target/arm: Move id_aa64mmfr* to ARMISARegisters
[qemu/armbru.git] / target / arm / helper.c
blob04c4a91b04c0c8817439ac2efa456b2b134a4003
1 #include "qemu/osdep.h"
2 #include "target/arm/idau.h"
3 #include "trace.h"
4 #include "cpu.h"
5 #include "internals.h"
6 #include "exec/gdbstub.h"
7 #include "exec/helper-proto.h"
8 #include "qemu/host-utils.h"
9 #include "sysemu/arch_init.h"
10 #include "sysemu/sysemu.h"
11 #include "qemu/bitops.h"
12 #include "qemu/crc32c.h"
13 #include "exec/exec-all.h"
14 #include "exec/cpu_ldst.h"
15 #include "arm_ldst.h"
16 #include <zlib.h> /* For crc32 */
17 #include "exec/semihost.h"
18 #include "sysemu/kvm.h"
19 #include "fpu/softfloat.h"
20 #include "qemu/range.h"
22 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
24 #ifndef CONFIG_USER_ONLY
25 /* Cacheability and shareability attributes for a memory access */
26 typedef struct ARMCacheAttrs {
27 unsigned int attrs:8; /* as in the MAIR register encoding */
28 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
29 } ARMCacheAttrs;
31 static bool get_phys_addr(CPUARMState *env, target_ulong address,
32 MMUAccessType access_type, ARMMMUIdx mmu_idx,
33 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
34 target_ulong *page_size,
35 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
37 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
38 MMUAccessType access_type, ARMMMUIdx mmu_idx,
39 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
40 target_ulong *page_size_ptr,
41 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
43 /* Security attributes for an address, as returned by v8m_security_lookup. */
44 typedef struct V8M_SAttributes {
45 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
46 bool ns;
47 bool nsc;
48 uint8_t sregion;
49 bool srvalid;
50 uint8_t iregion;
51 bool irvalid;
52 } V8M_SAttributes;
54 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
55 MMUAccessType access_type, ARMMMUIdx mmu_idx,
56 V8M_SAttributes *sattrs);
57 #endif
59 static void switch_mode(CPUARMState *env, int mode);
61 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
63 int nregs;
65 /* VFP data registers are always little-endian. */
66 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
67 if (reg < nregs) {
68 stq_le_p(buf, *aa32_vfp_dreg(env, reg));
69 return 8;
71 if (arm_feature(env, ARM_FEATURE_NEON)) {
72 /* Aliases for Q regs. */
73 nregs += 16;
74 if (reg < nregs) {
75 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
76 stq_le_p(buf, q[0]);
77 stq_le_p(buf + 8, q[1]);
78 return 16;
81 switch (reg - nregs) {
82 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
83 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
84 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
86 return 0;
89 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
91 int nregs;
93 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
94 if (reg < nregs) {
95 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
96 return 8;
98 if (arm_feature(env, ARM_FEATURE_NEON)) {
99 nregs += 16;
100 if (reg < nregs) {
101 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
102 q[0] = ldq_le_p(buf);
103 q[1] = ldq_le_p(buf + 8);
104 return 16;
107 switch (reg - nregs) {
108 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
109 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
110 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
112 return 0;
115 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
117 switch (reg) {
118 case 0 ... 31:
119 /* 128 bit FP register */
121 uint64_t *q = aa64_vfp_qreg(env, reg);
122 stq_le_p(buf, q[0]);
123 stq_le_p(buf + 8, q[1]);
124 return 16;
126 case 32:
127 /* FPSR */
128 stl_p(buf, vfp_get_fpsr(env));
129 return 4;
130 case 33:
131 /* FPCR */
132 stl_p(buf, vfp_get_fpcr(env));
133 return 4;
134 default:
135 return 0;
139 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
141 switch (reg) {
142 case 0 ... 31:
143 /* 128 bit FP register */
145 uint64_t *q = aa64_vfp_qreg(env, reg);
146 q[0] = ldq_le_p(buf);
147 q[1] = ldq_le_p(buf + 8);
148 return 16;
150 case 32:
151 /* FPSR */
152 vfp_set_fpsr(env, ldl_p(buf));
153 return 4;
154 case 33:
155 /* FPCR */
156 vfp_set_fpcr(env, ldl_p(buf));
157 return 4;
158 default:
159 return 0;
163 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
165 assert(ri->fieldoffset);
166 if (cpreg_field_is_64bit(ri)) {
167 return CPREG_FIELD64(env, ri);
168 } else {
169 return CPREG_FIELD32(env, ri);
173 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
174 uint64_t value)
176 assert(ri->fieldoffset);
177 if (cpreg_field_is_64bit(ri)) {
178 CPREG_FIELD64(env, ri) = value;
179 } else {
180 CPREG_FIELD32(env, ri) = value;
184 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
186 return (char *)env + ri->fieldoffset;
189 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
191 /* Raw read of a coprocessor register (as needed for migration, etc). */
192 if (ri->type & ARM_CP_CONST) {
193 return ri->resetvalue;
194 } else if (ri->raw_readfn) {
195 return ri->raw_readfn(env, ri);
196 } else if (ri->readfn) {
197 return ri->readfn(env, ri);
198 } else {
199 return raw_read(env, ri);
203 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
204 uint64_t v)
206 /* Raw write of a coprocessor register (as needed for migration, etc).
207 * Note that constant registers are treated as write-ignored; the
208 * caller should check for success by whether a readback gives the
209 * value written.
211 if (ri->type & ARM_CP_CONST) {
212 return;
213 } else if (ri->raw_writefn) {
214 ri->raw_writefn(env, ri, v);
215 } else if (ri->writefn) {
216 ri->writefn(env, ri, v);
217 } else {
218 raw_write(env, ri, v);
222 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg)
224 ARMCPU *cpu = arm_env_get_cpu(env);
225 const ARMCPRegInfo *ri;
226 uint32_t key;
228 key = cpu->dyn_xml.cpregs_keys[reg];
229 ri = get_arm_cp_reginfo(cpu->cp_regs, key);
230 if (ri) {
231 if (cpreg_field_is_64bit(ri)) {
232 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
233 } else {
234 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
237 return 0;
240 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
242 return 0;
245 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
247 /* Return true if the regdef would cause an assertion if you called
248 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
249 * program bug for it not to have the NO_RAW flag).
250 * NB that returning false here doesn't necessarily mean that calling
251 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
252 * read/write access functions which are safe for raw use" from "has
253 * read/write access functions which have side effects but has forgotten
254 * to provide raw access functions".
255 * The tests here line up with the conditions in read/write_raw_cp_reg()
256 * and assertions in raw_read()/raw_write().
258 if ((ri->type & ARM_CP_CONST) ||
259 ri->fieldoffset ||
260 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
261 return false;
263 return true;
266 bool write_cpustate_to_list(ARMCPU *cpu)
268 /* Write the coprocessor state from cpu->env to the (index,value) list. */
269 int i;
270 bool ok = true;
272 for (i = 0; i < cpu->cpreg_array_len; i++) {
273 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
274 const ARMCPRegInfo *ri;
276 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
277 if (!ri) {
278 ok = false;
279 continue;
281 if (ri->type & ARM_CP_NO_RAW) {
282 continue;
284 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
286 return ok;
289 bool write_list_to_cpustate(ARMCPU *cpu)
291 int i;
292 bool ok = true;
294 for (i = 0; i < cpu->cpreg_array_len; i++) {
295 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
296 uint64_t v = cpu->cpreg_values[i];
297 const ARMCPRegInfo *ri;
299 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
300 if (!ri) {
301 ok = false;
302 continue;
304 if (ri->type & ARM_CP_NO_RAW) {
305 continue;
307 /* Write value and confirm it reads back as written
308 * (to catch read-only registers and partially read-only
309 * registers where the incoming migration value doesn't match)
311 write_raw_cp_reg(&cpu->env, ri, v);
312 if (read_raw_cp_reg(&cpu->env, ri) != v) {
313 ok = false;
316 return ok;
319 static void add_cpreg_to_list(gpointer key, gpointer opaque)
321 ARMCPU *cpu = opaque;
322 uint64_t regidx;
323 const ARMCPRegInfo *ri;
325 regidx = *(uint32_t *)key;
326 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
328 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
329 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
330 /* The value array need not be initialized at this point */
331 cpu->cpreg_array_len++;
335 static void count_cpreg(gpointer key, gpointer opaque)
337 ARMCPU *cpu = opaque;
338 uint64_t regidx;
339 const ARMCPRegInfo *ri;
341 regidx = *(uint32_t *)key;
342 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
344 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
345 cpu->cpreg_array_len++;
349 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
351 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
352 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
354 if (aidx > bidx) {
355 return 1;
357 if (aidx < bidx) {
358 return -1;
360 return 0;
363 void init_cpreg_list(ARMCPU *cpu)
365 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
366 * Note that we require cpreg_tuples[] to be sorted by key ID.
368 GList *keys;
369 int arraylen;
371 keys = g_hash_table_get_keys(cpu->cp_regs);
372 keys = g_list_sort(keys, cpreg_key_compare);
374 cpu->cpreg_array_len = 0;
376 g_list_foreach(keys, count_cpreg, cpu);
378 arraylen = cpu->cpreg_array_len;
379 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
380 cpu->cpreg_values = g_new(uint64_t, arraylen);
381 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
382 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
383 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
384 cpu->cpreg_array_len = 0;
386 g_list_foreach(keys, add_cpreg_to_list, cpu);
388 assert(cpu->cpreg_array_len == arraylen);
390 g_list_free(keys);
394 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
395 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
397 * access_el3_aa32ns: Used to check AArch32 register views.
398 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
400 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
401 const ARMCPRegInfo *ri,
402 bool isread)
404 bool secure = arm_is_secure_below_el3(env);
406 assert(!arm_el_is_aa64(env, 3));
407 if (secure) {
408 return CP_ACCESS_TRAP_UNCATEGORIZED;
410 return CP_ACCESS_OK;
413 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
414 const ARMCPRegInfo *ri,
415 bool isread)
417 if (!arm_el_is_aa64(env, 3)) {
418 return access_el3_aa32ns(env, ri, isread);
420 return CP_ACCESS_OK;
423 /* Some secure-only AArch32 registers trap to EL3 if used from
424 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
425 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
426 * We assume that the .access field is set to PL1_RW.
428 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
429 const ARMCPRegInfo *ri,
430 bool isread)
432 if (arm_current_el(env) == 3) {
433 return CP_ACCESS_OK;
435 if (arm_is_secure_below_el3(env)) {
436 return CP_ACCESS_TRAP_EL3;
438 /* This will be EL1 NS and EL2 NS, which just UNDEF */
439 return CP_ACCESS_TRAP_UNCATEGORIZED;
442 /* Check for traps to "powerdown debug" registers, which are controlled
443 * by MDCR.TDOSA
445 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
446 bool isread)
448 int el = arm_current_el(env);
449 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
450 (env->cp15.mdcr_el2 & MDCR_TDE) ||
451 (env->cp15.hcr_el2 & HCR_TGE);
453 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
454 return CP_ACCESS_TRAP_EL2;
456 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
457 return CP_ACCESS_TRAP_EL3;
459 return CP_ACCESS_OK;
462 /* Check for traps to "debug ROM" registers, which are controlled
463 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
465 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
466 bool isread)
468 int el = arm_current_el(env);
469 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
470 (env->cp15.mdcr_el2 & MDCR_TDE) ||
471 (env->cp15.hcr_el2 & HCR_TGE);
473 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
474 return CP_ACCESS_TRAP_EL2;
476 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
477 return CP_ACCESS_TRAP_EL3;
479 return CP_ACCESS_OK;
482 /* Check for traps to general debug registers, which are controlled
483 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
485 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
486 bool isread)
488 int el = arm_current_el(env);
489 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
490 (env->cp15.mdcr_el2 & MDCR_TDE) ||
491 (env->cp15.hcr_el2 & HCR_TGE);
493 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
494 return CP_ACCESS_TRAP_EL2;
496 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
497 return CP_ACCESS_TRAP_EL3;
499 return CP_ACCESS_OK;
502 /* Check for traps to performance monitor registers, which are controlled
503 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
505 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
506 bool isread)
508 int el = arm_current_el(env);
510 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
511 && !arm_is_secure_below_el3(env)) {
512 return CP_ACCESS_TRAP_EL2;
514 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
515 return CP_ACCESS_TRAP_EL3;
517 return CP_ACCESS_OK;
520 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
522 ARMCPU *cpu = arm_env_get_cpu(env);
524 raw_write(env, ri, value);
525 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
528 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
530 ARMCPU *cpu = arm_env_get_cpu(env);
532 if (raw_read(env, ri) != value) {
533 /* Unlike real hardware the qemu TLB uses virtual addresses,
534 * not modified virtual addresses, so this causes a TLB flush.
536 tlb_flush(CPU(cpu));
537 raw_write(env, ri, value);
541 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
542 uint64_t value)
544 ARMCPU *cpu = arm_env_get_cpu(env);
546 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
547 && !extended_addresses_enabled(env)) {
548 /* For VMSA (when not using the LPAE long descriptor page table
549 * format) this register includes the ASID, so do a TLB flush.
550 * For PMSA it is purely a process ID and no action is needed.
552 tlb_flush(CPU(cpu));
554 raw_write(env, ri, value);
557 /* IS variants of TLB operations must affect all cores */
558 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
559 uint64_t value)
561 CPUState *cs = ENV_GET_CPU(env);
563 tlb_flush_all_cpus_synced(cs);
566 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
567 uint64_t value)
569 CPUState *cs = ENV_GET_CPU(env);
571 tlb_flush_all_cpus_synced(cs);
574 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
575 uint64_t value)
577 CPUState *cs = ENV_GET_CPU(env);
579 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
582 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
583 uint64_t value)
585 CPUState *cs = ENV_GET_CPU(env);
587 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
591 * Non-IS variants of TLB operations are upgraded to
592 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
593 * force broadcast of these operations.
595 static bool tlb_force_broadcast(CPUARMState *env)
597 return (env->cp15.hcr_el2 & HCR_FB) &&
598 arm_current_el(env) == 1 && arm_is_secure_below_el3(env);
601 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
602 uint64_t value)
604 /* Invalidate all (TLBIALL) */
605 ARMCPU *cpu = arm_env_get_cpu(env);
607 if (tlb_force_broadcast(env)) {
608 tlbiall_is_write(env, NULL, value);
609 return;
612 tlb_flush(CPU(cpu));
615 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
616 uint64_t value)
618 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
619 ARMCPU *cpu = arm_env_get_cpu(env);
621 if (tlb_force_broadcast(env)) {
622 tlbimva_is_write(env, NULL, value);
623 return;
626 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
629 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
630 uint64_t value)
632 /* Invalidate by ASID (TLBIASID) */
633 ARMCPU *cpu = arm_env_get_cpu(env);
635 if (tlb_force_broadcast(env)) {
636 tlbiasid_is_write(env, NULL, value);
637 return;
640 tlb_flush(CPU(cpu));
643 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
644 uint64_t value)
646 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
647 ARMCPU *cpu = arm_env_get_cpu(env);
649 if (tlb_force_broadcast(env)) {
650 tlbimvaa_is_write(env, NULL, value);
651 return;
654 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
657 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
658 uint64_t value)
660 CPUState *cs = ENV_GET_CPU(env);
662 tlb_flush_by_mmuidx(cs,
663 ARMMMUIdxBit_S12NSE1 |
664 ARMMMUIdxBit_S12NSE0 |
665 ARMMMUIdxBit_S2NS);
668 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
669 uint64_t value)
671 CPUState *cs = ENV_GET_CPU(env);
673 tlb_flush_by_mmuidx_all_cpus_synced(cs,
674 ARMMMUIdxBit_S12NSE1 |
675 ARMMMUIdxBit_S12NSE0 |
676 ARMMMUIdxBit_S2NS);
679 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
680 uint64_t value)
682 /* Invalidate by IPA. This has to invalidate any structures that
683 * contain only stage 2 translation information, but does not need
684 * to apply to structures that contain combined stage 1 and stage 2
685 * translation information.
686 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
688 CPUState *cs = ENV_GET_CPU(env);
689 uint64_t pageaddr;
691 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
692 return;
695 pageaddr = sextract64(value << 12, 0, 40);
697 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
700 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
701 uint64_t value)
703 CPUState *cs = ENV_GET_CPU(env);
704 uint64_t pageaddr;
706 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
707 return;
710 pageaddr = sextract64(value << 12, 0, 40);
712 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
713 ARMMMUIdxBit_S2NS);
716 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
717 uint64_t value)
719 CPUState *cs = ENV_GET_CPU(env);
721 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
724 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
725 uint64_t value)
727 CPUState *cs = ENV_GET_CPU(env);
729 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
732 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
733 uint64_t value)
735 CPUState *cs = ENV_GET_CPU(env);
736 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
738 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
741 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
742 uint64_t value)
744 CPUState *cs = ENV_GET_CPU(env);
745 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
747 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
748 ARMMMUIdxBit_S1E2);
751 static const ARMCPRegInfo cp_reginfo[] = {
752 /* Define the secure and non-secure FCSE identifier CP registers
753 * separately because there is no secure bank in V8 (no _EL3). This allows
754 * the secure register to be properly reset and migrated. There is also no
755 * v8 EL1 version of the register so the non-secure instance stands alone.
757 { .name = "FCSEIDR",
758 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
759 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
760 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
761 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
762 { .name = "FCSEIDR_S",
763 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
764 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
765 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
766 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
767 /* Define the secure and non-secure context identifier CP registers
768 * separately because there is no secure bank in V8 (no _EL3). This allows
769 * the secure register to be properly reset and migrated. In the
770 * non-secure case, the 32-bit register will have reset and migration
771 * disabled during registration as it is handled by the 64-bit instance.
773 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
774 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
775 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
776 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
777 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
778 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
779 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
780 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
781 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
782 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
783 REGINFO_SENTINEL
786 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
787 /* NB: Some of these registers exist in v8 but with more precise
788 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
790 /* MMU Domain access control / MPU write buffer control */
791 { .name = "DACR",
792 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
793 .access = PL1_RW, .resetvalue = 0,
794 .writefn = dacr_write, .raw_writefn = raw_write,
795 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
796 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
797 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
798 * For v6 and v5, these mappings are overly broad.
800 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
801 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
802 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
803 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
804 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
805 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
806 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
807 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
808 /* Cache maintenance ops; some of this space may be overridden later. */
809 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
810 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
811 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
812 REGINFO_SENTINEL
815 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
816 /* Not all pre-v6 cores implemented this WFI, so this is slightly
817 * over-broad.
819 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
820 .access = PL1_W, .type = ARM_CP_WFI },
821 REGINFO_SENTINEL
824 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
825 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
826 * is UNPREDICTABLE; we choose to NOP as most implementations do).
828 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
829 .access = PL1_W, .type = ARM_CP_WFI },
830 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
831 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
832 * OMAPCP will override this space.
834 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
835 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
836 .resetvalue = 0 },
837 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
838 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
839 .resetvalue = 0 },
840 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
841 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
842 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
843 .resetvalue = 0 },
844 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
845 * implementing it as RAZ means the "debug architecture version" bits
846 * will read as a reserved value, which should cause Linux to not try
847 * to use the debug hardware.
849 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
850 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
851 /* MMU TLB control. Note that the wildcarding means we cover not just
852 * the unified TLB ops but also the dside/iside/inner-shareable variants.
854 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
855 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
856 .type = ARM_CP_NO_RAW },
857 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
858 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
859 .type = ARM_CP_NO_RAW },
860 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
861 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
862 .type = ARM_CP_NO_RAW },
863 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
864 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
865 .type = ARM_CP_NO_RAW },
866 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
867 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
868 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
869 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
870 REGINFO_SENTINEL
873 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
874 uint64_t value)
876 uint32_t mask = 0;
878 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
879 if (!arm_feature(env, ARM_FEATURE_V8)) {
880 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
881 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
882 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
884 if (arm_feature(env, ARM_FEATURE_VFP)) {
885 /* VFP coprocessor: cp10 & cp11 [23:20] */
886 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
888 if (!arm_feature(env, ARM_FEATURE_NEON)) {
889 /* ASEDIS [31] bit is RAO/WI */
890 value |= (1 << 31);
893 /* VFPv3 and upwards with NEON implement 32 double precision
894 * registers (D0-D31).
896 if (!arm_feature(env, ARM_FEATURE_NEON) ||
897 !arm_feature(env, ARM_FEATURE_VFP3)) {
898 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
899 value |= (1 << 30);
902 value &= mask;
904 env->cp15.cpacr_el1 = value;
907 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
909 /* Call cpacr_write() so that we reset with the correct RAO bits set
910 * for our CPU features.
912 cpacr_write(env, ri, 0);
915 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
916 bool isread)
918 if (arm_feature(env, ARM_FEATURE_V8)) {
919 /* Check if CPACR accesses are to be trapped to EL2 */
920 if (arm_current_el(env) == 1 &&
921 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
922 return CP_ACCESS_TRAP_EL2;
923 /* Check if CPACR accesses are to be trapped to EL3 */
924 } else if (arm_current_el(env) < 3 &&
925 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
926 return CP_ACCESS_TRAP_EL3;
930 return CP_ACCESS_OK;
933 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
934 bool isread)
936 /* Check if CPTR accesses are set to trap to EL3 */
937 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
938 return CP_ACCESS_TRAP_EL3;
941 return CP_ACCESS_OK;
944 static const ARMCPRegInfo v6_cp_reginfo[] = {
945 /* prefetch by MVA in v6, NOP in v7 */
946 { .name = "MVA_prefetch",
947 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
948 .access = PL1_W, .type = ARM_CP_NOP },
949 /* We need to break the TB after ISB to execute self-modifying code
950 * correctly and also to take any pending interrupts immediately.
951 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
953 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
954 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
955 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
956 .access = PL0_W, .type = ARM_CP_NOP },
957 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
958 .access = PL0_W, .type = ARM_CP_NOP },
959 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
960 .access = PL1_RW,
961 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
962 offsetof(CPUARMState, cp15.ifar_ns) },
963 .resetvalue = 0, },
964 /* Watchpoint Fault Address Register : should actually only be present
965 * for 1136, 1176, 11MPCore.
967 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
968 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
969 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
970 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
971 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
972 .resetfn = cpacr_reset, .writefn = cpacr_write },
973 REGINFO_SENTINEL
976 /* Definitions for the PMU registers */
977 #define PMCRN_MASK 0xf800
978 #define PMCRN_SHIFT 11
979 #define PMCRD 0x8
980 #define PMCRC 0x4
981 #define PMCRE 0x1
983 static inline uint32_t pmu_num_counters(CPUARMState *env)
985 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
988 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
989 static inline uint64_t pmu_counter_mask(CPUARMState *env)
991 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
994 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
995 bool isread)
997 /* Performance monitor registers user accessibility is controlled
998 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
999 * trapping to EL2 or EL3 for other accesses.
1001 int el = arm_current_el(env);
1003 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1004 return CP_ACCESS_TRAP;
1006 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
1007 && !arm_is_secure_below_el3(env)) {
1008 return CP_ACCESS_TRAP_EL2;
1010 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1011 return CP_ACCESS_TRAP_EL3;
1014 return CP_ACCESS_OK;
1017 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1018 const ARMCPRegInfo *ri,
1019 bool isread)
1021 /* ER: event counter read trap control */
1022 if (arm_feature(env, ARM_FEATURE_V8)
1023 && arm_current_el(env) == 0
1024 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1025 && isread) {
1026 return CP_ACCESS_OK;
1029 return pmreg_access(env, ri, isread);
1032 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1033 const ARMCPRegInfo *ri,
1034 bool isread)
1036 /* SW: software increment write trap control */
1037 if (arm_feature(env, ARM_FEATURE_V8)
1038 && arm_current_el(env) == 0
1039 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1040 && !isread) {
1041 return CP_ACCESS_OK;
1044 return pmreg_access(env, ri, isread);
1047 #ifndef CONFIG_USER_ONLY
1049 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1050 const ARMCPRegInfo *ri,
1051 bool isread)
1053 /* ER: event counter read trap control */
1054 if (arm_feature(env, ARM_FEATURE_V8)
1055 && arm_current_el(env) == 0
1056 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1057 return CP_ACCESS_OK;
1060 return pmreg_access(env, ri, isread);
1063 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1064 const ARMCPRegInfo *ri,
1065 bool isread)
1067 /* CR: cycle counter read trap control */
1068 if (arm_feature(env, ARM_FEATURE_V8)
1069 && arm_current_el(env) == 0
1070 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1071 && isread) {
1072 return CP_ACCESS_OK;
1075 return pmreg_access(env, ri, isread);
1078 static inline bool arm_ccnt_enabled(CPUARMState *env)
1080 /* This does not support checking PMCCFILTR_EL0 register */
1082 if (!(env->cp15.c9_pmcr & PMCRE) || !(env->cp15.c9_pmcnten & (1 << 31))) {
1083 return false;
1086 return true;
1089 void pmccntr_sync(CPUARMState *env)
1091 uint64_t temp_ticks;
1093 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1094 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1096 if (env->cp15.c9_pmcr & PMCRD) {
1097 /* Increment once every 64 processor clock cycles */
1098 temp_ticks /= 64;
1101 if (arm_ccnt_enabled(env)) {
1102 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
1106 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1107 uint64_t value)
1109 pmccntr_sync(env);
1111 if (value & PMCRC) {
1112 /* The counter has been reset */
1113 env->cp15.c15_ccnt = 0;
1116 /* only the DP, X, D and E bits are writable */
1117 env->cp15.c9_pmcr &= ~0x39;
1118 env->cp15.c9_pmcr |= (value & 0x39);
1120 pmccntr_sync(env);
1123 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1125 uint64_t total_ticks;
1127 if (!arm_ccnt_enabled(env)) {
1128 /* Counter is disabled, do not change value */
1129 return env->cp15.c15_ccnt;
1132 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1133 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1135 if (env->cp15.c9_pmcr & PMCRD) {
1136 /* Increment once every 64 processor clock cycles */
1137 total_ticks /= 64;
1139 return total_ticks - env->cp15.c15_ccnt;
1142 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1143 uint64_t value)
1145 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1146 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1147 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1148 * accessed.
1150 env->cp15.c9_pmselr = value & 0x1f;
1153 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1154 uint64_t value)
1156 uint64_t total_ticks;
1158 if (!arm_ccnt_enabled(env)) {
1159 /* Counter is disabled, set the absolute value */
1160 env->cp15.c15_ccnt = value;
1161 return;
1164 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1165 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1167 if (env->cp15.c9_pmcr & PMCRD) {
1168 /* Increment once every 64 processor clock cycles */
1169 total_ticks /= 64;
1171 env->cp15.c15_ccnt = total_ticks - value;
1174 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1175 uint64_t value)
1177 uint64_t cur_val = pmccntr_read(env, NULL);
1179 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1182 #else /* CONFIG_USER_ONLY */
1184 void pmccntr_sync(CPUARMState *env)
1188 #endif
1190 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1191 uint64_t value)
1193 pmccntr_sync(env);
1194 env->cp15.pmccfiltr_el0 = value & 0xfc000000;
1195 pmccntr_sync(env);
1198 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1199 uint64_t value)
1201 value &= pmu_counter_mask(env);
1202 env->cp15.c9_pmcnten |= value;
1205 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1206 uint64_t value)
1208 value &= pmu_counter_mask(env);
1209 env->cp15.c9_pmcnten &= ~value;
1212 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1213 uint64_t value)
1215 value &= pmu_counter_mask(env);
1216 env->cp15.c9_pmovsr &= ~value;
1219 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1220 uint64_t value)
1222 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1223 * PMSELR value is equal to or greater than the number of implemented
1224 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1226 if (env->cp15.c9_pmselr == 0x1f) {
1227 pmccfiltr_write(env, ri, value);
1231 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1233 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1234 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
1236 if (env->cp15.c9_pmselr == 0x1f) {
1237 return env->cp15.pmccfiltr_el0;
1238 } else {
1239 return 0;
1243 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1244 uint64_t value)
1246 if (arm_feature(env, ARM_FEATURE_V8)) {
1247 env->cp15.c9_pmuserenr = value & 0xf;
1248 } else {
1249 env->cp15.c9_pmuserenr = value & 1;
1253 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1254 uint64_t value)
1256 /* We have no event counters so only the C bit can be changed */
1257 value &= pmu_counter_mask(env);
1258 env->cp15.c9_pminten |= value;
1261 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1262 uint64_t value)
1264 value &= pmu_counter_mask(env);
1265 env->cp15.c9_pminten &= ~value;
1268 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1269 uint64_t value)
1271 /* Note that even though the AArch64 view of this register has bits
1272 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1273 * architectural requirements for bits which are RES0 only in some
1274 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1275 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1277 raw_write(env, ri, value & ~0x1FULL);
1280 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1282 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1283 * For bits that vary between AArch32/64, code needs to check the
1284 * current execution mode before directly using the feature bit.
1286 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
1288 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1289 valid_mask &= ~SCR_HCE;
1291 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1292 * supported if EL2 exists. The bit is UNK/SBZP when
1293 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1294 * when EL2 is unavailable.
1295 * On ARMv8, this bit is always available.
1297 if (arm_feature(env, ARM_FEATURE_V7) &&
1298 !arm_feature(env, ARM_FEATURE_V8)) {
1299 valid_mask &= ~SCR_SMD;
1303 /* Clear all-context RES0 bits. */
1304 value &= valid_mask;
1305 raw_write(env, ri, value);
1308 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1310 ARMCPU *cpu = arm_env_get_cpu(env);
1312 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1313 * bank
1315 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1316 ri->secure & ARM_CP_SECSTATE_S);
1318 return cpu->ccsidr[index];
1321 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1322 uint64_t value)
1324 raw_write(env, ri, value & 0xf);
1327 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1329 CPUState *cs = ENV_GET_CPU(env);
1330 uint64_t ret = 0;
1332 if (arm_hcr_el2_imo(env)) {
1333 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1334 ret |= CPSR_I;
1336 } else {
1337 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1338 ret |= CPSR_I;
1342 if (arm_hcr_el2_fmo(env)) {
1343 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1344 ret |= CPSR_F;
1346 } else {
1347 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1348 ret |= CPSR_F;
1352 /* External aborts are not possible in QEMU so A bit is always clear */
1353 return ret;
1356 static const ARMCPRegInfo v7_cp_reginfo[] = {
1357 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1358 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1359 .access = PL1_W, .type = ARM_CP_NOP },
1360 /* Performance monitors are implementation defined in v7,
1361 * but with an ARM recommended set of registers, which we
1362 * follow (although we don't actually implement any counters)
1364 * Performance registers fall into three categories:
1365 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1366 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1367 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1368 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1369 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1371 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1372 .access = PL0_RW, .type = ARM_CP_ALIAS,
1373 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1374 .writefn = pmcntenset_write,
1375 .accessfn = pmreg_access,
1376 .raw_writefn = raw_write },
1377 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1378 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1379 .access = PL0_RW, .accessfn = pmreg_access,
1380 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1381 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1382 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1383 .access = PL0_RW,
1384 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1385 .accessfn = pmreg_access,
1386 .writefn = pmcntenclr_write,
1387 .type = ARM_CP_ALIAS },
1388 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1389 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1390 .access = PL0_RW, .accessfn = pmreg_access,
1391 .type = ARM_CP_ALIAS,
1392 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1393 .writefn = pmcntenclr_write },
1394 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1395 .access = PL0_RW,
1396 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
1397 .accessfn = pmreg_access,
1398 .writefn = pmovsr_write,
1399 .raw_writefn = raw_write },
1400 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1401 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1402 .access = PL0_RW, .accessfn = pmreg_access,
1403 .type = ARM_CP_ALIAS,
1404 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1405 .writefn = pmovsr_write,
1406 .raw_writefn = raw_write },
1407 /* Unimplemented so WI. */
1408 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1409 .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP },
1410 #ifndef CONFIG_USER_ONLY
1411 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1412 .access = PL0_RW, .type = ARM_CP_ALIAS,
1413 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1414 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1415 .raw_writefn = raw_write},
1416 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1417 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1418 .access = PL0_RW, .accessfn = pmreg_access_selr,
1419 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1420 .writefn = pmselr_write, .raw_writefn = raw_write, },
1421 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1422 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
1423 .readfn = pmccntr_read, .writefn = pmccntr_write32,
1424 .accessfn = pmreg_access_ccntr },
1425 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1426 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1427 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1428 .type = ARM_CP_IO,
1429 .readfn = pmccntr_read, .writefn = pmccntr_write, },
1430 #endif
1431 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1432 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1433 .writefn = pmccfiltr_write,
1434 .access = PL0_RW, .accessfn = pmreg_access,
1435 .type = ARM_CP_IO,
1436 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1437 .resetvalue = 0, },
1438 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1439 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1440 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1441 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1442 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1443 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1444 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1445 /* Unimplemented, RAZ/WI. */
1446 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1447 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1448 .accessfn = pmreg_access_xevcntr },
1449 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1450 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1451 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
1452 .resetvalue = 0,
1453 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1454 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1455 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1456 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1457 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1458 .resetvalue = 0,
1459 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1460 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1461 .access = PL1_RW, .accessfn = access_tpm,
1462 .type = ARM_CP_ALIAS | ARM_CP_IO,
1463 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
1464 .resetvalue = 0,
1465 .writefn = pmintenset_write, .raw_writefn = raw_write },
1466 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
1467 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
1468 .access = PL1_RW, .accessfn = access_tpm,
1469 .type = ARM_CP_IO,
1470 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1471 .writefn = pmintenset_write, .raw_writefn = raw_write,
1472 .resetvalue = 0x0 },
1473 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1474 .access = PL1_RW, .accessfn = access_tpm,
1475 .type = ARM_CP_ALIAS | ARM_CP_IO,
1476 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1477 .writefn = pmintenclr_write, },
1478 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1479 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1480 .access = PL1_RW, .accessfn = access_tpm,
1481 .type = ARM_CP_ALIAS | ARM_CP_IO,
1482 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1483 .writefn = pmintenclr_write },
1484 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1485 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1486 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1487 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1488 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1489 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1490 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1491 offsetof(CPUARMState, cp15.csselr_ns) } },
1492 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1493 * just RAZ for all cores:
1495 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1496 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1497 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1498 /* Auxiliary fault status registers: these also are IMPDEF, and we
1499 * choose to RAZ/WI for all cores.
1501 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1502 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1503 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1504 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1505 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1506 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1507 /* MAIR can just read-as-written because we don't implement caches
1508 * and so don't need to care about memory attributes.
1510 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1511 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1512 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1513 .resetvalue = 0 },
1514 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1515 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1516 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1517 .resetvalue = 0 },
1518 /* For non-long-descriptor page tables these are PRRR and NMRR;
1519 * regardless they still act as reads-as-written for QEMU.
1521 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1522 * allows them to assign the correct fieldoffset based on the endianness
1523 * handled in the field definitions.
1525 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1526 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1527 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1528 offsetof(CPUARMState, cp15.mair0_ns) },
1529 .resetfn = arm_cp_reset_ignore },
1530 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1531 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1532 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1533 offsetof(CPUARMState, cp15.mair1_ns) },
1534 .resetfn = arm_cp_reset_ignore },
1535 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1536 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1537 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1538 /* 32 bit ITLB invalidates */
1539 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1540 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1541 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1542 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1543 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1544 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1545 /* 32 bit DTLB invalidates */
1546 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1547 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1548 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1549 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1550 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1551 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1552 /* 32 bit TLB invalidates */
1553 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1554 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1555 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1556 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1557 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1558 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1559 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1560 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1561 REGINFO_SENTINEL
1564 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1565 /* 32 bit TLB invalidates, Inner Shareable */
1566 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1567 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1568 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1569 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1570 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1571 .type = ARM_CP_NO_RAW, .access = PL1_W,
1572 .writefn = tlbiasid_is_write },
1573 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1574 .type = ARM_CP_NO_RAW, .access = PL1_W,
1575 .writefn = tlbimvaa_is_write },
1576 REGINFO_SENTINEL
1579 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1580 uint64_t value)
1582 value &= 1;
1583 env->teecr = value;
1586 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1587 bool isread)
1589 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1590 return CP_ACCESS_TRAP;
1592 return CP_ACCESS_OK;
1595 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1596 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1597 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1598 .resetvalue = 0,
1599 .writefn = teecr_write },
1600 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1601 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1602 .accessfn = teehbr_access, .resetvalue = 0 },
1603 REGINFO_SENTINEL
1606 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1607 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1608 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1609 .access = PL0_RW,
1610 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1611 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1612 .access = PL0_RW,
1613 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1614 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1615 .resetfn = arm_cp_reset_ignore },
1616 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1617 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1618 .access = PL0_R|PL1_W,
1619 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1620 .resetvalue = 0},
1621 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1622 .access = PL0_R|PL1_W,
1623 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1624 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1625 .resetfn = arm_cp_reset_ignore },
1626 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1627 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1628 .access = PL1_RW,
1629 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1630 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1631 .access = PL1_RW,
1632 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1633 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1634 .resetvalue = 0 },
1635 REGINFO_SENTINEL
1638 #ifndef CONFIG_USER_ONLY
1640 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1641 bool isread)
1643 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1644 * Writable only at the highest implemented exception level.
1646 int el = arm_current_el(env);
1648 switch (el) {
1649 case 0:
1650 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1651 return CP_ACCESS_TRAP;
1653 break;
1654 case 1:
1655 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1656 arm_is_secure_below_el3(env)) {
1657 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1658 return CP_ACCESS_TRAP_UNCATEGORIZED;
1660 break;
1661 case 2:
1662 case 3:
1663 break;
1666 if (!isread && el < arm_highest_el(env)) {
1667 return CP_ACCESS_TRAP_UNCATEGORIZED;
1670 return CP_ACCESS_OK;
1673 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1674 bool isread)
1676 unsigned int cur_el = arm_current_el(env);
1677 bool secure = arm_is_secure(env);
1679 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1680 if (cur_el == 0 &&
1681 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1682 return CP_ACCESS_TRAP;
1685 if (arm_feature(env, ARM_FEATURE_EL2) &&
1686 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1687 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1688 return CP_ACCESS_TRAP_EL2;
1690 return CP_ACCESS_OK;
1693 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1694 bool isread)
1696 unsigned int cur_el = arm_current_el(env);
1697 bool secure = arm_is_secure(env);
1699 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1700 * EL0[PV]TEN is zero.
1702 if (cur_el == 0 &&
1703 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1704 return CP_ACCESS_TRAP;
1707 if (arm_feature(env, ARM_FEATURE_EL2) &&
1708 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1709 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1710 return CP_ACCESS_TRAP_EL2;
1712 return CP_ACCESS_OK;
1715 static CPAccessResult gt_pct_access(CPUARMState *env,
1716 const ARMCPRegInfo *ri,
1717 bool isread)
1719 return gt_counter_access(env, GTIMER_PHYS, isread);
1722 static CPAccessResult gt_vct_access(CPUARMState *env,
1723 const ARMCPRegInfo *ri,
1724 bool isread)
1726 return gt_counter_access(env, GTIMER_VIRT, isread);
1729 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1730 bool isread)
1732 return gt_timer_access(env, GTIMER_PHYS, isread);
1735 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1736 bool isread)
1738 return gt_timer_access(env, GTIMER_VIRT, isread);
1741 static CPAccessResult gt_stimer_access(CPUARMState *env,
1742 const ARMCPRegInfo *ri,
1743 bool isread)
1745 /* The AArch64 register view of the secure physical timer is
1746 * always accessible from EL3, and configurably accessible from
1747 * Secure EL1.
1749 switch (arm_current_el(env)) {
1750 case 1:
1751 if (!arm_is_secure(env)) {
1752 return CP_ACCESS_TRAP;
1754 if (!(env->cp15.scr_el3 & SCR_ST)) {
1755 return CP_ACCESS_TRAP_EL3;
1757 return CP_ACCESS_OK;
1758 case 0:
1759 case 2:
1760 return CP_ACCESS_TRAP;
1761 case 3:
1762 return CP_ACCESS_OK;
1763 default:
1764 g_assert_not_reached();
1768 static uint64_t gt_get_countervalue(CPUARMState *env)
1770 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1773 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1775 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1777 if (gt->ctl & 1) {
1778 /* Timer enabled: calculate and set current ISTATUS, irq, and
1779 * reset timer to when ISTATUS next has to change
1781 uint64_t offset = timeridx == GTIMER_VIRT ?
1782 cpu->env.cp15.cntvoff_el2 : 0;
1783 uint64_t count = gt_get_countervalue(&cpu->env);
1784 /* Note that this must be unsigned 64 bit arithmetic: */
1785 int istatus = count - offset >= gt->cval;
1786 uint64_t nexttick;
1787 int irqstate;
1789 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1791 irqstate = (istatus && !(gt->ctl & 2));
1792 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1794 if (istatus) {
1795 /* Next transition is when count rolls back over to zero */
1796 nexttick = UINT64_MAX;
1797 } else {
1798 /* Next transition is when we hit cval */
1799 nexttick = gt->cval + offset;
1801 /* Note that the desired next expiry time might be beyond the
1802 * signed-64-bit range of a QEMUTimer -- in this case we just
1803 * set the timer for as far in the future as possible. When the
1804 * timer expires we will reset the timer for any remaining period.
1806 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1807 nexttick = INT64_MAX / GTIMER_SCALE;
1809 timer_mod(cpu->gt_timer[timeridx], nexttick);
1810 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
1811 } else {
1812 /* Timer disabled: ISTATUS and timer output always clear */
1813 gt->ctl &= ~4;
1814 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1815 timer_del(cpu->gt_timer[timeridx]);
1816 trace_arm_gt_recalc_disabled(timeridx);
1820 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1821 int timeridx)
1823 ARMCPU *cpu = arm_env_get_cpu(env);
1825 timer_del(cpu->gt_timer[timeridx]);
1828 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1830 return gt_get_countervalue(env);
1833 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1835 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1838 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1839 int timeridx,
1840 uint64_t value)
1842 trace_arm_gt_cval_write(timeridx, value);
1843 env->cp15.c14_timer[timeridx].cval = value;
1844 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1847 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1848 int timeridx)
1850 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1852 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1853 (gt_get_countervalue(env) - offset));
1856 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1857 int timeridx,
1858 uint64_t value)
1860 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1862 trace_arm_gt_tval_write(timeridx, value);
1863 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1864 sextract64(value, 0, 32);
1865 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1868 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1869 int timeridx,
1870 uint64_t value)
1872 ARMCPU *cpu = arm_env_get_cpu(env);
1873 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1875 trace_arm_gt_ctl_write(timeridx, value);
1876 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1877 if ((oldval ^ value) & 1) {
1878 /* Enable toggled */
1879 gt_recalc_timer(cpu, timeridx);
1880 } else if ((oldval ^ value) & 2) {
1881 /* IMASK toggled: don't need to recalculate,
1882 * just set the interrupt line based on ISTATUS
1884 int irqstate = (oldval & 4) && !(value & 2);
1886 trace_arm_gt_imask_toggle(timeridx, irqstate);
1887 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1891 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1893 gt_timer_reset(env, ri, GTIMER_PHYS);
1896 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1897 uint64_t value)
1899 gt_cval_write(env, ri, GTIMER_PHYS, value);
1902 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1904 return gt_tval_read(env, ri, GTIMER_PHYS);
1907 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1908 uint64_t value)
1910 gt_tval_write(env, ri, GTIMER_PHYS, value);
1913 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1914 uint64_t value)
1916 gt_ctl_write(env, ri, GTIMER_PHYS, value);
1919 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1921 gt_timer_reset(env, ri, GTIMER_VIRT);
1924 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1925 uint64_t value)
1927 gt_cval_write(env, ri, GTIMER_VIRT, value);
1930 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1932 return gt_tval_read(env, ri, GTIMER_VIRT);
1935 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1936 uint64_t value)
1938 gt_tval_write(env, ri, GTIMER_VIRT, value);
1941 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1942 uint64_t value)
1944 gt_ctl_write(env, ri, GTIMER_VIRT, value);
1947 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1948 uint64_t value)
1950 ARMCPU *cpu = arm_env_get_cpu(env);
1952 trace_arm_gt_cntvoff_write(value);
1953 raw_write(env, ri, value);
1954 gt_recalc_timer(cpu, GTIMER_VIRT);
1957 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1959 gt_timer_reset(env, ri, GTIMER_HYP);
1962 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1963 uint64_t value)
1965 gt_cval_write(env, ri, GTIMER_HYP, value);
1968 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1970 return gt_tval_read(env, ri, GTIMER_HYP);
1973 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1974 uint64_t value)
1976 gt_tval_write(env, ri, GTIMER_HYP, value);
1979 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1980 uint64_t value)
1982 gt_ctl_write(env, ri, GTIMER_HYP, value);
1985 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1987 gt_timer_reset(env, ri, GTIMER_SEC);
1990 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1991 uint64_t value)
1993 gt_cval_write(env, ri, GTIMER_SEC, value);
1996 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1998 return gt_tval_read(env, ri, GTIMER_SEC);
2001 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2002 uint64_t value)
2004 gt_tval_write(env, ri, GTIMER_SEC, value);
2007 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2008 uint64_t value)
2010 gt_ctl_write(env, ri, GTIMER_SEC, value);
2013 void arm_gt_ptimer_cb(void *opaque)
2015 ARMCPU *cpu = opaque;
2017 gt_recalc_timer(cpu, GTIMER_PHYS);
2020 void arm_gt_vtimer_cb(void *opaque)
2022 ARMCPU *cpu = opaque;
2024 gt_recalc_timer(cpu, GTIMER_VIRT);
2027 void arm_gt_htimer_cb(void *opaque)
2029 ARMCPU *cpu = opaque;
2031 gt_recalc_timer(cpu, GTIMER_HYP);
2034 void arm_gt_stimer_cb(void *opaque)
2036 ARMCPU *cpu = opaque;
2038 gt_recalc_timer(cpu, GTIMER_SEC);
2041 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2042 /* Note that CNTFRQ is purely reads-as-written for the benefit
2043 * of software; writing it doesn't actually change the timer frequency.
