target/arm/ptw: Set attributes correctly for MMU disabled data accesses
[qemu/armbru.git] / util / cutils.c
blob25373198adc5f0ea837cdb9f32979585f74a1c04
1 /*
2 * Simple C functions to supplement the C library
4 * Copyright (c) 2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "qemu/host-utils.h"
27 #include <math.h>
29 #ifdef __FreeBSD__
30 #include <sys/sysctl.h>
31 #include <sys/user.h>
32 #endif
34 #ifdef __NetBSD__
35 #include <sys/sysctl.h>
36 #endif
38 #ifdef __HAIKU__
39 #include <kernel/image.h>
40 #endif
42 #ifdef __APPLE__
43 #include <mach-o/dyld.h>
44 #endif
46 #ifdef G_OS_WIN32
47 #include <pathcch.h>
48 #include <wchar.h>
49 #endif
51 #include "qemu/ctype.h"
52 #include "qemu/cutils.h"
53 #include "qemu/error-report.h"
55 void strpadcpy(char *buf, int buf_size, const char *str, char pad)
57 int len = qemu_strnlen(str, buf_size);
58 memcpy(buf, str, len);
59 memset(buf + len, pad, buf_size - len);
62 void pstrcpy(char *buf, int buf_size, const char *str)
64 int c;
65 char *q = buf;
67 if (buf_size <= 0)
68 return;
70 for(;;) {
71 c = *str++;
72 if (c == 0 || q >= buf + buf_size - 1)
73 break;
74 *q++ = c;
76 *q = '\0';
79 /* strcat and truncate. */
80 char *pstrcat(char *buf, int buf_size, const char *s)
82 int len;
83 len = strlen(buf);
84 if (len < buf_size)
85 pstrcpy(buf + len, buf_size - len, s);
86 return buf;
89 int strstart(const char *str, const char *val, const char **ptr)
91 const char *p, *q;
92 p = str;
93 q = val;
94 while (*q != '\0') {
95 if (*p != *q)
96 return 0;
97 p++;
98 q++;
100 if (ptr)
101 *ptr = p;
102 return 1;
105 int stristart(const char *str, const char *val, const char **ptr)
107 const char *p, *q;
108 p = str;
109 q = val;
110 while (*q != '\0') {
111 if (qemu_toupper(*p) != qemu_toupper(*q))
112 return 0;
113 p++;
114 q++;
116 if (ptr)
117 *ptr = p;
118 return 1;
121 /* XXX: use host strnlen if available ? */
122 int qemu_strnlen(const char *s, int max_len)
124 int i;
126 for(i = 0; i < max_len; i++) {
127 if (s[i] == '\0') {
128 break;
131 return i;
134 char *qemu_strsep(char **input, const char *delim)
136 char *result = *input;
137 if (result != NULL) {
138 char *p;
140 for (p = result; *p != '\0'; p++) {
141 if (strchr(delim, *p)) {
142 break;
145 if (*p == '\0') {
146 *input = NULL;
147 } else {
148 *p = '\0';
149 *input = p + 1;
152 return result;
155 time_t mktimegm(struct tm *tm)
157 time_t t;
158 int y = tm->tm_year + 1900, m = tm->tm_mon + 1, d = tm->tm_mday;
159 if (m < 3) {
160 m += 12;
161 y--;
163 t = 86400ULL * (d + (153 * m - 457) / 5 + 365 * y + y / 4 - y / 100 +
164 y / 400 - 719469);
165 t += 3600 * tm->tm_hour + 60 * tm->tm_min + tm->tm_sec;
166 return t;
169 static int64_t suffix_mul(char suffix, int64_t unit)
171 switch (qemu_toupper(suffix)) {
172 case 'B':
173 return 1;
174 case 'K':
175 return unit;
176 case 'M':
177 return unit * unit;
178 case 'G':
179 return unit * unit * unit;
180 case 'T':
181 return unit * unit * unit * unit;
182 case 'P':
183 return unit * unit * unit * unit * unit;
184 case 'E':
185 return unit * unit * unit * unit * unit * unit;
187 return -1;
191 * Convert size string to bytes.
