2 * i.MX Fast Ethernet Controller emulation.
4 * Copyright (c) 2013 Jean-Christophe Dubois. <jcd@tribudubois.net>
6 * Based on Coldfire Fast Ethernet Controller emulation.
8 * Copyright (c) 2007 CodeSourcery.
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
26 #include "hw/net/imx_fec.h"
27 #include "hw/qdev-properties.h"
28 #include "migration/vmstate.h"
29 #include "sysemu/dma.h"
31 #include "qemu/module.h"
32 #include "net/checksum.h"
39 #define IMX_MAX_DESC 1024
41 static const char *imx_default_reg_name(IMXFECState
*s
, uint32_t index
)
44 sprintf(tmp
, "index %d", index
);
48 static const char *imx_fec_reg_name(IMXFECState
*s
, uint32_t index
)
55 case ENET_MIIGSK_CFGR
:
60 return imx_default_reg_name(s
, index
);
64 static const char *imx_enet_reg_name(IMXFECState
*s
, uint32_t index
)
122 return imx_default_reg_name(s
, index
);
126 static const char *imx_eth_reg_name(IMXFECState
*s
, uint32_t index
)
173 return imx_fec_reg_name(s
, index
);
175 return imx_enet_reg_name(s
, index
);
181 * Versions of this device with more than one TX descriptor save the
182 * 2nd and 3rd descriptors in a subsection, to maintain migration
183 * compatibility with previous versions of the device that only
184 * supported a single descriptor.
186 static bool imx_eth_is_multi_tx_ring(void *opaque
)
188 IMXFECState
*s
= IMX_FEC(opaque
);
190 return s
->tx_ring_num
> 1;
193 static const VMStateDescription vmstate_imx_eth_txdescs
= {
194 .name
= "imx.fec/txdescs",
196 .minimum_version_id
= 1,
197 .needed
= imx_eth_is_multi_tx_ring
,
198 .fields
= (VMStateField
[]) {
199 VMSTATE_UINT32(tx_descriptor
[1], IMXFECState
),
200 VMSTATE_UINT32(tx_descriptor
[2], IMXFECState
),
201 VMSTATE_END_OF_LIST()
205 static const VMStateDescription vmstate_imx_eth
= {
206 .name
= TYPE_IMX_FEC
,
208 .minimum_version_id
= 2,
209 .fields
= (VMStateField
[]) {
210 VMSTATE_UINT32_ARRAY(regs
, IMXFECState
, ENET_MAX
),
211 VMSTATE_UINT32(rx_descriptor
, IMXFECState
),
212 VMSTATE_UINT32(tx_descriptor
[0], IMXFECState
),
213 VMSTATE_UINT32(phy_status
, IMXFECState
),
214 VMSTATE_UINT32(phy_control
, IMXFECState
),
215 VMSTATE_UINT32(phy_advertise
, IMXFECState
),
216 VMSTATE_UINT32(phy_int
, IMXFECState
),
217 VMSTATE_UINT32(phy_int_mask
, IMXFECState
),
218 VMSTATE_END_OF_LIST()
220 .subsections
= (const VMStateDescription
* []) {
221 &vmstate_imx_eth_txdescs
,
226 #define PHY_INT_ENERGYON (1 << 7)
227 #define PHY_INT_AUTONEG_COMPLETE (1 << 6)
228 #define PHY_INT_FAULT (1 << 5)
229 #define PHY_INT_DOWN (1 << 4)
230 #define PHY_INT_AUTONEG_LP (1 << 3)
231 #define PHY_INT_PARFAULT (1 << 2)
232 #define PHY_INT_AUTONEG_PAGE (1 << 1)
234 static void imx_eth_update(IMXFECState
*s
);
237 * The MII phy could raise a GPIO to the processor which in turn
238 * could be handled as an interrpt by the OS.
239 * For now we don't handle any GPIO/interrupt line, so the OS will
240 * have to poll for the PHY status.