2044 * Our reset value matches the fixed frequency we implement the timer at.
2046 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
2047 .type = ARM_CP_ALIAS,
2048 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2049 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2051 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2052 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2053 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2054 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2055 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
2057 /* overall control: mostly access permissions */
2058 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2059 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2060 .access = PL1_RW,
2061 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2062 .resetvalue = 0,
2064 /* per-timer control */
2065 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2066 .secure = ARM_CP_SECSTATE_NS,
2067 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2068 .accessfn = gt_ptimer_access,
2069 .fieldoffset = offsetoflow32(CPUARMState,
2070 cp15.c14_timer[GTIMER_PHYS].ctl),
2071 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2073 { .name = "CNTP_CTL_S",
2074 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2075 .secure = ARM_CP_SECSTATE_S,
2076 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2077 .accessfn = gt_ptimer_access,
2078 .fieldoffset = offsetoflow32(CPUARMState,
2079 cp15.c14_timer[GTIMER_SEC].ctl),
2080 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2082 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2083 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2084 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
2085 .accessfn = gt_ptimer_access,
2086 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2087 .resetvalue = 0,
2088 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2090 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2091 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2092 .accessfn = gt_vtimer_access,
2093 .fieldoffset = offsetoflow32(CPUARMState,
2094 cp15.c14_timer[GTIMER_VIRT].ctl),
2095 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2097 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2098 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2099 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
2100 .accessfn = gt_vtimer_access,
2101 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2102 .resetvalue = 0,
2103 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2105 /* TimerValue views: a 32 bit downcounting view of the underlying state */
2106 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2107 .secure = ARM_CP_SECSTATE_NS,
2108 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2109 .accessfn = gt_ptimer_access,
2110 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2112 { .name = "CNTP_TVAL_S",
2113 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2114 .secure = ARM_CP_SECSTATE_S,
2115 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2116 .accessfn = gt_ptimer_access,
2117 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2119 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2120 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2121 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2122 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2123 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2125 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2126 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2127 .accessfn = gt_vtimer_access,
2128 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2130 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2131 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2132 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2133 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2134 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2136 /* The counter itself */
2137 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2138 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2139 .accessfn = gt_pct_access,
2140 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2142 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2143 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2144 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2145 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2147 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2148 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2149 .accessfn = gt_vct_access,
2150 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2152 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2153 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2154 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2155 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2157 /* Comparison value, indicating when the timer goes off */
2158 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2159 .secure = ARM_CP_SECSTATE_NS,
2160 .access = PL1_RW | PL0_R,
2161 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2162 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2163 .accessfn = gt_ptimer_access,
2164 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2166 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
2167 .secure = ARM_CP_SECSTATE_S,
2168 .access = PL1_RW | PL0_R,
2169 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2170 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2171 .accessfn = gt_ptimer_access,
2172 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2174 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2175 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2176 .access = PL1_RW | PL0_R,
2177 .type = ARM_CP_IO,
2178 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2179 .resetvalue = 0, .accessfn = gt_ptimer_access,
2180 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2182 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2183 .access = PL1_RW | PL0_R,
2184 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2185 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2186 .accessfn = gt_vtimer_access,
2187 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2189 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2190 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2191 .access = PL1_RW | PL0_R,
2192 .type = ARM_CP_IO,
2193 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2194 .resetvalue = 0, .accessfn = gt_vtimer_access,
2195 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2197 /* Secure timer -- this is actually restricted to only EL3
2198 * and configurably Secure-EL1 via the accessfn.
2200 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2201 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2202 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2203 .accessfn = gt_stimer_access,
2204 .readfn = gt_sec_tval_read,
2205 .writefn = gt_sec_tval_write,
2206 .resetfn = gt_sec_timer_reset,
2208 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2209 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2210 .type = ARM_CP_IO, .access = PL1_RW,
2211 .accessfn = gt_stimer_access,
2212 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2213 .resetvalue = 0,
2214 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2216 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2217 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2218 .type = ARM_CP_IO, .access = PL1_RW,
2219 .accessfn = gt_stimer_access,
2220 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2221 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2223 REGINFO_SENTINEL
2226 #else
2228 /* In user-mode most of the generic timer registers are inaccessible
2229 * however modern kernels (4.12+) allow access to cntvct_el0
2232 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2234 /* Currently we have no support for QEMUTimer in linux-user so we
2235 * can't call gt_get_countervalue(env), instead we directly
2236 * call the lower level functions.
2238 return cpu_get_clock() / GTIMER_SCALE;
2241 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2242 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2243 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2244 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
2245 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2246 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
2248 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2249 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2250 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2251 .readfn = gt_virt_cnt_read,
2253 REGINFO_SENTINEL
2256 #endif
2258 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2260 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2261 raw_write(env, ri, value);
2262 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2263 raw_write(env, ri, value & 0xfffff6ff);
2264 } else {
2265 raw_write(env, ri, value & 0xfffff1ff);
2269 #ifndef CONFIG_USER_ONLY
2270 /* get_phys_addr() isn't present for user-mode-only targets */
2272 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2273 bool isread)
2275 if (ri->opc2 & 4) {
2276 /* The ATS12NSO* operations must trap to EL3 if executed in
2277 * Secure EL1 (which can only happen if EL3 is AArch64).
2278 * They are simply UNDEF if executed from NS EL1.
2279 * They function normally from EL2 or EL3.
2281 if (arm_current_el(env) == 1) {
2282 if (arm_is_secure_below_el3(env)) {
2283 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2285 return CP_ACCESS_TRAP_UNCATEGORIZED;
2288 return CP_ACCESS_OK;
2291 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2292 MMUAccessType access_type, ARMMMUIdx mmu_idx)
2294 hwaddr phys_addr;
2295 target_ulong page_size;
2296 int prot;
2297 bool ret;
2298 uint64_t par64;
2299 bool format64 = false;
2300 MemTxAttrs attrs = {};
2301 ARMMMUFaultInfo fi = {};
2302 ARMCacheAttrs cacheattrs = {};
2304 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2305 &prot, &page_size, &fi, &cacheattrs);
2307 if (is_a64(env)) {
2308 format64 = true;
2309 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
2311 * ATS1Cxx:
2312 * * TTBCR.EAE determines whether the result is returned using the
2313 * 32-bit or the 64-bit PAR format
2314 * * Instructions executed in Hyp mode always use the 64bit format
2316 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
2317 * * The Non-secure TTBCR.EAE bit is set to 1
2318 * * The implementation includes EL2, and the value of HCR.VM is 1
2320 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
2322 * ATS1Hx always uses the 64bit format.
2324 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
2326 if (arm_feature(env, ARM_FEATURE_EL2)) {
2327 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
2328 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
2329 } else {
2330 format64 |= arm_current_el(env) == 2;
2335 if (format64) {
2336 /* Create a 64-bit PAR */
2337 par64 = (1 << 11); /* LPAE bit always set */
2338 if (!ret) {
2339 par64 |= phys_addr & ~0xfffULL;
2340 if (!attrs.secure) {
2341 par64 |= (1 << 9); /* NS */
2343 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
2344 par64 |= cacheattrs.shareability << 7; /* SH */
2345 } else {
2346 uint32_t fsr = arm_fi_to_lfsc(&fi);
2348 par64 |= 1; /* F */
2349 par64 |= (fsr & 0x3f) << 1; /* FS */
2350 if (fi.stage2) {
2351 par64 |= (1 << 9); /* S */
2353 if (fi.s1ptw) {
2354 par64 |= (1 << 8); /* PTW */
2357 } else {
2358 /* fsr is a DFSR/IFSR value for the short descriptor
2359 * translation table format (with WnR always clear).
2360 * Convert it to a 32-bit PAR.
2362 if (!ret) {
2363 /* We do not set any attribute bits in the PAR */
2364 if (page_size == (1 << 24)
2365 && arm_feature(env, ARM_FEATURE_V7)) {
2366 par64 = (phys_addr & 0xff000000) | (1 << 1);
2367 } else {
2368 par64 = phys_addr & 0xfffff000;
2370 if (!attrs.secure) {
2371 par64 |= (1 << 9); /* NS */
2373 } else {
2374 uint32_t fsr = arm_fi_to_sfsc(&fi);
2376 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2377 ((fsr & 0xf) << 1) | 1;
2380 return par64;
2383 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2385 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2386 uint64_t par64;
2387 ARMMMUIdx mmu_idx;
2388 int el = arm_current_el(env);
2389 bool secure = arm_is_secure_below_el3(env);
2391 switch (ri->opc2 & 6) {
2392 case 0:
2393 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2394 switch (el) {
2395 case 3:
2396 mmu_idx = ARMMMUIdx_S1E3;
2397 break;
2398 case 2:
2399 mmu_idx = ARMMMUIdx_S1NSE1;
2400 break;
2401 case 1:
2402 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2403 break;
2404 default:
2405 g_assert_not_reached();
2407 break;
2408 case 2:
2409 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2410 switch (el) {
2411 case 3:
2412 mmu_idx = ARMMMUIdx_S1SE0;
2413 break;
2414 case 2:
2415 mmu_idx = ARMMMUIdx_S1NSE0;
2416 break;
2417 case 1:
2418 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2419 break;
2420 default:
2421 g_assert_not_reached();
2423 break;
2424 case 4:
2425 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2426 mmu_idx = ARMMMUIdx_S12NSE1;
2427 break;
2428 case 6:
2429 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2430 mmu_idx = ARMMMUIdx_S12NSE0;
2431 break;
2432 default:
2433 g_assert_not_reached();
2436 par64 = do_ats_write(env, value, access_type, mmu_idx);
2438 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2441 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2442 uint64_t value)
2444 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2445 uint64_t par64;
2447 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2);
2449 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2452 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2453 bool isread)
2455 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2456 return CP_ACCESS_TRAP;
2458 return CP_ACCESS_OK;
2461 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2462 uint64_t value)
2464 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2465 ARMMMUIdx mmu_idx;
2466 int secure = arm_is_secure_below_el3(env);
2468 switch (ri->opc2 & 6) {
2469 case 0:
2470 switch (ri->opc1) {
2471 case 0: /* AT S1E1R, AT S1E1W */
2472 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2473 break;
2474 case 4: /* AT S1E2R, AT S1E2W */
2475 mmu_idx = ARMMMUIdx_S1E2;
2476 break;
2477 case 6: /* AT S1E3R, AT S1E3W */
2478 mmu_idx = ARMMMUIdx_S1E3;
2479 break;
2480 default:
2481 g_assert_not_reached();
2483 break;
2484 case 2: /* AT S1E0R, AT S1E0W */
2485 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2486 break;
2487 case 4: /* AT S12E1R, AT S12E1W */
2488 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2489 break;
2490 case 6: /* AT S12E0R, AT S12E0W */
2491 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2492 break;
2493 default:
2494 g_assert_not_reached();
2497 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2499 #endif
2501 static const ARMCPRegInfo vapa_cp_reginfo[] = {
2502 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2503 .access = PL1_RW, .resetvalue = 0,
2504 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2505 offsetoflow32(CPUARMState, cp15.par_ns) },
2506 .writefn = par_write },
2507 #ifndef CONFIG_USER_ONLY
2508 /* This underdecoding is safe because the reginfo is NO_RAW. */
2509 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2510 .access = PL1_W, .accessfn = ats_access,
2511 .writefn = ats_write, .type = ARM_CP_NO_RAW },
2512 #endif
2513 REGINFO_SENTINEL
2516 /* Return basic MPU access permission bits. */
2517 static uint32_t simple_mpu_ap_bits(uint32_t val)
2519 uint32_t ret;
2520 uint32_t mask;
2521 int i;
2522 ret = 0;
2523 mask = 3;
2524 for (i = 0; i < 16; i += 2) {
2525 ret |= (val >> i) & mask;
2526 mask <<= 2;
2528 return ret;
2531 /* Pad basic MPU access permission bits to extended format. */
2532 static uint32_t extended_mpu_ap_bits(uint32_t val)
2534 uint32_t ret;
2535 uint32_t mask;
2536 int i;
2537 ret = 0;
2538 mask = 3;
2539 for (i = 0; i < 16; i += 2) {
2540 ret |= (val & mask) << i;
2541 mask <<= 2;
2543 return ret;
2546 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2547 uint64_t value)
2549 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2552 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2554 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2557 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2558 uint64_t value)
2560 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2563 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2565 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2568 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2570 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2572 if (!u32p) {
2573 return 0;
2576 u32p += env->pmsav7.rnr[M_REG_NS];
2577 return *u32p;
2580 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2581 uint64_t value)
2583 ARMCPU *cpu = arm_env_get_cpu(env);
2584 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2586 if (!u32p) {
2587 return;
2590 u32p += env->pmsav7.rnr[M_REG_NS];
2591 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2592 *u32p = value;
2595 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2596 uint64_t value)
2598 ARMCPU *cpu = arm_env_get_cpu(env);
2599 uint32_t nrgs = cpu->pmsav7_dregion;
2601 if (value >= nrgs) {
2602 qemu_log_mask(LOG_GUEST_ERROR,
2603 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2604 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2605 return;
2608 raw_write(env, ri, value);
2611 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2612 /* Reset for all these registers is handled in arm_cpu_reset(),
2613 * because the PMSAv7 is also used by M-profile CPUs, which do
2614 * not register cpregs but still need the state to be reset.
2616 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2617 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2618 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2619 .readfn = pmsav7_read, .writefn = pmsav7_write,
2620 .resetfn = arm_cp_reset_ignore },
2621 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2622 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2623 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2624 .readfn = pmsav7_read, .writefn = pmsav7_write,
2625 .resetfn = arm_cp_reset_ignore },
2626 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2627 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2628 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2629 .readfn = pmsav7_read, .writefn = pmsav7_write,
2630 .resetfn = arm_cp_reset_ignore },
2631 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2632 .access = PL1_RW,
2633 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
2634 .writefn = pmsav7_rgnr_write,
2635 .resetfn = arm_cp_reset_ignore },
2636 REGINFO_SENTINEL
2639 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2640 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2641 .access = PL1_RW, .type = ARM_CP_ALIAS,
2642 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2643 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2644 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2645 .access = PL1_RW, .type = ARM_CP_ALIAS,
2646 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2647 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2648 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2649 .access = PL1_RW,
2650 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2651 .resetvalue = 0, },
2652 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2653 .access = PL1_RW,
2654 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2655 .resetvalue = 0, },
2656 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2657 .access = PL1_RW,
2658 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2659 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2660 .access = PL1_RW,
2661 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2662 /* Protection region base and size registers */
2663 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2664 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2665 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2666 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2667 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2668 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2669 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2670 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2671 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2672 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2673 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2674 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2675 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2676 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2677 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2678 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2679 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2680 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2681 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2682 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2683 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2684 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2685 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2686 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2687 REGINFO_SENTINEL
2690 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2691 uint64_t value)
2693 TCR *tcr = raw_ptr(env, ri);
2694 int maskshift = extract32(value, 0, 3);
2696 if (!arm_feature(env, ARM_FEATURE_V8)) {
2697 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2698 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2699 * using Long-desciptor translation table format */
2700 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2701 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2702 /* In an implementation that includes the Security Extensions
2703 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2704 * Short-descriptor translation table format.
2706 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2707 } else {
2708 value &= TTBCR_N;
2712 /* Update the masks corresponding to the TCR bank being written
2713 * Note that we always calculate mask and base_mask, but
2714 * they are only used for short-descriptor tables (ie if EAE is 0);
2715 * for long-descriptor tables the TCR fields are used differently
2716 * and the mask and base_mask values are meaningless.
2718 tcr->raw_tcr = value;
2719 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2720 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2723 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2724 uint64_t value)
2726 ARMCPU *cpu = arm_env_get_cpu(env);
2728 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2729 /* With LPAE the TTBCR could result in a change of ASID
2730 * via the TTBCR.A1 bit, so do a TLB flush.
2732 tlb_flush(CPU(cpu));
2734 vmsa_ttbcr_raw_write(env, ri, value);
2737 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2739 TCR *tcr = raw_ptr(env, ri);
2741 /* Reset both the TCR as well as the masks corresponding to the bank of
2742 * the TCR being reset.
2744 tcr->raw_tcr = 0;
2745 tcr->mask = 0;
2746 tcr->base_mask = 0xffffc000u;
2749 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2750 uint64_t value)
2752 ARMCPU *cpu = arm_env_get_cpu(env);
2753 TCR *tcr = raw_ptr(env, ri);
2755 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2756 tlb_flush(CPU(cpu));
2757 tcr->raw_tcr = value;
2760 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2761 uint64_t value)
2763 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
2764 if (cpreg_field_is_64bit(ri) &&
2765 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
2766 ARMCPU *cpu = arm_env_get_cpu(env);
2767 tlb_flush(CPU(cpu));
2769 raw_write(env, ri, value);
2772 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2773 uint64_t value)
2775 ARMCPU *cpu = arm_env_get_cpu(env);
2776 CPUState *cs = CPU(cpu);
2778 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2779 if (raw_read(env, ri) != value) {
2780 tlb_flush_by_mmuidx(cs,
2781 ARMMMUIdxBit_S12NSE1 |
2782 ARMMMUIdxBit_S12NSE0 |
2783 ARMMMUIdxBit_S2NS);
2784 raw_write(env, ri, value);
2788 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2789 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2790 .access = PL1_RW, .type = ARM_CP_ALIAS,
2791 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2792 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2793 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2794 .access = PL1_RW, .resetvalue = 0,
2795 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2796 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2797 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2798 .access = PL1_RW, .resetvalue = 0,
2799 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2800 offsetof(CPUARMState, cp15.dfar_ns) } },
2801 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2802 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2803 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2804 .resetvalue = 0, },
2805 REGINFO_SENTINEL
2808 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2809 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2810 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2811 .access = PL1_RW,
2812 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2813 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2814 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2815 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2816 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2817 offsetof(CPUARMState, cp15.ttbr0_ns) } },
2818 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2819 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2820 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2821 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2822 offsetof(CPUARMState, cp15.ttbr1_ns) } },
2823 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2824 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2825 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2826 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2827 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2828 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2829 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2830 .raw_writefn = vmsa_ttbcr_raw_write,
2831 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2832 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2833 REGINFO_SENTINEL
2836 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2837 uint64_t value)
2839 env->cp15.c15_ticonfig = value & 0xe7;
2840 /* The OS_TYPE bit in this register changes the reported CPUID! */
2841 env->cp15.c0_cpuid = (value & (1 << 5)) ?
2842 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2845 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2846 uint64_t value)
2848 env->cp15.c15_threadid = value & 0xffff;
2851 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2852 uint64_t value)
2854 /* Wait-for-interrupt (deprecated) */
2855 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2858 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2859 uint64_t value)
2861 /* On OMAP there are registers indicating the max/min index of dcache lines
2862 * containing a dirty line; cache flush operations have to reset these.
2864 env->cp15.c15_i_max = 0x000;
2865 env->cp15.c15_i_min = 0xff0;
2868 static const ARMCPRegInfo omap_cp_reginfo[] = {
2869 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2870 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2871 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2872 .resetvalue = 0, },
2873 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2874 .access = PL1_RW, .type = ARM_CP_NOP },
2875 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2876 .access = PL1_RW,
2877 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2878 .writefn = omap_ticonfig_write },
2879 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2880 .access = PL1_RW,
2881 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2882 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2883 .access = PL1_RW, .resetvalue = 0xff0,
2884 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2885 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2886 .access = PL1_RW,
2887 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2888 .writefn = omap_threadid_write },
2889 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2890 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2891 .type = ARM_CP_NO_RAW,
2892 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2893 /* TODO: Peripheral port remap register:
2894 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2895 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2896 * when MMU is off.
2898 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2899 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2900 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2901 .writefn = omap_cachemaint_write },
2902 { .name = "C9", .cp = 15, .crn = 9,
2903 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2904 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2905 REGINFO_SENTINEL
2908 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2909 uint64_t value)
2911 env->cp15.c15_cpar = value & 0x3fff;
2914 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2915 { .name = "XSCALE_CPAR",
2916 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2917 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2918 .writefn = xscale_cpar_write, },
2919 { .name = "XSCALE_AUXCR",
2920 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2921 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2922 .resetvalue = 0, },
2923 /* XScale specific cache-lockdown: since we have no cache we NOP these
2924 * and hope the guest does not really rely on cache behaviour.
2926 { .name = "XSCALE_LOCK_ICACHE_LINE",
2927 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2928 .access = PL1_W, .type = ARM_CP_NOP },
2929 { .name = "XSCALE_UNLOCK_ICACHE",
2930 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2931 .access = PL1_W, .type = ARM_CP_NOP },
2932 { .name = "XSCALE_DCACHE_LOCK",
2933 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2934 .access = PL1_RW, .type = ARM_CP_NOP },
2935 { .name = "XSCALE_UNLOCK_DCACHE",
2936 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2937 .access = PL1_W, .type = ARM_CP_NOP },
2938 REGINFO_SENTINEL
2941 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2942 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2943 * implementation of this implementation-defined space.
2944 * Ideally this should eventually disappear in favour of actually
2945 * implementing the correct behaviour for all cores.
2947 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2948 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2949 .access = PL1_RW,
2950 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2951 .resetvalue = 0 },
2952 REGINFO_SENTINEL
2955 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2956 /* Cache status: RAZ because we have no cache so it's always clean */
2957 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2958 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2959 .resetvalue = 0 },
2960 REGINFO_SENTINEL
2963 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2964 /* We never have a a block transfer operation in progress */
2965 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2966 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2967 .resetvalue = 0 },
2968 /* The cache ops themselves: these all NOP for QEMU */
2969 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2970 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2971 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2972 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2973 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2974 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2975 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2976 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2977 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2978 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2979 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2980 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2981 REGINFO_SENTINEL
2984 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2985 /* The cache test-and-clean instructions always return (1 << 30)
2986 * to indicate that there are no dirty cache lines.
2988 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2989 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2990 .resetvalue = (1 << 30) },
2991 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2992 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2993 .resetvalue = (1 << 30) },
2994 REGINFO_SENTINEL
2997 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2998 /* Ignore ReadBuffer accesses */
2999 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
3000 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3001 .access = PL1_RW, .resetvalue = 0,
3002 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
3003 REGINFO_SENTINEL
3006 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3008 ARMCPU *cpu = arm_env_get_cpu(env);
3009 unsigned int cur_el = arm_current_el(env);
3010 bool secure = arm_is_secure(env);
3012 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3013 return env->cp15.vpidr_el2;
3015 return raw_read(env, ri);
3018 static uint64_t mpidr_read_val(CPUARMState *env)
3020 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
3021 uint64_t mpidr = cpu->mp_affinity;
3023 if (arm_feature(env, ARM_FEATURE_V7MP)) {
3024 mpidr |= (1U << 31);
3025 /* Cores which are uniprocessor (non-coherent)
3026 * but still implement the MP extensions set
3027 * bit 30. (For instance, Cortex-R5).
3029 if (cpu->mp_is_up) {
3030 mpidr |= (1u << 30);
3033 return mpidr;
3036 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3038 unsigned int cur_el = arm_current_el(env);
3039 bool secure = arm_is_secure(env);
3041 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3042 return env->cp15.vmpidr_el2;
3044 return mpidr_read_val(env);
3047 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
3048 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
3049 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
3050 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
3051 REGINFO_SENTINEL
3054 static const ARMCPRegInfo lpae_cp_reginfo[] = {
3055 /* NOP AMAIR0/1 */
3056 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
3057 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
3058 .access = PL1_RW, .type = ARM_CP_CONST,
3059 .resetvalue = 0 },
3060 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
3061 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
3062 .access = PL1_RW, .type = ARM_CP_CONST,
3063 .resetvalue = 0 },
3064 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
3065 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
3066 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
3067 offsetof(CPUARMState, cp15.par_ns)} },
3068 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
3069 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3070 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3071 offsetof(CPUARMState, cp15.ttbr0_ns) },
3072 .writefn = vmsa_ttbr_write, },
3073 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
3074 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3075 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3076 offsetof(CPUARMState, cp15.ttbr1_ns) },
3077 .writefn = vmsa_ttbr_write, },
3078 REGINFO_SENTINEL
3081 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3083 return vfp_get_fpcr(env);
3086 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3087 uint64_t value)
3089 vfp_set_fpcr(env, value);
3092 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3094 return vfp_get_fpsr(env);
3097 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3098 uint64_t value)
3100 vfp_set_fpsr(env, value);
3103 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
3104 bool isread)
3106 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
3107 return CP_ACCESS_TRAP;
3109 return CP_ACCESS_OK;
3112 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
3113 uint64_t value)
3115 env->daif = value & PSTATE_DAIF;
3118 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3119 const ARMCPRegInfo *ri,
3120 bool isread)
3122 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
3123 * SCTLR_EL1.UCI is set.
3125 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
3126 return CP_ACCESS_TRAP;
3128 return CP_ACCESS_OK;
3131 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
3132 * Page D4-1736 (DDI0487A.b)
3135 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3136 uint64_t value)
3138 CPUState *cs = ENV_GET_CPU(env);
3139 bool sec = arm_is_secure_below_el3(env);
3141 if (sec) {
3142 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3143 ARMMMUIdxBit_S1SE1 |
3144 ARMMMUIdxBit_S1SE0);
3145 } else {
3146 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3147 ARMMMUIdxBit_S12NSE1 |
3148 ARMMMUIdxBit_S12NSE0);
3152 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3153 uint64_t value)
3155 CPUState *cs = ENV_GET_CPU(env);
3157 if (tlb_force_broadcast(env)) {
3158 tlbi_aa64_vmalle1is_write(env, NULL, value);
3159 return;
3162 if (arm_is_secure_below_el3(env)) {
3163 tlb_flush_by_mmuidx(cs,
3164 ARMMMUIdxBit_S1SE1 |
3165 ARMMMUIdxBit_S1SE0);
3166 } else {
3167 tlb_flush_by_mmuidx(cs,
3168 ARMMMUIdxBit_S12NSE1 |
3169 ARMMMUIdxBit_S12NSE0);
3173 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3174 uint64_t value)
3176 /* Note that the 'ALL' scope must invalidate both stage 1 and
3177 * stage 2 translations, whereas most other scopes only invalidate
3178 * stage 1 translations.
3180 ARMCPU *cpu = arm_env_get_cpu(env);
3181 CPUState *cs = CPU(cpu);
3183 if (arm_is_secure_below_el3(env)) {
3184 tlb_flush_by_mmuidx(cs,
3185 ARMMMUIdxBit_S1SE1 |
3186 ARMMMUIdxBit_S1SE0);
3187 } else {
3188 if (arm_feature(env, ARM_FEATURE_EL2)) {
3189 tlb_flush_by_mmuidx(cs,
3190 ARMMMUIdxBit_S12NSE1 |
3191 ARMMMUIdxBit_S12NSE0 |
3192 ARMMMUIdxBit_S2NS);
3193 } else {
3194 tlb_flush_by_mmuidx(cs,
3195 ARMMMUIdxBit_S12NSE1 |
3196 ARMMMUIdxBit_S12NSE0);
3201 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3202 uint64_t value)
3204 ARMCPU *cpu = arm_env_get_cpu(env);
3205 CPUState *cs = CPU(cpu);
3207 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3210 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3211 uint64_t value)
3213 ARMCPU *cpu = arm_env_get_cpu(env);
3214 CPUState *cs = CPU(cpu);
3216 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3219 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3220 uint64_t value)
3222 /* Note that the 'ALL' scope must invalidate both stage 1 and
3223 * stage 2 translations, whereas most other scopes only invalidate
3224 * stage 1 translations.
3226 CPUState *cs = ENV_GET_CPU(env);
3227 bool sec = arm_is_secure_below_el3(env);
3228 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3230 if (sec) {
3231 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3232 ARMMMUIdxBit_S1SE1 |
3233 ARMMMUIdxBit_S1SE0);
3234 } else if (has_el2) {
3235 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3236 ARMMMUIdxBit_S12NSE1 |
3237 ARMMMUIdxBit_S12NSE0 |
3238 ARMMMUIdxBit_S2NS);
3239 } else {
3240 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3241 ARMMMUIdxBit_S12NSE1 |
3242 ARMMMUIdxBit_S12NSE0);
3246 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3247 uint64_t value)
3249 CPUState *cs = ENV_GET_CPU(env);
3251 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3254 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3255 uint64_t value)
3257 CPUState *cs = ENV_GET_CPU(env);
3259 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3262 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3263 uint64_t value)
3265 /* Invalidate by VA, EL2
3266 * Currently handles both VAE2 and VALE2, since we don't support
3267 * flush-last-level-only.
3269 ARMCPU *cpu = arm_env_get_cpu(env);
3270 CPUState *cs = CPU(cpu);
3271 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3273 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3276 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3277 uint64_t value)
3279 /* Invalidate by VA, EL3
3280 * Currently handles both VAE3 and VALE3, since we don't support
3281 * flush-last-level-only.
3283 ARMCPU *cpu = arm_env_get_cpu(env);
3284 CPUState *cs = CPU(cpu);
3285 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3287 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3290 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3291 uint64_t value)
3293 ARMCPU *cpu = arm_env_get_cpu(env);
3294 CPUState *cs = CPU(cpu);
3295 bool sec = arm_is_secure_below_el3(env);
3296 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3298 if (sec) {
3299 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3300 ARMMMUIdxBit_S1SE1 |
3301 ARMMMUIdxBit_S1SE0);
3302 } else {
3303 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3304 ARMMMUIdxBit_S12NSE1 |
3305 ARMMMUIdxBit_S12NSE0);
3309 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3310 uint64_t value)
3312 /* Invalidate by VA, EL1&0 (AArch64 version).
3313 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3314 * since we don't support flush-for-specific-ASID-only or
3315 * flush-last-level-only.
3317 ARMCPU *cpu = arm_env_get_cpu(env);
3318 CPUState *cs = CPU(cpu);
3319 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3321 if (tlb_force_broadcast(env)) {
3322 tlbi_aa64_vae1is_write(env, NULL, value);
3323 return;
3326 if (arm_is_secure_below_el3(env)) {
3327 tlb_flush_page_by_mmuidx(cs, pageaddr,
3328 ARMMMUIdxBit_S1SE1 |
3329 ARMMMUIdxBit_S1SE0);
3330 } else {
3331 tlb_flush_page_by_mmuidx(cs, pageaddr,
3332 ARMMMUIdxBit_S12NSE1 |
3333 ARMMMUIdxBit_S12NSE0);
3337 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3338 uint64_t value)
3340 CPUState *cs = ENV_GET_CPU(env);
3341 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3343 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3344 ARMMMUIdxBit_S1E2);
3347 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3348 uint64_t value)
3350 CPUState *cs = ENV_GET_CPU(env);
3351 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3353 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3354 ARMMMUIdxBit_S1E3);
3357 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3358 uint64_t value)
3360 /* Invalidate by IPA. This has to invalidate any structures that
3361 * contain only stage 2 translation information, but does not need
3362 * to apply to structures that contain combined stage 1 and stage 2
3363 * translation information.
3364 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3366 ARMCPU *cpu = arm_env_get_cpu(env);
3367 CPUState *cs = CPU(cpu);
3368 uint64_t pageaddr;
3370 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3371 return;
3374 pageaddr = sextract64(value << 12, 0, 48);
3376 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
3379 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3380 uint64_t value)
3382 CPUState *cs = ENV_GET_CPU(env);
3383 uint64_t pageaddr;
3385 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3386 return;
3389 pageaddr = sextract64(value << 12, 0, 48);
3391 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3392 ARMMMUIdxBit_S2NS);
3395 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3396 bool isread)
3398 /* We don't implement EL2, so the only control on DC ZVA is the
3399 * bit in the SCTLR which can prohibit access for EL0.
3401 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3402 return CP_ACCESS_TRAP;
3404 return CP_ACCESS_OK;
3407 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3409 ARMCPU *cpu = arm_env_get_cpu(env);
3410 int dzp_bit = 1 << 4;
3412 /* DZP indicates whether DC ZVA access is allowed */
3413 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3414 dzp_bit = 0;
3416 return cpu->dcz_blocksize | dzp_bit;
3419 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3420 bool isread)
3422 if (!(env->pstate & PSTATE_SP)) {
3423 /* Access to SP_EL0 is undefined if it's being used as
3424 * the stack pointer.
3426 return CP_ACCESS_TRAP_UNCATEGORIZED;
3428 return CP_ACCESS_OK;
3431 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3433 return env->pstate & PSTATE_SP;
3436 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3438 update_spsel(env, val);
3441 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3442 uint64_t value)
3444 ARMCPU *cpu = arm_env_get_cpu(env);
3446 if (raw_read(env, ri) == value) {
3447 /* Skip the TLB flush if nothing actually changed; Linux likes
3448 * to do a lot of pointless SCTLR writes.
3450 return;
3453 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
3454 /* M bit is RAZ/WI for PMSA with no MPU implemented */
3455 value &= ~SCTLR_M;
3458 raw_write(env, ri, value);
3459 /* ??? Lots of these bits are not implemented. */
3460 /* This may enable/disable the MMU, so do a TLB flush. */
3461 tlb_flush(CPU(cpu));
3464 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3465 bool isread)
3467 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3468 return CP_ACCESS_TRAP_FP_EL2;
3470 if (env->cp15.cptr_el[3] & CPTR_TFP) {
3471 return CP_ACCESS_TRAP_FP_EL3;
3473 return CP_ACCESS_OK;
3476 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3477 uint64_t value)
3479 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3482 static const ARMCPRegInfo v8_cp_reginfo[] = {
3483 /* Minimal set of EL0-visible registers. This will need to be expanded
3484 * significantly for system emulation of AArch64 CPUs.
3486 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3487 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3488 .access = PL0_RW, .type = ARM_CP_NZCV },
3489 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3490 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3491 .type = ARM_CP_NO_RAW,
3492 .access = PL0_RW, .accessfn = aa64_daif_access,
3493 .fieldoffset = offsetof(CPUARMState, daif),
3494 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3495 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3496 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3497 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
3498 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3499 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3500 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3501 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
3502 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3503 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3504 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3505 .access = PL0_R, .type = ARM_CP_NO_RAW,
3506 .readfn = aa64_dczid_read },
3507 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3508 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3509 .access = PL0_W, .type = ARM_CP_DC_ZVA,
3510 #ifndef CONFIG_USER_ONLY
3511 /* Avoid overhead of an access check that always passes in user-mode */
3512 .accessfn = aa64_zva_access,
3513 #endif
3515 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3516 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3517 .access = PL1_R, .type = ARM_CP_CURRENTEL },
3518 /* Cache ops: all NOPs since we don't emulate caches */
3519 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3520 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3521 .access = PL1_W, .type = ARM_CP_NOP },
3522 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3523 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3524 .access = PL1_W, .type = ARM_CP_NOP },
3525 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3526 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3527 .access = PL0_W, .type = ARM_CP_NOP,
3528 .accessfn = aa64_cacheop_access },
3529 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3530 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3531 .access = PL1_W, .type = ARM_CP_NOP },
3532 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3533 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3534 .access = PL1_W, .type = ARM_CP_NOP },
3535 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3536 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3537 .access = PL0_W, .type = ARM_CP_NOP,
3538 .accessfn = aa64_cacheop_access },
3539 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3540 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3541 .access = PL1_W, .type = ARM_CP_NOP },
3542 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3543 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3544 .access = PL0_W, .type = ARM_CP_NOP,
3545 .accessfn = aa64_cacheop_access },
3546 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3547 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3548 .access = PL0_W, .type = ARM_CP_NOP,
3549 .accessfn = aa64_cacheop_access },
3550 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3551 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3552 .access = PL1_W, .type = ARM_CP_NOP },
3553 /* TLBI operations */
3554 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3555 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3556 .access = PL1_W, .type = ARM_CP_NO_RAW,
3557 .writefn = tlbi_aa64_vmalle1is_write },
3558 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3559 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3560 .access = PL1_W, .type = ARM_CP_NO_RAW,
3561 .writefn = tlbi_aa64_vae1is_write },
3562 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3563 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3564 .access = PL1_W, .type = ARM_CP_NO_RAW,
3565 .writefn = tlbi_aa64_vmalle1is_write },
3566 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3567 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3568 .access = PL1_W, .type = ARM_CP_NO_RAW,
3569 .writefn = tlbi_aa64_vae1is_write },
3570 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3571 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3572 .access = PL1_W, .type = ARM_CP_NO_RAW,
3573 .writefn = tlbi_aa64_vae1is_write },
3574 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3575 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3576 .access = PL1_W, .type = ARM_CP_NO_RAW,
3577 .writefn = tlbi_aa64_vae1is_write },
3578 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3579 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3580 .access = PL1_W, .type = ARM_CP_NO_RAW,
3581 .writefn = tlbi_aa64_vmalle1_write },
3582 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3583 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3584 .access = PL1_W, .type = ARM_CP_NO_RAW,
3585 .writefn = tlbi_aa64_vae1_write },
3586 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3587 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3588 .access = PL1_W, .type = ARM_CP_NO_RAW,
3589 .writefn = tlbi_aa64_vmalle1_write },
3590 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3591 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3592 .access = PL1_W, .type = ARM_CP_NO_RAW,
3593 .writefn = tlbi_aa64_vae1_write },
3594 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3595 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3596 .access = PL1_W, .type = ARM_CP_NO_RAW,
3597 .writefn = tlbi_aa64_vae1_write },
3598 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3599 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3600 .access = PL1_W, .type = ARM_CP_NO_RAW,
3601 .writefn = tlbi_aa64_vae1_write },
3602 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3603 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3604 .access = PL2_W, .type = ARM_CP_NO_RAW,
3605 .writefn = tlbi_aa64_ipas2e1is_write },
3606 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3607 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3608 .access = PL2_W, .type = ARM_CP_NO_RAW,
3609 .writefn = tlbi_aa64_ipas2e1is_write },
3610 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3611 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3612 .access = PL2_W, .type = ARM_CP_NO_RAW,
3613 .writefn = tlbi_aa64_alle1is_write },
3614 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3615 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3616 .access = PL2_W, .type = ARM_CP_NO_RAW,
3617 .writefn = tlbi_aa64_alle1is_write },
3618 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3619 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3620 .access = PL2_W, .type = ARM_CP_NO_RAW,
3621 .writefn = tlbi_aa64_ipas2e1_write },
3622 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3623 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3624 .access = PL2_W, .type = ARM_CP_NO_RAW,
3625 .writefn = tlbi_aa64_ipas2e1_write },
3626 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3627 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3628 .access = PL2_W, .type = ARM_CP_NO_RAW,
3629 .writefn = tlbi_aa64_alle1_write },
3630 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3631 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3632 .access = PL2_W, .type = ARM_CP_NO_RAW,
3633 .writefn = tlbi_aa64_alle1is_write },
3634 #ifndef CONFIG_USER_ONLY
3635 /* 64 bit address translation operations */
3636 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3637 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3638 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3639 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3640 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3641 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3642 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3643 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3644 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3645 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3646 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3647 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3648 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3649 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3650 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3651 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3652 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3653 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3654 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3655 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3656 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3657 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3658 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3659 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3660 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3661 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3662 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3663 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3664 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3665 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3666 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3667 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3668 .type = ARM_CP_ALIAS,
3669 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3670 .access = PL1_RW, .resetvalue = 0,
3671 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3672 .writefn = par_write },
3673 #endif
3674 /* TLB invalidate last level of translation table walk */
3675 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3676 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3677 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3678 .type = ARM_CP_NO_RAW, .access = PL1_W,
3679 .writefn = tlbimvaa_is_write },
3680 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3681 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3682 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3683 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3684 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3685 .type = ARM_CP_NO_RAW, .access = PL2_W,
3686 .writefn = tlbimva_hyp_write },
3687 { .name = "TLBIMVALHIS",
3688 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3689 .type = ARM_CP_NO_RAW, .access = PL2_W,
3690 .writefn = tlbimva_hyp_is_write },
3691 { .name = "TLBIIPAS2",
3692 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3693 .type = ARM_CP_NO_RAW, .access = PL2_W,
3694 .writefn = tlbiipas2_write },
3695 { .name = "TLBIIPAS2IS",
3696 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3697 .type = ARM_CP_NO_RAW, .access = PL2_W,
3698 .writefn = tlbiipas2_is_write },
3699 { .name = "TLBIIPAS2L",
3700 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3701 .type = ARM_CP_NO_RAW, .access = PL2_W,
3702 .writefn = tlbiipas2_write },
3703 { .name = "TLBIIPAS2LIS",
3704 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3705 .type = ARM_CP_NO_RAW, .access = PL2_W,
3706 .writefn = tlbiipas2_is_write },
3707 /* 32 bit cache operations */
3708 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3709 .type = ARM_CP_NOP, .access = PL1_W },
3710 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3711 .type = ARM_CP_NOP, .access = PL1_W },
3712 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3713 .type = ARM_CP_NOP, .access = PL1_W },
3714 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3715 .type = ARM_CP_NOP, .access = PL1_W },
3716 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3717 .type = ARM_CP_NOP, .access = PL1_W },
3718 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3719 .type = ARM_CP_NOP, .access = PL1_W },
3720 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3721 .type = ARM_CP_NOP, .access = PL1_W },
3722 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3723 .type = ARM_CP_NOP, .access = PL1_W },
3724 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3725 .type = ARM_CP_NOP, .access = PL1_W },
3726 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3727 .type = ARM_CP_NOP, .access = PL1_W },
3728 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3729 .type = ARM_CP_NOP, .access = PL1_W },
3730 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3731 .type = ARM_CP_NOP, .access = PL1_W },
3732 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3733 .type = ARM_CP_NOP, .access = PL1_W },
3734 /* MMU Domain access control / MPU write buffer control */
3735 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3736 .access = PL1_RW, .resetvalue = 0,
3737 .writefn = dacr_write, .raw_writefn = raw_write,
3738 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3739 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3740 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3741 .type = ARM_CP_ALIAS,
3742 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3743 .access = PL1_RW,
3744 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3745 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3746 .type = ARM_CP_ALIAS,
3747 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3748 .access = PL1_RW,
3749 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3750 /* We rely on the access checks not allowing the guest to write to the
3751 * state field when SPSel indicates that it's being used as the stack
3752 * pointer.
