aio-wait: avoid AioContext lock in aio_wait_bh_oneshot()
[qemu/armbru.git] / hw / vfio / common.c
blob78358ede27645e9013f29b6577304df76ba039de
1 /*
2 * generic functions used by VFIO devices
4 * Copyright Red Hat, Inc. 2012
6 * Authors:
7 * Alex Williamson <alex.williamson@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
12 * Based on qemu-kvm device-assignment:
13 * Adapted for KVM by Qumranet.
14 * Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com)
15 * Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com)
16 * Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com)
17 * Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com)
18 * Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com)
21 #include "qemu/osdep.h"
22 #include <sys/ioctl.h>
23 #ifdef CONFIG_KVM
24 #include <linux/kvm.h>
25 #endif
26 #include <linux/vfio.h>
28 #include "hw/vfio/vfio-common.h"
29 #include "hw/vfio/vfio.h"
30 #include "exec/address-spaces.h"
31 #include "exec/memory.h"
32 #include "exec/ram_addr.h"
33 #include "hw/hw.h"
34 #include "qemu/error-report.h"
35 #include "qemu/main-loop.h"
36 #include "qemu/range.h"
37 #include "sysemu/kvm.h"
38 #include "sysemu/reset.h"
39 #include "sysemu/runstate.h"
40 #include "trace.h"
41 #include "qapi/error.h"
42 #include "migration/migration.h"
43 #include "migration/misc.h"
44 #include "migration/blocker.h"
45 #include "migration/qemu-file.h"
46 #include "sysemu/tpm.h"
48 VFIOGroupList vfio_group_list =
49 QLIST_HEAD_INITIALIZER(vfio_group_list);
50 static QLIST_HEAD(, VFIOAddressSpace) vfio_address_spaces =
51 QLIST_HEAD_INITIALIZER(vfio_address_spaces);
53 #ifdef CONFIG_KVM
55 * We have a single VFIO pseudo device per KVM VM. Once created it lives
56 * for the life of the VM. Closing the file descriptor only drops our
57 * reference to it and the device's reference to kvm. Therefore once
58 * initialized, this file descriptor is only released on QEMU exit and
59 * we'll re-use it should another vfio device be attached before then.
61 static int vfio_kvm_device_fd = -1;
62 #endif
65 * Common VFIO interrupt disable
67 void vfio_disable_irqindex(VFIODevice *vbasedev, int index)
69 struct vfio_irq_set irq_set = {
70 .argsz = sizeof(irq_set),
71 .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_TRIGGER,
72 .index = index,
73 .start = 0,
74 .count = 0,
77 ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set);
80 void vfio_unmask_single_irqindex(VFIODevice *vbasedev, int index)
82 struct vfio_irq_set irq_set = {
83 .argsz = sizeof(irq_set),
84 .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_UNMASK,
85 .index = index,
86 .start = 0,
87 .count = 1,
90 ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set);
93 void vfio_mask_single_irqindex(VFIODevice *vbasedev, int index)
95 struct vfio_irq_set irq_set = {
96 .argsz = sizeof(irq_set),
97 .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_MASK,
98 .index = index,
99 .start = 0,
100 .count = 1,
103 ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set);
106 static inline const char *action_to_str(int action)
108 switch (action) {
109 case VFIO_IRQ_SET_ACTION_MASK:
110 return "MASK";
111 case VFIO_IRQ_SET_ACTION_UNMASK:
112 return "UNMASK";
113 case VFIO_IRQ_SET_ACTION_TRIGGER:
114 return "TRIGGER";
115 default:
116 return "UNKNOWN ACTION";
120 static const char *index_to_str(VFIODevice *vbasedev, int index)
122 if (vbasedev->type != VFIO_DEVICE_TYPE_PCI) {
123 return NULL;
126 switch (index) {
127 case VFIO_PCI_INTX_IRQ_INDEX:
128 return "INTX";
129 case VFIO_PCI_MSI_IRQ_INDEX:
130 return "MSI";
131 case VFIO_PCI_MSIX_IRQ_INDEX:
132 return "MSIX";
133 case VFIO_PCI_ERR_IRQ_INDEX:
134 return "ERR";
135 case VFIO_PCI_REQ_IRQ_INDEX:
136 return "REQ";
137 default:
138 return NULL;
142 static int vfio_ram_block_discard_disable(VFIOContainer *container, bool state)
144 switch (container->iommu_type) {
145 case VFIO_TYPE1v2_IOMMU:
146 case VFIO_TYPE1_IOMMU:
148 * We support coordinated discarding of RAM via the RamDiscardManager.
150 return ram_block_uncoordinated_discard_disable(state);
151 default:
153 * VFIO_SPAPR_TCE_IOMMU most probably works just fine with
154 * RamDiscardManager, however, it is completely untested.
156 * VFIO_SPAPR_TCE_v2_IOMMU with "DMA memory preregistering" does
157 * completely the opposite of managing mapping/pinning dynamically as
158 * required by RamDiscardManager. We would have to special-case sections
159 * with a RamDiscardManager.
161 return ram_block_discard_disable(state);
165 int vfio_set_irq_signaling(VFIODevice *vbasedev, int index, int subindex,
166 int action, int fd, Error **errp)
168 struct vfio_irq_set *irq_set;
169 int argsz, ret = 0;
170 const char *name;
171 int32_t *pfd;
173 argsz = sizeof(*irq_set) + sizeof(*pfd);
175 irq_set = g_malloc0(argsz);
176 irq_set->argsz = argsz;
177 irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | action;
178 irq_set->index = index;
179 irq_set->start = subindex;
180 irq_set->count = 1;
181 pfd = (int32_t *)&irq_set->data;
182 *pfd = fd;
184 if (ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, irq_set)) {
185 ret = -errno;
187 g_free(irq_set);
189 if (!ret) {
190 return 0;
193 error_setg_errno(errp, -ret, "VFIO_DEVICE_SET_IRQS failure");
195 name = index_to_str(vbasedev, index);
196 if (name) {
197 error_prepend(errp, "%s-%d: ", name, subindex);
198 } else {
199 error_prepend(errp, "index %d-%d: ", index, subindex);
201 error_prepend(errp,
202 "Failed to %s %s eventfd signaling for interrupt ",
203 fd < 0 ? "tear down" : "set up", action_to_str(action));
204 return ret;
208 * IO Port/MMIO - Beware of the endians, VFIO is always little endian
210 void vfio_region_write(void *opaque, hwaddr addr,
211 uint64_t data, unsigned size)
213 VFIORegion *region = opaque;
214 VFIODevice *vbasedev = region->vbasedev;
215 union {
216 uint8_t byte;
217 uint16_t word;
218 uint32_t dword;
219 uint64_t qword;
220 } buf;
222 switch (size) {
223 case 1:
224 buf.byte = data;
225 break;
226 case 2:
227 buf.word = cpu_to_le16(data);
228 break;
229 case 4:
230 buf.dword = cpu_to_le32(data);
231 break;
232 case 8:
233 buf.qword = cpu_to_le64(data);
234 break;
235 default:
236 hw_error("vfio: unsupported write size, %u bytes", size);
237 break;
240 if (pwrite(vbasedev->fd, &buf, size, region->fd_offset + addr) != size) {
241 error_report("%s(%s:region%d+0x%"HWADDR_PRIx", 0x%"PRIx64
242 ",%d) failed: %m",
243 __func__, vbasedev->name, region->nr,
244 addr, data, size);
247 trace_vfio_region_write(vbasedev->name, region->nr, addr, data, size);
250 * A read or write to a BAR always signals an INTx EOI. This will
251 * do nothing if not pending (including not in INTx mode). We assume
252 * that a BAR access is in response to an interrupt and that BAR
253 * accesses will service the interrupt. Unfortunately, we don't know
254 * which access will service the interrupt, so we're potentially
255 * getting quite a few host interrupts per guest interrupt.
257 vbasedev->ops->vfio_eoi(vbasedev);
260 uint64_t vfio_region_read(void *opaque,
261 hwaddr addr, unsigned size)
263 VFIORegion *region = opaque;
264 VFIODevice *vbasedev = region->vbasedev;
265 union {
266 uint8_t byte;
267 uint16_t word;
268 uint32_t dword;
269 uint64_t qword;
270 } buf;
271 uint64_t data = 0;
273 if (pread(vbasedev->fd, &buf, size, region->fd_offset + addr) != size) {
274 error_report("%s(%s:region%d+0x%"HWADDR_PRIx", %d) failed: %m",
275 __func__, vbasedev->name, region->nr,
276 addr, size);
277 return (uint64_t)-1;
279 switch (size) {
280 case 1:
281 data = buf.byte;
282 break;
283 case 2:
284 data = le16_to_cpu(buf.word);
285 break;
286 case 4:
287 data = le32_to_cpu(buf.dword);
288 break;
289 case 8:
290 data = le64_to_cpu(buf.qword);
291 break;
292 default:
293 hw_error("vfio: unsupported read size, %u bytes", size);
294 break;
297 trace_vfio_region_read(vbasedev->name, region->nr, addr, size, data);
299 /* Same as write above */
300 vbasedev->ops->vfio_eoi(vbasedev);
302 return data;
305 const MemoryRegionOps vfio_region_ops = {
306 .read = vfio_region_read,
307 .write = vfio_region_write,
308 .endianness = DEVICE_LITTLE_ENDIAN,
309 .valid = {
310 .min_access_size = 1,
311 .max_access_size = 8,
313 .impl = {
314 .min_access_size = 1,
315 .max_access_size = 8,
320 * Device state interfaces
323 typedef struct {
324 unsigned long *bitmap;
325 hwaddr size;
326 hwaddr pages;
327 } VFIOBitmap;
329 static int vfio_bitmap_alloc(VFIOBitmap *vbmap, hwaddr size)
331 vbmap->pages = REAL_HOST_PAGE_ALIGN(size) / qemu_real_host_page_size();
332 vbmap->size = ROUND_UP(vbmap->pages, sizeof(__u64) * BITS_PER_BYTE) /
333 BITS_PER_BYTE;
334 vbmap->bitmap = g_try_malloc0(vbmap->size);
335 if (!vbmap->bitmap) {
336 return -ENOMEM;
339 return 0;
342 static int vfio_get_dirty_bitmap(VFIOContainer *container, uint64_t iova,
343 uint64_t size, ram_addr_t ram_addr);
345 bool vfio_mig_active(void)
347 VFIOGroup *group;
348 VFIODevice *vbasedev;
350 if (QLIST_EMPTY(&vfio_group_list)) {
351 return false;
354 QLIST_FOREACH(group, &vfio_group_list, next) {
355 QLIST_FOREACH(vbasedev, &group->device_list, next) {
356 if (vbasedev->migration_blocker) {
357 return false;
361 return true;
364 static Error *multiple_devices_migration_blocker;
365 static Error *giommu_migration_blocker;
367 static unsigned int vfio_migratable_device_num(void)
369 VFIOGroup *group;
370 VFIODevice *vbasedev;
371 unsigned int device_num = 0;
373 QLIST_FOREACH(group, &vfio_group_list, next) {
374 QLIST_FOREACH(vbasedev, &group->device_list, next) {
375 if (vbasedev->migration) {
376 device_num++;
381 return device_num;
384 int vfio_block_multiple_devices_migration(Error **errp)
386 int ret;
388 if (multiple_devices_migration_blocker ||
389 vfio_migratable_device_num() <= 1) {
390 return 0;
393 error_setg(&multiple_devices_migration_blocker,
394 "Migration is currently not supported with multiple "
395 "VFIO devices");
396 ret = migrate_add_blocker(multiple_devices_migration_blocker, errp);
397 if (ret < 0) {
398 error_free(multiple_devices_migration_blocker);
399 multiple_devices_migration_blocker = NULL;
402 return ret;
405 void vfio_unblock_multiple_devices_migration(void)
407 if (!multiple_devices_migration_blocker ||
408 vfio_migratable_device_num() > 1) {
409 return;
412 migrate_del_blocker(multiple_devices_migration_blocker);
413 error_free(multiple_devices_migration_blocker);
414 multiple_devices_migration_blocker = NULL;
417 static bool vfio_viommu_preset(void)
419 VFIOAddressSpace *space;
421 QLIST_FOREACH(space, &vfio_address_spaces, list) {
422 if (space->as != &address_space_memory) {
423 return true;
427 return false;
430 int vfio_block_giommu_migration(Error **errp)
432 int ret;
434 if (giommu_migration_blocker ||
435 !vfio_viommu_preset()) {
436 return 0;
439 error_setg(&giommu_migration_blocker,
440 "Migration is currently not supported with vIOMMU enabled");
441 ret = migrate_add_blocker(giommu_migration_blocker, errp);
442 if (ret < 0) {
443 error_free(giommu_migration_blocker);
444 giommu_migration_blocker = NULL;
447 return ret;
450 void vfio_migration_finalize(void)
452 if (!giommu_migration_blocker ||
453 vfio_viommu_preset()) {
454 return;
457 migrate_del_blocker(giommu_migration_blocker);
458 error_free(giommu_migration_blocker);
459 giommu_migration_blocker = NULL;
462 static void vfio_set_migration_error(int err)
464 MigrationState *ms = migrate_get_current();
466 if (migration_is_setup_or_active(ms->state)) {
467 WITH_QEMU_LOCK_GUARD(&ms->qemu_file_lock) {
468 if (ms->to_dst_file) {
469 qemu_file_set_error(ms->to_dst_file, err);
475 static bool vfio_devices_all_dirty_tracking(VFIOContainer *container)
477 VFIOGroup *group;
478 VFIODevice *vbasedev;
479 MigrationState *ms = migrate_get_current();
481 if (ms->state != MIGRATION_STATUS_ACTIVE &&
482 ms->state != MIGRATION_STATUS_DEVICE) {
483 return false;
486 QLIST_FOREACH(group, &container->group_list, container_next) {
487 QLIST_FOREACH(vbasedev, &group->device_list, next) {
488 VFIOMigration *migration = vbasedev->migration;
490 if (!migration) {
491 return false;
494 if (vbasedev->pre_copy_dirty_page_tracking == ON_OFF_AUTO_OFF &&
495 migration->device_state == VFIO_DEVICE_STATE_RUNNING) {
496 return false;
500 return true;
503 static bool vfio_devices_all_device_dirty_tracking(VFIOContainer *container)
505 VFIOGroup *group;
506 VFIODevice *vbasedev;
508 QLIST_FOREACH(group, &container->group_list, container_next) {
509 QLIST_FOREACH(vbasedev, &group->device_list, next) {
510 if (!vbasedev->dirty_pages_supported) {
511 return false;
516 return true;
520 * Check if all VFIO devices are running and migration is active, which is
521 * essentially equivalent to the migration being in pre-copy phase.