242 static void imx_phy_update_irq(IMXFECState
*s
)
247 static void imx_phy_update_link(IMXFECState
*s
)
249 /* Autonegotiation status mirrors link status. */
250 if (qemu_get_queue(s
->nic
)->link_down
) {
251 trace_imx_phy_update_link("down");
252 s
->phy_status
&= ~0x0024;
253 s
->phy_int
|= PHY_INT_DOWN
;
255 trace_imx_phy_update_link("up");
256 s
->phy_status
|= 0x0024;
257 s
->phy_int
|= PHY_INT_ENERGYON
;
258 s
->phy_int
|= PHY_INT_AUTONEG_COMPLETE
;
260 imx_phy_update_irq(s
);
263 static void imx_eth_set_link(NetClientState
*nc
)
265 imx_phy_update_link(IMX_FEC(qemu_get_nic_opaque(nc
)));
268 static void imx_phy_reset(IMXFECState
*s
)
270 trace_imx_phy_reset();
272 s
->phy_status
= 0x7809;
273 s
->phy_control
= 0x3000;
274 s
->phy_advertise
= 0x01e1;
277 imx_phy_update_link(s
);
280 static uint32_t imx_phy_read(IMXFECState
*s
, int reg
)
283 uint32_t phy
= reg
/ 32;
285 if (phy
!= s
->phy_num
) {
286 trace_imx_phy_read_num(phy
, s
->phy_num
);
293 case 0: /* Basic Control */
294 val
= s
->phy_control
;
296 case 1: /* Basic Status */
305 case 4: /* Auto-neg advertisement */
306 val
= s
->phy_advertise
;
308 case 5: /* Auto-neg Link Partner Ability */
311 case 6: /* Auto-neg Expansion */
314 case 29: /* Interrupt source. */
317 imx_phy_update_irq(s
);
319 case 30: /* Interrupt mask */
320 val
= s
->phy_int_mask
;
326 qemu_log_mask(LOG_UNIMP
, "[%s.phy]%s: reg %d not implemented\n",
327 TYPE_IMX_FEC
, __func__
, reg
);
331 qemu_log_mask(LOG_GUEST_ERROR
, "[%s.phy]%s: Bad address at offset %d\n",
332 TYPE_IMX_FEC
, __func__
, reg
);
337 trace_imx_phy_read(val
, phy
, reg
);
342 static void imx_phy_write(IMXFECState
*s
, int reg
, uint32_t val
)
344 uint32_t phy
= reg
/ 32;
346 if (phy
!= s
->phy_num
) {
347 trace_imx_phy_write_num(phy
, s
->phy_num
);
353 trace_imx_phy_write(val
, phy
, reg
);
356 case 0: /* Basic Control */
360 s
->phy_control
= val
& 0x7980;
361 /* Complete autonegotiation immediately. */
363 s
->phy_status
|= 0x0020;
367 case 4: /* Auto-neg advertisement */
368 s
->phy_advertise
= (val
& 0x2d7f) | 0x80;
370 case 30: /* Interrupt mask */
371 s
->phy_int_mask
= val
& 0xff;
372 imx_phy_update_irq(s
);
378 qemu_log_mask(LOG_UNIMP
, "[%s.phy)%s: reg %d not implemented\n",
379 TYPE_IMX_FEC
, __func__
, reg
);
382 qemu_log_mask(LOG_GUEST_ERROR
, "[%s.phy]%s: Bad address at offset %d\n",
383 TYPE_IMX_FEC
, __func__
, reg
);
388 static void imx_fec_read_bd(IMXFECBufDesc
*bd
, dma_addr_t addr
)
390 dma_memory_read(&address_space_memory
, addr
, bd
, sizeof(*bd
));
392 trace_imx_fec_read_bd(addr
, bd
->flags
, bd
->length
, bd
->data
);
395 static void imx_fec_write_bd(IMXFECBufDesc
*bd
, dma_addr_t addr
)
397 dma_memory_write(&address_space_memory
, addr
, bd
, sizeof(*bd
));
400 static void imx_enet_read_bd(IMXENETBufDesc
*bd
, dma_addr_t addr
)
402 dma_memory_read(&address_space_memory
, addr
, bd
, sizeof(*bd
));
404 trace_imx_enet_read_bd(addr
, bd
->flags
, bd
->length
, bd
->data
,
405 bd
->option
, bd
->status
);
408 static void imx_enet_write_bd(IMXENETBufDesc
*bd
, dma_addr_t addr
)
410 dma_memory_write(&address_space_memory
, addr
, bd
, sizeof(*bd
));
413 static void imx_eth_update(IMXFECState
*s
)
416 * Previous versions of qemu had the ENET_INT_MAC and ENET_INT_TS_TIMER
417 * interrupts swapped. This worked with older versions of Linux (4.14
418 * and older) since Linux associated both interrupt lines with Ethernet
419 * MAC interrupts. Specifically,
420 * - Linux 4.15 and later have separate interrupt handlers for the MAC and
421 * timer interrupts. Those versions of Linux fail with versions of QEMU
422 * with swapped interrupt assignments.
423 * - In linux 4.14, both interrupt lines were registered with the Ethernet
424 * MAC interrupt handler. As a result, all versions of qemu happen to
425 * work, though that is accidental.