3754 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3755 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3756 .access = PL1_RW, .accessfn = sp_el0_access,
3757 .type = ARM_CP_ALIAS,
3758 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3759 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3760 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3761 .access = PL2_RW, .type = ARM_CP_ALIAS,
3762 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3763 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3764 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3765 .type = ARM_CP_NO_RAW,
3766 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3767 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3768 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3769 .type = ARM_CP_ALIAS,
3770 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3771 .access = PL2_RW, .accessfn = fpexc32_access },
3772 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3773 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3774 .access = PL2_RW, .resetvalue = 0,
3775 .writefn = dacr_write, .raw_writefn = raw_write,
3776 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3777 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3778 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3779 .access = PL2_RW, .resetvalue = 0,
3780 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3781 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3782 .type = ARM_CP_ALIAS,
3783 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3784 .access = PL2_RW,
3785 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3786 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3787 .type = ARM_CP_ALIAS,
3788 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3789 .access = PL2_RW,
3790 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3791 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3792 .type = ARM_CP_ALIAS,
3793 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3794 .access = PL2_RW,
3795 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3796 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3797 .type = ARM_CP_ALIAS,
3798 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3799 .access = PL2_RW,
3800 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3801 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3802 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3803 .resetvalue = 0,
3804 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3805 { .name = "SDCR", .type = ARM_CP_ALIAS,
3806 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3807 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3808 .writefn = sdcr_write,
3809 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3810 REGINFO_SENTINEL
3813 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
3814 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3815 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
3816 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3817 .access = PL2_RW,
3818 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3819 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
3820 .type = ARM_CP_NO_RAW,
3821 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3822 .access = PL2_RW,
3823 .type = ARM_CP_CONST, .resetvalue = 0 },
3824 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
3825 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3826 .access = PL2_RW,
3827 .type = ARM_CP_CONST, .resetvalue = 0 },
3828 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3829 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3830 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3831 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3832 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3833 .access = PL2_RW, .type = ARM_CP_CONST,
3834 .resetvalue = 0 },
3835 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3836 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3837 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3838 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3839 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3840 .access = PL2_RW, .type = ARM_CP_CONST,
3841 .resetvalue = 0 },
3842 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
3843 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3844 .access = PL2_RW, .type = ARM_CP_CONST,
3845 .resetvalue = 0 },
3846 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3847 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3848 .access = PL2_RW, .type = ARM_CP_CONST,
3849 .resetvalue = 0 },
3850 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3851 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3852 .access = PL2_RW, .type = ARM_CP_CONST,
3853 .resetvalue = 0 },
3854 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3855 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3856 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3857 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3858 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3859 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3860 .type = ARM_CP_CONST, .resetvalue = 0 },
3861 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3862 .cp = 15, .opc1 = 6, .crm = 2,
3863 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3864 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3865 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3866 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3867 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3868 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3869 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3870 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3871 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3872 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3873 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3874 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3875 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3876 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3877 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3878 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3879 .resetvalue = 0 },
3880 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3881 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3882 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3883 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3884 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3885 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3886 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3887 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3888 .resetvalue = 0 },
3889 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3890 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3891 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3892 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3893 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3894 .resetvalue = 0 },
3895 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3896 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3897 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3898 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3899 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3900 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3901 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3902 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3903 .access = PL2_RW, .accessfn = access_tda,
3904 .type = ARM_CP_CONST, .resetvalue = 0 },
3905 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3906 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3907 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3908 .type = ARM_CP_CONST, .resetvalue = 0 },
3909 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3910 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3911 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3912 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
3913 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3914 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3915 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
3916 .type = ARM_CP_CONST,
3917 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
3918 .access = PL2_RW, .resetvalue = 0 },
3919 REGINFO_SENTINEL
3922 /* Ditto, but for registers which exist in ARMv8 but not v7 */
3923 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
3924 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
3925 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
3926 .access = PL2_RW,
3927 .type = ARM_CP_CONST, .resetvalue = 0 },
3928 REGINFO_SENTINEL
3931 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3933 ARMCPU *cpu = arm_env_get_cpu(env);
3934 uint64_t valid_mask = HCR_MASK;
3936 if (arm_feature(env, ARM_FEATURE_EL3)) {
3937 valid_mask &= ~HCR_HCD;
3938 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
3939 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
3940 * However, if we're using the SMC PSCI conduit then QEMU is
3941 * effectively acting like EL3 firmware and so the guest at
3942 * EL2 should retain the ability to prevent EL1 from being
3943 * able to make SMC calls into the ersatz firmware, so in
3944 * that case HCR.TSC should be read/write.
3946 valid_mask &= ~HCR_TSC;
3949 /* Clear RES0 bits. */
3950 value &= valid_mask;
3952 /* These bits change the MMU setup:
3953 * HCR_VM enables stage 2 translation
3954 * HCR_PTW forbids certain page-table setups
3955 * HCR_DC Disables stage1 and enables stage2 translation
3957 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3958 tlb_flush(CPU(cpu));
3960 env->cp15.hcr_el2 = value;
3963 * Updates to VI and VF require us to update the status of
3964 * virtual interrupts, which are the logical OR of these bits
3965 * and the state of the input lines from the GIC. (This requires
3966 * that we have the iothread lock, which is done by marking the
3967 * reginfo structs as ARM_CP_IO.)
3968 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
3969 * possible for it to be taken immediately, because VIRQ and
3970 * VFIQ are masked unless running at EL0 or EL1, and HCR
3971 * can only be written at EL2.
3973 g_assert(qemu_mutex_iothread_locked());
3974 arm_cpu_update_virq(cpu);
3975 arm_cpu_update_vfiq(cpu);
3978 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
3979 uint64_t value)
3981 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
3982 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
3983 hcr_write(env, NULL, value);
3986 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
3987 uint64_t value)
3989 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
3990 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
3991 hcr_write(env, NULL, value);
3994 static const ARMCPRegInfo el2_cp_reginfo[] = {
3995 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3996 .type = ARM_CP_IO,
3997 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3998 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3999 .writefn = hcr_write },
4000 { .name = "HCR", .state = ARM_CP_STATE_AA32,
4001 .type = ARM_CP_ALIAS | ARM_CP_IO,
4002 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4003 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4004 .writefn = hcr_writelow },
4005 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
4006 .type = ARM_CP_ALIAS,
4007 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
4008 .access = PL2_RW,
4009 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
4010 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4011 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4012 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
4013 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4014 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4015 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
4016 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4017 .type = ARM_CP_ALIAS,
4018 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4019 .access = PL2_RW,
4020 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
4021 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
4022 .type = ARM_CP_ALIAS,
4023 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
4024 .access = PL2_RW,
4025 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
4026 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4027 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4028 .access = PL2_RW, .writefn = vbar_write,
4029 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
4030 .resetvalue = 0 },
4031 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
4032 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
4033 .access = PL3_RW, .type = ARM_CP_ALIAS,
4034 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
4035 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4036 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4037 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
4038 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
4039 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4040 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4041 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
4042 .resetvalue = 0 },
4043 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4044 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4045 .access = PL2_RW, .type = ARM_CP_ALIAS,
4046 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
4047 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4048 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4049 .access = PL2_RW, .type = ARM_CP_CONST,
4050 .resetvalue = 0 },
4051 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
4052 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4053 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4054 .access = PL2_RW, .type = ARM_CP_CONST,
4055 .resetvalue = 0 },
4056 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4057 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4058 .access = PL2_RW, .type = ARM_CP_CONST,
4059 .resetvalue = 0 },
4060 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4061 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4062 .access = PL2_RW, .type = ARM_CP_CONST,
4063 .resetvalue = 0 },
4064 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4065 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4066 .access = PL2_RW,
4067 /* no .writefn needed as this can't cause an ASID change;
4068 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4070 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
4071 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
4072 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4073 .type = ARM_CP_ALIAS,
4074 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4075 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4076 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
4077 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4078 .access = PL2_RW,
4079 /* no .writefn needed as this can't cause an ASID change;
4080 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4082 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4083 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4084 .cp = 15, .opc1 = 6, .crm = 2,
4085 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4086 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4087 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
4088 .writefn = vttbr_write },
4089 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4090 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4091 .access = PL2_RW, .writefn = vttbr_write,
4092 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
4093 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4094 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4095 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
4096 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
4097 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4098 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4099 .access = PL2_RW, .resetvalue = 0,
4100 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
4101 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4102 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4103 .access = PL2_RW, .resetvalue = 0,
4104 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4105 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4106 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4107 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4108 { .name = "TLBIALLNSNH",
4109 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4110 .type = ARM_CP_NO_RAW, .access = PL2_W,
4111 .writefn = tlbiall_nsnh_write },
4112 { .name = "TLBIALLNSNHIS",
4113 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4114 .type = ARM_CP_NO_RAW, .access = PL2_W,
4115 .writefn = tlbiall_nsnh_is_write },
4116 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4117 .type = ARM_CP_NO_RAW, .access = PL2_W,
4118 .writefn = tlbiall_hyp_write },
4119 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4120 .type = ARM_CP_NO_RAW, .access = PL2_W,
4121 .writefn = tlbiall_hyp_is_write },
4122 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4123 .type = ARM_CP_NO_RAW, .access = PL2_W,
4124 .writefn = tlbimva_hyp_write },
4125 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4126 .type = ARM_CP_NO_RAW, .access = PL2_W,
4127 .writefn = tlbimva_hyp_is_write },
4128 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
4129 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4130 .type = ARM_CP_NO_RAW, .access = PL2_W,
4131 .writefn = tlbi_aa64_alle2_write },
4132 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
4133 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4134 .type = ARM_CP_NO_RAW, .access = PL2_W,
4135 .writefn = tlbi_aa64_vae2_write },
4136 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
4137 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4138 .access = PL2_W, .type = ARM_CP_NO_RAW,
4139 .writefn = tlbi_aa64_vae2_write },
4140 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
4141 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4142 .access = PL2_W, .type = ARM_CP_NO_RAW,
4143 .writefn = tlbi_aa64_alle2is_write },
4144 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
4145 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4146 .type = ARM_CP_NO_RAW, .access = PL2_W,
4147 .writefn = tlbi_aa64_vae2is_write },
4148 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
4149 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4150 .access = PL2_W, .type = ARM_CP_NO_RAW,
4151 .writefn = tlbi_aa64_vae2is_write },
4152 #ifndef CONFIG_USER_ONLY
4153 /* Unlike the other EL2-related AT operations, these must
4154 * UNDEF from EL3 if EL2 is not implemented, which is why we
4155 * define them here rather than with the rest of the AT ops.
4157 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
4158 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4159 .access = PL2_W, .accessfn = at_s1e2_access,
4160 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4161 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
4162 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4163 .access = PL2_W, .accessfn = at_s1e2_access,
4164 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4165 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
4166 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
4167 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
4168 * to behave as if SCR.NS was 1.
4170 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4171 .access = PL2_W,
4172 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4173 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4174 .access = PL2_W,
4175 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4176 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4177 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4178 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
4179 * reset values as IMPDEF. We choose to reset to 3 to comply with
4180 * both ARMv7 and ARMv8.
4182 .access = PL2_RW, .resetvalue = 3,
4183 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
4184 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4185 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4186 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
4187 .writefn = gt_cntvoff_write,
4188 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4189 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4190 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
4191 .writefn = gt_cntvoff_write,
4192 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4193 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4194 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4195 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4196 .type = ARM_CP_IO, .access = PL2_RW,
4197 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4198 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4199 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4200 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
4201 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4202 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4203 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4204 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
4205 .resetfn = gt_hyp_timer_reset,
4206 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
4207 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4208 .type = ARM_CP_IO,
4209 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4210 .access = PL2_RW,
4211 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
4212 .resetvalue = 0,
4213 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
4214 #endif
4215 /* The only field of MDCR_EL2 that has a defined architectural reset value
4216 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
4217 * don't impelment any PMU event counters, so using zero as a reset
4218 * value for MDCR_EL2 is okay
4220 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4221 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4222 .access = PL2_RW, .resetvalue = 0,
4223 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
4224 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
4225 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4226 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4227 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4228 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
4229 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4230 .access = PL2_RW,
4231 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4232 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4233 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4234 .access = PL2_RW,
4235 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
4236 REGINFO_SENTINEL
4239 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
4240 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4241 .type = ARM_CP_ALIAS | ARM_CP_IO,
4242 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4243 .access = PL2_RW,
4244 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
4245 .writefn = hcr_writehigh },
4246 REGINFO_SENTINEL
4249 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
4250 bool isread)
4252 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
4253 * At Secure EL1 it traps to EL3.
4255 if (arm_current_el(env) == 3) {
4256 return CP_ACCESS_OK;
4258 if (arm_is_secure_below_el3(env)) {
4259 return CP_ACCESS_TRAP_EL3;
4261 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4262 if (isread) {
4263 return CP_ACCESS_OK;
4265 return CP_ACCESS_TRAP_UNCATEGORIZED;
4268 static const ARMCPRegInfo el3_cp_reginfo[] = {
4269 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
4270 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
4271 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
4272 .resetvalue = 0, .writefn = scr_write },
4273 { .name = "SCR", .type = ARM_CP_ALIAS,
4274 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
4275 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4276 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
4277 .writefn = scr_write },
4278 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4279 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4280 .access = PL3_RW, .resetvalue = 0,
4281 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4282 { .name = "SDER",
4283 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4284 .access = PL3_RW, .resetvalue = 0,
4285 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
4286 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4287 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4288 .writefn = vbar_write, .resetvalue = 0,
4289 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
4290 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4291 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4292 .access = PL3_RW, .resetvalue = 0,
4293 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
4294 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4295 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4296 .access = PL3_RW,
4297 /* no .writefn needed as this can't cause an ASID change;
4298 * we must provide a .raw_writefn and .resetfn because we handle
4299 * reset and migration for the AArch32 TTBCR(S), which might be
4300 * using mask and base_mask.
4302 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
4303 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4304 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4305 .type = ARM_CP_ALIAS,
4306 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4307 .access = PL3_RW,
4308 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4309 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
4310 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4311 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4312 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4313 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4314 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
4315 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
4316 .type = ARM_CP_ALIAS,
4317 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
4318 .access = PL3_RW,
4319 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
4320 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4321 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4322 .access = PL3_RW, .writefn = vbar_write,
4323 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4324 .resetvalue = 0 },
4325 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4326 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4327 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4328 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4329 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4330 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
4331 .access = PL3_RW, .resetvalue = 0,
4332 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
4333 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
4334 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
4335 .access = PL3_RW, .type = ARM_CP_CONST,
4336 .resetvalue = 0 },
4337 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
4338 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
4339 .access = PL3_RW, .type = ARM_CP_CONST,
4340 .resetvalue = 0 },
4341 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
4342 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
4343 .access = PL3_RW, .type = ARM_CP_CONST,
4344 .resetvalue = 0 },
4345 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
4346 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
4347 .access = PL3_W, .type = ARM_CP_NO_RAW,
4348 .writefn = tlbi_aa64_alle3is_write },
4349 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
4350 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
4351 .access = PL3_W, .type = ARM_CP_NO_RAW,
4352 .writefn = tlbi_aa64_vae3is_write },
4353 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
4354 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
4355 .access = PL3_W, .type = ARM_CP_NO_RAW,
4356 .writefn = tlbi_aa64_vae3is_write },
4357 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
4358 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
4359 .access = PL3_W, .type = ARM_CP_NO_RAW,
4360 .writefn = tlbi_aa64_alle3_write },
4361 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
4362 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
4363 .access = PL3_W, .type = ARM_CP_NO_RAW,
4364 .writefn = tlbi_aa64_vae3_write },
4365 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
4366 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
4367 .access = PL3_W, .type = ARM_CP_NO_RAW,
4368 .writefn = tlbi_aa64_vae3_write },
4369 REGINFO_SENTINEL
4372 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4373 bool isread)
4375 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
4376 * but the AArch32 CTR has its own reginfo struct)
4378 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
4379 return CP_ACCESS_TRAP;
4381 return CP_ACCESS_OK;
4384 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4385 uint64_t value)
4387 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4388 * read via a bit in OSLSR_EL1.
4390 int oslock;
4392 if (ri->state == ARM_CP_STATE_AA32) {
4393 oslock = (value == 0xC5ACCE55);
4394 } else {
4395 oslock = value & 1;
4398 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4401 static const ARMCPRegInfo debug_cp_reginfo[] = {
4402 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4403 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4404 * unlike DBGDRAR it is never accessible from EL0.
4405 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4406 * accessor.
4408 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
4409 .access = PL0_R, .accessfn = access_tdra,
4410 .type = ARM_CP_CONST, .resetvalue = 0 },
4411 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4412 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4413 .access = PL1_R, .accessfn = access_tdra,
4414 .type = ARM_CP_CONST, .resetvalue = 0 },
4415 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4416 .access = PL0_R, .accessfn = access_tdra,
4417 .type = ARM_CP_CONST, .resetvalue = 0 },
4418 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4419 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4420 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4421 .access = PL1_RW, .accessfn = access_tda,
4422 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4423 .resetvalue = 0 },
4424 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4425 * We don't implement the configurable EL0 access.
4427 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4428 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4429 .type = ARM_CP_ALIAS,
4430 .access = PL1_R, .accessfn = access_tda,
4431 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
4432 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4433 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
4434 .access = PL1_W, .type = ARM_CP_NO_RAW,
4435 .accessfn = access_tdosa,
4436 .writefn = oslar_write },
4437 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4438 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4439 .access = PL1_R, .resetvalue = 10,
4440 .accessfn = access_tdosa,
4441 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
4442 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4443 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4444 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
4445 .access = PL1_RW, .accessfn = access_tdosa,
4446 .type = ARM_CP_NOP },
4447 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4448 * implement vector catch debug events yet.
4450 { .name = "DBGVCR",
4451 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4452 .access = PL1_RW, .accessfn = access_tda,
4453 .type = ARM_CP_NOP },
4454 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
4455 * to save and restore a 32-bit guest's DBGVCR)
4457 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
4458 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
4459 .access = PL2_RW, .accessfn = access_tda,
4460 .type = ARM_CP_NOP },
4461 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4462 * Channel but Linux may try to access this register. The 32-bit
4463 * alias is DBGDCCINT.
4465 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
4466 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4467 .access = PL1_RW, .accessfn = access_tda,
4468 .type = ARM_CP_NOP },
4469 REGINFO_SENTINEL
4472 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4473 /* 64 bit access versions of the (dummy) debug registers */
4474 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4475 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4476 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4477 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4478 REGINFO_SENTINEL
4481 /* Return the exception level to which exceptions should be taken
4482 * via SVEAccessTrap. If an exception should be routed through
4483 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
4484 * take care of raising that exception.
4485 * C.f. the ARM pseudocode function CheckSVEEnabled.
4487 int sve_exception_el(CPUARMState *env, int el)
4489 #ifndef CONFIG_USER_ONLY
4490 if (el <= 1) {
4491 bool disabled = false;
4493 /* The CPACR.ZEN controls traps to EL1:
4494 * 0, 2 : trap EL0 and EL1 accesses
4495 * 1 : trap only EL0 accesses
4496 * 3 : trap no accesses
4498 if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
4499 disabled = true;
4500 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
4501 disabled = el == 0;
4503 if (disabled) {
4504 /* route_to_el2 */
4505 return (arm_feature(env, ARM_FEATURE_EL2)
4506 && !arm_is_secure(env)
4507 && (env->cp15.hcr_el2 & HCR_TGE) ? 2 : 1);
4510 /* Check CPACR.FPEN. */
4511 if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
4512 disabled = true;
4513 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
4514 disabled = el == 0;
4516 if (disabled) {
4517 return 0;
4521 /* CPTR_EL2. Since TZ and TFP are positive,
4522 * they will be zero when EL2 is not present.
4524 if (el <= 2 && !arm_is_secure_below_el3(env)) {
4525 if (env->cp15.cptr_el[2] & CPTR_TZ) {
4526 return 2;
4528 if (env->cp15.cptr_el[2] & CPTR_TFP) {
4529 return 0;
4533 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
4534 if (arm_feature(env, ARM_FEATURE_EL3)
4535 && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
4536 return 3;
4538 #endif
4539 return 0;
4543 * Given that SVE is enabled, return the vector length for EL.
4545 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
4547 ARMCPU *cpu = arm_env_get_cpu(env);
4548 uint32_t zcr_len = cpu->sve_max_vq - 1;
4550 if (el <= 1) {
4551 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
4553 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
4554 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
4556 if (el < 3 && arm_feature(env, ARM_FEATURE_EL3)) {
4557 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
4559 return zcr_len;
4562 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4563 uint64_t value)
4565 int cur_el = arm_current_el(env);
4566 int old_len = sve_zcr_len_for_el(env, cur_el);
4567 int new_len;
4569 /* Bits other than [3:0] are RAZ/WI. */
4570 raw_write(env, ri, value & 0xf);
4573 * Because we arrived here, we know both FP and SVE are enabled;
4574 * otherwise we would have trapped access to the ZCR_ELn register.
4576 new_len = sve_zcr_len_for_el(env, cur_el);
4577 if (new_len < old_len) {
4578 aarch64_sve_narrow_vq(env, new_len + 1);
4582 static const ARMCPRegInfo zcr_el1_reginfo = {
4583 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
4584 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
4585 .access = PL1_RW, .type = ARM_CP_SVE,
4586 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
4587 .writefn = zcr_write, .raw_writefn = raw_write
4590 static const ARMCPRegInfo zcr_el2_reginfo = {
4591 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
4592 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
4593 .access = PL2_RW, .type = ARM_CP_SVE,
4594 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
4595 .writefn = zcr_write, .raw_writefn = raw_write
4598 static const ARMCPRegInfo zcr_no_el2_reginfo = {
4599 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
4600 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
4601 .access = PL2_RW, .type = ARM_CP_SVE,
4602 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
4605 static const ARMCPRegInfo zcr_el3_reginfo = {
4606 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
4607 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
4608 .access = PL3_RW, .type = ARM_CP_SVE,
4609 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
4610 .writefn = zcr_write, .raw_writefn = raw_write
4613 void hw_watchpoint_update(ARMCPU *cpu, int n)
4615 CPUARMState *env = &cpu->env;
4616 vaddr len = 0;
4617 vaddr wvr = env->cp15.dbgwvr[n];
4618 uint64_t wcr = env->cp15.dbgwcr[n];
4619 int mask;
4620 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4622 if (env->cpu_watchpoint[n]) {
4623 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4624 env->cpu_watchpoint[n] = NULL;
4627 if (!extract64(wcr, 0, 1)) {
4628 /* E bit clear : watchpoint disabled */
4629 return;
4632 switch (extract64(wcr, 3, 2)) {
4633 case 0:
4634 /* LSC 00 is reserved and must behave as if the wp is disabled */
4635 return;
4636 case 1:
4637 flags |= BP_MEM_READ;
4638 break;
4639 case 2:
4640 flags |= BP_MEM_WRITE;
4641 break;
4642 case 3:
4643 flags |= BP_MEM_ACCESS;
4644 break;
4647 /* Attempts to use both MASK and BAS fields simultaneously are
4648 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4649 * thus generating a watchpoint for every byte in the masked region.
4651 mask = extract64(wcr, 24, 4);
4652 if (mask == 1 || mask == 2) {
4653 /* Reserved values of MASK; we must act as if the mask value was
4654 * some non-reserved value, or as if the watchpoint were disabled.
4655 * We choose the latter.
4657 return;
4658 } else if (mask) {
4659 /* Watchpoint covers an aligned area up to 2GB in size */
4660 len = 1ULL << mask;
4661 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4662 * whether the watchpoint fires when the unmasked bits match; we opt
4663 * to generate the exceptions.
4665 wvr &= ~(len - 1);
4666 } else {
4667 /* Watchpoint covers bytes defined by the byte address select bits */
4668 int bas = extract64(wcr, 5, 8);
4669 int basstart;
4671 if (bas == 0) {
4672 /* This must act as if the watchpoint is disabled */
4673 return;
4676 if (extract64(wvr, 2, 1)) {
4677 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4678 * ignored, and BAS[3:0] define which bytes to watch.
4680 bas &= 0xf;
4682 /* The BAS bits are supposed to be programmed to indicate a contiguous
4683 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4684 * we fire for each byte in the word/doubleword addressed by the WVR.
4685 * We choose to ignore any non-zero bits after the first range of 1s.
4687 basstart = ctz32(bas);
4688 len = cto32(bas >> basstart);
4689 wvr += basstart;
4692 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4693 &env->cpu_watchpoint[n]);
4696 void hw_watchpoint_update_all(ARMCPU *cpu)
4698 int i;
4699 CPUARMState *env = &cpu->env;
4701 /* Completely clear out existing QEMU watchpoints and our array, to
4702 * avoid possible stale entries following migration load.
4704 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4705 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4707 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4708 hw_watchpoint_update(cpu, i);
4712 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4713 uint64_t value)
4715 ARMCPU *cpu = arm_env_get_cpu(env);
4716 int i = ri->crm;
4718 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4719 * register reads and behaves as if values written are sign extended.
4720 * Bits [1:0] are RES0.
4722 value = sextract64(value, 0, 49) & ~3ULL;
4724 raw_write(env, ri, value);
4725 hw_watchpoint_update(cpu, i);
4728 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4729 uint64_t value)
4731 ARMCPU *cpu = arm_env_get_cpu(env);
4732 int i = ri->crm;
4734 raw_write(env, ri, value);
4735 hw_watchpoint_update(cpu, i);
4738 void hw_breakpoint_update(ARMCPU *cpu, int n)
4740 CPUARMState *env = &cpu->env;
4741 uint64_t bvr = env->cp15.dbgbvr[n];
4742 uint64_t bcr = env->cp15.dbgbcr[n];
4743 vaddr addr;
4744 int bt;
4745 int flags = BP_CPU;
4747 if (env->cpu_breakpoint[n]) {
4748 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4749 env->cpu_breakpoint[n] = NULL;
4752 if (!extract64(bcr, 0, 1)) {
4753 /* E bit clear : watchpoint disabled */
4754 return;
4757 bt = extract64(bcr, 20, 4);
4759 switch (bt) {
4760 case 4: /* unlinked address mismatch (reserved if AArch64) */
4761 case 5: /* linked address mismatch (reserved if AArch64) */
4762 qemu_log_mask(LOG_UNIMP,
4763 "arm: address mismatch breakpoint types not implemented\n");
4764 return;
4765 case 0: /* unlinked address match */
4766 case 1: /* linked address match */
4768 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4769 * we behave as if the register was sign extended. Bits [1:0] are
4770 * RES0. The BAS field is used to allow setting breakpoints on 16
4771 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4772 * a bp will fire if the addresses covered by the bp and the addresses
4773 * covered by the insn overlap but the insn doesn't start at the
4774 * start of the bp address range. We choose to require the insn and
4775 * the bp to have the same address. The constraints on writing to
4776 * BAS enforced in dbgbcr_write mean we have only four cases:
4777 * 0b0000 => no breakpoint
4778 * 0b0011 => breakpoint on addr
4779 * 0b1100 => breakpoint on addr + 2
4780 * 0b1111 => breakpoint on addr
4781 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4783 int bas = extract64(bcr, 5, 4);
4784 addr = sextract64(bvr, 0, 49) & ~3ULL;
4785 if (bas == 0) {
4786 return;
4788 if (bas == 0xc) {
4789 addr += 2;
4791 break;
4793 case 2: /* unlinked context ID match */
4794 case 8: /* unlinked VMID match (reserved if no EL2) */
4795 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4796 qemu_log_mask(LOG_UNIMP,
4797 "arm: unlinked context breakpoint types not implemented\n");
4798 return;
4799 case 9: /* linked VMID match (reserved if no EL2) */
4800 case 11: /* linked context ID and VMID match (reserved if no EL2) */
4801 case 3: /* linked context ID match */
4802 default:
4803 /* We must generate no events for Linked context matches (unless
4804 * they are linked to by some other bp/wp, which is handled in
4805 * updates for the linking bp/wp). We choose to also generate no events
4806 * for reserved values.
4808 return;
4811 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4814 void hw_breakpoint_update_all(ARMCPU *cpu)
4816 int i;
4817 CPUARMState *env = &cpu->env;
4819 /* Completely clear out existing QEMU breakpoints and our array, to
4820 * avoid possible stale entries following migration load.
4822 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4823 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4825 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4826 hw_breakpoint_update(cpu, i);
4830 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4831 uint64_t value)
4833 ARMCPU *cpu = arm_env_get_cpu(env);
4834 int i = ri->crm;
4836 raw_write(env, ri, value);
4837 hw_breakpoint_update(cpu, i);
4840 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4841 uint64_t value)
4843 ARMCPU *cpu = arm_env_get_cpu(env);
4844 int i = ri->crm;
4846 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4847 * copy of BAS[0].
4849 value = deposit64(value, 6, 1, extract64(value, 5, 1));
4850 value = deposit64(value, 8, 1, extract64(value, 7, 1));
4852 raw_write(env, ri, value);
4853 hw_breakpoint_update(cpu, i);
4856 static void define_debug_regs(ARMCPU *cpu)
4858 /* Define v7 and v8 architectural debug registers.
4859 * These are just dummy implementations for now.
4861 int i;
4862 int wrps, brps, ctx_cmps;
4863 ARMCPRegInfo dbgdidr = {
4864 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4865 .access = PL0_R, .accessfn = access_tda,
4866 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4869 /* Note that all these register fields hold "number of Xs minus 1". */
4870 brps = extract32(cpu->dbgdidr, 24, 4);
4871 wrps = extract32(cpu->dbgdidr, 28, 4);
4872 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4874 assert(ctx_cmps <= brps);
4876 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4877 * of the debug registers such as number of breakpoints;
4878 * check that if they both exist then they agree.
4880 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4881 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4882 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4883 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4886 define_one_arm_cp_reg(cpu, &dbgdidr);
4887 define_arm_cp_regs(cpu, debug_cp_reginfo);
4889 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4890 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4893 for (i = 0; i < brps + 1; i++) {
4894 ARMCPRegInfo dbgregs[] = {
4895 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4896 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4897 .access = PL1_RW, .accessfn = access_tda,
4898 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4899 .writefn = dbgbvr_write, .raw_writefn = raw_write
4901 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4902 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4903 .access = PL1_RW, .accessfn = access_tda,
4904 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4905 .writefn = dbgbcr_write, .raw_writefn = raw_write
4907 REGINFO_SENTINEL
4909 define_arm_cp_regs(cpu, dbgregs);
4912 for (i = 0; i < wrps + 1; i++) {
4913 ARMCPRegInfo dbgregs[] = {
4914 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4915 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4916 .access = PL1_RW, .accessfn = access_tda,
4917 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4918 .writefn = dbgwvr_write, .raw_writefn = raw_write
4920 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4921 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4922 .access = PL1_RW, .accessfn = access_tda,
4923 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4924 .writefn = dbgwcr_write, .raw_writefn = raw_write
4926 REGINFO_SENTINEL
4928 define_arm_cp_regs(cpu, dbgregs);
4932 /* We don't know until after realize whether there's a GICv3
4933 * attached, and that is what registers the gicv3 sysregs.
4934 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
4935 * at runtime.
4937 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
4939 ARMCPU *cpu = arm_env_get_cpu(env);
4940 uint64_t pfr1 = cpu->id_pfr1;
4942 if (env->gicv3state) {
4943 pfr1 |= 1 << 28;
4945 return pfr1;
4948 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
4950 ARMCPU *cpu = arm_env_get_cpu(env);
4951 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
4953 if (env->gicv3state) {
4954 pfr0 |= 1 << 24;
4956 return pfr0;
4959 void register_cp_regs_for_features(ARMCPU *cpu)
4961 /* Register all the coprocessor registers based on feature bits */
4962 CPUARMState *env = &cpu->env;
4963 if (arm_feature(env, ARM_FEATURE_M)) {
4964 /* M profile has no coprocessor registers */
4965 return;
4968 define_arm_cp_regs(cpu, cp_reginfo);
4969 if (!arm_feature(env, ARM_FEATURE_V8)) {
4970 /* Must go early as it is full of wildcards that may be
4971 * overridden by later definitions.
4973 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4976 if (arm_feature(env, ARM_FEATURE_V6)) {
4977 /* The ID registers all have impdef reset values */
4978 ARMCPRegInfo v6_idregs[] = {
4979 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4980 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4981 .access = PL1_R, .type = ARM_CP_CONST,
4982 .resetvalue = cpu->id_pfr0 },
4983 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
4984 * the value of the GIC field until after we define these regs.
4986 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4987 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4988 .access = PL1_R, .type = ARM_CP_NO_RAW,
4989 .readfn = id_pfr1_read,
4990 .writefn = arm_cp_write_ignore },
4991 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4992 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4993 .access = PL1_R, .type = ARM_CP_CONST,
4994 .resetvalue = cpu->id_dfr0 },
4995 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4996 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4997 .access = PL1_R, .type = ARM_CP_CONST,
4998 .resetvalue = cpu->id_afr0 },
4999 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
5000 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
5001 .access = PL1_R, .type = ARM_CP_CONST,
5002 .resetvalue = cpu->id_mmfr0 },
5003 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
5004 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
5005 .access = PL1_R, .type = ARM_CP_CONST,
5006 .resetvalue = cpu->id_mmfr1 },
5007 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
5008 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
5009 .access = PL1_R, .type = ARM_CP_CONST,
5010 .resetvalue = cpu->id_mmfr2 },
5011 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
5012 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
5013 .access = PL1_R, .type = ARM_CP_CONST,
5014 .resetvalue = cpu->id_mmfr3 },
5015 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
5016 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5017 .access = PL1_R, .type = ARM_CP_CONST,
5018 .resetvalue = cpu->isar.id_isar0 },
5019 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
5020 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
5021 .access = PL1_R, .type = ARM_CP_CONST,
5022 .resetvalue = cpu->isar.id_isar1 },
5023 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
5024 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5025 .access = PL1_R, .type = ARM_CP_CONST,
5026 .resetvalue = cpu->isar.id_isar2 },
5027 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
5028 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
5029 .access = PL1_R, .type = ARM_CP_CONST,
5030 .resetvalue = cpu->isar.id_isar3 },
5031 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
5032 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
5033 .access = PL1_R, .type = ARM_CP_CONST,
5034 .resetvalue = cpu->isar.id_isar4 },
5035 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
5036 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
5037 .access = PL1_R, .type = ARM_CP_CONST,
5038 .resetvalue = cpu->isar.id_isar5 },
5039 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
5040 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
5041 .access = PL1_R, .type = ARM_CP_CONST,
5042 .resetvalue = cpu->id_mmfr4 },
5043 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
5044 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
5045 .access = PL1_R, .type = ARM_CP_CONST,
5046 .resetvalue = cpu->isar.id_isar6 },
5047 REGINFO_SENTINEL
5049 define_arm_cp_regs(cpu, v6_idregs);
5050 define_arm_cp_regs(cpu, v6_cp_reginfo);
5051 } else {
5052 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
5054 if (arm_feature(env, ARM_FEATURE_V6K)) {
5055 define_arm_cp_regs(cpu, v6k_cp_reginfo);
5057 if (arm_feature(env, ARM_FEATURE_V7MP) &&
5058 !arm_feature(env, ARM_FEATURE_PMSA)) {
5059 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
5061 if (arm_feature(env, ARM_FEATURE_V7)) {
5062 /* v7 performance monitor control register: same implementor
5063 * field as main ID register, and we implement only the cycle
5064 * count register.
5066 #ifndef CONFIG_USER_ONLY
5067 ARMCPRegInfo pmcr = {
5068 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
5069 .access = PL0_RW,
5070 .type = ARM_CP_IO | ARM_CP_ALIAS,
5071 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
5072 .accessfn = pmreg_access, .writefn = pmcr_write,
5073 .raw_writefn = raw_write,
5075 ARMCPRegInfo pmcr64 = {
5076 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
5077 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
5078 .access = PL0_RW, .accessfn = pmreg_access,
5079 .type = ARM_CP_IO,
5080 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
5081 .resetvalue = cpu->midr & 0xff000000,
5082 .writefn = pmcr_write, .raw_writefn = raw_write,
5084 define_one_arm_cp_reg(cpu, &pmcr);
5085 define_one_arm_cp_reg(cpu, &pmcr64);
5086 #endif
5087 ARMCPRegInfo clidr = {
5088 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
5089 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
5090 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
5092 define_one_arm_cp_reg(cpu, &clidr);
5093 define_arm_cp_regs(cpu, v7_cp_reginfo);
5094 define_debug_regs(cpu);
5095 } else {
5096 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
5098 if (arm_feature(env, ARM_FEATURE_V8)) {
5099 /* AArch64 ID registers, which all have impdef reset values.
5100 * Note that within the ID register ranges the unused slots
5101 * must all RAZ, not UNDEF; future architecture versions may
5102 * define new registers here.
5104 ARMCPRegInfo v8_idregs[] = {
5105 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
5106 * know the right value for the GIC field until after we
5107 * define these regs.
5109 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
5110 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
5111 .access = PL1_R, .type = ARM_CP_NO_RAW,
5112 .readfn = id_aa64pfr0_read,
5113 .writefn = arm_cp_write_ignore },
5114 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
5115 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
5116 .access = PL1_R, .type = ARM_CP_CONST,
5117 .resetvalue = cpu->isar.id_aa64pfr1},
5118 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5119 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
5120 .access = PL1_R, .type = ARM_CP_CONST,
5121 .resetvalue = 0 },
5122 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5123 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
5124 .access = PL1_R, .type = ARM_CP_CONST,
5125 .resetvalue = 0 },
5126 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
5127 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
5128 .access = PL1_R, .type = ARM_CP_CONST,
5129 /* At present, only SVEver == 0 is defined anyway. */
5130 .resetvalue = 0 },
5131 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5132 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
5133 .access = PL1_R, .type = ARM_CP_CONST,
5134 .resetvalue = 0 },
5135 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5136 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
5137 .access = PL1_R, .type = ARM_CP_CONST,
5138 .resetvalue = 0 },
5139 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5140 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
5141 .access = PL1_R, .type = ARM_CP_CONST,
5142 .resetvalue = 0 },
5143 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
5144 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
5145 .access = PL1_R, .type = ARM_CP_CONST,
5146 .resetvalue = cpu->id_aa64dfr0 },
5147 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
5148 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
5149 .access = PL1_R, .type = ARM_CP_CONST,
5150 .resetvalue = cpu->id_aa64dfr1 },
5151 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5152 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
5153 .access = PL1_R, .type = ARM_CP_CONST,
5154 .resetvalue = 0 },
5155 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5156 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
5157 .access = PL1_R, .type = ARM_CP_CONST,
5158 .resetvalue = 0 },
5159 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
5160 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
5161 .access = PL1_R, .type = ARM_CP_CONST,
5162 .resetvalue = cpu->id_aa64afr0 },
5163 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
5164 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
5165 .access = PL1_R, .type = ARM_CP_CONST,
5166 .resetvalue = cpu->id_aa64afr1 },
5167 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5168 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
5169 .access = PL1_R, .type = ARM_CP_CONST,
5170 .resetvalue = 0 },
5171 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5172 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
5173 .access = PL1_R, .type = ARM_CP_CONST,
5174 .resetvalue = 0 },
5175 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
5176 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
5177 .access = PL1_R, .type = ARM_CP_CONST,
5178 .resetvalue = cpu->isar.id_aa64isar0 },
5179 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
5180 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
5181 .access = PL1_R, .type = ARM_CP_CONST,
5182 .resetvalue = cpu->isar.id_aa64isar1 },
5183 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5184 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
5185 .access = PL1_R, .type = ARM_CP_CONST,
5186 .resetvalue = 0 },
5187 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5188 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
5189 .access = PL1_R, .type = ARM_CP_CONST,
5190 .resetvalue = 0 },
5191 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5192 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
5193 .access = PL1_R, .type = ARM_CP_CONST,
5194 .resetvalue = 0 },
5195 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5196 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
5197 .access = PL1_R, .type = ARM_CP_CONST,
5198 .resetvalue = 0 },
5199 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5200 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
5201 .access = PL1_R, .type = ARM_CP_CONST,
5202 .resetvalue = 0 },
5203 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5204 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
5205 .access = PL1_R, .type = ARM_CP_CONST,
5206 .resetvalue = 0 },
5207 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
5208 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
5209 .access = PL1_R, .type = ARM_CP_CONST,
5210 .resetvalue = cpu->isar.id_aa64mmfr0 },
5211 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
5212 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
5213 .access = PL1_R, .type = ARM_CP_CONST,
5214 .resetvalue = cpu->isar.id_aa64mmfr1 },
5215 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5216 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
5217 .access = PL1_R, .type = ARM_CP_CONST,
5218 .resetvalue = 0 },
5219 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5220 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
5221 .access = PL1_R, .type = ARM_CP_CONST,
5222 .resetvalue = 0 },
5223 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5224 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
5225 .access = PL1_R, .type = ARM_CP_CONST,
5226 .resetvalue = 0 },
5227 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5228 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
5229 .access = PL1_R, .type = ARM_CP_CONST,
5230 .resetvalue = 0 },
5231 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5232 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
5233 .access = PL1_R, .type = ARM_CP_CONST,
5234 .resetvalue = 0 },
5235 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5236 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
5237 .access = PL1_R, .type = ARM_CP_CONST,
5238 .resetvalue = 0 },
5239 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
5240 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
5241 .access = PL1_R, .type = ARM_CP_CONST,
5242 .resetvalue = cpu->isar.mvfr0 },
5243 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
5244 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
5245 .access = PL1_R, .type = ARM_CP_CONST,
5246 .resetvalue = cpu->isar.mvfr1 },
5247 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
5248 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
5249 .access = PL1_R, .type = ARM_CP_CONST,
5250 .resetvalue = cpu->isar.mvfr2 },
5251 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5252 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
5253 .access = PL1_R, .type = ARM_CP_CONST,
5254 .resetvalue = 0 },
5255 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5256 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
5257 .access = PL1_R, .type = ARM_CP_CONST,
5258 .resetvalue = 0 },
5259 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5260 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
5261 .access = PL1_R, .type = ARM_CP_CONST,
5262 .resetvalue = 0 },
5263 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5264 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
5265 .access = PL1_R, .type = ARM_CP_CONST,
5266 .resetvalue = 0 },
5267 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5268 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
5269 .access = PL1_R, .type = ARM_CP_CONST,
5270 .resetvalue = 0 },
5271 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
5272 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
5273 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5274 .resetvalue = cpu->pmceid0 },
5275 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
5276 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
5277 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5278 .resetvalue = cpu->pmceid0 },
5279 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
5280 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
5281 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5282 .resetvalue = cpu->pmceid1 },
5283 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
5284 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
5285 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5286 .resetvalue = cpu->pmceid1 },
5287 REGINFO_SENTINEL
5289 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
5290 if (!arm_feature(env, ARM_FEATURE_EL3) &&
5291 !arm_feature(env, ARM_FEATURE_EL2)) {
5292 ARMCPRegInfo rvbar = {
5293 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
5294 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5295 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
5297 define_one_arm_cp_reg(cpu, &rvbar);
5299 define_arm_cp_regs(cpu, v8_idregs);
5300 define_arm_cp_regs(cpu, v8_cp_reginfo);
5302 if (arm_feature(env, ARM_FEATURE_EL2)) {
5303 uint64_t vmpidr_def = mpidr_read_val(env);
5304 ARMCPRegInfo vpidr_regs[] = {
5305 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
5306 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
5307 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5308 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
5309 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
5310 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
5311 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
5312 .access = PL2_RW, .resetvalue = cpu->midr,
5313 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
5314 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
5315 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5316 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5317 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
5318 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
5319 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
5320 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5321 .access = PL2_RW,
5322 .resetvalue = vmpidr_def,
5323 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
5324 REGINFO_SENTINEL
5326 define_arm_cp_regs(cpu, vpidr_regs);
5327 define_arm_cp_regs(cpu, el2_cp_reginfo);
5328 if (arm_feature(env, ARM_FEATURE_V8)) {
5329 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
5331 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
5332 if (!arm_feature(env, ARM_FEATURE_EL3)) {
5333 ARMCPRegInfo rvbar = {
5334 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
5335 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
5336 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
5338 define_one_arm_cp_reg(cpu, &rvbar);
5340 } else {
5341 /* If EL2 is missing but higher ELs are enabled, we need to
5342 * register the no_el2 reginfos.
5344 if (arm_feature(env, ARM_FEATURE_EL3)) {
5345 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
5346 * of MIDR_EL1 and MPIDR_EL1.
