qga/qapi-schema: Move error documentation to new "Errors" sections
[qemu/armbru.git] / plugins / api.c
blob81f43c9ce8a4681e1bc05539621bbfe8611eb501
1 /*
2 * QEMU Plugin API
4 * This provides the API that is available to the plugins to interact
5 * with QEMU. We have to be careful not to expose internal details of
6 * how QEMU works so we abstract out things like translation and
7 * instructions to anonymous data types:
9 * qemu_plugin_tb
10 * qemu_plugin_insn
11 * qemu_plugin_register
13 * Which can then be passed back into the API to do additional things.
14 * As such all the public functions in here are exported in
15 * qemu-plugin.h.
17 * The general life-cycle of a plugin is:
19 * - plugin is loaded, public qemu_plugin_install called
20 * - the install func registers callbacks for events
21 * - usually an atexit_cb is registered to dump info at the end
22 * - when a registered event occurs the plugin is called
23 * - some events pass additional info
24 * - during translation the plugin can decide to instrument any
25 * instruction
26 * - when QEMU exits all the registered atexit callbacks are called
28 * Copyright (C) 2017, Emilio G. Cota <cota@braap.org>
29 * Copyright (C) 2019, Linaro
31 * License: GNU GPL, version 2 or later.
32 * See the COPYING file in the top-level directory.
34 * SPDX-License-Identifier: GPL-2.0-or-later
38 #include "qemu/osdep.h"
39 #include "qemu/main-loop.h"
40 #include "qemu/plugin.h"
41 #include "qemu/log.h"
42 #include "tcg/tcg.h"
43 #include "exec/exec-all.h"
44 #include "exec/gdbstub.h"
45 #include "exec/ram_addr.h"
46 #include "disas/disas.h"
47 #include "plugin.h"
48 #ifndef CONFIG_USER_ONLY
49 #include "qemu/plugin-memory.h"
50 #include "hw/boards.h"
51 #else
52 #include "qemu.h"
53 #ifdef CONFIG_LINUX
54 #include "loader.h"
55 #endif
56 #endif
58 /* Uninstall and Reset handlers */
60 void qemu_plugin_uninstall(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
62 plugin_reset_uninstall(id, cb, false);
65 void qemu_plugin_reset(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
67 plugin_reset_uninstall(id, cb, true);
71 * Plugin Register Functions
73 * This allows the plugin to register callbacks for various events
74 * during the translation.
77 void qemu_plugin_register_vcpu_init_cb(qemu_plugin_id_t id,
78 qemu_plugin_vcpu_simple_cb_t cb)
80 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_INIT, cb);
83 void qemu_plugin_register_vcpu_exit_cb(qemu_plugin_id_t id,
84 qemu_plugin_vcpu_simple_cb_t cb)
86 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_EXIT, cb);
89 void qemu_plugin_register_vcpu_tb_exec_cb(struct qemu_plugin_tb *tb,
90 qemu_plugin_vcpu_udata_cb_t cb,
91 enum qemu_plugin_cb_flags flags,
92 void *udata)
94 if (!tb->mem_only) {
95 int index = flags == QEMU_PLUGIN_CB_R_REGS ||
96 flags == QEMU_PLUGIN_CB_RW_REGS ?
97 PLUGIN_CB_REGULAR_R : PLUGIN_CB_REGULAR;
99 plugin_register_dyn_cb__udata(&tb->cbs[index],
100 cb, flags, udata);
104 void qemu_plugin_register_vcpu_tb_exec_inline(struct qemu_plugin_tb *tb,
105 enum qemu_plugin_op op,
106 void *ptr, uint64_t imm)
108 if (!tb->mem_only) {
109 plugin_register_inline_op(&tb->cbs[PLUGIN_CB_INLINE], 0, op, ptr, imm);
113 void qemu_plugin_register_vcpu_insn_exec_cb(struct qemu_plugin_insn *insn,
114 qemu_plugin_vcpu_udata_cb_t cb,
115 enum qemu_plugin_cb_flags flags,
116 void *udata)
118 if (!insn->mem_only) {
119 int index = flags == QEMU_PLUGIN_CB_R_REGS ||
120 flags == QEMU_PLUGIN_CB_RW_REGS ?
121 PLUGIN_CB_REGULAR_R : PLUGIN_CB_REGULAR;
123 plugin_register_dyn_cb__udata(&insn->cbs[PLUGIN_CB_INSN][index],
124 cb, flags, udata);
128 void qemu_plugin_register_vcpu_insn_exec_inline(struct qemu_plugin_insn *insn,
129 enum qemu_plugin_op op,
130 void *ptr, uint64_t imm)
132 if (!insn->mem_only) {
133 plugin_register_inline_op(&insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_INLINE],
134 0, op, ptr, imm);
140 * We always plant memory instrumentation because they don't finalise until
141 * after the operation has complete.