523 static bool vfio_devices_all_running_and_mig_active(VFIOContainer *container)
525 VFIOGroup *group;
526 VFIODevice *vbasedev;
528 if (!migration_is_active(migrate_get_current())) {
529 return false;
532 QLIST_FOREACH(group, &container->group_list, container_next) {
533 QLIST_FOREACH(vbasedev, &group->device_list, next) {
534 VFIOMigration *migration = vbasedev->migration;
536 if (!migration) {
537 return false;
540 if (migration->device_state == VFIO_DEVICE_STATE_RUNNING) {
541 continue;
542 } else {
543 return false;
547 return true;
550 static int vfio_dma_unmap_bitmap(VFIOContainer *container,
551 hwaddr iova, ram_addr_t size,
552 IOMMUTLBEntry *iotlb)
554 struct vfio_iommu_type1_dma_unmap *unmap;
555 struct vfio_bitmap *bitmap;
556 VFIOBitmap vbmap;
557 int ret;
559 ret = vfio_bitmap_alloc(&vbmap, size);
560 if (ret) {
561 return ret;
564 unmap = g_malloc0(sizeof(*unmap) + sizeof(*bitmap));
566 unmap->argsz = sizeof(*unmap) + sizeof(*bitmap);
567 unmap->iova = iova;
568 unmap->size = size;
569 unmap->flags |= VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP;
570 bitmap = (struct vfio_bitmap *)&unmap->data;
573 * cpu_physical_memory_set_dirty_lebitmap() supports pages in bitmap of
574 * qemu_real_host_page_size to mark those dirty. Hence set bitmap_pgsize
575 * to qemu_real_host_page_size.
577 bitmap->pgsize = qemu_real_host_page_size();
578 bitmap->size = vbmap.size;
579 bitmap->data = (__u64 *)vbmap.bitmap;
581 if (vbmap.size > container->max_dirty_bitmap_size) {
582 error_report("UNMAP: Size of bitmap too big 0x%"PRIx64, vbmap.size);
583 ret = -E2BIG;
584 goto unmap_exit;
587 ret = ioctl(container->fd, VFIO_IOMMU_UNMAP_DMA, unmap);
588 if (!ret) {
589 cpu_physical_memory_set_dirty_lebitmap(vbmap.bitmap,
590 iotlb->translated_addr, vbmap.pages);
591 } else {
592 error_report("VFIO_UNMAP_DMA with DIRTY_BITMAP : %m");
595 unmap_exit:
596 g_free(unmap);
597 g_free(vbmap.bitmap);
599 return ret;
603 * DMA - Mapping and unmapping for the "type1" IOMMU interface used on x86
605 static int vfio_dma_unmap(VFIOContainer *container,
606 hwaddr iova, ram_addr_t size,
607 IOMMUTLBEntry *iotlb)
609 struct vfio_iommu_type1_dma_unmap unmap = {
610 .argsz = sizeof(unmap),
611 .flags = 0,
612 .iova = iova,
613 .size = size,
615 bool need_dirty_sync = false;
616 int ret;
618 if (iotlb && vfio_devices_all_running_and_mig_active(container)) {
619 if (!vfio_devices_all_device_dirty_tracking(container) &&
620 container->dirty_pages_supported) {
621 return vfio_dma_unmap_bitmap(container, iova, size, iotlb);
624 need_dirty_sync = true;
627 while (ioctl(container->fd, VFIO_IOMMU_UNMAP_DMA, &unmap)) {
629 * The type1 backend has an off-by-one bug in the kernel (71a7d3d78e3c
630 * v4.15) where an overflow in its wrap-around check prevents us from
631 * unmapping the last page of the address space. Test for the error
632 * condition and re-try the unmap excluding the last page. The
633 * expectation is that we've never mapped the last page anyway and this
634 * unmap request comes via vIOMMU support which also makes it unlikely
635 * that this page is used. This bug was introduced well after type1 v2
636 * support was introduced, so we shouldn't need to test for v1. A fix
637 * is queued for kernel v5.0 so this workaround can be removed once
638 * affected kernels are sufficiently deprecated.
640 if (errno == EINVAL && unmap.size && !(unmap.iova + unmap.size) &&
641 container->iommu_type == VFIO_TYPE1v2_IOMMU) {
642 trace_vfio_dma_unmap_overflow_workaround();
643 unmap.size -= 1ULL << ctz64(container->pgsizes);
644 continue;
646 error_report("VFIO_UNMAP_DMA failed: %s", strerror(errno));
647 return -errno;
650 if (need_dirty_sync) {
651 ret = vfio_get_dirty_bitmap(container, iova, size,
652 iotlb->translated_addr);
653 if (ret) {
654 return ret;
658 return 0;
661 static int vfio_dma_map(VFIOContainer *container, hwaddr iova,
662 ram_addr_t size, void *vaddr, bool readonly)
664 struct vfio_iommu_type1_dma_map map = {
665 .argsz = sizeof(map),
666 .flags = VFIO_DMA_MAP_FLAG_READ,
667 .vaddr = (__u64)(uintptr_t)vaddr,
668 .iova = iova,
669 .size = size,
672 if (!readonly) {
673 map.flags |= VFIO_DMA_MAP_FLAG_WRITE;
677 * Try the mapping, if it fails with EBUSY, unmap the region and try
678 * again. This shouldn't be necessary, but we sometimes see it in
679 * the VGA ROM space.
681 if (ioctl(container->fd, VFIO_IOMMU_MAP_DMA, &map) == 0 ||
682 (errno == EBUSY && vfio_dma_unmap(container, iova, size, NULL) == 0 &&
683 ioctl(container->fd, VFIO_IOMMU_MAP_DMA, &map) == 0)) {
684 return 0;
687 error_report("VFIO_MAP_DMA failed: %s", strerror(errno));
688 return -errno;
691 static void vfio_host_win_add(VFIOContainer *container,
692 hwaddr min_iova, hwaddr max_iova,
693 uint64_t iova_pgsizes)
695 VFIOHostDMAWindow *hostwin;
697 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) {
698 if (ranges_overlap(hostwin->min_iova,
699 hostwin->max_iova - hostwin->min_iova + 1,
700 min_iova,
701 max_iova - min_iova + 1)) {
702 hw_error("%s: Overlapped IOMMU are not enabled", __func__);
706 hostwin = g_malloc0(sizeof(*hostwin));
708 hostwin->min_iova = min_iova;
709 hostwin->max_iova = max_iova;
710 hostwin->iova_pgsizes = iova_pgsizes;
711 QLIST_INSERT_HEAD(&container->hostwin_list, hostwin, hostwin_next);
714 static int vfio_host_win_del(VFIOContainer *container, hwaddr min_iova,
715 hwaddr max_iova)
717 VFIOHostDMAWindow *hostwin;
719 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) {
720 if (hostwin->min_iova == min_iova && hostwin->max_iova == max_iova) {
721 QLIST_REMOVE(hostwin, hostwin_next);
722 g_free(hostwin);
723 return 0;
727 return -1;
730 static bool vfio_listener_skipped_section(MemoryRegionSection *section)
732 return (!memory_region_is_ram(section->mr) &&
733 !memory_region_is_iommu(section->mr)) ||
734 memory_region_is_protected(section->mr) ||
736 * Sizing an enabled 64-bit BAR can cause spurious mappings to
737 * addresses in the upper part of the 64-bit address space. These
738 * are never accessed by the CPU and beyond the address width of
739 * some IOMMU hardware. TODO: VFIO should tell us the IOMMU width.
741 section->offset_within_address_space & (1ULL << 63);
744 /* Called with rcu_read_lock held. */
745 static bool vfio_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
746 ram_addr_t *ram_addr, bool *read_only)
748 bool ret, mr_has_discard_manager;
750 ret = memory_get_xlat_addr(iotlb, vaddr, ram_addr, read_only,
751 &mr_has_discard_manager);
752 if (ret && mr_has_discard_manager) {
754 * Malicious VMs might trigger discarding of IOMMU-mapped memory. The
755 * pages will remain pinned inside vfio until unmapped, resulting in a
756 * higher memory consumption than expected. If memory would get
757 * populated again later, there would be an inconsistency between pages
758 * pinned by vfio and pages seen by QEMU. This is the case until
759 * unmapped from the IOMMU (e.g., during device reset).
761 * With malicious guests, we really only care about pinning more memory
762 * than expected. RLIMIT_MEMLOCK set for the user/process can never be
763 * exceeded and can be used to mitigate this problem.
765 warn_report_once("Using vfio with vIOMMUs and coordinated discarding of"
766 " RAM (e.g., virtio-mem) works, however, malicious"
767 " guests can trigger pinning of more memory than"
768 " intended via an IOMMU. It's possible to mitigate "
769 " by setting/adjusting RLIMIT_MEMLOCK.");
771 return ret;
774 static void vfio_iommu_map_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
776 VFIOGuestIOMMU *giommu = container_of(n, VFIOGuestIOMMU, n);
777 VFIOContainer *container = giommu->container;
778 hwaddr iova = iotlb->iova + giommu->iommu_offset;
779 void *vaddr;
780 int ret;
782 trace_vfio_iommu_map_notify(iotlb->perm == IOMMU_NONE ? "UNMAP" : "MAP",
783 iova, iova + iotlb->addr_mask);
785 if (iotlb->target_as != &address_space_memory) {
786 error_report("Wrong target AS \"%s\", only system memory is allowed",
787 iotlb->target_as->name ? iotlb->target_as->name : "none");
788 vfio_set_migration_error(-EINVAL);
789 return;
792 rcu_read_lock();
794 if ((iotlb->perm & IOMMU_RW) != IOMMU_NONE) {
795 bool read_only;
797 if (!vfio_get_xlat_addr(iotlb, &vaddr, NULL, &read_only)) {
798 goto out;
801 * vaddr is only valid until rcu_read_unlock(). But after
802 * vfio_dma_map has set up the mapping the pages will be
803 * pinned by the kernel. This makes sure that the RAM backend
804 * of vaddr will always be there, even if the memory object is
805 * destroyed and its backing memory munmap-ed.
