).
9963 int pass;
9964 TCGv_i32 tcg_res[2];
9965 int destelt = is_q ? 2 : 0;
9966 int passes = scalar ? 1 : 2;
9968 if (scalar) {
9969 tcg_res[1] = tcg_constant_i32(0);
9972 for (pass = 0; pass < passes; pass++) {
9973 TCGv_i64 tcg_op = tcg_temp_new_i64();
9974 NeonGenNarrowFn *genfn = NULL;
9975 NeonGenNarrowEnvFn *genenvfn = NULL;
9977 if (scalar) {
9978 read_vec_element(s, tcg_op, rn, pass, size + 1);
9979 } else {
9980 read_vec_element(s, tcg_op, rn, pass, MO_64);
9982 tcg_res[pass] = tcg_temp_new_i32();
9984 switch (opcode) {
9985 case 0x12: /* XTN, SQXTUN */
9987 static NeonGenNarrowFn * const xtnfns[3] = {
9988 gen_helper_neon_narrow_u8,
9989 gen_helper_neon_narrow_u16,
9990 tcg_gen_extrl_i64_i32,
9992 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
9993 gen_helper_neon_unarrow_sat8,
9994 gen_helper_neon_unarrow_sat16,
9995 gen_helper_neon_unarrow_sat32,
9997 if (u) {
9998 genenvfn = sqxtunfns[size];
9999 } else {
10000 genfn = xtnfns[size];
10002 break;
10004 case 0x14: /* SQXTN, UQXTN */
10006 static NeonGenNarrowEnvFn * const fns[3][2] = {
10007 { gen_helper_neon_narrow_sat_s8,
10008 gen_helper_neon_narrow_sat_u8 },
10009 { gen_helper_neon_narrow_sat_s16,
10010 gen_helper_neon_narrow_sat_u16 },
10011 { gen_helper_neon_narrow_sat_s32,
10012 gen_helper_neon_narrow_sat_u32 },
10014 genenvfn = fns[size][u];
10015 break;
10017 case 0x16: /* FCVTN, FCVTN2 */
10018 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
10019 if (size == 2) {
10020 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env);
10021 } else {
10022 TCGv_i32 tcg_lo = tcg_temp_new_i32();
10023 TCGv_i32 tcg_hi = tcg_temp_new_i32();
10024 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10025 TCGv_i32 ahp = get_ahp_flag();
10027 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
10028 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
10029 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
10030 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
10032 break;
10033 case 0x36: /* BFCVTN, BFCVTN2 */
10035 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10036 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
10038 break;
10039 case 0x56: /* FCVTXN, FCVTXN2 */
10040 /* 64 bit to 32 bit float conversion
10041 * with von Neumann rounding (round to odd)
10043 assert(size == 2);
10044 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env);
10045 break;
10046 default:
10047 g_assert_not_reached();
10050 if (genfn) {
10051 genfn(tcg_res[pass], tcg_op);
10052 } else if (genenvfn) {
10053 genenvfn(tcg_res[pass], tcg_env, tcg_op);
10057 for (pass = 0; pass < 2; pass++) {
10058 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
10060 clear_vec_high(s, is_q, rd);
10063 /* AdvSIMD scalar two reg misc
10064 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
10065 * +-----+---+-----------+------+-----------+--------+-----+------+------+
10066 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
10067 * +-----+---+-----------+------+-----------+--------+-----+------+------+
10069 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
10071 int rd = extract32(insn, 0, 5);
10072 int rn = extract32(insn, 5, 5);
10073 int opcode = extract32(insn, 12, 5);
10074 int size = extract32(insn, 22, 2);
10075 bool u = extract32(insn, 29, 1);
10076 bool is_fcvt = false;
10077 int rmode;
10078 TCGv_i32 tcg_rmode;
10079 TCGv_ptr tcg_fpstatus;
10081 switch (opcode) {
10082 case 0x7: /* SQABS / SQNEG */
10083 break;
10084 case 0xa: /* CMLT */
10085 if (u) {
10086 unallocated_encoding(s);
10087 return;
10089 /* fall through */
10090 case 0x8: /* CMGT, CMGE */
10091 case 0x9: /* CMEQ, CMLE */
10092 case 0xb: /* ABS, NEG */
10093 if (size != 3) {
10094 unallocated_encoding(s);
10095 return;
10097 break;
10098 case 0x12: /* SQXTUN */
10099 if (!u) {
10100 unallocated_encoding(s);
10101 return;
10103 /* fall through */
10104 case 0x14: /* SQXTN, UQXTN */
10105 if (size == 3) {
10106 unallocated_encoding(s);
10107 return;
10109 if (!fp_access_check(s)) {
10110 return;
10112 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10113 return;
10114 case 0xc ... 0xf:
10115 case 0x16 ... 0x1d:
10116 case 0x1f:
10117 /* Floating point: U, size[1] and opcode indicate operation;
10118 * size[0] indicates single or double precision.
10120 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10121 size = extract32(size, 0, 1) ? 3 : 2;
10122 switch (opcode) {
10123 case 0x2c: /* FCMGT (zero) */
10124 case 0x2d: /* FCMEQ (zero) */
10125 case 0x2e: /* FCMLT (zero) */
10126 case 0x6c: /* FCMGE (zero) */
10127 case 0x6d: /* FCMLE (zero) */
10128 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10129 return;
10130 case 0x1d: /* SCVTF */
10131 case 0x5d: /* UCVTF */
10133 bool is_signed = (opcode == 0x1d);
10134 if (!fp_access_check(s)) {
10135 return;
10137 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10138 return;
10140 case 0x3d: /* FRECPE */
10141 case 0x3f: /* FRECPX */
10142 case 0x7d: /* FRSQRTE */
10143 if (!fp_access_check(s)) {
10144 return;
10146 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10147 return;
10148 case 0x1a: /* FCVTNS */
10149 case 0x1b: /* FCVTMS */
10150 case 0x3a: /* FCVTPS */
10151 case 0x3b: /* FCVTZS */
10152 case 0x5a: /* FCVTNU */
10153 case 0x5b: /* FCVTMU */
10154 case 0x7a: /* FCVTPU */
10155 case 0x7b: /* FCVTZU */
10156 is_fcvt = true;
10157 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10158 break;
10159 case 0x1c: /* FCVTAS */
10160 case 0x5c: /* FCVTAU */
10161 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10162 is_fcvt = true;
10163 rmode = FPROUNDING_TIEAWAY;
10164 break;
10165 case 0x56: /* FCVTXN, FCVTXN2 */
10166 if (size == 2) {
10167 unallocated_encoding(s);
10168 return;
10170 if (!fp_access_check(s)) {
10171 return;
10173 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10174 return;
10175 default:
10176 unallocated_encoding(s);
10177 return;
10179 break;
10180 default:
10181 case 0x3: /* USQADD / SUQADD */
10182 unallocated_encoding(s);
10183 return;
10186 if (!fp_access_check(s)) {
10187 return;
10190 if (is_fcvt) {
10191 tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10192 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
10193 } else {
10194 tcg_fpstatus = NULL;
10195 tcg_rmode = NULL;
10198 if (size == 3) {
10199 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10200 TCGv_i64 tcg_rd = tcg_temp_new_i64();
10202 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10203 write_fp_dreg(s, rd, tcg_rd);
10204 } else {
10205 TCGv_i32 tcg_rn = tcg_temp_new_i32();
10206 TCGv_i32 tcg_rd = tcg_temp_new_i32();
10208 read_vec_element_i32(s, tcg_rn, rn, 0, size);
10210 switch (opcode) {
10211 case 0x7: /* SQABS, SQNEG */
10213 NeonGenOneOpEnvFn *genfn;
10214 static NeonGenOneOpEnvFn * const fns[3][2] = {
10215 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10216 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10217 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10219 genfn = fns[size][u];
10220 genfn(tcg_rd, tcg_env, tcg_rn);
10221 break;
10223 case 0x1a: /* FCVTNS */
10224 case 0x1b: /* FCVTMS */
10225 case 0x1c: /* FCVTAS */
10226 case 0x3a: /* FCVTPS */
10227 case 0x3b: /* FCVTZS */
10228 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10229 tcg_fpstatus);
10230 break;
10231 case 0x5a: /* FCVTNU */
10232 case 0x5b: /* FCVTMU */
10233 case 0x5c: /* FCVTAU */
10234 case 0x7a: /* FCVTPU */
10235 case 0x7b: /* FCVTZU */
10236 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10237 tcg_fpstatus);
10238 break;
10239 default:
10240 g_assert_not_reached();
10243 write_fp_sreg(s, rd, tcg_rd);
10246 if (is_fcvt) {
10247 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
10251 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10252 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10253 int immh, int immb, int opcode, int rn, int rd)
10255 int size = 32 - clz32(immh) - 1;
10256 int immhb = immh << 3 | immb;
10257 int shift = 2 * (8 << size) - immhb;
10258 GVecGen2iFn *gvec_fn;
10260 if (extract32(immh, 3, 1) && !is_q) {
10261 unallocated_encoding(s);
10262 return;
10264 tcg_debug_assert(size <= 3);
10266 if (!fp_access_check(s)) {
10267 return;
10270 switch (opcode) {
10271 case 0x02: /* SSRA / USRA (accumulate) */
10272 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10273 break;
10275 case 0x08: /* SRI */
10276 gvec_fn = gen_gvec_sri;
10277 break;
10279 case 0x00: /* SSHR / USHR */
10280 if (is_u) {
10281 if (shift == 8 << size) {
10282 /* Shift count the same size as element size produces zero. */
10283 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10284 is_q ? 16 : 8, vec_full_reg_size(s), 0);
10285 return;
10287 gvec_fn = tcg_gen_gvec_shri;
10288 } else {
10289 /* Shift count the same size as element size produces all sign. */
10290 if (shift == 8 << size) {
10291 shift -= 1;
10293 gvec_fn = tcg_gen_gvec_sari;
10295 break;
10297 case 0x04: /* SRSHR / URSHR (rounding) */
10298 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10299 break;
10301 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10302 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10303 break;
10305 default:
10306 g_assert_not_reached();
10309 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10312 /* SHL/SLI - Vector shift left */
10313 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10314 int immh, int immb, int opcode, int rn, int rd)
10316 int size = 32 - clz32(immh) - 1;
10317 int immhb = immh << 3 | immb;
10318 int shift = immhb - (8 << size);
10320 /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10321 assert(size >= 0 && size <= 3);
10323 if (extract32(immh, 3, 1) && !is_q) {
10324 unallocated_encoding(s);
10325 return;
10328 if (!fp_access_check(s)) {
10329 return;
10332 if (insert) {
10333 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10334 } else {
10335 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10339 /* USHLL/SHLL - Vector shift left with widening */
10340 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10341 int immh, int immb, int opcode, int rn, int rd)
10343 int size = 32 - clz32(immh) - 1;
10344 int immhb = immh << 3 | immb;
10345 int shift = immhb - (8 << size);
10346 int dsize = 64;
10347 int esize = 8 << size;
10348 int elements = dsize/esize;
10349 TCGv_i64 tcg_rn = tcg_temp_new_i64();
10350 TCGv_i64 tcg_rd = tcg_temp_new_i64();
10351 int i;
10353 if (size >= 3) {
10354 unallocated_encoding(s);
10355 return;
10358 if (!fp_access_check(s)) {
10359 return;
10362 /* For the LL variants the store is larger than the load,
10363 * so if rd == rn we would overwrite parts of our input.