193 * The size parsing supports the following syntaxes
194 * - 12345 - decimal, scale determined by @default_suffix and @unit
195 * - 12345{bBkKmMgGtTpPeE} - decimal, scale determined by suffix and @unit
196 * - 12345.678{kKmMgGtTpPeE} - decimal, scale determined by suffix, and
197 * fractional portion is truncated to byte, either side of . may be empty
198 * - 0x7fEE - hexadecimal, unit determined by @default_suffix
200 * The following are intentionally not supported
201 * - hex with scaling suffix, such as 0x20M or 0x1p3 (both fail with
202 * -EINVAL), while 0x1b is 27 (not 1 with byte scale)
203 * - octal, such as 08 (parsed as decimal instead)
204 * - binary, such as 0b1000 (parsed as 0b with trailing garbage "1000")
205 * - fractional hex, such as 0x1.8 (parsed as 0 with trailing garbage "x1.8")
206 * - negative values, including -0 (fail with -ERANGE)
207 * - floating point exponents, such as 1e3 (parsed as 1e with trailing
208 * garbage "3") or 0x1p3 (rejected as hex with scaling suffix)
209 * - non-finite values, such as inf or NaN (fail with -EINVAL)
211 * The end pointer will be returned in *end, if not NULL. If there is
212 * no fraction, the input can be decimal or hexadecimal; if there is a
213 * non-zero fraction, then the input must be decimal and there must be
214 * a suffix (possibly by @default_suffix) larger than Byte, and the
215 * fractional portion may suffer from precision loss or rounding. The
216 * input must be positive.
218 * Return -ERANGE on overflow (with *@end advanced), and -EINVAL on
219 * other error (with *@end at @nptr). Unlike strtoull, *@result is
220 * set to 0 on all errors, as returning UINT64_MAX on overflow is less
221 * likely to be usable as a size.
223 static int do_strtosz(const char *nptr, const char **end,
224 const char default_suffix, int64_t unit,
225 uint64_t *result)
227 int retval;
228 const char *endptr;
229 unsigned char c;
230 uint64_t val = 0, valf = 0;
231 int64_t mul;
233 /* Parse integral portion as decimal. */
234 retval = parse_uint(nptr, &endptr, 10, &val);
235 if (retval == -ERANGE || !nptr) {
236 goto out;
238 if (retval == 0 && val == 0 && (*endptr == 'x' || *endptr == 'X')) {
239 /* Input looks like hex; reparse, and insist on no fraction or suffix. */
240 retval = qemu_strtou64(nptr, &endptr, 16, &val);
241 if (retval) {
242 goto out;
244 if (*endptr == '.' || suffix_mul(*endptr, unit) > 0) {
245 endptr = nptr;
246 retval = -EINVAL;
247 goto out;
249 } else if (*endptr == '.' || (endptr == nptr && strchr(nptr, '.'))) {
251 * Input looks like a fraction. Make sure even 1.k works
252 * without fractional digits. strtod tries to treat 'e' as an
253 * exponent, but we want to treat it as a scaling suffix;
254 * doing this requires modifying a copy of the fraction.
256 double fraction = 0.0;
258 if (retval == 0 && *endptr == '.' && !isdigit(endptr[1])) {
259 /* If we got here, we parsed at least one digit already. */
260 endptr++;
261 } else {
262 char *e;
263 const char *tail;
264 g_autofree char *copy = g_strdup(endptr);
266 e = strchr(copy, 'e');
267 if (e) {
268 *e = '\0';
270 e = strchr(copy, 'E');
271 if (e) {
272 *e = '\0';
275 * If this is a floating point, we are guaranteed that '.'
276 * appears before any possible digits in copy. If it is
277 * not a floating point, strtod will fail. Either way,
278 * there is now no exponent in copy, so if it parses, we
279 * know 0.0 <= abs(result) <= 1.0 (after rounding), and
280 * ERANGE is only possible on underflow which is okay.