807 ret = vfio_dma_map(container, iova,
808 iotlb->addr_mask + 1, vaddr,
809 read_only);
810 if (ret) {
811 error_report("vfio_dma_map(%p, 0x%"HWADDR_PRIx", "
812 "0x%"HWADDR_PRIx", %p) = %d (%s)",
813 container, iova,
814 iotlb->addr_mask + 1, vaddr, ret, strerror(-ret));
816 } else {
817 ret = vfio_dma_unmap(container, iova, iotlb->addr_mask + 1, iotlb);
818 if (ret) {
819 error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", "
820 "0x%"HWADDR_PRIx") = %d (%s)",
821 container, iova,
822 iotlb->addr_mask + 1, ret, strerror(-ret));
823 vfio_set_migration_error(ret);
826 out:
827 rcu_read_unlock();
830 static void vfio_ram_discard_notify_discard(RamDiscardListener *rdl,
831 MemoryRegionSection *section)
833 VFIORamDiscardListener *vrdl = container_of(rdl, VFIORamDiscardListener,
834 listener);
835 const hwaddr size = int128_get64(section->size);
836 const hwaddr iova = section->offset_within_address_space;
837 int ret;
839 /* Unmap with a single call. */
840 ret = vfio_dma_unmap(vrdl->container, iova, size , NULL);
841 if (ret) {
842 error_report("%s: vfio_dma_unmap() failed: %s", __func__,
843 strerror(-ret));
847 static int vfio_ram_discard_notify_populate(RamDiscardListener *rdl,
848 MemoryRegionSection *section)
850 VFIORamDiscardListener *vrdl = container_of(rdl, VFIORamDiscardListener,
851 listener);
852 const hwaddr end = section->offset_within_region +
853 int128_get64(section->size);
854 hwaddr start, next, iova;
855 void *vaddr;
856 int ret;
859 * Map in (aligned within memory region) minimum granularity, so we can
860 * unmap in minimum granularity later.
862 for (start = section->offset_within_region; start < end; start = next) {
863 next = ROUND_UP(start + 1, vrdl->granularity);
864 next = MIN(next, end);
866 iova = start - section->offset_within_region +
867 section->offset_within_address_space;
868 vaddr = memory_region_get_ram_ptr(section->mr) + start;
870 ret = vfio_dma_map(vrdl->container, iova, next - start,
871 vaddr, section->readonly);
872 if (ret) {
873 /* Rollback */
874 vfio_ram_discard_notify_discard(rdl, section);
875 return ret;
878 return 0;
881 static void vfio_register_ram_discard_listener(VFIOContainer *container,
882 MemoryRegionSection *section)
884 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr);
885 VFIORamDiscardListener *vrdl;
887 /* Ignore some corner cases not relevant in practice. */
888 g_assert(QEMU_IS_ALIGNED(section->offset_within_region, TARGET_PAGE_SIZE));
889 g_assert(QEMU_IS_ALIGNED(section->offset_within_address_space,
890 TARGET_PAGE_SIZE));
891 g_assert(QEMU_IS_ALIGNED(int128_get64(section->size), TARGET_PAGE_SIZE));
893 vrdl = g_new0(VFIORamDiscardListener, 1);
894 vrdl->container = container;
895 vrdl->mr = section->mr;
896 vrdl->offset_within_address_space = section->offset_within_address_space;
897 vrdl->size = int128_get64(section->size);
898 vrdl->granularity = ram_discard_manager_get_min_granularity(rdm,
899 section->mr);
901 g_assert(vrdl->granularity && is_power_of_2(vrdl->granularity));
902 g_assert(container->pgsizes &&
903 vrdl->granularity >= 1ULL << ctz64(container->pgsizes));
905 ram_discard_listener_init(&vrdl->listener,
906 vfio_ram_discard_notify_populate,
907 vfio_ram_discard_notify_discard, true);
908 ram_discard_manager_register_listener(rdm, &vrdl->listener, section);
909 QLIST_INSERT_HEAD(&container->vrdl_list, vrdl, next);
912 * Sanity-check if we have a theoretically problematic setup where we could
913 * exceed the maximum number of possible DMA mappings over time. We assume
914 * that each mapped section in the same address space as a RamDiscardManager
915 * section consumes exactly one DMA mapping, with the exception of
916 * RamDiscardManager sections; i.e., we don't expect to have gIOMMU sections
917 * in the same address space as RamDiscardManager sections.
919 * We assume that each section in the address space consumes one memslot.
920 * We take the number of KVM memory slots as a best guess for the maximum
921 * number of sections in the address space we could have over time,
922 * also consuming DMA mappings.
924 if (container->dma_max_mappings) {
925 unsigned int vrdl_count = 0, vrdl_mappings = 0, max_memslots = 512;
927 #ifdef CONFIG_KVM
928 if (kvm_enabled()) {
929 max_memslots = kvm_get_max_memslots();
931 #endif
933 QLIST_FOREACH(vrdl, &container->vrdl_list, next) {
934 hwaddr start, end;
936 start = QEMU_ALIGN_DOWN(vrdl->offset_within_address_space,
937 vrdl->granularity);
938 end = ROUND_UP(vrdl->offset_within_address_space + vrdl->size,
939 vrdl->granularity);
940 vrdl_mappings += (end - start) / vrdl->granularity;
941 vrdl_count++;
944 if (vrdl_mappings + max_memslots - vrdl_count >
945 container->dma_max_mappings) {
946 warn_report("%s: possibly running out of DMA mappings. E.g., try"
947 " increasing the 'block-size' of virtio-mem devies."
948 " Maximum possible DMA mappings: %d, Maximum possible"
949 " memslots: %d", __func__, container->dma_max_mappings,
950 max_memslots);
955 static void vfio_unregister_ram_discard_listener(VFIOContainer *container,
956 MemoryRegionSection *section)
958 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr);
959 VFIORamDiscardListener *vrdl = NULL;
961 QLIST_FOREACH(vrdl, &container->vrdl_list, next) {
962 if (vrdl->mr == section->mr &&
963 vrdl->offset_within_address_space ==
964 section->offset_within_address_space) {
965 break;
969 if (!vrdl) {
970 hw_error("vfio: Trying to unregister missing RAM discard listener");
973 ram_discard_manager_unregister_listener(rdm, &vrdl->listener);
974 QLIST_REMOVE(vrdl, next);
975 g_free(vrdl);
978 static VFIOHostDMAWindow *vfio_find_hostwin(VFIOContainer *container,
979 hwaddr iova, hwaddr end)
981 VFIOHostDMAWindow *hostwin;
982 bool hostwin_found = false;
984 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) {
985 if (hostwin->min_iova <= iova && end <= hostwin->max_iova) {
986 hostwin_found = true;
987 break;
991 return hostwin_found ? hostwin : NULL;
994 static bool vfio_known_safe_misalignment(MemoryRegionSection *section)
996 MemoryRegion *mr = section->mr;
998 if (!TPM_IS_CRB(mr->owner)) {
999 return false;
1002 /* this is a known safe misaligned region, just trace for debug purpose */
1003 trace_vfio_known_safe_misalignment(memory_region_name(mr),
1004 section->offset_within_address_space,
1005 section->offset_within_region,
1006 qemu_real_host_page_size());
1007 return true;
1010 static bool vfio_listener_valid_section(MemoryRegionSection *section,
1011 const char *name)
1013 if (vfio_listener_skipped_section(section)) {
1014 trace_vfio_listener_region_skip(name,
1015 section->offset_within_address_space,
1016 section->offset_within_address_space +
1017 int128_get64(int128_sub(section->size, int128_one())));
1018 return false;
1021 if (unlikely((section->offset_within_address_space &
1022 ~qemu_real_host_page_mask()) !=
1023 (section->offset_within_region & ~qemu_real_host_page_mask()))) {
1024 if (!vfio_known_safe_misalignment(section)) {
1025 error_report("%s received unaligned region %s iova=0x%"PRIx64
1026 " offset_within_region=0x%"PRIx64
1027 " qemu_real_host_page_size=0x%"PRIxPTR,
1028 __func__, memory_region_name(section->mr),
1029 section->offset_within_address_space,
1030 section->offset_within_region,
1031 qemu_real_host_page_size());
1033 return false;
1036 return true;
1039 static bool vfio_get_section_iova_range(VFIOContainer *container,
1040 MemoryRegionSection *section,
1041 hwaddr *out_iova, hwaddr *out_end,
1042 Int128 *out_llend)
1044 Int128 llend;
1045 hwaddr iova;
1047 iova = REAL_HOST_PAGE_ALIGN(section->offset_within_address_space);
1048 llend = int128_make64(section->offset_within_address_space);
1049 llend = int128_add(llend, section->size);
1050 llend = int128_and(llend, int128_exts64(qemu_real_host_page_mask()));
1052 if (int128_ge(int128_make64(iova), llend)) {
1053 return false;
1056 *out_iova = iova;
1057 *out_end = int128_get64(int128_sub(llend, int128_one()));
1058 if (out_llend) {
1059 *out_llend = llend;
1061 return true;
1064 static void vfio_listener_region_add(MemoryListener *listener,
1065 MemoryRegionSection *section)
1067 VFIOContainer *container = container_of(listener, VFIOContainer, listener);
1068 hwaddr iova, end;
1069 Int128 llend, llsize;
1070 void *vaddr;
1071 int ret;
1072 VFIOHostDMAWindow *hostwin;
1073 Error *err = NULL;
1075 if (!vfio_listener_valid_section(section, "region_add")) {
1076 return;
1079 if (!vfio_get_section_iova_range(container, section, &iova, &end, &llend)) {
1080 if (memory_region_is_ram_device(section->mr)) {
1081 trace_vfio_listener_region_add_no_dma_map(
1082 memory_region_name(section->mr),
1083 section->offset_within_address_space,
1084 int128_getlo(section->size),
1085 qemu_real_host_page_size());
1087 return;
1090 if (container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) {
1091 hwaddr pgsize = 0;
1093 /* For now intersections are not allowed, we may relax this later */
1094 QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) {
1095 if (ranges_overlap(hostwin->min_iova,
1096 hostwin->max_iova - hostwin->min_iova + 1,
1097 section->offset_within_address_space,
1098 int128_get64(section->size))) {
1099 error_setg(&err,
1100 "region [0x%"PRIx64",0x%"PRIx64"] overlaps with existing"
1101 "host DMA window [0x%"PRIx64",0x%"PRIx64"]",
1102 section->offset_within_address_space,
1103 section->offset_within_address_space +
1104 int128_get64(section->size) - 1,
1105 hostwin->min_iova, hostwin->max_iova);
1106 goto fail;
1110 ret = vfio_spapr_create_window(container, section, &pgsize);
1111 if (ret) {
1112 error_setg_errno(&err, -ret, "Failed to create SPAPR window");
1113 goto fail;
1116 vfio_host_win_add(container, section->offset_within_address_space,
1117 section->offset_within_address_space +
1118 int128_get64(section->size) - 1, pgsize);
1119 #ifdef CONFIG_KVM
1120 if (kvm_enabled()) {
1121 VFIOGroup *group;
1122 IOMMUMemoryRegion *iommu_mr = IOMMU_MEMORY_REGION(section->mr);
1123 struct kvm_vfio_spapr_tce param;
1124 struct kvm_device_attr attr = {
1125 .group = KVM_DEV_VFIO_GROUP,
1126 .attr = KVM_DEV_VFIO_GROUP_SET_SPAPR_TCE,
1127 .addr = (uint64_t)(unsigned long)&param,
1130 if (!memory_region_iommu_get_attr(iommu_mr, IOMMU_ATTR_SPAPR_TCE_FD,
1131 &param.tablefd)) {
1132 QLIST_FOREACH(group, &container->group_list, container_next) {
1133 param.groupfd = group->fd;
1134 if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) {
1135 error_report("vfio: failed to setup fd %d "
1136 "for a group with fd %d: %s",
1137 param.tablefd, param.groupfd,
1138 strerror(errno));
1139 return;
1141 trace_vfio_spapr_group_attach(param.groupfd, param.tablefd);
1145 #endif
1148 hostwin = vfio_find_hostwin(container, iova, end);
1149 if (!hostwin) {
1150 error_setg(&err, "Container %p can't map guest IOVA region"
1151 " 0x%"HWADDR_PRIx"..0x%"HWADDR_PRIx, container, iova, end);
1152 goto fail;
1155 memory_region_ref(section->mr);
1157 if (memory_region_is_iommu(section->mr)) {
1158 VFIOGuestIOMMU *giommu;
1159 IOMMUMemoryRegion *iommu_mr = IOMMU_MEMORY_REGION(section->mr);
1160 int iommu_idx;
1162 trace_vfio_listener_region_add_iommu(iova, end);
1164 * FIXME: For VFIO iommu types which have KVM acceleration to
1165 * avoid bouncing all map/unmaps through qemu this way, this
1166 * would be the right place to wire that up (tell the KVM
1167 * device emulation the VFIO iommu handles to use).