10364 * So load everything right now and use shifts in the main loop.
10366 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10368 for (i = 0; i < elements; i++) {
10369 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10370 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10371 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10372 write_vec_element(s, tcg_rd, rd, i, size + 1);
10376 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10377 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10378 int immh, int immb, int opcode, int rn, int rd)
10380 int immhb = immh << 3 | immb;
10381 int size = 32 - clz32(immh) - 1;
10382 int dsize = 64;
10383 int esize = 8 << size;
10384 int elements = dsize/esize;
10385 int shift = (2 * esize) - immhb;
10386 bool round = extract32(opcode, 0, 1);
10387 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10388 TCGv_i64 tcg_round;
10389 int i;
10391 if (extract32(immh, 3, 1)) {
10392 unallocated_encoding(s);
10393 return;
10396 if (!fp_access_check(s)) {
10397 return;
10400 tcg_rn = tcg_temp_new_i64();
10401 tcg_rd = tcg_temp_new_i64();
10402 tcg_final = tcg_temp_new_i64();
10403 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10405 if (round) {
10406 tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10407 } else {
10408 tcg_round = NULL;
10411 for (i = 0; i < elements; i++) {
10412 read_vec_element(s, tcg_rn, rn, i, size+1);
10413 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10414 false, true, size+1, shift);
10416 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10419 if (!is_q) {
10420 write_vec_element(s, tcg_final, rd, 0, MO_64);
10421 } else {
10422 write_vec_element(s, tcg_final, rd, 1, MO_64);
10425 clear_vec_high(s, is_q, rd);
10429 /* AdvSIMD shift by immediate
10430 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
10431 * +---+---+---+-------------+------+------+--------+---+------+------+
10432 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
10433 * +---+---+---+-------------+------+------+--------+---+------+------+
10435 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10437 int rd = extract32(insn, 0, 5);
10438 int rn = extract32(insn, 5, 5);
10439 int opcode = extract32(insn, 11, 5);
10440 int immb = extract32(insn, 16, 3);
10441 int immh = extract32(insn, 19, 4);
10442 bool is_u = extract32(insn, 29, 1);
10443 bool is_q = extract32(insn, 30, 1);
10445 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10446 assert(immh != 0);
10448 switch (opcode) {
10449 case 0x08: /* SRI */
10450 if (!is_u) {
10451 unallocated_encoding(s);
10452 return;
10454 /* fall through */
10455 case 0x00: /* SSHR / USHR */
10456 case 0x02: /* SSRA / USRA (accumulate) */
10457 case 0x04: /* SRSHR / URSHR (rounding) */
10458 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10459 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10460 break;
10461 case 0x0a: /* SHL / SLI */
10462 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10463 break;
10464 case 0x10: /* SHRN */
10465 case 0x11: /* RSHRN / SQRSHRUN */
10466 if (is_u) {
10467 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10468 opcode, rn, rd);
10469 } else {
10470 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10472 break;
10473 case 0x12: /* SQSHRN / UQSHRN */
10474 case 0x13: /* SQRSHRN / UQRSHRN */
10475 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10476 opcode, rn, rd);
10477 break;
10478 case 0x14: /* SSHLL / USHLL */
10479 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10480 break;
10481 case 0x1c: /* SCVTF / UCVTF */
10482 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10483 opcode, rn, rd);
10484 break;
10485 case 0xc: /* SQSHLU */
10486 if (!is_u) {
10487 unallocated_encoding(s);
10488 return;
10490 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10491 break;
10492 case 0xe: /* SQSHL, UQSHL */
10493 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10494 break;
10495 case 0x1f: /* FCVTZS/ FCVTZU */
10496 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10497 return;
10498 default:
10499 unallocated_encoding(s);
10500 return;
10504 /* Generate code to do a "long" addition or subtraction, ie one done in
10505 * TCGv_i64 on vector lanes twice the width specified by size.
10507 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10508 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10510 static NeonGenTwo64OpFn * const fns[3][2] = {
10511 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10512 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10513 { tcg_gen_add_i64, tcg_gen_sub_i64 },
10515 NeonGenTwo64OpFn *genfn;
10516 assert(size < 3);
10518 genfn = fns[size][is_sub];
10519 genfn(tcg_res, tcg_op1, tcg_op2);
10522 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10523 int opcode, int rd, int rn, int rm)
10525 /* 3-reg-different widening insns: 64 x 64 -> 128 */
10526 TCGv_i64 tcg_res[2];
10527 int pass, accop;
10529 tcg_res[0] = tcg_temp_new_i64();
10530 tcg_res[1] = tcg_temp_new_i64();
10532 /* Does this op do an adding accumulate, a subtracting accumulate,
10533 * or no accumulate at all?
10535 switch (opcode) {
10536 case 5:
10537 case 8:
10538 case 9:
10539 accop = 1;
10540 break;
10541 case 10:
10542 case 11:
10543 accop = -1;
10544 break;
10545 default:
10546 accop = 0;
10547 break;
10550 if (accop != 0) {
10551 read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10552 read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10555 /* size == 2 means two 32x32->64 operations; this is worth special
10556 * casing because we can generally handle it inline.
10558 if (size == 2) {
10559 for (pass = 0; pass < 2; pass++) {
10560 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10561 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10562 TCGv_i64 tcg_passres;
10563 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10565 int elt = pass + is_q * 2;
10567 read_vec_element(s, tcg_op1, rn, elt, memop);
10568 read_vec_element(s, tcg_op2, rm, elt, memop);
10570 if (accop == 0) {
10571 tcg_passres = tcg_res[pass];
10572 } else {
10573 tcg_passres = tcg_temp_new_i64();
10576 switch (opcode) {
10577 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10578 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10579 break;
10580 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10581 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10582 break;
10583 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10584 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10586 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10587 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10589 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10590 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10591 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10592 tcg_passres,
10593 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10594 break;
10596 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10597 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10598 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10599 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10600 break;
10601 case 9: /* SQDMLAL, SQDMLAL2 */
10602 case 11: /* SQDMLSL, SQDMLSL2 */
10603 case 13: /* SQDMULL, SQDMULL2 */
10604 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10605 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
10606 tcg_passres, tcg_passres);
10607 break;
10608 default:
10609 g_assert_not_reached();
10612 if (opcode == 9 || opcode == 11) {
10613 /* saturating accumulate ops */
10614 if (accop < 0) {
10615 tcg_gen_neg_i64(tcg_passres, tcg_passres);
10617 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
10618 tcg_res[pass], tcg_passres);
10619 } else if (accop > 0) {
10620 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10621 } else if (accop < 0) {
10622 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10625 } else {
10626 /* size 0 or 1, generally helper functions */
10627 for (pass = 0; pass < 2; pass++) {
10628 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10629 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10630 TCGv_i64 tcg_passres;
10631 int elt = pass + is_q * 2;
10633 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10634 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10636 if (accop == 0) {
10637 tcg_passres = tcg_res[pass];
10638 } else {
10639 tcg_passres = tcg_temp_new_i64();
10642 switch (opcode) {
10643 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10644 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10646 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10647 static NeonGenWidenFn * const widenfns[2][2] = {
10648 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10649 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10651 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10653 widenfn(tcg_op2_64, tcg_op2);
10654 widenfn(tcg_passres, tcg_op1);
10655 gen_neon_addl(size, (opcode == 2), tcg_passres,
10656 tcg_passres, tcg_op2_64);
10657 break;
10659 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10660 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10661 if (size == 0) {
10662 if (is_u) {
10663 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10664 } else {
10665 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10667 } else {
10668 if (is_u) {
10669 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10670 } else {
10671 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10674 break;
10675 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10676 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10677 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10678 if (size == 0) {
10679 if (is_u) {
10680 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10681 } else {
10682 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10684 } else {
10685 if (is_u) {
10686 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10687 } else {
10688 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10691 break;
10692 case 9: /* SQDMLAL, SQDMLAL2 */
10693 case 11: /* SQDMLSL, SQDMLSL2 */
10694 case 13: /* SQDMULL, SQDMULL2 */
10695 assert(size == 1);
10696 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10697 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
10698 tcg_passres, tcg_passres);
10699 break;
10700 default:
10701 g_assert_not_reached();
10704 if (accop != 0) {
10705 if (opcode == 9 || opcode == 11) {
10706 /* saturating accumulate ops */
10707 if (accop < 0) {
10708 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10710 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
10711 tcg_res[pass],
10712 tcg_passres);
10713 } else {
10714 gen_neon_addl(size, (accop < 0), tcg_res[pass],
10715 tcg_res[pass], tcg_passres);
10721 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10722 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10725 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10726 int opcode, int rd, int rn, int rm)
10728 TCGv_i64 tcg_res[2];
10729 int part = is_q ? 2 : 0;
10730 int pass;
10732 for (pass = 0; pass < 2; pass++) {
10733 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10734 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10735 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10736 static NeonGenWidenFn * const widenfns[3][2] = {
10737 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10738 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10739 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10741 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10743 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10744 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10745 widenfn(tcg_op2_wide, tcg_op2);
10746 tcg_res[pass] = tcg_temp_new_i64();
10747 gen_neon_addl(size, (opcode == 3),
10748 tcg_res[pass], tcg_op1, tcg_op2_wide);
10751 for (pass = 0; pass < 2; pass++) {
10752 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10756 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10758 tcg_gen_addi_i64(in, in, 1U << 31);
10759 tcg_gen_extrh_i64_i32(res, in);
10762 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10763 int opcode, int rd, int rn, int rm)
10765 TCGv_i32 tcg_res[2];
10766 int part = is_q ? 2 : 0;
10767 int pass;
10769 for (pass = 0; pass < 2; pass++) {
10770 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10771 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10772 TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10773 static NeonGenNarrowFn * const narrowfns[3][2] = {
10774 { gen_helper_neon_narrow_high_u8,
10775 gen_helper_neon_narrow_round_high_u8 },
10776 { gen_helper_neon_narrow_high_u16,
10777 gen_helper_neon_narrow_round_high_u16 },
10778 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10780 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10782 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10783 read_vec_element(s, tcg_op2, rm, pass, MO_64);
10785 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10787 tcg_res[pass] = tcg_temp_new_i32();
10788 gennarrow(tcg_res[pass], tcg_wideres);
10791 for (pass = 0; pass < 2; pass++) {
10792 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10794 clear_vec_high(s, is_q, rd);
10797 /* AdvSIMD three different
10798 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
10799 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10800 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
10801 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10803 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10805 /* Instructions in this group fall into three basic classes
10806 * (in each case with the operation working on each element in
10807 * the input vectors):
10808 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10809 * 128 bit input)
10810 * (2) wide 64 x 128 -> 128
10811 * (3) narrowing 128 x 128 -> 64
10812 * Here we do initial decode, catch unallocated cases and
10813 * dispatch to separate functions for each class.