282 retval = qemu_strtod_finite(copy, &tail, &fraction);
283 endptr += tail - copy;
284 if (signbit(fraction)) {
285 retval = -ERANGE;
286 goto out;
290 /* Extract into a 64-bit fixed-point fraction. */
291 if (fraction == 1.0) {
292 if (val == UINT64_MAX) {
293 retval = -ERANGE;
294 goto out;
296 val++;
297 } else if (retval == -ERANGE) {
298 /* See comments above about underflow */
299 valf = 1;
300 retval = 0;
301 } else {
302 /* We want non-zero valf for any non-zero fraction */
303 valf = (uint64_t)(fraction * 0x1p64);
304 if (valf == 0 && fraction > 0.0) {
305 valf = 1;
309 if (retval) {
310 goto out;
312 c = *endptr;
313 mul = suffix_mul(c, unit);
314 if (mul > 0) {
315 endptr++;
316 } else {
317 mul = suffix_mul(default_suffix, unit);
318 assert(mul > 0);
320 if (mul == 1) {
321 /* When a fraction is present, a scale is required. */
322 if (valf != 0) {
323 endptr = nptr;
324 retval = -EINVAL;
325 goto out;
327 } else {
328 uint64_t valh, tmp;
330 /* Compute exact result: 64.64 x 64.0 -> 128.64 fixed point */
331 mulu64(&val, &valh, val, mul);
332 mulu64(&valf, &tmp, valf, mul);
333 val += tmp;
334 valh += val < tmp;
336 /* Round 0.5 upward. */
337 tmp = valf >> 63;
338 val += tmp;
339 valh += val < tmp;
341 /* Report overflow. */
342 if (valh != 0) {
343 retval = -ERANGE;
344 goto out;
348 retval = 0;
350 out:
351 if (end) {
352 *end = endptr;
353 } else if (nptr && *endptr) {
354 retval = -EINVAL;
356 if (retval == 0) {
357 *result = val;
358 } else {
359 *result = 0;
360 if (end && retval == -EINVAL) {
361 *end = nptr;
365 return retval;
368 int qemu_strtosz(const char *nptr, const char **end, uint64_t *result)
370 return do_strtosz(nptr, end, 'B', 1024, result);
373 int qemu_strtosz_MiB(const char *nptr, const char **end, uint64_t *result)
375 return do_strtosz(nptr, end, 'M', 1024, result);
378 int qemu_strtosz_metric(const char *nptr, const char **end, uint64_t *result)
380 return do_strtosz(nptr, end, 'B', 1000, result);
384 * Helper function for error checking after strtol() and the like
386 static int check_strtox_error(const char *nptr, char *ep,
387 const char **endptr, bool check_zero,
388 int libc_errno)
390 assert(ep >= nptr);
392 /* Windows has a bug in that it fails to parse 0 from "0x" in base 16 */
393 if (check_zero && ep == nptr && libc_errno == 0) {
394 char *tmp;
396 errno = 0;
397 if (strtol(nptr, &tmp, 10) == 0 && errno == 0 &&
398 (*tmp == 'x' || *tmp == 'X')) {
399 ep = tmp;
403 if (endptr) {
404 *endptr = ep;
407 /* Turn "no conversion" into an error */
408 if (libc_errno == 0 && ep == nptr) {
409 return -EINVAL;
412 /* Fail when we're expected to consume the string, but didn't */
413 if (!endptr && *ep) {
414 return -EINVAL;
417 return -libc_errno;
421 * Convert string @nptr to an integer, and store it in @result.
423 * This is a wrapper around strtol() that is harder to misuse.
424 * Semantics of @nptr, @endptr, @base match strtol() with differences
425 * noted below.
427 * @nptr may be null, and no conversion is performed then.
429 * If no conversion is performed, store @nptr in *@endptr, 0 in
430 * @result, and return -EINVAL.
432 * If @endptr is null, and the string isn't fully converted, return
433 * -EINVAL with @result set to the parsed value. This is the case
434 * when the pointer that would be stored in a non-null @endptr points
435 * to a character other than '\0'.
437 * If the conversion overflows @result, store INT_MAX in @result,
438 * and return -ERANGE.
440 * If the conversion underflows @result, store INT_MIN in @result,
441 * and return -ERANGE.
443 * Else store the converted value in @result, and return zero.
445 * This matches the behavior of strtol() on 32-bit platforms, even on
446 * platforms where long is 64-bits.
448 int qemu_strtoi(const char *nptr, const char **endptr, int base,
449 int *result)
451 char *ep;
452 long long lresult;
454 assert((unsigned) base <= 36 && base != 1);
455 if (!nptr) {
456 *result = 0;
457 if (endptr) {
458 *endptr = nptr;
460 return -EINVAL;
463 errno = 0;
464 lresult = strtoll(nptr, &ep, base);
465 if (lresult < INT_MIN) {
466 *result = INT_MIN;
467 errno = ERANGE;
468 } else if (lresult > INT_MAX) {
469 *result = INT_MAX;
470 errno = ERANGE;
471 } else {
472 *result = lresult;
474 return check_strtox_error(nptr, ep, endptr, lresult == 0, errno);
478 * Convert string @nptr to an unsigned integer, and store it in @result.