1169 giommu = g_malloc0(sizeof(*giommu));
1170 giommu->iommu_mr = iommu_mr;
1171 giommu->iommu_offset = section->offset_within_address_space -
1172 section->offset_within_region;
1173 giommu->container = container;
1174 llend = int128_add(int128_make64(section->offset_within_region),
1175 section->size);
1176 llend = int128_sub(llend, int128_one());
1177 iommu_idx = memory_region_iommu_attrs_to_index(iommu_mr,
1178 MEMTXATTRS_UNSPECIFIED);
1179 iommu_notifier_init(&giommu->n, vfio_iommu_map_notify,
1180 IOMMU_NOTIFIER_IOTLB_EVENTS,
1181 section->offset_within_region,
1182 int128_get64(llend),
1183 iommu_idx);
1185 ret = memory_region_iommu_set_page_size_mask(giommu->iommu_mr,
1186 container->pgsizes,
1187 &err);
1188 if (ret) {
1189 g_free(giommu);
1190 goto fail;
1193 ret = memory_region_register_iommu_notifier(section->mr, &giommu->n,
1194 &err);
1195 if (ret) {
1196 g_free(giommu);
1197 goto fail;
1199 QLIST_INSERT_HEAD(&container->giommu_list, giommu, giommu_next);
1200 memory_region_iommu_replay(giommu->iommu_mr, &giommu->n);
1202 return;
1205 /* Here we assume that memory_region_is_ram(section->mr)==true */
1208 * For RAM memory regions with a RamDiscardManager, we only want to map the
1209 * actually populated parts - and update the mapping whenever we're notified
1210 * about changes.
1212 if (memory_region_has_ram_discard_manager(section->mr)) {
1213 vfio_register_ram_discard_listener(container, section);
1214 return;
1217 vaddr = memory_region_get_ram_ptr(section->mr) +
1218 section->offset_within_region +
1219 (iova - section->offset_within_address_space);
1221 trace_vfio_listener_region_add_ram(iova, end, vaddr);
1223 llsize = int128_sub(llend, int128_make64(iova));
1225 if (memory_region_is_ram_device(section->mr)) {
1226 hwaddr pgmask = (1ULL << ctz64(hostwin->iova_pgsizes)) - 1;
1228 if ((iova & pgmask) || (int128_get64(llsize) & pgmask)) {
1229 trace_vfio_listener_region_add_no_dma_map(
1230 memory_region_name(section->mr),
1231 section->offset_within_address_space,
1232 int128_getlo(section->size),
1233 pgmask + 1);
1234 return;
1238 ret = vfio_dma_map(container, iova, int128_get64(llsize),
1239 vaddr, section->readonly);
1240 if (ret) {
1241 error_setg(&err, "vfio_dma_map(%p, 0x%"HWADDR_PRIx", "
1242 "0x%"HWADDR_PRIx", %p) = %d (%s)",
1243 container, iova, int128_get64(llsize), vaddr, ret,
1244 strerror(-ret));
1245 if (memory_region_is_ram_device(section->mr)) {
1246 /* Allow unexpected mappings not to be fatal for RAM devices */
1247 error_report_err(err);
1248 return;
1250 goto fail;
1253 return;
1255 fail:
1256 if (memory_region_is_ram_device(section->mr)) {
1257 error_report("failed to vfio_dma_map. pci p2p may not work");
1258 return;
1261 * On the initfn path, store the first error in the container so we
1262 * can gracefully fail. Runtime, there's not much we can do other
1263 * than throw a hardware error.
1265 if (!container->initialized) {
1266 if (!container->error) {
1267 error_propagate_prepend(&container->error, err,
1268 "Region %s: ",
1269 memory_region_name(section->mr));
1270 } else {
1271 error_free(err);
1273 } else {
1274 error_report_err(err);
1275 hw_error("vfio: DMA mapping failed, unable to continue");
1279 static void vfio_listener_region_del(MemoryListener *listener,
1280 MemoryRegionSection *section)
1282 VFIOContainer *container = container_of(listener, VFIOContainer, listener);
1283 hwaddr iova, end;
1284 Int128 llend, llsize;
1285 int ret;
1286 bool try_unmap = true;
1288 if (!vfio_listener_valid_section(section, "region_del")) {
1289 return;
1292 if (memory_region_is_iommu(section->mr)) {
1293 VFIOGuestIOMMU *giommu;
1295 QLIST_FOREACH(giommu, &container->giommu_list, giommu_next) {
1296 if (MEMORY_REGION(giommu->iommu_mr) == section->mr &&
1297 giommu->n.start == section->offset_within_region) {
1298 memory_region_unregister_iommu_notifier(section->mr,
1299 &giommu->n);
1300 QLIST_REMOVE(giommu, giommu_next);
1301 g_free(giommu);
1302 break;
1307 * FIXME: We assume the one big unmap below is adequate to
1308 * remove any individual page mappings in the IOMMU which
1309 * might have been copied into VFIO. This works for a page table
1310 * based IOMMU where a big unmap flattens a large range of IO-PTEs.
1311 * That may not be true for all IOMMU types.
1315 if (!vfio_get_section_iova_range(container, section, &iova, &end, &llend)) {
1316 return;
1319 llsize = int128_sub(llend, int128_make64(iova));
1321 trace_vfio_listener_region_del(iova, end);
1323 if (memory_region_is_ram_device(section->mr)) {
1324 hwaddr pgmask;
1325 VFIOHostDMAWindow *hostwin;
1327 hostwin = vfio_find_hostwin(container, iova, end);
1328 assert(hostwin); /* or region_add() would have failed */
1330 pgmask = (1ULL << ctz64(hostwin->iova_pgsizes)) - 1;
1331 try_unmap = !((iova & pgmask) || (int128_get64(llsize) & pgmask));
1332 } else if (memory_region_has_ram_discard_manager(section->mr)) {
1333 vfio_unregister_ram_discard_listener(container, section);
1334 /* Unregistering will trigger an unmap. */
1335 try_unmap = false;
1338 if (try_unmap) {
1339 if (int128_eq(llsize, int128_2_64())) {
1340 /* The unmap ioctl doesn't accept a full 64-bit span. */
1341 llsize = int128_rshift(llsize, 1);
1342 ret = vfio_dma_unmap(container, iova, int128_get64(llsize), NULL);
1343 if (ret) {
1344 error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", "
1345 "0x%"HWADDR_PRIx") = %d (%s)",
1346 container, iova, int128_get64(llsize), ret,
1347 strerror(-ret));
1349 iova += int128_get64(llsize);
1351 ret = vfio_dma_unmap(container, iova, int128_get64(llsize), NULL);
1352 if (ret) {
1353 error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", "
1354 "0x%"HWADDR_PRIx") = %d (%s)",
1355 container, iova, int128_get64(llsize), ret,
1356 strerror(-ret));
1360 memory_region_unref(section->mr);
1362 if (container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) {
1363 vfio_spapr_remove_window(container,
1364 section->offset_within_address_space);
1365 if (vfio_host_win_del(container,
1366 section->offset_within_address_space,
1367 section->offset_within_address_space +
1368 int128_get64(section->size) - 1) < 0) {
1369 hw_error("%s: Cannot delete missing window at %"HWADDR_PRIx,
1370 __func__, section->offset_within_address_space);
1375 static int vfio_set_dirty_page_tracking(VFIOContainer *container, bool start)
1377 int ret;
1378 struct vfio_iommu_type1_dirty_bitmap dirty = {
1379 .argsz = sizeof(dirty),
1382 if (!container->dirty_pages_supported) {
1383 return 0;
1386 if (start) {
1387 dirty.flags = VFIO_IOMMU_DIRTY_PAGES_FLAG_START;
1388 } else {
1389 dirty.flags = VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP;
1392 ret = ioctl(container->fd, VFIO_IOMMU_DIRTY_PAGES, &dirty);
1393 if (ret) {
1394 ret = -errno;
1395 error_report("Failed to set dirty tracking flag 0x%x errno: %d",
1396 dirty.flags, errno);
1399 return ret;
1402 typedef struct VFIODirtyRanges {
1403 hwaddr min32;
1404 hwaddr max32;
1405 hwaddr min64;
1406 hwaddr max64;
1407 } VFIODirtyRanges;
1409 typedef struct VFIODirtyRangesListener {
1410 VFIOContainer *container;
1411 VFIODirtyRanges ranges;
1412 MemoryListener listener;
1413 } VFIODirtyRangesListener;
1415 static void vfio_dirty_tracking_update(MemoryListener *listener,
1416 MemoryRegionSection *section)
1418 VFIODirtyRangesListener *dirty = container_of(listener,
1419 VFIODirtyRangesListener,
1420 listener);
1421 VFIODirtyRanges *range = &dirty->ranges;
1422 hwaddr iova, end, *min, *max;
1424 if (!vfio_listener_valid_section(section, "tracking_update") ||
1425 !vfio_get_section_iova_range(dirty->container, section,
1426 &iova, &end, NULL)) {
1427 return;
1431 * The address space passed to the dirty tracker is reduced to two ranges:
1432 * one for 32-bit DMA ranges, and another one for 64-bit DMA ranges.
1433 * The underlying reports of dirty will query a sub-interval of each of
1434 * these ranges.
1436 * The purpose of the dual range handling is to handle known cases of big
1437 * holes in the address space, like the x86 AMD 1T hole. The alternative
1438 * would be an IOVATree but that has a much bigger runtime overhead and
1439 * unnecessary complexity.
1441 min = (end <= UINT32_MAX) ? &range->min32 : &range->min64;
1442 max = (end <= UINT32_MAX) ? &range->max32 : &range->max64;
1444 if (*min > iova) {
1445 *min = iova;
1447 if (*max < end) {
1448 *max = end;
1451 trace_vfio_device_dirty_tracking_update(iova, end, *min, *max);
1452 return;
1455 static const MemoryListener vfio_dirty_tracking_listener = {
1456 .name = "vfio-tracking",
1457 .region_add = vfio_dirty_tracking_update,
1460 static void vfio_dirty_tracking_init(VFIOContainer *container,
1461 VFIODirtyRanges *ranges)
1463 VFIODirtyRangesListener dirty;
1465 memset(&dirty, 0, sizeof(dirty));
1466 dirty.ranges.min32 = UINT32_MAX;
1467 dirty.ranges.min64 = UINT64_MAX;
1468 dirty.listener = vfio_dirty_tracking_listener;
1469 dirty.container = container;
1471 memory_listener_register(&dirty.listener,
1472 container->space->as);
1474 *ranges = dirty.ranges;
1477 * The memory listener is synchronous, and used to calculate the range
1478 * to dirty tracking. Unregister it after we are done as we are not
1479 * interested in any follow-up updates.
1481 memory_listener_unregister(&dirty.listener);
1484 static void vfio_devices_dma_logging_stop(VFIOContainer *container)
1486 uint64_t buf[DIV_ROUND_UP(sizeof(struct vfio_device_feature),
1487 sizeof(uint64_t))] = {};
1488 struct vfio_device_feature *feature = (struct vfio_device_feature *)buf;
1489 VFIODevice *vbasedev;
1490 VFIOGroup *group;
1492 feature->argsz = sizeof(buf);
1493 feature->flags = VFIO_DEVICE_FEATURE_SET |
1494 VFIO_DEVICE_FEATURE_DMA_LOGGING_STOP;
1496 QLIST_FOREACH(group, &container->group_list, container_next) {
1497 QLIST_FOREACH(vbasedev, &group->device_list, next) {
1498 if (!vbasedev->dirty_tracking) {
1499 continue;
1502 if (ioctl(vbasedev->fd, VFIO_DEVICE_FEATURE, feature)) {
1503 warn_report("%s: Failed to stop DMA logging, err %d (%s)",
1504 vbasedev->name, -errno, strerror(errno));
1506 vbasedev->dirty_tracking = false;
1511 static struct vfio_device_feature *
1512 vfio_device_feature_dma_logging_start_create(VFIOContainer *container,
1513 VFIODirtyRanges *tracking)
1515 struct vfio_device_feature *feature;
1516 size_t feature_size;
1517 struct vfio_device_feature_dma_logging_control *control;
1518 struct vfio_device_feature_dma_logging_range *ranges;
1520 feature_size = sizeof(struct vfio_device_feature) +
1521 sizeof(struct vfio_device_feature_dma_logging_control);
1522 feature = g_try_malloc0(feature_size);
1523 if (!feature) {
1524 errno = ENOMEM;
1525 return NULL;
1527 feature->argsz = feature_size;
1528 feature->flags = VFIO_DEVICE_FEATURE_SET |
1529 VFIO_DEVICE_FEATURE_DMA_LOGGING_START;
1531 control = (struct vfio_device_feature_dma_logging_control *)feature->data;
1532 control->page_size = qemu_real_host_page_size();
1535 * DMA logging uAPI guarantees to support at least a number of ranges that
1536 * fits into a single host kernel base page.
