dump: Improve some dump-guest-memory error messages
[qemu/armbru.git] / migration / rdma.c
blob2938db4f64cc78fefa6968b73cc5d62e58dde14b
1 /*
2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
5 * Copyright Red Hat, Inc. 2015-2016
7 * Authors:
8 * Michael R. Hines <mrhines@us.ibm.com>
9 * Jiuxing Liu <jl@us.ibm.com>
10 * Daniel P. Berrange <berrange@redhat.com>
12 * This work is licensed under the terms of the GNU GPL, version 2 or
13 * later. See the COPYING file in the top-level directory.
17 #include "qemu/osdep.h"
18 #include "qapi/error.h"
19 #include "qemu/cutils.h"
20 #include "exec/target_page.h"
21 #include "rdma.h"
22 #include "migration.h"
23 #include "migration-stats.h"
24 #include "qemu-file.h"
25 #include "ram.h"
26 #include "qemu/error-report.h"
27 #include "qemu/main-loop.h"
28 #include "qemu/module.h"
29 #include "qemu/rcu.h"
30 #include "qemu/sockets.h"
31 #include "qemu/bitmap.h"
32 #include "qemu/coroutine.h"
33 #include "exec/memory.h"
34 #include <sys/socket.h>
35 #include <netdb.h>
36 #include <arpa/inet.h>
37 #include <rdma/rdma_cma.h>
38 #include "trace.h"
39 #include "qom/object.h"
40 #include "options.h"
41 #include <poll.h>
43 #define RDMA_RESOLVE_TIMEOUT_MS 10000
45 /* Do not merge data if larger than this. */
46 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
47 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
49 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
52 * This is only for non-live state being migrated.
53 * Instead of RDMA_WRITE messages, we use RDMA_SEND
54 * messages for that state, which requires a different
55 * delivery design than main memory.
57 #define RDMA_SEND_INCREMENT 32768
60 * Maximum size infiniband SEND message
62 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
63 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
65 #define RDMA_CONTROL_VERSION_CURRENT 1
67 * Capabilities for negotiation.
69 #define RDMA_CAPABILITY_PIN_ALL 0x01
72 * Add the other flags above to this list of known capabilities
73 * as they are introduced.
75 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
78 * A work request ID is 64-bits and we split up these bits
79 * into 3 parts:
81 * bits 0-15 : type of control message, 2^16
82 * bits 16-29: ram block index, 2^14
83 * bits 30-63: ram block chunk number, 2^34
85 * The last two bit ranges are only used for RDMA writes,
86 * in order to track their completion and potentially
87 * also track unregistration status of the message.
89 #define RDMA_WRID_TYPE_SHIFT 0UL
90 #define RDMA_WRID_BLOCK_SHIFT 16UL
91 #define RDMA_WRID_CHUNK_SHIFT 30UL
93 #define RDMA_WRID_TYPE_MASK \
94 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
96 #define RDMA_WRID_BLOCK_MASK \
97 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
99 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
102 * RDMA migration protocol:
103 * 1. RDMA Writes (data messages, i.e. RAM)
104 * 2. IB Send/Recv (control channel messages)
106 enum {
107 RDMA_WRID_NONE = 0,
108 RDMA_WRID_RDMA_WRITE = 1,
109 RDMA_WRID_SEND_CONTROL = 2000,
110 RDMA_WRID_RECV_CONTROL = 4000,
114 * Work request IDs for IB SEND messages only (not RDMA writes).
115 * This is used by the migration protocol to transmit
116 * control messages (such as device state and registration commands)
118 * We could use more WRs, but we have enough for now.
120 enum {
121 RDMA_WRID_READY = 0,
122 RDMA_WRID_DATA,
123 RDMA_WRID_CONTROL,
124 RDMA_WRID_MAX,
128 * SEND/RECV IB Control Messages.
130 enum {
131 RDMA_CONTROL_NONE = 0,
132 RDMA_CONTROL_ERROR,
133 RDMA_CONTROL_READY, /* ready to receive */
134 RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */
135 RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */
136 RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */
137 RDMA_CONTROL_COMPRESS, /* page contains repeat values */
138 RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */
139 RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */
140 RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */
141 RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */
142 RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
147 * Memory and MR structures used to represent an IB Send/Recv work request.
148 * This is *not* used for RDMA writes, only IB Send/Recv.
150 typedef struct {
151 uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
152 struct ibv_mr *control_mr; /* registration metadata */
153 size_t control_len; /* length of the message */
154 uint8_t *control_curr; /* start of unconsumed bytes */
155 } RDMAWorkRequestData;
158 * Negotiate RDMA capabilities during connection-setup time.
160 typedef struct {
161 uint32_t version;
162 uint32_t flags;
163 } RDMACapabilities;
165 static void caps_to_network(RDMACapabilities *cap)
167 cap->version = htonl(cap->version);
168 cap->flags = htonl(cap->flags);
171 static void network_to_caps(RDMACapabilities *cap)
173 cap->version = ntohl(cap->version);
174 cap->flags = ntohl(cap->flags);
178 * Representation of a RAMBlock from an RDMA perspective.
179 * This is not transmitted, only local.
180 * This and subsequent structures cannot be linked lists
181 * because we're using a single IB message to transmit
182 * the information. It's small anyway, so a list is overkill.
184 typedef struct RDMALocalBlock {
185 char *block_name;
186 uint8_t *local_host_addr; /* local virtual address */
187 uint64_t remote_host_addr; /* remote virtual address */
188 uint64_t offset;
189 uint64_t length;
190 struct ibv_mr **pmr; /* MRs for chunk-level registration */
191 struct ibv_mr *mr; /* MR for non-chunk-level registration */
192 uint32_t *remote_keys; /* rkeys for chunk-level registration */
193 uint32_t remote_rkey; /* rkeys for non-chunk-level registration */
194 int index; /* which block are we */
195 unsigned int src_index; /* (Only used on dest) */
196 bool is_ram_block;
197 int nb_chunks;
198 unsigned long *transit_bitmap;
199 unsigned long *unregister_bitmap;
200 } RDMALocalBlock;
203 * Also represents a RAMblock, but only on the dest.
204 * This gets transmitted by the dest during connection-time
205 * to the source VM and then is used to populate the
206 * corresponding RDMALocalBlock with
207 * the information needed to perform the actual RDMA.