5348 ARMCPRegInfo vpidr_regs[] = {
5349 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5350 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
5351 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
5352 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
5353 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
5354 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5355 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5356 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
5357 .type = ARM_CP_NO_RAW,
5358 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
5359 REGINFO_SENTINEL
5361 define_arm_cp_regs(cpu, vpidr_regs);
5362 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
5363 if (arm_feature(env, ARM_FEATURE_V8)) {
5364 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
5368 if (arm_feature(env, ARM_FEATURE_EL3)) {
5369 define_arm_cp_regs(cpu, el3_cp_reginfo);
5370 ARMCPRegInfo el3_regs[] = {
5371 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
5372 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
5373 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
5374 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
5375 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
5376 .access = PL3_RW,
5377 .raw_writefn = raw_write, .writefn = sctlr_write,
5378 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
5379 .resetvalue = cpu->reset_sctlr },
5380 REGINFO_SENTINEL
5383 define_arm_cp_regs(cpu, el3_regs);
5385 /* The behaviour of NSACR is sufficiently various that we don't
5386 * try to describe it in a single reginfo:
5387 * if EL3 is 64 bit, then trap to EL3 from S EL1,
5388 * reads as constant 0xc00 from NS EL1 and NS EL2
5389 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
5390 * if v7 without EL3, register doesn't exist
5391 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
5393 if (arm_feature(env, ARM_FEATURE_EL3)) {
5394 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5395 ARMCPRegInfo nsacr = {
5396 .name = "NSACR", .type = ARM_CP_CONST,
5397 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5398 .access = PL1_RW, .accessfn = nsacr_access,
5399 .resetvalue = 0xc00
5401 define_one_arm_cp_reg(cpu, &nsacr);
5402 } else {
5403 ARMCPRegInfo nsacr = {
5404 .name = "NSACR",
5405 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5406 .access = PL3_RW | PL1_R,
5407 .resetvalue = 0,
5408 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
5410 define_one_arm_cp_reg(cpu, &nsacr);
5412 } else {
5413 if (arm_feature(env, ARM_FEATURE_V8)) {
5414 ARMCPRegInfo nsacr = {
5415 .name = "NSACR", .type = ARM_CP_CONST,
5416 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5417 .access = PL1_R,
5418 .resetvalue = 0xc00
5420 define_one_arm_cp_reg(cpu, &nsacr);
5424 if (arm_feature(env, ARM_FEATURE_PMSA)) {
5425 if (arm_feature(env, ARM_FEATURE_V6)) {
5426 /* PMSAv6 not implemented */
5427 assert(arm_feature(env, ARM_FEATURE_V7));
5428 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5429 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
5430 } else {
5431 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
5433 } else {
5434 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5435 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
5437 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
5438 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
5440 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
5441 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
5443 if (arm_feature(env, ARM_FEATURE_VAPA)) {
5444 define_arm_cp_regs(cpu, vapa_cp_reginfo);
5446 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
5447 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
5449 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
5450 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
5452 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
5453 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
5455 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
5456 define_arm_cp_regs(cpu, omap_cp_reginfo);
5458 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
5459 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
5461 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5462 define_arm_cp_regs(cpu, xscale_cp_reginfo);
5464 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
5465 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
5467 if (arm_feature(env, ARM_FEATURE_LPAE)) {
5468 define_arm_cp_regs(cpu, lpae_cp_reginfo);
5470 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
5471 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
5472 * be read-only (ie write causes UNDEF exception).
5475 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
5476 /* Pre-v8 MIDR space.
5477 * Note that the MIDR isn't a simple constant register because
5478 * of the TI925 behaviour where writes to another register can
5479 * cause the MIDR value to change.
5481 * Unimplemented registers in the c15 0 0 0 space default to
5482 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
5483 * and friends override accordingly.
5485 { .name = "MIDR",
5486 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
5487 .access = PL1_R, .resetvalue = cpu->midr,
5488 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
5489 .readfn = midr_read,
5490 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5491 .type = ARM_CP_OVERRIDE },
5492 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
5493 { .name = "DUMMY",
5494 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
5495 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5496 { .name = "DUMMY",
5497 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
5498 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5499 { .name = "DUMMY",
5500 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
5501 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5502 { .name = "DUMMY",
5503 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
5504 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5505 { .name = "DUMMY",
5506 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
5507 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5508 REGINFO_SENTINEL
5510 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
5511 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
5512 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
5513 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
5514 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5515 .readfn = midr_read },
5516 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
5517 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5518 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5519 .access = PL1_R, .resetvalue = cpu->midr },
5520 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5521 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
5522 .access = PL1_R, .resetvalue = cpu->midr },
5523 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
5524 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
5525 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
5526 REGINFO_SENTINEL
5528 ARMCPRegInfo id_cp_reginfo[] = {
5529 /* These are common to v8 and pre-v8 */
5530 { .name = "CTR",
5531 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
5532 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5533 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
5534 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
5535 .access = PL0_R, .accessfn = ctr_el0_access,
5536 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5537 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
5538 { .name = "TCMTR",
5539 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
5540 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5541 REGINFO_SENTINEL
5543 /* TLBTR is specific to VMSA */
5544 ARMCPRegInfo id_tlbtr_reginfo = {
5545 .name = "TLBTR",
5546 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
5547 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
5549 /* MPUIR is specific to PMSA V6+ */
5550 ARMCPRegInfo id_mpuir_reginfo = {
5551 .name = "MPUIR",
5552 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5553 .access = PL1_R, .type = ARM_CP_CONST,
5554 .resetvalue = cpu->pmsav7_dregion << 8
5556 ARMCPRegInfo crn0_wi_reginfo = {
5557 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
5558 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
5559 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
5561 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
5562 arm_feature(env, ARM_FEATURE_STRONGARM)) {
5563 ARMCPRegInfo *r;
5564 /* Register the blanket "writes ignored" value first to cover the
5565 * whole space. Then update the specific ID registers to allow write
5566 * access, so that they ignore writes rather than causing them to
5567 * UNDEF.
5569 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
5570 for (r = id_pre_v8_midr_cp_reginfo;
5571 r->type != ARM_CP_SENTINEL; r++) {
5572 r->access = PL1_RW;
5574 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5575 r->access = PL1_RW;
5577 id_mpuir_reginfo.access = PL1_RW;
5578 id_tlbtr_reginfo.access = PL1_RW;
5580 if (arm_feature(env, ARM_FEATURE_V8)) {
5581 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5582 } else {
5583 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5585 define_arm_cp_regs(cpu, id_cp_reginfo);
5586 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
5587 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
5588 } else if (arm_feature(env, ARM_FEATURE_V7)) {
5589 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
5593 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5594 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5597 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
5598 ARMCPRegInfo auxcr_reginfo[] = {
5599 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5600 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5601 .access = PL1_RW, .type = ARM_CP_CONST,
5602 .resetvalue = cpu->reset_auxcr },
5603 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5604 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5605 .access = PL2_RW, .type = ARM_CP_CONST,
5606 .resetvalue = 0 },
5607 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5608 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5609 .access = PL3_RW, .type = ARM_CP_CONST,
5610 .resetvalue = 0 },
5611 REGINFO_SENTINEL
5613 define_arm_cp_regs(cpu, auxcr_reginfo);
5614 if (arm_feature(env, ARM_FEATURE_V8)) {
5615 /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */
5616 ARMCPRegInfo hactlr2_reginfo = {
5617 .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
5618 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
5619 .access = PL2_RW, .type = ARM_CP_CONST,
5620 .resetvalue = 0
5622 define_one_arm_cp_reg(cpu, &hactlr2_reginfo);
5626 if (arm_feature(env, ARM_FEATURE_CBAR)) {
5627 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5628 /* 32 bit view is [31:18] 0...0 [43:32]. */
5629 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5630 | extract64(cpu->reset_cbar, 32, 12);
5631 ARMCPRegInfo cbar_reginfo[] = {
5632 { .name = "CBAR",
5633 .type = ARM_CP_CONST,
5634 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5635 .access = PL1_R, .resetvalue = cpu->reset_cbar },
5636 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5637 .type = ARM_CP_CONST,
5638 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5639 .access = PL1_R, .resetvalue = cbar32 },
5640 REGINFO_SENTINEL
5642 /* We don't implement a r/w 64 bit CBAR currently */
5643 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5644 define_arm_cp_regs(cpu, cbar_reginfo);
5645 } else {
5646 ARMCPRegInfo cbar = {
5647 .name = "CBAR",
5648 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5649 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5650 .fieldoffset = offsetof(CPUARMState,
5651 cp15.c15_config_base_address)
5653 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5654 cbar.access = PL1_R;
5655 cbar.fieldoffset = 0;
5656 cbar.type = ARM_CP_CONST;
5658 define_one_arm_cp_reg(cpu, &cbar);
5662 if (arm_feature(env, ARM_FEATURE_VBAR)) {
5663 ARMCPRegInfo vbar_cp_reginfo[] = {
5664 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
5665 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
5666 .access = PL1_RW, .writefn = vbar_write,
5667 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
5668 offsetof(CPUARMState, cp15.vbar_ns) },
5669 .resetvalue = 0 },
5670 REGINFO_SENTINEL
5672 define_arm_cp_regs(cpu, vbar_cp_reginfo);
5675 /* Generic registers whose values depend on the implementation */
5677 ARMCPRegInfo sctlr = {
5678 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
5679 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5680 .access = PL1_RW,
5681 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5682 offsetof(CPUARMState, cp15.sctlr_ns) },
5683 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5684 .raw_writefn = raw_write,
5686 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5687 /* Normally we would always end the TB on an SCTLR write, but Linux
5688 * arch/arm/mach-pxa/sleep.S expects two instructions following
5689 * an MMU enable to execute from cache. Imitate this behaviour.
5691 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5693 define_one_arm_cp_reg(cpu, &sctlr);
5696 if (cpu_isar_feature(aa64_sve, cpu)) {
5697 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
5698 if (arm_feature(env, ARM_FEATURE_EL2)) {
5699 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
5700 } else {
5701 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
5703 if (arm_feature(env, ARM_FEATURE_EL3)) {
5704 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
5709 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5711 CPUState *cs = CPU(cpu);
5712 CPUARMState *env = &cpu->env;
5714 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5715 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5716 aarch64_fpu_gdb_set_reg,
5717 34, "aarch64-fpu.xml", 0);
5718 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
5719 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5720 51, "arm-neon.xml", 0);
5721 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
5722 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5723 35, "arm-vfp3.xml", 0);
5724 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
5725 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5726 19, "arm-vfp.xml", 0);
5728 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
5729 arm_gen_dynamic_xml(cs),
5730 "system-registers.xml", 0);
5733 /* Sort alphabetically by type name, except for "any". */
5734 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5736 ObjectClass *class_a = (ObjectClass *)a;
5737 ObjectClass *class_b = (ObjectClass *)b;
5738 const char *name_a, *name_b;
5740 name_a = object_class_get_name(class_a);
5741 name_b = object_class_get_name(class_b);
5742 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
5743 return 1;
5744 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
5745 return -1;
5746 } else {
5747 return strcmp(name_a, name_b);
5751 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
5753 ObjectClass *oc = data;
5754 CPUListState *s = user_data;
5755 const char *typename;
5756 char *name;
5758 typename = object_class_get_name(oc);
5759 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
5760 (*s->cpu_fprintf)(s->file, " %s\n",
5761 name);
5762 g_free(name);
5765 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5767 CPUListState s = {
5768 .file = f,
5769 .cpu_fprintf = cpu_fprintf,
5771 GSList *list;
5773 list = object_class_get_list(TYPE_ARM_CPU, false);
5774 list = g_slist_sort(list, arm_cpu_list_compare);
5775 (*cpu_fprintf)(f, "Available CPUs:\n");
5776 g_slist_foreach(list, arm_cpu_list_entry, &s);
5777 g_slist_free(list);
5780 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5782 ObjectClass *oc = data;
5783 CpuDefinitionInfoList **cpu_list = user_data;
5784 CpuDefinitionInfoList *entry;
5785 CpuDefinitionInfo *info;
5786 const char *typename;
5788 typename = object_class_get_name(oc);
5789 info = g_malloc0(sizeof(*info));
5790 info->name = g_strndup(typename,
5791 strlen(typename) - strlen("-" TYPE_ARM_CPU));
5792 info->q_typename = g_strdup(typename);
5794 entry = g_malloc0(sizeof(*entry));
5795 entry->value = info;
5796 entry->next = *cpu_list;
5797 *cpu_list = entry;
5800 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5802 CpuDefinitionInfoList *cpu_list = NULL;
5803 GSList *list;
5805 list = object_class_get_list(TYPE_ARM_CPU, false);
5806 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5807 g_slist_free(list);
5809 return cpu_list;
5812 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5813 void *opaque, int state, int secstate,
5814 int crm, int opc1, int opc2,
5815 const char *name)
5817 /* Private utility function for define_one_arm_cp_reg_with_opaque():
5818 * add a single reginfo struct to the hash table.
5820 uint32_t *key = g_new(uint32_t, 1);
5821 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5822 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5823 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5825 r2->name = g_strdup(name);
5826 /* Reset the secure state to the specific incoming state. This is
5827 * necessary as the register may have been defined with both states.
5829 r2->secure = secstate;
5831 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5832 /* Register is banked (using both entries in array).
5833 * Overwriting fieldoffset as the array is only used to define
5834 * banked registers but later only fieldoffset is used.
5836 r2->fieldoffset = r->bank_fieldoffsets[ns];
5839 if (state == ARM_CP_STATE_AA32) {
5840 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5841 /* If the register is banked then we don't need to migrate or
5842 * reset the 32-bit instance in certain cases:
5844 * 1) If the register has both 32-bit and 64-bit instances then we
5845 * can count on the 64-bit instance taking care of the
5846 * non-secure bank.
5847 * 2) If ARMv8 is enabled then we can count on a 64-bit version
5848 * taking care of the secure bank. This requires that separate
5849 * 32 and 64-bit definitions are provided.
5851 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5852 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5853 r2->type |= ARM_CP_ALIAS;
5855 } else if ((secstate != r->secure) && !ns) {
5856 /* The register is not banked so we only want to allow migration of
5857 * the non-secure instance.
5859 r2->type |= ARM_CP_ALIAS;
5862 if (r->state == ARM_CP_STATE_BOTH) {
5863 /* We assume it is a cp15 register if the .cp field is left unset.
5865 if (r2->cp == 0) {
5866 r2->cp = 15;
5869 #ifdef HOST_WORDS_BIGENDIAN
5870 if (r2->fieldoffset) {
5871 r2->fieldoffset += sizeof(uint32_t);
5873 #endif
5876 if (state == ARM_CP_STATE_AA64) {
5877 /* To allow abbreviation of ARMCPRegInfo
5878 * definitions, we treat cp == 0 as equivalent to
5879 * the value for "standard guest-visible sysreg".
5880 * STATE_BOTH definitions are also always "standard
5881 * sysreg" in their AArch64 view (the .cp value may
5882 * be non-zero for the benefit of the AArch32 view).
5884 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5885 r2->cp = CP_REG_ARM64_SYSREG_CP;
5887 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5888 r2->opc0, opc1, opc2);
5889 } else {
5890 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5892 if (opaque) {
5893 r2->opaque = opaque;
5895 /* reginfo passed to helpers is correct for the actual access,
5896 * and is never ARM_CP_STATE_BOTH:
5898 r2->state = state;
5899 /* Make sure reginfo passed to helpers for wildcarded regs
5900 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5902 r2->crm = crm;
5903 r2->opc1 = opc1;
5904 r2->opc2 = opc2;
5905 /* By convention, for wildcarded registers only the first
5906 * entry is used for migration; the others are marked as
5907 * ALIAS so we don't try to transfer the register
5908 * multiple times. Special registers (ie NOP/WFI) are
5909 * never migratable and not even raw-accessible.
5911 if ((r->type & ARM_CP_SPECIAL)) {
5912 r2->type |= ARM_CP_NO_RAW;
5914 if (((r->crm == CP_ANY) && crm != 0) ||
5915 ((r->opc1 == CP_ANY) && opc1 != 0) ||
5916 ((r->opc2 == CP_ANY) && opc2 != 0)) {
5917 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
5920 /* Check that raw accesses are either forbidden or handled. Note that
5921 * we can't assert this earlier because the setup of fieldoffset for
5922 * banked registers has to be done first.
5924 if (!(r2->type & ARM_CP_NO_RAW)) {
5925 assert(!raw_accessors_invalid(r2));
5928 /* Overriding of an existing definition must be explicitly
5929 * requested.
5931 if (!(r->type & ARM_CP_OVERRIDE)) {
5932 ARMCPRegInfo *oldreg;
5933 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5934 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5935 fprintf(stderr, "Register redefined: cp=%d %d bit "
5936 "crn=%d crm=%d opc1=%d opc2=%d, "
5937 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5938 r2->crn, r2->crm, r2->opc1, r2->opc2,
5939 oldreg->name, r2->name);
5940 g_assert_not_reached();
5943 g_hash_table_insert(cpu->cp_regs, key, r2);
5947 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5948 const ARMCPRegInfo *r, void *opaque)
5950 /* Define implementations of coprocessor registers.
5951 * We store these in a hashtable because typically
5952 * there are less than 150 registers in a space which
5953 * is 16*16*16*8*8 = 262144 in size.
5954 * Wildcarding is supported for the crm, opc1 and opc2 fields.
5955 * If a register is defined twice then the second definition is
5956 * used, so this can be used to define some generic registers and
5957 * then override them with implementation specific variations.
5958 * At least one of the original and the second definition should
5959 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5960 * against accidental use.
5962 * The state field defines whether the register is to be
5963 * visible in the AArch32 or AArch64 execution state. If the
5964 * state is set to ARM_CP_STATE_BOTH then we synthesise a
5965 * reginfo structure for the AArch32 view, which sees the lower
5966 * 32 bits of the 64 bit register.
5968 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5969 * be wildcarded. AArch64 registers are always considered to be 64
5970 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5971 * the register, if any.
5973 int crm, opc1, opc2, state;
5974 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5975 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5976 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5977 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5978 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5979 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5980 /* 64 bit registers have only CRm and Opc1 fields */
5981 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
5982 /* op0 only exists in the AArch64 encodings */
5983 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5984 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5985 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5986 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5987 * encodes a minimum access level for the register. We roll this
5988 * runtime check into our general permission check code, so check
5989 * here that the reginfo's specified permissions are strict enough
5990 * to encompass the generic architectural permission check.
5992 if (r->state != ARM_CP_STATE_AA32) {
5993 int mask = 0;
5994 switch (r->opc1) {
5995 case 0: case 1: case 2:
5996 /* min_EL EL1 */
5997 mask = PL1_RW;
5998 break;
5999 case 3:
6000 /* min_EL EL0 */
6001 mask = PL0_RW;
6002 break;
6003 case 4:
6004 /* min_EL EL2 */
6005 mask = PL2_RW;
6006 break;
6007 case 5:
6008 /* unallocated encoding, so not possible */
6009 assert(false);
6010 break;
6011 case 6:
6012 /* min_EL EL3 */
6013 mask = PL3_RW;
6014 break;
6015 case 7:
6016 /* min_EL EL1, secure mode only (we don't check the latter) */
6017 mask = PL1_RW;
6018 break;
6019 default:
6020 /* broken reginfo with out-of-range opc1 */
6021 assert(false);
6022 break;
6024 /* assert our permissions are not too lax (stricter is fine) */
6025 assert((r->access & ~mask) == 0);
6028 /* Check that the register definition has enough info to handle
6029 * reads and writes if they are permitted.
6031 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
6032 if (r->access & PL3_R) {
6033 assert((r->fieldoffset ||
6034 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
6035 r->readfn);
6037 if (r->access & PL3_W) {
6038 assert((r->fieldoffset ||
6039 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
6040 r->writefn);
6043 /* Bad type field probably means missing sentinel at end of reg list */
6044 assert(cptype_valid(r->type));
6045 for (crm = crmmin; crm <= crmmax; crm++) {
6046 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
6047 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
6048 for (state = ARM_CP_STATE_AA32;
6049 state <= ARM_CP_STATE_AA64; state++) {
6050 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
6051 continue;
6053 if (state == ARM_CP_STATE_AA32) {
6054 /* Under AArch32 CP registers can be common
6055 * (same for secure and non-secure world) or banked.
6057 char *name;
6059 switch (r->secure) {
6060 case ARM_CP_SECSTATE_S:
6061 case ARM_CP_SECSTATE_NS:
6062 add_cpreg_to_hashtable(cpu, r, opaque, state,
6063 r->secure, crm, opc1, opc2,
6064 r->name);
6065 break;
6066 default:
6067 name = g_strdup_printf("%s_S", r->name);
6068 add_cpreg_to_hashtable(cpu, r, opaque, state,
6069 ARM_CP_SECSTATE_S,
6070 crm, opc1, opc2, name);
6071 g_free(name);
6072 add_cpreg_to_hashtable(cpu, r, opaque, state,
6073 ARM_CP_SECSTATE_NS,
6074 crm, opc1, opc2, r->name);
6075 break;
6077 } else {
6078 /* AArch64 registers get mapped to non-secure instance
6079 * of AArch32 */
6080 add_cpreg_to_hashtable(cpu, r, opaque, state,
6081 ARM_CP_SECSTATE_NS,
6082 crm, opc1, opc2, r->name);
6090 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
6091 const ARMCPRegInfo *regs, void *opaque)
6093 /* Define a whole list of registers */
6094 const ARMCPRegInfo *r;
6095 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
6096 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
6100 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
6102 return g_hash_table_lookup(cpregs, &encoded_cp);
6105 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
6106 uint64_t value)
6108 /* Helper coprocessor write function for write-ignore registers */
6111 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
6113 /* Helper coprocessor write function for read-as-zero registers */
6114 return 0;
6117 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
6119 /* Helper coprocessor reset function for do-nothing-on-reset registers */
6122 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
6124 /* Return true if it is not valid for us to switch to
6125 * this CPU mode (ie all the UNPREDICTABLE cases in
6126 * the ARM ARM CPSRWriteByInstr pseudocode).
6129 /* Changes to or from Hyp via MSR and CPS are illegal. */
6130 if (write_type == CPSRWriteByInstr &&
6131 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
6132 mode == ARM_CPU_MODE_HYP)) {
6133 return 1;
6136 switch (mode) {
6137 case ARM_CPU_MODE_USR:
6138 return 0;
6139 case ARM_CPU_MODE_SYS:
6140 case ARM_CPU_MODE_SVC:
6141 case ARM_CPU_MODE_ABT:
6142 case ARM_CPU_MODE_UND:
6143 case ARM_CPU_MODE_IRQ:
6144 case ARM_CPU_MODE_FIQ:
6145 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
6146 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
6148 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
6149 * and CPS are treated as illegal mode changes.
6151 if (write_type == CPSRWriteByInstr &&
6152 (env->cp15.hcr_el2 & HCR_TGE) &&
6153 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
6154 !arm_is_secure_below_el3(env)) {
6155 return 1;
6157 return 0;
6158 case ARM_CPU_MODE_HYP:
6159 return !arm_feature(env, ARM_FEATURE_EL2)
6160 || arm_current_el(env) < 2 || arm_is_secure(env);
6161 case ARM_CPU_MODE_MON:
6162 return arm_current_el(env) < 3;
6163 default:
6164 return 1;
6168 uint32_t cpsr_read(CPUARMState *env)
6170 int ZF;
6171 ZF = (env->ZF == 0);
6172 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
6173 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
6174 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
6175 | ((env->condexec_bits & 0xfc) << 8)
6176 | (env->GE << 16) | (env->daif & CPSR_AIF);
6179 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
6180 CPSRWriteType write_type)
6182 uint32_t changed_daif;
6184 if (mask & CPSR_NZCV) {
6185 env->ZF = (~val) & CPSR_Z;
6186 env->NF = val;
6187 env->CF = (val >> 29) & 1;
6188 env->VF = (val << 3) & 0x80000000;
6190 if (mask & CPSR_Q)
6191 env->QF = ((val & CPSR_Q) != 0);
6192 if (mask & CPSR_T)
6193 env->thumb = ((val & CPSR_T) != 0);
6194 if (mask & CPSR_IT_0_1) {
6195 env->condexec_bits &= ~3;
6196 env->condexec_bits |= (val >> 25) & 3;
6198 if (mask & CPSR_IT_2_7) {
6199 env->condexec_bits &= 3;
6200 env->condexec_bits |= (val >> 8) & 0xfc;
6202 if (mask & CPSR_GE) {
6203 env->GE = (val >> 16) & 0xf;
6206 /* In a V7 implementation that includes the security extensions but does
6207 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
6208 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
6209 * bits respectively.
6211 * In a V8 implementation, it is permitted for privileged software to
6212 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
6214 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
6215 arm_feature(env, ARM_FEATURE_EL3) &&
6216 !arm_feature(env, ARM_FEATURE_EL2) &&
6217 !arm_is_secure(env)) {
6219 changed_daif = (env->daif ^ val) & mask;
6221 if (changed_daif & CPSR_A) {
6222 /* Check to see if we are allowed to change the masking of async
6223 * abort exceptions from a non-secure state.
6225 if (!(env->cp15.scr_el3 & SCR_AW)) {
6226 qemu_log_mask(LOG_GUEST_ERROR,
6227 "Ignoring attempt to switch CPSR_A flag from "
6228 "non-secure world with SCR.AW bit clear\n");
6229 mask &= ~CPSR_A;
6233 if (changed_daif & CPSR_F) {
6234 /* Check to see if we are allowed to change the masking of FIQ
6235 * exceptions from a non-secure state.
6237 if (!(env->cp15.scr_el3 & SCR_FW)) {
6238 qemu_log_mask(LOG_GUEST_ERROR,
6239 "Ignoring attempt to switch CPSR_F flag from "
6240 "non-secure world with SCR.FW bit clear\n");
6241 mask &= ~CPSR_F;
6244 /* Check whether non-maskable FIQ (NMFI) support is enabled.
6245 * If this bit is set software is not allowed to mask
6246 * FIQs, but is allowed to set CPSR_F to 0.
6248 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
6249 (val & CPSR_F)) {
6250 qemu_log_mask(LOG_GUEST_ERROR,
6251 "Ignoring attempt to enable CPSR_F flag "
6252 "(non-maskable FIQ [NMFI] support enabled)\n");
6253 mask &= ~CPSR_F;
6258 env->daif &= ~(CPSR_AIF & mask);
6259 env->daif |= val & CPSR_AIF & mask;
6261 if (write_type != CPSRWriteRaw &&
6262 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
6263 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
6264 /* Note that we can only get here in USR mode if this is a
6265 * gdb stub write; for this case we follow the architectural
6266 * behaviour for guest writes in USR mode of ignoring an attempt
6267 * to switch mode. (Those are caught by translate.c for writes
6268 * triggered by guest instructions.)
6270 mask &= ~CPSR_M;
6271 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
6272 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
6273 * v7, and has defined behaviour in v8:
6274 * + leave CPSR.M untouched
6275 * + allow changes to the other CPSR fields
6276 * + set PSTATE.IL
6277 * For user changes via the GDB stub, we don't set PSTATE.IL,
6278 * as this would be unnecessarily harsh for a user error.
6280 mask &= ~CPSR_M;
6281 if (write_type != CPSRWriteByGDBStub &&
6282 arm_feature(env, ARM_FEATURE_V8)) {
6283 mask |= CPSR_IL;
6284 val |= CPSR_IL;
6286 qemu_log_mask(LOG_GUEST_ERROR,
6287 "Illegal AArch32 mode switch attempt from %s to %s\n",
6288 aarch32_mode_name(env->uncached_cpsr),
6289 aarch32_mode_name(val));
6290 } else {
6291 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
6292 write_type == CPSRWriteExceptionReturn ?
6293 "Exception return from AArch32" :
6294 "AArch32 mode switch from",
6295 aarch32_mode_name(env->uncached_cpsr),
6296 aarch32_mode_name(val), env->regs[15]);
6297 switch_mode(env, val & CPSR_M);
6300 mask &= ~CACHED_CPSR_BITS;
6301 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
6304 /* Sign/zero extend */
6305 uint32_t HELPER(sxtb16)(uint32_t x)
6307 uint32_t res;
6308 res = (uint16_t)(int8_t)x;
6309 res |= (uint32_t)(int8_t)(x >> 16) << 16;
6310 return res;
6313 uint32_t HELPER(uxtb16)(uint32_t x)
6315 uint32_t res;
6316 res = (uint16_t)(uint8_t)x;
6317 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
6318 return res;
6321 int32_t HELPER(sdiv)(int32_t num, int32_t den)
6323 if (den == 0)
6324 return 0;
6325 if (num == INT_MIN && den == -1)
6326 return INT_MIN;
6327 return num / den;
6330 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
6332 if (den == 0)
6333 return 0;
6334 return num / den;
6337 uint32_t HELPER(rbit)(uint32_t x)
6339 return revbit32(x);
6342 #if defined(CONFIG_USER_ONLY)
6344 /* These should probably raise undefined insn exceptions. */
6345 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
6347 ARMCPU *cpu = arm_env_get_cpu(env);
6349 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
6352 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
6354 ARMCPU *cpu = arm_env_get_cpu(env);
6356 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
6357 return 0;
6360 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6362 /* translate.c should never generate calls here in user-only mode */
6363 g_assert_not_reached();
6366 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
6368 /* translate.c should never generate calls here in user-only mode */
6369 g_assert_not_reached();
6372 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
6374 /* The TT instructions can be used by unprivileged code, but in
6375 * user-only emulation we don't have the MPU.
6376 * Luckily since we know we are NonSecure unprivileged (and that in
6377 * turn means that the A flag wasn't specified), all the bits in the
6378 * register must be zero:
6379 * IREGION: 0 because IRVALID is 0
6380 * IRVALID: 0 because NS
6381 * S: 0 because NS
6382 * NSRW: 0 because NS
6383 * NSR: 0 because NS
6384 * RW: 0 because unpriv and A flag not set
6385 * R: 0 because unpriv and A flag not set
6386 * SRVALID: 0 because NS
6387 * MRVALID: 0 because unpriv and A flag not set
6388 * SREGION: 0 becaus SRVALID is 0
6389 * MREGION: 0 because MRVALID is 0
6391 return 0;
6394 static void switch_mode(CPUARMState *env, int mode)
6396 ARMCPU *cpu = arm_env_get_cpu(env);
6398 if (mode != ARM_CPU_MODE_USR) {
6399 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
6403 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
6404 uint32_t cur_el, bool secure)
6406 return 1;
6409 void aarch64_sync_64_to_32(CPUARMState *env)
6411 g_assert_not_reached();
6414 #else
6416 static void switch_mode(CPUARMState *env, int mode)
6418 int old_mode;
6419 int i;
6421 old_mode = env->uncached_cpsr & CPSR_M;
6422 if (mode == old_mode)
6423 return;
6425 if (old_mode == ARM_CPU_MODE_FIQ) {
6426 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
6427 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
6428 } else if (mode == ARM_CPU_MODE_FIQ) {
6429 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
6430 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
6433 i = bank_number(old_mode);
6434 env->banked_r13[i] = env->regs[13];
6435 env->banked_spsr[i] = env->spsr;
6437 i = bank_number(mode);
6438 env->regs[13] = env->banked_r13[i];
6439 env->spsr = env->banked_spsr[i];
6441 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
6442 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
6445 /* Physical Interrupt Target EL Lookup Table
6447 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
6449 * The below multi-dimensional table is used for looking up the target
6450 * exception level given numerous condition criteria. Specifically, the
6451 * target EL is based on SCR and HCR routing controls as well as the
6452 * currently executing EL and secure state.
6454 * Dimensions:
6455 * target_el_table[2][2][2][2][2][4]
6456 * | | | | | +--- Current EL
6457 * | | | | +------ Non-secure(0)/Secure(1)
6458 * | | | +--------- HCR mask override
6459 * | | +------------ SCR exec state control
6460 * | +--------------- SCR mask override
6461 * +------------------ 32-bit(0)/64-bit(1) EL3
6463 * The table values are as such:
6464 * 0-3 = EL0-EL3
6465 * -1 = Cannot occur
6467 * The ARM ARM target EL table includes entries indicating that an "exception
6468 * is not taken". The two cases where this is applicable are:
6469 * 1) An exception is taken from EL3 but the SCR does not have the exception
6470 * routed to EL3.
6471 * 2) An exception is taken from EL2 but the HCR does not have the exception
6472 * routed to EL2.
6473 * In these two cases, the below table contain a target of EL1. This value is
6474 * returned as it is expected that the consumer of the table data will check
6475 * for "target EL >= current EL" to ensure the exception is not taken.
6477 * SCR HCR
6478 * 64 EA AMO From
6479 * BIT IRQ IMO Non-secure Secure
6480 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
6482 static const int8_t target_el_table[2][2][2][2][2][4] = {
6483 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
6484 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
6485 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
6486 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
6487 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
6488 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
6489 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
6490 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
6491 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
6492 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
6493 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
6494 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
6495 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
6496 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
6497 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
6498 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
6502 * Determine the target EL for physical exceptions
6504 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
6505 uint32_t cur_el, bool secure)
6507 CPUARMState *env = cs->env_ptr;
6508 int rw;
6509 int scr;
6510 int hcr;
6511 int target_el;
6512 /* Is the highest EL AArch64? */
6513 int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
6515 if (arm_feature(env, ARM_FEATURE_EL3)) {
6516 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
6517 } else {
6518 /* Either EL2 is the highest EL (and so the EL2 register width
6519 * is given by is64); or there is no EL2 or EL3, in which case
6520 * the value of 'rw' does not affect the table lookup anyway.
6522 rw = is64;
6525 switch (excp_idx) {
6526 case EXCP_IRQ:
6527 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
6528 hcr = arm_hcr_el2_imo(env);
6529 break;
6530 case EXCP_FIQ:
6531 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
6532 hcr = arm_hcr_el2_fmo(env);
6533 break;
6534 default:
6535 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
6536 hcr = arm_hcr_el2_amo(env);
6537 break;
6540 /* If HCR.TGE is set then HCR is treated as being 1 */
6541 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
6543 /* Perform a table-lookup for the target EL given the current state */
6544 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
6546 assert(target_el > 0);
6548 return target_el;
6551 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value,
6552 ARMMMUIdx mmu_idx, bool ignfault)
6554 CPUState *cs = CPU(cpu);
6555 CPUARMState *env = &cpu->env;
6556 MemTxAttrs attrs = {};
6557 MemTxResult txres;
6558 target_ulong page_size;
6559 hwaddr physaddr;
6560 int prot;
6561 ARMMMUFaultInfo fi = {};
6562 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
6563 int exc;
6564 bool exc_secure;
6566 if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr,
6567 &attrs, &prot, &page_size, &fi, NULL)) {
6568 /* MPU/SAU lookup failed */
6569 if (fi.type == ARMFault_QEMU_SFault) {
6570 qemu_log_mask(CPU_LOG_INT,
6571 "...SecureFault with SFSR.AUVIOL during stacking\n");
6572 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
6573 env->v7m.sfar = addr;
6574 exc = ARMV7M_EXCP_SECURE;
6575 exc_secure = false;
6576 } else {
6577 qemu_log_mask(CPU_LOG_INT, "...MemManageFault with CFSR.MSTKERR\n");
6578 env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK;
6579 exc = ARMV7M_EXCP_MEM;
6580 exc_secure = secure;
6582 goto pend_fault;
6584 address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value,
6585 attrs, &txres);
6586 if (txres != MEMTX_OK) {
6587 /* BusFault trying to write the data */
6588 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n");
6589 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK;
6590 exc = ARMV7M_EXCP_BUS;
6591 exc_secure = false;
6592 goto pend_fault;
6594 return true;
6596 pend_fault:
6597 /* By pending the exception at this point we are making
6598 * the IMPDEF choice "overridden exceptions pended" (see the
6599 * MergeExcInfo() pseudocode). The other choice would be to not
6600 * pend them now and then make a choice about which to throw away
6601 * later if we have two derived exceptions.
6602 * The only case when we must not pend the exception but instead
6603 * throw it away is if we are doing the push of the callee registers
6604 * and we've already generated a derived exception. Even in this
6605 * case we will still update the fault status registers.
6607 if (!ignfault) {
6608 armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure);
6610 return false;
6613 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr,
6614 ARMMMUIdx mmu_idx)
6616 CPUState *cs = CPU(cpu);
6617 CPUARMState *env = &cpu->env;
6618 MemTxAttrs attrs = {};
6619 MemTxResult txres;
6620 target_ulong page_size;
6621 hwaddr physaddr;
6622 int prot;
6623 ARMMMUFaultInfo fi = {};
6624 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
6625 int exc;
6626 bool exc_secure;
6627 uint32_t value;
6629 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
6630 &attrs, &prot, &page_size, &fi, NULL)) {
6631 /* MPU/SAU lookup failed */
6632 if (fi.type == ARMFault_QEMU_SFault) {
6633 qemu_log_mask(CPU_LOG_INT,
6634 "...SecureFault with SFSR.AUVIOL during unstack\n");
6635 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
6636 env->v7m.sfar = addr;
6637 exc = ARMV7M_EXCP_SECURE;
6638 exc_secure = false;
6639 } else {
6640 qemu_log_mask(CPU_LOG_INT,
6641 "...MemManageFault with CFSR.MUNSTKERR\n");
6642 env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK;
6643 exc = ARMV7M_EXCP_MEM;
6644 exc_secure = secure;
6646 goto pend_fault;
6649 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
6650 attrs, &txres);
6651 if (txres != MEMTX_OK) {
6652 /* BusFault trying to read the data */
6653 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n");
6654 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK;
6655 exc = ARMV7M_EXCP_BUS;
6656 exc_secure = false;
6657 goto pend_fault;
6660 *dest = value;
6661 return true;
6663 pend_fault:
6664 /* By pending the exception at this point we are making
6665 * the IMPDEF choice "overridden exceptions pended" (see the
6666 * MergeExcInfo() pseudocode). The other choice would be to not
6667 * pend them now and then make a choice about which to throw away
6668 * later if we have two derived exceptions.
6670 armv7m_nvic_set_pending(env->nvic, exc, exc_secure);
6671 return false;
6674 /* Write to v7M CONTROL.SPSEL bit for the specified security bank.
6675 * This may change the current stack pointer between Main and Process
6676 * stack pointers if it is done for the CONTROL register for the current
6677 * security state.
6679 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
6680 bool new_spsel,
6681 bool secstate)
6683 bool old_is_psp = v7m_using_psp(env);
6685 env->v7m.control[secstate] =
6686 deposit32(env->v7m.control[secstate],
6687 R_V7M_CONTROL_SPSEL_SHIFT,
6688 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
6690 if (secstate == env->v7m.secure) {
6691 bool new_is_psp = v7m_using_psp(env);
6692 uint32_t tmp;
6694 if (old_is_psp != new_is_psp) {
6695 tmp = env->v7m.other_sp;
6696 env->v7m.other_sp = env->regs[13];
6697 env->regs[13] = tmp;
6702 /* Write to v7M CONTROL.SPSEL bit. This may change the current
6703 * stack pointer between Main and Process stack pointers.
6705 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
6707 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
6710 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
6712 /* Write a new value to v7m.exception, thus transitioning into or out
6713 * of Handler mode; this may result in a change of active stack pointer.
6715 bool new_is_psp, old_is_psp = v7m_using_psp(env);
6716 uint32_t tmp;
6718 env->v7m.exception = new_exc;
6720 new_is_psp = v7m_using_psp(env);
6722 if (old_is_psp != new_is_psp) {
6723 tmp = env->v7m.other_sp;
6724 env->v7m.other_sp = env->regs[13];
6725 env->regs[13] = tmp;
6729 /* Switch M profile security state between NS and S */
6730 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
6732 uint32_t new_ss_msp, new_ss_psp;
6734 if (env->v7m.secure == new_secstate) {
6735 return;
6738 /* All the banked state is accessed by looking at env->v7m.secure
6739 * except for the stack pointer; rearrange the SP appropriately.
6741 new_ss_msp = env->v7m.other_ss_msp;
6742 new_ss_psp = env->v7m.other_ss_psp;
6744 if (v7m_using_psp(env)) {
6745 env->v7m.other_ss_psp = env->regs[13];
6746 env->v7m.other_ss_msp = env->v7m.other_sp;
6747 } else {
6748 env->v7m.other_ss_msp = env->regs[13];
6749 env->v7m.other_ss_psp = env->v7m.other_sp;
6752 env->v7m.secure = new_secstate;
6754 if (v7m_using_psp(env)) {
6755 env->regs[13] = new_ss_psp;
6756 env->v7m.other_sp = new_ss_msp;
6757 } else {
6758 env->regs[13] = new_ss_msp;
6759 env->v7m.other_sp = new_ss_psp;
6763 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6765 /* Handle v7M BXNS:
6766 * - if the return value is a magic value, do exception return (like BX)
6767 * - otherwise bit 0 of the return value is the target security state
6769 uint32_t min_magic;
6771 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6772 /* Covers FNC_RETURN and EXC_RETURN magic */
6773 min_magic = FNC_RETURN_MIN_MAGIC;
6774 } else {
6775 /* EXC_RETURN magic only */
6776 min_magic = EXC_RETURN_MIN_MAGIC;
6779 if (dest >= min_magic) {
6780 /* This is an exception return magic value; put it where
6781 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
6782 * Note that if we ever add gen_ss_advance() singlestep support to
6783 * M profile this should count as an "instruction execution complete"
6784 * event (compare gen_bx_excret_final_code()).
6786 env->regs[15] = dest & ~1;
6787 env->thumb = dest & 1;
6788 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
6789 /* notreached */
6792 /* translate.c should have made BXNS UNDEF unless we're secure */
6793 assert(env->v7m.secure);
6795 switch_v7m_security_state(env, dest & 1);
6796 env->thumb = 1;
6797 env->regs[15] = dest & ~1;
6800 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
6802 /* Handle v7M BLXNS:
6803 * - bit 0 of the destination address is the target security state
6806 /* At this point regs[15] is the address just after the BLXNS */
6807 uint32_t nextinst = env->regs[15] | 1;
6808 uint32_t sp = env->regs[13] - 8;
6809 uint32_t saved_psr;
6811 /* translate.c will have made BLXNS UNDEF unless we're secure */
6812 assert(env->v7m.secure);
6814 if (dest & 1) {
6815 /* target is Secure, so this is just a normal BLX,
6816 * except that the low bit doesn't indicate Thumb/not.
6818 env->regs[14] = nextinst;
6819 env->thumb = 1;
6820 env->regs[15] = dest & ~1;
6821 return;
6824 /* Target is non-secure: first push a stack frame */
6825 if (!QEMU_IS_ALIGNED(sp, 8)) {
6826 qemu_log_mask(LOG_GUEST_ERROR,
6827 "BLXNS with misaligned SP is UNPREDICTABLE\n");
6830 if (sp < v7m_sp_limit(env)) {
6831 raise_exception(env, EXCP_STKOF, 0, 1);
6834 saved_psr = env->v7m.exception;
6835 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
6836 saved_psr |= XPSR_SFPA;
6839 /* Note that these stores can throw exceptions on MPU faults */
6840 cpu_stl_data(env, sp, nextinst);
6841 cpu_stl_data(env, sp + 4, saved_psr);
6843 env->regs[13] = sp;
6844 env->regs[14] = 0xfeffffff;
6845 if (arm_v7m_is_handler_mode(env)) {
6846 /* Write a dummy value to IPSR, to avoid leaking the current secure
6847 * exception number to non-secure code. This is guaranteed not
6848 * to cause write_v7m_exception() to actually change stacks.
6850 write_v7m_exception(env, 1);
6852 switch_v7m_security_state(env, 0);
6853 env->thumb = 1;
6854 env->regs[15] = dest;
6857 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
6858 bool spsel)
6860 /* Return a pointer to the location where we currently store the
6861 * stack pointer for the requested security state and thread mode.
6862 * This pointer will become invalid if the CPU state is updated
6863 * such that the stack pointers are switched around (eg changing
6864 * the SPSEL control bit).
6865 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
6866 * Unlike that pseudocode, we require the caller to pass us in the
6867 * SPSEL control bit value; this is because we also use this
6868 * function in handling of pushing of the callee-saves registers
6869 * part of the v8M stack frame (pseudocode PushCalleeStack()),
6870 * and in the tailchain codepath the SPSEL bit comes from the exception
6871 * return magic LR value from the previous exception. The pseudocode
6872 * opencodes the stack-selection in PushCalleeStack(), but we prefer
6873 * to make this utility function generic enough to do the job.
6875 bool want_psp = threadmode && spsel;
6877 if (secure == env->v7m.secure) {
6878 if (want_psp == v7m_using_psp(env)) {
6879 return &env->regs[13];
6880 } else {
6881 return &env->v7m.other_sp;
6883 } else {
6884 if (want_psp) {
6885 return &env->v7m.other_ss_psp;
6886 } else {
6887 return &env->v7m.other_ss_msp;
6892 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
6893 uint32_t *pvec)
6895 CPUState *cs = CPU(cpu);
6896 CPUARMState *env = &cpu->env;
6897 MemTxResult result;
6898 uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4;
6899 uint32_t vector_entry;
6900 MemTxAttrs attrs = {};
6901 ARMMMUIdx mmu_idx;
6902 bool exc_secure;
6904 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true);
6906 /* We don't do a get_phys_addr() here because the rules for vector
6907 * loads are special: they always use the default memory map, and
6908 * the default memory map permits reads from all addresses.