426 * - In Linux 4.9 and older, the timer interrupt was registered directly
427 * with the Ethernet MAC interrupt handler. The MAC interrupt was
428 * redirected to a GPIO interrupt to work around erratum ERR006687.
429 * This was implemented using the SOC's IOMUX block. In qemu, this GPIO
430 * interrupt never fired since IOMUX is currently not supported in qemu.
431 * Linux instead received MAC interrupts on the timer interrupt.
432 * As a result, qemu versions with the swapped interrupt assignment work,
433 * albeit accidentally, but qemu versions with the correct interrupt
436 * To ensure that all versions of Linux work, generate ENET_INT_MAC
437 * interrrupts on both interrupt lines. This should be changed if and when
438 * qemu supports IOMUX.
440 if (s
->regs
[ENET_EIR
] & s
->regs
[ENET_EIMR
] &
441 (ENET_INT_MAC
| ENET_INT_TS_TIMER
)) {
442 qemu_set_irq(s
->irq
[1], 1);
444 qemu_set_irq(s
->irq
[1], 0);
447 if (s
->regs
[ENET_EIR
] & s
->regs
[ENET_EIMR
] & ENET_INT_MAC
) {
448 qemu_set_irq(s
->irq
[0], 1);
450 qemu_set_irq(s
->irq
[0], 0);
454 static void imx_fec_do_tx(IMXFECState
*s
)
456 int frame_size
= 0, descnt
= 0;
457 uint8_t *ptr
= s
->frame
;
458 uint32_t addr
= s
->tx_descriptor
[0];
460 while (descnt
++ < IMX_MAX_DESC
) {
464 imx_fec_read_bd(&bd
, addr
);
465 if ((bd
.flags
& ENET_BD_R
) == 0) {
467 /* Run out of descriptors to transmit. */
468 trace_imx_eth_tx_bd_busy();
473 if (frame_size
+ len
> ENET_MAX_FRAME_SIZE
) {
474 len
= ENET_MAX_FRAME_SIZE
- frame_size
;
475 s
->regs
[ENET_EIR
] |= ENET_INT_BABT
;
477 dma_memory_read(&address_space_memory
, bd
.data
, ptr
, len
);
480 if (bd
.flags
& ENET_BD_L
) {
481 /* Last buffer in frame. */
482 qemu_send_packet(qemu_get_queue(s
->nic
), s
->frame
, frame_size
);
485 s
->regs
[ENET_EIR
] |= ENET_INT_TXF
;
487 s
->regs
[ENET_EIR
] |= ENET_INT_TXB
;
488 bd
.flags
&= ~ENET_BD_R
;
489 /* Write back the modified descriptor. */
490 imx_fec_write_bd(&bd
, addr
);
491 /* Advance to the next descriptor. */
492 if ((bd
.flags
& ENET_BD_W
) != 0) {
493 addr
= s
->regs
[ENET_TDSR
];
499 s
->tx_descriptor
[0] = addr
;
504 static void imx_enet_do_tx(IMXFECState
*s
, uint32_t index
)
506 int frame_size
= 0, descnt
= 0;
508 uint8_t *ptr
= s
->frame
;
509 uint32_t addr
, int_txb
, int_txf
, tdsr
;
515 int_txb
= ENET_INT_TXB
;
516 int_txf
= ENET_INT_TXF
;
521 int_txb
= ENET_INT_TXB1
;
522 int_txf
= ENET_INT_TXF1
;
527 int_txb
= ENET_INT_TXB2
;
528 int_txf
= ENET_INT_TXF2
;
532 qemu_log_mask(LOG_GUEST_ERROR
,
533 "%s: bogus value for index %x\n",
539 addr
= s
->tx_descriptor
[ring
];
541 while (descnt
++ < IMX_MAX_DESC
) {
545 imx_enet_read_bd(&bd
, addr
);
546 if ((bd
.flags
& ENET_BD_R
) == 0) {
547 /* Run out of descriptors to transmit. */
549 trace_imx_eth_tx_bd_busy();
554 if (frame_size
+ len
> ENET_MAX_FRAME_SIZE
) {
555 len
= ENET_MAX_FRAME_SIZE
- frame_size
;
556 s
->regs
[ENET_EIR
] |= ENET_INT_BABT
;
558 dma_memory_read(&address_space_memory
, bd
.data
, ptr
, len
);
561 if (bd
.flags
& ENET_BD_L
) {
564 if (bd
.option
& ENET_BD_PINS
) {
565 csum
|= (CSUM_TCP
| CSUM_UDP
);
567 if (bd
.option
& ENET_BD_IINS