209 typedef struct QEMU_PACKED RDMADestBlock {
210 uint64_t remote_host_addr;
211 uint64_t offset;
212 uint64_t length;
213 uint32_t remote_rkey;
214 uint32_t padding;
215 } RDMADestBlock;
217 static const char *control_desc(unsigned int rdma_control)
219 static const char *strs[] = {
220 [RDMA_CONTROL_NONE] = "NONE",
221 [RDMA_CONTROL_ERROR] = "ERROR",
222 [RDMA_CONTROL_READY] = "READY",
223 [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
224 [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
225 [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
226 [RDMA_CONTROL_COMPRESS] = "COMPRESS",
227 [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
228 [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
229 [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
230 [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
231 [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
234 if (rdma_control > RDMA_CONTROL_UNREGISTER_FINISHED) {
235 return "??BAD CONTROL VALUE??";
238 return strs[rdma_control];
241 static uint64_t htonll(uint64_t v)
243 union { uint32_t lv[2]; uint64_t llv; } u;
244 u.lv[0] = htonl(v >> 32);
245 u.lv[1] = htonl(v & 0xFFFFFFFFULL);
246 return u.llv;
249 static uint64_t ntohll(uint64_t v)
251 union { uint32_t lv[2]; uint64_t llv; } u;
252 u.llv = v;
253 return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
256 static void dest_block_to_network(RDMADestBlock *db)
258 db->remote_host_addr = htonll(db->remote_host_addr);
259 db->offset = htonll(db->offset);
260 db->length = htonll(db->length);
261 db->remote_rkey = htonl(db->remote_rkey);
264 static void network_to_dest_block(RDMADestBlock *db)
266 db->remote_host_addr = ntohll(db->remote_host_addr);
267 db->offset = ntohll(db->offset);
268 db->length = ntohll(db->length);
269 db->remote_rkey = ntohl(db->remote_rkey);
273 * Virtual address of the above structures used for transmitting
274 * the RAMBlock descriptions at connection-time.
275 * This structure is *not* transmitted.
277 typedef struct RDMALocalBlocks {
278 int nb_blocks;
279 bool init; /* main memory init complete */
280 RDMALocalBlock *block;
281 } RDMALocalBlocks;
284 * Main data structure for RDMA state.
285 * While there is only one copy of this structure being allocated right now,
286 * this is the place where one would start if you wanted to consider
287 * having more than one RDMA connection open at the same time.
289 typedef struct RDMAContext {
290 char *host;
291 int port;
292 char *host_port;
294 RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
297 * This is used by *_exchange_send() to figure out whether or not
298 * the initial "READY" message has already been received or not.
299 * This is because other functions may potentially poll() and detect
300 * the READY message before send() does, in which case we need to
301 * know if it completed.
303 int control_ready_expected;
305 /* number of outstanding writes */
306 int nb_sent;
308 /* store info about current buffer so that we can
309 merge it with future sends */
310 uint64_t current_addr;
311 uint64_t current_length;
312 /* index of ram block the current buffer belongs to */
313 int current_index;
314 /* index of the chunk in the current ram block */
315 int current_chunk;
317 bool pin_all;
320 * infiniband-specific variables for opening the device
321 * and maintaining connection state and so forth.
323 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
324 * cm_id->verbs, cm_id->channel, and cm_id->qp.
326 struct rdma_cm_id *cm_id; /* connection manager ID */
327 struct rdma_cm_id *listen_id;
328 bool connected;
330 struct ibv_context *verbs;
331 struct rdma_event_channel *channel;
332 struct ibv_qp *qp; /* queue pair */
333 struct ibv_comp_channel *recv_comp_channel; /* recv completion channel */
334 struct ibv_comp_channel *send_comp_channel; /* send completion channel */
335 struct ibv_pd *pd; /* protection domain */
336 struct ibv_cq *recv_cq; /* recvieve completion queue */
337 struct ibv_cq *send_cq; /* send completion queue */
340 * If a previous write failed (perhaps because of a failed
341 * memory registration, then do not attempt any future work
342 * and remember the error state.
344 bool errored;
345 bool error_reported;
346 bool received_error;
349 * Description of ram blocks used throughout the code.
351 RDMALocalBlocks local_ram_blocks;
352 RDMADestBlock *dest_blocks;
354 /* Index of the next RAMBlock received during block registration */
355 unsigned int next_src_index;
358 * Migration on *destination* started.
359 * Then use coroutine yield function.
360 * Source runs in a thread, so we don't care.
362 int migration_started_on_destination;
364 int total_registrations;
365 int total_writes;
367 int unregister_current, unregister_next;
368 uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
370 GHashTable *blockmap;
372 /* the RDMAContext for return path */
373 struct RDMAContext *return_path;
374 bool is_return_path;
375 } RDMAContext;
377 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
378 OBJECT_DECLARE_SIMPLE_TYPE(QIOChannelRDMA, QIO_CHANNEL_RDMA)
382 struct QIOChannelRDMA {
383 QIOChannel parent;
384 RDMAContext *rdmain;
385 RDMAContext *rdmaout;
386 QEMUFile *file;
387 bool blocking; /* XXX we don't actually honour this yet */
391 * Main structure for IB Send/Recv control messages.
392 * This gets prepended at the beginning of every Send/Recv.
394 typedef struct QEMU_PACKED {
395 uint32_t len; /* Total length of data portion */
396 uint32_t type; /* which control command to perform */
397 uint32_t repeat; /* number of commands in data portion of same type */
398 uint32_t padding;
399 } RDMAControlHeader;
401 static void control_to_network(RDMAControlHeader *control)
403 control->type = htonl(control->type);
404 control->len = htonl(control->len);
405 control->repeat = htonl(control->repeat);
408 static void network_to_control(RDMAControlHeader *control)
410 control->type = ntohl(control->type);
411 control->len = ntohl(control->len);
412 control->repeat = ntohl(control->repeat);
416 * Register a single Chunk.
417 * Information sent by the source VM to inform the dest
418 * to register an single chunk of memory before we can perform
419 * the actual RDMA operation.