10815 int is_q = extract32(insn, 30, 1);
10816 int is_u = extract32(insn, 29, 1);
10817 int size = extract32(insn, 22, 2);
10818 int opcode = extract32(insn, 12, 4);
10819 int rm = extract32(insn, 16, 5);
10820 int rn = extract32(insn, 5, 5);
10821 int rd = extract32(insn, 0, 5);
10823 switch (opcode) {
10824 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10825 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10826 /* 64 x 128 -> 128 */
10827 if (size == 3) {
10828 unallocated_encoding(s);
10829 return;
10831 if (!fp_access_check(s)) {
10832 return;
10834 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10835 break;
10836 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10837 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10838 /* 128 x 128 -> 64 */
10839 if (size == 3) {
10840 unallocated_encoding(s);
10841 return;
10843 if (!fp_access_check(s)) {
10844 return;
10846 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10847 break;
10848 case 14: /* PMULL, PMULL2 */
10849 if (is_u) {
10850 unallocated_encoding(s);
10851 return;
10853 switch (size) {
10854 case 0: /* PMULL.P8 */
10855 if (!fp_access_check(s)) {
10856 return;
10858 /* The Q field specifies lo/hi half input for this insn. */
10859 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10860 gen_helper_neon_pmull_h);
10861 break;
10863 case 3: /* PMULL.P64 */
10864 if (!dc_isar_feature(aa64_pmull, s)) {
10865 unallocated_encoding(s);
10866 return;
10868 if (!fp_access_check(s)) {
10869 return;
10871 /* The Q field specifies lo/hi half input for this insn. */
10872 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10873 gen_helper_gvec_pmull_q);
10874 break;
10876 default:
10877 unallocated_encoding(s);
10878 break;
10880 return;
10881 case 9: /* SQDMLAL, SQDMLAL2 */
10882 case 11: /* SQDMLSL, SQDMLSL2 */
10883 case 13: /* SQDMULL, SQDMULL2 */
10884 if (is_u || size == 0) {
10885 unallocated_encoding(s);
10886 return;
10888 /* fall through */
10889 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10890 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10891 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10892 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10893 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10894 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10895 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10896 /* 64 x 64 -> 128 */
10897 if (size == 3) {
10898 unallocated_encoding(s);
10899 return;
10901 if (!fp_access_check(s)) {
10902 return;
10905 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10906 break;
10907 default:
10908 /* opcode 15 not allocated */
10909 unallocated_encoding(s);
10910 break;
10914 /* Integer op subgroup of C3.6.16. */
10915 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
10917 int is_q = extract32(insn, 30, 1);
10918 int u = extract32(insn, 29, 1);
10919 int size = extract32(insn, 22, 2);
10920 int opcode = extract32(insn, 11, 5);
10921 int rm = extract32(insn, 16, 5);
10922 int rn = extract32(insn, 5, 5);
10923 int rd = extract32(insn, 0, 5);
10925 switch (opcode) {
10926 case 0x13: /* MUL, PMUL */
10927 if (u && size != 0) {
10928 unallocated_encoding(s);
10929 return;
10931 /* fall through */
10932 case 0xe: /* SABD, UABD */
10933 case 0xf: /* SABA, UABA */
10934 case 0x12: /* MLA, MLS */
10935 if (size == 3) {
10936 unallocated_encoding(s);
10937 return;
10939 break;
10940 case 0x16: /* SQDMULH, SQRDMULH */
10941 if (size == 0 || size == 3) {
10942 unallocated_encoding(s);
10943 return;
10945 break;
10946 default:
10947 if (size == 3 && !is_q) {
10948 unallocated_encoding(s);
10949 return;
10951 break;
10953 case 0x0: /* SHADD, UHADD */
10954 case 0x01: /* SQADD, UQADD */
10955 case 0x02: /* SRHADD, URHADD */
10956 case 0x04: /* SHSUB, UHSUB */
10957 case 0x05: /* SQSUB, UQSUB */
10958 case 0x06: /* CMGT, CMHI */
10959 case 0x07: /* CMGE, CMHS */
10960 case 0x08: /* SSHL, USHL */
10961 case 0x09: /* SQSHL, UQSHL */
10962 case 0x0a: /* SRSHL, URSHL */
10963 case 0x0b: /* SQRSHL, UQRSHL */
10964 case 0x0c: /* SMAX, UMAX */
10965 case 0x0d: /* SMIN, UMIN */
10966 case 0x10: /* ADD, SUB */
10967 case 0x11: /* CMTST, CMEQ */
10968 unallocated_encoding(s);
10969 return;
10972 if (!fp_access_check(s)) {
10973 return;
10976 switch (opcode) {
10977 case 0xe: /* SABD, UABD */
10978 if (u) {
10979 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size);
10980 } else {
10981 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size);
10983 return;
10984 case 0xf: /* SABA, UABA */
10985 if (u) {
10986 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size);
10987 } else {
10988 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size);
10990 return;
10991 case 0x13: /* MUL, PMUL */
10992 if (!u) { /* MUL */
10993 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
10994 } else { /* PMUL */
10995 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
10997 return;
10998 case 0x12: /* MLA, MLS */
10999 if (u) {
11000 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size);
11001 } else {
11002 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size);
11004 return;
11005 case 0x16: /* SQDMULH, SQRDMULH */
11007 static gen_helper_gvec_3_ptr * const fns[2][2] = {
11008 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h },
11009 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s },
11011 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]);
11013 return;
11015 g_assert_not_reached();
11018 /* AdvSIMD three same
11019 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
11020 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11021 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
11022 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11024 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11026 int opcode = extract32(insn, 11, 5);
11028 switch (opcode) {
11029 default:
11030 disas_simd_3same_int(s, insn);
11031 break;
11032 case 0x3: /* logic ops */
11033 case 0x14: /* SMAXP, UMAXP */
11034 case 0x15: /* SMINP, UMINP */
11035 case 0x17: /* ADDP */
11036 case 0x18 ... 0x31: /* floating point ops */
11037 unallocated_encoding(s);
11038 break;
11042 /* AdvSIMD three same extra
11043 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
11044 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11045 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
11046 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11048 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
11050 int rd = extract32(insn, 0, 5);
11051 int rn = extract32(insn, 5, 5);
11052 int opcode = extract32(insn, 11, 4);
11053 int rm = extract32(insn, 16, 5);
11054 int size = extract32(insn, 22, 2);
11055 bool u = extract32(insn, 29, 1);
11056 bool is_q = extract32(insn, 30, 1);
11057 bool feature;
11058 int rot;
11060 switch (u * 16 + opcode) {
11061 case 0x10: /* SQRDMLAH (vector) */
11062 case 0x11: /* SQRDMLSH (vector) */
11063 if (size != 1 && size != 2) {
11064 unallocated_encoding(s);
11065 return;
11067 feature = dc_isar_feature(aa64_rdm, s);
11068 break;
11069 case 0x02: /* SDOT (vector) */
11070 case 0x12: /* UDOT (vector) */
11071 if (size != MO_32) {
11072 unallocated_encoding(s);
11073 return;
11075 feature = dc_isar_feature(aa64_dp, s);
11076 break;
11077 case 0x03: /* USDOT */
11078 if (size != MO_32) {
11079 unallocated_encoding(s);
11080 return;
11082 feature = dc_isar_feature(aa64_i8mm, s);
11083 break;
11084 case 0x04: /* SMMLA */
11085 case 0x14: /* UMMLA */
11086 case 0x05: /* USMMLA */
11087 if (!is_q || size != MO_32) {
11088 unallocated_encoding(s);
11089 return;
11091 feature = dc_isar_feature(aa64_i8mm, s);
11092 break;
11093 case 0x18: /* FCMLA, #0 */
11094 case 0x19: /* FCMLA, #90 */
11095 case 0x1a: /* FCMLA, #180 */
11096 case 0x1b: /* FCMLA, #270 */
11097 case 0x1c: /* FCADD, #90 */
11098 case 0x1e: /* FCADD, #270 */
11099 if (size == 0
11100 || (size == 1 && !dc_isar_feature(aa64_fp16, s))
11101 || (size == 3 && !is_q)) {
11102 unallocated_encoding(s);
11103 return;
11105 feature = dc_isar_feature(aa64_fcma, s);
11106 break;
11107 case 0x1d: /* BFMMLA */
11108 if (size != MO_16 || !is_q) {
11109 unallocated_encoding(s);
11110 return;
11112 feature = dc_isar_feature(aa64_bf16, s);
11113 break;
11114 case 0x1f:
11115 switch (size) {
11116 case 1: /* BFDOT */
11117 case 3: /* BFMLAL{B,T} */
11118 feature = dc_isar_feature(aa64_bf16, s);
11119 break;
11120 default:
11121 unallocated_encoding(s);
11122 return;
11124 break;
11125 default:
11126 unallocated_encoding(s);
11127 return;
11129 if (!feature) {
11130 unallocated_encoding(s);
11131 return;
11133 if (!fp_access_check(s)) {
11134 return;
11137 switch (opcode) {
11138 case 0x0: /* SQRDMLAH (vector) */
11139 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
11140 return;
11142 case 0x1: /* SQRDMLSH (vector) */
11143 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
11144 return;
11146 case 0x2: /* SDOT / UDOT */
11147 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0,
11148 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
11149 return;
11151 case 0x3: /* USDOT */
11152 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b);
11153 return;
11155 case 0x04: /* SMMLA, UMMLA */
11156 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
11157 u ? gen_helper_gvec_ummla_b
11158 : gen_helper_gvec_smmla_b);
11159 return;
11160 case 0x05: /* USMMLA */
11161 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
11162 return;
11164 case 0x8: /* FCMLA, #0 */
11165 case 0x9: /* FCMLA, #90 */
11166 case 0xa: /* FCMLA, #180 */
11167 case 0xb: /* FCMLA, #270 */
11168 rot = extract32(opcode, 0, 2);
11169 switch (size) {
11170 case 1:
11171 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
11172 gen_helper_gvec_fcmlah);
11173 break;
11174 case 2:
11175 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11176 gen_helper_gvec_fcmlas);
11177 break;
11178 case 3:
11179 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11180 gen_helper_gvec_fcmlad);
11181 break;
11182 default:
11183 g_assert_not_reached();
11185 return;
11187 case 0xc: /* FCADD, #90 */
11188 case 0xe: /* FCADD, #270 */
11189 rot = extract32(opcode, 1, 1);
11190 switch (size) {
11191 case 1:
11192 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11193 gen_helper_gvec_fcaddh);
11194 break;
11195 case 2:
11196 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11197 gen_helper_gvec_fcadds);
11198 break;
11199 case 3:
11200 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11201 gen_helper_gvec_fcaddd);
11202 break;
11203 default:
11204 g_assert_not_reached();
11206 return;
11208 case 0xd: /* BFMMLA */
11209 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
11210 return;
11211 case 0xf:
11212 switch (size) {
11213 case 1: /* BFDOT */
11214 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot);
11215 break;
11216 case 3: /* BFMLAL{B,T} */
11217 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q,
11218 gen_helper_gvec_bfmlal);
11219 break;
11220 default:
11221 g_assert_not_reached();
11223 return;
11225 default:
11226 g_assert_not_reached();
11230 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11231 int size, int rn, int rd)
11233 /* Handle 2-reg-misc ops which are widening (so each size element
11234 * in the source becomes a 2*size element in the destination.
11235 * The only instruction like this is FCVTL.