) {
571 net_checksum_calculate(s
->frame
, frame_size
, csum
);
574 /* Last buffer in frame. */
576 qemu_send_packet(qemu_get_queue(s
->nic
), s
->frame
, frame_size
);
580 if (bd
.option
& ENET_BD_TX_INT
) {
581 s
->regs
[ENET_EIR
] |= int_txf
;
583 /* Indicate that we've updated the last buffer descriptor. */
584 bd
.last_buffer
= ENET_BD_BDU
;
586 if (bd
.option
& ENET_BD_TX_INT
) {
587 s
->regs
[ENET_EIR
] |= int_txb
;
589 bd
.flags
&= ~ENET_BD_R
;
590 /* Write back the modified descriptor. */
591 imx_enet_write_bd(&bd
, addr
);
592 /* Advance to the next descriptor. */
593 if ((bd
.flags
& ENET_BD_W
) != 0) {
594 addr
= s
->regs
[tdsr
];
600 s
->tx_descriptor
[ring
] = addr
;
605 static void imx_eth_do_tx(IMXFECState
*s
, uint32_t index
)
607 if (!s
->is_fec
&& (s
->regs
[ENET_ECR
] & ENET_ECR_EN1588
)) {
608 imx_enet_do_tx(s
, index
);
614 static void imx_eth_enable_rx(IMXFECState
*s
, bool flush
)
618 imx_fec_read_bd(&bd
, s
->rx_descriptor
);
620 s
->regs
[ENET_RDAR
] = (bd
.flags
& ENET_BD_E
) ? ENET_RDAR_RDAR
: 0;
622 if (!s
->regs
[ENET_RDAR
]) {
623 trace_imx_eth_rx_bd_full();
625 qemu_flush_queued_packets(qemu_get_queue(s
->nic
));
629 static void imx_eth_reset(DeviceState
*d
)
631 IMXFECState
*s
= IMX_FEC(d
);
633 /* Reset the Device */
634 memset(s
->regs
, 0, sizeof(s
->regs
));
635 s
->regs
[ENET_ECR
] = 0xf0000000;
636 s
->regs
[ENET_MIBC
] = 0xc0000000;
637 s
->regs
[ENET_RCR
] = 0x05ee0001;
638 s
->regs
[ENET_OPD
] = 0x00010000;
640 s
->regs
[ENET_PALR
] = (s
->conf
.macaddr
.a
[0] << 24)
641 | (s
->conf
.macaddr
.a
[1] << 16)
642 | (s
->conf
.macaddr
.a
[2] << 8)
643 | s
->conf
.macaddr
.a
[3];
644 s
->regs
[ENET_PAUR
] = (s
->conf
.macaddr
.a
[4] << 24)
645 | (s
->conf
.macaddr
.a
[5] << 16)
649 s
->regs
[ENET_FRBR
] = 0x00000600;
650 s
->regs
[ENET_FRSR
] = 0x00000500;
651 s
->regs
[ENET_MIIGSK_ENR
] = 0x00000006;
653 s
->regs
[ENET_RAEM
] = 0x00000004;
654 s
->regs
[ENET_RAFL
] = 0x00000004;
655 s
->regs
[ENET_TAEM
] = 0x00000004;
656 s
->regs
[ENET_TAFL
] = 0x00000008;
657 s
->regs
[ENET_TIPG
] = 0x0000000c;
658 s
->regs
[ENET_FTRL
] = 0x000007ff;
659 s
->regs
[ENET_ATPER
] = 0x3b9aca00;
662 s
->rx_descriptor
= 0;
663 memset(s
->tx_descriptor
, 0, sizeof(s
->tx_descriptor
));
665 /* We also reset the PHY */
669 static uint32_t imx_default_read(IMXFECState
*s
, uint32_t index
)
671 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: Bad register at offset 0x%"
672 PRIx32
"\n", TYPE_IMX_FEC
, __func__
, index
* 4);
676 static uint32_t imx_fec_read(IMXFECState
*s
, uint32_t index
)
681 case ENET_MIIGSK_CFGR
:
682 case ENET_MIIGSK_ENR
:
683 return s
->regs
[index
];
685 return imx_default_read(s
, index
);
689 static uint32_t imx_enet_read(IMXFECState
*s
, uint32_t index
)
719 return s
->regs
[index
];
721 return imx_default_read(s
, index
);
725 static uint64_t imx_eth_read(void *opaque
, hwaddr offset
, unsigned size
)
728 IMXFECState
*s
= IMX_FEC(opaque
);
729 uint32_t index
= offset
>> 2;
753 value
= s
->regs
[index
];
757 value
= imx_fec_read(s
, index
);
759 value
= imx_enet_read(s
, index
);
764 trace_imx_eth_read(index
, imx_eth_reg_name(s