1538 control->num_ranges = !!tracking->max32 + !!tracking->max64;
1539 ranges = g_try_new0(struct vfio_device_feature_dma_logging_range,
1540 control->num_ranges);
1541 if (!ranges) {
1542 g_free(feature);
1543 errno = ENOMEM;
1545 return NULL;
1548 control->ranges = (__u64)(uintptr_t)ranges;
1549 if (tracking->max32) {
1550 ranges->iova = tracking->min32;
1551 ranges->length = (tracking->max32 - tracking->min32) + 1;
1552 ranges++;
1554 if (tracking->max64) {
1555 ranges->iova = tracking->min64;
1556 ranges->length = (tracking->max64 - tracking->min64) + 1;
1559 trace_vfio_device_dirty_tracking_start(control->num_ranges,
1560 tracking->min32, tracking->max32,
1561 tracking->min64, tracking->max64);
1563 return feature;
1566 static void vfio_device_feature_dma_logging_start_destroy(
1567 struct vfio_device_feature *feature)
1569 struct vfio_device_feature_dma_logging_control *control =
1570 (struct vfio_device_feature_dma_logging_control *)feature->data;
1571 struct vfio_device_feature_dma_logging_range *ranges =
1572 (struct vfio_device_feature_dma_logging_range *)(uintptr_t)control->ranges;
1574 g_free(ranges);
1575 g_free(feature);
1578 static int vfio_devices_dma_logging_start(VFIOContainer *container)
1580 struct vfio_device_feature *feature;
1581 VFIODirtyRanges ranges;
1582 VFIODevice *vbasedev;
1583 VFIOGroup *group;
1584 int ret = 0;
1586 vfio_dirty_tracking_init(container, &ranges);
1587 feature = vfio_device_feature_dma_logging_start_create(container,
1588 &ranges);
1589 if (!feature) {
1590 return -errno;
1593 QLIST_FOREACH(group, &container->group_list, container_next) {
1594 QLIST_FOREACH(vbasedev, &group->device_list, next) {
1595 if (vbasedev->dirty_tracking) {
1596 continue;
1599 ret = ioctl(vbasedev->fd, VFIO_DEVICE_FEATURE, feature);
1600 if (ret) {
1601 ret = -errno;
1602 error_report("%s: Failed to start DMA logging, err %d (%s)",
1603 vbasedev->name, ret, strerror(errno));
1604 goto out;
1606 vbasedev->dirty_tracking = true;
1610 out:
1611 if (ret) {
1612 vfio_devices_dma_logging_stop(container);
1615 vfio_device_feature_dma_logging_start_destroy(feature);
1617 return ret;
1620 static void vfio_listener_log_global_start(MemoryListener *listener)
1622 VFIOContainer *container = container_of(listener, VFIOContainer, listener);
1623 int ret;
1625 if (vfio_devices_all_device_dirty_tracking(container)) {
1626 ret = vfio_devices_dma_logging_start(container);
1627 } else {
1628 ret = vfio_set_dirty_page_tracking(container, true);
1631 if (ret) {
1632 error_report("vfio: Could not start dirty page tracking, err: %d (%s)",
1633 ret, strerror(-ret));
1634 vfio_set_migration_error(ret);
1638 static void vfio_listener_log_global_stop(MemoryListener *listener)
1640 VFIOContainer *container = container_of(listener, VFIOContainer, listener);
1641 int ret = 0;
1643 if (vfio_devices_all_device_dirty_tracking(container)) {
1644 vfio_devices_dma_logging_stop(container);
1645 } else {
1646 ret = vfio_set_dirty_page_tracking(container, false);
1649 if (ret) {
1650 error_report("vfio: Could not stop dirty page tracking, err: %d (%s)",
1651 ret, strerror(-ret));
1652 vfio_set_migration_error(ret);
1656 static int vfio_device_dma_logging_report(VFIODevice *vbasedev, hwaddr iova,
1657 hwaddr size, void *bitmap)
1659 uint64_t buf[DIV_ROUND_UP(sizeof(struct vfio_device_feature) +
1660 sizeof(struct vfio_device_feature_dma_logging_report),
1661 sizeof(__u64))] = {};
1662 struct vfio_device_feature *feature = (struct vfio_device_feature *)buf;
1663 struct vfio_device_feature_dma_logging_report *report =
1664 (struct vfio_device_feature_dma_logging_report *)feature->data;
1666 report->iova = iova;
1667 report->length = size;
1668 report->page_size = qemu_real_host_page_size();
1669 report->bitmap = (__u64)(uintptr_t)bitmap;
1671 feature->argsz = sizeof(buf);
1672 feature->flags = VFIO_DEVICE_FEATURE_GET |
1673 VFIO_DEVICE_FEATURE_DMA_LOGGING_REPORT;
1675 if (ioctl(vbasedev->fd, VFIO_DEVICE_FEATURE, feature)) {
1676 return -errno;
1679 return 0;
1682 static int vfio_devices_query_dirty_bitmap(VFIOContainer *container,
1683 VFIOBitmap *vbmap, hwaddr iova,
1684 hwaddr size)
1686 VFIODevice *vbasedev;
1687 VFIOGroup *group;
1688 int ret;
1690 QLIST_FOREACH(group, &container->group_list, container_next) {
1691 QLIST_FOREACH(vbasedev, &group->device_list, next) {
1692 ret = vfio_device_dma_logging_report(vbasedev, iova, size,
1693 vbmap->bitmap);
1694 if (ret) {
1695 error_report("%s: Failed to get DMA logging report, iova: "
1696 "0x%" HWADDR_PRIx ", size: 0x%" HWADDR_PRIx
1697 ", err: %d (%s)",
1698 vbasedev->name, iova, size, ret, strerror(-ret));
1700 return ret;
1705 return 0;
1708 static int vfio_query_dirty_bitmap(VFIOContainer *container, VFIOBitmap *vbmap,
1709 hwaddr iova, hwaddr size)
1711 struct vfio_iommu_type1_dirty_bitmap *dbitmap;
1712 struct vfio_iommu_type1_dirty_bitmap_get *range;
1713 int ret;
1715 dbitmap = g_malloc0(sizeof(*dbitmap) + sizeof(*range));
1717 dbitmap->argsz = sizeof(*dbitmap) + sizeof(*range);
1718 dbitmap->flags = VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP;
1719 range = (struct vfio_iommu_type1_dirty_bitmap_get *)&dbitmap->data;
1720 range->iova = iova;
1721 range->size = size;
1724 * cpu_physical_memory_set_dirty_lebitmap() supports pages in bitmap of
1725 * qemu_real_host_page_size to mark those dirty. Hence set bitmap's pgsize
1726 * to qemu_real_host_page_size.
1728 range->bitmap.pgsize = qemu_real_host_page_size();
1729 range->bitmap.size = vbmap->size;
1730 range->bitmap.data = (__u64 *)vbmap->bitmap;
1732 ret = ioctl(container->fd, VFIO_IOMMU_DIRTY_PAGES, dbitmap);
1733 if (ret) {
1734 ret = -errno;
1735 error_report("Failed to get dirty bitmap for iova: 0x%"PRIx64
1736 " size: 0x%"PRIx64" err: %d", (uint64_t)range->iova,
1737 (uint64_t)range->size, errno);
1740 g_free(dbitmap);
1742 return ret;
1745 static int vfio_get_dirty_bitmap(VFIOContainer *container, uint64_t iova,
1746 uint64_t size, ram_addr_t ram_addr)
1748 bool all_device_dirty_tracking =
1749 vfio_devices_all_device_dirty_tracking(container);
1750 VFIOBitmap vbmap;
1751 int ret;
1753 if (!container->dirty_pages_supported && !all_device_dirty_tracking) {
1754 cpu_physical_memory_set_dirty_range(ram_addr, size,
1755 tcg_enabled() ? DIRTY_CLIENTS_ALL :
1756 DIRTY_CLIENTS_NOCODE);
1757 return 0;
1760 ret = vfio_bitmap_alloc(&vbmap, size);
1761 if (ret) {
1762 return ret;
1765 if (all_device_dirty_tracking) {
1766 ret = vfio_devices_query_dirty_bitmap(container, &vbmap, iova, size);
1767 } else {
1768 ret = vfio_query_dirty_bitmap(container, &vbmap, iova, size);
1771 if (ret) {
1772 goto out;
1775 cpu_physical_memory_set_dirty_lebitmap(vbmap.bitmap, ram_addr,
1776 vbmap.pages);
1778 trace_vfio_get_dirty_bitmap(container->fd, iova, size, vbmap.size,
1779 ram_addr);
1780 out:
1781 g_free(vbmap.bitmap);
1783 return ret;
1786 typedef struct {
1787 IOMMUNotifier n;
1788 VFIOGuestIOMMU *giommu;
1789 } vfio_giommu_dirty_notifier;
1791 static void vfio_iommu_map_dirty_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
1793 vfio_giommu_dirty_notifier *gdn = container_of(n,
1794 vfio_giommu_dirty_notifier, n);
1795 VFIOGuestIOMMU *giommu = gdn->giommu;
1796 VFIOContainer *container = giommu->container;
1797 hwaddr iova = iotlb->iova + giommu->iommu_offset;
1798 ram_addr_t translated_addr;
1799 int ret = -EINVAL;
1801 trace_vfio_iommu_map_dirty_notify(iova, iova + iotlb->addr_mask);
1803 if (iotlb->target_as != &address_space_memory) {
1804 error_report("Wrong target AS \"%s\", only system memory is allowed",
1805 iotlb->target_as->name ? iotlb->target_as->name : "none");
1806 goto out;
1809 rcu_read_lock();
1810 if (vfio_get_xlat_addr(iotlb, NULL, &translated_addr, NULL)) {
1811 ret = vfio_get_dirty_bitmap(container, iova, iotlb->addr_mask + 1,
1812 translated_addr);
1813 if (ret) {
1814 error_report("vfio_iommu_map_dirty_notify(%p, 0x%"HWADDR_PRIx", "
1815 "0x%"HWADDR_PRIx") = %d (%s)",
1816 container, iova, iotlb->addr_mask + 1, ret,
1817 strerror(-ret));
1820 rcu_read_unlock();
1822 out:
1823 if (ret) {
1824 vfio_set_migration_error(ret);
1828 static int vfio_ram_discard_get_dirty_bitmap(MemoryRegionSection *section,
1829 void *opaque)
1831 const hwaddr size = int128_get64(section->size);
1832 const hwaddr iova = section->offset_within_address_space;
1833 const ram_addr_t ram_addr = memory_region_get_ram_addr(section->mr) +
1834 section->offset_within_region;
1835 VFIORamDiscardListener *vrdl = opaque;
1838 * Sync the whole mapped region (spanning multiple individual mappings)
1839 * in one go.
1841 return vfio_get_dirty_bitmap(vrdl->container, iova, size, ram_addr);
1844 static int vfio_sync_ram_discard_listener_dirty_bitmap(VFIOContainer *container,
1845 MemoryRegionSection *section)
1847 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr);
1848 VFIORamDiscardListener *vrdl = NULL;
1850 QLIST_FOREACH(vrdl, &container->vrdl_list, next) {
1851 if (vrdl->mr == section->mr &&
1852 vrdl->offset_within_address_space ==
1853 section->offset_within_address_space) {
1854 break;
1858 if (!vrdl) {
1859 hw_error("vfio: Trying to sync missing RAM discard listener");
1863 * We only want/can synchronize the bitmap for actually mapped parts -
1864 * which correspond to populated parts. Replay all populated parts.