421 typedef struct QEMU_PACKED {
422 union QEMU_PACKED {
423 uint64_t current_addr; /* offset into the ram_addr_t space */
424 uint64_t chunk; /* chunk to lookup if unregistering */
425 } key;
426 uint32_t current_index; /* which ramblock the chunk belongs to */
427 uint32_t padding;
428 uint64_t chunks; /* how many sequential chunks to register */
429 } RDMARegister;
431 static bool rdma_errored(RDMAContext *rdma)
433 if (rdma->errored && !rdma->error_reported) {
434 error_report("RDMA is in an error state waiting migration"
435 " to abort!");
436 rdma->error_reported = true;
438 return rdma->errored;
441 static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
443 RDMALocalBlock *local_block;
444 local_block = &rdma->local_ram_blocks.block[reg->current_index];
446 if (local_block->is_ram_block) {
448 * current_addr as passed in is an address in the local ram_addr_t
449 * space, we need to translate this for the destination
451 reg->key.current_addr -= local_block->offset;
452 reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
454 reg->key.current_addr = htonll(reg->key.current_addr);
455 reg->current_index = htonl(reg->current_index);
456 reg->chunks = htonll(reg->chunks);
459 static void network_to_register(RDMARegister *reg)
461 reg->key.current_addr = ntohll(reg->key.current_addr);
462 reg->current_index = ntohl(reg->current_index);
463 reg->chunks = ntohll(reg->chunks);
466 typedef struct QEMU_PACKED {
467 uint32_t value; /* if zero, we will madvise() */
468 uint32_t block_idx; /* which ram block index */
469 uint64_t offset; /* Address in remote ram_addr_t space */
470 uint64_t length; /* length of the chunk */
471 } RDMACompress;
473 static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
475 comp->value = htonl(comp->value);
477 * comp->offset as passed in is an address in the local ram_addr_t
478 * space, we need to translate this for the destination
480 comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
481 comp->offset += rdma->dest_blocks[comp->block_idx].offset;
482 comp->block_idx = htonl(comp->block_idx);
483 comp->offset = htonll(comp->offset);
484 comp->length = htonll(comp->length);
487 static void network_to_compress(RDMACompress *comp)
489 comp->value = ntohl(comp->value);
490 comp->block_idx = ntohl(comp->block_idx);
491 comp->offset = ntohll(comp->offset);
492 comp->length = ntohll(comp->length);
496 * The result of the dest's memory registration produces an "rkey"
497 * which the source VM must reference in order to perform
498 * the RDMA operation.
500 typedef struct QEMU_PACKED {
501 uint32_t rkey;
502 uint32_t padding;
503 uint64_t host_addr;
504 } RDMARegisterResult;
506 static void result_to_network(RDMARegisterResult *result)
508 result->rkey = htonl(result->rkey);
509 result->host_addr = htonll(result->host_addr);
512 static void network_to_result(RDMARegisterResult *result)
514 result->rkey = ntohl(result->rkey);
515 result->host_addr = ntohll(result->host_addr);
518 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
519 uint8_t *data, RDMAControlHeader *resp,
520 int *resp_idx,
521 int (*callback)(RDMAContext *rdma,
522 Error **errp),
523 Error **errp);
525 static inline uint64_t ram_chunk_index(const uint8_t *start,
526 const uint8_t *host)
528 return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
531 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
532 uint64_t i)
534 return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
535 (i << RDMA_REG_CHUNK_SHIFT));
538 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
539 uint64_t i)
541 uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
542 (1UL << RDMA_REG_CHUNK_SHIFT);
544 if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
545 result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
548 return result;
551 static void rdma_add_block(RDMAContext *rdma, const char *block_name,
552 void *host_addr,
553 ram_addr_t block_offset, uint64_t length)
555 RDMALocalBlocks *local = &rdma->local_ram_blocks;
556 RDMALocalBlock *block;
557 RDMALocalBlock *old = local->block;
559 local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1);
561 if (local->nb_blocks) {
562 if (rdma->blockmap) {
563 for (int x = 0; x < local->nb_blocks; x++) {
564 g_hash_table_remove(rdma->blockmap,
565 (void *)(uintptr_t)old[x].offset);
566 g_hash_table_insert(rdma->blockmap,
567 (void *)(uintptr_t)old[x].offset,
568 &local->block[x]);
571 memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
572 g_free(old);
575 block = &local->block[local->nb_blocks];
577 block->block_name = g_strdup(block_name);
578 block->local_host_addr = host_addr;
579 block->offset = block_offset;
580 block->length = length;
581 block->index = local->nb_blocks;
582 block->src_index = ~0U; /* Filled in by the receipt of the block list */
583 block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
584 block->transit_bitmap = bitmap_new(block->nb_chunks);
585 bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
586 block->unregister_bitmap = bitmap_new(block->nb_chunks);
587 bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
588 block->remote_keys = g_new0(uint32_t, block->nb_chunks);
590 block->is_ram_block = local->init ? false : true;
592 if (rdma->blockmap) {
593 g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block);
596 trace_rdma_add_block(block_name, local->nb_blocks,
597 (uintptr_t) block->local_host_addr,
598 block->offset, block->length,
599 (uintptr_t) (block->local_host_addr + block->length),
600 BITS_TO_LONGS(block->nb_chunks) *
601 sizeof(unsigned long) * 8,
602 block->nb_chunks);
604 local->nb_blocks++;
608 * Memory regions need to be registered with the device and queue pairs setup
609 * in advanced before the migration starts. This tells us where the RAM blocks
610 * are so that we can register them individually.
612 static int qemu_rdma_init_one_block(RAMBlock *rb, void *opaque)
614 const char *block_name = qemu_ram_get_idstr(rb);
615 void *host_addr = qemu_ram_get_host_addr(rb);
616 ram_addr_t block_offset = qemu_ram_get_offset(rb);
617 ram_addr_t length = qemu_ram_get_used_length(rb);
618 rdma_add_block(opaque, block_name, host_addr, block_offset, length);
619 return 0;
623 * Identify the RAMBlocks and their quantity. They will be references to
624 * identify chunk boundaries inside each RAMBlock and also be referenced
625 * during dynamic page registration.