480 * This is a wrapper around strtoul() that is harder to misuse.
481 * Semantics of @nptr, @endptr, @base match strtoul() with differences
482 * noted below.
484 * @nptr may be null, and no conversion is performed then.
486 * If no conversion is performed, store @nptr in *@endptr, 0 in
487 * @result, and return -EINVAL.
489 * If @endptr is null, and the string isn't fully converted, return
490 * -EINVAL with @result set to the parsed value. This is the case
491 * when the pointer that would be stored in a non-null @endptr points
492 * to a character other than '\0'.
494 * If the conversion overflows @result, store UINT_MAX in @result,
495 * and return -ERANGE.
497 * Else store the converted value in @result, and return zero.
499 * Note that a number with a leading minus sign gets converted without
500 * the minus sign, checked for overflow (see above), then negated (in
501 * @result's type). This matches the behavior of strtoul() on 32-bit
502 * platforms, even on platforms where long is 64-bits.
504 int qemu_strtoui(const char *nptr, const char **endptr, int base,
505 unsigned int *result)
507 char *ep;
508 unsigned long long lresult;
509 bool neg;
511 assert((unsigned) base <= 36 && base != 1);
512 if (!nptr) {
513 *result = 0;
514 if (endptr) {
515 *endptr = nptr;
517 return -EINVAL;
520 errno = 0;
521 lresult = strtoull(nptr, &ep, base);
523 /* Windows returns 1 for negative out-of-range values. */
524 if (errno == ERANGE) {
525 *result = -1;
526 } else {
528 * Note that platforms with 32-bit strtoul only accept input
529 * in the range [-4294967295, 4294967295]; but we used 64-bit
530 * strtoull which wraps -18446744073709551615 to 1 instead of
531 * declaring overflow. So we must check if '-' was parsed,
532 * and if so, undo the negation before doing our bounds check.
534 neg = memchr(nptr, '-', ep - nptr) != NULL;
535 if (neg) {
536 lresult = -lresult;
538 if (lresult > UINT_MAX) {
539 *result = UINT_MAX;
540 errno = ERANGE;
541 } else {
542 *result = neg ? -lresult : lresult;
545 return check_strtox_error(nptr, ep, endptr, lresult == 0, errno);
549 * Convert string @nptr to a long integer, and store it in @result.
551 * This is a wrapper around strtol() that is harder to misuse.
552 * Semantics of @nptr, @endptr, @base match strtol() with differences
553 * noted below.
555 * @nptr may be null, and no conversion is performed then.
557 * If no conversion is performed, store @nptr in *@endptr, 0 in
558 * @result, and return -EINVAL.
560 * If @endptr is null, and the string isn't fully converted, return
561 * -EINVAL with @result set to the parsed value. This is the case
562 * when the pointer that would be stored in a non-null @endptr points
563 * to a character other than '\0'.
565 * If the conversion overflows @result, store LONG_MAX in @result,
566 * and return -ERANGE.
568 * If the conversion underflows @result, store LONG_MIN in @result,
569 * and return -ERANGE.
571 * Else store the converted value in @result, and return zero.
573 int qemu_strtol(const char *nptr, const char **endptr, int base,
574 long *result)
576 char *ep;
578 assert((unsigned) base <= 36 && base != 1);
579 if (!nptr) {
580 *result = 0;
581 if (endptr) {
582 *endptr = nptr;
584 return -EINVAL;
587 errno = 0;
588 *result = strtol(nptr, &ep, base);
589 return check_strtox_error(nptr, ep, endptr, *result == 0, errno);
593 * Convert string @nptr to an unsigned long, and store it in @result.
595 * This is a wrapper around strtoul() that is harder to misuse.
596 * Semantics of @nptr, @endptr, @base match strtoul() with differences
597 * noted below.
599 * @nptr may be null, and no conversion is performed then.
601 * If no conversion is performed, store @nptr in *@endptr, 0 in
602 * @result, and return -EINVAL.
604 * If @endptr is null, and the string isn't fully converted, return
605 * -EINVAL with @result set to the parsed value. This is the case
606 * when the pointer that would be stored in a non-null @endptr points
607 * to a character other than '\0'.
609 * If the conversion overflows @result, store ULONG_MAX in @result,
610 * and return -ERANGE.