6909 * Since there's no easy way to pass through to pmsav8_mpu_lookup()
6910 * that we want this special case which would always say "yes",
6911 * we just do the SAU lookup here followed by a direct physical load.
6913 attrs.secure = targets_secure;
6914 attrs.user = false;
6916 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6917 V8M_SAttributes sattrs = {};
6919 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
6920 if (sattrs.ns) {
6921 attrs.secure = false;
6922 } else if (!targets_secure) {
6923 /* NS access to S memory */
6924 goto load_fail;
6928 vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr,
6929 attrs, &result);
6930 if (result != MEMTX_OK) {
6931 goto load_fail;
6933 *pvec = vector_entry;
6934 return true;
6936 load_fail:
6937 /* All vector table fetch fails are reported as HardFault, with
6938 * HFSR.VECTTBL and .FORCED set. (FORCED is set because
6939 * technically the underlying exception is a MemManage or BusFault
6940 * that is escalated to HardFault.) This is a terminal exception,
6941 * so we will either take the HardFault immediately or else enter
6942 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
6944 exc_secure = targets_secure ||
6945 !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
6946 env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK;
6947 armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure);
6948 return false;
6951 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
6952 bool ignore_faults)
6954 /* For v8M, push the callee-saves register part of the stack frame.
6955 * Compare the v8M pseudocode PushCalleeStack().
6956 * In the tailchaining case this may not be the current stack.
6958 CPUARMState *env = &cpu->env;
6959 uint32_t *frame_sp_p;
6960 uint32_t frameptr;
6961 ARMMMUIdx mmu_idx;
6962 bool stacked_ok;
6963 uint32_t limit;
6964 bool want_psp;
6966 if (dotailchain) {
6967 bool mode = lr & R_V7M_EXCRET_MODE_MASK;
6968 bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) ||
6969 !mode;
6971 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv);
6972 frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode,
6973 lr & R_V7M_EXCRET_SPSEL_MASK);
6974 want_psp = mode && (lr & R_V7M_EXCRET_SPSEL_MASK);
6975 if (want_psp) {
6976 limit = env->v7m.psplim[M_REG_S];
6977 } else {
6978 limit = env->v7m.msplim[M_REG_S];
6980 } else {
6981 mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
6982 frame_sp_p = &env->regs[13];
6983 limit = v7m_sp_limit(env);
6986 frameptr = *frame_sp_p - 0x28;
6987 if (frameptr < limit) {
6989 * Stack limit failure: set SP to the limit value, and generate
6990 * STKOF UsageFault. Stack pushes below the limit must not be
6991 * performed. It is IMPDEF whether pushes above the limit are
6992 * performed; we choose not to.
6994 qemu_log_mask(CPU_LOG_INT,
6995 "...STKOF during callee-saves register stacking\n");
6996 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
6997 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
6998 env->v7m.secure);
6999 *frame_sp_p = limit;
7000 return true;
7003 /* Write as much of the stack frame as we can. A write failure may
7004 * cause us to pend a derived exception.
7006 stacked_ok =
7007 v7m_stack_write(cpu, frameptr, 0xfefa125b, mmu_idx, ignore_faults) &&
7008 v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx,
7009 ignore_faults) &&
7010 v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx,
7011 ignore_faults) &&
7012 v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx,
7013 ignore_faults) &&
7014 v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx,
7015 ignore_faults) &&
7016 v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx,
7017 ignore_faults) &&
7018 v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx,
7019 ignore_faults) &&
7020 v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx,
7021 ignore_faults) &&
7022 v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx,
7023 ignore_faults);
7025 /* Update SP regardless of whether any of the stack accesses failed. */
7026 *frame_sp_p = frameptr;
7028 return !stacked_ok;
7031 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
7032 bool ignore_stackfaults)
7034 /* Do the "take the exception" parts of exception entry,
7035 * but not the pushing of state to the stack. This is
7036 * similar to the pseudocode ExceptionTaken() function.
7038 CPUARMState *env = &cpu->env;
7039 uint32_t addr;
7040 bool targets_secure;
7041 int exc;
7042 bool push_failed = false;
7044 armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure);
7045 qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n",
7046 targets_secure ? "secure" : "nonsecure", exc);
7048 if (arm_feature(env, ARM_FEATURE_V8)) {
7049 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
7050 (lr & R_V7M_EXCRET_S_MASK)) {
7051 /* The background code (the owner of the registers in the
7052 * exception frame) is Secure. This means it may either already
7053 * have or now needs to push callee-saves registers.
7055 if (targets_secure) {
7056 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
7057 /* We took an exception from Secure to NonSecure
7058 * (which means the callee-saved registers got stacked)
7059 * and are now tailchaining to a Secure exception.
7060 * Clear DCRS so eventual return from this Secure
7061 * exception unstacks the callee-saved registers.
7063 lr &= ~R_V7M_EXCRET_DCRS_MASK;
7065 } else {
7066 /* We're going to a non-secure exception; push the
7067 * callee-saves registers to the stack now, if they're
7068 * not already saved.
7070 if (lr & R_V7M_EXCRET_DCRS_MASK &&
7071 !(dotailchain && !(lr & R_V7M_EXCRET_ES_MASK))) {
7072 push_failed = v7m_push_callee_stack(cpu, lr, dotailchain,
7073 ignore_stackfaults);
7075 lr |= R_V7M_EXCRET_DCRS_MASK;
7079 lr &= ~R_V7M_EXCRET_ES_MASK;
7080 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7081 lr |= R_V7M_EXCRET_ES_MASK;
7083 lr &= ~R_V7M_EXCRET_SPSEL_MASK;
7084 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
7085 lr |= R_V7M_EXCRET_SPSEL_MASK;
7088 /* Clear registers if necessary to prevent non-secure exception
7089 * code being able to see register values from secure code.
7090 * Where register values become architecturally UNKNOWN we leave
7091 * them with their previous values.
7093 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7094 if (!targets_secure) {
7095 /* Always clear the caller-saved registers (they have been
7096 * pushed to the stack earlier in v7m_push_stack()).
7097 * Clear callee-saved registers if the background code is
7098 * Secure (in which case these regs were saved in
7099 * v7m_push_callee_stack()).
7101 int i;
7103 for (i = 0; i < 13; i++) {
7104 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
7105 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
7106 env->regs[i] = 0;
7109 /* Clear EAPSR */
7110 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
7115 if (push_failed && !ignore_stackfaults) {
7116 /* Derived exception on callee-saves register stacking:
7117 * we might now want to take a different exception which
7118 * targets a different security state, so try again from the top.
7120 qemu_log_mask(CPU_LOG_INT,
7121 "...derived exception on callee-saves register stacking");
7122 v7m_exception_taken(cpu, lr, true, true);
7123 return;
7126 if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) {
7127 /* Vector load failed: derived exception */
7128 qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load");
7129 v7m_exception_taken(cpu, lr, true, true);
7130 return;
7133 /* Now we've done everything that might cause a derived exception
7134 * we can go ahead and activate whichever exception we're going to
7135 * take (which might now be the derived exception).
7137 armv7m_nvic_acknowledge_irq(env->nvic);
7139 /* Switch to target security state -- must do this before writing SPSEL */
7140 switch_v7m_security_state(env, targets_secure);
7141 write_v7m_control_spsel(env, 0);
7142 arm_clear_exclusive(env);
7143 /* Clear IT bits */
7144 env->condexec_bits = 0;
7145 env->regs[14] = lr;
7146 env->regs[15] = addr & 0xfffffffe;
7147 env->thumb = addr & 1;
7150 static bool v7m_push_stack(ARMCPU *cpu)
7152 /* Do the "set up stack frame" part of exception entry,
7153 * similar to pseudocode PushStack().
7154 * Return true if we generate a derived exception (and so
7155 * should ignore further stack faults trying to process
7156 * that derived exception.)
7158 bool stacked_ok;
7159 CPUARMState *env = &cpu->env;
7160 uint32_t xpsr = xpsr_read(env);
7161 uint32_t frameptr = env->regs[13];
7162 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
7164 /* Align stack pointer if the guest wants that */
7165 if ((frameptr & 4) &&
7166 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
7167 frameptr -= 4;
7168 xpsr |= XPSR_SPREALIGN;
7171 frameptr -= 0x20;
7173 if (arm_feature(env, ARM_FEATURE_V8)) {
7174 uint32_t limit = v7m_sp_limit(env);
7176 if (frameptr < limit) {
7178 * Stack limit failure: set SP to the limit value, and generate
7179 * STKOF UsageFault. Stack pushes below the limit must not be
7180 * performed. It is IMPDEF whether pushes above the limit are
7181 * performed; we choose not to.
7183 qemu_log_mask(CPU_LOG_INT,
7184 "...STKOF during stacking\n");
7185 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
7186 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
7187 env->v7m.secure);
7188 env->regs[13] = limit;
7189 return true;
7193 /* Write as much of the stack frame as we can. If we fail a stack
7194 * write this will result in a derived exception being pended
7195 * (which may be taken in preference to the one we started with
7196 * if it has higher priority).
7198 stacked_ok =
7199 v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, false) &&
7200 v7m_stack_write(cpu, frameptr + 4, env->regs[1], mmu_idx, false) &&
7201 v7m_stack_write(cpu, frameptr + 8, env->regs[2], mmu_idx, false) &&
7202 v7m_stack_write(cpu, frameptr + 12, env->regs[3], mmu_idx, false) &&
7203 v7m_stack_write(cpu, frameptr + 16, env->regs[12], mmu_idx, false) &&
7204 v7m_stack_write(cpu, frameptr + 20, env->regs[14], mmu_idx, false) &&
7205 v7m_stack_write(cpu, frameptr + 24, env->regs[15], mmu_idx, false) &&
7206 v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, false);
7208 /* Update SP regardless of whether any of the stack accesses failed. */
7209 env->regs[13] = frameptr;
7211 return !stacked_ok;
7214 static void do_v7m_exception_exit(ARMCPU *cpu)
7216 CPUARMState *env = &cpu->env;
7217 uint32_t excret;
7218 uint32_t xpsr;
7219 bool ufault = false;
7220 bool sfault = false;
7221 bool return_to_sp_process;
7222 bool return_to_handler;
7223 bool rettobase = false;
7224 bool exc_secure = false;
7225 bool return_to_secure;
7227 /* If we're not in Handler mode then jumps to magic exception-exit
7228 * addresses don't have magic behaviour. However for the v8M
7229 * security extensions the magic secure-function-return has to
7230 * work in thread mode too, so to avoid doing an extra check in
7231 * the generated code we allow exception-exit magic to also cause the
7232 * internal exception and bring us here in thread mode. Correct code
7233 * will never try to do this (the following insn fetch will always
7234 * fault) so we the overhead of having taken an unnecessary exception
7235 * doesn't matter.
7237 if (!arm_v7m_is_handler_mode(env)) {
7238 return;
7241 /* In the spec pseudocode ExceptionReturn() is called directly
7242 * from BXWritePC() and gets the full target PC value including
7243 * bit zero. In QEMU's implementation we treat it as a normal
7244 * jump-to-register (which is then caught later on), and so split
7245 * the target value up between env->regs[15] and env->thumb in
7246 * gen_bx(). Reconstitute it.
7248 excret = env->regs[15];
7249 if (env->thumb) {
7250 excret |= 1;
7253 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
7254 " previous exception %d\n",
7255 excret, env->v7m.exception);
7257 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
7258 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
7259 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
7260 excret);
7263 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7264 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
7265 * we pick which FAULTMASK to clear.
7267 if (!env->v7m.secure &&
7268 ((excret & R_V7M_EXCRET_ES_MASK) ||
7269 !(excret & R_V7M_EXCRET_DCRS_MASK))) {
7270 sfault = 1;
7271 /* For all other purposes, treat ES as 0 (R_HXSR) */
7272 excret &= ~R_V7M_EXCRET_ES_MASK;
7274 exc_secure = excret & R_V7M_EXCRET_ES_MASK;
7277 if (env->v7m.exception != ARMV7M_EXCP_NMI) {
7278 /* Auto-clear FAULTMASK on return from other than NMI.
7279 * If the security extension is implemented then this only
7280 * happens if the raw execution priority is >= 0; the
7281 * value of the ES bit in the exception return value indicates
7282 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
7284 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7285 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
7286 env->v7m.faultmask[exc_secure] = 0;
7288 } else {
7289 env->v7m.faultmask[M_REG_NS] = 0;
7293 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
7294 exc_secure)) {
7295 case -1:
7296 /* attempt to exit an exception that isn't active */
7297 ufault = true;
7298 break;
7299 case 0:
7300 /* still an irq active now */
7301 break;
7302 case 1:
7303 /* we returned to base exception level, no nesting.
7304 * (In the pseudocode this is written using "NestedActivation != 1"
7305 * where we have 'rettobase == false'.)
7307 rettobase = true;
7308 break;
7309 default:
7310 g_assert_not_reached();
7313 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
7314 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
7315 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
7316 (excret & R_V7M_EXCRET_S_MASK);
7318 if (arm_feature(env, ARM_FEATURE_V8)) {
7319 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7320 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
7321 * we choose to take the UsageFault.
7323 if ((excret & R_V7M_EXCRET_S_MASK) ||
7324 (excret & R_V7M_EXCRET_ES_MASK) ||
7325 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
7326 ufault = true;
7329 if (excret & R_V7M_EXCRET_RES0_MASK) {
7330 ufault = true;
7332 } else {
7333 /* For v7M we only recognize certain combinations of the low bits */
7334 switch (excret & 0xf) {
7335 case 1: /* Return to Handler */
7336 break;
7337 case 13: /* Return to Thread using Process stack */
7338 case 9: /* Return to Thread using Main stack */
7339 /* We only need to check NONBASETHRDENA for v7M, because in
7340 * v8M this bit does not exist (it is RES1).
7342 if (!rettobase &&
7343 !(env->v7m.ccr[env->v7m.secure] &
7344 R_V7M_CCR_NONBASETHRDENA_MASK)) {
7345 ufault = true;
7347 break;
7348 default:
7349 ufault = true;
7354 * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
7355 * Handler mode (and will be until we write the new XPSR.Interrupt
7356 * field) this does not switch around the current stack pointer.
7357 * We must do this before we do any kind of tailchaining, including
7358 * for the derived exceptions on integrity check failures, or we will
7359 * give the guest an incorrect EXCRET.SPSEL value on exception entry.
7361 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
7363 if (sfault) {
7364 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
7365 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7366 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
7367 "stackframe: failed EXC_RETURN.ES validity check\n");
7368 v7m_exception_taken(cpu, excret, true, false);
7369 return;
7372 if (ufault) {
7373 /* Bad exception return: instead of popping the exception
7374 * stack, directly take a usage fault on the current stack.
7376 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7377 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7378 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
7379 "stackframe: failed exception return integrity check\n");
7380 v7m_exception_taken(cpu, excret, true, false);
7381 return;
7385 * Tailchaining: if there is currently a pending exception that
7386 * is high enough priority to preempt execution at the level we're
7387 * about to return to, then just directly take that exception now,
7388 * avoiding an unstack-and-then-stack. Note that now we have
7389 * deactivated the previous exception by calling armv7m_nvic_complete_irq()
7390 * our current execution priority is already the execution priority we are
7391 * returning to -- none of the state we would unstack or set based on
7392 * the EXCRET value affects it.
7394 if (armv7m_nvic_can_take_pending_exception(env->nvic)) {
7395 qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n");
7396 v7m_exception_taken(cpu, excret, true, false);
7397 return;
7400 switch_v7m_security_state(env, return_to_secure);
7403 /* The stack pointer we should be reading the exception frame from
7404 * depends on bits in the magic exception return type value (and
7405 * for v8M isn't necessarily the stack pointer we will eventually
7406 * end up resuming execution with). Get a pointer to the location
7407 * in the CPU state struct where the SP we need is currently being
7408 * stored; we will use and modify it in place.
7409 * We use this limited C variable scope so we don't accidentally
7410 * use 'frame_sp_p' after we do something that makes it invalid.
7412 uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
7413 return_to_secure,
7414 !return_to_handler,
7415 return_to_sp_process);
7416 uint32_t frameptr = *frame_sp_p;
7417 bool pop_ok = true;
7418 ARMMMUIdx mmu_idx;
7419 bool return_to_priv = return_to_handler ||
7420 !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK);
7422 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure,
7423 return_to_priv);
7425 if (!QEMU_IS_ALIGNED(frameptr, 8) &&
7426 arm_feature(env, ARM_FEATURE_V8)) {
7427 qemu_log_mask(LOG_GUEST_ERROR,
7428 "M profile exception return with non-8-aligned SP "
7429 "for destination state is UNPREDICTABLE\n");
7432 /* Do we need to pop callee-saved registers? */
7433 if (return_to_secure &&
7434 ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
7435 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
7436 uint32_t expected_sig = 0xfefa125b;
7437 uint32_t actual_sig;
7439 pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx);
7441 if (pop_ok && expected_sig != actual_sig) {
7442 /* Take a SecureFault on the current stack */
7443 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
7444 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7445 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
7446 "stackframe: failed exception return integrity "
7447 "signature check\n");
7448 v7m_exception_taken(cpu, excret, true, false);
7449 return;
7452 pop_ok = pop_ok &&
7453 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
7454 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) &&
7455 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) &&
7456 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) &&
7457 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) &&
7458 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) &&
7459 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) &&
7460 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx);
7462 frameptr += 0x28;
7465 /* Pop registers */
7466 pop_ok = pop_ok &&
7467 v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) &&
7468 v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) &&
7469 v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) &&
7470 v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) &&
7471 v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) &&
7472 v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) &&
7473 v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) &&
7474 v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx);
7476 if (!pop_ok) {
7477 /* v7m_stack_read() pended a fault, so take it (as a tail
7478 * chained exception on the same stack frame)
7480 qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n");
7481 v7m_exception_taken(cpu, excret, true, false);
7482 return;
7485 /* Returning from an exception with a PC with bit 0 set is defined
7486 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
7487 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
7488 * the lsbit, and there are several RTOSes out there which incorrectly
7489 * assume the r15 in the stack frame should be a Thumb-style "lsbit
7490 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
7491 * complain about the badly behaved guest.
7493 if (env->regs[15] & 1) {
7494 env->regs[15] &= ~1U;
7495 if (!arm_feature(env, ARM_FEATURE_V8)) {
7496 qemu_log_mask(LOG_GUEST_ERROR,
7497 "M profile return from interrupt with misaligned "
7498 "PC is UNPREDICTABLE on v7M\n");
7502 if (arm_feature(env, ARM_FEATURE_V8)) {
7503 /* For v8M we have to check whether the xPSR exception field
7504 * matches the EXCRET value for return to handler/thread
7505 * before we commit to changing the SP and xPSR.
7507 bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
7508 if (return_to_handler != will_be_handler) {
7509 /* Take an INVPC UsageFault on the current stack.
7510 * By this point we will have switched to the security state
7511 * for the background state, so this UsageFault will target
7512 * that state.
7514 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
7515 env->v7m.secure);
7516 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7517 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
7518 "stackframe: failed exception return integrity "
7519 "check\n");
7520 v7m_exception_taken(cpu, excret, true, false);
7521 return;
7525 /* Commit to consuming the stack frame */
7526 frameptr += 0x20;
7527 /* Undo stack alignment (the SPREALIGN bit indicates that the original
7528 * pre-exception SP was not 8-aligned and we added a padding word to
7529 * align it, so we undo this by ORing in the bit that increases it
7530 * from the current 8-aligned value to the 8-unaligned value. (Adding 4
7531 * would work too but a logical OR is how the pseudocode specifies it.)
7533 if (xpsr & XPSR_SPREALIGN) {
7534 frameptr |= 4;
7536 *frame_sp_p = frameptr;
7538 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
7539 xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
7541 /* The restored xPSR exception field will be zero if we're
7542 * resuming in Thread mode. If that doesn't match what the
7543 * exception return excret specified then this is a UsageFault.
7544 * v7M requires we make this check here; v8M did it earlier.
7546 if (return_to_handler != arm_v7m_is_handler_mode(env)) {
7547 /* Take an INVPC UsageFault by pushing the stack again;
7548 * we know we're v7M so this is never a Secure UsageFault.
7550 bool ignore_stackfaults;
7552 assert(!arm_feature(env, ARM_FEATURE_V8));
7553 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
7554 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7555 ignore_stackfaults = v7m_push_stack(cpu);
7556 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
7557 "failed exception return integrity check\n");
7558 v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
7559 return;
7562 /* Otherwise, we have a successful exception exit. */
7563 arm_clear_exclusive(env);
7564 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
7567 static bool do_v7m_function_return(ARMCPU *cpu)
7569 /* v8M security extensions magic function return.
7570 * We may either:
7571 * (1) throw an exception (longjump)
7572 * (2) return true if we successfully handled the function return
7573 * (3) return false if we failed a consistency check and have
7574 * pended a UsageFault that needs to be taken now
7576 * At this point the magic return value is split between env->regs[15]
7577 * and env->thumb. We don't bother to reconstitute it because we don't
7578 * need it (all values are handled the same way).
7580 CPUARMState *env = &cpu->env;
7581 uint32_t newpc, newpsr, newpsr_exc;
7583 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
7586 bool threadmode, spsel;
7587 TCGMemOpIdx oi;
7588 ARMMMUIdx mmu_idx;
7589 uint32_t *frame_sp_p;
7590 uint32_t frameptr;
7592 /* Pull the return address and IPSR from the Secure stack */
7593 threadmode = !arm_v7m_is_handler_mode(env);
7594 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
7596 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
7597 frameptr = *frame_sp_p;
7599 /* These loads may throw an exception (for MPU faults). We want to
7600 * do them as secure, so work out what MMU index that is.
7602 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
7603 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
7604 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
7605 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
7607 /* Consistency checks on new IPSR */
7608 newpsr_exc = newpsr & XPSR_EXCP;
7609 if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
7610 (env->v7m.exception == 1 && newpsr_exc != 0))) {
7611 /* Pend the fault and tell our caller to take it */
7612 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7613 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
7614 env->v7m.secure);
7615 qemu_log_mask(CPU_LOG_INT,
7616 "...taking INVPC UsageFault: "
7617 "IPSR consistency check failed\n");
7618 return false;
7621 *frame_sp_p = frameptr + 8;
7624 /* This invalidates frame_sp_p */
7625 switch_v7m_security_state(env, true);
7626 env->v7m.exception = newpsr_exc;
7627 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
7628 if (newpsr & XPSR_SFPA) {
7629 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
7631 xpsr_write(env, 0, XPSR_IT);
7632 env->thumb = newpc & 1;
7633 env->regs[15] = newpc & ~1;
7635 qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
7636 return true;
7639 static void arm_log_exception(int idx)
7641 if (qemu_loglevel_mask(CPU_LOG_INT)) {
7642 const char *exc = NULL;
7643 static const char * const excnames[] = {
7644 [EXCP_UDEF] = "Undefined Instruction",
7645 [EXCP_SWI] = "SVC",
7646 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
7647 [EXCP_DATA_ABORT] = "Data Abort",
7648 [EXCP_IRQ] = "IRQ",
7649 [EXCP_FIQ] = "FIQ",
7650 [EXCP_BKPT] = "Breakpoint",
7651 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
7652 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
7653 [EXCP_HVC] = "Hypervisor Call",
7654 [EXCP_HYP_TRAP] = "Hypervisor Trap",
7655 [EXCP_SMC] = "Secure Monitor Call",
7656 [EXCP_VIRQ] = "Virtual IRQ",
7657 [EXCP_VFIQ] = "Virtual FIQ",
7658 [EXCP_SEMIHOST] = "Semihosting call",
7659 [EXCP_NOCP] = "v7M NOCP UsageFault",
7660 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
7661 [EXCP_STKOF] = "v8M STKOF UsageFault",
7664 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
7665 exc = excnames[idx];
7667 if (!exc) {
7668 exc = "unknown";
7670 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
7674 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
7675 uint32_t addr, uint16_t *insn)
7677 /* Load a 16-bit portion of a v7M instruction, returning true on success,
7678 * or false on failure (in which case we will have pended the appropriate
7679 * exception).
7680 * We need to do the instruction fetch's MPU and SAU checks
7681 * like this because there is no MMU index that would allow
7682 * doing the load with a single function call. Instead we must
7683 * first check that the security attributes permit the load
7684 * and that they don't mismatch on the two halves of the instruction,
7685 * and then we do the load as a secure load (ie using the security
7686 * attributes of the address, not the CPU, as architecturally required).
7688 CPUState *cs = CPU(cpu);
7689 CPUARMState *env = &cpu->env;
7690 V8M_SAttributes sattrs = {};
7691 MemTxAttrs attrs = {};
7692 ARMMMUFaultInfo fi = {};
7693 MemTxResult txres;
7694 target_ulong page_size;
7695 hwaddr physaddr;
7696 int prot;
7698 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
7699 if (!sattrs.nsc || sattrs.ns) {
7700 /* This must be the second half of the insn, and it straddles a
7701 * region boundary with the second half not being S&NSC.
7703 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7704 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7705 qemu_log_mask(CPU_LOG_INT,
7706 "...really SecureFault with SFSR.INVEP\n");
7707 return false;
7709 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
7710 &physaddr, &attrs, &prot, &page_size, &fi, NULL)) {
7711 /* the MPU lookup failed */
7712 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
7713 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
7714 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
7715 return false;
7717 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
7718 attrs, &txres);
7719 if (txres != MEMTX_OK) {
7720 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
7721 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
7722 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
7723 return false;
7725 return true;
7728 static bool v7m_handle_execute_nsc(ARMCPU *cpu)
7730 /* Check whether this attempt to execute code in a Secure & NS-Callable
7731 * memory region is for an SG instruction; if so, then emulate the
7732 * effect of the SG instruction and return true. Otherwise pend
7733 * the correct kind of exception and return false.
7735 CPUARMState *env = &cpu->env;
7736 ARMMMUIdx mmu_idx;
7737 uint16_t insn;
7739 /* We should never get here unless get_phys_addr_pmsav8() caused
7740 * an exception for NS executing in S&NSC memory.
7742 assert(!env->v7m.secure);
7743 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
7745 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
7746 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
7748 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
7749 return false;
7752 if (!env->thumb) {
7753 goto gen_invep;
7756 if (insn != 0xe97f) {
7757 /* Not an SG instruction first half (we choose the IMPDEF
7758 * early-SG-check option).
7760 goto gen_invep;
7763 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
7764 return false;
7767 if (insn != 0xe97f) {
7768 /* Not an SG instruction second half (yes, both halves of the SG
7769 * insn have the same hex value)
7771 goto gen_invep;
7774 /* OK, we have confirmed that we really have an SG instruction.
7775 * We know we're NS in S memory so don't need to repeat those checks.
7777 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
7778 ", executing it\n", env->regs[15]);
7779 env->regs[14] &= ~1;
7780 switch_v7m_security_state(env, true);
7781 xpsr_write(env, 0, XPSR_IT);
7782 env->regs[15] += 4;
7783 return true;
7785 gen_invep:
7786 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7787 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7788 qemu_log_mask(CPU_LOG_INT,
7789 "...really SecureFault with SFSR.INVEP\n");
7790 return false;
7793 void arm_v7m_cpu_do_interrupt(CPUState *cs)
7795 ARMCPU *cpu = ARM_CPU(cs);
7796 CPUARMState *env = &cpu->env;
7797 uint32_t lr;
7798 bool ignore_stackfaults;
7800 arm_log_exception(cs->exception_index);
7802 /* For exceptions we just mark as pending on the NVIC, and let that
7803 handle it. */
7804 switch (cs->exception_index) {
7805 case EXCP_UDEF:
7806 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7807 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
7808 break;
7809 case EXCP_NOCP:
7810 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7811 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
7812 break;
7813 case EXCP_INVSTATE:
7814 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7815 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
7816 break;
7817 case EXCP_STKOF:
7818 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7819 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
7820 break;
7821 case EXCP_SWI:
7822 /* The PC already points to the next instruction. */
7823 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
7824 break;
7825 case EXCP_PREFETCH_ABORT:
7826 case EXCP_DATA_ABORT:
7827 /* Note that for M profile we don't have a guest facing FSR, but
7828 * the env->exception.fsr will be populated by the code that
7829 * raises the fault, in the A profile short-descriptor format.
7831 switch (env->exception.fsr & 0xf) {
7832 case M_FAKE_FSR_NSC_EXEC:
7833 /* Exception generated when we try to execute code at an address
7834 * which is marked as Secure & Non-Secure Callable and the CPU
7835 * is in the Non-Secure state. The only instruction which can
7836 * be executed like this is SG (and that only if both halves of
7837 * the SG instruction have the same security attributes.)
7838 * Everything else must generate an INVEP SecureFault, so we
7839 * emulate the SG instruction here.
7841 if (v7m_handle_execute_nsc(cpu)) {
7842 return;
7844 break;
7845 case M_FAKE_FSR_SFAULT:
7846 /* Various flavours of SecureFault for attempts to execute or
7847 * access data in the wrong security state.
7849 switch (cs->exception_index) {
7850 case EXCP_PREFETCH_ABORT:
7851 if (env->v7m.secure) {
7852 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
7853 qemu_log_mask(CPU_LOG_INT,
7854 "...really SecureFault with SFSR.INVTRAN\n");
7855 } else {
7856 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7857 qemu_log_mask(CPU_LOG_INT,
7858 "...really SecureFault with SFSR.INVEP\n");
7860 break;
7861 case EXCP_DATA_ABORT:
7862 /* This must be an NS access to S memory */
7863 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
7864 qemu_log_mask(CPU_LOG_INT,
7865 "...really SecureFault with SFSR.AUVIOL\n");
7866 break;
7868 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7869 break;
7870 case 0x8: /* External Abort */
7871 switch (cs->exception_index) {
7872 case EXCP_PREFETCH_ABORT:
7873 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
7874 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
7875 break;
7876 case EXCP_DATA_ABORT:
7877 env->v7m.cfsr[M_REG_NS] |=
7878 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
7879 env->v7m.bfar = env->exception.vaddress;
7880 qemu_log_mask(CPU_LOG_INT,
7881 "...with CFSR.PRECISERR and BFAR 0x%x\n",
7882 env->v7m.bfar);
7883 break;
7885 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
7886 break;
7887 default:
7888 /* All other FSR values are either MPU faults or "can't happen
7889 * for M profile" cases.
7891 switch (cs->exception_index) {
7892 case EXCP_PREFETCH_ABORT:
7893 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
7894 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
7895 break;
7896 case EXCP_DATA_ABORT:
7897 env->v7m.cfsr[env->v7m.secure] |=
7898 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
7899 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
7900 qemu_log_mask(CPU_LOG_INT,
7901 "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
7902 env->v7m.mmfar[env->v7m.secure]);
7903 break;
7905 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
7906 env->v7m.secure);
7907 break;
7909 break;
7910 case EXCP_BKPT:
7911 if (semihosting_enabled()) {
7912 int nr;
7913 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
7914 if (nr == 0xab) {
7915 env->regs[15] += 2;
7916 qemu_log_mask(CPU_LOG_INT,
7917 "...handling as semihosting call 0x%x\n",
7918 env->regs[0]);
7919 env->regs[0] = do_arm_semihosting(env);
7920 return;
7923 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
7924 break;
7925 case EXCP_IRQ:
7926 break;
7927 case EXCP_EXCEPTION_EXIT:
7928 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
7929 /* Must be v8M security extension function return */
7930 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
7931 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
7932 if (do_v7m_function_return(cpu)) {
7933 return;
7935 } else {
7936 do_v7m_exception_exit(cpu);
7937 return;
7939 break;
7940 default:
7941 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7942 return; /* Never happens. Keep compiler happy. */
7945 if (arm_feature(env, ARM_FEATURE_V8)) {
7946 lr = R_V7M_EXCRET_RES1_MASK |
7947 R_V7M_EXCRET_DCRS_MASK |
7948 R_V7M_EXCRET_FTYPE_MASK;
7949 /* The S bit indicates whether we should return to Secure
7950 * or NonSecure (ie our current state).
7951 * The ES bit indicates whether we're taking this exception
7952 * to Secure or NonSecure (ie our target state). We set it
7953 * later, in v7m_exception_taken().
7954 * The SPSEL bit is also set in v7m_exception_taken() for v8M.
7955 * This corresponds to the ARM ARM pseudocode for v8M setting
7956 * some LR bits in PushStack() and some in ExceptionTaken();
7957 * the distinction matters for the tailchain cases where we
7958 * can take an exception without pushing the stack.
7960 if (env->v7m.secure) {
7961 lr |= R_V7M_EXCRET_S_MASK;
7963 } else {
7964 lr = R_V7M_EXCRET_RES1_MASK |
7965 R_V7M_EXCRET_S_MASK |
7966 R_V7M_EXCRET_DCRS_MASK |
7967 R_V7M_EXCRET_FTYPE_MASK |
7968 R_V7M_EXCRET_ES_MASK;
7969 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
7970 lr |= R_V7M_EXCRET_SPSEL_MASK;
7973 if (!arm_v7m_is_handler_mode(env)) {
7974 lr |= R_V7M_EXCRET_MODE_MASK;
7977 ignore_stackfaults = v7m_push_stack(cpu);
7978 v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
7981 /* Function used to synchronize QEMU's AArch64 register set with AArch32
7982 * register set. This is necessary when switching between AArch32 and AArch64
7983 * execution state.
7985 void aarch64_sync_32_to_64(CPUARMState *env)
7987 int i;
7988 uint32_t mode = env->uncached_cpsr & CPSR_M;
7990 /* We can blanket copy R[0:7] to X[0:7] */
7991 for (i = 0; i < 8; i++) {
7992 env->xregs[i] = env->regs[i];
7995 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
7996 * Otherwise, they come from the banked user regs.
7998 if (mode == ARM_CPU_MODE_FIQ) {
7999 for (i = 8; i < 13; i++) {
8000 env->xregs[i] = env->usr_regs[i - 8];
8002 } else {
8003 for (i = 8; i < 13; i++) {
8004 env->xregs[i] = env->regs[i];
8008 /* Registers x13-x23 are the various mode SP and FP registers. Registers
8009 * r13 and r14 are only copied if we are in that mode, otherwise we copy
8010 * from the mode banked register.
8012 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
8013 env->xregs[13] = env->regs[13];
8014 env->xregs[14] = env->regs[14];
8015 } else {
8016 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
8017 /* HYP is an exception in that it is copied from r14 */
8018 if (mode == ARM_CPU_MODE_HYP) {
8019 env->xregs[14] = env->regs[14];
8020 } else {
8021 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
8025 if (mode == ARM_CPU_MODE_HYP) {
8026 env->xregs[15] = env->regs[13];
8027 } else {
8028 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
8031 if (mode == ARM_CPU_MODE_IRQ) {
8032 env->xregs[16] = env->regs[14];
8033 env->xregs[17] = env->regs[13];
8034 } else {
8035 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
8036 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
8039 if (mode == ARM_CPU_MODE_SVC) {
8040 env->xregs[18] = env->regs[14];
8041 env->xregs[19] = env->regs[13];
8042 } else {
8043 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
8044 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
8047 if (mode == ARM_CPU_MODE_ABT) {
8048 env->xregs[20] = env->regs[14];
8049 env->xregs[21] = env->regs[13];
8050 } else {
8051 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
8052 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
8055 if (mode == ARM_CPU_MODE_UND) {
8056 env->xregs[22] = env->regs[14];
8057 env->xregs[23] = env->regs[13];
8058 } else {
8059 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
8060 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
8063 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
8064 * mode, then we can copy from r8-r14. Otherwise, we copy from the
8065 * FIQ bank for r8-r14.
8067 if (mode == ARM_CPU_MODE_FIQ) {
8068 for (i = 24; i < 31; i++) {
8069 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
8071 } else {
8072 for (i = 24; i < 29; i++) {
8073 env->xregs[i] = env->fiq_regs[i - 24];
8075 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
8076 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
8079 env->pc = env->regs[15];
8082 /* Function used to synchronize QEMU's AArch32 register set with AArch64
8083 * register set. This is necessary when switching between AArch32 and AArch64
8084 * execution state.
8086 void aarch64_sync_64_to_32(CPUARMState *env)
8088 int i;
8089 uint32_t mode = env->uncached_cpsr & CPSR_M;
8091 /* We can blanket copy X[0:7] to R[0:7] */
8092 for (i = 0; i < 8; i++) {
8093 env->regs[i] = env->xregs[i];
8096 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
8097 * Otherwise, we copy x8-x12 into the banked user regs.
8099 if (mode == ARM_CPU_MODE_FIQ) {
8100 for (i = 8; i < 13; i++) {
8101 env->usr_regs[i - 8] = env->xregs[i];
8103 } else {
8104 for (i = 8; i < 13; i++) {
8105 env->regs[i] = env->xregs[i];
8109 /* Registers r13 & r14 depend on the current mode.
8110 * If we are in a given mode, we copy the corresponding x registers to r13
8111 * and r14. Otherwise, we copy the x register to the banked r13 and r14
8112 * for the mode.
8114 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
8115 env->regs[13] = env->xregs[13];
8116 env->regs[14] = env->xregs[14];
8117 } else {
8118 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
8120 /* HYP is an exception in that it does not have its own banked r14 but
8121 * shares the USR r14
8123 if (mode == ARM_CPU_MODE_HYP) {
8124 env->regs[14] = env->xregs[14];
8125 } else {
8126 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
8130 if (mode == ARM_CPU_MODE_HYP) {
8131 env->regs[13] = env->xregs[15];
8132 } else {
8133 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
8136 if (mode == ARM_CPU_MODE_IRQ) {
8137 env->regs[14] = env->xregs[16];
8138 env->regs[13] = env->xregs[17];
8139 } else {
8140 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
8141 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
8144 if (mode == ARM_CPU_MODE_SVC) {
8145 env->regs[14] = env->xregs[18];
8146 env->regs[13] = env->xregs[19];
8147 } else {
8148 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
8149 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
8152 if (mode == ARM_CPU_MODE_ABT) {
8153 env->regs[14] = env->xregs[20];
8154 env->regs[13] = env->xregs[21];
8155 } else {
8156 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
8157 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
8160 if (mode == ARM_CPU_MODE_UND) {
8161 env->regs[14] = env->xregs[22];
8162 env->regs[13] = env->xregs[23];
8163 } else {
8164 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
8165 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
8168 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
8169 * mode, then we can copy to r8-r14. Otherwise, we copy to the
8170 * FIQ bank for r8-r14.
8172 if (mode == ARM_CPU_MODE_FIQ) {
8173 for (i = 24; i < 31; i++) {
8174 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
8176 } else {
8177 for (i = 24; i < 29; i++) {
8178 env->fiq_regs[i - 24] = env->xregs[i];
8180 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
8181 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
8184 env->regs[15] = env->pc;
8187 static void take_aarch32_exception(CPUARMState *env, int new_mode,
8188 uint32_t mask, uint32_t offset,
8189 uint32_t newpc)
8191 /* Change the CPU state so as to actually take the exception. */
8192 switch_mode(env, new_mode);
8194 * For exceptions taken to AArch32 we must clear the SS bit in both
8195 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
8197 env->uncached_cpsr &= ~PSTATE_SS;
8198 env->spsr = cpsr_read(env);
8199 /* Clear IT bits. */
8200 env->condexec_bits = 0;
8201 /* Switch to the new mode, and to the correct instruction set. */
8202 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
8203 /* Set new mode endianness */
8204 env->uncached_cpsr &= ~CPSR_E;
8205 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
8206 env->uncached_cpsr |= CPSR_E;
8208 /* J and IL must always be cleared for exception entry */
8209 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
8210 env->daif |= mask;
8212 if (new_mode == ARM_CPU_MODE_HYP) {
8213 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
8214 env->elr_el[2] = env->regs[15];
8215 } else {
8217 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
8218 * and we should just guard the thumb mode on V4
8220 if (arm_feature(env, ARM_FEATURE_V4T)) {
8221 env->thumb =
8222 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
8224 env->regs[14] = env->regs[15] + offset;
8226 env->regs[15] = newpc;
8229 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
8232 * Handle exception entry to Hyp mode; this is sufficiently
8233 * different to entry to other AArch32 modes that we handle it
8234 * separately here.
8236 * The vector table entry used is always the 0x14 Hyp mode entry point,
8237 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
8238 * The offset applied to the preferred return address is always zero
8239 * (see DDI0487C.a section G1.12.3).
8240 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
8242 uint32_t addr, mask;
8243 ARMCPU *cpu = ARM_CPU(cs);
8244 CPUARMState *env = &cpu->env;
8246 switch (cs->exception_index) {
8247 case EXCP_UDEF:
8248 addr = 0x04;
8249 break;
8250 case EXCP_SWI:
8251 addr = 0x14;
8252 break;
8253 case EXCP_BKPT:
8254 /* Fall through to prefetch abort. */
8255 case EXCP_PREFETCH_ABORT:
8256 env->cp15.ifar_s = env->exception.vaddress;
8257 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
8258 (uint32_t)env->exception.vaddress);
8259 addr = 0x0c;
8260 break;
8261 case EXCP_DATA_ABORT:
8262 env->cp15.dfar_s = env->exception.vaddress;
8263 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
8264 (uint32_t)env->exception.vaddress);
8265 addr = 0x10;
8266 break;
8267 case EXCP_IRQ:
8268 addr = 0x18;
8269 break;
8270 case EXCP_FIQ:
8271 addr = 0x1c;
8272 break;
8273 case EXCP_HVC:
8274 addr = 0x08;
8275 break;
8276 case EXCP_HYP_TRAP:
8277 addr = 0x14;
8278 default:
8279 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8282 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
8283 if (!arm_feature(env, ARM_FEATURE_V8)) {
8285 * QEMU syndrome values are v8-style. v7 has the IL bit
8286 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
8287 * If this is a v7 CPU, squash the IL bit in those cases.
8289 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
8290 (cs->exception_index == EXCP_DATA_ABORT &&
8291 !(env->exception.syndrome & ARM_EL_ISV)) ||
8292 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
8293 env->exception.syndrome &= ~ARM_EL_IL;
8296 env->cp15.esr_el[2] = env->exception.syndrome;
8299 if (arm_current_el(env) != 2 && addr < 0x14) {
8300 addr = 0x14;
8303 mask = 0;
8304 if (!(env->cp15.scr_el3 & SCR_EA)) {
8305 mask |= CPSR_A;
8307 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
8308 mask |= CPSR_I;
8310 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
8311 mask |= CPSR_F;
8314 addr += env->cp15.hvbar;
8316 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
8319 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
8321 ARMCPU *cpu = ARM_CPU(cs);
8322 CPUARMState *env = &cpu->env;
8323 uint32_t addr;
8324 uint32_t mask;
8325 int new_mode;
8326 uint32_t offset;
8327 uint32_t moe;
8329 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
8330 switch (syn_get_ec(env->exception.syndrome)) {
8331 case EC_BREAKPOINT:
8332 case EC_BREAKPOINT_SAME_EL:
8333 moe = 1;
8334 break;
8335 case EC_WATCHPOINT:
8336 case EC_WATCHPOINT_SAME_EL:
8337 moe = 10;
8338 break;
8339 case EC_AA32_BKPT:
8340 moe = 3;
8341 break;
8342 case EC_VECTORCATCH:
8343 moe = 5;
8344 break;
8345 default:
8346 moe = 0;
8347 break;
8350 if (moe) {
8351 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
8354 if (env->exception.target_el == 2) {
8355 arm_cpu_do_interrupt_aarch32_hyp(cs);
8356 return;
8359 switch (cs->exception_index) {
8360 case EXCP_UDEF:
8361 new_mode = ARM_CPU_MODE_UND;
8362 addr = 0x04;
8363 mask = CPSR_I;
8364 if (env->thumb)
8365 offset = 2;
8366 else
8367 offset = 4;
8368 break;
8369 case EXCP_SWI:
8370 new_mode = ARM_CPU_MODE_SVC;
8371 addr = 0x08;
8372 mask = CPSR_I;
8373 /* The PC already points to the next instruction. */
8374 offset = 0;
8375 break;
8376 case EXCP_BKPT:
8377 /* Fall through to prefetch abort. */
8378 case EXCP_PREFETCH_ABORT:
8379 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
8380 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
8381 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
8382 env->exception.fsr, (uint32_t)env->exception.vaddress);
8383 new_mode = ARM_CPU_MODE_ABT;
8384 addr = 0x0c;
8385 mask = CPSR_A | CPSR_I;
8386 offset = 4;
8387 break;
8388 case EXCP_DATA_ABORT:
8389 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
8390 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
8391 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
8392 env->exception.fsr,
8393 (uint32_t)env->exception.vaddress);
8394 new_mode = ARM_CPU_MODE_ABT;
8395 addr = 0x10;
8396 mask = CPSR_A | CPSR_I;
8397 offset = 8;
8398 break;
8399 case EXCP_IRQ:
8400 new_mode = ARM_CPU_MODE_IRQ;
8401 addr = 0x18;
8402 /* Disable IRQ and imprecise data aborts. */
8403 mask = CPSR_A | CPSR_I;
8404 offset = 4;
8405 if (env->cp15.scr_el3 & SCR_IRQ) {
8406 /* IRQ routed to monitor mode */
8407 new_mode = ARM_CPU_MODE_MON;
8408 mask |= CPSR_F;
8410 break;
8411 case EXCP_FIQ:
8412 new_mode = ARM_CPU_MODE_FIQ;
8413 addr = 0x1c;
8414 /* Disable FIQ, IRQ and imprecise data aborts. */
8415 mask = CPSR_A | CPSR_I | CPSR_F;
8416 if (env->cp15.scr_el3 & SCR_FIQ) {
8417 /* FIQ routed to monitor mode */
8418 new_mode = ARM_CPU_MODE_MON;
8420 offset = 4;
8421 break;
8422 case EXCP_VIRQ:
8423 new_mode = ARM_CPU_MODE_IRQ;
8424 addr = 0x18;
8425 /* Disable IRQ and imprecise data aborts. */
8426 mask = CPSR_A | CPSR_I;
8427 offset = 4;
8428 break;
8429 case EXCP_VFIQ:
8430 new_mode = ARM_CPU_MODE_FIQ;
8431 addr = 0x1c;
8432 /* Disable FIQ, IRQ and imprecise data aborts. */
8433 mask = CPSR_A | CPSR_I | CPSR_F;
8434 offset = 4;
8435 break;
8436 case EXCP_SMC:
8437 new_mode = ARM_CPU_MODE_MON;
8438 addr = 0x08;
8439 mask = CPSR_A | CPSR_I | CPSR_F;
8440 offset = 0;
8441 break;
8442 default:
8443 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8444 return; /* Never happens. Keep compiler happy. */
8447 if (new_mode == ARM_CPU_MODE_MON) {
8448 addr += env->cp15.mvbar;
8449 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
8450 /* High vectors. When enabled, base address cannot be remapped. */
8451 addr += 0xffff0000;
8452 } else {
8453 /* ARM v7 architectures provide a vector base address register to remap
8454 * the interrupt vector table.