11237 int pass;
11239 if (size == 3) {
11240 /* 32 -> 64 bit fp conversion */
11241 TCGv_i64 tcg_res[2];
11242 int srcelt = is_q ? 2 : 0;
11244 for (pass = 0; pass < 2; pass++) {
11245 TCGv_i32 tcg_op = tcg_temp_new_i32();
11246 tcg_res[pass] = tcg_temp_new_i64();
11248 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11249 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env);
11251 for (pass = 0; pass < 2; pass++) {
11252 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11254 } else {
11255 /* 16 -> 32 bit fp conversion */
11256 int srcelt = is_q ? 4 : 0;
11257 TCGv_i32 tcg_res[4];
11258 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
11259 TCGv_i32 ahp = get_ahp_flag();
11261 for (pass = 0; pass < 4; pass++) {
11262 tcg_res[pass] = tcg_temp_new_i32();
11264 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11265 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11266 fpst, ahp);
11268 for (pass = 0; pass < 4; pass++) {
11269 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11274 static void handle_rev(DisasContext *s, int opcode, bool u,
11275 bool is_q, int size, int rn, int rd)
11277 int op = (opcode << 1) | u;
11278 int opsz = op + size;
11279 int grp_size = 3 - opsz;
11280 int dsize = is_q ? 128 : 64;
11281 int i;
11283 if (opsz >= 3) {
11284 unallocated_encoding(s);
11285 return;
11288 if (!fp_access_check(s)) {
11289 return;
11292 if (size == 0) {
11293 /* Special case bytes, use bswap op on each group of elements */
11294 int groups = dsize / (8 << grp_size);
11296 for (i = 0; i < groups; i++) {
11297 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11299 read_vec_element(s, tcg_tmp, rn, i, grp_size);
11300 switch (grp_size) {
11301 case MO_16:
11302 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11303 break;
11304 case MO_32:
11305 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11306 break;
11307 case MO_64:
11308 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11309 break;
11310 default:
11311 g_assert_not_reached();
11313 write_vec_element(s, tcg_tmp, rd, i, grp_size);
11315 clear_vec_high(s, is_q, rd);
11316 } else {
11317 int revmask = (1 << grp_size) - 1;
11318 int esize = 8 << size;
11319 int elements = dsize / esize;
11320 TCGv_i64 tcg_rn = tcg_temp_new_i64();
11321 TCGv_i64 tcg_rd[2];
11323 for (i = 0; i < 2; i++) {
11324 tcg_rd[i] = tcg_temp_new_i64();
11325 tcg_gen_movi_i64(tcg_rd[i], 0);
11328 for (i = 0; i < elements; i++) {
11329 int e_rev = (i & 0xf) ^ revmask;
11330 int w = (e_rev * esize) / 64;
11331 int o = (e_rev * esize) % 64;
11333 read_vec_element(s, tcg_rn, rn, i, size);
11334 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
11337 for (i = 0; i < 2; i++) {
11338 write_vec_element(s, tcg_rd[i], rd, i, MO_64);
11340 clear_vec_high(s, true, rd);
11344 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11345 bool is_q, int size, int rn, int rd)
11347 /* Implement the pairwise operations from 2-misc:
11348 * SADDLP, UADDLP, SADALP, UADALP.
11349 * These all add pairs of elements in the input to produce a
11350 * double-width result element in the output (possibly accumulating).
11352 bool accum = (opcode == 0x6);
11353 int maxpass = is_q ? 2 : 1;
11354 int pass;
11355 TCGv_i64 tcg_res[2];
11357 if (size == 2) {
11358 /* 32 + 32 -> 64 op */
11359 MemOp memop = size + (u ? 0 : MO_SIGN);
11361 for (pass = 0; pass < maxpass; pass++) {
11362 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11363 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11365 tcg_res[pass] = tcg_temp_new_i64();
11367 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11368 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11369 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11370 if (accum) {
11371 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11372 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11375 } else {
11376 for (pass = 0; pass < maxpass; pass++) {
11377 TCGv_i64 tcg_op = tcg_temp_new_i64();
11378 NeonGenOne64OpFn *genfn;
11379 static NeonGenOne64OpFn * const fns[2][2] = {
11380 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
11381 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
11384 genfn = fns[size][u];
11386 tcg_res[pass] = tcg_temp_new_i64();
11388 read_vec_element(s, tcg_op, rn, pass, MO_64);
11389 genfn(tcg_res[pass], tcg_op);
11391 if (accum) {
11392 read_vec_element(s, tcg_op, rd, pass, MO_64);
11393 if (size == 0) {
11394 gen_helper_neon_addl_u16(tcg_res[pass],
11395 tcg_res[pass], tcg_op);
11396 } else {
11397 gen_helper_neon_addl_u32(tcg_res[pass],
11398 tcg_res[pass], tcg_op);
11403 if (!is_q) {
11404 tcg_res[1] = tcg_constant_i64(0);
11406 for (pass = 0; pass < 2; pass++) {
11407 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11411 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11413 /* Implement SHLL and SHLL2 */
11414 int pass;
11415 int part = is_q ? 2 : 0;
11416 TCGv_i64 tcg_res[2];
11418 for (pass = 0; pass < 2; pass++) {
11419 static NeonGenWidenFn * const widenfns[3] = {
11420 gen_helper_neon_widen_u8,
11421 gen_helper_neon_widen_u16,
11422 tcg_gen_extu_i32_i64,
11424 NeonGenWidenFn *widenfn = widenfns[size];
11425 TCGv_i32 tcg_op = tcg_temp_new_i32();
11427 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11428 tcg_res[pass] = tcg_temp_new_i64();
11429 widenfn(tcg_res[pass], tcg_op);
11430 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11433 for (pass = 0; pass < 2; pass++) {
11434 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11438 /* AdvSIMD two reg misc
11439 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
11440 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11441 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
11442 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11444 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
11446 int size = extract32(insn, 22, 2);
11447 int opcode = extract32(insn, 12, 5);
11448 bool u = extract32(insn, 29, 1);
11449 bool is_q = extract32(insn, 30, 1);
11450 int rn = extract32(insn, 5, 5);
11451 int rd = extract32(insn, 0, 5);
11452 bool need_fpstatus = false;
11453 int rmode = -1;
11454 TCGv_i32 tcg_rmode;
11455 TCGv_ptr tcg_fpstatus;
11457 switch (opcode) {
11458 case 0x0: /* REV64, REV32 */
11459 case 0x1: /* REV16 */
11460 handle_rev(s, opcode, u, is_q, size, rn, rd);
11461 return;
11462 case 0x5: /* CNT, NOT, RBIT */
11463 if (u && size == 0) {
11464 /* NOT */
11465 break;
11466 } else if (u && size == 1) {
11467 /* RBIT */
11468 break;
11469 } else if (!u && size == 0) {
11470 /* CNT */
11471 break;
11473 unallocated_encoding(s);
11474 return;
11475 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
11476 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
11477 if (size == 3) {
11478 unallocated_encoding(s);
11479 return;
11481 if (!fp_access_check(s)) {
11482 return;
11485 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
11486 return;
11487 case 0x4: /* CLS, CLZ */
11488 if (size == 3) {
11489 unallocated_encoding(s);
11490 return;
11492 break;
11493 case 0x2: /* SADDLP, UADDLP */
11494 case 0x6: /* SADALP, UADALP */
11495 if (size == 3) {
11496 unallocated_encoding(s);
11497 return;
11499 if (!fp_access_check(s)) {
11500 return;
11502 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
11503 return;
11504 case 0x13: /* SHLL, SHLL2 */
11505 if (u == 0 || size == 3) {
11506 unallocated_encoding(s);
11507 return;
11509 if (!fp_access_check(s)) {
11510 return;
11512 handle_shll(s, is_q, size, rn, rd);
11513 return;
11514 case 0xa: /* CMLT */
11515 if (u == 1) {
11516 unallocated_encoding(s);
11517 return;
11519 /* fall through */
11520 case 0x8: /* CMGT, CMGE */
11521 case 0x9: /* CMEQ, CMLE */
11522 case 0xb: /* ABS, NEG */
11523 if (size == 3 && !is_q) {
11524 unallocated_encoding(s);
11525 return;
11527 break;
11528 case 0x7: /* SQABS, SQNEG */
11529 if (size == 3 && !is_q) {
11530 unallocated_encoding(s);
11531 return;
11533 break;
11534 case 0xc ... 0xf:
11535 case 0x16 ... 0x1f:
11537 /* Floating point: U, size[1] and opcode indicate operation;
11538 * size[0] indicates single or double precision.
11540 int is_double = extract32(size, 0, 1);
11541 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
11542 size = is_double ? 3 : 2;
11543 switch (opcode) {
11544 case 0x2f: /* FABS */
11545 case 0x6f: /* FNEG */
11546 if (size == 3 && !is_q) {
11547 unallocated_encoding(s);
11548 return;
11550 break;
11551 case 0x1d: /* SCVTF */
11552 case 0x5d: /* UCVTF */
11554 bool is_signed = (opcode == 0x1d) ? true : false;
11555 int elements = is_double ? 2 : is_q ? 4 : 2;
11556 if (is_double && !is_q) {
11557 unallocated_encoding(s);
11558 return;
11560 if (!fp_access_check(s)) {
11561 return;
11563 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
11564 return;
11566 case 0x2c: /* FCMGT (zero) */
11567 case 0x2d: /* FCMEQ (zero) */
11568 case 0x2e: /* FCMLT (zero) */
11569 case 0x6c: /* FCMGE (zero) */
11570 case 0x6d: /* FCMLE (zero) */
11571 if (size == 3 && !is_q) {
11572 unallocated_encoding(s);
11573 return;
11575 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
11576 return;
11577 case 0x7f: /* FSQRT */
11578 if (size == 3 && !is_q) {
11579 unallocated_encoding(s);
11580 return;
11582 break;
11583 case 0x1a: /* FCVTNS */
11584 case 0x1b: /* FCVTMS */
11585 case 0x3a: /* FCVTPS */
11586 case 0x3b: /* FCVTZS */
11587 case 0x5a: /* FCVTNU */
11588 case 0x5b: /* FCVTMU */
11589 case 0x7a: /* FCVTPU */
11590 case 0x7b: /* FCVTZU */
11591 need_fpstatus = true;
11592 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11593 if (size == 3 && !is_q) {
11594 unallocated_encoding(s);
11595 return;
11597 break;
11598 case 0x5c: /* FCVTAU */
11599 case 0x1c: /* FCVTAS */
11600 need_fpstatus = true;
11601 rmode = FPROUNDING_TIEAWAY;
11602 if (size == 3 && !is_q) {
11603 unallocated_encoding(s);
11604 return;
11606 break;
11607 case 0x3c: /* URECPE */
11608 if (size == 3) {
11609 unallocated_encoding(s);
11610 return;
11612 /* fall through */
11613 case 0x3d: /* FRECPE */
11614 case 0x7d: /* FRSQRTE */
11615 if (size == 3 && !is_q) {
11616 unallocated_encoding(s);
11617 return;
11619 if (!fp_access_check(s)) {
11620 return;
11622 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
11623 return;
11624 case 0x56: /* FCVTXN, FCVTXN2 */
11625 if (size == 2) {
11626 unallocated_encoding(s);
11627 return;
11629 /* fall through */
11630 case 0x16: /* FCVTN, FCVTN2 */
11631 /* handle_2misc_narrow does a 2*size -> size operation, but these
11632 * instructions encode the source size rather than dest size.