612 * Else store the converted value in @result, and return zero.
614 * Note that a number with a leading minus sign gets converted without
615 * the minus sign, checked for overflow (see above), then negated (in
616 * @result's type). This is exactly how strtoul() works.
618 int qemu_strtoul(const char *nptr, const char **endptr, int base,
619 unsigned long *result)
621 char *ep;
623 assert((unsigned) base <= 36 && base != 1);
624 if (!nptr) {
625 *result = 0;
626 if (endptr) {
627 *endptr = nptr;
629 return -EINVAL;
632 errno = 0;
633 *result = strtoul(nptr, &ep, base);
634 /* Windows returns 1 for negative out-of-range values. */
635 if (errno == ERANGE) {
636 *result = -1;
638 return check_strtox_error(nptr, ep, endptr, *result == 0, errno);
642 * Convert string @nptr to an int64_t.
644 * Works like qemu_strtol(), except it stores INT64_MAX on overflow,
645 * and INT64_MIN on underflow.
647 int qemu_strtoi64(const char *nptr, const char **endptr, int base,
648 int64_t *result)
650 char *ep;
652 assert((unsigned) base <= 36 && base != 1);
653 if (!nptr) {
654 *result = 0;
655 if (endptr) {
656 *endptr = nptr;
658 return -EINVAL;
661 /* This assumes int64_t is long long TODO relax */
662 QEMU_BUILD_BUG_ON(sizeof(int64_t) != sizeof(long long));
663 errno = 0;
664 *result = strtoll(nptr, &ep, base);
665 return check_strtox_error(nptr, ep, endptr, *result == 0, errno);
669 * Convert string @nptr to an uint64_t.
671 * Works like qemu_strtoul(), except it stores UINT64_MAX on overflow.
672 * (If you want to prohibit negative numbers that wrap around to
673 * positive, use parse_uint()).
675 int qemu_strtou64(const char *nptr, const char **endptr, int base,
676 uint64_t *result)
678 char *ep;
680 assert((unsigned) base <= 36 && base != 1);
681 if (!nptr) {
682 *result = 0;
683 if (endptr) {
684 *endptr = nptr;
686 return -EINVAL;
689 /* This assumes uint64_t is unsigned long long TODO relax */
690 QEMU_BUILD_BUG_ON(sizeof(uint64_t) != sizeof(unsigned long long));
691 errno = 0;
692 *result = strtoull(nptr, &ep, base);
693 /* Windows returns 1 for negative out-of-range values. */
694 if (errno == ERANGE) {
695 *result = -1;
697 return check_strtox_error(nptr, ep, endptr, *result == 0, errno);
701 * Convert string @nptr to a double.
703 * This is a wrapper around strtod() that is harder to misuse.
704 * Semantics of @nptr and @endptr match strtod() with differences
705 * noted below.
707 * @nptr may be null, and no conversion is performed then.
709 * If no conversion is performed, store @nptr in *@endptr, +0.0 in
710 * @result, and return -EINVAL.
712 * If @endptr is null, and the string isn't fully converted, return
713 * -EINVAL with @result set to the parsed value. This is the case
714 * when the pointer that would be stored in a non-null @endptr points
715 * to a character other than '\0'.
717 * If the conversion overflows, store +/-HUGE_VAL in @result, depending
718 * on the sign, and return -ERANGE.
720 * If the conversion underflows, store +/-0.0 in @result, depending on the
721 * sign, and return -ERANGE.
723 * Else store the converted value in @result, and return zero.
725 int qemu_strtod(const char *nptr, const char **endptr, double *result)
727 char *ep;
729 if (!nptr) {
730 *result = 0.0;
731 if (endptr) {
732 *endptr = nptr;
734 return -EINVAL;
737 errno = 0;
738 *result = strtod(nptr, &ep);
739 return check_strtox_error(nptr, ep, endptr, false, errno);
743 * Convert string @nptr to a finite double.
745 * Works like qemu_strtod(), except that "NaN", "inf", and strings
746 * that cause ERANGE overflow errors are rejected with -EINVAL as if
747 * no conversion is performed, storing 0.0 into @result regardless of
748 * any sign. -ERANGE failures for underflow still preserve the parsed
749 * sign.