, index
), value
);
769 static void imx_default_write(IMXFECState
*s
, uint32_t index
, uint32_t value
)
771 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: Bad address at offset 0x%"
772 PRIx32
"\n", TYPE_IMX_FEC
, __func__
, index
* 4);
776 static void imx_fec_write(IMXFECState
*s
, uint32_t index
, uint32_t value
)
780 /* FRBR is read only */
781 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: Register FRBR is read only\n",
782 TYPE_IMX_FEC
, __func__
);
785 s
->regs
[index
] = (value
& 0x000003fc) | 0x00000400;
787 case ENET_MIIGSK_CFGR
:
788 s
->regs
[index
] = value
& 0x00000053;
790 case ENET_MIIGSK_ENR
:
791 s
->regs
[index
] = (value
& 0x00000002) ? 0x00000006 : 0;
794 imx_default_write(s
, index
, value
);
799 static void imx_enet_write(IMXFECState
*s
, uint32_t index
, uint32_t value
)
809 s
->regs
[index
] = value
& 0x000001ff;
812 s
->regs
[index
] = value
& 0x0000001f;
815 s
->regs
[index
] = value
& 0x00003fff;
818 s
->regs
[index
] = value
& 0x00000019;
821 s
->regs
[index
] = value
& 0x000000C7;
824 s
->regs
[index
] = value
& 0x00002a9d;
829 s
->regs
[index
] = value
;
832 /* ATSTMP is read only */
833 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: Register ATSTMP is read only\n",
834 TYPE_IMX_FEC
, __func__
);
837 s
->regs
[index
] = value
& 0x7fffffff;
840 s
->regs
[index
] = value
& 0x00007f7f;
843 /* implement clear timer flag */
844 s
->regs
[index
] &= ~(value
& 0x0000000f); /* all bits W1C */
850 s
->regs
[index
] &= ~(value
& 0x00000080); /* W1C bits */
851 s
->regs
[index
] &= ~0x0000007d; /* writable fields */
852 s
->regs
[index
] |= (value
& 0x0000007d);
858 s
->regs
[index
] = value
;
861 imx_default_write(s
, index
, value
);
866 static void imx_eth_write(void *opaque
, hwaddr offset
, uint64_t value
,
869 IMXFECState
*s
= IMX_FEC(opaque
);
870 const bool single_tx_ring
= !imx_eth_is_multi_tx_ring(s
);
871 uint32_t index
= offset
>> 2;
873 trace_imx_eth_write(index
, imx_eth_reg_name(s
, index
), value
);
877 s
->regs
[index
] &= ~value
;
880 s
->regs
[index
] = value
;
883 if (s
->regs
[ENET_ECR
] & ENET_ECR_ETHEREN
) {
884 if (!s
->regs
[index
]) {
885 imx_eth_enable_rx(s
, true);
893 if (unlikely(single_tx_ring
)) {
894 qemu_log_mask(LOG_GUEST_ERROR
,
895 "[%s]%s: trying to access TDAR2 or TDAR1\n",
896 TYPE_IMX_FEC
, __func__
);
901 if (s
->regs
[ENET_ECR
] & ENET_ECR_ETHEREN
) {
902 s
->regs
[index
] = ENET_TDAR_TDAR
;
903 imx_eth_do_tx(s
, index
);
908 if (value
& ENET_ECR_RESET
) {
909 return imx_eth_reset(DEVICE(s
));
911 s
->regs
[index
] = value
;
912 if ((s
->regs
[index
] & ENET_ECR_ETHEREN
) == 0) {
913 s
->regs
[ENET_RDAR
] = 0;
914 s
->rx_descriptor
= s
->regs
[ENET_RDSR
];
915 s
->regs
[ENET_TDAR
] = 0;
916 s
->regs
[ENET_TDAR1
] = 0;
917 s
->regs
[ENET_TDAR2
] = 0;
918 s
->tx_descriptor
[0] = s
->regs
[ENET_TDSR
];
919 s
->tx_descriptor
[1] = s
->regs
[ENET_TDSR1
];
920 s
->tx_descriptor
[2] = s
->regs
[ENET_TDSR2
];
924 s
->regs
[index
] = value
;
925 if (extract32(value
, 29, 1)) {
926 /* This is a read operation */
927 s
->regs
[ENET_MMFR
] = deposit32(s
->regs
[ENET_MMFR
], 0, 16,