1866 return ram_discard_manager_replay_populated(rdm, section,
1867 vfio_ram_discard_get_dirty_bitmap,
1868 &vrdl);
1871 static int vfio_sync_dirty_bitmap(VFIOContainer *container,
1872 MemoryRegionSection *section)
1874 ram_addr_t ram_addr;
1876 if (memory_region_is_iommu(section->mr)) {
1877 VFIOGuestIOMMU *giommu;
1879 QLIST_FOREACH(giommu, &container->giommu_list, giommu_next) {
1880 if (MEMORY_REGION(giommu->iommu_mr) == section->mr &&
1881 giommu->n.start == section->offset_within_region) {
1882 Int128 llend;
1883 vfio_giommu_dirty_notifier gdn = { .giommu = giommu };
1884 int idx = memory_region_iommu_attrs_to_index(giommu->iommu_mr,
1885 MEMTXATTRS_UNSPECIFIED);
1887 llend = int128_add(int128_make64(section->offset_within_region),
1888 section->size);
1889 llend = int128_sub(llend, int128_one());
1891 iommu_notifier_init(&gdn.n,
1892 vfio_iommu_map_dirty_notify,
1893 IOMMU_NOTIFIER_MAP,
1894 section->offset_within_region,
1895 int128_get64(llend),
1896 idx);
1897 memory_region_iommu_replay(giommu->iommu_mr, &gdn.n);
1898 break;
1901 return 0;
1902 } else if (memory_region_has_ram_discard_manager(section->mr)) {
1903 return vfio_sync_ram_discard_listener_dirty_bitmap(container, section);
1906 ram_addr = memory_region_get_ram_addr(section->mr) +
1907 section->offset_within_region;
1909 return vfio_get_dirty_bitmap(container,
1910 REAL_HOST_PAGE_ALIGN(section->offset_within_address_space),
1911 int128_get64(section->size), ram_addr);
1914 static void vfio_listener_log_sync(MemoryListener *listener,
1915 MemoryRegionSection *section)
1917 VFIOContainer *container = container_of(listener, VFIOContainer, listener);
1918 int ret;
1920 if (vfio_listener_skipped_section(section)) {
1921 return;
1924 if (vfio_devices_all_dirty_tracking(container)) {
1925 ret = vfio_sync_dirty_bitmap(container, section);
1926 if (ret) {
1927 error_report("vfio: Failed to sync dirty bitmap, err: %d (%s)", ret,
1928 strerror(-ret));
1929 vfio_set_migration_error(ret);
1934 static const MemoryListener vfio_memory_listener = {
1935 .name = "vfio",
1936 .region_add = vfio_listener_region_add,
1937 .region_del = vfio_listener_region_del,
1938 .log_global_start = vfio_listener_log_global_start,
1939 .log_global_stop = vfio_listener_log_global_stop,
1940 .log_sync = vfio_listener_log_sync,
1943 static void vfio_listener_release(VFIOContainer *container)
1945 memory_listener_unregister(&container->listener);
1946 if (container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) {
1947 memory_listener_unregister(&container->prereg_listener);
1951 static struct vfio_info_cap_header *
1952 vfio_get_cap(void *ptr, uint32_t cap_offset, uint16_t id)
1954 struct vfio_info_cap_header *hdr;
1956 for (hdr = ptr + cap_offset; hdr != ptr; hdr = ptr + hdr->next) {
1957 if (hdr->id == id) {
1958 return hdr;
1962 return NULL;
1965 struct vfio_info_cap_header *
1966 vfio_get_region_info_cap(struct vfio_region_info *info, uint16_t id)
1968 if (!(info->flags & VFIO_REGION_INFO_FLAG_CAPS)) {
1969 return NULL;
1972 return vfio_get_cap((void *)info, info->cap_offset, id);
1975 static struct vfio_info_cap_header *
1976 vfio_get_iommu_type1_info_cap(struct vfio_iommu_type1_info *info, uint16_t id)
1978 if (!(info->flags & VFIO_IOMMU_INFO_CAPS)) {
1979 return NULL;
1982 return vfio_get_cap((void *)info, info->cap_offset, id);
1985 struct vfio_info_cap_header *
1986 vfio_get_device_info_cap(struct vfio_device_info *info, uint16_t id)
1988 if (!(info->flags & VFIO_DEVICE_FLAGS_CAPS)) {
1989 return NULL;
1992 return vfio_get_cap((void *)info, info->cap_offset, id);
1995 bool vfio_get_info_dma_avail(struct vfio_iommu_type1_info *info,
1996 unsigned int *avail)
1998 struct vfio_info_cap_header *hdr;
1999 struct vfio_iommu_type1_info_dma_avail *cap;
2001 /* If the capability cannot be found, assume no DMA limiting */
2002 hdr = vfio_get_iommu_type1_info_cap(info,
2003 VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL);
2004 if (hdr == NULL) {
2005 return false;
2008 if (avail != NULL) {
2009 cap = (void *) hdr;
2010 *avail = cap->avail;
2013 return true;
2016 static int vfio_setup_region_sparse_mmaps(VFIORegion *region,
2017 struct vfio_region_info *info)
2019 struct vfio_info_cap_header *hdr;
2020 struct vfio_region_info_cap_sparse_mmap *sparse;
2021 int i, j;
2023 hdr = vfio_get_region_info_cap(info, VFIO_REGION_INFO_CAP_SPARSE_MMAP);
2024 if (!hdr) {
2025 return -ENODEV;
2028 sparse = container_of(hdr, struct vfio_region_info_cap_sparse_mmap, header);
2030 trace_vfio_region_sparse_mmap_header(region->vbasedev->name,
2031 region->nr, sparse->nr_areas);
2033 region->mmaps = g_new0(VFIOMmap, sparse->nr_areas);
2035 for (i = 0, j = 0; i < sparse->nr_areas; i++) {
2036 if (sparse->areas[i].size) {
2037 trace_vfio_region_sparse_mmap_entry(i, sparse->areas[i].offset,
2038 sparse->areas[i].offset +
2039 sparse->areas[i].size - 1);
2040 region->mmaps[j].offset = sparse->areas[i].offset;
2041 region->mmaps[j].size = sparse->areas[i].size;
2042 j++;
2046 region->nr_mmaps = j;
2047 region->mmaps = g_realloc(region->mmaps, j * sizeof(VFIOMmap));
2049 return 0;
2052 int vfio_region_setup(Object *obj, VFIODevice *vbasedev, VFIORegion *region,
2053 int index, const char *name)
2055 struct vfio_region_info *info;
2056 int ret;
2058 ret = vfio_get_region_info(vbasedev, index, &info);
2059 if (ret) {
2060 return ret;
2063 region->vbasedev = vbasedev;
2064 region->flags = info->flags;
2065 region->size = info->size;
2066 region->fd_offset = info->offset;
2067 region->nr = index;
2069 if (region->size) {
2070 region->mem = g_new0(MemoryRegion, 1);
2071 memory_region_init_io(region->mem, obj, &vfio_region_ops,
2072 region, name, region->size);
2074 if (!vbasedev->no_mmap &&
2075 region->flags & VFIO_REGION_INFO_FLAG_MMAP) {
2077 ret = vfio_setup_region_sparse_mmaps(region, info);
2079 if (ret) {
2080 region->nr_mmaps = 1;
2081 region->mmaps = g_new0(VFIOMmap, region->nr_mmaps);
2082 region->mmaps[0].offset = 0;
2083 region->mmaps[0].size = region->size;
2088 g_free(info);
2090 trace_vfio_region_setup(vbasedev->name, index, name,
2091 region->flags, region->fd_offset, region->size);
2092 return 0;
2095 static void vfio_subregion_unmap(VFIORegion *region, int index)
2097 trace_vfio_region_unmap(memory_region_name(&region->mmaps[index].mem),
2098 region->mmaps[index].offset,
2099 region->mmaps[index].offset +
2100 region->mmaps[index].size - 1);
2101 memory_region_del_subregion(region->mem, &region->mmaps[index].mem);
2102 munmap(region->mmaps[index].mmap, region->mmaps[index].size);
2103 object_unparent(OBJECT(&region->mmaps[index].mem));
2104 region->mmaps[index].mmap = NULL;
2107 int vfio_region_mmap(VFIORegion *region)
2109 int i, prot = 0;
2110 char *name;
2112 if (!region->mem) {
2113 return 0;
2116 prot |= region->flags & VFIO_REGION_INFO_FLAG_READ ? PROT_READ : 0;
2117 prot |= region->flags & VFIO_REGION_INFO_FLAG_WRITE ? PROT_WRITE : 0;
2119 for (i = 0; i < region->nr_mmaps; i++) {
2120 region->mmaps[i].mmap = mmap(NULL, region->mmaps[i].size, prot,
2121 MAP_SHARED, region->vbasedev->fd,
2122 region->fd_offset +
2123 region->mmaps[i].offset);
2124 if (region->mmaps[i].mmap == MAP_FAILED) {
2125 int ret = -errno;
2127 trace_vfio_region_mmap_fault(memory_region_name(region->mem), i,
2128 region->fd_offset +
2129 region->mmaps[i].offset,
2130 region->fd_offset +
2131 region->mmaps[i].offset +
2132 region->mmaps[i].size - 1, ret);
2134 region->mmaps[i].mmap = NULL;
2136 for (i--; i >= 0; i--) {
2137 vfio_subregion_unmap(region, i);
2140 return ret;
2143 name = g_strdup_printf("%s mmaps[%d]",
2144 memory_region_name(region->mem), i);
2145 memory_region_init_ram_device_ptr(&region->mmaps[i].mem,
2146 memory_region_owner(region->mem),
2147 name, region->mmaps[i].size,
2148 region->mmaps[i].mmap);
2149 g_free(name);
2150 memory_region_add_subregion(region->mem, region->mmaps[i].offset,
2151 &region->mmaps[i].mem);
2153 trace_vfio_region_mmap(memory_region_name(&region->mmaps[i].mem),
2154 region->mmaps[i].offset,
2155 region->mmaps[i].offset +
2156 region->mmaps[i].size - 1);
2159 return 0;
2162 void vfio_region_unmap(VFIORegion *region)
2164 int i;
2166 if (!region->mem) {
2167 return;
2170 for (i = 0; i < region->nr_mmaps; i++) {
2171 if (region->mmaps[i].mmap) {
2172 vfio_subregion_unmap(region, i);
2177 void vfio_region_exit(VFIORegion *region)
2179 int i;
2181 if (!region->mem) {
2182 return;
2185 for (i = 0; i < region->nr_mmaps; i++) {
2186 if (region->mmaps[i].mmap) {
2187 memory_region_del_subregion(region->mem, &region->mmaps[i].mem);
2191 trace_vfio_region_exit(region->vbasedev->name, region->nr);
2194 void vfio_region_finalize(VFIORegion *region)
2196 int i;
2198 if (!region->mem) {
2199 return;
2202 for (i = 0; i < region->nr_mmaps; i++) {
2203 if (region->mmaps[i].mmap) {
2204 munmap(region->mmaps[i].mmap, region->mmaps[i].size);
2205 object_unparent(OBJECT(&region->mmaps[i].mem));
2209 object_unparent(OBJECT(region->mem));
2211 g_free(region->mem);
2212 g_free(region->mmaps);
2214 trace_vfio_region_finalize(region->vbasedev->name, region->nr);
2216 region->mem = NULL;
2217 region->mmaps = NULL;
2218 region->nr_mmaps = 0;
2219 region->size = 0;
2220 region->flags = 0;
2221 region->nr = 0;
2224 void vfio_region_mmaps_set_enabled(VFIORegion *region, bool enabled)
2226 int i;
2228 if (!region->mem) {
2229 return;
2232 for (i = 0; i < region->nr_mmaps; i++) {
2233 if (region->mmaps[i].mmap) {
2234 memory_region_set_enabled(&region->mmaps[i].mem, enabled);
2238 trace_vfio_region_mmaps_set_enabled(memory_region_name(region->mem),
2239 enabled);
2242 void vfio_reset_handler(void *opaque)
2244 VFIOGroup *group;
2245 VFIODevice *vbasedev;
2247 QLIST_FOREACH(group, &vfio_group_list, next) {
2248 QLIST_FOREACH(vbasedev, &group->device_list, next) {
2249 if (vbasedev->dev->realized) {
2250 vbasedev->ops->vfio_compute_needs_reset(vbasedev);
2255 QLIST_FOREACH(group, &vfio_group_list, next) {
2256 QLIST_FOREACH(vbasedev, &group->device_list, next) {
2257 if (vbasedev->dev->realized && vbasedev->needs_reset) {
2258 vbasedev->ops->vfio_hot_reset_multi(vbasedev);
2264 static void vfio_kvm_device_add_group(VFIOGroup *group)
2266 #ifdef CONFIG_KVM
2267 struct kvm_device_attr attr = {
2268 .group = KVM_DEV_VFIO_GROUP,
2269 .attr = KVM_DEV_VFIO_GROUP_ADD,
2270 .addr = (uint64_t)(unsigned long)&group->fd,
2273 if (!kvm_enabled()) {
2274 return;
2277 if (vfio_kvm_device_fd < 0) {
2278 struct kvm_create_device cd = {
2279 .type = KVM_DEV_TYPE_VFIO,
2282 if (kvm_vm_ioctl(kvm_state, KVM_CREATE_DEVICE, &cd)) {
2283 error_report("Failed to create KVM VFIO device: %m");
2284 return;
2287 vfio_kvm_device_fd = cd.fd;
2290 if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) {
2291 error_report("Failed to add group %d to KVM VFIO device: %m",
2292 group->groupid);
2294 #endif
2297 static void vfio_kvm_device_del_group(VFIOGroup *group)
2299 #ifdef CONFIG_KVM
2300 struct kvm_device_attr attr = {
2301 .group = KVM_DEV_VFIO_GROUP,
2302 .attr = KVM_DEV_VFIO_GROUP_DEL,
2303 .addr = (uint64_t)(unsigned long)&group->fd,
2306 if (vfio_kvm_device_fd < 0) {
2307 return;
2310 if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) {
2311 error_report("Failed to remove group %d from KVM VFIO device: %m",
2312 group->groupid);
2314 #endif
2317 static VFIOAddressSpace *vfio_get_address_space(AddressSpace *as)
2319 VFIOAddressSpace *space;
2321 QLIST_FOREACH(space, &vfio_address_spaces, list) {
2322 if (space->as == as) {
2323 return space;
2327 /* No suitable VFIOAddressSpace, create a new one */
2328 space = g_malloc0(sizeof(*space));
2329 space->as = as;
2330 QLIST_INIT(&space->containers);
2332 QLIST_INSERT_HEAD(&vfio_address_spaces, space, list);
2334 return space;
2337 static void vfio_put_address_space(VFIOAddressSpace *space)
2339 if (QLIST_EMPTY(&space->containers)) {
2340 QLIST_REMOVE(space, list);
2341 g_free(space);
2346 * vfio_get_iommu_type - selects the richest iommu_type (v2 first)
2348 static int vfio_get_iommu_type(VFIOContainer *container,
2349 Error **errp)
2351 int iommu_types[] = { VFIO_TYPE1v2_IOMMU, VFIO_TYPE1_IOMMU,
2352 VFIO_SPAPR_TCE_v2_IOMMU, VFIO_SPAPR_TCE_IOMMU };
2353 int i;
2355 for (i = 0; i < ARRAY_SIZE(iommu_types); i++) {
2356 if (ioctl(container->fd, VFIO_CHECK_EXTENSION, iommu_types[i])) {
2357 return iommu_types[i];
2360 error_setg(errp, "No available IOMMU models");
2361 return -EINVAL;
2364 static int vfio_init_container(VFIOContainer *container, int group_fd,
2365 Error **errp)
2367 int iommu_type, ret;
2369 iommu_type = vfio_get_iommu_type(container, errp);
2370 if (iommu_type < 0) {
2371 return iommu_type;
2374 ret = ioctl(group_fd, VFIO_GROUP_SET_CONTAINER, &container->fd);
2375 if (ret) {
2376 error_setg_errno(errp, errno, "Failed to set group container");
2377 return -errno;
2380 while (ioctl(container->fd, VFIO_SET_IOMMU, iommu_type)) {
2381 if (iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) {
2383 * On sPAPR, despite the IOMMU subdriver always advertises v1 and
2384 * v2, the running platform may not support v2 and there is no
2385 * way to guess it until an IOMMU group gets added to the container.