751 int qemu_strtod_finite(const char *nptr, const char **endptr, double *result)
753 const char *tmp;
754 int ret;
756 ret = qemu_strtod(nptr, &tmp, result);
757 if (!isfinite(*result)) {
758 if (endptr) {
759 *endptr = nptr;
761 *result = 0.0;
762 ret = -EINVAL;
763 } else if (endptr) {
764 *endptr = tmp;
765 } else if (*tmp) {
766 ret = -EINVAL;
768 return ret;
772 * Searches for the first occurrence of 'c' in 's', and returns a pointer
773 * to the trailing null byte if none was found.
775 #ifndef HAVE_STRCHRNUL
776 const char *qemu_strchrnul(const char *s, int c)
778 const char *e = strchr(s, c);
779 if (!e) {
780 e = s + strlen(s);
782 return e;
784 #endif
787 * parse_uint:
789 * @s: String to parse
790 * @endptr: Destination for pointer to first character not consumed
791 * @base: integer base, between 2 and 36 inclusive, or 0
792 * @value: Destination for parsed integer value
794 * Parse unsigned integer
796 * Parsed syntax is like strtoull()'s: arbitrary whitespace, a single optional
797 * '+' or '-', an optional "0x" if @base is 0 or 16, one or more digits.
799 * If @s is null, or @s doesn't start with an integer in the syntax
800 * above, set *@value to 0, *@endptr to @s, and return -EINVAL.
802 * Set *@endptr to point right beyond the parsed integer (even if the integer
803 * overflows or is negative, all digits will be parsed and *@endptr will
804 * point right beyond them). If @endptr is %NULL, any trailing character
805 * instead causes a result of -EINVAL with *@value of 0.
807 * If the integer is negative, set *@value to 0, and return -ERANGE.
808 * (If you want to allow negative numbers that wrap around within
809 * bounds, use qemu_strtou64()).
811 * If the integer overflows unsigned long long, set *@value to
812 * ULLONG_MAX, and return -ERANGE.
814 * Else, set *@value to the parsed integer, and return 0.
816 int parse_uint(const char *s, const char **endptr, int base, uint64_t *value)
818 int r = 0;
819 char *endp = (char *)s;
820 unsigned long long val = 0;
822 assert((unsigned) base <= 36 && base != 1);
823 if (!s) {
824 r = -EINVAL;
825 goto out;
828 errno = 0;
829 val = strtoull(s, &endp, base);
830 if (errno) {
831 r = -errno;
832 goto out;
835 if (endp == s) {
836 r = -EINVAL;
837 goto out;
840 /* make sure we reject negative numbers: */
841 while (qemu_isspace(*s)) {
842 s++;
844 if (*s == '-') {
845 val = 0;
846 r = -ERANGE;
847 goto out;
850 out:
851 *value = val;
852 if (endptr) {
853 *endptr = endp;
854 } else if (s && *endp) {
855 r = -EINVAL;
856 *value = 0;
858 return r;
862 * parse_uint_full:
864 * @s: String to parse
865 * @base: integer base, between 2 and 36 inclusive, or 0
866 * @value: Destination for parsed integer value
868 * Parse unsigned integer from entire string, rejecting any trailing slop.
870 * Shorthand for parse_uint(s, NULL, base, value).