11634 if (!fp_access_check(s)) {
11635 return;
11637 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11638 return;
11639 case 0x36: /* BFCVTN, BFCVTN2 */
11640 if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
11641 unallocated_encoding(s);
11642 return;
11644 if (!fp_access_check(s)) {
11645 return;
11647 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11648 return;
11649 case 0x17: /* FCVTL, FCVTL2 */
11650 if (!fp_access_check(s)) {
11651 return;
11653 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
11654 return;
11655 case 0x18: /* FRINTN */
11656 case 0x19: /* FRINTM */
11657 case 0x38: /* FRINTP */
11658 case 0x39: /* FRINTZ */
11659 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11660 /* fall through */
11661 case 0x59: /* FRINTX */
11662 case 0x79: /* FRINTI */
11663 need_fpstatus = true;
11664 if (size == 3 && !is_q) {
11665 unallocated_encoding(s);
11666 return;
11668 break;
11669 case 0x58: /* FRINTA */
11670 rmode = FPROUNDING_TIEAWAY;
11671 need_fpstatus = true;
11672 if (size == 3 && !is_q) {
11673 unallocated_encoding(s);
11674 return;
11676 break;
11677 case 0x7c: /* URSQRTE */
11678 if (size == 3) {
11679 unallocated_encoding(s);
11680 return;
11682 break;
11683 case 0x1e: /* FRINT32Z */
11684 case 0x1f: /* FRINT64Z */
11685 rmode = FPROUNDING_ZERO;
11686 /* fall through */
11687 case 0x5e: /* FRINT32X */
11688 case 0x5f: /* FRINT64X */
11689 need_fpstatus = true;
11690 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
11691 unallocated_encoding(s);
11692 return;
11694 break;
11695 default:
11696 unallocated_encoding(s);
11697 return;
11699 break;
11701 default:
11702 case 0x3: /* SUQADD, USQADD */
11703 unallocated_encoding(s);
11704 return;
11707 if (!fp_access_check(s)) {
11708 return;
11711 if (need_fpstatus || rmode >= 0) {
11712 tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
11713 } else {
11714 tcg_fpstatus = NULL;
11716 if (rmode >= 0) {
11717 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
11718 } else {
11719 tcg_rmode = NULL;
11722 switch (opcode) {
11723 case 0x5:
11724 if (u && size == 0) { /* NOT */
11725 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
11726 return;
11728 break;
11729 case 0x8: /* CMGT, CMGE */
11730 if (u) {
11731 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
11732 } else {
11733 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
11735 return;
11736 case 0x9: /* CMEQ, CMLE */
11737 if (u) {
11738 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
11739 } else {
11740 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
11742 return;
11743 case 0xa: /* CMLT */
11744 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
11745 return;
11746 case 0xb:
11747 if (u) { /* ABS, NEG */
11748 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
11749 } else {
11750 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
11752 return;
11755 if (size == 3) {
11756 /* All 64-bit element operations can be shared with scalar 2misc */
11757 int pass;
11759 /* Coverity claims (size == 3 && !is_q) has been eliminated
11760 * from all paths leading to here.
11762 tcg_debug_assert(is_q);
11763 for (pass = 0; pass < 2; pass++) {
11764 TCGv_i64 tcg_op = tcg_temp_new_i64();
11765 TCGv_i64 tcg_res = tcg_temp_new_i64();
11767 read_vec_element(s, tcg_op, rn, pass, MO_64);
11769 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
11770 tcg_rmode, tcg_fpstatus);
11772 write_vec_element(s, tcg_res, rd, pass, MO_64);
11774 } else {
11775 int pass;
11777 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11778 TCGv_i32 tcg_op = tcg_temp_new_i32();
11779 TCGv_i32 tcg_res = tcg_temp_new_i32();
11781 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
11783 if (size == 2) {
11784 /* Special cases for 32 bit elements */
11785 switch (opcode) {
11786 case 0x4: /* CLS */
11787 if (u) {
11788 tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
11789 } else {
11790 tcg_gen_clrsb_i32(tcg_res, tcg_op);
11792 break;
11793 case 0x7: /* SQABS, SQNEG */
11794 if (u) {
11795 gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op);
11796 } else {
11797 gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op);
11799 break;
11800 case 0x2f: /* FABS */
11801 gen_vfp_abss(tcg_res, tcg_op);
11802 break;
11803 case 0x6f: /* FNEG */
11804 gen_vfp_negs(tcg_res, tcg_op);
11805 break;
11806 case 0x7f: /* FSQRT */
11807 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
11808 break;
11809 case 0x1a: /* FCVTNS */
11810 case 0x1b: /* FCVTMS */
11811 case 0x1c: /* FCVTAS */
11812 case 0x3a: /* FCVTPS */
11813 case 0x3b: /* FCVTZS */
11814 gen_helper_vfp_tosls(tcg_res, tcg_op,
11815 tcg_constant_i32(0), tcg_fpstatus);
11816 break;
11817 case 0x5a: /* FCVTNU */
11818 case 0x5b: /* FCVTMU */
11819 case 0x5c: /* FCVTAU */
11820 case 0x7a: /* FCVTPU */
11821 case 0x7b: /* FCVTZU */
11822 gen_helper_vfp_touls(tcg_res, tcg_op,
11823 tcg_constant_i32(0), tcg_fpstatus);
11824 break;
11825 case 0x18: /* FRINTN */
11826 case 0x19: /* FRINTM */
11827 case 0x38: /* FRINTP */
11828 case 0x39: /* FRINTZ */
11829 case 0x58: /* FRINTA */
11830 case 0x79: /* FRINTI */
11831 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
11832 break;
11833 case 0x59: /* FRINTX */
11834 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
11835 break;
11836 case 0x7c: /* URSQRTE */
11837 gen_helper_rsqrte_u32(tcg_res, tcg_op);
11838 break;
11839 case 0x1e: /* FRINT32Z */
11840 case 0x5e: /* FRINT32X */
11841 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
11842 break;
11843 case 0x1f: /* FRINT64Z */
11844 case 0x5f: /* FRINT64X */
11845 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
11846 break;
11847 default:
11848 g_assert_not_reached();
11850 } else {
11851 /* Use helpers for 8 and 16 bit elements */
11852 switch (opcode) {
11853 case 0x5: /* CNT, RBIT */
11854 /* For these two insns size is part of the opcode specifier
11855 * (handled earlier); they always operate on byte elements.
11857 if (u) {
11858 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
11859 } else {
11860 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
11862 break;
11863 case 0x7: /* SQABS, SQNEG */
11865 NeonGenOneOpEnvFn *genfn;
11866 static NeonGenOneOpEnvFn * const fns[2][2] = {
11867 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
11868 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
11870 genfn = fns[size][u];
11871 genfn(tcg_res, tcg_env, tcg_op);
11872 break;
11874 case 0x4: /* CLS, CLZ */
11875 if (u) {
11876 if (size == 0) {
11877 gen_helper_neon_clz_u8(tcg_res, tcg_op);
11878 } else {
11879 gen_helper_neon_clz_u16(tcg_res, tcg_op);
11881 } else {
11882 if (size == 0) {
11883 gen_helper_neon_cls_s8(tcg_res, tcg_op);
11884 } else {
11885 gen_helper_neon_cls_s16(tcg_res, tcg_op);
11888 break;
11889 default:
11890 g_assert_not_reached();
11894 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11897 clear_vec_high(s, is_q, rd);
11899 if (tcg_rmode) {
11900 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
11904 /* AdvSIMD [scalar] two register miscellaneous (FP16)
11906 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0
11907 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
11908 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd |
11909 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
11910 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
11911 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
11913 * This actually covers two groups where scalar access is governed by
11914 * bit 28. A bunch of the instructions (float to integral) only exist
11915 * in the vector form and are un-allocated for the scalar decode. Also
11916 * in the scalar decode Q is always 1.
11918 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
11920 int fpop, opcode, a, u;
11921 int rn, rd;
11922 bool is_q;
11923 bool is_scalar;
11924 bool only_in_vector = false;
11926 int pass;
11927 TCGv_i32 tcg_rmode = NULL;
11928 TCGv_ptr tcg_fpstatus = NULL;
11929 bool need_fpst = true;
11930 int rmode = -1;
11932 if (!dc_isar_feature(aa64_fp16, s)) {
11933 unallocated_encoding(s);
11934 return;
11937 rd = extract32(insn, 0, 5);
11938 rn = extract32(insn, 5, 5);
11940 a = extract32(insn, 23, 1);
11941 u = extract32(insn, 29, 1);
11942 is_scalar = extract32(insn, 28, 1);
11943 is_q = extract32(insn, 30, 1);
11945 opcode = extract32(insn, 12, 5);
11946 fpop = deposit32(opcode, 5, 1, a);
11947 fpop = deposit32(fpop, 6, 1, u);
11949 switch (fpop) {
11950 case 0x1d: /* SCVTF */
11951 case 0x5d: /* UCVTF */
11953 int elements;
11955 if (is_scalar) {
11956 elements = 1;
11957 } else {
11958 elements = (is_q ? 8 : 4);
11961 if (!fp_access_check(s)) {
11962 return;
11964 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
11965 return;
11967 break;
11968 case 0x2c: /* FCMGT (zero) */
11969 case 0x2d: /* FCMEQ (zero) */
11970 case 0x2e: /* FCMLT (zero) */
11971 case 0x6c: /* FCMGE (zero) */
11972 case 0x6d: /* FCMLE (zero) */
11973 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
11974 return;
11975 case 0x3d: /* FRECPE */
11976 case 0x3f: /* FRECPX */
11977 break;
11978 case 0x18: /* FRINTN */
11979 only_in_vector = true;
11980 rmode = FPROUNDING_TIEEVEN;
11981 break;
11982 case 0x19: /* FRINTM */
11983 only_in_vector = true;
11984 rmode = FPROUNDING_NEGINF;
11985 break;
11986 case 0x38: /* FRINTP */
11987 only_in_vector = true;
11988 rmode = FPROUNDING_POSINF;
11989 break;
11990 case 0x39: /* FRINTZ */
11991 only_in_vector = true;
11992 rmode = FPROUNDING_ZERO;
11993 break;
11994 case 0x58: /* FRINTA */
11995 only_in_vector = true;
11996 rmode = FPROUNDING_TIEAWAY;
11997 break;
11998 case 0x59: /* FRINTX */
11999 case 0x79: /* FRINTI */
12000 only_in_vector = true;
12001 /* current rounding mode */
12002 break;
12003 case 0x1a: /* FCVTNS */
12004 rmode = FPROUNDING_TIEEVEN;
12005 break;
12006 case 0x1b: /* FCVTMS */
12007 rmode = FPROUNDING_NEGINF;
12008 break;
12009 case 0x1c: /* FCVTAS */
12010 rmode = FPROUNDING_TIEAWAY;
12011 break;
12012 case 0x3a: /* FCVTPS */
12013 rmode = FPROUNDING_POSINF;
12014 break;
12015 case 0x3b: /* FCVTZS */
12016 rmode = FPROUNDING_ZERO;
12017 break;
12018 case 0x5a: /* FCVTNU */
12019 rmode = FPROUNDING_TIEEVEN;
12020 break;
12021 case 0x5b: /* FCVTMU */
12022 rmode = FPROUNDING_NEGINF;
12023 break;
12024 case 0x5c: /* FCVTAU */
12025 rmode = FPROUNDING_TIEAWAY;
12026 break;
12027 case 0x7a: /* FCVTPU */
12028 rmode = FPROUNDING_POSINF;
12029 break;
12030 case 0x7b: /* FCVTZU */
12031 rmode = FPROUNDING_ZERO;
12032 break;
12033 case 0x2f: /* FABS */
12034 case 0x6f: /* FNEG */
12035 need_fpst = false;
12036 break;
12037 case 0x7d: /* FRSQRTE */
12038 case 0x7f: /* FSQRT (vector) */
12039 break;
12040 default:
12041 unallocated_encoding(s);
12042 return;
12046 /* Check additional constraints for the scalar encoding */
12047 if (is_scalar) {
12048 if (!is_q) {
12049 unallocated_encoding(s);
12050 return;
12052 /* FRINTxx is only in the vector form */
12053 if (only_in_vector) {
12054 unallocated_encoding(s);
12055 return;
12059 if (!fp_access_check(s)) {
12060 return;
12063 if (rmode >= 0 || need_fpst) {
12064 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