627 static void qemu_rdma_init_ram_blocks(RDMAContext *rdma)
629 RDMALocalBlocks *local = &rdma->local_ram_blocks;
630 int ret;
632 assert(rdma->blockmap == NULL);
633 memset(local, 0, sizeof *local);
634 ret = foreach_not_ignored_block(qemu_rdma_init_one_block, rdma);
635 assert(!ret);
636 trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
637 rdma->dest_blocks = g_new0(RDMADestBlock,
638 rdma->local_ram_blocks.nb_blocks);
639 local->init = true;
643 * Note: If used outside of cleanup, the caller must ensure that the destination
644 * block structures are also updated
646 static void rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
648 RDMALocalBlocks *local = &rdma->local_ram_blocks;
649 RDMALocalBlock *old = local->block;
651 if (rdma->blockmap) {
652 g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
654 if (block->pmr) {
655 for (int j = 0; j < block->nb_chunks; j++) {
656 if (!block->pmr[j]) {
657 continue;
659 ibv_dereg_mr(block->pmr[j]);
660 rdma->total_registrations--;
662 g_free(block->pmr);
663 block->pmr = NULL;
666 if (block->mr) {
667 ibv_dereg_mr(block->mr);
668 rdma->total_registrations--;
669 block->mr = NULL;
672 g_free(block->transit_bitmap);
673 block->transit_bitmap = NULL;
675 g_free(block->unregister_bitmap);
676 block->unregister_bitmap = NULL;
678 g_free(block->remote_keys);
679 block->remote_keys = NULL;
681 g_free(block->block_name);
682 block->block_name = NULL;
684 if (rdma->blockmap) {
685 for (int x = 0; x < local->nb_blocks; x++) {
686 g_hash_table_remove(rdma->blockmap,
687 (void *)(uintptr_t)old[x].offset);
691 if (local->nb_blocks > 1) {
693 local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1);
695 if (block->index) {
696 memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
699 if (block->index < (local->nb_blocks - 1)) {
700 memcpy(local->block + block->index, old + (block->index + 1),
701 sizeof(RDMALocalBlock) *
702 (local->nb_blocks - (block->index + 1)));
703 for (int x = block->index; x < local->nb_blocks - 1; x++) {
704 local->block[x].index--;
707 } else {
708 assert(block == local->block);
709 local->block = NULL;
712 trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
713 block->offset, block->length,
714 (uintptr_t)(block->local_host_addr + block->length),
715 BITS_TO_LONGS(block->nb_chunks) *
716 sizeof(unsigned long) * 8, block->nb_chunks);
718 g_free(old);
720 local->nb_blocks--;
722 if (local->nb_blocks && rdma->blockmap) {
723 for (int x = 0; x < local->nb_blocks; x++) {
724 g_hash_table_insert(rdma->blockmap,
725 (void *)(uintptr_t)local->block[x].offset,
726 &local->block[x]);
732 * Trace RDMA device open, with device details.
734 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
736 struct ibv_port_attr port;
738 if (ibv_query_port(verbs, 1, &port)) {
739 trace_qemu_rdma_dump_id_failed(who);
740 return;
743 trace_qemu_rdma_dump_id(who,
744 verbs->device->name,
745 verbs->device->dev_name,
746 verbs->device->dev_path,
747 verbs->device->ibdev_path,
748 port.link_layer,
749 port.link_layer == IBV_LINK_LAYER_INFINIBAND ? "Infiniband"
750 : port.link_layer == IBV_LINK_LAYER_ETHERNET ? "Ethernet"
751 : "Unknown");
755 * Trace RDMA gid addressing information.
756 * Useful for understanding the RDMA device hierarchy in the kernel.
758 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
760 char sgid[33];
761 char dgid[33];
762 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
763 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
764 trace_qemu_rdma_dump_gid(who, sgid, dgid);
768 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
769 * We will try the next addrinfo struct, and fail if there are
770 * no other valid addresses to bind against.
772 * If user is listening on '[::]', then we will not have a opened a device
773 * yet and have no way of verifying if the device is RoCE or not.
775 * In this case, the source VM will throw an error for ALL types of
776 * connections (both IPv4 and IPv6) if the destination machine does not have
777 * a regular infiniband network available for use.
779 * The only way to guarantee that an error is thrown for broken kernels is
780 * for the management software to choose a *specific* interface at bind time
781 * and validate what time of hardware it is.
783 * Unfortunately, this puts the user in a fix:
785 * If the source VM connects with an IPv4 address without knowing that the
786 * destination has bound to '[::]' the migration will unconditionally fail
787 * unless the management software is explicitly listening on the IPv4
788 * address while using a RoCE-based device.
790 * If the source VM connects with an IPv6 address, then we're OK because we can
791 * throw an error on the source (and similarly on the destination).
793 * But in mixed environments, this will be broken for a while until it is fixed
794 * inside linux.
796 * We do provide a *tiny* bit of help in this function: We can list all of the
797 * devices in the system and check to see if all the devices are RoCE or
798 * Infiniband.
800 * If we detect that we have a *pure* RoCE environment, then we can safely
801 * thrown an error even if the management software has specified '[::]' as the
802 * bind address.
804 * However, if there is are multiple hetergeneous devices, then we cannot make
805 * this assumption and the user just has to be sure they know what they are
806 * doing.
808 * Patches are being reviewed on linux-rdma.
810 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context *verbs, Error **errp)
812 /* This bug only exists in linux, to our knowledge. */
813 #ifdef CONFIG_LINUX
814 struct ibv_port_attr port_attr;
817 * Verbs are only NULL if management has bound to '[::]'.
819 * Let's iterate through all the devices and see if there any pure IB
820 * devices (non-ethernet).
822 * If not, then we can safely proceed with the migration.
823 * Otherwise, there are no guarantees until the bug is fixed in linux.
825 if (!verbs) {
826 int num_devices;
827 struct ibv_device **dev_list = ibv_get_device_list(&num_devices);
828 bool roce_found = false;
829 bool ib_found = false;
831 for (int x = 0; x < num_devices; x++) {
832 verbs = ibv_open_device(dev_list[x]);
834 * ibv_open_device() is not documented to set errno. If
835 * it does, it's somebody else's doc bug. If it doesn't,
836 * the use of errno below is wrong.
837 * TODO Find out whether ibv_open_device() sets errno.
839 if (!verbs) {
840 if (errno == EPERM) {
841 continue;
842 } else {
843 error_setg_errno(errp, errno,
844 "could not open RDMA device context");
845 return -1;
849 if (ibv_query_port(verbs, 1, &port_attr)) {
850 ibv_close_device(verbs);
851 error_setg(errp,
852 "RDMA ERROR: Could not query initial IB port");
853 return -1;
856 if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
857 ib_found = true;
858 } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
859 roce_found = true;
862 ibv_close_device(verbs);
866 if (roce_found) {
867 if (ib_found) {
868 warn_report("migrations may fail:"
869 " IPv6 over RoCE / iWARP in linux"
870 " is broken. But since you appear to have a"
871 " mixed RoCE / IB environment, be sure to only"
872 " migrate over the IB fabric until the kernel "
873 " fixes the bug.");
874 } else {
875 error_setg(errp, "RDMA ERROR: "
876 "You only have RoCE / iWARP devices in your systems"
877 " and your management software has specified '[::]'"
878 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
879 return -1;
883 return 0;
887 * If we have a verbs context, that means that some other than '[::]' was
888 * used by the management software for binding. In which case we can
889 * actually warn the user about a potentially broken kernel.