932 /* This is a write operation */
933 imx_phy_write(s
, extract32(value
, 18, 10), extract32(value
, 0, 16));
935 /* raise the interrupt as the PHY operation is done */
936 s
->regs
[ENET_EIR
] |= ENET_INT_MII
;
939 s
->regs
[index
] = value
& 0xfe;
942 /* TODO: Implement MIB. */
943 s
->regs
[index
] = (value
& 0x80000000) ? 0xc0000000 : 0;
946 s
->regs
[index
] = value
& 0x07ff003f;
947 /* TODO: Implement LOOP mode. */
950 /* We transmit immediately, so raise GRA immediately. */
951 s
->regs
[index
] = value
;
953 s
->regs
[ENET_EIR
] |= ENET_INT_GRA
;
957 s
->regs
[index
] = value
;
958 s
->conf
.macaddr
.a
[0] = value
>> 24;
959 s
->conf
.macaddr
.a
[1] = value
>> 16;
960 s
->conf
.macaddr
.a
[2] = value
>> 8;
961 s
->conf
.macaddr
.a
[3] = value
;
964 s
->regs
[index
] = (value
| 0x0000ffff) & 0xffff8808;
965 s
->conf
.macaddr
.a
[4] = value
>> 24;
966 s
->conf
.macaddr
.a
[5] = value
>> 16;
969 s
->regs
[index
] = (value
& 0x0000ffff) | 0x00010000;
975 /* TODO: implement MAC hash filtering. */
979 s
->regs
[index
] = value
& 0x3;
981 s
->regs
[index
] = value
& 0x13f;
986 s
->regs
[index
] = value
& ~3;
988 s
->regs
[index
] = value
& ~7;
990 s
->rx_descriptor
= s
->regs
[index
];
994 s
->regs
[index
] = value
& ~3;
996 s
->regs
[index
] = value
& ~7;
998 s
->tx_descriptor
[0] = s
->regs
[index
];
1001 if (unlikely(single_tx_ring
)) {
1002 qemu_log_mask(LOG_GUEST_ERROR
,
1003 "[%s]%s: trying to access TDSR1\n",
1004 TYPE_IMX_FEC
, __func__
);
1008 s
->regs
[index
] = value
& ~7;
1009 s
->tx_descriptor
[1] = s
->regs
[index
];
1012 if (unlikely(single_tx_ring
)) {
1013 qemu_log_mask(LOG_GUEST_ERROR
,
1014 "[%s]%s: trying to access TDSR2\n",
1015 TYPE_IMX_FEC
, __func__
);
1019 s
->regs
[index
] = value
& ~7;
1020 s
->tx_descriptor
[2] = s
->regs
[index
];
1023 s
->regs
[index
] = value
& 0x00003ff0;
1027 imx_fec_write(s
, index
, value
);
1029 imx_enet_write(s
, index
, value
);
1037 static bool imx_eth_can_receive(NetClientState
*nc
)
1039 IMXFECState
*s
= IMX_FEC(qemu_get_nic_opaque(nc
));
1041 return !!s
->regs
[ENET_RDAR
];
1044 static ssize_t
imx_fec_receive(NetClientState
*nc
, const uint8_t *buf
,
1047 IMXFECState
*s
= IMX_FEC(qemu_get_nic_opaque(nc
));
1054 unsigned int buf_len
;
1057 trace_imx_fec_receive(size
);
1059 if (!s
->regs
[ENET_RDAR
]) {
1060 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: Unexpected packet\n",
1061 TYPE_IMX_FEC
, __func__
);
1065 /* 4 bytes for the CRC. */
1067 crc
= cpu_to_be32(crc32(~0, buf
, size
));
1068 crc_ptr
= (uint8_t *) &crc
;
1070 /* Huge frames are truncated. */
1071 if (size
> ENET_MAX_FRAME_SIZE
) {
1072 size
= ENET_MAX_FRAME_SIZE
;
1073 flags
|= ENET_BD_TR
| ENET_BD_LG
;
1076 /* Frames larger than the user limit just set error flags. */
1077 if (size
> (s
->regs
[ENET_RCR
] >> 16)) {
1078 flags
|= ENET_BD_LG
;
1081 addr
= s
->rx_descriptor
;
1083 imx_fec_read_bd(&bd
, addr
);
1084 if ((bd
.flags
& ENET_BD_E
) == 0) {
1085 /* No descriptors available. Bail out. */
1087 * FIXME: This is wrong. We should probably either
1088 * save the remainder for when more RX buffers are
1089 * available, or flag an error.