12067 if (rmode >= 0) {
12068 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12071 if (is_scalar) {
12072 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
12073 TCGv_i32 tcg_res = tcg_temp_new_i32();
12075 switch (fpop) {
12076 case 0x1a: /* FCVTNS */
12077 case 0x1b: /* FCVTMS */
12078 case 0x1c: /* FCVTAS */
12079 case 0x3a: /* FCVTPS */
12080 case 0x3b: /* FCVTZS */
12081 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12082 break;
12083 case 0x3d: /* FRECPE */
12084 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12085 break;
12086 case 0x3f: /* FRECPX */
12087 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
12088 break;
12089 case 0x5a: /* FCVTNU */
12090 case 0x5b: /* FCVTMU */
12091 case 0x5c: /* FCVTAU */
12092 case 0x7a: /* FCVTPU */
12093 case 0x7b: /* FCVTZU */
12094 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12095 break;
12096 case 0x6f: /* FNEG */
12097 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12098 break;
12099 case 0x7d: /* FRSQRTE */
12100 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12101 break;
12102 default:
12103 g_assert_not_reached();
12106 /* limit any sign extension going on */
12107 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
12108 write_fp_sreg(s, rd, tcg_res);
12109 } else {
12110 for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
12111 TCGv_i32 tcg_op = tcg_temp_new_i32();
12112 TCGv_i32 tcg_res = tcg_temp_new_i32();
12114 read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
12116 switch (fpop) {
12117 case 0x1a: /* FCVTNS */
12118 case 0x1b: /* FCVTMS */
12119 case 0x1c: /* FCVTAS */
12120 case 0x3a: /* FCVTPS */
12121 case 0x3b: /* FCVTZS */
12122 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12123 break;
12124 case 0x3d: /* FRECPE */
12125 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12126 break;
12127 case 0x5a: /* FCVTNU */
12128 case 0x5b: /* FCVTMU */
12129 case 0x5c: /* FCVTAU */
12130 case 0x7a: /* FCVTPU */
12131 case 0x7b: /* FCVTZU */
12132 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12133 break;
12134 case 0x18: /* FRINTN */
12135 case 0x19: /* FRINTM */
12136 case 0x38: /* FRINTP */
12137 case 0x39: /* FRINTZ */
12138 case 0x58: /* FRINTA */
12139 case 0x79: /* FRINTI */
12140 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
12141 break;
12142 case 0x59: /* FRINTX */
12143 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
12144 break;
12145 case 0x2f: /* FABS */
12146 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
12147 break;
12148 case 0x6f: /* FNEG */
12149 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12150 break;
12151 case 0x7d: /* FRSQRTE */
12152 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12153 break;
12154 case 0x7f: /* FSQRT */
12155 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
12156 break;
12157 default:
12158 g_assert_not_reached();
12161 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12164 clear_vec_high(s, is_q, rd);
12167 if (tcg_rmode) {
12168 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12172 /* AdvSIMD scalar x indexed element
12173 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12174 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12175 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12176 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12177 * AdvSIMD vector x indexed element
12178 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12179 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12180 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12181 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12183 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12185 /* This encoding has two kinds of instruction:
12186 * normal, where we perform elt x idxelt => elt for each
12187 * element in the vector
12188 * long, where we perform elt x idxelt and generate a result of
12189 * double the width of the input element
12190 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12192 bool is_scalar = extract32(insn, 28, 1);
12193 bool is_q = extract32(insn, 30, 1);
12194 bool u = extract32(insn, 29, 1);
12195 int size = extract32(insn, 22, 2);
12196 int l = extract32(insn, 21, 1);
12197 int m = extract32(insn, 20, 1);
12198 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12199 int rm = extract32(insn, 16, 4);
12200 int opcode = extract32(insn, 12, 4);
12201 int h = extract32(insn, 11, 1);
12202 int rn = extract32(insn, 5, 5);
12203 int rd = extract32(insn, 0, 5);
12204 bool is_long = false;
12205 int is_fp = 0;
12206 bool is_fp16 = false;
12207 int index;
12208 TCGv_ptr fpst;
12210 switch (16 * u + opcode) {
12211 case 0x08: /* MUL */
12212 case 0x10: /* MLA */
12213 case 0x14: /* MLS */
12214 if (is_scalar) {
12215 unallocated_encoding(s);
12216 return;
12218 break;
12219 case 0x02: /* SMLAL, SMLAL2 */
12220 case 0x12: /* UMLAL, UMLAL2 */
12221 case 0x06: /* SMLSL, SMLSL2 */
12222 case 0x16: /* UMLSL, UMLSL2 */
12223 case 0x0a: /* SMULL, SMULL2 */
12224 case 0x1a: /* UMULL, UMULL2 */
12225 if (is_scalar) {
12226 unallocated_encoding(s);
12227 return;
12229 is_long = true;
12230 break;
12231 case 0x03: /* SQDMLAL, SQDMLAL2 */
12232 case 0x07: /* SQDMLSL, SQDMLSL2 */
12233 case 0x0b: /* SQDMULL, SQDMULL2 */
12234 is_long = true;
12235 break;
12236 case 0x0c: /* SQDMULH */
12237 case 0x0d: /* SQRDMULH */
12238 break;
12239 case 0x1d: /* SQRDMLAH */
12240 case 0x1f: /* SQRDMLSH */
12241 if (!dc_isar_feature(aa64_rdm, s)) {
12242 unallocated_encoding(s);
12243 return;
12245 break;
12246 case 0x0e: /* SDOT */
12247 case 0x1e: /* UDOT */
12248 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
12249 unallocated_encoding(s);
12250 return;
12252 break;
12253 case 0x0f:
12254 switch (size) {
12255 case 0: /* SUDOT */
12256 case 2: /* USDOT */
12257 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) {
12258 unallocated_encoding(s);
12259 return;
12261 size = MO_32;
12262 break;
12263 case 1: /* BFDOT */
12264 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12265 unallocated_encoding(s);
12266 return;
12268 size = MO_32;
12269 break;
12270 case 3: /* BFMLAL{B,T} */
12271 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12272 unallocated_encoding(s);
12273 return;
12275 /* can't set is_fp without other incorrect size checks */
12276 size = MO_16;
12277 break;
12278 default:
12279 unallocated_encoding(s);
12280 return;
12282 break;
12283 case 0x11: /* FCMLA #0 */
12284 case 0x13: /* FCMLA #90 */
12285 case 0x15: /* FCMLA #180 */
12286 case 0x17: /* FCMLA #270 */
12287 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
12288 unallocated_encoding(s);
12289 return;
12291 is_fp = 2;
12292 break;
12293 default:
12294 case 0x00: /* FMLAL */
12295 case 0x01: /* FMLA */
12296 case 0x04: /* FMLSL */
12297 case 0x05: /* FMLS */
12298 case 0x09: /* FMUL */
12299 case 0x18: /* FMLAL2 */
12300 case 0x19: /* FMULX */
12301 case 0x1c: /* FMLSL2 */
12302 unallocated_encoding(s);
12303 return;
12306 switch (is_fp) {
12307 case 1: /* normal fp */
12308 unallocated_encoding(s); /* in decodetree */
12309 return;
12311 case 2: /* complex fp */
12312 /* Each indexable element is a complex pair. */
12313 size += 1;
12314 switch (size) {
12315 case MO_32:
12316 if (h && !is_q) {
12317 unallocated_encoding(s);
12318 return;
12320 is_fp16 = true;
12321 break;
12322 case MO_64:
12323 break;
12324 default:
12325 unallocated_encoding(s);
12326 return;
12328 break;
12330 default: /* integer */
12331 switch (size) {
12332 case MO_8:
12333 case MO_64:
12334 unallocated_encoding(s);
12335 return;
12337 break;
12339 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
12340 unallocated_encoding(s);
12341 return;
12344 /* Given MemOp size, adjust register and indexing. */
12345 switch (size) {
12346 case MO_16:
12347 index = h << 2 | l << 1 | m;
12348 break;
12349 case MO_32:
12350 index = h << 1 | l;
12351 rm |= m << 4;
12352 break;
12353 case MO_64:
12354 if (l || !is_q) {
12355 unallocated_encoding(s);
12356 return;
12358 index = h;
12359 rm |= m << 4;
12360 break;
12361 default:
12362 g_assert_not_reached();
12365 if (!fp_access_check(s)) {
12366 return;
12369 if (is_fp) {
12370 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
12371 } else {
12372 fpst = NULL;
12375 switch (16 * u + opcode) {
12376 case 0x0e: /* SDOT */
12377 case 0x1e: /* UDOT */
12378 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12379 u ? gen_helper_gvec_udot_idx_b
12380 : gen_helper_gvec_sdot_idx_b);
12381 return;
12382 case 0x0f:
12383 switch (extract32(insn, 22, 2)) {
12384 case 0: /* SUDOT */
12385 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12386 gen_helper_gvec_sudot_idx_b);
12387 return;
12388 case 1: /* BFDOT */
12389 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12390 gen_helper_gvec_bfdot_idx);
12391 return;
12392 case 2: /* USDOT */
12393 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12394 gen_helper_gvec_usdot_idx_b);
12395 return;
12396 case 3: /* BFMLAL{B,T} */
12397 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q,
12398 gen_helper_gvec_bfmlal_idx);
12399 return;
12401 g_assert_not_reached();
12402 case 0x11: /* FCMLA #0 */
12403 case 0x13: /* FCMLA #90 */
12404 case 0x15: /* FCMLA #180 */
12405 case 0x17: /* FCMLA #270 */
12407 int rot = extract32(insn, 13, 2);
12408 int data = (index << 2) | rot;
12409 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
12410 vec_full_reg_offset(s, rn),
12411 vec_full_reg_offset(s, rm),
12412 vec_full_reg_offset(s, rd), fpst,
12413 is_q ? 16 : 8, vec_full_reg_size(s), data,
12414 size == MO_64
12415 ? gen_helper_gvec_fcmlas_idx
12416 : gen_helper_gvec_fcmlah_idx);
12418 return;
12420 case 0x08: /* MUL */
12421 if (!is_long && !is_scalar) {
12422 static gen_helper_gvec_3 * const fns[3] = {
12423 gen_helper_gvec_mul_idx_h,
12424 gen_helper_gvec_mul_idx_s,
12425 gen_helper_gvec_mul_idx_d,
12427 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
12428 vec_full_reg_offset(s, rn),
12429 vec_full_reg_offset(s, rm),
12430 is_q ? 16 : 8, vec_full_reg_size(s),
12431 index, fns[size - 1]);
12432 return;
12434 break;
12436 case 0x10: /* MLA */
12437 if (!is_long && !is_scalar) {
12438 static gen_helper_gvec_4 * const fns[3] = {
12439 gen_helper_gvec_mla_idx_h,
12440 gen_helper_gvec_mla_idx_s,
12441 gen_helper_gvec_mla_idx_d,
12443 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
12444 vec_full_reg_offset(s, rn),
12445 vec_full_reg_offset(s, rm),
12446 vec_full_reg_offset(s, rd),
12447 is_q ? 16 : 8, vec_full_reg_size(s),
12448 index, fns[size - 1]);
12449 return;
12451 break;
12453 case 0x14: /* MLS */
12454 if (!is_long && !is_scalar) {
12455 static gen_helper_gvec_4 * const fns[3] = {
12456 gen_helper_gvec_mls_idx_h,
12457 gen_helper_gvec_mls_idx_s,
12458 gen_helper_gvec_mls_idx_d,
12460 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
12461 vec_full_reg_offset(s, rn),
12462 vec_full_reg_offset(s, rm),
12463 vec_full_reg_offset(s, rd),
12464 is_q ? 16 : 8, vec_full_reg_size(s),
12465 index, fns[size - 1]);
12466 return;
12468 break;
12471 if (size == 3) {
12472 g_assert_not_reached();
12473 } else if (!is_long) {
12474 /* 32 bit floating point, or 16 or 32 bit integer.