892 /* IB ports start with 1, not 0 */
893 if (ibv_query_port(verbs, 1, &port_attr)) {
894 error_setg(errp, "RDMA ERROR: Could not query initial IB port");
895 return -1;
898 if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
899 error_setg(errp, "RDMA ERROR: "
900 "Linux kernel's RoCE / iWARP does not support IPv6 "
901 "(but patches on linux-rdma in progress)");
902 return -1;
905 #endif
907 return 0;
911 * Figure out which RDMA device corresponds to the requested IP hostname
912 * Also create the initial connection manager identifiers for opening
913 * the connection.
915 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
917 Error *err = NULL;
918 int ret;
919 struct rdma_addrinfo *res;
920 char port_str[16];
921 struct rdma_cm_event *cm_event;
922 char ip[40] = "unknown";
924 if (rdma->host == NULL || !strcmp(rdma->host, "")) {
925 error_setg(errp, "RDMA ERROR: RDMA hostname has not been set");
926 return -1;
929 /* create CM channel */
930 rdma->channel = rdma_create_event_channel();
931 if (!rdma->channel) {
932 error_setg(errp, "RDMA ERROR: could not create CM channel");
933 return -1;
936 /* create CM id */
937 ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
938 if (ret < 0) {
939 error_setg(errp, "RDMA ERROR: could not create channel id");
940 goto err_resolve_create_id;
943 snprintf(port_str, 16, "%d", rdma->port);
944 port_str[15] = '\0';
946 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
947 if (ret) {
948 error_setg(errp, "RDMA ERROR: could not rdma_getaddrinfo address %s",
949 rdma->host);
950 goto err_resolve_get_addr;
953 /* Try all addresses, saving the first error in @err */
954 for (struct rdma_addrinfo *e = res; e != NULL; e = e->ai_next) {
955 Error **local_errp = err ? NULL : &err;
957 inet_ntop(e->ai_family,
958 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
959 trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
961 ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
962 RDMA_RESOLVE_TIMEOUT_MS);
963 if (ret >= 0) {
964 if (e->ai_family == AF_INET6) {
965 ret = qemu_rdma_broken_ipv6_kernel(rdma->cm_id->verbs,
966 local_errp);
967 if (ret < 0) {
968 continue;
971 error_free(err);
972 goto route;
976 rdma_freeaddrinfo(res);
977 if (err) {
978 error_propagate(errp, err);
979 } else {
980 error_setg(errp, "RDMA ERROR: could not resolve address %s",
981 rdma->host);
983 goto err_resolve_get_addr;
985 route:
986 rdma_freeaddrinfo(res);
987 qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
989 ret = rdma_get_cm_event(rdma->channel, &cm_event);
990 if (ret < 0) {
991 error_setg(errp, "RDMA ERROR: could not perform event_addr_resolved");
992 goto err_resolve_get_addr;
995 if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
996 error_setg(errp,
997 "RDMA ERROR: result not equal to event_addr_resolved %s",
998 rdma_event_str(cm_event->event));
999 rdma_ack_cm_event(cm_event);
1000 goto err_resolve_get_addr;
1002 rdma_ack_cm_event(cm_event);
1004 /* resolve route */
1005 ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
1006 if (ret < 0) {
1007 error_setg(errp, "RDMA ERROR: could not resolve rdma route");
1008 goto err_resolve_get_addr;
1011 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1012 if (ret < 0) {
1013 error_setg(errp, "RDMA ERROR: could not perform event_route_resolved");
1014 goto err_resolve_get_addr;
1016 if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
1017 error_setg(errp, "RDMA ERROR: "
1018 "result not equal to event_route_resolved: %s",
1019 rdma_event_str(cm_event->event));
1020 rdma_ack_cm_event(cm_event);
1021 goto err_resolve_get_addr;
1023 rdma_ack_cm_event(cm_event);
1024 rdma->verbs = rdma->cm_id->verbs;
1025 qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
1026 qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
1027 return 0;
1029 err_resolve_get_addr:
1030 rdma_destroy_id(rdma->cm_id);
1031 rdma->cm_id = NULL;
1032 err_resolve_create_id:
1033 rdma_destroy_event_channel(rdma->channel);
1034 rdma->channel = NULL;
1035 return -1;
1039 * Create protection domain and completion queues
1041 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma, Error **errp)
1043 /* allocate pd */
1044 rdma->pd = ibv_alloc_pd(rdma->verbs);
1045 if (!rdma->pd) {
1046 error_setg(errp, "failed to allocate protection domain");
1047 return -1;
1050 /* create receive completion channel */
1051 rdma->recv_comp_channel = ibv_create_comp_channel(rdma->verbs);
1052 if (!rdma->recv_comp_channel) {
1053 error_setg(errp, "failed to allocate receive completion channel");
1054 goto err_alloc_pd_cq;
1058 * Completion queue can be filled by read work requests.
1060 rdma->recv_cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1061 NULL, rdma->recv_comp_channel, 0);
1062 if (!rdma->recv_cq) {
1063 error_setg(errp, "failed to allocate receive completion queue");
1064 goto err_alloc_pd_cq;
1067 /* create send completion channel */
1068 rdma->send_comp_channel = ibv_create_comp_channel(rdma->verbs);
1069 if (!rdma->send_comp_channel) {
1070 error_setg(errp, "failed to allocate send completion channel");
1071 goto err_alloc_pd_cq;
1074 rdma->send_cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1075 NULL, rdma->send_comp_channel, 0);
1076 if (!rdma->send_cq) {
1077 error_setg(errp, "failed to allocate send completion queue");
1078 goto err_alloc_pd_cq;
1081 return 0;
1083 err_alloc_pd_cq:
1084 if (rdma->pd) {
1085 ibv_dealloc_pd(rdma->pd);
1087 if (rdma->recv_comp_channel) {
1088 ibv_destroy_comp_channel(rdma->recv_comp_channel);
1090 if (rdma->send_comp_channel) {
1091 ibv_destroy_comp_channel(rdma->send_comp_channel);
1093 if (rdma->recv_cq) {
1094 ibv_destroy_cq(rdma->recv_cq);
1095 rdma->recv_cq = NULL;
1097 rdma->pd = NULL;
1098 rdma->recv_comp_channel = NULL;
1099 rdma->send_comp_channel = NULL;
1100 return -1;
1105 * Create queue pairs.