143 void qemu_plugin_register_vcpu_mem_cb(struct qemu_plugin_insn *insn,
144 qemu_plugin_vcpu_mem_cb_t cb,
145 enum qemu_plugin_cb_flags flags,
146 enum qemu_plugin_mem_rw rw,
147 void *udata)
149 plugin_register_vcpu_mem_cb(&insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_REGULAR],
150 cb, flags, rw, udata);
153 void qemu_plugin_register_vcpu_mem_inline(struct qemu_plugin_insn *insn,
154 enum qemu_plugin_mem_rw rw,
155 enum qemu_plugin_op op, void *ptr,
156 uint64_t imm)
158 plugin_register_inline_op(&insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_INLINE],
159 rw, op, ptr, imm);
162 void qemu_plugin_register_vcpu_tb_trans_cb(qemu_plugin_id_t id,
163 qemu_plugin_vcpu_tb_trans_cb_t cb)
165 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_TB_TRANS, cb);
168 void qemu_plugin_register_vcpu_syscall_cb(qemu_plugin_id_t id,
169 qemu_plugin_vcpu_syscall_cb_t cb)
171 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL, cb);
174 void
175 qemu_plugin_register_vcpu_syscall_ret_cb(qemu_plugin_id_t id,
176 qemu_plugin_vcpu_syscall_ret_cb_t cb)
178 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL_RET, cb);
182 * Plugin Queries
184 * These are queries that the plugin can make to gauge information
185 * from our opaque data types. We do not want to leak internal details
186 * here just information useful to the plugin.
190 * Translation block information:
192 * A plugin can query the virtual address of the start of the block
193 * and the number of instructions in it. It can also get access to
194 * each translated instruction.
197 size_t qemu_plugin_tb_n_insns(const struct qemu_plugin_tb *tb)
199 return tb->n;
202 uint64_t qemu_plugin_tb_vaddr(const struct qemu_plugin_tb *tb)
204 return tb->vaddr;
207 struct qemu_plugin_insn *
208 qemu_plugin_tb_get_insn(const struct qemu_plugin_tb *tb, size_t idx)
210 struct qemu_plugin_insn *insn;
211 if (unlikely(idx >= tb->n)) {
212 return NULL;
214 insn = g_ptr_array_index(tb->insns, idx);
215 insn->mem_only = tb->mem_only;
216 return insn;
220 * Instruction information
222 * These queries allow the plugin to retrieve information about each
223 * instruction being translated.
226 const void *qemu_plugin_insn_data(const struct qemu_plugin_insn *insn)
228 return insn->data->data;
231 size_t qemu_plugin_insn_size(const struct qemu_plugin_insn *insn)
233 return insn->data->len;
236 uint64_t qemu_plugin_insn_vaddr(const struct qemu_plugin_insn *insn)
238 return insn->vaddr;
241 void *qemu_plugin_insn_haddr(const struct qemu_plugin_insn *insn)
243 return insn->haddr;
246 char *qemu_plugin_insn_disas(const struct qemu_plugin_insn *insn)
248 CPUState *cpu = current_cpu;
249 return plugin_disas(cpu, insn->vaddr, insn->data->len);
252 const char *qemu_plugin_insn_symbol(const struct qemu_plugin_insn *insn)
254 const char *sym = lookup_symbol(insn->vaddr);
255 return sym[0] != 0 ? sym : NULL;
259 * The memory queries allow the plugin to query information about a
260 * memory access.