12475 * For the 16 bit scalar case we use the usual Neon helpers and
12476 * rely on the fact that 0 op 0 == 0 with no side effects.
12478 TCGv_i32 tcg_idx = tcg_temp_new_i32();
12479 int pass, maxpasses;
12481 if (is_scalar) {
12482 maxpasses = 1;
12483 } else {
12484 maxpasses = is_q ? 4 : 2;
12487 read_vec_element_i32(s, tcg_idx, rm, index, size);
12489 if (size == 1 && !is_scalar) {
12490 /* The simplest way to handle the 16x16 indexed ops is to duplicate
12491 * the index into both halves of the 32 bit tcg_idx and then use
12492 * the usual Neon helpers.
12494 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12497 for (pass = 0; pass < maxpasses; pass++) {
12498 TCGv_i32 tcg_op = tcg_temp_new_i32();
12499 TCGv_i32 tcg_res = tcg_temp_new_i32();
12501 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
12503 switch (16 * u + opcode) {
12504 case 0x08: /* MUL */
12505 case 0x10: /* MLA */
12506 case 0x14: /* MLS */
12508 static NeonGenTwoOpFn * const fns[2][2] = {
12509 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
12510 { tcg_gen_add_i32, tcg_gen_sub_i32 },
12512 NeonGenTwoOpFn *genfn;
12513 bool is_sub = opcode == 0x4;
12515 if (size == 1) {
12516 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
12517 } else {
12518 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
12520 if (opcode == 0x8) {
12521 break;
12523 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
12524 genfn = fns[size - 1][is_sub];
12525 genfn(tcg_res, tcg_op, tcg_res);
12526 break;
12528 case 0x0c: /* SQDMULH */
12529 if (size == 1) {
12530 gen_helper_neon_qdmulh_s16(tcg_res, tcg_env,
12531 tcg_op, tcg_idx);
12532 } else {
12533 gen_helper_neon_qdmulh_s32(tcg_res, tcg_env,
12534 tcg_op, tcg_idx);
12536 break;
12537 case 0x0d: /* SQRDMULH */
12538 if (size == 1) {
12539 gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env,
12540 tcg_op, tcg_idx);
12541 } else {
12542 gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env,
12543 tcg_op, tcg_idx);
12545 break;
12546 case 0x1d: /* SQRDMLAH */
12547 read_vec_element_i32(s, tcg_res, rd, pass,
12548 is_scalar ? size : MO_32);
12549 if (size == 1) {
12550 gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env,
12551 tcg_op, tcg_idx, tcg_res);
12552 } else {
12553 gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env,
12554 tcg_op, tcg_idx, tcg_res);
12556 break;
12557 case 0x1f: /* SQRDMLSH */
12558 read_vec_element_i32(s, tcg_res, rd, pass,
12559 is_scalar ? size : MO_32);
12560 if (size == 1) {
12561 gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env,
12562 tcg_op, tcg_idx, tcg_res);
12563 } else {
12564 gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env,
12565 tcg_op, tcg_idx, tcg_res);
12567 break;
12568 default:
12569 case 0x01: /* FMLA */
12570 case 0x05: /* FMLS */
12571 case 0x09: /* FMUL */
12572 case 0x19: /* FMULX */
12573 g_assert_not_reached();
12576 if (is_scalar) {
12577 write_fp_sreg(s, rd, tcg_res);
12578 } else {
12579 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12583 clear_vec_high(s, is_q, rd);
12584 } else {
12585 /* long ops: 16x16->32 or 32x32->64 */
12586 TCGv_i64 tcg_res[2];
12587 int pass;
12588 bool satop = extract32(opcode, 0, 1);
12589 MemOp memop = MO_32;
12591 if (satop || !u) {
12592 memop |= MO_SIGN;
12595 if (size == 2) {
12596 TCGv_i64 tcg_idx = tcg_temp_new_i64();
12598 read_vec_element(s, tcg_idx, rm, index, memop);
12600 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12601 TCGv_i64 tcg_op = tcg_temp_new_i64();
12602 TCGv_i64 tcg_passres;
12603 int passelt;
12605 if (is_scalar) {
12606 passelt = 0;
12607 } else {
12608 passelt = pass + (is_q * 2);
12611 read_vec_element(s, tcg_op, rn, passelt, memop);
12613 tcg_res[pass] = tcg_temp_new_i64();
12615 if (opcode == 0xa || opcode == 0xb) {
12616 /* Non-accumulating ops */
12617 tcg_passres = tcg_res[pass];
12618 } else {
12619 tcg_passres = tcg_temp_new_i64();
12622 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
12624 if (satop) {
12625 /* saturating, doubling */
12626 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
12627 tcg_passres, tcg_passres);
12630 if (opcode == 0xa || opcode == 0xb) {
12631 continue;
12634 /* Accumulating op: handle accumulate step */
12635 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12637 switch (opcode) {
12638 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
12639 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
12640 break;
12641 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
12642 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
12643 break;
12644 case 0x7: /* SQDMLSL, SQDMLSL2 */
12645 tcg_gen_neg_i64(tcg_passres, tcg_passres);
12646 /* fall through */
12647 case 0x3: /* SQDMLAL, SQDMLAL2 */
12648 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
12649 tcg_res[pass],
12650 tcg_passres);
12651 break;
12652 default:
12653 g_assert_not_reached();
12657 clear_vec_high(s, !is_scalar, rd);
12658 } else {
12659 TCGv_i32 tcg_idx = tcg_temp_new_i32();
12661 assert(size == 1);
12662 read_vec_element_i32(s, tcg_idx, rm, index, size);
12664 if (!is_scalar) {
12665 /* The simplest way to handle the 16x16 indexed ops is to
12666 * duplicate the index into both halves of the 32 bit tcg_idx
12667 * and then use the usual Neon helpers.
12669 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12672 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12673 TCGv_i32 tcg_op = tcg_temp_new_i32();
12674 TCGv_i64 tcg_passres;
12676 if (is_scalar) {
12677 read_vec_element_i32(s, tcg_op, rn, pass, size);
12678 } else {
12679 read_vec_element_i32(s, tcg_op, rn,
12680 pass + (is_q * 2), MO_32);
12683 tcg_res[pass] = tcg_temp_new_i64();
12685 if (opcode == 0xa || opcode == 0xb) {
12686 /* Non-accumulating ops */
12687 tcg_passres = tcg_res[pass];
12688 } else {
12689 tcg_passres = tcg_temp_new_i64();
12692 if (memop & MO_SIGN) {
12693 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
12694 } else {
12695 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
12697 if (satop) {
12698 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
12699 tcg_passres, tcg_passres);
12702 if (opcode == 0xa || opcode == 0xb) {
12703 continue;
12706 /* Accumulating op: handle accumulate step */
12707 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12709 switch (opcode) {
12710 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
12711 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
12712 tcg_passres);
12713 break;
12714 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
12715 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
12716 tcg_passres);
12717 break;
12718 case 0x7: /* SQDMLSL, SQDMLSL2 */
12719 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
12720 /* fall through */
12721 case 0x3: /* SQDMLAL, SQDMLAL2 */
12722 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
12723 tcg_res[pass],
12724 tcg_passres);
12725 break;
12726 default:
12727 g_assert_not_reached();
12731 if (is_scalar) {
12732 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
12736 if (is_scalar) {
12737 tcg_res[1] = tcg_constant_i64(0);
12740 for (pass = 0; pass < 2; pass++) {
12741 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12746 /* C3.6 Data processing - SIMD, inc Crypto
12748 * As the decode gets a little complex we are using a table based
12749 * approach for this part of the decode.
12751 static const AArch64DecodeTable data_proc_simd[] = {
12752 /* pattern , mask , fn */
12753 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
12754 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
12755 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
12756 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
12757 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
12758 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
12759 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
12760 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
12761 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
12762 { 0x0e000000, 0xbf208c00, disas_simd_tb },
12763 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
12764 { 0x2e000000, 0xbf208400, disas_simd_ext },
12765 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
12766 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
12767 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
12768 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
12769 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
12770 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
12771 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
12772 { 0x00000000, 0x00000000, NULL }
12775 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
12777 /* Note that this is called with all non-FP cases from
12778 * table C3-6 so it must UNDEF for entries not specifically
12779 * allocated to instructions in that table.
12781 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
12782 if (fn) {
12783 fn(s, insn);
12784 } else {
12785 unallocated_encoding(s);
12789 /* C3.6 Data processing - SIMD and floating point */
12790 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
12792 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
12793 disas_data_proc_fp(s, insn);
12794 } else {
12795 /* SIMD, including crypto */
12796 disas_data_proc_simd(s, insn);
12800 static bool trans_OK(DisasContext *s, arg_OK *a)
12802 return true;
12805 static bool trans_FAIL(DisasContext *s, arg_OK *a)
12807 s->is_nonstreaming = true;
12808 return true;
12812 * is_guarded_page:
12813 * @env: The cpu environment
12814 * @s: The DisasContext
12816 * Return true if the page is guarded.
12818 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
12820 uint64_t addr = s->base.pc_first;
12821 #ifdef CONFIG_USER_ONLY
12822 return page_get_flags(addr) & PAGE_BTI;
12823 #else
12824 CPUTLBEntryFull *full;
12825 void *host;
12826 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
12827 int flags;
12830 * We test this immediately after reading an insn, which means
12831 * that the TLB entry must be present and valid, and thus this
12832 * access will never raise an exception.
12834 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
12835 false, &host, &full, 0);
12836 assert(!(flags & TLB_INVALID_MASK));
12838 return full->extra.arm.guarded;
12839 #endif
12843 * btype_destination_ok:
12844 * @insn: The instruction at the branch destination
12845 * @bt: SCTLR_ELx.BT
12846 * @btype: PSTATE.BTYPE, and is non-zero
12848 * On a guarded page, there are a limited number of insns
12849 * that may be present at the branch target:
12850 * - branch target identifiers,
12851 * - paciasp, pacibsp,
12852 * - BRK insn
12853 * - HLT insn
12854 * Anything else causes a Branch Target Exception.