8455 * This register is only followed in non-monitor mode, and is banked.
8456 * Note: only bits 31:5 are valid.
8458 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
8461 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
8462 env->cp15.scr_el3 &= ~SCR_NS;
8465 take_aarch32_exception(env, new_mode, mask, offset, addr);
8468 /* Handle exception entry to a target EL which is using AArch64 */
8469 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
8471 ARMCPU *cpu = ARM_CPU(cs);
8472 CPUARMState *env = &cpu->env;
8473 unsigned int new_el = env->exception.target_el;
8474 target_ulong addr = env->cp15.vbar_el[new_el];
8475 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
8476 unsigned int cur_el = arm_current_el(env);
8479 * Note that new_el can never be 0. If cur_el is 0, then
8480 * el0_a64 is is_a64(), else el0_a64 is ignored.
8482 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
8484 if (cur_el < new_el) {
8485 /* Entry vector offset depends on whether the implemented EL
8486 * immediately lower than the target level is using AArch32 or AArch64
8488 bool is_aa64;
8490 switch (new_el) {
8491 case 3:
8492 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
8493 break;
8494 case 2:
8495 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
8496 break;
8497 case 1:
8498 is_aa64 = is_a64(env);
8499 break;
8500 default:
8501 g_assert_not_reached();
8504 if (is_aa64) {
8505 addr += 0x400;
8506 } else {
8507 addr += 0x600;
8509 } else if (pstate_read(env) & PSTATE_SP) {
8510 addr += 0x200;
8513 switch (cs->exception_index) {
8514 case EXCP_PREFETCH_ABORT:
8515 case EXCP_DATA_ABORT:
8516 env->cp15.far_el[new_el] = env->exception.vaddress;
8517 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
8518 env->cp15.far_el[new_el]);
8519 /* fall through */
8520 case EXCP_BKPT:
8521 case EXCP_UDEF:
8522 case EXCP_SWI:
8523 case EXCP_HVC:
8524 case EXCP_HYP_TRAP:
8525 case EXCP_SMC:
8526 if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) {
8528 * QEMU internal FP/SIMD syndromes from AArch32 include the
8529 * TA and coproc fields which are only exposed if the exception
8530 * is taken to AArch32 Hyp mode. Mask them out to get a valid
8531 * AArch64 format syndrome.
8533 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
8535 env->cp15.esr_el[new_el] = env->exception.syndrome;
8536 break;
8537 case EXCP_IRQ:
8538 case EXCP_VIRQ:
8539 addr += 0x80;
8540 break;
8541 case EXCP_FIQ:
8542 case EXCP_VFIQ:
8543 addr += 0x100;
8544 break;
8545 case EXCP_SEMIHOST:
8546 qemu_log_mask(CPU_LOG_INT,
8547 "...handling as semihosting call 0x%" PRIx64 "\n",
8548 env->xregs[0]);
8549 env->xregs[0] = do_arm_semihosting(env);
8550 return;
8551 default:
8552 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8555 if (is_a64(env)) {
8556 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
8557 aarch64_save_sp(env, arm_current_el(env));
8558 env->elr_el[new_el] = env->pc;
8559 } else {
8560 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
8561 env->elr_el[new_el] = env->regs[15];
8563 aarch64_sync_32_to_64(env);
8565 env->condexec_bits = 0;
8567 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
8568 env->elr_el[new_el]);
8570 pstate_write(env, PSTATE_DAIF | new_mode);
8571 env->aarch64 = 1;
8572 aarch64_restore_sp(env, new_el);
8574 env->pc = addr;
8576 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
8577 new_el, env->pc, pstate_read(env));
8580 static inline bool check_for_semihosting(CPUState *cs)
8582 /* Check whether this exception is a semihosting call; if so
8583 * then handle it and return true; otherwise return false.
8585 ARMCPU *cpu = ARM_CPU(cs);
8586 CPUARMState *env = &cpu->env;
8588 if (is_a64(env)) {
8589 if (cs->exception_index == EXCP_SEMIHOST) {
8590 /* This is always the 64-bit semihosting exception.
8591 * The "is this usermode" and "is semihosting enabled"
8592 * checks have been done at translate time.
8594 qemu_log_mask(CPU_LOG_INT,
8595 "...handling as semihosting call 0x%" PRIx64 "\n",
8596 env->xregs[0]);
8597 env->xregs[0] = do_arm_semihosting(env);
8598 return true;
8600 return false;
8601 } else {
8602 uint32_t imm;
8604 /* Only intercept calls from privileged modes, to provide some
8605 * semblance of security.
8607 if (cs->exception_index != EXCP_SEMIHOST &&
8608 (!semihosting_enabled() ||
8609 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
8610 return false;
8613 switch (cs->exception_index) {
8614 case EXCP_SEMIHOST:
8615 /* This is always a semihosting call; the "is this usermode"
8616 * and "is semihosting enabled" checks have been done at
8617 * translate time.
8619 break;
8620 case EXCP_SWI:
8621 /* Check for semihosting interrupt. */
8622 if (env->thumb) {
8623 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
8624 & 0xff;
8625 if (imm == 0xab) {
8626 break;
8628 } else {
8629 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
8630 & 0xffffff;
8631 if (imm == 0x123456) {
8632 break;
8635 return false;
8636 case EXCP_BKPT:
8637 /* See if this is a semihosting syscall. */
8638 if (env->thumb) {
8639 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
8640 & 0xff;
8641 if (imm == 0xab) {
8642 env->regs[15] += 2;
8643 break;
8646 return false;
8647 default:
8648 return false;
8651 qemu_log_mask(CPU_LOG_INT,
8652 "...handling as semihosting call 0x%x\n",
8653 env->regs[0]);
8654 env->regs[0] = do_arm_semihosting(env);
8655 return true;
8659 /* Handle a CPU exception for A and R profile CPUs.
8660 * Do any appropriate logging, handle PSCI calls, and then hand off
8661 * to the AArch64-entry or AArch32-entry function depending on the
8662 * target exception level's register width.
8664 void arm_cpu_do_interrupt(CPUState *cs)
8666 ARMCPU *cpu = ARM_CPU(cs);
8667 CPUARMState *env = &cpu->env;
8668 unsigned int new_el = env->exception.target_el;
8670 assert(!arm_feature(env, ARM_FEATURE_M));
8672 arm_log_exception(cs->exception_index);
8673 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
8674 new_el);
8675 if (qemu_loglevel_mask(CPU_LOG_INT)
8676 && !excp_is_internal(cs->exception_index)) {
8677 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
8678 syn_get_ec(env->exception.syndrome),
8679 env->exception.syndrome);
8682 if (arm_is_psci_call(cpu, cs->exception_index)) {
8683 arm_handle_psci_call(cpu);
8684 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
8685 return;
8688 /* Semihosting semantics depend on the register width of the
8689 * code that caused the exception, not the target exception level,
8690 * so must be handled here.
8692 if (check_for_semihosting(cs)) {
8693 return;
8696 /* Hooks may change global state so BQL should be held, also the
8697 * BQL needs to be held for any modification of
8698 * cs->interrupt_request.
8700 g_assert(qemu_mutex_iothread_locked());
8702 arm_call_pre_el_change_hook(cpu);
8704 assert(!excp_is_internal(cs->exception_index));
8705 if (arm_el_is_aa64(env, new_el)) {
8706 arm_cpu_do_interrupt_aarch64(cs);
8707 } else {
8708 arm_cpu_do_interrupt_aarch32(cs);
8711 arm_call_el_change_hook(cpu);
8713 if (!kvm_enabled()) {
8714 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
8718 /* Return the exception level which controls this address translation regime */
8719 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
8721 switch (mmu_idx) {
8722 case ARMMMUIdx_S2NS:
8723 case ARMMMUIdx_S1E2:
8724 return 2;
8725 case ARMMMUIdx_S1E3:
8726 return 3;
8727 case ARMMMUIdx_S1SE0:
8728 return arm_el_is_aa64(env, 3) ? 1 : 3;
8729 case ARMMMUIdx_S1SE1:
8730 case ARMMMUIdx_S1NSE0:
8731 case ARMMMUIdx_S1NSE1:
8732 case ARMMMUIdx_MPrivNegPri:
8733 case ARMMMUIdx_MUserNegPri:
8734 case ARMMMUIdx_MPriv:
8735 case ARMMMUIdx_MUser:
8736 case ARMMMUIdx_MSPrivNegPri:
8737 case ARMMMUIdx_MSUserNegPri:
8738 case ARMMMUIdx_MSPriv:
8739 case ARMMMUIdx_MSUser:
8740 return 1;
8741 default:
8742 g_assert_not_reached();
8746 /* Return the SCTLR value which controls this address translation regime */
8747 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
8749 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
8752 /* Return true if the specified stage of address translation is disabled */
8753 static inline bool regime_translation_disabled(CPUARMState *env,
8754 ARMMMUIdx mmu_idx)
8756 if (arm_feature(env, ARM_FEATURE_M)) {
8757 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
8758 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
8759 case R_V7M_MPU_CTRL_ENABLE_MASK:
8760 /* Enabled, but not for HardFault and NMI */
8761 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
8762 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
8763 /* Enabled for all cases */
8764 return false;
8765 case 0:
8766 default:
8767 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
8768 * we warned about that in armv7m_nvic.c when the guest set it.
8770 return true;
8774 if (mmu_idx == ARMMMUIdx_S2NS) {
8775 /* HCR.DC means HCR.VM behaves as 1 */
8776 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
8779 if (env->cp15.hcr_el2 & HCR_TGE) {
8780 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
8781 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
8782 return true;
8786 if ((env->cp15.hcr_el2 & HCR_DC) &&
8787 (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) {
8788 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
8789 return true;
8792 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
8795 static inline bool regime_translation_big_endian(CPUARMState *env,
8796 ARMMMUIdx mmu_idx)
8798 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
8801 /* Return the TCR controlling this translation regime */
8802 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
8804 if (mmu_idx == ARMMMUIdx_S2NS) {
8805 return &env->cp15.vtcr_el2;
8807 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
8810 /* Convert a possible stage1+2 MMU index into the appropriate
8811 * stage 1 MMU index
8813 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
8815 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
8816 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
8818 return mmu_idx;
8821 /* Returns TBI0 value for current regime el */
8822 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
8824 TCR *tcr;
8825 uint32_t el;
8827 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8828 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
8830 mmu_idx = stage_1_mmu_idx(mmu_idx);
8832 tcr = regime_tcr(env, mmu_idx);
8833 el = regime_el(env, mmu_idx);
8835 if (el > 1) {
8836 return extract64(tcr->raw_tcr, 20, 1);
8837 } else {
8838 return extract64(tcr->raw_tcr, 37, 1);
8842 /* Returns TBI1 value for current regime el */
8843 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
8845 TCR *tcr;
8846 uint32_t el;
8848 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8849 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
8851 mmu_idx = stage_1_mmu_idx(mmu_idx);
8853 tcr = regime_tcr(env, mmu_idx);
8854 el = regime_el(env, mmu_idx);
8856 if (el > 1) {
8857 return 0;
8858 } else {
8859 return extract64(tcr->raw_tcr, 38, 1);
8863 /* Return the TTBR associated with this translation regime */
8864 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
8865 int ttbrn)
8867 if (mmu_idx == ARMMMUIdx_S2NS) {
8868 return env->cp15.vttbr_el2;
8870 if (ttbrn == 0) {
8871 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
8872 } else {
8873 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
8877 /* Return true if the translation regime is using LPAE format page tables */
8878 static inline bool regime_using_lpae_format(CPUARMState *env,
8879 ARMMMUIdx mmu_idx)
8881 int el = regime_el(env, mmu_idx);
8882 if (el == 2 || arm_el_is_aa64(env, el)) {
8883 return true;
8885 if (arm_feature(env, ARM_FEATURE_LPAE)
8886 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
8887 return true;
8889 return false;
8892 /* Returns true if the stage 1 translation regime is using LPAE format page
8893 * tables. Used when raising alignment exceptions, whose FSR changes depending
8894 * on whether the long or short descriptor format is in use. */
8895 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
8897 mmu_idx = stage_1_mmu_idx(mmu_idx);
8899 return regime_using_lpae_format(env, mmu_idx);
8902 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
8904 switch (mmu_idx) {
8905 case ARMMMUIdx_S1SE0:
8906 case ARMMMUIdx_S1NSE0:
8907 case ARMMMUIdx_MUser:
8908 case ARMMMUIdx_MSUser:
8909 case ARMMMUIdx_MUserNegPri:
8910 case ARMMMUIdx_MSUserNegPri:
8911 return true;
8912 default:
8913 return false;
8914 case ARMMMUIdx_S12NSE0:
8915 case ARMMMUIdx_S12NSE1:
8916 g_assert_not_reached();
8920 /* Translate section/page access permissions to page
8921 * R/W protection flags
8923 * @env: CPUARMState
8924 * @mmu_idx: MMU index indicating required translation regime
8925 * @ap: The 3-bit access permissions (AP[2:0])
8926 * @domain_prot: The 2-bit domain access permissions
8928 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
8929 int ap, int domain_prot)
8931 bool is_user = regime_is_user(env, mmu_idx);
8933 if (domain_prot == 3) {
8934 return PAGE_READ | PAGE_WRITE;
8937 switch (ap) {
8938 case 0:
8939 if (arm_feature(env, ARM_FEATURE_V7)) {
8940 return 0;
8942 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
8943 case SCTLR_S:
8944 return is_user ? 0 : PAGE_READ;
8945 case SCTLR_R:
8946 return PAGE_READ;
8947 default:
8948 return 0;
8950 case 1:
8951 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8952 case 2:
8953 if (is_user) {
8954 return PAGE_READ;
8955 } else {
8956 return PAGE_READ | PAGE_WRITE;
8958 case 3:
8959 return PAGE_READ | PAGE_WRITE;
8960 case 4: /* Reserved. */
8961 return 0;
8962 case 5:
8963 return is_user ? 0 : PAGE_READ;
8964 case 6:
8965 return PAGE_READ;
8966 case 7:
8967 if (!arm_feature(env, ARM_FEATURE_V6K)) {
8968 return 0;
8970 return PAGE_READ;
8971 default:
8972 g_assert_not_reached();
8976 /* Translate section/page access permissions to page
8977 * R/W protection flags.
8979 * @ap: The 2-bit simple AP (AP[2:1])
8980 * @is_user: TRUE if accessing from PL0
8982 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
8984 switch (ap) {
8985 case 0:
8986 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8987 case 1:
8988 return PAGE_READ | PAGE_WRITE;
8989 case 2:
8990 return is_user ? 0 : PAGE_READ;
8991 case 3:
8992 return PAGE_READ;
8993 default:
8994 g_assert_not_reached();
8998 static inline int
8999 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
9001 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
9004 /* Translate S2 section/page access permissions to protection flags
9006 * @env: CPUARMState
9007 * @s2ap: The 2-bit stage2 access permissions (S2AP)
9008 * @xn: XN (execute-never) bit
9010 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
9012 int prot = 0;
9014 if (s2ap & 1) {
9015 prot |= PAGE_READ;
9017 if (s2ap & 2) {
9018 prot |= PAGE_WRITE;
9020 if (!xn) {
9021 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
9022 prot |= PAGE_EXEC;
9025 return prot;
9028 /* Translate section/page access permissions to protection flags
9030 * @env: CPUARMState
9031 * @mmu_idx: MMU index indicating required translation regime
9032 * @is_aa64: TRUE if AArch64
9033 * @ap: The 2-bit simple AP (AP[2:1])
9034 * @ns: NS (non-secure) bit
9035 * @xn: XN (execute-never) bit
9036 * @pxn: PXN (privileged execute-never) bit
9038 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
9039 int ap, int ns, int xn, int pxn)
9041 bool is_user = regime_is_user(env, mmu_idx);
9042 int prot_rw, user_rw;
9043 bool have_wxn;
9044 int wxn = 0;
9046 assert(mmu_idx != ARMMMUIdx_S2NS);
9048 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
9049 if (is_user) {
9050 prot_rw = user_rw;
9051 } else {
9052 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
9055 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
9056 return prot_rw;
9059 /* TODO have_wxn should be replaced with
9060 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
9061 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
9062 * compatible processors have EL2, which is required for [U]WXN.
9064 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
9066 if (have_wxn) {
9067 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
9070 if (is_aa64) {
9071 switch (regime_el(env, mmu_idx)) {
9072 case 1:
9073 if (!is_user) {
9074 xn = pxn || (user_rw & PAGE_WRITE);
9076 break;
9077 case 2:
9078 case 3:
9079 break;
9081 } else if (arm_feature(env, ARM_FEATURE_V7)) {
9082 switch (regime_el(env, mmu_idx)) {
9083 case 1:
9084 case 3:
9085 if (is_user) {
9086 xn = xn || !(user_rw & PAGE_READ);
9087 } else {
9088 int uwxn = 0;
9089 if (have_wxn) {
9090 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
9092 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
9093 (uwxn && (user_rw & PAGE_WRITE));
9095 break;
9096 case 2:
9097 break;
9099 } else {
9100 xn = wxn = 0;
9103 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
9104 return prot_rw;
9106 return prot_rw | PAGE_EXEC;
9109 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
9110 uint32_t *table, uint32_t address)
9112 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
9113 TCR *tcr = regime_tcr(env, mmu_idx);
9115 if (address & tcr->mask) {
9116 if (tcr->raw_tcr & TTBCR_PD1) {
9117 /* Translation table walk disabled for TTBR1 */
9118 return false;
9120 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
9121 } else {
9122 if (tcr->raw_tcr & TTBCR_PD0) {
9123 /* Translation table walk disabled for TTBR0 */
9124 return false;
9126 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
9128 *table |= (address >> 18) & 0x3ffc;
9129 return true;
9132 /* Translate a S1 pagetable walk through S2 if needed. */
9133 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
9134 hwaddr addr, MemTxAttrs txattrs,
9135 ARMMMUFaultInfo *fi)
9137 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
9138 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
9139 target_ulong s2size;
9140 hwaddr s2pa;
9141 int s2prot;
9142 int ret;
9143 ARMCacheAttrs cacheattrs = {};
9144 ARMCacheAttrs *pcacheattrs = NULL;
9146 if (env->cp15.hcr_el2 & HCR_PTW) {
9148 * PTW means we must fault if this S1 walk touches S2 Device
9149 * memory; otherwise we don't care about the attributes and can
9150 * save the S2 translation the effort of computing them.
9152 pcacheattrs = &cacheattrs;
9155 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
9156 &txattrs, &s2prot, &s2size, fi, pcacheattrs);
9157 if (ret) {
9158 assert(fi->type != ARMFault_None);
9159 fi->s2addr = addr;
9160 fi->stage2 = true;
9161 fi->s1ptw = true;
9162 return ~0;
9164 if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) {
9165 /* Access was to Device memory: generate Permission fault */
9166 fi->type = ARMFault_Permission;
9167 fi->s2addr = addr;
9168 fi->stage2 = true;
9169 fi->s1ptw = true;
9170 return ~0;
9172 addr = s2pa;
9174 return addr;
9177 /* All loads done in the course of a page table walk go through here. */
9178 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
9179 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
9181 ARMCPU *cpu = ARM_CPU(cs);
9182 CPUARMState *env = &cpu->env;
9183 MemTxAttrs attrs = {};
9184 MemTxResult result = MEMTX_OK;
9185 AddressSpace *as;
9186 uint32_t data;
9188 attrs.secure = is_secure;
9189 as = arm_addressspace(cs, attrs);
9190 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
9191 if (fi->s1ptw) {
9192 return 0;
9194 if (regime_translation_big_endian(env, mmu_idx)) {
9195 data = address_space_ldl_be(as, addr, attrs, &result);
9196 } else {
9197 data = address_space_ldl_le(as, addr, attrs, &result);
9199 if (result == MEMTX_OK) {
9200 return data;
9202 fi->type = ARMFault_SyncExternalOnWalk;
9203 fi->ea = arm_extabort_type(result);
9204 return 0;
9207 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
9208 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
9210 ARMCPU *cpu = ARM_CPU(cs);
9211 CPUARMState *env = &cpu->env;
9212 MemTxAttrs attrs = {};
9213 MemTxResult result = MEMTX_OK;
9214 AddressSpace *as;
9215 uint64_t data;
9217 attrs.secure = is_secure;
9218 as = arm_addressspace(cs, attrs);
9219 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
9220 if (fi->s1ptw) {
9221 return 0;
9223 if (regime_translation_big_endian(env, mmu_idx)) {
9224 data = address_space_ldq_be(as, addr, attrs, &result);
9225 } else {
9226 data = address_space_ldq_le(as, addr, attrs, &result);
9228 if (result == MEMTX_OK) {
9229 return data;
9231 fi->type = ARMFault_SyncExternalOnWalk;
9232 fi->ea = arm_extabort_type(result);
9233 return 0;
9236 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
9237 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9238 hwaddr *phys_ptr, int *prot,
9239 target_ulong *page_size,
9240 ARMMMUFaultInfo *fi)
9242 CPUState *cs = CPU(arm_env_get_cpu(env));
9243 int level = 1;
9244 uint32_t table;
9245 uint32_t desc;
9246 int type;
9247 int ap;
9248 int domain = 0;
9249 int domain_prot;
9250 hwaddr phys_addr;
9251 uint32_t dacr;
9253 /* Pagetable walk. */
9254 /* Lookup l1 descriptor. */
9255 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
9256 /* Section translation fault if page walk is disabled by PD0 or PD1 */
9257 fi->type = ARMFault_Translation;
9258 goto do_fault;
9260 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9261 mmu_idx, fi);
9262 if (fi->type != ARMFault_None) {
9263 goto do_fault;
9265 type = (desc & 3);
9266 domain = (desc >> 5) & 0x0f;
9267 if (regime_el(env, mmu_idx) == 1) {
9268 dacr = env->cp15.dacr_ns;
9269 } else {
9270 dacr = env->cp15.dacr_s;
9272 domain_prot = (dacr >> (domain * 2)) & 3;
9273 if (type == 0) {
9274 /* Section translation fault. */
9275 fi->type = ARMFault_Translation;
9276 goto do_fault;
9278 if (type != 2) {
9279 level = 2;
9281 if (domain_prot == 0 || domain_prot == 2) {
9282 fi->type = ARMFault_Domain;
9283 goto do_fault;
9285 if (type == 2) {
9286 /* 1Mb section. */
9287 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
9288 ap = (desc >> 10) & 3;
9289 *page_size = 1024 * 1024;
9290 } else {
9291 /* Lookup l2 entry. */
9292 if (type == 1) {
9293 /* Coarse pagetable. */
9294 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
9295 } else {
9296 /* Fine pagetable. */
9297 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
9299 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9300 mmu_idx, fi);
9301 if (fi->type != ARMFault_None) {
9302 goto do_fault;
9304 switch (desc & 3) {
9305 case 0: /* Page translation fault. */
9306 fi->type = ARMFault_Translation;
9307 goto do_fault;
9308 case 1: /* 64k page. */
9309 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
9310 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
9311 *page_size = 0x10000;
9312 break;
9313 case 2: /* 4k page. */
9314 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9315 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
9316 *page_size = 0x1000;
9317 break;
9318 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
9319 if (type == 1) {
9320 /* ARMv6/XScale extended small page format */
9321 if (arm_feature(env, ARM_FEATURE_XSCALE)
9322 || arm_feature(env, ARM_FEATURE_V6)) {
9323 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9324 *page_size = 0x1000;
9325 } else {
9326 /* UNPREDICTABLE in ARMv5; we choose to take a
9327 * page translation fault.
9329 fi->type = ARMFault_Translation;
9330 goto do_fault;
9332 } else {
9333 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
9334 *page_size = 0x400;
9336 ap = (desc >> 4) & 3;
9337 break;
9338 default:
9339 /* Never happens, but compiler isn't smart enough to tell. */
9340 abort();
9343 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
9344 *prot |= *prot ? PAGE_EXEC : 0;
9345 if (!(*prot & (1 << access_type))) {
9346 /* Access permission fault. */
9347 fi->type = ARMFault_Permission;
9348 goto do_fault;
9350 *phys_ptr = phys_addr;
9351 return false;
9352 do_fault:
9353 fi->domain = domain;
9354 fi->level = level;
9355 return true;
9358 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
9359 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9360 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
9361 target_ulong *page_size, ARMMMUFaultInfo *fi)
9363 CPUState *cs = CPU(arm_env_get_cpu(env));
9364 int level = 1;
9365 uint32_t table;
9366 uint32_t desc;
9367 uint32_t xn;
9368 uint32_t pxn = 0;
9369 int type;
9370 int ap;
9371 int domain = 0;
9372 int domain_prot;
9373 hwaddr phys_addr;
9374 uint32_t dacr;
9375 bool ns;
9377 /* Pagetable walk. */
9378 /* Lookup l1 descriptor. */
9379 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
9380 /* Section translation fault if page walk is disabled by PD0 or PD1 */
9381 fi->type = ARMFault_Translation;
9382 goto do_fault;
9384 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9385 mmu_idx, fi);
9386 if (fi->type != ARMFault_None) {
9387 goto do_fault;
9389 type = (desc & 3);
9390 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
9391 /* Section translation fault, or attempt to use the encoding
9392 * which is Reserved on implementations without PXN.
9394 fi->type = ARMFault_Translation;
9395 goto do_fault;
9397 if ((type == 1) || !(desc & (1 << 18))) {
9398 /* Page or Section. */
9399 domain = (desc >> 5) & 0x0f;
9401 if (regime_el(env, mmu_idx) == 1) {
9402 dacr = env->cp15.dacr_ns;
9403 } else {
9404 dacr = env->cp15.dacr_s;
9406 if (type == 1) {
9407 level = 2;
9409 domain_prot = (dacr >> (domain * 2)) & 3;
9410 if (domain_prot == 0 || domain_prot == 2) {
9411 /* Section or Page domain fault */
9412 fi->type = ARMFault_Domain;
9413 goto do_fault;
9415 if (type != 1) {
9416 if (desc & (1 << 18)) {
9417 /* Supersection. */
9418 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
9419 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
9420 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
9421 *page_size = 0x1000000;
9422 } else {
9423 /* Section. */
9424 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
9425 *page_size = 0x100000;
9427 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
9428 xn = desc & (1 << 4);
9429 pxn = desc & 1;
9430 ns = extract32(desc, 19, 1);
9431 } else {
9432 if (arm_feature(env, ARM_FEATURE_PXN)) {
9433 pxn = (desc >> 2) & 1;
9435 ns = extract32(desc, 3, 1);
9436 /* Lookup l2 entry. */
9437 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
9438 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9439 mmu_idx, fi);
9440 if (fi->type != ARMFault_None) {
9441 goto do_fault;
9443 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
9444 switch (desc & 3) {
9445 case 0: /* Page translation fault. */
9446 fi->type = ARMFault_Translation;
9447 goto do_fault;
9448 case 1: /* 64k page. */
9449 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
9450 xn = desc & (1 << 15);
9451 *page_size = 0x10000;
9452 break;
9453 case 2: case 3: /* 4k page. */
9454 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9455 xn = desc & 1;
9456 *page_size = 0x1000;
9457 break;
9458 default:
9459 /* Never happens, but compiler isn't smart enough to tell. */
9460 abort();
9463 if (domain_prot == 3) {
9464 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9465 } else {
9466 if (pxn && !regime_is_user(env, mmu_idx)) {
9467 xn = 1;
9469 if (xn && access_type == MMU_INST_FETCH) {
9470 fi->type = ARMFault_Permission;
9471 goto do_fault;
9474 if (arm_feature(env, ARM_FEATURE_V6K) &&
9475 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
9476 /* The simplified model uses AP[0] as an access control bit. */
9477 if ((ap & 1) == 0) {
9478 /* Access flag fault. */
9479 fi->type = ARMFault_AccessFlag;
9480 goto do_fault;
9482 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
9483 } else {
9484 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
9486 if (*prot && !xn) {
9487 *prot |= PAGE_EXEC;
9489 if (!(*prot & (1 << access_type))) {
9490 /* Access permission fault. */
9491 fi->type = ARMFault_Permission;
9492 goto do_fault;
9495 if (ns) {
9496 /* The NS bit will (as required by the architecture) have no effect if
9497 * the CPU doesn't support TZ or this is a non-secure translation
9498 * regime, because the attribute will already be non-secure.
9500 attrs->secure = false;
9502 *phys_ptr = phys_addr;
9503 return false;
9504 do_fault:
9505 fi->domain = domain;
9506 fi->level = level;
9507 return true;
9511 * check_s2_mmu_setup
9512 * @cpu: ARMCPU
9513 * @is_aa64: True if the translation regime is in AArch64 state
9514 * @startlevel: Suggested starting level
9515 * @inputsize: Bitsize of IPAs
9516 * @stride: Page-table stride (See the ARM ARM)
9518 * Returns true if the suggested S2 translation parameters are OK and
9519 * false otherwise.
9521 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
9522 int inputsize, int stride)
9524 const int grainsize = stride + 3;
9525 int startsizecheck;
9527 /* Negative levels are never allowed. */
9528 if (level < 0) {
9529 return false;
9532 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
9533 if (startsizecheck < 1 || startsizecheck > stride + 4) {
9534 return false;
9537 if (is_aa64) {
9538 CPUARMState *env = &cpu->env;
9539 unsigned int pamax = arm_pamax(cpu);
9541 switch (stride) {
9542 case 13: /* 64KB Pages. */
9543 if (level == 0 || (level == 1 && pamax <= 42)) {
9544 return false;
9546 break;
9547 case 11: /* 16KB Pages. */
9548 if (level == 0 || (level == 1 && pamax <= 40)) {
9549 return false;
9551 break;
9552 case 9: /* 4KB Pages. */
9553 if (level == 0 && pamax <= 42) {
9554 return false;
9556 break;
9557 default:
9558 g_assert_not_reached();
9561 /* Inputsize checks. */
9562 if (inputsize > pamax &&
9563 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
9564 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
9565 return false;
9567 } else {
9568 /* AArch32 only supports 4KB pages. Assert on that. */
9569 assert(stride == 9);
9571 if (level == 0) {
9572 return false;
9575 return true;
9578 /* Translate from the 4-bit stage 2 representation of
9579 * memory attributes (without cache-allocation hints) to
9580 * the 8-bit representation of the stage 1 MAIR registers
9581 * (which includes allocation hints).
9583 * ref: shared/translation/attrs/S2AttrDecode()
9584 * .../S2ConvertAttrsHints()
9586 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
9588 uint8_t hiattr = extract32(s2attrs, 2, 2);
9589 uint8_t loattr = extract32(s2attrs, 0, 2);
9590 uint8_t hihint = 0, lohint = 0;
9592 if (hiattr != 0) { /* normal memory */
9593 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
9594 hiattr = loattr = 1; /* non-cacheable */
9595 } else {
9596 if (hiattr != 1) { /* Write-through or write-back */
9597 hihint = 3; /* RW allocate */
9599 if (loattr != 1) { /* Write-through or write-back */
9600 lohint = 3; /* RW allocate */
9605 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
9608 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
9609 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9610 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
9611 target_ulong *page_size_ptr,
9612 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
9614 ARMCPU *cpu = arm_env_get_cpu(env);
9615 CPUState *cs = CPU(cpu);
9616 /* Read an LPAE long-descriptor translation table. */
9617 ARMFaultType fault_type = ARMFault_Translation;
9618 uint32_t level;
9619 uint32_t epd = 0;
9620 int32_t t0sz, t1sz;
9621 uint32_t tg;
9622 uint64_t ttbr;
9623 int ttbr_select;
9624 hwaddr descaddr, indexmask, indexmask_grainsize;
9625 uint32_t tableattrs;
9626 target_ulong page_size;
9627 uint32_t attrs;
9628 int32_t stride = 9;
9629 int32_t addrsize;
9630 int inputsize;
9631 int32_t tbi = 0;
9632 TCR *tcr = regime_tcr(env, mmu_idx);
9633 int ap, ns, xn, pxn;
9634 uint32_t el = regime_el(env, mmu_idx);
9635 bool ttbr1_valid = true;
9636 uint64_t descaddrmask;
9637 bool aarch64 = arm_el_is_aa64(env, el);
9639 /* TODO:
9640 * This code does not handle the different format TCR for VTCR_EL2.
9641 * This code also does not support shareability levels.
9642 * Attribute and permission bit handling should also be checked when adding
9643 * support for those page table walks.
9645 if (aarch64) {
9646 level = 0;
9647 addrsize = 64;
9648 if (el > 1) {
9649 if (mmu_idx != ARMMMUIdx_S2NS) {
9650 tbi = extract64(tcr->raw_tcr, 20, 1);
9652 } else {
9653 if (extract64(address, 55, 1)) {
9654 tbi = extract64(tcr->raw_tcr, 38, 1);
9655 } else {
9656 tbi = extract64(tcr->raw_tcr, 37, 1);
9659 tbi *= 8;
9661 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
9662 * invalid.
9664 if (el > 1) {
9665 ttbr1_valid = false;
9667 } else {
9668 level = 1;
9669 addrsize = 32;
9670 /* There is no TTBR1 for EL2 */
9671 if (el == 2) {
9672 ttbr1_valid = false;
9676 /* Determine whether this address is in the region controlled by
9677 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
9678 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
9679 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
9681 if (aarch64) {
9682 /* AArch64 translation. */
9683 t0sz = extract32(tcr->raw_tcr, 0, 6);
9684 t0sz = MIN(t0sz, 39);
9685 t0sz = MAX(t0sz, 16);
9686 } else if (mmu_idx != ARMMMUIdx_S2NS) {
9687 /* AArch32 stage 1 translation. */
9688 t0sz = extract32(tcr->raw_tcr, 0, 3);
9689 } else {
9690 /* AArch32 stage 2 translation. */
9691 bool sext = extract32(tcr->raw_tcr, 4, 1);
9692 bool sign = extract32(tcr->raw_tcr, 3, 1);
9693 /* Address size is 40-bit for a stage 2 translation,
9694 * and t0sz can be negative (from -8 to 7),
9695 * so we need to adjust it to use the TTBR selecting logic below.
9697 addrsize = 40;
9698 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
9700 /* If the sign-extend bit is not the same as t0sz[3], the result
9701 * is unpredictable. Flag this as a guest error. */
9702 if (sign != sext) {
9703 qemu_log_mask(LOG_GUEST_ERROR,
9704 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
9707 t1sz = extract32(tcr->raw_tcr, 16, 6);
9708 if (aarch64) {
9709 t1sz = MIN(t1sz, 39);
9710 t1sz = MAX(t1sz, 16);
9712 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
9713 /* there is a ttbr0 region and we are in it (high bits all zero) */
9714 ttbr_select = 0;
9715 } else if (ttbr1_valid && t1sz &&
9716 !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
9717 /* there is a ttbr1 region and we are in it (high bits all one) */
9718 ttbr_select = 1;
9719 } else if (!t0sz) {
9720 /* ttbr0 region is "everything not in the ttbr1 region" */
9721 ttbr_select = 0;
9722 } else if (!t1sz && ttbr1_valid) {
9723 /* ttbr1 region is "everything not in the ttbr0 region" */
9724 ttbr_select = 1;
9725 } else {
9726 /* in the gap between the two regions, this is a Translation fault */
9727 fault_type = ARMFault_Translation;
9728 goto do_fault;
9731 /* Note that QEMU ignores shareability and cacheability attributes,
9732 * so we don't need to do anything with the SH, ORGN, IRGN fields
9733 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
9734 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
9735 * implement any ASID-like capability so we can ignore it (instead
9736 * we will always flush the TLB any time the ASID is changed).
9738 if (ttbr_select == 0) {
9739 ttbr = regime_ttbr(env, mmu_idx, 0);
9740 if (el < 2) {
9741 epd = extract32(tcr->raw_tcr, 7, 1);
9743 inputsize = addrsize - t0sz;
9745 tg = extract32(tcr->raw_tcr, 14, 2);
9746 if (tg == 1) { /* 64KB pages */
9747 stride = 13;
9749 if (tg == 2) { /* 16KB pages */
9750 stride = 11;
9752 } else {
9753 /* We should only be here if TTBR1 is valid */
9754 assert(ttbr1_valid);
9756 ttbr = regime_ttbr(env, mmu_idx, 1);
9757 epd = extract32(tcr->raw_tcr, 23, 1);
9758 inputsize = addrsize - t1sz;
9760 tg = extract32(tcr->raw_tcr, 30, 2);
9761 if (tg == 3) { /* 64KB pages */
9762 stride = 13;
9764 if (tg == 1) { /* 16KB pages */
9765 stride = 11;
9769 /* Here we should have set up all the parameters for the translation:
9770 * inputsize, ttbr, epd, stride, tbi
9773 if (epd) {
9774 /* Translation table walk disabled => Translation fault on TLB miss
9775 * Note: This is always 0 on 64-bit EL2 and EL3.
9777 goto do_fault;
9780 if (mmu_idx != ARMMMUIdx_S2NS) {
9781 /* The starting level depends on the virtual address size (which can
9782 * be up to 48 bits) and the translation granule size. It indicates
9783 * the number of strides (stride bits at a time) needed to
9784 * consume the bits of the input address. In the pseudocode this is:
9785 * level = 4 - RoundUp((inputsize - grainsize) / stride)
9786 * where their 'inputsize' is our 'inputsize', 'grainsize' is
9787 * our 'stride + 3' and 'stride' is our 'stride'.
9788 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
9789 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
9790 * = 4 - (inputsize - 4) / stride;
9792 level = 4 - (inputsize - 4) / stride;
9793 } else {
9794 /* For stage 2 translations the starting level is specified by the
9795 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
9797 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
9798 uint32_t startlevel;
9799 bool ok;
9801 if (!aarch64 || stride == 9) {
9802 /* AArch32 or 4KB pages */
9803 startlevel = 2 - sl0;
9804 } else {
9805 /* 16KB or 64KB pages */
9806 startlevel = 3 - sl0;
9809 /* Check that the starting level is valid. */
9810 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
9811 inputsize, stride);
9812 if (!ok) {
9813 fault_type = ARMFault_Translation;
9814 goto do_fault;
9816 level = startlevel;
9819 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
9820 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
9822 /* Now we can extract the actual base address from the TTBR */
9823 descaddr = extract64(ttbr, 0, 48);
9824 descaddr &= ~indexmask;
9826 /* The address field in the descriptor goes up to bit 39 for ARMv7
9827 * but up to bit 47 for ARMv8, but we use the descaddrmask
9828 * up to bit 39 for AArch32, because we don't need other bits in that case
9829 * to construct next descriptor address (anyway they should be all zeroes).
9831 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
9832 ~indexmask_grainsize;
9834 /* Secure accesses start with the page table in secure memory and
9835 * can be downgraded to non-secure at any step. Non-secure accesses
9836 * remain non-secure. We implement this by just ORing in the NSTable/NS
9837 * bits at each step.
9839 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
9840 for (;;) {
9841 uint64_t descriptor;
9842 bool nstable;
9844 descaddr |= (address >> (stride * (4 - level))) & indexmask;
9845 descaddr &= ~7ULL;
9846 nstable = extract32(tableattrs, 4, 1);
9847 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
9848 if (fi->type != ARMFault_None) {
9849 goto do_fault;
9852 if (!(descriptor & 1) ||
9853 (!(descriptor & 2) && (level == 3))) {
9854 /* Invalid, or the Reserved level 3 encoding */
9855 goto do_fault;
9857 descaddr = descriptor & descaddrmask;
9859 if ((descriptor & 2) && (level < 3)) {
9860 /* Table entry. The top five bits are attributes which may
9861 * propagate down through lower levels of the table (and
9862 * which are all arranged so that 0 means "no effect", so
9863 * we can gather them up by ORing in the bits at each level).
9865 tableattrs |= extract64(descriptor, 59, 5);
9866 level++;
9867 indexmask = indexmask_grainsize;
9868 continue;
9870 /* Block entry at level 1 or 2, or page entry at level 3.
9871 * These are basically the same thing, although the number
9872 * of bits we pull in from the vaddr varies.
9874 page_size = (1ULL << ((stride * (4 - level)) + 3));
9875 descaddr |= (address & (page_size - 1));
9876 /* Extract attributes from the descriptor */
9877 attrs = extract64(descriptor, 2, 10)
9878 | (extract64(descriptor, 52, 12) << 10);
9880 if (mmu_idx == ARMMMUIdx_S2NS) {
9881 /* Stage 2 table descriptors do not include any attribute fields */
9882 break;
9884 /* Merge in attributes from table descriptors */
9885 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
9886 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
9887 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
9888 * means "force PL1 access only", which means forcing AP[1] to 0.
9890 if (extract32(tableattrs, 2, 1)) {
9891 attrs &= ~(1 << 4);
9893 attrs |= nstable << 3; /* NS */
9894 break;
9896 /* Here descaddr is the final physical address, and attributes
9897 * are all in attrs.
9899 fault_type = ARMFault_AccessFlag;
9900 if ((attrs & (1 << 8)) == 0) {
9901 /* Access flag */
9902 goto do_fault;
9905 ap = extract32(attrs, 4, 2);
9906 xn = extract32(attrs, 12, 1);
9908 if (mmu_idx == ARMMMUIdx_S2NS) {
9909 ns = true;
9910 *prot = get_S2prot(env, ap, xn);
9911 } else {
9912 ns = extract32(attrs, 3, 1);
9913 pxn = extract32(attrs, 11, 1);
9914 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
9917 fault_type = ARMFault_Permission;
9918 if (!(*prot & (1 << access_type))) {
9919 goto do_fault;
9922 if (ns) {
9923 /* The NS bit will (as required by the architecture) have no effect if
9924 * the CPU doesn't support TZ or this is a non-secure translation
9925 * regime, because the attribute will already be non-secure.