2386 * So in case it fails with v2, try v1 as a fallback.
2388 iommu_type = VFIO_SPAPR_TCE_IOMMU;
2389 continue;
2391 error_setg_errno(errp, errno, "Failed to set iommu for container");
2392 return -errno;
2395 container->iommu_type = iommu_type;
2396 return 0;
2399 static int vfio_get_iommu_info(VFIOContainer *container,
2400 struct vfio_iommu_type1_info **info)
2403 size_t argsz = sizeof(struct vfio_iommu_type1_info);
2405 *info = g_new0(struct vfio_iommu_type1_info, 1);
2406 again:
2407 (*info)->argsz = argsz;
2409 if (ioctl(container->fd, VFIO_IOMMU_GET_INFO, *info)) {
2410 g_free(*info);
2411 *info = NULL;
2412 return -errno;
2415 if (((*info)->argsz > argsz)) {
2416 argsz = (*info)->argsz;
2417 *info = g_realloc(*info, argsz);
2418 goto again;
2421 return 0;
2424 static struct vfio_info_cap_header *
2425 vfio_get_iommu_info_cap(struct vfio_iommu_type1_info *info, uint16_t id)
2427 struct vfio_info_cap_header *hdr;
2428 void *ptr = info;
2430 if (!(info->flags & VFIO_IOMMU_INFO_CAPS)) {
2431 return NULL;
2434 for (hdr = ptr + info->cap_offset; hdr != ptr; hdr = ptr + hdr->next) {
2435 if (hdr->id == id) {
2436 return hdr;
2440 return NULL;
2443 static void vfio_get_iommu_info_migration(VFIOContainer *container,
2444 struct vfio_iommu_type1_info *info)
2446 struct vfio_info_cap_header *hdr;
2447 struct vfio_iommu_type1_info_cap_migration *cap_mig;
2449 hdr = vfio_get_iommu_info_cap(info, VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION);
2450 if (!hdr) {
2451 return;
2454 cap_mig = container_of(hdr, struct vfio_iommu_type1_info_cap_migration,
2455 header);
2458 * cpu_physical_memory_set_dirty_lebitmap() supports pages in bitmap of
2459 * qemu_real_host_page_size to mark those dirty.
2461 if (cap_mig->pgsize_bitmap & qemu_real_host_page_size()) {
2462 container->dirty_pages_supported = true;
2463 container->max_dirty_bitmap_size = cap_mig->max_dirty_bitmap_size;
2464 container->dirty_pgsizes = cap_mig->pgsize_bitmap;
2468 static int vfio_connect_container(VFIOGroup *group, AddressSpace *as,
2469 Error **errp)
2471 VFIOContainer *container;
2472 int ret, fd;
2473 VFIOAddressSpace *space;
2475 space = vfio_get_address_space(as);
2478 * VFIO is currently incompatible with discarding of RAM insofar as the
2479 * madvise to purge (zap) the page from QEMU's address space does not
2480 * interact with the memory API and therefore leaves stale virtual to
2481 * physical mappings in the IOMMU if the page was previously pinned. We
2482 * therefore set discarding broken for each group added to a container,
2483 * whether the container is used individually or shared. This provides
2484 * us with options to allow devices within a group to opt-in and allow
2485 * discarding, so long as it is done consistently for a group (for instance
2486 * if the device is an mdev device where it is known that the host vendor
2487 * driver will never pin pages outside of the working set of the guest
2488 * driver, which would thus not be discarding candidates).
2490 * The first opportunity to induce pinning occurs here where we attempt to
2491 * attach the group to existing containers within the AddressSpace. If any
2492 * pages are already zapped from the virtual address space, such as from
2493 * previous discards, new pinning will cause valid mappings to be
2494 * re-established. Likewise, when the overall MemoryListener for a new
2495 * container is registered, a replay of mappings within the AddressSpace
2496 * will occur, re-establishing any previously zapped pages as well.
2498 * Especially virtio-balloon is currently only prevented from discarding
2499 * new memory, it will not yet set ram_block_discard_set_required() and
2500 * therefore, neither stops us here or deals with the sudden memory
2501 * consumption of inflated memory.
2503 * We do support discarding of memory coordinated via the RamDiscardManager
2504 * with some IOMMU types. vfio_ram_block_discard_disable() handles the
2505 * details once we know which type of IOMMU we are using.
2508 QLIST_FOREACH(container, &space->containers, next) {
2509 if (!ioctl(group->fd, VFIO_GROUP_SET_CONTAINER, &container->fd)) {
2510 ret = vfio_ram_block_discard_disable(container, true);
2511 if (ret) {
2512 error_setg_errno(errp, -ret,
2513 "Cannot set discarding of RAM broken");
2514 if (ioctl(group->fd, VFIO_GROUP_UNSET_CONTAINER,
2515 &container->fd)) {
2516 error_report("vfio: error disconnecting group %d from"
2517 " container", group->groupid);
2519 return ret;
2521 group->container = container;
2522 QLIST_INSERT_HEAD(&container->group_list, group, container_next);
2523 vfio_kvm_device_add_group(group);
2524 return 0;
2528 fd = qemu_open_old("/dev/vfio/vfio", O_RDWR);
2529 if (fd < 0) {
2530 error_setg_errno(errp, errno, "failed to open /dev/vfio/vfio");
2531 ret = -errno;
2532 goto put_space_exit;
2535 ret = ioctl(fd, VFIO_GET_API_VERSION);
2536 if (ret != VFIO_API_VERSION) {
2537 error_setg(errp, "supported vfio version: %d, "
2538 "reported version: %d", VFIO_API_VERSION, ret);
2539 ret = -EINVAL;
2540 goto close_fd_exit;
2543 container = g_malloc0(sizeof(*container));
2544 container->space = space;
2545 container->fd = fd;
2546 container->error = NULL;
2547 container->dirty_pages_supported = false;
2548 container->dma_max_mappings = 0;
2549 QLIST_INIT(&container->giommu_list);
2550 QLIST_INIT(&container->hostwin_list);
2551 QLIST_INIT(&container->vrdl_list);
2553 ret = vfio_init_container(container, group->fd, errp);
2554 if (ret) {
2555 goto free_container_exit;
2558 ret = vfio_ram_block_discard_disable(container, true);
2559 if (ret) {
2560 error_setg_errno(errp, -ret, "Cannot set discarding of RAM broken");
2561 goto free_container_exit;
2564 switch (container->iommu_type) {
2565 case VFIO_TYPE1v2_IOMMU:
2566 case VFIO_TYPE1_IOMMU:
2568 struct vfio_iommu_type1_info *info;
2570 ret = vfio_get_iommu_info(container, &info);
2571 if (ret) {
2572 error_setg_errno(errp, -ret, "Failed to get VFIO IOMMU info");
2573 goto enable_discards_exit;
2576 if (info->flags & VFIO_IOMMU_INFO_PGSIZES) {
2577 container->pgsizes = info->iova_pgsizes;
2578 } else {
2579 container->pgsizes = qemu_real_host_page_size();
2582 if (!vfio_get_info_dma_avail(info, &container->dma_max_mappings)) {
2583 container->dma_max_mappings = 65535;
2585 vfio_get_iommu_info_migration(container, info);
2586 g_free(info);
2589 * FIXME: We should parse VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE
2590 * information to get the actual window extent rather than assume
2591 * a 64-bit IOVA address space.
2593 vfio_host_win_add(container, 0, (hwaddr)-1, container->pgsizes);
2595 break;
2597 case VFIO_SPAPR_TCE_v2_IOMMU:
2598 case VFIO_SPAPR_TCE_IOMMU:
2600 struct vfio_iommu_spapr_tce_info info;
2601 bool v2 = container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU;
2604 * The host kernel code implementing VFIO_IOMMU_DISABLE is called
2605 * when container fd is closed so we do not call it explicitly
2606 * in this file.
2608 if (!v2) {
2609 ret = ioctl(fd, VFIO_IOMMU_ENABLE);
2610 if (ret) {
2611 error_setg_errno(errp, errno, "failed to enable container");
2612 ret = -errno;
2613 goto enable_discards_exit;
2615 } else {
2616 container->prereg_listener = vfio_prereg_listener;
2618 memory_listener_register(&container->prereg_listener,
2619 &address_space_memory);
2620 if (container->error) {
2621 memory_listener_unregister(&container->prereg_listener);
2622 ret = -1;
2623 error_propagate_prepend(errp, container->error,
2624 "RAM memory listener initialization failed: ");
2625 goto enable_discards_exit;
2629 info.argsz = sizeof(info);
2630 ret = ioctl(fd, VFIO_IOMMU_SPAPR_TCE_GET_INFO, &info);
2631 if (ret) {
2632 error_setg_errno(errp, errno,
2633 "VFIO_IOMMU_SPAPR_TCE_GET_INFO failed");
2634 ret = -errno;
2635 if (v2) {
2636 memory_listener_unregister(&container->prereg_listener);
2638 goto enable_discards_exit;
2641 if (v2) {
2642 container->pgsizes = info.ddw.pgsizes;
2644 * There is a default window in just created container.
2645 * To make region_add/del simpler, we better remove this
2646 * window now and let those iommu_listener callbacks
2647 * create/remove them when needed.