1091 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: Lost end of frame\n",
1092 TYPE_IMX_FEC
, __func__
);
1095 buf_len
= (size
<= s
->regs
[ENET_MRBR
]) ? size
: s
->regs
[ENET_MRBR
];
1096 bd
.length
= buf_len
;
1099 trace_imx_fec_receive_len(addr
, bd
.length
);
1101 /* The last 4 bytes are the CRC. */
1103 buf_len
+= size
- 4;
1106 dma_memory_write(&address_space_memory
, buf_addr
, buf
, buf_len
);
1109 dma_memory_write(&address_space_memory
, buf_addr
+ buf_len
,
1111 crc_ptr
+= 4 - size
;
1113 bd
.flags
&= ~ENET_BD_E
;
1115 /* Last buffer in frame. */
1116 bd
.flags
|= flags
| ENET_BD_L
;
1118 trace_imx_fec_receive_last(bd
.flags
);
1120 s
->regs
[ENET_EIR
] |= ENET_INT_RXF
;
1122 s
->regs
[ENET_EIR
] |= ENET_INT_RXB
;
1124 imx_fec_write_bd(&bd
, addr
);
1125 /* Advance to the next descriptor. */
1126 if ((bd
.flags
& ENET_BD_W
) != 0) {
1127 addr
= s
->regs
[ENET_RDSR
];
1132 s
->rx_descriptor
= addr
;
1133 imx_eth_enable_rx(s
, false);
1138 static ssize_t
imx_enet_receive(NetClientState
*nc
, const uint8_t *buf
,
1141 IMXFECState
*s
= IMX_FEC(qemu_get_nic_opaque(nc
));
1148 unsigned int buf_len
;
1150 bool shift16
= s
->regs
[ENET_RACC
] & ENET_RACC_SHIFT16
;
1152 trace_imx_enet_receive(size
);
1154 if (!s
->regs
[ENET_RDAR
]) {
1155 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: Unexpected packet\n",
1156 TYPE_IMX_FEC
, __func__
);
1160 /* 4 bytes for the CRC. */
1162 crc
= cpu_to_be32(crc32(~0, buf
, size
));
1163 crc_ptr
= (uint8_t *) &crc
;
1169 /* Huge frames are truncated. */
1170 if (size
> s
->regs
[ENET_FTRL
]) {
1171 size
= s
->regs
[ENET_FTRL
];
1172 flags
|= ENET_BD_TR
| ENET_BD_LG
;
1175 /* Frames larger than the user limit just set error flags. */
1176 if (size
> (s
->regs
[ENET_RCR
] >> 16)) {
1177 flags
|= ENET_BD_LG
;
1180 addr
= s
->rx_descriptor
;
1182 imx_enet_read_bd(&bd
, addr
);
1183 if ((bd
.flags
& ENET_BD_E
) == 0) {
1184 /* No descriptors available. Bail out. */
1186 * FIXME: This is wrong. We should probably either
1187 * save the remainder for when more RX buffers are
1188 * available, or flag an error.
1190 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: Lost end of frame\n",
1191 TYPE_IMX_FEC
, __func__
);
1194 buf_len
= MIN(size
, s
->regs
[ENET_MRBR
]);
1195 bd
.length
= buf_len
;
1198 trace_imx_enet_receive_len(addr
, bd
.length
);
1200 /* The last 4 bytes are the CRC. */
1202 buf_len
+= size
- 4;
1208 * If SHIFT16 bit of ENETx_RACC register is set we need to
1209 * align the payload to 4-byte boundary.