263 unsigned qemu_plugin_mem_size_shift(qemu_plugin_meminfo_t info)
265 MemOp op = get_memop(info);
266 return op & MO_SIZE;
269 bool qemu_plugin_mem_is_sign_extended(qemu_plugin_meminfo_t info)
271 MemOp op = get_memop(info);
272 return op & MO_SIGN;
275 bool qemu_plugin_mem_is_big_endian(qemu_plugin_meminfo_t info)
277 MemOp op = get_memop(info);
278 return (op & MO_BSWAP) == MO_BE;
281 bool qemu_plugin_mem_is_store(qemu_plugin_meminfo_t info)
283 return get_plugin_meminfo_rw(info) & QEMU_PLUGIN_MEM_W;
287 * Virtual Memory queries
290 #ifdef CONFIG_SOFTMMU
291 static __thread struct qemu_plugin_hwaddr hwaddr_info;
292 #endif
294 struct qemu_plugin_hwaddr *qemu_plugin_get_hwaddr(qemu_plugin_meminfo_t info,
295 uint64_t vaddr)
297 #ifdef CONFIG_SOFTMMU
298 CPUState *cpu = current_cpu;
299 unsigned int mmu_idx = get_mmuidx(info);
300 enum qemu_plugin_mem_rw rw = get_plugin_meminfo_rw(info);
301 hwaddr_info.is_store = (rw & QEMU_PLUGIN_MEM_W) != 0;
303 assert(mmu_idx < NB_MMU_MODES);
305 if (!tlb_plugin_lookup(cpu, vaddr, mmu_idx,
306 hwaddr_info.is_store, &hwaddr_info)) {
307 error_report("invalid use of qemu_plugin_get_hwaddr");
308 return NULL;
311 return &hwaddr_info;
312 #else
313 return NULL;
314 #endif
317 bool qemu_plugin_hwaddr_is_io(const struct qemu_plugin_hwaddr *haddr)
319 #ifdef CONFIG_SOFTMMU
320 return haddr->is_io;
321 #else
322 return false;
323 #endif
326 uint64_t qemu_plugin_hwaddr_phys_addr(const struct qemu_plugin_hwaddr *haddr)
328 #ifdef CONFIG_SOFTMMU
329 if (haddr) {
330 return haddr->phys_addr;
332 #endif
333 return 0;
336 const char *qemu_plugin_hwaddr_device_name(const struct qemu_plugin_hwaddr *h)
338 #ifdef CONFIG_SOFTMMU
339 if (h && h->is_io) {
340 MemoryRegion *mr = h->mr;
341 if (!mr->name) {
342 unsigned maddr = (uintptr_t)mr;
343 g_autofree char *temp = g_strdup_printf("anon%08x", maddr);
344 return g_intern_string(temp);
345 } else {
346 return g_intern_string(mr->name);
348 } else {
349 return g_intern_static_string("RAM");
351 #else
352 return g_intern_static_string("Invalid");
353 #endif
356 int qemu_plugin_num_vcpus(void)
358 return plugin_num_vcpus();
362 * Plugin output
364 void qemu_plugin_outs(const char *string)
366 qemu_log_mask(CPU_LOG_PLUGIN, "%s", string);
369 bool qemu_plugin_bool_parse(const char *name, const char *value, bool *ret)
371 return name && value && qapi_bool_parse(name, value, ret, NULL);
375 * Binary path, start and end locations
377 const char *qemu_plugin_path_to_binary(void)
379 char *path = NULL;
380 #ifdef CONFIG_USER_ONLY
381 TaskState *ts = (TaskState *) current_cpu->opaque;
382 path = g_strdup(ts->bprm->filename);
383 #endif
384 return path;
387 uint64_t qemu_plugin_start_code(void)
389 uint64_t start = 0;
390 #ifdef CONFIG_USER_ONLY
391 TaskState *ts = (TaskState *) current_cpu->opaque;
392 start = ts->info->start_code;
393 #endif
394 return start;
397 uint64_t qemu_plugin_end_code(void)
399 uint64_t end = 0;
400 #ifdef CONFIG_USER_ONLY
401 TaskState *ts = (TaskState *) current_cpu->opaque;
402 end = ts->info->end_code;
403 #endif
404 return end;
407 uint64_t qemu_plugin_entry_code(void)
409 uint64_t entry = 0;
410 #ifdef CONFIG_USER_ONLY
411 TaskState *ts = (TaskState *) current_cpu->opaque;
412 entry = ts->info->entry;
413 #endif
414 return entry;
418 * Create register handles.
420 * We need to create a handle for each register so the plugin
421 * infrastructure can call gdbstub to read a register. They are
422 * currently just a pointer encapsulation of the gdb_reg but in
423 * future may hold internal plugin state so its important plugin
424 * authors are not tempted to treat them as numbers.
426 * We also construct a result array with those handles and some
427 * ancillary data the plugin might find useful.
430 static GArray *create_register_handles(GArray *gdbstub_regs)
432 GArray *find_data = g_array_new(true, true,
433 sizeof(qemu_plugin_reg_descriptor));
435 for (int i = 0; i < gdbstub_regs->len; i++) {
436 GDBRegDesc *grd = &g_array_index(gdbstub_regs, GDBRegDesc, i);
437 qemu_plugin_reg_descriptor desc;
439 /* skip "un-named" regs */
440 if (!grd->name) {
441 continue;
444 /* Create a record for the plugin */
445 desc.handle = GINT_TO_POINTER(grd->gdb_reg);
446 desc.name = g_intern_string(grd->name);
447 desc.feature = g_intern_string(grd->feature_name);
448 g_array_append_val(find_data, desc);
451 return find_data;
454 GArray *qemu_plugin_get_registers(void)
456 g_assert(current_cpu);
458 g_autoptr(GArray) regs = gdb_get_register_list(current_cpu);
459 return create_register_handles(regs);
462 int qemu_plugin_read_register(struct qemu_plugin_register *reg, GByteArray *buf)
464 g_assert(current_cpu);
466 return gdb_read_register(current_cpu, buf, GPOINTER_TO_INT(reg));