872 int parse_uint_full(const char *s, int base, uint64_t *value)
874 return parse_uint(s, NULL, base, value);
877 int qemu_parse_fd(const char *param)
879 long fd;
880 char *endptr;
882 errno = 0;
883 fd = strtol(param, &endptr, 10);
884 if (param == endptr /* no conversion performed */ ||
885 errno != 0 /* not representable as long; possibly others */ ||
886 *endptr != '\0' /* final string not empty */ ||
887 fd < 0 /* invalid as file descriptor */ ||
888 fd > INT_MAX /* not representable as int */) {
889 return -1;
891 return fd;
895 * Implementation of ULEB128 (http://en.wikipedia.org/wiki/LEB128)
896 * Input is limited to 14-bit numbers
898 int uleb128_encode_small(uint8_t *out, uint32_t n)
900 g_assert(n <= 0x3fff);
901 if (n < 0x80) {
902 *out = n;
903 return 1;
904 } else {
905 *out++ = (n & 0x7f) | 0x80;
906 *out = n >> 7;
907 return 2;
911 int uleb128_decode_small(const uint8_t *in, uint32_t *n)
913 if (!(*in & 0x80)) {
914 *n = *in;
915 return 1;
916 } else {
917 *n = *in++ & 0x7f;
918 /* we exceed 14 bit number */
919 if (*in & 0x80) {
920 return -1;
922 *n |= *in << 7;
923 return 2;
928 * helper to parse debug environment variables
930 int parse_debug_env(const char *name, int max, int initial)
932 char *debug_env = getenv(name);
933 char *inv = NULL;
934 long debug;
936 if (!debug_env) {
937 return initial;
939 errno = 0;
940 debug = strtol(debug_env, &inv, 10);
941 if (inv == debug_env) {
942 return initial;
944 if (debug < 0 || debug > max || errno != 0) {
945 warn_report("%s not in [0, %d]", name, max);
946 return initial;
948 return debug;
951 const char *si_prefix(unsigned int exp10)
953 static const char *prefixes[] = {
954 "a", "f", "p", "n", "u", "m", "", "K", "M", "G", "T", "P", "E"
957 exp10 += 18;
958 assert(exp10 % 3 == 0 && exp10 / 3 < ARRAY_SIZE(prefixes));
959 return prefixes[exp10 / 3];
962 const char *iec_binary_prefix(unsigned int exp2)
964 static const char *prefixes[] = { "", "Ki", "Mi", "Gi", "Ti", "Pi", "Ei" };
966 assert(exp2 % 10 == 0 && exp2 / 10 < ARRAY_SIZE(prefixes));
967 return prefixes[exp2 / 10];
971 * Return human readable string for size @val.
972 * @val can be anything that uint64_t allows (no more than "16 EiB").
973 * Use IEC binary units like KiB, MiB, and so forth.
974 * Caller is responsible for passing it to g_free().
976 char *size_to_str(uint64_t val)
978 uint64_t div;
979 int i;
982 * The exponent (returned in i) minus one gives us
983 * floor(log2(val * 1024 / 1000). The correction makes us
984 * switch to the higher power when the integer part is >= 1000.
985 * (see e41b509d68afb1f for more info)
987 frexp(val / (1000.0 / 1024.0), &i);
988 i = (i - 1) / 10 * 10;
989 div = 1ULL << i;
991 return g_strdup_printf("%0.3g %sB", (double)val / div, iec_binary_prefix(i));
994 char *freq_to_str(uint64_t freq_hz)
996 double freq = freq_hz;
997 size_t exp10 = 0;
999 while (freq >= 1000.0) {
1000 freq /= 1000.0;
1001 exp10 += 3;
1004 return g_strdup_printf("%0.3g %sHz", freq, si_prefix(exp10));
1007 int qemu_pstrcmp0(const char **str1, const char **str2)
1009 return g_strcmp0(*str1, *str2);
1012 static inline bool starts_with_prefix(const char *dir)
1014 size_t prefix_len = strlen(CONFIG_PREFIX);
1015 return !memcmp(dir, CONFIG_PREFIX, prefix_len) &&
1016 (!dir[prefix_len] || G_IS_DIR_SEPARATOR(dir[prefix_len]));
1019 /* Return the next path component in dir, and store its length in *p_len. */
1020 static inline const char *next_component(const char *dir, int *p_len)
1022 int len;
1023 while ((*dir && G_IS_DIR_SEPARATOR(*dir)) ||
1024 (*dir == '.' && (G_IS_DIR_SEPARATOR(dir[1]) || dir[1] == '\0'))) {
1025 dir++;
1027 len = 0;
1028 while (dir[len] && !G_IS_DIR_SEPARATOR(dir[len])) {
1029 len++;
1031 *p_len = len;
1032 return dir;
1035 static const char *exec_dir;
1037 void qemu_init_exec_dir(const char *argv0)