9927 txattrs->secure = false;
9930 if (cacheattrs != NULL) {
9931 if (mmu_idx == ARMMMUIdx_S2NS) {
9932 cacheattrs->attrs = convert_stage2_attrs(env,
9933 extract32(attrs, 0, 4));
9934 } else {
9935 /* Index into MAIR registers for cache attributes */
9936 uint8_t attrindx = extract32(attrs, 0, 3);
9937 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
9938 assert(attrindx <= 7);
9939 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
9941 cacheattrs->shareability = extract32(attrs, 6, 2);
9944 *phys_ptr = descaddr;
9945 *page_size_ptr = page_size;
9946 return false;
9948 do_fault:
9949 fi->type = fault_type;
9950 fi->level = level;
9951 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
9952 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
9953 return true;
9956 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
9957 ARMMMUIdx mmu_idx,
9958 int32_t address, int *prot)
9960 if (!arm_feature(env, ARM_FEATURE_M)) {
9961 *prot = PAGE_READ | PAGE_WRITE;
9962 switch (address) {
9963 case 0xF0000000 ... 0xFFFFFFFF:
9964 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
9965 /* hivecs execing is ok */
9966 *prot |= PAGE_EXEC;
9968 break;
9969 case 0x00000000 ... 0x7FFFFFFF:
9970 *prot |= PAGE_EXEC;
9971 break;
9973 } else {
9974 /* Default system address map for M profile cores.
9975 * The architecture specifies which regions are execute-never;
9976 * at the MPU level no other checks are defined.
9978 switch (address) {
9979 case 0x00000000 ... 0x1fffffff: /* ROM */
9980 case 0x20000000 ... 0x3fffffff: /* SRAM */
9981 case 0x60000000 ... 0x7fffffff: /* RAM */
9982 case 0x80000000 ... 0x9fffffff: /* RAM */
9983 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9984 break;
9985 case 0x40000000 ... 0x5fffffff: /* Peripheral */
9986 case 0xa0000000 ... 0xbfffffff: /* Device */
9987 case 0xc0000000 ... 0xdfffffff: /* Device */
9988 case 0xe0000000 ... 0xffffffff: /* System */
9989 *prot = PAGE_READ | PAGE_WRITE;
9990 break;
9991 default:
9992 g_assert_not_reached();
9997 static bool pmsav7_use_background_region(ARMCPU *cpu,
9998 ARMMMUIdx mmu_idx, bool is_user)
10000 /* Return true if we should use the default memory map as a
10001 * "background" region if there are no hits against any MPU regions.
10003 CPUARMState *env = &cpu->env;
10005 if (is_user) {
10006 return false;
10009 if (arm_feature(env, ARM_FEATURE_M)) {
10010 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
10011 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
10012 } else {
10013 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
10017 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
10019 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
10020 return arm_feature(env, ARM_FEATURE_M) &&
10021 extract32(address, 20, 12) == 0xe00;
10024 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
10026 /* True if address is in the M profile system region
10027 * 0xe0000000 - 0xffffffff
10029 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
10032 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
10033 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10034 hwaddr *phys_ptr, int *prot,
10035 target_ulong *page_size,
10036 ARMMMUFaultInfo *fi)
10038 ARMCPU *cpu = arm_env_get_cpu(env);
10039 int n;
10040 bool is_user = regime_is_user(env, mmu_idx);
10042 *phys_ptr = address;
10043 *page_size = TARGET_PAGE_SIZE;
10044 *prot = 0;
10046 if (regime_translation_disabled(env, mmu_idx) ||
10047 m_is_ppb_region(env, address)) {
10048 /* MPU disabled or M profile PPB access: use default memory map.
10049 * The other case which uses the default memory map in the
10050 * v7M ARM ARM pseudocode is exception vector reads from the vector
10051 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
10052 * which always does a direct read using address_space_ldl(), rather
10053 * than going via this function, so we don't need to check that here.
10055 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10056 } else { /* MPU enabled */
10057 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
10058 /* region search */
10059 uint32_t base = env->pmsav7.drbar[n];
10060 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
10061 uint32_t rmask;
10062 bool srdis = false;
10064 if (!(env->pmsav7.drsr[n] & 0x1)) {
10065 continue;
10068 if (!rsize) {
10069 qemu_log_mask(LOG_GUEST_ERROR,
10070 "DRSR[%d]: Rsize field cannot be 0\n", n);
10071 continue;
10073 rsize++;
10074 rmask = (1ull << rsize) - 1;
10076 if (base & rmask) {
10077 qemu_log_mask(LOG_GUEST_ERROR,
10078 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
10079 "to DRSR region size, mask = 0x%" PRIx32 "\n",
10080 n, base, rmask);
10081 continue;
10084 if (address < base || address > base + rmask) {
10086 * Address not in this region. We must check whether the
10087 * region covers addresses in the same page as our address.
10088 * In that case we must not report a size that covers the
10089 * whole page for a subsequent hit against a different MPU
10090 * region or the background region, because it would result in
10091 * incorrect TLB hits for subsequent accesses to addresses that
10092 * are in this MPU region.
10094 if (ranges_overlap(base, rmask,
10095 address & TARGET_PAGE_MASK,
10096 TARGET_PAGE_SIZE)) {
10097 *page_size = 1;
10099 continue;
10102 /* Region matched */
10104 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
10105 int i, snd;
10106 uint32_t srdis_mask;
10108 rsize -= 3; /* sub region size (power of 2) */
10109 snd = ((address - base) >> rsize) & 0x7;
10110 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
10112 srdis_mask = srdis ? 0x3 : 0x0;
10113 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
10114 /* This will check in groups of 2, 4 and then 8, whether
10115 * the subregion bits are consistent. rsize is incremented
10116 * back up to give the region size, considering consistent
10117 * adjacent subregions as one region. Stop testing if rsize
10118 * is already big enough for an entire QEMU page.
10120 int snd_rounded = snd & ~(i - 1);
10121 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
10122 snd_rounded + 8, i);
10123 if (srdis_mask ^ srdis_multi) {
10124 break;
10126 srdis_mask = (srdis_mask << i) | srdis_mask;
10127 rsize++;
10130 if (srdis) {
10131 continue;
10133 if (rsize < TARGET_PAGE_BITS) {
10134 *page_size = 1 << rsize;
10136 break;
10139 if (n == -1) { /* no hits */
10140 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
10141 /* background fault */
10142 fi->type = ARMFault_Background;
10143 return true;
10145 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10146 } else { /* a MPU hit! */
10147 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
10148 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
10150 if (m_is_system_region(env, address)) {
10151 /* System space is always execute never */
10152 xn = 1;
10155 if (is_user) { /* User mode AP bit decoding */
10156 switch (ap) {
10157 case 0:
10158 case 1:
10159 case 5:
10160 break; /* no access */
10161 case 3:
10162 *prot |= PAGE_WRITE;
10163 /* fall through */
10164 case 2:
10165 case 6:
10166 *prot |= PAGE_READ | PAGE_EXEC;
10167 break;
10168 case 7:
10169 /* for v7M, same as 6; for R profile a reserved value */
10170 if (arm_feature(env, ARM_FEATURE_M)) {
10171 *prot |= PAGE_READ | PAGE_EXEC;
10172 break;
10174 /* fall through */
10175 default:
10176 qemu_log_mask(LOG_GUEST_ERROR,
10177 "DRACR[%d]: Bad value for AP bits: 0x%"
10178 PRIx32 "\n", n, ap);
10180 } else { /* Priv. mode AP bits decoding */
10181 switch (ap) {
10182 case 0:
10183 break; /* no access */
10184 case 1:
10185 case 2:
10186 case 3:
10187 *prot |= PAGE_WRITE;
10188 /* fall through */
10189 case 5:
10190 case 6:
10191 *prot |= PAGE_READ | PAGE_EXEC;
10192 break;
10193 case 7:
10194 /* for v7M, same as 6; for R profile a reserved value */
10195 if (arm_feature(env, ARM_FEATURE_M)) {
10196 *prot |= PAGE_READ | PAGE_EXEC;
10197 break;
10199 /* fall through */
10200 default:
10201 qemu_log_mask(LOG_GUEST_ERROR,
10202 "DRACR[%d]: Bad value for AP bits: 0x%"
10203 PRIx32 "\n", n, ap);
10207 /* execute never */
10208 if (xn) {
10209 *prot &= ~PAGE_EXEC;
10214 fi->type = ARMFault_Permission;
10215 fi->level = 1;
10216 return !(*prot & (1 << access_type));
10219 static bool v8m_is_sau_exempt(CPUARMState *env,
10220 uint32_t address, MMUAccessType access_type)
10222 /* The architecture specifies that certain address ranges are
10223 * exempt from v8M SAU/IDAU checks.
10225 return
10226 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
10227 (address >= 0xe0000000 && address <= 0xe0002fff) ||
10228 (address >= 0xe000e000 && address <= 0xe000efff) ||
10229 (address >= 0xe002e000 && address <= 0xe002efff) ||
10230 (address >= 0xe0040000 && address <= 0xe0041fff) ||
10231 (address >= 0xe00ff000 && address <= 0xe00fffff);
10234 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
10235 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10236 V8M_SAttributes *sattrs)
10238 /* Look up the security attributes for this address. Compare the
10239 * pseudocode SecurityCheck() function.
10240 * We assume the caller has zero-initialized *sattrs.
10242 ARMCPU *cpu = arm_env_get_cpu(env);
10243 int r;
10244 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
10245 int idau_region = IREGION_NOTVALID;
10246 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
10247 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
10249 if (cpu->idau) {
10250 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
10251 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
10253 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
10254 &idau_nsc);
10257 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
10258 /* 0xf0000000..0xffffffff is always S for insn fetches */
10259 return;
10262 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
10263 sattrs->ns = !regime_is_secure(env, mmu_idx);
10264 return;
10267 if (idau_region != IREGION_NOTVALID) {
10268 sattrs->irvalid = true;
10269 sattrs->iregion = idau_region;
10272 switch (env->sau.ctrl & 3) {
10273 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
10274 break;
10275 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
10276 sattrs->ns = true;
10277 break;
10278 default: /* SAU.ENABLE == 1 */
10279 for (r = 0; r < cpu->sau_sregion; r++) {
10280 if (env->sau.rlar[r] & 1) {
10281 uint32_t base = env->sau.rbar[r] & ~0x1f;
10282 uint32_t limit = env->sau.rlar[r] | 0x1f;
10284 if (base <= address && limit >= address) {
10285 if (base > addr_page_base || limit < addr_page_limit) {
10286 sattrs->subpage = true;
10288 if (sattrs->srvalid) {
10289 /* If we hit in more than one region then we must report
10290 * as Secure, not NS-Callable, with no valid region
10291 * number info.
10293 sattrs->ns = false;
10294 sattrs->nsc = false;
10295 sattrs->sregion = 0;
10296 sattrs->srvalid = false;
10297 break;
10298 } else {
10299 if (env->sau.rlar[r] & 2) {
10300 sattrs->nsc = true;
10301 } else {
10302 sattrs->ns = true;
10304 sattrs->srvalid = true;
10305 sattrs->sregion = r;
10307 } else {
10309 * Address not in this region. We must check whether the
10310 * region covers addresses in the same page as our address.
10311 * In that case we must not report a size that covers the
10312 * whole page for a subsequent hit against a different MPU
10313 * region or the background region, because it would result
10314 * in incorrect TLB hits for subsequent accesses to
10315 * addresses that are in this MPU region.
10317 if (limit >= base &&
10318 ranges_overlap(base, limit - base + 1,
10319 addr_page_base,
10320 TARGET_PAGE_SIZE)) {
10321 sattrs->subpage = true;
10327 /* The IDAU will override the SAU lookup results if it specifies
10328 * higher security than the SAU does.
10330 if (!idau_ns) {
10331 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
10332 sattrs->ns = false;
10333 sattrs->nsc = idau_nsc;
10336 break;
10340 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
10341 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10342 hwaddr *phys_ptr, MemTxAttrs *txattrs,
10343 int *prot, bool *is_subpage,
10344 ARMMMUFaultInfo *fi, uint32_t *mregion)
10346 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
10347 * that a full phys-to-virt translation does).
10348 * mregion is (if not NULL) set to the region number which matched,
10349 * or -1 if no region number is returned (MPU off, address did not
10350 * hit a region, address hit in multiple regions).
10351 * We set is_subpage to true if the region hit doesn't cover the
10352 * entire TARGET_PAGE the address is within.
10354 ARMCPU *cpu = arm_env_get_cpu(env);
10355 bool is_user = regime_is_user(env, mmu_idx);
10356 uint32_t secure = regime_is_secure(env, mmu_idx);
10357 int n;
10358 int matchregion = -1;
10359 bool hit = false;
10360 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
10361 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
10363 *is_subpage = false;
10364 *phys_ptr = address;
10365 *prot = 0;
10366 if (mregion) {
10367 *mregion = -1;
10370 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
10371 * was an exception vector read from the vector table (which is always
10372 * done using the default system address map), because those accesses
10373 * are done in arm_v7m_load_vector(), which always does a direct
10374 * read using address_space_ldl(), rather than going via this function.
10376 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
10377 hit = true;
10378 } else if (m_is_ppb_region(env, address)) {
10379 hit = true;
10380 } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
10381 hit = true;
10382 } else {
10383 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
10384 /* region search */
10385 /* Note that the base address is bits [31:5] from the register
10386 * with bits [4:0] all zeroes, but the limit address is bits
10387 * [31:5] from the register with bits [4:0] all ones.
10389 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
10390 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
10392 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
10393 /* Region disabled */
10394 continue;
10397 if (address < base || address > limit) {
10399 * Address not in this region. We must check whether the
10400 * region covers addresses in the same page as our address.
10401 * In that case we must not report a size that covers the
10402 * whole page for a subsequent hit against a different MPU
10403 * region or the background region, because it would result in
10404 * incorrect TLB hits for subsequent accesses to addresses that
10405 * are in this MPU region.
10407 if (limit >= base &&
10408 ranges_overlap(base, limit - base + 1,
10409 addr_page_base,
10410 TARGET_PAGE_SIZE)) {
10411 *is_subpage = true;
10413 continue;
10416 if (base > addr_page_base || limit < addr_page_limit) {
10417 *is_subpage = true;
10420 if (hit) {
10421 /* Multiple regions match -- always a failure (unlike
10422 * PMSAv7 where highest-numbered-region wins)
10424 fi->type = ARMFault_Permission;
10425 fi->level = 1;
10426 return true;
10429 matchregion = n;
10430 hit = true;
10434 if (!hit) {
10435 /* background fault */
10436 fi->type = ARMFault_Background;
10437 return true;
10440 if (matchregion == -1) {
10441 /* hit using the background region */
10442 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10443 } else {
10444 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
10445 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
10447 if (m_is_system_region(env, address)) {
10448 /* System space is always execute never */
10449 xn = 1;
10452 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
10453 if (*prot && !xn) {
10454 *prot |= PAGE_EXEC;
10456 /* We don't need to look the attribute up in the MAIR0/MAIR1
10457 * registers because that only tells us about cacheability.
10459 if (mregion) {
10460 *mregion = matchregion;
10464 fi->type = ARMFault_Permission;
10465 fi->level = 1;
10466 return !(*prot & (1 << access_type));
10470 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
10471 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10472 hwaddr *phys_ptr, MemTxAttrs *txattrs,
10473 int *prot, target_ulong *page_size,
10474 ARMMMUFaultInfo *fi)
10476 uint32_t secure = regime_is_secure(env, mmu_idx);
10477 V8M_SAttributes sattrs = {};
10478 bool ret;
10479 bool mpu_is_subpage;
10481 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10482 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
10483 if (access_type == MMU_INST_FETCH) {
10484 /* Instruction fetches always use the MMU bank and the
10485 * transaction attribute determined by the fetch address,
10486 * regardless of CPU state. This is painful for QEMU
10487 * to handle, because it would mean we need to encode
10488 * into the mmu_idx not just the (user, negpri) information
10489 * for the current security state but also that for the
10490 * other security state, which would balloon the number
10491 * of mmu_idx values needed alarmingly.
10492 * Fortunately we can avoid this because it's not actually
10493 * possible to arbitrarily execute code from memory with
10494 * the wrong security attribute: it will always generate
10495 * an exception of some kind or another, apart from the
10496 * special case of an NS CPU executing an SG instruction
10497 * in S&NSC memory. So we always just fail the translation
10498 * here and sort things out in the exception handler
10499 * (including possibly emulating an SG instruction).
10501 if (sattrs.ns != !secure) {
10502 if (sattrs.nsc) {
10503 fi->type = ARMFault_QEMU_NSCExec;
10504 } else {
10505 fi->type = ARMFault_QEMU_SFault;
10507 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
10508 *phys_ptr = address;
10509 *prot = 0;
10510 return true;
10512 } else {
10513 /* For data accesses we always use the MMU bank indicated
10514 * by the current CPU state, but the security attributes
10515 * might downgrade a secure access to nonsecure.
10517 if (sattrs.ns) {
10518 txattrs->secure = false;
10519 } else if (!secure) {
10520 /* NS access to S memory must fault.
10521 * Architecturally we should first check whether the
10522 * MPU information for this address indicates that we
10523 * are doing an unaligned access to Device memory, which
10524 * should generate a UsageFault instead. QEMU does not
10525 * currently check for that kind of unaligned access though.
10526 * If we added it we would need to do so as a special case
10527 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
10529 fi->type = ARMFault_QEMU_SFault;
10530 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
10531 *phys_ptr = address;
10532 *prot = 0;
10533 return true;
10538 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
10539 txattrs, prot, &mpu_is_subpage, fi, NULL);
10540 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
10541 return ret;
10544 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
10545 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10546 hwaddr *phys_ptr, int *prot,
10547 ARMMMUFaultInfo *fi)
10549 int n;
10550 uint32_t mask;
10551 uint32_t base;
10552 bool is_user = regime_is_user(env, mmu_idx);
10554 if (regime_translation_disabled(env, mmu_idx)) {
10555 /* MPU disabled. */
10556 *phys_ptr = address;
10557 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10558 return false;
10561 *phys_ptr = address;
10562 for (n = 7; n >= 0; n--) {
10563 base = env->cp15.c6_region[n];
10564 if ((base & 1) == 0) {
10565 continue;
10567 mask = 1 << ((base >> 1) & 0x1f);
10568 /* Keep this shift separate from the above to avoid an
10569 (undefined) << 32. */
10570 mask = (mask << 1) - 1;
10571 if (((base ^ address) & ~mask) == 0) {
10572 break;
10575 if (n < 0) {
10576 fi->type = ARMFault_Background;
10577 return true;
10580 if (access_type == MMU_INST_FETCH) {
10581 mask = env->cp15.pmsav5_insn_ap;
10582 } else {
10583 mask = env->cp15.pmsav5_data_ap;
10585 mask = (mask >> (n * 4)) & 0xf;
10586 switch (mask) {
10587 case 0:
10588 fi->type = ARMFault_Permission;
10589 fi->level = 1;
10590 return true;
10591 case 1:
10592 if (is_user) {
10593 fi->type = ARMFault_Permission;
10594 fi->level = 1;
10595 return true;
10597 *prot = PAGE_READ | PAGE_WRITE;
10598 break;
10599 case 2:
10600 *prot = PAGE_READ;
10601 if (!is_user) {
10602 *prot |= PAGE_WRITE;
10604 break;
10605 case 3:
10606 *prot = PAGE_READ | PAGE_WRITE;
10607 break;
10608 case 5:
10609 if (is_user) {
10610 fi->type = ARMFault_Permission;
10611 fi->level = 1;
10612 return true;
10614 *prot = PAGE_READ;
10615 break;
10616 case 6:
10617 *prot = PAGE_READ;
10618 break;
10619 default:
10620 /* Bad permission. */
10621 fi->type = ARMFault_Permission;
10622 fi->level = 1;
10623 return true;
10625 *prot |= PAGE_EXEC;
10626 return false;
10629 /* Combine either inner or outer cacheability attributes for normal
10630 * memory, according to table D4-42 and pseudocode procedure
10631 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
10633 * NB: only stage 1 includes allocation hints (RW bits), leading to
10634 * some asymmetry.
10636 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
10638 if (s1 == 4 || s2 == 4) {
10639 /* non-cacheable has precedence */
10640 return 4;
10641 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
10642 /* stage 1 write-through takes precedence */
10643 return s1;
10644 } else if (extract32(s2, 2, 2) == 2) {
10645 /* stage 2 write-through takes precedence, but the allocation hint
10646 * is still taken from stage 1
10648 return (2 << 2) | extract32(s1, 0, 2);
10649 } else { /* write-back */
10650 return s1;
10654 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
10655 * and CombineS1S2Desc()
10657 * @s1: Attributes from stage 1 walk
10658 * @s2: Attributes from stage 2 walk
10660 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
10662 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
10663 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
10664 ARMCacheAttrs ret;
10666 /* Combine shareability attributes (table D4-43) */
10667 if (s1.shareability == 2 || s2.shareability == 2) {
10668 /* if either are outer-shareable, the result is outer-shareable */
10669 ret.shareability = 2;
10670 } else if (s1.shareability == 3 || s2.shareability == 3) {
10671 /* if either are inner-shareable, the result is inner-shareable */
10672 ret.shareability = 3;
10673 } else {
10674 /* both non-shareable */
10675 ret.shareability = 0;
10678 /* Combine memory type and cacheability attributes */
10679 if (s1hi == 0 || s2hi == 0) {
10680 /* Device has precedence over normal */
10681 if (s1lo == 0 || s2lo == 0) {
10682 /* nGnRnE has precedence over anything */
10683 ret.attrs = 0;
10684 } else if (s1lo == 4 || s2lo == 4) {
10685 /* non-Reordering has precedence over Reordering */
10686 ret.attrs = 4; /* nGnRE */
10687 } else if (s1lo == 8 || s2lo == 8) {
10688 /* non-Gathering has precedence over Gathering */
10689 ret.attrs = 8; /* nGRE */
10690 } else {
10691 ret.attrs = 0xc; /* GRE */
10694 /* Any location for which the resultant memory type is any
10695 * type of Device memory is always treated as Outer Shareable.
10697 ret.shareability = 2;
10698 } else { /* Normal memory */
10699 /* Outer/inner cacheability combine independently */
10700 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
10701 | combine_cacheattr_nibble(s1lo, s2lo);
10703 if (ret.attrs == 0x44) {
10704 /* Any location for which the resultant memory type is Normal
10705 * Inner Non-cacheable, Outer Non-cacheable is always treated
10706 * as Outer Shareable.
10708 ret.shareability = 2;
10712 return ret;
10716 /* get_phys_addr - get the physical address for this virtual address
10718 * Find the physical address corresponding to the given virtual address,
10719 * by doing a translation table walk on MMU based systems or using the
10720 * MPU state on MPU based systems.
10722 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
10723 * prot and page_size may not be filled in, and the populated fsr value provides
10724 * information on why the translation aborted, in the format of a
10725 * DFSR/IFSR fault register, with the following caveats:
10726 * * we honour the short vs long DFSR format differences.
10727 * * the WnR bit is never set (the caller must do this).
10728 * * for PSMAv5 based systems we don't bother to return a full FSR format
10729 * value.
10731 * @env: CPUARMState
10732 * @address: virtual address to get physical address for
10733 * @access_type: 0 for read, 1 for write, 2 for execute
10734 * @mmu_idx: MMU index indicating required translation regime
10735 * @phys_ptr: set to the physical address corresponding to the virtual address
10736 * @attrs: set to the memory transaction attributes to use
10737 * @prot: set to the permissions for the page containing phys_ptr
10738 * @page_size: set to the size of the page containing phys_ptr
10739 * @fi: set to fault info if the translation fails
10740 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
10742 static bool get_phys_addr(CPUARMState *env, target_ulong address,
10743 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10744 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10745 target_ulong *page_size,
10746 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
10748 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
10749 /* Call ourselves recursively to do the stage 1 and then stage 2
10750 * translations.
10752 if (arm_feature(env, ARM_FEATURE_EL2)) {
10753 hwaddr ipa;
10754 int s2_prot;
10755 int ret;
10756 ARMCacheAttrs cacheattrs2 = {};
10758 ret = get_phys_addr(env, address, access_type,
10759 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
10760 prot, page_size, fi, cacheattrs);
10762 /* If S1 fails or S2 is disabled, return early. */
10763 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
10764 *phys_ptr = ipa;
10765 return ret;
10768 /* S1 is done. Now do S2 translation. */
10769 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
10770 phys_ptr, attrs, &s2_prot,
10771 page_size, fi,
10772 cacheattrs != NULL ? &cacheattrs2 : NULL);
10773 fi->s2addr = ipa;
10774 /* Combine the S1 and S2 perms. */
10775 *prot &= s2_prot;
10777 /* Combine the S1 and S2 cache attributes, if needed */
10778 if (!ret && cacheattrs != NULL) {
10779 if (env->cp15.hcr_el2 & HCR_DC) {
10781 * HCR.DC forces the first stage attributes to
10782 * Normal Non-Shareable,
10783 * Inner Write-Back Read-Allocate Write-Allocate,
10784 * Outer Write-Back Read-Allocate Write-Allocate.
10786 cacheattrs->attrs = 0xff;
10787 cacheattrs->shareability = 0;
10789 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
10792 return ret;
10793 } else {
10795 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
10797 mmu_idx = stage_1_mmu_idx(mmu_idx);
10801 /* The page table entries may downgrade secure to non-secure, but
10802 * cannot upgrade an non-secure translation regime's attributes
10803 * to secure.
10805 attrs->secure = regime_is_secure(env, mmu_idx);
10806 attrs->user = regime_is_user(env, mmu_idx);
10808 /* Fast Context Switch Extension. This doesn't exist at all in v8.
10809 * In v7 and earlier it affects all stage 1 translations.
10811 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
10812 && !arm_feature(env, ARM_FEATURE_V8)) {
10813 if (regime_el(env, mmu_idx) == 3) {
10814 address += env->cp15.fcseidr_s;
10815 } else {
10816 address += env->cp15.fcseidr_ns;
10820 if (arm_feature(env, ARM_FEATURE_PMSA)) {
10821 bool ret;
10822 *page_size = TARGET_PAGE_SIZE;
10824 if (arm_feature(env, ARM_FEATURE_V8)) {
10825 /* PMSAv8 */
10826 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
10827 phys_ptr, attrs, prot, page_size, fi);
10828 } else if (arm_feature(env, ARM_FEATURE_V7)) {
10829 /* PMSAv7 */
10830 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
10831 phys_ptr, prot, page_size, fi);
10832 } else {
10833 /* Pre-v7 MPU */
10834 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
10835 phys_ptr, prot, fi);
10837 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
10838 " mmu_idx %u -> %s (prot %c%c%c)\n",
10839 access_type == MMU_DATA_LOAD ? "reading" :
10840 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
10841 (uint32_t)address, mmu_idx,
10842 ret ? "Miss" : "Hit",
10843 *prot & PAGE_READ ? 'r' : '-',
10844 *prot & PAGE_WRITE ? 'w' : '-',
10845 *prot & PAGE_EXEC ? 'x' : '-');
10847 return ret;
10850 /* Definitely a real MMU, not an MPU */
10852 if (regime_translation_disabled(env, mmu_idx)) {
10853 /* MMU disabled. */
10854 *phys_ptr = address;
10855 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10856 *page_size = TARGET_PAGE_SIZE;
10857 return 0;
10860 if (regime_using_lpae_format(env, mmu_idx)) {
10861 return get_phys_addr_lpae(env, address, access_type, mmu_idx,
10862 phys_ptr, attrs, prot, page_size,
10863 fi, cacheattrs);
10864 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
10865 return get_phys_addr_v6(env, address, access_type, mmu_idx,
10866 phys_ptr, attrs, prot, page_size, fi);
10867 } else {
10868 return get_phys_addr_v5(env, address, access_type, mmu_idx,
10869 phys_ptr, prot, page_size, fi);
10873 /* Walk the page table and (if the mapping exists) add the page
10874 * to the TLB. Return false on success, or true on failure. Populate
10875 * fsr with ARM DFSR/IFSR fault register format value on failure.
10877 bool arm_tlb_fill(CPUState *cs, vaddr address,
10878 MMUAccessType access_type, int mmu_idx,
10879 ARMMMUFaultInfo *fi)
10881 ARMCPU *cpu = ARM_CPU(cs);
10882 CPUARMState *env = &cpu->env;
10883 hwaddr phys_addr;
10884 target_ulong page_size;
10885 int prot;
10886 int ret;
10887 MemTxAttrs attrs = {};
10889 ret = get_phys_addr(env, address, access_type,
10890 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
10891 &attrs, &prot, &page_size, fi, NULL);
10892 if (!ret) {
10894 * Map a single [sub]page. Regions smaller than our declared
10895 * target page size are handled specially, so for those we
10896 * pass in the exact addresses.
10898 if (page_size >= TARGET_PAGE_SIZE) {
10899 phys_addr &= TARGET_PAGE_MASK;
10900 address &= TARGET_PAGE_MASK;
10902 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
10903 prot, mmu_idx, page_size);
10904 return 0;
10907 return ret;
10910 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
10911 MemTxAttrs *attrs)
10913 ARMCPU *cpu = ARM_CPU(cs);
10914 CPUARMState *env = &cpu->env;
10915 hwaddr phys_addr;
10916 target_ulong page_size;
10917 int prot;
10918 bool ret;
10919 ARMMMUFaultInfo fi = {};
10920 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
10922 *attrs = (MemTxAttrs) {};
10924 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
10925 attrs, &prot, &page_size, &fi, NULL);
10927 if (ret) {
10928 return -1;
10930 return phys_addr;
10933 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
10935 uint32_t mask;
10936 unsigned el = arm_current_el(env);
10938 /* First handle registers which unprivileged can read */
10940 switch (reg) {
10941 case 0 ... 7: /* xPSR sub-fields */
10942 mask = 0;
10943 if ((reg & 1) && el) {
10944 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
10946 if (!(reg & 4)) {
10947 mask |= XPSR_NZCV | XPSR_Q; /* APSR */
10949 /* EPSR reads as zero */
10950 return xpsr_read(env) & mask;
10951 break;
10952 case 20: /* CONTROL */
10953 return env->v7m.control[env->v7m.secure];
10954 case 0x94: /* CONTROL_NS */
10955 /* We have to handle this here because unprivileged Secure code
10956 * can read the NS CONTROL register.
10958 if (!env->v7m.secure) {
10959 return 0;
10961 return env->v7m.control[M_REG_NS];
10964 if (el == 0) {
10965 return 0; /* unprivileged reads others as zero */
10968 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10969 switch (reg) {
10970 case 0x88: /* MSP_NS */
10971 if (!env->v7m.secure) {
10972 return 0;
10974 return env->v7m.other_ss_msp;
10975 case 0x89: /* PSP_NS */
10976 if (!env->v7m.secure) {
10977 return 0;
10979 return env->v7m.other_ss_psp;
10980 case 0x8a: /* MSPLIM_NS */
10981 if (!env->v7m.secure) {
10982 return 0;
10984 return env->v7m.msplim[M_REG_NS];
10985 case 0x8b: /* PSPLIM_NS */
10986 if (!env->v7m.secure) {
10987 return 0;
10989 return env->v7m.psplim[M_REG_NS];
10990 case 0x90: /* PRIMASK_NS */
10991 if (!env->v7m.secure) {
10992 return 0;
10994 return env->v7m.primask[M_REG_NS];
10995 case 0x91: /* BASEPRI_NS */
10996 if (!env->v7m.secure) {
10997 return 0;
10999 return env->v7m.basepri[M_REG_NS];
11000 case 0x93: /* FAULTMASK_NS */
11001 if (!env->v7m.secure) {
11002 return 0;
11004 return env->v7m.faultmask[M_REG_NS];
11005 case 0x98: /* SP_NS */
11007 /* This gives the non-secure SP selected based on whether we're
11008 * currently in handler mode or not, using the NS CONTROL.SPSEL.
11010 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
11012 if (!env->v7m.secure) {
11013 return 0;
11015 if (!arm_v7m_is_handler_mode(env) && spsel) {
11016 return env->v7m.other_ss_psp;
11017 } else {
11018 return env->v7m.other_ss_msp;
11021 default:
11022 break;
11026 switch (reg) {
11027 case 8: /* MSP */
11028 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
11029 case 9: /* PSP */
11030 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
11031 case 10: /* MSPLIM */
11032 if (!arm_feature(env, ARM_FEATURE_V8)) {
11033 goto bad_reg;
11035 return env->v7m.msplim[env->v7m.secure];
11036 case 11: /* PSPLIM */
11037 if (!arm_feature(env, ARM_FEATURE_V8)) {
11038 goto bad_reg;
11040 return env->v7m.psplim[env->v7m.secure];
11041 case 16: /* PRIMASK */
11042 return env->v7m.primask[env->v7m.secure];
11043 case 17: /* BASEPRI */
11044 case 18: /* BASEPRI_MAX */
11045 return env->v7m.basepri[env->v7m.secure];
11046 case 19: /* FAULTMASK */
11047 return env->v7m.faultmask[env->v7m.secure];
11048 default:
11049 bad_reg:
11050 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
11051 " register %d\n", reg);
11052 return 0;
11056 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
11058 /* We're passed bits [11..0] of the instruction; extract
11059 * SYSm and the mask bits.
11060 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
11061 * we choose to treat them as if the mask bits were valid.
11062 * NB that the pseudocode 'mask' variable is bits [11..10],
11063 * whereas ours is [11..8].
11065 uint32_t mask = extract32(maskreg, 8, 4);
11066 uint32_t reg = extract32(maskreg, 0, 8);
11068 if (arm_current_el(env) == 0 && reg > 7) {
11069 /* only xPSR sub-fields may be written by unprivileged */
11070 return;
11073 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
11074 switch (reg) {
11075 case 0x88: /* MSP_NS */
11076 if (!env->v7m.secure) {
11077 return;
11079 env->v7m.other_ss_msp = val;
11080 return;
11081 case 0x89: /* PSP_NS */
11082 if (!env->v7m.secure) {
11083 return;
11085 env->v7m.other_ss_psp = val;
11086 return;
11087 case 0x8a: /* MSPLIM_NS */
11088 if (!env->v7m.secure) {
11089 return;
11091 env->v7m.msplim[M_REG_NS] = val & ~7;
11092 return;
11093 case 0x8b: /* PSPLIM_NS */
11094 if (!env->v7m.secure) {
11095 return;
11097 env->v7m.psplim[M_REG_NS] = val & ~7;
11098 return;
11099 case 0x90: /* PRIMASK_NS */
11100 if (!env->v7m.secure) {
11101 return;
11103 env->v7m.primask[M_REG_NS] = val & 1;
11104 return;
11105 case 0x91: /* BASEPRI_NS */
11106 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
11107 return;
11109 env->v7m.basepri[M_REG_NS] = val & 0xff;
11110 return;
11111 case 0x93: /* FAULTMASK_NS */
11112 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
11113 return;
11115 env->v7m.faultmask[M_REG_NS] = val & 1;
11116 return;
11117 case 0x94: /* CONTROL_NS */
11118 if (!env->v7m.secure) {
11119 return;
11121 write_v7m_control_spsel_for_secstate(env,
11122 val & R_V7M_CONTROL_SPSEL_MASK,
11123 M_REG_NS);
11124 if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
11125 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK;
11126 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK;
11128 return;
11129 case 0x98: /* SP_NS */
11131 /* This gives the non-secure SP selected based on whether we're
11132 * currently in handler mode or not, using the NS CONTROL.SPSEL.
11134 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
11135 bool is_psp = !arm_v7m_is_handler_mode(env) && spsel;
11136 uint32_t limit;
11138 if (!env->v7m.secure) {
11139 return;
11142 limit = is_psp ? env->v7m.psplim[false] : env->v7m.msplim[false];
11144 if (val < limit) {
11145 CPUState *cs = CPU(arm_env_get_cpu(env));
11147 cpu_restore_state(cs, GETPC(), true);
11148 raise_exception(env, EXCP_STKOF, 0, 1);
11151 if (is_psp) {
11152 env->v7m.other_ss_psp = val;
11153 } else {
11154 env->v7m.other_ss_msp = val;
11156 return;
11158 default:
11159 break;
11163 switch (reg) {
11164 case 0 ... 7: /* xPSR sub-fields */
11165 /* only APSR is actually writable */
11166 if (!(reg & 4)) {
11167 uint32_t apsrmask = 0;
11169 if (mask & 8) {
11170 apsrmask |= XPSR_NZCV | XPSR_Q;
11172 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
11173 apsrmask |= XPSR_GE;
11175 xpsr_write(env, val, apsrmask);
11177 break;
11178 case 8: /* MSP */
11179 if (v7m_using_psp(env)) {
11180 env->v7m.other_sp = val;
11181 } else {
11182 env->regs[13] = val;
11184 break;
11185 case 9: /* PSP */
11186 if (v7m_using_psp(env)) {
11187 env->regs[13] = val;
11188 } else {
11189 env->v7m.other_sp = val;
11191 break;
11192 case 10: /* MSPLIM */
11193 if (!arm_feature(env, ARM_FEATURE_V8)) {
11194 goto bad_reg;
11196 env->v7m.msplim[env->v7m.secure] = val & ~7;
11197 break;
11198 case 11: /* PSPLIM */
11199 if (!arm_feature(env, ARM_FEATURE_V8)) {
11200 goto bad_reg;
11202 env->v7m.psplim[env->v7m.secure] = val & ~7;
11203 break;
11204 case 16: /* PRIMASK */
11205 env->v7m.primask[env->v7m.secure] = val & 1;
11206 break;
11207 case 17: /* BASEPRI */
11208 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
11209 goto bad_reg;
11211 env->v7m.basepri[env->v7m.secure] = val & 0xff;
11212 break;
11213 case 18: /* BASEPRI_MAX */
11214 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
11215 goto bad_reg;
11217 val &= 0xff;
11218 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
11219 || env->v7m.basepri[env->v7m.secure] == 0)) {
11220 env->v7m.basepri[env->v7m.secure] = val;
11222 break;
11223 case 19: /* FAULTMASK */
11224 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
11225 goto bad_reg;
11227 env->v7m.faultmask[env->v7m.secure] = val & 1;
11228 break;
11229 case 20: /* CONTROL */
11230 /* Writing to the SPSEL bit only has an effect if we are in
11231 * thread mode; other bits can be updated by any privileged code.
11232 * write_v7m_control_spsel() deals with updating the SPSEL bit in
11233 * env->v7m.control, so we only need update the others.
11234 * For v7M, we must just ignore explicit writes to SPSEL in handler
11235 * mode; for v8M the write is permitted but will have no effect.
11237 if (arm_feature(env, ARM_FEATURE_V8) ||
11238 !arm_v7m_is_handler_mode(env)) {
11239 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
11241 if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
11242 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
11243 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
11245 break;
11246 default:
11247 bad_reg:
11248 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
11249 " register %d\n", reg);
11250 return;
11254 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
11256 /* Implement the TT instruction. op is bits [7:6] of the insn. */
11257 bool forceunpriv = op & 1;
11258 bool alt = op & 2;
11259 V8M_SAttributes sattrs = {};
11260 uint32_t tt_resp;
11261 bool r, rw, nsr, nsrw, mrvalid;
11262 int prot;
11263 ARMMMUFaultInfo fi = {};
11264 MemTxAttrs attrs = {};
11265 hwaddr phys_addr;
11266 ARMMMUIdx mmu_idx;
11267 uint32_t mregion;
11268 bool targetpriv;
11269 bool targetsec = env->v7m.secure;
11270 bool is_subpage;
11272 /* Work out what the security state and privilege level we're
11273 * interested in is...
11275 if (alt) {
11276 targetsec = !targetsec;
11279 if (forceunpriv) {
11280 targetpriv = false;
11281 } else {
11282 targetpriv = arm_v7m_is_handler_mode(env) ||
11283 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
11286 /* ...and then figure out which MMU index this is */
11287 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
11289 /* We know that the MPU and SAU don't care about the access type
11290 * for our purposes beyond that we don't want to claim to be
11291 * an insn fetch, so we arbitrarily call this a read.
11294 /* MPU region info only available for privileged or if
11295 * inspecting the other MPU state.
11297 if (arm_current_el(env) != 0 || alt) {
11298 /* We can ignore the return value as prot is always set */
11299 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
11300 &phys_addr, &attrs, &prot, &is_subpage,
11301 &fi, &mregion);
11302 if (mregion == -1) {
11303 mrvalid = false;
11304 mregion = 0;
11305 } else {
11306 mrvalid = true;
11308 r = prot & PAGE_READ;
11309 rw = prot & PAGE_WRITE;
11310 } else {
11311 r = false;
11312 rw = false;
11313 mrvalid = false;
11314 mregion = 0;
11317 if (env->v7m.secure) {
11318 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
11319 nsr = sattrs.ns && r;
11320 nsrw = sattrs.ns && rw;
11321 } else {
11322 sattrs.ns = true;
11323 nsr = false;
11324 nsrw = false;
11327 tt_resp = (sattrs.iregion << 24) |
11328 (sattrs.irvalid << 23) |
11329 ((!sattrs.ns) << 22) |
11330 (nsrw << 21) |
11331 (nsr << 20) |
11332 (rw << 19) |
11333 (r << 18) |
11334 (sattrs.srvalid << 17) |
11335 (mrvalid << 16) |
11336 (sattrs.sregion << 8) |
11337 mregion;
11339 return tt_resp;
11342 #endif
11344 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
11346 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
11347 * Note that we do not implement the (architecturally mandated)
11348 * alignment fault for attempts to use this on Device memory
11349 * (which matches the usual QEMU behaviour of not implementing either
11350 * alignment faults or any memory attribute handling).
11353 ARMCPU *cpu = arm_env_get_cpu(env);
11354 uint64_t blocklen = 4 << cpu->dcz_blocksize;
11355 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
11357 #ifndef CONFIG_USER_ONLY
11359 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
11360 * the block size so we might have to do more than one TLB lookup.
11361 * We know that in fact for any v8 CPU the page size is at least 4K
11362 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
11363 * 1K as an artefact of legacy v5 subpage support being present in the
11364 * same QEMU executable.
11366 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
11367 void *hostaddr[maxidx];
11368 int try, i;
11369 unsigned mmu_idx = cpu_mmu_index(env, false);
11370 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
11372 for (try = 0; try < 2; try++) {
11374 for (i = 0; i < maxidx; i++) {
11375 hostaddr[i] = tlb_vaddr_to_host(env,
11376 vaddr + TARGET_PAGE_SIZE * i,
11377 1, mmu_idx);
11378 if (!hostaddr[i]) {
11379 break;
11382 if (i == maxidx) {
11383 /* If it's all in the TLB it's fair game for just writing to;
11384 * we know we don't need to update dirty status, etc.
11386 for (i = 0; i < maxidx - 1; i++) {
11387 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
11389 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
11390 return;
11392 /* OK, try a store and see if we can populate the tlb. This
11393 * might cause an exception if the memory isn't writable,
11394 * in which case we will longjmp out of here. We must for
11395 * this purpose use the actual register value passed to us
11396 * so that we get the fault address right.
11398 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
11399 /* Now we can populate the other TLB entries, if any */
11400 for (i = 0; i < maxidx; i++) {
11401 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
11402 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
11403 helper_ret_stb_mmu(env, va, 0, oi, GETPC());
11408 /* Slow path (probably attempt to do this to an I/O device or
11409 * similar, or clearing of a block of code we have translations
11410 * cached for). Just do a series of byte writes as the architecture
11411 * demands. It's not worth trying to use a cpu_physical_memory_map(),
11412 * memset(), unmap() sequence here because:
11413 * + we'd need to account for the blocksize being larger than a page
11414 * + the direct-RAM access case is almost always going to be dealt
11415 * with in the fastpath code above, so there's no speed benefit
11416 * + we would have to deal with the map returning NULL because the
11417 * bounce buffer was in use
11419 for (i = 0; i < blocklen; i++) {
11420 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
11423 #else
11424 memset(g2h(vaddr), 0, blocklen);
11425 #endif
11428 /* Note that signed overflow is undefined in C. The following routines are
11429 careful to use unsigned types where modulo arithmetic is required.