12856 * Return true if the branch is compatible, false to raise BTITRAP.
12858 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
12860 if ((insn & 0xfffff01fu) == 0xd503201fu) {
12861 /* HINT space */
12862 switch (extract32(insn, 5, 7)) {
12863 case 0b011001: /* PACIASP */
12864 case 0b011011: /* PACIBSP */
12866 * If SCTLR_ELx.BT, then PACI*SP are not compatible
12867 * with btype == 3. Otherwise all btype are ok.
12869 return !bt || btype != 3;
12870 case 0b100000: /* BTI */
12871 /* Not compatible with any btype. */
12872 return false;
12873 case 0b100010: /* BTI c */
12874 /* Not compatible with btype == 3 */
12875 return btype != 3;
12876 case 0b100100: /* BTI j */
12877 /* Not compatible with btype == 2 */
12878 return btype != 2;
12879 case 0b100110: /* BTI jc */
12880 /* Compatible with any btype. */
12881 return true;
12883 } else {
12884 switch (insn & 0xffe0001fu) {
12885 case 0xd4200000u: /* BRK */
12886 case 0xd4400000u: /* HLT */
12887 /* Give priority to the breakpoint exception. */
12888 return true;
12891 return false;
12894 /* C3.1 A64 instruction index by encoding */
12895 static void disas_a64_legacy(DisasContext *s, uint32_t insn)
12897 switch (extract32(insn, 25, 4)) {
12898 case 0x5:
12899 case 0xd: /* Data processing - register */
12900 disas_data_proc_reg(s, insn);
12901 break;
12902 case 0x7:
12903 case 0xf: /* Data processing - SIMD and floating point */
12904 disas_data_proc_simd_fp(s, insn);
12905 break;
12906 default:
12907 unallocated_encoding(s);
12908 break;
12912 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
12913 CPUState *cpu)
12915 DisasContext *dc = container_of(dcbase, DisasContext, base);
12916 CPUARMState *env = cpu_env(cpu);
12917 ARMCPU *arm_cpu = env_archcpu(env);
12918 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
12919 int bound, core_mmu_idx;
12921 dc->isar = &arm_cpu->isar;
12922 dc->condjmp = 0;
12923 dc->pc_save = dc->base.pc_first;
12924 dc->aarch64 = true;
12925 dc->thumb = false;
12926 dc->sctlr_b = 0;
12927 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
12928 dc->condexec_mask = 0;
12929 dc->condexec_cond = 0;
12930 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
12931 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
12932 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
12933 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
12934 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
12935 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
12936 #if !defined(CONFIG_USER_ONLY)
12937 dc->user = (dc->current_el == 0);
12938 #endif
12939 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
12940 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
12941 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
12942 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
12943 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
12944 dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET);
12945 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
12946 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
12947 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
12948 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
12949 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
12950 dc->bt = EX_TBFLAG_A64(tb_flags, BT);
12951 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
12952 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
12953 dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA);
12954 dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0);
12955 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
12956 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
12957 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
12958 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
12959 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
12960 dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
12961 dc->nv = EX_TBFLAG_A64(tb_flags, NV);
12962 dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1);
12963 dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2);
12964 dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20);
12965 dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE);
12966 dc->vec_len = 0;
12967 dc->vec_stride = 0;
12968 dc->cp_regs = arm_cpu->cp_regs;
12969 dc->features = env->features;
12970 dc->dcz_blocksize = arm_cpu->dcz_blocksize;
12971 dc->gm_blocksize = arm_cpu->gm_blocksize;
12973 #ifdef CONFIG_USER_ONLY
12974 /* In sve_probe_page, we assume TBI is enabled. */
12975 tcg_debug_assert(dc->tbid & 1);
12976 #endif
12978 dc->lse2 = dc_isar_feature(aa64_lse2, dc);
12980 /* Single step state. The code-generation logic here is:
12981 * SS_ACTIVE == 0:
12982 * generate code with no special handling for single-stepping (except
12983 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
12984 * this happens anyway because those changes are all system register or
12985 * PSTATE writes).
12986 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
12987 * emit code for one insn
12988 * emit code to clear PSTATE.SS
12989 * emit code to generate software step exception for completed step
12990 * end TB (as usual for having generated an exception)
12991 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
12992 * emit code to generate a software step exception
12993 * end the TB
12995 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
12996 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
12997 dc->is_ldex = false;
12999 /* Bound the number of insns to execute to those left on the page. */
13000 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
13002 /* If architectural single step active, limit to 1. */
13003 if (dc->ss_active) {
13004 bound = 1;
13006 dc->base.max_insns = MIN(dc->base.max_insns, bound);
13009 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
13013 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
13015 DisasContext *dc = container_of(dcbase, DisasContext, base);
13016 target_ulong pc_arg = dc->base.pc_next;
13018 if (tb_cflags(dcbase->tb) & CF_PCREL) {
13019 pc_arg &= ~TARGET_PAGE_MASK;
13021 tcg_gen_insn_start(pc_arg, 0, 0);
13022 dc->insn_start_updated = false;
13025 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
13027 DisasContext *s = container_of(dcbase, DisasContext, base);
13028 CPUARMState *env = cpu_env(cpu);
13029 uint64_t pc = s->base.pc_next;
13030 uint32_t insn;
13032 /* Singlestep exceptions have the highest priority. */
13033 if (s->ss_active && !s->pstate_ss) {
13034 /* Singlestep state is Active-pending.
13035 * If we're in this state at the start of a TB then either
13036 * a) we just took an exception to an EL which is being debugged
13037 * and this is the first insn in the exception handler
13038 * b) debug exceptions were masked and we just unmasked them
13039 * without changing EL (eg by clearing PSTATE.D)
13040 * In either case we're going to take a swstep exception in the
13041 * "did not step an insn" case, and so the syndrome ISV and EX
13042 * bits should be zero.
13044 assert(s->base.num_insns == 1);
13045 gen_swstep_exception(s, 0, 0);
13046 s->base.is_jmp = DISAS_NORETURN;
13047 s->base.pc_next = pc + 4;
13048 return;
13051 if (pc & 3) {
13053 * PC alignment fault. This has priority over the instruction abort
13054 * that we would receive from a translation fault via arm_ldl_code.
13055 * This should only be possible after an indirect branch, at the
13056 * start of the TB.
13058 assert(s->base.num_insns == 1);
13059 gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc));
13060 s->base.is_jmp = DISAS_NORETURN;
13061 s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
13062 return;
13065 s->pc_curr = pc;
13066 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
13067 s->insn = insn;
13068 s->base.pc_next = pc + 4;
13070 s->fp_access_checked = false;
13071 s->sve_access_checked = false;
13073 if (s->pstate_il) {
13075 * Illegal execution state. This has priority over BTI
13076 * exceptions, but comes after instruction abort exceptions.
13078 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
13079 return;
13082 if (dc_isar_feature(aa64_bti, s)) {
13083 if (s->base.num_insns == 1) {
13085 * At the first insn of the TB, compute s->guarded_page.
13086 * We delayed computing this until successfully reading
13087 * the first insn of the TB, above. This (mostly) ensures
13088 * that the softmmu tlb entry has been populated, and the
13089 * page table GP bit is available.
13091 * Note that we need to compute this even if btype == 0,
13092 * because this value is used for BR instructions later
13093 * where ENV is not available.
13095 s->guarded_page = is_guarded_page(env, s);
13097 /* First insn can have btype set to non-zero. */
13098 tcg_debug_assert(s->btype >= 0);
13101 * Note that the Branch Target Exception has fairly high
13102 * priority -- below debugging exceptions but above most
13103 * everything else. This allows us to handle this now
13104 * instead of waiting until the insn is otherwise decoded.
13106 if (s->btype != 0
13107 && s->guarded_page
13108 && !btype_destination_ok(insn, s->bt, s->btype)) {
13109 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
13110 return;
13112 } else {
13113 /* Not the first insn: btype must be 0. */
13114 tcg_debug_assert(s->btype == 0);
13118 s->is_nonstreaming = false;
13119 if (s->sme_trap_nonstreaming) {
13120 disas_sme_fa64(s, insn);
13123 if (!disas_a64(s, insn) &&
13124 !disas_sme(s, insn) &&
13125 !disas_sve(s, insn)) {
13126 disas_a64_legacy(s, insn);
13130 * After execution of most insns, btype is reset to 0.
13131 * Note that we set btype == -1 when the insn sets btype.
13133 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
13134 reset_btype(s);
13138 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
13140 DisasContext *dc = container_of(dcbase, DisasContext, base);
13142 if (unlikely(dc->ss_active)) {
13143 /* Note that this means single stepping WFI doesn't halt the CPU.
13144 * For conditional branch insns this is harmless unreachable code as
13145 * gen_goto_tb() has already handled emitting the debug exception
13146 * (and thus a tb-jump is not possible when singlestepping).
13148 switch (dc->base.is_jmp) {
13149 default:
13150 gen_a64_update_pc(dc, 4);
13151 /* fall through */
13152 case DISAS_EXIT:
13153 case DISAS_JUMP:
13154 gen_step_complete_exception(dc);
13155 break;
13156 case DISAS_NORETURN:
13157 break;
13159 } else {
13160 switch (dc->base.is_jmp) {
13161 case DISAS_NEXT:
13162 case DISAS_TOO_MANY:
13163 gen_goto_tb(dc, 1, 4);
13164 break;
13165 default:
13166 case DISAS_UPDATE_EXIT:
13167 gen_a64_update_pc(dc, 4);
13168 /* fall through */
13169 case DISAS_EXIT:
13170 tcg_gen_exit_tb(NULL, 0);
13171 break;
13172 case DISAS_UPDATE_NOCHAIN:
13173 gen_a64_update_pc(dc, 4);
13174 /* fall through */
13175 case DISAS_JUMP:
13176 tcg_gen_lookup_and_goto_ptr();
13177 break;
13178 case DISAS_NORETURN:
13179 case DISAS_SWI:
13180 break;
13181 case DISAS_WFE:
13182 gen_a64_update_pc(dc, 4);
13183 gen_helper_wfe(tcg_env);
13184 break;
13185 case DISAS_YIELD:
13186 gen_a64_update_pc(dc, 4);
13187 gen_helper_yield(tcg_env);
13188 break;
13189 case DISAS_WFI:
13191 * This is a special case because we don't want to just halt
13192 * the CPU if trying to debug across a WFI.
13194 gen_a64_update_pc(dc, 4);
13195 gen_helper_wfi(tcg_env, tcg_constant_i32(4));
13197 * The helper doesn't necessarily throw an exception, but we
13198 * must go back to the main loop to check for interrupts anyway.
13200 tcg_gen_exit_tb(NULL, 0);
13201 break;
13206 const TranslatorOps aarch64_translator_ops = {
13207 .init_disas_context = aarch64_tr_init_disas_context,
13208 .tb_start = aarch64_tr_tb_start,
13209 .insn_start = aarch64_tr_insn_start,
13210 .translate_insn = aarch64_tr_translate_insn,
13211 .tb_stop = aarch64_tr_tb_stop,