1107 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1109 struct ibv_qp_init_attr attr = { 0 };
1111 attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1112 attr.cap.max_recv_wr = 3;
1113 attr.cap.max_send_sge = 1;
1114 attr.cap.max_recv_sge = 1;
1115 attr.send_cq = rdma->send_cq;
1116 attr.recv_cq = rdma->recv_cq;
1117 attr.qp_type = IBV_QPT_RC;
1119 if (rdma_create_qp(rdma->cm_id, rdma->pd, &attr) < 0) {
1120 return -1;
1123 rdma->qp = rdma->cm_id->qp;
1124 return 0;
1127 /* Check whether On-Demand Paging is supported by RDAM device */
1128 static bool rdma_support_odp(struct ibv_context *dev)
1130 struct ibv_device_attr_ex attr = {0};
1132 if (ibv_query_device_ex(dev, NULL, &attr)) {
1133 return false;
1136 if (attr.odp_caps.general_caps & IBV_ODP_SUPPORT) {
1137 return true;
1140 return false;
1144 * ibv_advise_mr to avoid RNR NAK error as far as possible.
1145 * The responder mr registering with ODP will sent RNR NAK back to
1146 * the requester in the face of the page fault.
1148 static void qemu_rdma_advise_prefetch_mr(struct ibv_pd *pd, uint64_t addr,
1149 uint32_t len, uint32_t lkey,
1150 const char *name, bool wr)
1152 #ifdef HAVE_IBV_ADVISE_MR
1153 int ret;
1154 int advice = wr ? IBV_ADVISE_MR_ADVICE_PREFETCH_WRITE :
1155 IBV_ADVISE_MR_ADVICE_PREFETCH;
1156 struct ibv_sge sg_list = {.lkey = lkey, .addr = addr, .length = len};
1158 ret = ibv_advise_mr(pd, advice,
1159 IBV_ADVISE_MR_FLAG_FLUSH, &sg_list, 1);
1160 /* ignore the error */
1161 trace_qemu_rdma_advise_mr(name, len, addr, strerror(ret));
1162 #endif
1165 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma, Error **errp)
1167 int i;
1168 RDMALocalBlocks *local = &rdma->local_ram_blocks;
1170 for (i = 0; i < local->nb_blocks; i++) {
1171 int access = IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE;
1173 local->block[i].mr =
1174 ibv_reg_mr(rdma->pd,
1175 local->block[i].local_host_addr,
1176 local->block[i].length, access
1179 * ibv_reg_mr() is not documented to set errno. If it does,
1180 * it's somebody else's doc bug. If it doesn't, the use of
1181 * errno below is wrong.
1182 * TODO Find out whether ibv_reg_mr() sets errno.
1184 if (!local->block[i].mr &&
1185 errno == ENOTSUP && rdma_support_odp(rdma->verbs)) {
1186 access |= IBV_ACCESS_ON_DEMAND;
1187 /* register ODP mr */
1188 local->block[i].mr =
1189 ibv_reg_mr(rdma->pd,
1190 local->block[i].local_host_addr,
1191 local->block[i].length, access);
1192 trace_qemu_rdma_register_odp_mr(local->block[i].block_name);
1194 if (local->block[i].mr) {
1195 qemu_rdma_advise_prefetch_mr(rdma->pd,
1196 (uintptr_t)local->block[i].local_host_addr,
1197 local->block[i].length,
1198 local->block[i].mr->lkey,
1199 local->block[i].block_name,
1200 true);
1204 if (!local->block[i].mr) {
1205 error_setg_errno(errp, errno,
1206 "Failed to register local dest ram block!");
1207 goto err;
1209 rdma->total_registrations++;
1212 return 0;
1214 err:
1215 for (i--; i >= 0; i--) {
1216 ibv_dereg_mr(local->block[i].mr);
1217 local->block[i].mr = NULL;
1218 rdma->total_registrations--;
1221 return -1;
1226 * Find the ram block that corresponds to the page requested to be
1227 * transmitted by QEMU.
1229 * Once the block is found, also identify which 'chunk' within that
1230 * block that the page belongs to.
1232 static void qemu_rdma_search_ram_block(RDMAContext *rdma,
1233 uintptr_t block_offset,
1234 uint64_t offset,
1235 uint64_t length,
1236 uint64_t *block_index,
1237 uint64_t *chunk_index)
1239 uint64_t current_addr = block_offset + offset;
1240 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1241 (void *) block_offset);
1242 assert(block);
1243 assert(current_addr >= block->offset);
1244 assert((current_addr + length) <= (block->offset + block->length));
1246 *block_index = block->index;
1247 *chunk_index = ram_chunk_index(block->local_host_addr,
1248 block->local_host_addr + (current_addr - block->offset));
1252 * Register a chunk with IB. If the chunk was already registered
1253 * previously, then skip.
1255 * Also return the keys associated with the registration needed
1256 * to perform the actual RDMA operation.
1258 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1259 RDMALocalBlock *block, uintptr_t host_addr,
1260 uint32_t *lkey, uint32_t *rkey, int chunk,
1261 uint8_t *chunk_start, uint8_t *chunk_end)
1263 if (block->mr) {
1264 if (lkey) {
1265 *lkey = block->mr->lkey;
1267 if (rkey) {
1268 *rkey = block->mr->rkey;
1270 return 0;
1273 /* allocate memory to store chunk MRs */
1274 if (!block->pmr) {
1275 block->pmr = g_new0(struct ibv_mr *, block->nb_chunks);
1279 * If 'rkey', then we're the destination, so grant access to the source.
1281 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1283 if (!block->pmr[chunk]) {
1284 uint64_t len = chunk_end - chunk_start;
1285 int access = rkey ? IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE :
1288 trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1290 block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access);
1292 * ibv_reg_mr() is not documented to set errno. If it does,
1293 * it's somebody else's doc bug. If it doesn't, the use of
1294 * errno below is wrong.
1295 * TODO Find out whether ibv_reg_mr() sets errno.
1297 if (!block->pmr[chunk] &&
1298 errno == ENOTSUP && rdma_support_odp(rdma->verbs)) {
1299 access |= IBV_ACCESS_ON_DEMAND;
1300 /* register ODP mr */
1301 block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access);
1302 trace_qemu_rdma_register_odp_mr(block->block_name);
1304 if (block->pmr[chunk]) {
1305 qemu_rdma_advise_prefetch_mr(rdma->pd, (uintptr_t)chunk_start,
1306 len, block->pmr[chunk]->lkey,
1307 block->block_name, rkey);
1312 if (!block->pmr[chunk]) {
1313 return -1;
1315 rdma->total_registrations++;
1317 if (lkey) {
1318 *lkey = block->pmr[chunk]->lkey;
1320 if (rkey) {
1321 *rkey = block->pmr[chunk]->rkey;
1323 return 0;
1327 * Register (at connection time) the memory used for control
1328 * channel messages.