11430 Failure to do so _will_ break on newer gcc. */
11432 /* Signed saturating arithmetic. */
11434 /* Perform 16-bit signed saturating addition. */
11435 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11437 uint16_t res;
11439 res = a + b;
11440 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11441 if (a & 0x8000)
11442 res = 0x8000;
11443 else
11444 res = 0x7fff;
11446 return res;
11449 /* Perform 8-bit signed saturating addition. */
11450 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11452 uint8_t res;
11454 res = a + b;
11455 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
11456 if (a & 0x80)
11457 res = 0x80;
11458 else
11459 res = 0x7f;
11461 return res;
11464 /* Perform 16-bit signed saturating subtraction. */
11465 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
11467 uint16_t res;
11469 res = a - b;
11470 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
11471 if (a & 0x8000)
11472 res = 0x8000;
11473 else
11474 res = 0x7fff;
11476 return res;
11479 /* Perform 8-bit signed saturating subtraction. */
11480 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
11482 uint8_t res;
11484 res = a - b;
11485 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
11486 if (a & 0x80)
11487 res = 0x80;
11488 else
11489 res = 0x7f;
11491 return res;
11494 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
11495 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
11496 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
11497 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
11498 #define PFX q
11500 #include "op_addsub.h"
11502 /* Unsigned saturating arithmetic. */
11503 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
11505 uint16_t res;
11506 res = a + b;
11507 if (res < a)
11508 res = 0xffff;
11509 return res;
11512 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
11514 if (a > b)
11515 return a - b;
11516 else
11517 return 0;
11520 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11522 uint8_t res;
11523 res = a + b;
11524 if (res < a)
11525 res = 0xff;
11526 return res;
11529 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11531 if (a > b)
11532 return a - b;
11533 else
11534 return 0;
11537 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11538 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11539 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
11540 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
11541 #define PFX uq
11543 #include "op_addsub.h"
11545 /* Signed modulo arithmetic. */
11546 #define SARITH16(a, b, n, op) do { \
11547 int32_t sum; \
11548 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11549 RESULT(sum, n, 16); \
11550 if (sum >= 0) \
11551 ge |= 3 << (n * 2); \
11552 } while(0)
11554 #define SARITH8(a, b, n, op) do { \
11555 int32_t sum; \
11556 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11557 RESULT(sum, n, 8); \
11558 if (sum >= 0) \
11559 ge |= 1 << n; \
11560 } while(0)
11563 #define ADD16(a, b, n) SARITH16(a, b, n, +)
11564 #define SUB16(a, b, n) SARITH16(a, b, n, -)
11565 #define ADD8(a, b, n) SARITH8(a, b, n, +)
11566 #define SUB8(a, b, n) SARITH8(a, b, n, -)
11567 #define PFX s
11568 #define ARITH_GE
11570 #include "op_addsub.h"
11572 /* Unsigned modulo arithmetic. */
11573 #define ADD16(a, b, n) do { \
11574 uint32_t sum; \
11575 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11576 RESULT(sum, n, 16); \
11577 if ((sum >> 16) == 1) \
11578 ge |= 3 << (n * 2); \
11579 } while(0)
11581 #define ADD8(a, b, n) do { \
11582 uint32_t sum; \
11583 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11584 RESULT(sum, n, 8); \
11585 if ((sum >> 8) == 1) \
11586 ge |= 1 << n; \
11587 } while(0)
11589 #define SUB16(a, b, n) do { \
11590 uint32_t sum; \
11591 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11592 RESULT(sum, n, 16); \
11593 if ((sum >> 16) == 0) \
11594 ge |= 3 << (n * 2); \
11595 } while(0)
11597 #define SUB8(a, b, n) do { \
11598 uint32_t sum; \
11599 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11600 RESULT(sum, n, 8); \
11601 if ((sum >> 8) == 0) \
11602 ge |= 1 << n; \
11603 } while(0)
11605 #define PFX u
11606 #define ARITH_GE
11608 #include "op_addsub.h"
11610 /* Halved signed arithmetic. */
11611 #define ADD16(a, b, n) \
11612 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11613 #define SUB16(a, b, n) \
11614 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11615 #define ADD8(a, b, n) \
11616 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11617 #define SUB8(a, b, n) \
11618 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11619 #define PFX sh
11621 #include "op_addsub.h"
11623 /* Halved unsigned arithmetic. */
11624 #define ADD16(a, b, n) \
11625 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11626 #define SUB16(a, b, n) \
11627 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11628 #define ADD8(a, b, n) \
11629 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11630 #define SUB8(a, b, n) \
11631 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11632 #define PFX uh
11634 #include "op_addsub.h"
11636 static inline uint8_t do_usad(uint8_t a, uint8_t b)
11638 if (a > b)
11639 return a - b;
11640 else
11641 return b - a;
11644 /* Unsigned sum of absolute byte differences. */
11645 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11647 uint32_t sum;
11648 sum = do_usad(a, b);
11649 sum += do_usad(a >> 8, b >> 8);
11650 sum += do_usad(a >> 16, b >>16);
11651 sum += do_usad(a >> 24, b >> 24);
11652 return sum;
11655 /* For ARMv6 SEL instruction. */
11656 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11658 uint32_t mask;
11660 mask = 0;
11661 if (flags & 1)
11662 mask |= 0xff;
11663 if (flags & 2)
11664 mask |= 0xff00;
11665 if (flags & 4)
11666 mask |= 0xff0000;
11667 if (flags & 8)
11668 mask |= 0xff000000;
11669 return (a & mask) | (b & ~mask);
11672 /* VFP support. We follow the convention used for VFP instructions:
11673 Single precision routines have a "s" suffix, double precision a
11674 "d" suffix. */
11676 /* Convert host exception flags to vfp form. */
11677 static inline int vfp_exceptbits_from_host(int host_bits)
11679 int target_bits = 0;
11681 if (host_bits & float_flag_invalid)
11682 target_bits |= 1;
11683 if (host_bits & float_flag_divbyzero)
11684 target_bits |= 2;
11685 if (host_bits & float_flag_overflow)
11686 target_bits |= 4;
11687 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
11688 target_bits |= 8;
11689 if (host_bits & float_flag_inexact)
11690 target_bits |= 0x10;
11691 if (host_bits & float_flag_input_denormal)
11692 target_bits |= 0x80;
11693 return target_bits;
11696 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
11698 int i;
11699 uint32_t fpscr;
11701 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
11702 | (env->vfp.vec_len << 16)
11703 | (env->vfp.vec_stride << 20);
11705 i = get_float_exception_flags(&env->vfp.fp_status);
11706 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
11707 /* FZ16 does not generate an input denormal exception. */
11708 i |= (get_float_exception_flags(&env->vfp.fp_status_f16)
11709 & ~float_flag_input_denormal);
11711 fpscr |= vfp_exceptbits_from_host(i);
11712 return fpscr;
11715 uint32_t vfp_get_fpscr(CPUARMState *env)
11717 return HELPER(vfp_get_fpscr)(env);
11720 /* Convert vfp exception flags to target form. */
11721 static inline int vfp_exceptbits_to_host(int target_bits)
11723 int host_bits = 0;
11725 if (target_bits & 1)
11726 host_bits |= float_flag_invalid;
11727 if (target_bits & 2)
11728 host_bits |= float_flag_divbyzero;
11729 if (target_bits & 4)
11730 host_bits |= float_flag_overflow;
11731 if (target_bits & 8)
11732 host_bits |= float_flag_underflow;
11733 if (target_bits & 0x10)
11734 host_bits |= float_flag_inexact;
11735 if (target_bits & 0x80)
11736 host_bits |= float_flag_input_denormal;
11737 return host_bits;
11740 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
11742 int i;
11743 uint32_t changed;
11745 /* When ARMv8.2-FP16 is not supported, FZ16 is RES0. */
11746 if (!cpu_isar_feature(aa64_fp16, arm_env_get_cpu(env))) {
11747 val &= ~FPCR_FZ16;
11750 changed = env->vfp.xregs[ARM_VFP_FPSCR];
11751 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
11752 env->vfp.vec_len = (val >> 16) & 7;
11753 env->vfp.vec_stride = (val >> 20) & 3;
11755 changed ^= val;
11756 if (changed & (3 << 22)) {
11757 i = (val >> 22) & 3;
11758 switch (i) {
11759 case FPROUNDING_TIEEVEN:
11760 i = float_round_nearest_even;
11761 break;
11762 case FPROUNDING_POSINF:
11763 i = float_round_up;
11764 break;
11765 case FPROUNDING_NEGINF:
11766 i = float_round_down;
11767 break;
11768 case FPROUNDING_ZERO:
11769 i = float_round_to_zero;
11770 break;
11772 set_float_rounding_mode(i, &env->vfp.fp_status);
11773 set_float_rounding_mode(i, &env->vfp.fp_status_f16);
11775 if (changed & FPCR_FZ16) {
11776 bool ftz_enabled = val & FPCR_FZ16;
11777 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
11778 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
11780 if (changed & FPCR_FZ) {
11781 bool ftz_enabled = val & FPCR_FZ;
11782 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
11783 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
11785 if (changed & FPCR_DN) {
11786 bool dnan_enabled = val & FPCR_DN;
11787 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
11788 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
11791 /* The exception flags are ORed together when we read fpscr so we
11792 * only need to preserve the current state in one of our
11793 * float_status values.
11795 i = vfp_exceptbits_to_host(val);
11796 set_float_exception_flags(i, &env->vfp.fp_status);
11797 set_float_exception_flags(0, &env->vfp.fp_status_f16);
11798 set_float_exception_flags(0, &env->vfp.standard_fp_status);
11801 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
11803 HELPER(vfp_set_fpscr)(env, val);
11806 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
11808 #define VFP_BINOP(name) \
11809 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
11811 float_status *fpst = fpstp; \
11812 return float32_ ## name(a, b, fpst); \
11814 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
11816 float_status *fpst = fpstp; \
11817 return float64_ ## name(a, b, fpst); \
11819 VFP_BINOP(add)
11820 VFP_BINOP(sub)
11821 VFP_BINOP(mul)
11822 VFP_BINOP(div)
11823 VFP_BINOP(min)
11824 VFP_BINOP(max)
11825 VFP_BINOP(minnum)
11826 VFP_BINOP(maxnum)
11827 #undef VFP_BINOP
11829 float32 VFP_HELPER(neg, s)(float32 a)
11831 return float32_chs(a);
11834 float64 VFP_HELPER(neg, d)(float64 a)
11836 return float64_chs(a);
11839 float32 VFP_HELPER(abs, s)(float32 a)
11841 return float32_abs(a);
11844 float64 VFP_HELPER(abs, d)(float64 a)
11846 return float64_abs(a);
11849 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
11851 return float32_sqrt(a, &env->vfp.fp_status);
11854 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
11856 return float64_sqrt(a, &env->vfp.fp_status);
11859 /* XXX: check quiet/signaling case */
11860 #define DO_VFP_cmp(p, type) \
11861 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
11863 uint32_t flags; \
11864 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
11865 case 0: flags = 0x6; break; \
11866 case -1: flags = 0x8; break; \
11867 case 1: flags = 0x2; break; \
11868 default: case 2: flags = 0x3; break; \
11870 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
11871 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
11873 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
11875 uint32_t flags; \
11876 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
11877 case 0: flags = 0x6; break; \
11878 case -1: flags = 0x8; break; \
11879 case 1: flags = 0x2; break; \
11880 default: case 2: flags = 0x3; break; \
11882 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
11883 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
11885 DO_VFP_cmp(s, float32)
11886 DO_VFP_cmp(d, float64)
11887 #undef DO_VFP_cmp
11889 /* Integer to float and float to integer conversions */
11891 #define CONV_ITOF(name, ftype, fsz, sign) \
11892 ftype HELPER(name)(uint32_t x, void *fpstp) \
11894 float_status *fpst = fpstp; \
11895 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
11898 #define CONV_FTOI(name, ftype, fsz, sign, round) \
11899 sign##int32_t HELPER(name)(ftype x, void *fpstp) \
11901 float_status *fpst = fpstp; \
11902 if (float##fsz##_is_any_nan(x)) { \
11903 float_raise(float_flag_invalid, fpst); \
11904 return 0; \
11906 return float##fsz##_to_##sign##int32##round(x, fpst); \
11909 #define FLOAT_CONVS(name, p, ftype, fsz, sign) \
11910 CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign) \
11911 CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, ) \
11912 CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
11914 FLOAT_CONVS(si, h, uint32_t, 16, )
11915 FLOAT_CONVS(si, s, float32, 32, )
11916 FLOAT_CONVS(si, d, float64, 64, )
11917 FLOAT_CONVS(ui, h, uint32_t, 16, u)
11918 FLOAT_CONVS(ui, s, float32, 32, u)
11919 FLOAT_CONVS(ui, d, float64, 64, u)
11921 #undef CONV_ITOF
11922 #undef CONV_FTOI
11923 #undef FLOAT_CONVS
11925 /* floating point conversion */
11926 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
11928 return float32_to_float64(x, &env->vfp.fp_status);
11931 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
11933 return float64_to_float32(x, &env->vfp.fp_status);
11936 /* VFP3 fixed point conversion. */
11937 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
11938 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
11939 void *fpstp) \
11940 { return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); }
11942 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ROUND, suff) \
11943 uint##isz##_t HELPER(vfp_to##name##p##suff)(float##fsz x, uint32_t shift, \
11944 void *fpst) \
11946 if (unlikely(float##fsz##_is_any_nan(x))) { \
11947 float_raise(float_flag_invalid, fpst); \
11948 return 0; \
11950 return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst); \
11953 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
11954 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
11955 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
11956 float_round_to_zero, _round_to_zero) \
11957 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
11958 get_float_rounding_mode(fpst), )
11960 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
11961 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
11962 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
11963 get_float_rounding_mode(fpst), )
11965 VFP_CONV_FIX(sh, d, 64, 64, int16)
11966 VFP_CONV_FIX(sl, d, 64, 64, int32)
11967 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
11968 VFP_CONV_FIX(uh, d, 64, 64, uint16)
11969 VFP_CONV_FIX(ul, d, 64, 64, uint32)
11970 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
11971 VFP_CONV_FIX(sh, s, 32, 32, int16)
11972 VFP_CONV_FIX(sl, s, 32, 32, int32)
11973 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
11974 VFP_CONV_FIX(uh, s, 32, 32, uint16)
11975 VFP_CONV_FIX(ul, s, 32, 32, uint32)
11976 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
11978 #undef VFP_CONV_FIX
11979 #undef VFP_CONV_FIX_FLOAT
11980 #undef VFP_CONV_FLOAT_FIX_ROUND
11981 #undef VFP_CONV_FIX_A64
11983 uint32_t HELPER(vfp_sltoh)(uint32_t x, uint32_t shift, void *fpst)
11985 return int32_to_float16_scalbn(x, -shift, fpst);
11988 uint32_t HELPER(vfp_ultoh)(uint32_t x, uint32_t shift, void *fpst)
11990 return uint32_to_float16_scalbn(x, -shift, fpst);
11993 uint32_t HELPER(vfp_sqtoh)(uint64_t x, uint32_t shift, void *fpst)
11995 return int64_to_float16_scalbn(x, -shift, fpst);
11998 uint32_t HELPER(vfp_uqtoh)(uint64_t x, uint32_t shift, void *fpst)
12000 return uint64_to_float16_scalbn(x, -shift, fpst);
12003 uint32_t HELPER(vfp_toshh)(uint32_t x, uint32_t shift, void *fpst)
12005 if (unlikely(float16_is_any_nan(x))) {
12006 float_raise(float_flag_invalid, fpst);
12007 return 0;
12009 return float16_to_int16_scalbn(x, get_float_rounding_mode(fpst),
12010 shift, fpst);
12013 uint32_t HELPER(vfp_touhh)(uint32_t x, uint32_t shift, void *fpst)
12015 if (unlikely(float16_is_any_nan(x))) {
12016 float_raise(float_flag_invalid, fpst);
12017 return 0;
12019 return float16_to_uint16_scalbn(x, get_float_rounding_mode(fpst),
12020 shift, fpst);
12023 uint32_t HELPER(vfp_toslh)(uint32_t x, uint32_t shift, void *fpst)
12025 if (unlikely(float16_is_any_nan(x))) {
12026 float_raise(float_flag_invalid, fpst);
12027 return 0;
12029 return float16_to_int32_scalbn(x, get_float_rounding_mode(fpst),
12030 shift, fpst);
12033 uint32_t HELPER(vfp_toulh)(uint32_t x, uint32_t shift, void *fpst)
12035 if (unlikely(float16_is_any_nan(x))) {
12036 float_raise(float_flag_invalid, fpst);
12037 return 0;
12039 return float16_to_uint32_scalbn(x, get_float_rounding_mode(fpst),
12040 shift, fpst);
12043 uint64_t HELPER(vfp_tosqh)(uint32_t x, uint32_t shift, void *fpst)
12045 if (unlikely(float16_is_any_nan(x))) {
12046 float_raise(float_flag_invalid, fpst);
12047 return 0;
12049 return float16_to_int64_scalbn(x, get_float_rounding_mode(fpst),
12050 shift, fpst);
12053 uint64_t HELPER(vfp_touqh)(uint32_t x, uint32_t shift, void *fpst)
12055 if (unlikely(float16_is_any_nan(x))) {
12056 float_raise(float_flag_invalid, fpst);
12057 return 0;
12059 return float16_to_uint64_scalbn(x, get_float_rounding_mode(fpst),
12060 shift, fpst);
12063 /* Set the current fp rounding mode and return the old one.
12064 * The argument is a softfloat float_round_ value.
12066 uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
12068 float_status *fp_status = fpstp;
12070 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
12071 set_float_rounding_mode(rmode, fp_status);
12073 return prev_rmode;
12076 /* Set the current fp rounding mode in the standard fp status and return
12077 * the old one. This is for NEON instructions that need to change the
12078 * rounding mode but wish to use the standard FPSCR values for everything
12079 * else. Always set the rounding mode back to the correct value after
12080 * modifying it.
12081 * The argument is a softfloat float_round_ value.
12083 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
12085 float_status *fp_status = &env->vfp.standard_fp_status;
12087 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
12088 set_float_rounding_mode(rmode, fp_status);
12090 return prev_rmode;
12093 /* Half precision conversions. */
12094 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode)
12096 /* Squash FZ16 to 0 for the duration of conversion. In this case,
12097 * it would affect flushing input denormals.
12099 float_status *fpst = fpstp;
12100 flag save = get_flush_inputs_to_zero(fpst);
12101 set_flush_inputs_to_zero(false, fpst);
12102 float32 r = float16_to_float32(a, !ahp_mode, fpst);
12103 set_flush_inputs_to_zero(save, fpst);
12104 return r;
12107 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode)
12109 /* Squash FZ16 to 0 for the duration of conversion. In this case,
12110 * it would affect flushing output denormals.
12112 float_status *fpst = fpstp;
12113 flag save = get_flush_to_zero(fpst);
12114 set_flush_to_zero(false, fpst);
12115 float16 r = float32_to_float16(a, !ahp_mode, fpst);
12116 set_flush_to_zero(save, fpst);
12117 return r;
12120 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode)
12122 /* Squash FZ16 to 0 for the duration of conversion. In this case,
12123 * it would affect flushing input denormals.
12125 float_status *fpst = fpstp;
12126 flag save = get_flush_inputs_to_zero(fpst);
12127 set_flush_inputs_to_zero(false, fpst);
12128 float64 r = float16_to_float64(a, !ahp_mode, fpst);
12129 set_flush_inputs_to_zero(save, fpst);
12130 return r;
12133 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode)
12135 /* Squash FZ16 to 0 for the duration of conversion. In this case,
12136 * it would affect flushing output denormals.
12138 float_status *fpst = fpstp;
12139 flag save = get_flush_to_zero(fpst);
12140 set_flush_to_zero(false, fpst);
12141 float16 r = float64_to_float16(a, !ahp_mode, fpst);
12142 set_flush_to_zero(save, fpst);
12143 return r;
12146 #define float32_two make_float32(0x40000000)
12147 #define float32_three make_float32(0x40400000)
12148 #define float32_one_point_five make_float32(0x3fc00000)
12150 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
12152 float_status *s = &env->vfp.standard_fp_status;
12153 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
12154 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
12155 if (!(float32_is_zero(a) || float32_is_zero(b))) {
12156 float_raise(float_flag_input_denormal, s);
12158 return float32_two;
12160 return float32_sub(float32_two, float32_mul(a, b, s), s);
12163 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
12165 float_status *s = &env->vfp.standard_fp_status;
12166 float32 product;
12167 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
12168 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
12169 if (!(float32_is_zero(a) || float32_is_zero(b))) {
12170 float_raise(float_flag_input_denormal, s);
12172 return float32_one_point_five;
12174 product = float32_mul(a, b, s);
12175 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
12178 /* NEON helpers. */
12180 /* Constants 256 and 512 are used in some helpers; we avoid relying on
12181 * int->float conversions at run-time. */
12182 #define float64_256 make_float64(0x4070000000000000LL)
12183 #define float64_512 make_float64(0x4080000000000000LL)
12184 #define float16_maxnorm make_float16(0x7bff)
12185 #define float32_maxnorm make_float32(0x7f7fffff)
12186 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
12188 /* Reciprocal functions
12190 * The algorithm that must be used to calculate the estimate
12191 * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
12194 /* See RecipEstimate()
12196 * input is a 9 bit fixed point number
12197 * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
12198 * result range 256 .. 511 for a number from 1.0 to 511/256.
12201 static int recip_estimate(int input)
12203 int a, b, r;
12204 assert(256 <= input && input < 512);
12205 a = (input * 2) + 1;
12206 b = (1 << 19) / a;
12207 r = (b + 1) >> 1;
12208 assert(256 <= r && r < 512);
12209 return r;
12213 * Common wrapper to call recip_estimate
12215 * The parameters are exponent and 64 bit fraction (without implicit
12216 * bit) where the binary point is nominally at bit 52. Returns a
12217 * float64 which can then be rounded to the appropriate size by the
12218 * callee.
12221 static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
12223 uint32_t scaled, estimate;
12224 uint64_t result_frac;
12225 int result_exp;
12227 /* Handle sub-normals */
12228 if (*exp == 0) {
12229 if (extract64(frac, 51, 1) == 0) {
12230 *exp = -1;
12231 frac <<= 2;
12232 } else {
12233 frac <<= 1;
12237 /* scaled = UInt('1':fraction<51:44>) */
12238 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
12239 estimate = recip_estimate(scaled);
12241 result_exp = exp_off - *exp;
12242 result_frac = deposit64(0, 44, 8, estimate);
12243 if (result_exp == 0) {
12244 result_frac = deposit64(result_frac >> 1, 51, 1, 1);
12245 } else if (result_exp == -1) {
12246 result_frac = deposit64(result_frac >> 2, 50, 2, 1);
12247 result_exp = 0;
12250 *exp = result_exp;
12252 return result_frac;
12255 static bool round_to_inf(float_status *fpst, bool sign_bit)
12257 switch (fpst->float_rounding_mode) {
12258 case float_round_nearest_even: /* Round to Nearest */
12259 return true;
12260 case float_round_up: /* Round to +Inf */
12261 return !sign_bit;
12262 case float_round_down: /* Round to -Inf */
12263 return sign_bit;
12264 case float_round_to_zero: /* Round to Zero */
12265 return false;
12268 g_assert_not_reached();
12271 uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp)
12273 float_status *fpst = fpstp;
12274 float16 f16 = float16_squash_input_denormal(input, fpst);
12275 uint32_t f16_val = float16_val(f16);
12276 uint32_t f16_sign = float16_is_neg(f16);
12277 int f16_exp = extract32(f16_val, 10, 5);
12278 uint32_t f16_frac = extract32(f16_val, 0, 10);
12279 uint64_t f64_frac;
12281 if (float16_is_any_nan(f16)) {
12282 float16 nan = f16;
12283 if (float16_is_signaling_nan(f16, fpst)) {
12284 float_raise(float_flag_invalid, fpst);
12285 nan = float16_silence_nan(f16, fpst);
12287 if (fpst->default_nan_mode) {
12288 nan = float16_default_nan(fpst);
12290 return nan;
12291 } else if (float16_is_infinity(f16)) {
12292 return float16_set_sign(float16_zero, float16_is_neg(f16));
12293 } else if (float16_is_zero(f16)) {
12294 float_raise(float_flag_divbyzero, fpst);
12295 return float16_set_sign(float16_infinity, float16_is_neg(f16));
12296 } else if (float16_abs(f16) < (1 << 8)) {
12297 /* Abs(value) < 2.0^-16 */
12298 float_raise(float_flag_overflow | float_flag_inexact, fpst);
12299 if (round_to_inf(fpst, f16_sign)) {
12300 return float16_set_sign(float16_infinity, f16_sign);
12301 } else {
12302 return float16_set_sign(float16_maxnorm, f16_sign);
12304 } else if (f16_exp >= 29 && fpst->flush_to_zero) {
12305 float_raise(float_flag_underflow, fpst);
12306 return float16_set_sign(float16_zero, float16_is_neg(f16));
12309 f64_frac = call_recip_estimate(&f16_exp, 29,
12310 ((uint64_t) f16_frac) << (52 - 10));
12312 /* result = sign : result_exp<4:0> : fraction<51:42> */
12313 f16_val = deposit32(0, 15, 1, f16_sign);
12314 f16_val = deposit32(f16_val, 10, 5, f16_exp);
12315 f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
12316 return make_float16(f16_val);
12319 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
12321 float_status *fpst = fpstp;
12322 float32 f32 = float32_squash_input_denormal(input, fpst);
12323 uint32_t f32_val = float32_val(f32);
12324 bool f32_sign = float32_is_neg(f32);
12325 int f32_exp = extract32(f32_val, 23, 8);
12326 uint32_t f32_frac = extract32(f32_val, 0, 23);
12327 uint64_t f64_frac;
12329 if (float32_is_any_nan(f32)) {
12330 float32 nan = f32;
12331 if (float32_is_signaling_nan(f32, fpst)) {
12332 float_raise(float_flag_invalid, fpst);
12333 nan = float32_silence_nan(f32, fpst);
12335 if (fpst->default_nan_mode) {
12336 nan = float32_default_nan(fpst);
12338 return nan;
12339 } else if (float32_is_infinity(f32)) {
12340 return float32_set_sign(float32_zero, float32_is_neg(f32));
12341 } else if (float32_is_zero(f32)) {
12342 float_raise(float_flag_divbyzero, fpst);
12343 return float32_set_sign(float32_infinity, float32_is_neg(f32));
12344 } else if (float32_abs(f32) < (1ULL << 21)) {
12345 /* Abs(value) < 2.0^-128 */
12346 float_raise(float_flag_overflow | float_flag_inexact, fpst);
12347 if (round_to_inf(fpst, f32_sign)) {
12348 return float32_set_sign(float32_infinity, f32_sign);
12349 } else {
12350 return float32_set_sign(float32_maxnorm, f32_sign);
12352 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
12353 float_raise(float_flag_underflow, fpst);
12354 return float32_set_sign(float32_zero, float32_is_neg(f32));
12357 f64_frac = call_recip_estimate(&f32_exp, 253,
12358 ((uint64_t) f32_frac) << (52 - 23));
12360 /* result = sign : result_exp<7:0> : fraction<51:29> */
12361 f32_val = deposit32(0, 31, 1, f32_sign);
12362 f32_val = deposit32(f32_val, 23, 8, f32_exp);
12363 f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
12364 return make_float32(f32_val);
12367 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
12369 float_status *fpst = fpstp;
12370 float64 f64 = float64_squash_input_denormal(input, fpst);
12371 uint64_t f64_val = float64_val(f64);
12372 bool f64_sign = float64_is_neg(f64);
12373 int f64_exp = extract64(f64_val, 52, 11);
12374 uint64_t f64_frac = extract64(f64_val, 0, 52);
12376 /* Deal with any special cases */
12377 if (float64_is_any_nan(f64)) {
12378 float64 nan = f64;
12379 if (float64_is_signaling_nan(f64, fpst)) {
12380 float_raise(float_flag_invalid, fpst);
12381 nan = float64_silence_nan(f64, fpst);
12383 if (fpst->default_nan_mode) {
12384 nan = float64_default_nan(fpst);
12386 return nan;
12387 } else if (float64_is_infinity(f64)) {
12388 return float64_set_sign(float64_zero, float64_is_neg(f64));
12389 } else if (float64_is_zero(f64)) {
12390 float_raise(float_flag_divbyzero, fpst);
12391 return float64_set_sign(float64_infinity, float64_is_neg(f64));
12392 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
12393 /* Abs(value) < 2.0^-1024 */
12394 float_raise(float_flag_overflow | float_flag_inexact, fpst);
12395 if (round_to_inf(fpst, f64_sign)) {
12396 return float64_set_sign(float64_infinity, f64_sign);
12397 } else {
12398 return float64_set_sign(float64_maxnorm, f64_sign);
12400 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
12401 float_raise(float_flag_underflow, fpst);
12402 return float64_set_sign(float64_zero, float64_is_neg(f64));
12405 f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
12407 /* result = sign : result_exp<10:0> : fraction<51:0>; */
12408 f64_val = deposit64(0, 63, 1, f64_sign);
12409 f64_val = deposit64(f64_val, 52, 11, f64_exp);
12410 f64_val = deposit64(f64_val, 0, 52, f64_frac);
12411 return make_float64(f64_val);
12414 /* The algorithm that must be used to calculate the estimate
12415 * is specified by the ARM ARM.
12418 static int do_recip_sqrt_estimate(int a)
12420 int b, estimate;
12422 assert(128 <= a && a < 512);
12423 if (a < 256) {
12424 a = a * 2 + 1;
12425 } else {
12426 a = (a >> 1) << 1;
12427 a = (a + 1) * 2;
12429 b = 512;
12430 while (a * (b + 1) * (b + 1) < (1 << 28)) {
12431 b += 1;
12433 estimate = (b + 1) / 2;
12434 assert(256 <= estimate && estimate < 512);
12436 return estimate;
12440 static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
12442 int estimate;
12443 uint32_t scaled;
12445 if (*exp == 0) {
12446 while (extract64(frac, 51, 1) == 0) {
12447 frac = frac << 1;
12448 *exp -= 1;
12450 frac = extract64(frac, 0, 51) << 1;
12453 if (*exp & 1) {
12454 /* scaled = UInt('01':fraction<51:45>) */
12455 scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
12456 } else {
12457 /* scaled = UInt('1':fraction<51:44>) */
12458 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
12460 estimate = do_recip_sqrt_estimate(scaled);
12462 *exp = (exp_off - *exp) / 2;
12463 return extract64(estimate, 0, 8) << 44;
12466 uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp)
12468 float_status *s = fpstp;
12469 float16 f16 = float16_squash_input_denormal(input, s);
12470 uint16_t val = float16_val(f16);
12471 bool f16_sign = float16_is_neg(f16);
12472 int f16_exp = extract32(val, 10, 5);
12473 uint16_t f16_frac = extract32(val, 0, 10);
12474 uint64_t f64_frac;
12476 if (float16_is_any_nan(f16)) {
12477 float16 nan = f16;
12478 if (float16_is_signaling_nan(f16, s)) {
12479 float_raise(float_flag_invalid, s);
12480 nan = float16_silence_nan(f16, s);
12482 if (s->default_nan_mode) {
12483 nan = float16_default_nan(s);
12485 return nan;
12486 } else if (float16_is_zero(f16)) {
12487 float_raise(float_flag_divbyzero, s);
12488 return float16_set_sign(float16_infinity, f16_sign);
12489 } else if (f16_sign) {
12490 float_raise(float_flag_invalid, s);
12491 return float16_default_nan(s);
12492 } else if (float16_is_infinity(f16)) {
12493 return float16_zero;
12496 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
12497 * preserving the parity of the exponent. */
12499 f64_frac = ((uint64_t) f16_frac) << (52 - 10);
12501 f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);
12503 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
12504 val = deposit32(0, 15, 1, f16_sign);
12505 val = deposit32(val, 10, 5, f16_exp);
12506 val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
12507 return make_float16(val);
12510 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
12512 float_status *s = fpstp;
12513 float32 f32 = float32_squash_input_denormal(input, s);
12514 uint32_t val = float32_val(f32);
12515 uint32_t f32_sign = float32_is_neg(f32);
12516 int f32_exp = extract32(val, 23, 8);
12517 uint32_t f32_frac = extract32(val, 0, 23);
12518 uint64_t f64_frac;
12520 if (float32_is_any_nan(f32)) {
12521 float32 nan = f32;
12522 if (float32_is_signaling_nan(f32, s)) {
12523 float_raise(float_flag_invalid, s);
12524 nan = float32_silence_nan(f32, s);
12526 if (s->default_nan_mode) {
12527 nan = float32_default_nan(s);
12529 return nan;
12530 } else if (float32_is_zero(f32)) {
12531 float_raise(float_flag_divbyzero, s);
12532 return float32_set_sign(float32_infinity, float32_is_neg(f32));
12533 } else if (float32_is_neg(f32)) {
12534 float_raise(float_flag_invalid, s);
12535 return float32_default_nan(s);
12536 } else if (float32_is_infinity(f32)) {
12537 return float32_zero;
12540 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
12541 * preserving the parity of the exponent. */
12543 f64_frac = ((uint64_t) f32_frac) << 29;
12545 f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
12547 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
12548 val = deposit32(0, 31, 1, f32_sign);
12549 val = deposit32(val, 23, 8, f32_exp);
12550 val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
12551 return make_float32(val);
12554 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
12556 float_status *s = fpstp;
12557 float64 f64 = float64_squash_input_denormal(input, s);
12558 uint64_t val = float64_val(f64);
12559 bool f64_sign = float64_is_neg(f64);
12560 int f64_exp = extract64(val, 52, 11);
12561 uint64_t f64_frac = extract64(val, 0, 52);
12563 if (float64_is_any_nan(f64)) {
12564 float64 nan = f64;
12565 if (float64_is_signaling_nan(f64, s)) {
12566 float_raise(float_flag_invalid, s);
12567 nan = float64_silence_nan(f64, s);
12569 if (s->default_nan_mode) {
12570 nan = float64_default_nan(s);
12572 return nan;
12573 } else if (float64_is_zero(f64)) {
12574 float_raise(float_flag_divbyzero, s);
12575 return float64_set_sign(float64_infinity, float64_is_neg(f64));
12576 } else if (float64_is_neg(f64)) {
12577 float_raise(float_flag_invalid, s);
12578 return float64_default_nan(s);
12579 } else if (float64_is_infinity(f64)) {
12580 return float64_zero;
12583 f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
12585 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
12586 val = deposit64(0, 61, 1, f64_sign);
12587 val = deposit64(val, 52, 11, f64_exp);
12588 val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
12589 return make_float64(val);
12592 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
12594 /* float_status *s = fpstp; */
12595 int input, estimate;
12597 if ((a & 0x80000000) == 0) {
12598 return 0xffffffff;
12601 input = extract32(a, 23, 9);
12602 estimate = recip_estimate(input);
12604 return deposit32(0, (32 - 9), 9, estimate);
12607 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
12609 int estimate;
12611 if ((a & 0xc0000000) == 0) {
12612 return 0xffffffff;
12615 estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
12617 return deposit32(0, 23, 9, estimate);
12620 /* VFPv4 fused multiply-accumulate */
12621 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
12623 float_status *fpst = fpstp;
12624 return float32_muladd(a, b, c, 0, fpst);
12627 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
12629 float_status *fpst = fpstp;
12630 return float64_muladd(a, b, c, 0, fpst);
12633 /* ARMv8 round to integral */
12634 float32 HELPER(rints_exact)(float32 x, void *fp_status)
12636 return float32_round_to_int(x, fp_status);
12639 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
12641 return float64_round_to_int(x, fp_status);
12644 float32 HELPER(rints)(float32 x, void *fp_status)
12646 int old_flags = get_float_exception_flags(fp_status), new_flags;
12647 float32 ret;
12649 ret = float32_round_to_int(x, fp_status);
12651 /* Suppress any inexact exceptions the conversion produced */
12652 if (!(old_flags & float_flag_inexact)) {
12653 new_flags = get_float_exception_flags(fp_status);
12654 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
12657 return ret;
12660 float64 HELPER(rintd)(float64 x, void *fp_status)
12662 int old_flags = get_float_exception_flags(fp_status), new_flags;
12663 float64 ret;
12665 ret = float64_round_to_int(x, fp_status);
12667 new_flags = get_float_exception_flags(fp_status);
12669 /* Suppress any inexact exceptions the conversion produced */
12670 if (!(old_flags & float_flag_inexact)) {
12671 new_flags = get_float_exception_flags(fp_status);
12672 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
12675 return ret;
12678 /* Convert ARM rounding mode to softfloat */
12679 int arm_rmode_to_sf(int rmode)
12681 switch (rmode) {
12682 case FPROUNDING_TIEAWAY:
12683 rmode = float_round_ties_away;
12684 break;
12685 case FPROUNDING_ODD:
12686 /* FIXME: add support for TIEAWAY and ODD */
12687 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
12688 rmode);
12689 /* fall through for now */
12690 case FPROUNDING_TIEEVEN:
12691 default:
12692 rmode = float_round_nearest_even;
12693 break;
12694 case FPROUNDING_POSINF:
12695 rmode = float_round_up;
12696 break;
12697 case FPROUNDING_NEGINF:
12698 rmode = float_round_down;
12699 break;
12700 case FPROUNDING_ZERO:
12701 rmode = float_round_to_zero;
12702 break;
12704 return rmode;
12707 /* CRC helpers.
12708 * The upper bytes of val (above the number specified by 'bytes') must have
12709 * been zeroed out by the caller.
12711 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12713 uint8_t buf[4];
12715 stl_le_p(buf, val);
12717 /* zlib crc32 converts the accumulator and output to one's complement. */
12718 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12721 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12723 uint8_t buf[4];
12725 stl_le_p(buf, val);
12727 /* Linux crc32c converts the output to one's complement. */
12728 return crc32c(acc, buf, bytes) ^ 0xffffffff;
12731 /* Return the exception level to which FP-disabled exceptions should
12732 * be taken, or 0 if FP is enabled.
12734 int fp_exception_el(CPUARMState *env, int cur_el)
12736 #ifndef CONFIG_USER_ONLY
12737 int fpen;
12739 /* CPACR and the CPTR registers don't exist before v6, so FP is
12740 * always accessible
12742 if (!arm_feature(env, ARM_FEATURE_V6)) {
12743 return 0;
12746 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12747 * 0, 2 : trap EL0 and EL1/PL1 accesses
12748 * 1 : trap only EL0 accesses
12749 * 3 : trap no accesses
12751 fpen = extract32(env->cp15.cpacr_el1, 20, 2);
12752 switch (fpen) {
12753 case 0:
12754 case 2:
12755 if (cur_el == 0 || cur_el == 1) {
12756 /* Trap to PL1, which might be EL1 or EL3 */
12757 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
12758 return 3;
12760 return 1;
12762 if (cur_el == 3 && !is_a64(env)) {
12763 /* Secure PL1 running at EL3 */
12764 return 3;
12766 break;
12767 case 1:
12768 if (cur_el == 0) {
12769 return 1;
12771 break;
12772 case 3:
12773 break;
12776 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
12777 * check because zero bits in the registers mean "don't trap".
12780 /* CPTR_EL2 : present in v7VE or v8 */
12781 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
12782 && !arm_is_secure_below_el3(env)) {
12783 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
12784 return 2;
12787 /* CPTR_EL3 : present in v8 */
12788 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
12789 /* Trap all FP ops to EL3 */
12790 return 3;
12792 #endif
12793 return 0;
12796 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
12797 target_ulong *cs_base, uint32_t *pflags)
12799 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
12800 int current_el = arm_current_el(env);
12801 int fp_el = fp_exception_el(env, current_el);
12802 uint32_t flags;
12804 if (is_a64(env)) {
12805 ARMCPU *cpu = arm_env_get_cpu(env);
12807 *pc = env->pc;
12808 flags = ARM_TBFLAG_AARCH64_STATE_MASK;
12809 /* Get control bits for tagged addresses */
12810 flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
12811 flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
12813 if (cpu_isar_feature(aa64_sve, cpu)) {
12814 int sve_el = sve_exception_el(env, current_el);
12815 uint32_t zcr_len;
12817 /* If SVE is disabled, but FP is enabled,
12818 * then the effective len is 0.
12820 if (sve_el != 0 && fp_el == 0) {
12821 zcr_len = 0;
12822 } else {
12823 zcr_len = sve_zcr_len_for_el(env, current_el);
12825 flags |= sve_el << ARM_TBFLAG_SVEEXC_EL_SHIFT;
12826 flags |= zcr_len << ARM_TBFLAG_ZCR_LEN_SHIFT;
12828 } else {
12829 *pc = env->regs[15];
12830 flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
12831 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
12832 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
12833 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
12834 | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
12835 if (!(access_secure_reg(env))) {
12836 flags |= ARM_TBFLAG_NS_MASK;
12838 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
12839 || arm_el_is_aa64(env, 1)) {
12840 flags |= ARM_TBFLAG_VFPEN_MASK;
12842 flags |= (extract32(env->cp15.c15_cpar, 0, 2)
12843 << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
12846 flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT);
12848 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12849 * states defined in the ARM ARM for software singlestep:
12850 * SS_ACTIVE PSTATE.SS State
12851 * 0 x Inactive (the TB flag for SS is always 0)
12852 * 1 0 Active-pending
12853 * 1 1 Active-not-pending
12855 if (arm_singlestep_active(env)) {
12856 flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
12857 if (is_a64(env)) {
12858 if (env->pstate & PSTATE_SS) {
12859 flags |= ARM_TBFLAG_PSTATE_SS_MASK;
12861 } else {
12862 if (env->uncached_cpsr & PSTATE_SS) {
12863 flags |= ARM_TBFLAG_PSTATE_SS_MASK;
12867 if (arm_cpu_data_is_big_endian(env)) {
12868 flags |= ARM_TBFLAG_BE_DATA_MASK;
12870 flags |= fp_el << ARM_TBFLAG_FPEXC_EL_SHIFT;
12872 if (arm_v7m_is_handler_mode(env)) {
12873 flags |= ARM_TBFLAG_HANDLER_MASK;
12876 /* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN is
12877 * suppressing them because the requested execution priority is less than 0.
12879 if (arm_feature(env, ARM_FEATURE_V8) &&
12880 arm_feature(env, ARM_FEATURE_M) &&
12881 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
12882 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
12883 flags |= ARM_TBFLAG_STACKCHECK_MASK;
12886 *pflags = flags;
12887 *cs_base = 0;
12890 #ifdef TARGET_AARCH64
12892 * The manual says that when SVE is enabled and VQ is widened the
12893 * implementation is allowed to zero the previously inaccessible
12894 * portion of the registers. The corollary to that is that when
12895 * SVE is enabled and VQ is narrowed we are also allowed to zero
12896 * the now inaccessible portion of the registers.
12898 * The intent of this is that no predicate bit beyond VQ is ever set.
12899 * Which means that some operations on predicate registers themselves
12900 * may operate on full uint64_t or even unrolled across the maximum
12901 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
12902 * may well be cheaper than conditionals to restrict the operation
12903 * to the relevant portion of a uint16_t[16].
12905 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12907 int i, j;
12908 uint64_t pmask;
12910 assert(vq >= 1 && vq <= ARM_MAX_VQ);
12911 assert(vq <= arm_env_get_cpu(env)->sve_max_vq);
12913 /* Zap the high bits of the zregs. */
12914 for (i = 0; i < 32; i++) {
12915 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12918 /* Zap the high bits of the pregs and ffr. */
12919 pmask = 0;
12920 if (vq & 3) {
12921 pmask = ~(-1ULL << (16 * (vq & 3)));
12923 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12924 for (i = 0; i < 17; ++i) {
12925 env->vfp.pregs[i].p[j] &= pmask;
12927 pmask = 0;
12932 * Notice a change in SVE vector size when changing EL.
12934 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12935 int new_el, bool el0_a64)
12937 ARMCPU *cpu = arm_env_get_cpu(env);
12938 int old_len, new_len;
12939 bool old_a64, new_a64;
12941 /* Nothing to do if no SVE. */
12942 if (!cpu_isar_feature(aa64_sve, cpu)) {
12943 return;
12946 /* Nothing to do if FP is disabled in either EL. */
12947 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12948 return;
12952 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12953 * at ELx, or not available because the EL is in AArch32 state, then
12954 * for all purposes other than a direct read, the ZCR_ELx.LEN field
12955 * has an effective value of 0".
12957 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12958 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12959 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
12960 * we already have the correct register contents when encountering the
12961 * vq0->vq0 transition between EL0->EL1.
12963 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12964 old_len = (old_a64 && !sve_exception_el(env, old_el)
12965 ? sve_zcr_len_for_el(env, old_el) : 0);
12966 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12967 new_len = (new_a64 && !sve_exception_el(env, new_el)
12968 ? sve_zcr_len_for_el(env, new_el) : 0);
12970 /* When changing vector length, clear inaccessible state. */
12971 if (new_len < old_len) {
12972 aarch64_sve_narrow_vq(env, new_len + 1);
12975 #endif