1039 #ifdef G_OS_WIN32
1040 char *p;
1041 char buf[MAX_PATH];
1042 DWORD len;
1044 if (exec_dir) {
1045 return;
1048 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
1049 if (len == 0) {
1050 return;
1053 buf[len] = 0;
1054 p = buf + len - 1;
1055 while (p != buf && *p != '\\') {
1056 p--;
1058 *p = 0;
1059 if (access(buf, R_OK) == 0) {
1060 exec_dir = g_strdup(buf);
1061 } else {
1062 exec_dir = CONFIG_BINDIR;
1064 #else
1065 char *p = NULL;
1066 char buf[PATH_MAX];
1068 if (exec_dir) {
1069 return;
1072 #if defined(__linux__)
1074 int len;
1075 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
1076 if (len > 0) {
1077 buf[len] = 0;
1078 p = buf;
1081 #elif defined(__FreeBSD__) \
1082 || (defined(__NetBSD__) && defined(KERN_PROC_PATHNAME))
1084 #if defined(__FreeBSD__)
1085 static int mib[4] = {CTL_KERN, KERN_PROC, KERN_PROC_PATHNAME, -1};
1086 #else
1087 static int mib[4] = {CTL_KERN, KERN_PROC_ARGS, -1, KERN_PROC_PATHNAME};
1088 #endif
1089 size_t len = sizeof(buf) - 1;
1091 *buf = '\0';
1092 if (!sysctl(mib, ARRAY_SIZE(mib), buf, &len, NULL, 0) &&
1093 *buf) {
1094 buf[sizeof(buf) - 1] = '\0';
1095 p = buf;
1098 #elif defined(__APPLE__)
1100 char fpath[PATH_MAX];
1101 uint32_t len = sizeof(fpath);
1102 if (_NSGetExecutablePath(fpath, &len) == 0) {
1103 p = realpath(fpath, buf);
1104 if (!p) {
1105 return;
1109 #elif defined(__HAIKU__)
1111 image_info ii;
1112 int32_t c = 0;
1114 *buf = '\0';
1115 while (get_next_image_info(0, &c, &ii) == B_OK) {
1116 if (ii.type == B_APP_IMAGE) {
1117 strncpy(buf, ii.name, sizeof(buf));
1118 buf[sizeof(buf) - 1] = 0;
1119 p = buf;
1120 break;
1124 #endif
1125 /* If we don't have any way of figuring out the actual executable
1126 location then try argv[0]. */
1127 if (!p && argv0) {
1128 p = realpath(argv0, buf);
1130 if (p) {
1131 exec_dir = g_path_get_dirname(p);
1132 } else {
1133 exec_dir = CONFIG_BINDIR;
1135 #endif
1138 const char *qemu_get_exec_dir(void)
1140 return exec_dir;
1143 char *get_relocated_path(const char *dir)
1145 size_t prefix_len = strlen(CONFIG_PREFIX);
1146 const char *bindir = CONFIG_BINDIR;
1147 const char *exec_dir = qemu_get_exec_dir();
1148 GString *result;
1149 int len_dir, len_bindir;
1151 /* Fail if qemu_init_exec_dir was not called. */
1152 assert(exec_dir[0]);
1154 result = g_string_new(exec_dir);
1155 g_string_append(result, "/qemu-bundle");
1156 if (access(result->str, R_OK) == 0) {
1157 #ifdef G_OS_WIN32
1158 size_t size = mbsrtowcs(NULL, &dir, 0, &(mbstate_t){0}) + 1;
1159 PWSTR wdir = g_new(WCHAR, size);
1160 mbsrtowcs(wdir, &dir, size, &(mbstate_t){0});
1162 PCWSTR wdir_skipped_root;
1163 PathCchSkipRoot(wdir, &wdir_skipped_root);
1165 size = wcsrtombs(NULL, &wdir_skipped_root, 0, &(mbstate_t){0});
1166 char *cursor = result->str + result->len;
1167 g_string_set_size(result, result->len + size);
1168 wcsrtombs(cursor, &wdir_skipped_root, size + 1, &(mbstate_t){0});
1169 g_free(wdir);
1170 #else
1171 g_string_append(result, dir);
1172 #endif
1173 } else if (!starts_with_prefix(dir) || !starts_with_prefix(bindir)) {
1174 g_string_assign(result, dir);
1175 } else {
1176 g_string_assign(result, exec_dir);
1178 /* Advance over common components. */
1179 len_dir = len_bindir = prefix_len;
1180 do {
1181 dir += len_dir;
1182 bindir += len_bindir;
1183 dir = next_component(dir, &len_dir);
1184 bindir = next_component(bindir, &len_bindir);
1185 } while (len_dir && len_dir == len_bindir && !memcmp(dir, bindir, len_dir));
1187 /* Ascend from bindir to the common prefix with dir. */
1188 while (len_bindir) {
1189 bindir += len_bindir;
1190 g_string_append(result, "/..");
1191 bindir = next_component(bindir, &len_bindir);
1194 if (*dir) {
1195 assert(G_IS_DIR_SEPARATOR(dir[-1]));
1196 g_string_append(result, dir - 1);
1200 return g_string_free(result, false);