1330 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1332 rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1333 rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1334 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1335 if (rdma->wr_data[idx].control_mr) {
1336 rdma->total_registrations++;
1337 return 0;
1339 return -1;
1343 * Perform a non-optimized memory unregistration after every transfer
1344 * for demonstration purposes, only if pin-all is not requested.
1346 * Potential optimizations:
1347 * 1. Start a new thread to run this function continuously
1348 - for bit clearing
1349 - and for receipt of unregister messages
1350 * 2. Use an LRU.
1351 * 3. Use workload hints.
1353 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1355 Error *err = NULL;
1357 while (rdma->unregistrations[rdma->unregister_current]) {
1358 int ret;
1359 uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1360 uint64_t chunk =
1361 (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1362 uint64_t index =
1363 (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1364 RDMALocalBlock *block =
1365 &(rdma->local_ram_blocks.block[index]);
1366 RDMARegister reg = { .current_index = index };
1367 RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1369 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1370 .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1371 .repeat = 1,
1374 trace_qemu_rdma_unregister_waiting_proc(chunk,
1375 rdma->unregister_current);
1377 rdma->unregistrations[rdma->unregister_current] = 0;
1378 rdma->unregister_current++;
1380 if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1381 rdma->unregister_current = 0;
1386 * Unregistration is speculative (because migration is single-threaded
1387 * and we cannot break the protocol's inifinband message ordering).
1388 * Thus, if the memory is currently being used for transmission,
1389 * then abort the attempt to unregister and try again
1390 * later the next time a completion is received for this memory.
1392 clear_bit(chunk, block->unregister_bitmap);
1394 if (test_bit(chunk, block->transit_bitmap)) {
1395 trace_qemu_rdma_unregister_waiting_inflight(chunk);
1396 continue;
1399 trace_qemu_rdma_unregister_waiting_send(chunk);
1401 ret = ibv_dereg_mr(block->pmr[chunk]);
1402 block->pmr[chunk] = NULL;
1403 block->remote_keys[chunk] = 0;
1405 if (ret != 0) {
1406 error_report("unregistration chunk failed: %s",
1407 strerror(ret));
1408 return -1;
1410 rdma->total_registrations--;
1412 reg.key.chunk = chunk;
1413 register_to_network(rdma, &reg);
1414 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1415 &resp, NULL, NULL, &err);
1416 if (ret < 0) {
1417 error_report_err(err);
1418 return -1;
1421 trace_qemu_rdma_unregister_waiting_complete(chunk);
1424 return 0;
1427 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1428 uint64_t chunk)
1430 uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1432 result |= (index << RDMA_WRID_BLOCK_SHIFT);
1433 result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1435 return result;
1439 * Consult the connection manager to see a work request
1440 * (of any kind) has completed.
1441 * Return the work request ID that completed.
1443 static int qemu_rdma_poll(RDMAContext *rdma, struct ibv_cq *cq,
1444 uint64_t *wr_id_out, uint32_t *byte_len)
1446 int ret;
1447 struct ibv_wc wc;
1448 uint64_t wr_id;
1450 ret = ibv_poll_cq(cq, 1, &wc);
1452 if (!ret) {
1453 *wr_id_out = RDMA_WRID_NONE;
1454 return 0;
1457 if (ret < 0) {
1458 return -1;
1461 wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1463 if (wc.status != IBV_WC_SUCCESS) {
1464 return -1;
1467 if (rdma->control_ready_expected &&
1468 (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1469 trace_qemu_rdma_poll_recv(wr_id - RDMA_WRID_RECV_CONTROL, wr_id,
1470 rdma->nb_sent);
1471 rdma->control_ready_expected = 0;
1474 if (wr_id == RDMA_WRID_RDMA_WRITE) {
1475 uint64_t chunk =
1476 (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1477 uint64_t index =
1478 (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1479 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1481 trace_qemu_rdma_poll_write(wr_id, rdma->nb_sent,
1482 index, chunk, block->local_host_addr,
1483 (void *)(uintptr_t)block->remote_host_addr);
1485 clear_bit(chunk, block->transit_bitmap);
1487 if (rdma->nb_sent > 0) {
1488 rdma->nb_sent--;
1490 } else {
1491 trace_qemu_rdma_poll_other(wr_id, rdma->nb_sent);
1494 *wr_id_out = wc.wr_id;
1495 if (byte_len) {
1496 *byte_len = wc.byte_len;
1499 return 0;
1502 /* Wait for activity on the completion channel.
1503 * Returns 0 on success, none-0 on error.
1505 static int qemu_rdma_wait_comp_channel(RDMAContext *rdma,
1506 struct ibv_comp_channel *comp_channel)
1508 struct rdma_cm_event *cm_event;
1511 * Coroutine doesn't start until migration_fd_process_incoming()
1512 * so don't yield unless we know we're running inside of a coroutine.
1514 if (rdma->migration_started_on_destination &&
1515 migration_incoming_get_current()->state == MIGRATION_STATUS_ACTIVE) {
1516 yield_until_fd_readable(comp_channel->fd);
1517 } else {
1518 /* This is the source side, we're in a separate thread
1519 * or destination prior to migration_fd_process_incoming()
1520 * after postcopy, the destination also in a separate thread.
1521 * we can't yield; so we have to poll the fd.
1522 * But we need to be able to handle 'cancel' or an error
1523 * without hanging forever.
1525 while (!rdma->errored && !rdma->received_error) {
1526 GPollFD pfds[2];
1527 pfds[0].fd = comp_channel->fd;
1528 pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1529 pfds[0].revents = 0;
1531 pfds[1].fd = rdma->channel->fd;
1532 pfds[1].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1533 pfds[1].revents = 0;
1535 /* 0.1s timeout, should be fine for a 'cancel' */
1536 switch (qemu_poll_ns(pfds, 2, 100 * 1000 * 1000)) {
1537 case 2:
1538 case 1: /* fd active */
1539 if (pfds[0].revents) {
1540 return 0;
1543 if (pfds[1].revents) {
1544 if (rdma_get_cm_event(rdma->channel, &cm_event) < 0) {
1545 return -1;
1548 if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
1549 cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
1550 rdma_ack_cm_event(cm_event);
1551 return -1;
1553 rdma_ack_cm_event(cm_event);
1555 break;
1557 case 0: /* Timeout, go around again */
1558 break;
1560 default: /* Error of some type -
1561 * I don't trust errno from qemu_poll_ns
1563 return -1;
1566 if (migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) {
1567 /* Bail out and let the cancellation happen */
1568 return -1;
1573 if (rdma->received_error) {
1574 return -1;
1576 return -rdma->errored;
1579 static struct ibv_comp_channel *to_channel(RDMAContext *rdma, uint64_t wrid)
1581 return wrid < RDMA_WRID_RECV_CONTROL ? rdma->send_comp_channel :
1582 rdma->recv_comp_channel;
1585 static struct ibv_cq *to_cq(RDMAContext *rdma, uint64_t wrid)
1587 return wrid < RDMA_WRID_RECV_CONTROL ? rdma->send_cq : rdma->recv_cq;
1591 * Block until the next work request has completed.