1211 const uint8_t zeros
[2] = { 0 };
1213 dma_memory_write(&address_space_memory
, buf_addr
,
1214 zeros
, sizeof(zeros
));
1216 buf_addr
+= sizeof(zeros
);
1217 buf_len
-= sizeof(zeros
);
1219 /* We only do this once per Ethernet frame */
1223 dma_memory_write(&address_space_memory
, buf_addr
, buf
, buf_len
);
1226 dma_memory_write(&address_space_memory
, buf_addr
+ buf_len
,
1228 crc_ptr
+= 4 - size
;
1230 bd
.flags
&= ~ENET_BD_E
;
1232 /* Last buffer in frame. */
1233 bd
.flags
|= flags
| ENET_BD_L
;
1235 trace_imx_enet_receive_last(bd
.flags
);
1237 /* Indicate that we've updated the last buffer descriptor. */
1238 bd
.last_buffer
= ENET_BD_BDU
;
1239 if (bd
.option
& ENET_BD_RX_INT
) {
1240 s
->regs
[ENET_EIR
] |= ENET_INT_RXF
;
1243 if (bd
.option
& ENET_BD_RX_INT
) {
1244 s
->regs
[ENET_EIR
] |= ENET_INT_RXB
;
1247 imx_enet_write_bd(&bd
, addr
);
1248 /* Advance to the next descriptor. */
1249 if ((bd
.flags
& ENET_BD_W
) != 0) {
1250 addr
= s
->regs
[ENET_RDSR
];
1255 s
->rx_descriptor
= addr
;
1256 imx_eth_enable_rx(s
, false);
1261 static ssize_t
imx_eth_receive(NetClientState
*nc
, const uint8_t *buf
,
1264 IMXFECState
*s
= IMX_FEC(qemu_get_nic_opaque(nc
));
1266 if (!s
->is_fec
&& (s
->regs
[ENET_ECR
] & ENET_ECR_EN1588
)) {
1267 return imx_enet_receive(nc
, buf
, len
);
1269 return imx_fec_receive(nc
, buf
, len
);
1273 static const MemoryRegionOps imx_eth_ops
= {
1274 .read
= imx_eth_read
,
1275 .write
= imx_eth_write
,
1276 .valid
.min_access_size
= 4,
1277 .valid
.max_access_size
= 4,
1278 .endianness
= DEVICE_NATIVE_ENDIAN
,
1281 static void imx_eth_cleanup(NetClientState
*nc
)
1283 IMXFECState
*s
= IMX_FEC(qemu_get_nic_opaque(nc
));
1288 static NetClientInfo imx_eth_net_info
= {
1289 .type
= NET_CLIENT_DRIVER_NIC
,
1290 .size
= sizeof(NICState
),
1291 .can_receive
= imx_eth_can_receive
,
1292 .receive
= imx_eth_receive
,
1293 .cleanup
= imx_eth_cleanup
,
1294 .link_status_changed
= imx_eth_set_link
,
1298 static void imx_eth_realize(DeviceState
*dev
, Error
**errp
)
1300 IMXFECState
*s
= IMX_FEC(dev
);
1301 SysBusDevice
*sbd
= SYS_BUS_DEVICE(dev
);
1303 memory_region_init_io(&s
->iomem
, OBJECT(dev
), &imx_eth_ops
, s
,
1304 TYPE_IMX_FEC
, FSL_IMX25_FEC_SIZE
);
1305 sysbus_init_mmio(sbd
, &s
->iomem
);
1306 sysbus_init_irq(sbd
, &s
->irq
[0]);
1307 sysbus_init_irq(sbd
, &s
->irq
[1]);
1309 qemu_macaddr_default_if_unset(&s
->conf
.macaddr
);
1311 s
->nic
= qemu_new_nic(&imx_eth_net_info
, &s
->conf
,
1312 object_get_typename(OBJECT(dev
)),
1315 qemu_format_nic_info_str(qemu_get_queue(s
->nic
), s
->conf
.macaddr
.a
);
1318 static Property imx_eth_properties
[] = {
1319 DEFINE_NIC_PROPERTIES(IMXFECState
, conf
),
1320 DEFINE_PROP_UINT32("tx-ring-num", IMXFECState
, tx_ring_num
, 1),
1321 DEFINE_PROP_UINT32("phy-num", IMXFECState
, phy_num
, 0),
1322 DEFINE_PROP_END_OF_LIST(),
1325 static void imx_eth_class_init(ObjectClass
*klass
, void *data
)
1327 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1329 dc
->vmsd
= &vmstate_imx_eth
;
1330 dc
->reset
= imx_eth_reset
;
1331 device_class_set_props(dc
, imx_eth_properties
);
1332 dc
->realize
= imx_eth_realize
;
1333 dc
->desc
= "i.MX FEC/ENET Ethernet Controller";
1336 static void imx_fec_init(Object
*obj
)
1338 IMXFECState
*s
= IMX_FEC(obj
);
1343 static void imx_enet_init(Object
*obj
)
1345 IMXFECState
*s
= IMX_FEC(obj
);
1350 static const TypeInfo imx_fec_info
= {
1351 .name
= TYPE_IMX_FEC
,
1352 .parent
= TYPE_SYS_BUS_DEVICE
,
1353 .instance_size
= sizeof(IMXFECState
),
1354 .instance_init
= imx_fec_init
,
1355 .class_init
= imx_eth_class_init
,
1358 static const TypeInfo imx_enet_info
= {
1359 .name
= TYPE_IMX_ENET
,
1360 .parent
= TYPE_IMX_FEC
,
1361 .instance_init
= imx_enet_init
,
1364 static void imx_eth_register_types(void)
1366 type_register_static(&imx_fec_info
);
1367 type_register_static(&imx_enet_info
);
1370 type_init(imx_eth_register_types
)