2649 ret = vfio_spapr_remove_window(container, info.dma32_window_start);
2650 if (ret) {
2651 error_setg_errno(errp, -ret,
2652 "failed to remove existing window");
2653 goto enable_discards_exit;
2655 } else {
2656 /* The default table uses 4K pages */
2657 container->pgsizes = 0x1000;
2658 vfio_host_win_add(container, info.dma32_window_start,
2659 info.dma32_window_start +
2660 info.dma32_window_size - 1,
2661 0x1000);
2666 vfio_kvm_device_add_group(group);
2668 QLIST_INIT(&container->group_list);
2669 QLIST_INSERT_HEAD(&space->containers, container, next);
2671 group->container = container;
2672 QLIST_INSERT_HEAD(&container->group_list, group, container_next);
2674 container->listener = vfio_memory_listener;
2676 memory_listener_register(&container->listener, container->space->as);
2678 if (container->error) {
2679 ret = -1;
2680 error_propagate_prepend(errp, container->error,
2681 "memory listener initialization failed: ");
2682 goto listener_release_exit;
2685 container->initialized = true;
2687 return 0;
2688 listener_release_exit:
2689 QLIST_REMOVE(group, container_next);
2690 QLIST_REMOVE(container, next);
2691 vfio_kvm_device_del_group(group);
2692 vfio_listener_release(container);
2694 enable_discards_exit:
2695 vfio_ram_block_discard_disable(container, false);
2697 free_container_exit:
2698 g_free(container);
2700 close_fd_exit:
2701 close(fd);
2703 put_space_exit:
2704 vfio_put_address_space(space);
2706 return ret;
2709 static void vfio_disconnect_container(VFIOGroup *group)
2711 VFIOContainer *container = group->container;
2713 QLIST_REMOVE(group, container_next);
2714 group->container = NULL;
2717 * Explicitly release the listener first before unset container,
2718 * since unset may destroy the backend container if it's the last
2719 * group.
2721 if (QLIST_EMPTY(&container->group_list)) {
2722 vfio_listener_release(container);
2725 if (ioctl(group->fd, VFIO_GROUP_UNSET_CONTAINER, &container->fd)) {
2726 error_report("vfio: error disconnecting group %d from container",
2727 group->groupid);
2730 if (QLIST_EMPTY(&container->group_list)) {
2731 VFIOAddressSpace *space = container->space;
2732 VFIOGuestIOMMU *giommu, *tmp;
2733 VFIOHostDMAWindow *hostwin, *next;
2735 QLIST_REMOVE(container, next);
2737 QLIST_FOREACH_SAFE(giommu, &container->giommu_list, giommu_next, tmp) {
2738 memory_region_unregister_iommu_notifier(
2739 MEMORY_REGION(giommu->iommu_mr), &giommu->n);
2740 QLIST_REMOVE(giommu, giommu_next);
2741 g_free(giommu);
2744 QLIST_FOREACH_SAFE(hostwin, &container->hostwin_list, hostwin_next,
2745 next) {
2746 QLIST_REMOVE(hostwin, hostwin_next);
2747 g_free(hostwin);
2750 trace_vfio_disconnect_container(container->fd);
2751 close(container->fd);
2752 g_free(container);
2754 vfio_put_address_space(space);
2758 VFIOGroup *vfio_get_group(int groupid, AddressSpace *as, Error **errp)
2760 VFIOGroup *group;
2761 char path[32];
2762 struct vfio_group_status status = { .argsz = sizeof(status) };
2764 QLIST_FOREACH(group, &vfio_group_list, next) {
2765 if (group->groupid == groupid) {
2766 /* Found it. Now is it already in the right context? */
2767 if (group->container->space->as == as) {
2768 return group;
2769 } else {
2770 error_setg(errp, "group %d used in multiple address spaces",
2771 group->groupid);
2772 return NULL;
2777 group = g_malloc0(sizeof(*group));
2779 snprintf(path, sizeof(path), "/dev/vfio/%d", groupid);
2780 group->fd = qemu_open_old(path, O_RDWR);
2781 if (group->fd < 0) {
2782 error_setg_errno(errp, errno, "failed to open %s", path);
2783 goto free_group_exit;
2786 if (ioctl(group->fd, VFIO_GROUP_GET_STATUS, &status)) {
2787 error_setg_errno(errp, errno, "failed to get group %d status", groupid);
2788 goto close_fd_exit;
2791 if (!(status.flags & VFIO_GROUP_FLAGS_VIABLE)) {
2792 error_setg(errp, "group %d is not viable", groupid);
2793 error_append_hint(errp,
2794 "Please ensure all devices within the iommu_group "
2795 "are bound to their vfio bus driver.\n");
2796 goto close_fd_exit;
2799 group->groupid = groupid;
2800 QLIST_INIT(&group->device_list);
2802 if (vfio_connect_container(group, as, errp)) {
2803 error_prepend(errp, "failed to setup container for group %d: ",
2804 groupid);
2805 goto close_fd_exit;
2808 if (QLIST_EMPTY(&vfio_group_list)) {
2809 qemu_register_reset(vfio_reset_handler, NULL);
2812 QLIST_INSERT_HEAD(&vfio_group_list, group, next);
2814 return group;
2816 close_fd_exit:
2817 close(group->fd);
2819 free_group_exit:
2820 g_free(group);
2822 return NULL;
2825 void vfio_put_group(VFIOGroup *group)
2827 if (!group || !QLIST_EMPTY(&group->device_list)) {
2828 return;
2831 if (!group->ram_block_discard_allowed) {
2832 vfio_ram_block_discard_disable(group->container, false);
2834 vfio_kvm_device_del_group(group);
2835 vfio_disconnect_container(group);
2836 QLIST_REMOVE(group, next);
2837 trace_vfio_put_group(group->fd);
2838 close(group->fd);
2839 g_free(group);
2841 if (QLIST_EMPTY(&vfio_group_list)) {
2842 qemu_unregister_reset(vfio_reset_handler, NULL);
2846 int vfio_get_device(VFIOGroup *group, const char *name,
2847 VFIODevice *vbasedev, Error **errp)
2849 struct vfio_device_info dev_info = { .argsz = sizeof(dev_info) };
2850 int ret, fd;
2852 fd = ioctl(group->fd, VFIO_GROUP_GET_DEVICE_FD, name);
2853 if (fd < 0) {
2854 error_setg_errno(errp, errno, "error getting device from group %d",
2855 group->groupid);
2856 error_append_hint(errp,
2857 "Verify all devices in group %d are bound to vfio-<bus> "
2858 "or pci-stub and not already in use\n", group->groupid);
2859 return fd;
2862 ret = ioctl(fd, VFIO_DEVICE_GET_INFO, &dev_info);
2863 if (ret) {
2864 error_setg_errno(errp, errno, "error getting device info");
2865 close(fd);
2866 return ret;
2870 * Set discarding of RAM as not broken for this group if the driver knows
2871 * the device operates compatibly with discarding. Setting must be
2872 * consistent per group, but since compatibility is really only possible
2873 * with mdev currently, we expect singleton groups.
2875 if (vbasedev->ram_block_discard_allowed !=
2876 group->ram_block_discard_allowed) {
2877 if (!QLIST_EMPTY(&group->device_list)) {
2878 error_setg(errp, "Inconsistent setting of support for discarding "
2879 "RAM (e.g., balloon) within group");
2880 close(fd);
2881 return -1;
2884 if (!group->ram_block_discard_allowed) {
2885 group->ram_block_discard_allowed = true;
2886 vfio_ram_block_discard_disable(group->container, false);
2890 vbasedev->fd = fd;
2891 vbasedev->group = group;
2892 QLIST_INSERT_HEAD(&group->device_list, vbasedev, next);
2894 vbasedev->num_irqs = dev_info.num_irqs;
2895 vbasedev->num_regions = dev_info.num_regions;
2896 vbasedev->flags = dev_info.flags;
2898 trace_vfio_get_device(name, dev_info.flags, dev_info.num_regions,
2899 dev_info.num_irqs);
2901 vbasedev->reset_works = !!(dev_info.flags & VFIO_DEVICE_FLAGS_RESET);
2902 return 0;
2905 void vfio_put_base_device(VFIODevice *vbasedev)
2907 if (!vbasedev->group) {
2908 return;
2910 QLIST_REMOVE(vbasedev, next);
2911 vbasedev->group = NULL;
2912 trace_vfio_put_base_device(vbasedev->fd);
2913 close(vbasedev->fd);
2916 int vfio_get_region_info(VFIODevice *vbasedev, int index,
2917 struct vfio_region_info **info)
2919 size_t argsz = sizeof(struct vfio_region_info);
2921 *info = g_malloc0(argsz);
2923 (*info)->index = index;
2924 retry:
2925 (*info)->argsz = argsz;
2927 if (ioctl(vbasedev->fd, VFIO_DEVICE_GET_REGION_INFO, *info)) {
2928 g_free(*info);
2929 *info = NULL;
2930 return -errno;
2933 if ((*info)->argsz > argsz) {
2934 argsz = (*info)->argsz;
2935 *info = g_realloc(*info, argsz);
2937 goto retry;
2940 return 0;
2943 int vfio_get_dev_region_info(VFIODevice *vbasedev, uint32_t type,
2944 uint32_t subtype, struct vfio_region_info **info)
2946 int i;
2948 for (i = 0; i < vbasedev->num_regions; i++) {
2949 struct vfio_info_cap_header *hdr;
2950 struct vfio_region_info_cap_type *cap_type;
2952 if (vfio_get_region_info(vbasedev, i, info)) {
2953 continue;
2956 hdr = vfio_get_region_info_cap(*info, VFIO_REGION_INFO_CAP_TYPE);
2957 if (!hdr) {
2958 g_free(*info);
2959 continue;
2962 cap_type = container_of(hdr, struct vfio_region_info_cap_type, header);
2964 trace_vfio_get_dev_region(vbasedev->name, i,
2965 cap_type->type, cap_type->subtype);
2967 if (cap_type->type == type && cap_type->subtype == subtype) {
2968 return 0;
2971 g_free(*info);
2974 *info = NULL;
2975 return -ENODEV;
2978 bool vfio_has_region_cap(VFIODevice *vbasedev, int region, uint16_t cap_type)
2980 struct vfio_region_info *info = NULL;
2981 bool ret = false;
2983 if (!vfio_get_region_info(vbasedev, region, &info)) {
2984 if (vfio_get_region_info_cap(info, cap_type)) {
2985 ret = true;
2987 g_free(info);
2990 return ret;
2994 * Interfaces for IBM EEH (Enhanced Error Handling)
2996 static bool vfio_eeh_container_ok(VFIOContainer *container)
2999 * As of 2016-03-04 (linux-4.5) the host kernel EEH/VFIO
3000 * implementation is broken if there are multiple groups in a
3001 * container. The hardware works in units of Partitionable
3002 * Endpoints (== IOMMU groups) and the EEH operations naively
3003 * iterate across all groups in the container, without any logic
3004 * to make sure the groups have their state synchronized. For
3005 * certain operations (ENABLE) that might be ok, until an error
3006 * occurs, but for others (GET_STATE) it's clearly broken.
3010 * XXX Once fixed kernels exist, test for them here
3013 if (QLIST_EMPTY(&container->group_list)) {
3014 return false;
3017 if (QLIST_NEXT(QLIST_FIRST(&container->group_list), container_next)) {
3018 return false;
3021 return true;
3024 static int vfio_eeh_container_op(VFIOContainer *container, uint32_t op)
3026 struct vfio_eeh_pe_op pe_op = {
3027 .argsz = sizeof(pe_op),
3028 .op = op,
3030 int ret;
3032 if (!vfio_eeh_container_ok(container)) {
3033 error_report("vfio/eeh: EEH_PE_OP 0x%x: "
3034 "kernel requires a container with exactly one group", op);
3035 return -EPERM;
3038 ret = ioctl(container->fd, VFIO_EEH_PE_OP, &pe_op);
3039 if (ret < 0) {
3040 error_report("vfio/eeh: EEH_PE_OP 0x%x failed: %m", op);
3041 return -errno;
3044 return ret;
3047 static VFIOContainer *vfio_eeh_as_container(AddressSpace *as)
3049 VFIOAddressSpace *space = vfio_get_address_space(as);
3050 VFIOContainer *container = NULL;
3052 if (QLIST_EMPTY(&space->containers)) {
3053 /* No containers to act on */
3054 goto out;
3057 container = QLIST_FIRST(&space->containers);
3059 if (QLIST_NEXT(container, next)) {
3060 /* We don't yet have logic to synchronize EEH state across
3061 * multiple containers */
3062 container = NULL;
3063 goto out;
3066 out:
3067 vfio_put_address_space(space);
3068 return container;
3071 bool vfio_eeh_as_ok(AddressSpace *as)
3073 VFIOContainer *container = vfio_eeh_as_container(as);
3075 return (container != NULL) && vfio_eeh_container_ok(container);
3078 int vfio_eeh_as_op(AddressSpace *as, uint32_t op)
3080 VFIOContainer *container = vfio_eeh_as_container(as);
3082 if (!container) {
3083 return -ENODEV;
3085 return vfio_eeh_container_op(container, op);