1593 * First poll to see if a work request has already completed,
1594 * otherwise block.
1596 * If we encounter completed work requests for IDs other than
1597 * the one we're interested in, then that's generally an error.
1599 * The only exception is actual RDMA Write completions. These
1600 * completions only need to be recorded, but do not actually
1601 * need further processing.
1603 static int qemu_rdma_block_for_wrid(RDMAContext *rdma,
1604 uint64_t wrid_requested,
1605 uint32_t *byte_len)
1607 int num_cq_events = 0, ret;
1608 struct ibv_cq *cq;
1609 void *cq_ctx;
1610 uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1611 struct ibv_comp_channel *ch = to_channel(rdma, wrid_requested);
1612 struct ibv_cq *poll_cq = to_cq(rdma, wrid_requested);
1614 if (ibv_req_notify_cq(poll_cq, 0)) {
1615 return -1;
1617 /* poll cq first */
1618 while (wr_id != wrid_requested) {
1619 ret = qemu_rdma_poll(rdma, poll_cq, &wr_id_in, byte_len);
1620 if (ret < 0) {
1621 return -1;
1624 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1626 if (wr_id == RDMA_WRID_NONE) {
1627 break;
1629 if (wr_id != wrid_requested) {
1630 trace_qemu_rdma_block_for_wrid_miss(wrid_requested, wr_id);
1634 if (wr_id == wrid_requested) {
1635 return 0;
1638 while (1) {
1639 ret = qemu_rdma_wait_comp_channel(rdma, ch);
1640 if (ret < 0) {
1641 goto err_block_for_wrid;
1644 ret = ibv_get_cq_event(ch, &cq, &cq_ctx);
1645 if (ret < 0) {
1646 goto err_block_for_wrid;
1649 num_cq_events++;
1651 if (ibv_req_notify_cq(cq, 0)) {
1652 goto err_block_for_wrid;
1655 while (wr_id != wrid_requested) {
1656 ret = qemu_rdma_poll(rdma, poll_cq, &wr_id_in, byte_len);
1657 if (ret < 0) {
1658 goto err_block_for_wrid;
1661 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1663 if (wr_id == RDMA_WRID_NONE) {
1664 break;
1666 if (wr_id != wrid_requested) {
1667 trace_qemu_rdma_block_for_wrid_miss(wrid_requested, wr_id);
1671 if (wr_id == wrid_requested) {
1672 goto success_block_for_wrid;
1676 success_block_for_wrid:
1677 if (num_cq_events) {
1678 ibv_ack_cq_events(cq, num_cq_events);
1680 return 0;
1682 err_block_for_wrid:
1683 if (num_cq_events) {
1684 ibv_ack_cq_events(cq, num_cq_events);
1687 rdma->errored = true;
1688 return -1;
1692 * Post a SEND message work request for the control channel
1693 * containing some data and block until the post completes.
1695 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1696 RDMAControlHeader *head,
1697 Error **errp)
1699 int ret;
1700 RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1701 struct ibv_send_wr *bad_wr;
1702 struct ibv_sge sge = {
1703 .addr = (uintptr_t)(wr->control),
1704 .length = head->len + sizeof(RDMAControlHeader),
1705 .lkey = wr->control_mr->lkey,
1707 struct ibv_send_wr send_wr = {
1708 .wr_id = RDMA_WRID_SEND_CONTROL,
1709 .opcode = IBV_WR_SEND,
1710 .send_flags = IBV_SEND_SIGNALED,
1711 .sg_list = &sge,
1712 .num_sge = 1,
1715 trace_qemu_rdma_post_send_control(control_desc(head->type));
1718 * We don't actually need to do a memcpy() in here if we used
1719 * the "sge" properly, but since we're only sending control messages
1720 * (not RAM in a performance-critical path), then its OK for now.
1722 * The copy makes the RDMAControlHeader simpler to manipulate
1723 * for the time being.
1725 assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1726 memcpy(wr->control, head, sizeof(RDMAControlHeader));
1727 control_to_network((void *) wr->control);
1729 if (buf) {
1730 memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1734 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1736 if (ret > 0) {
1737 error_setg(errp, "Failed to use post IB SEND for control");
1738 return -1;
1741 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1742 if (ret < 0) {
1743 error_setg(errp, "rdma migration: send polling control error");
1744 return -1;
1747 return 0;
1751 * Post a RECV work request in anticipation of some future receipt
1752 * of data on the control channel.
1754 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx,
1755 Error **errp)
1757 struct ibv_recv_wr *bad_wr;
1758 struct ibv_sge sge = {
1759 .addr = (uintptr_t)(rdma->wr_data[idx].control),
1760 .length = RDMA_CONTROL_MAX_BUFFER,
1761 .lkey = rdma->wr_data[idx].control_mr->lkey,
1764 struct ibv_recv_wr recv_wr = {
1765 .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1766 .sg_list = &sge,
1767 .num_sge = 1,
1771 if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1772 error_setg(errp, "error posting control recv");
1773 return -1;
1776 return 0;
1780 * Block and wait for a RECV control channel message to arrive.
1782 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1783 RDMAControlHeader *head, uint32_t expecting, int idx,
1784 Error **errp)
1786 uint32_t byte_len;
1787 int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1788 &byte_len);
1790 if (ret < 0) {
1791 error_setg(errp, "rdma migration: recv polling control error!");
1792 return -1;
1795 network_to_control((void *) rdma->wr_data[idx].control);
1796 memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1798 trace_qemu_rdma_exchange_get_response_start(control_desc(expecting));
1800 if (expecting == RDMA_CONTROL_NONE) {
1801 trace_qemu_rdma_exchange_get_response_none(control_desc(head->type),
1802 head->type);
1803 } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1804 error_setg(errp, "Was expecting a %s (%d) control message"
1805 ", but got: %s (%d), length: %d",
1806 control_desc(expecting), expecting,
1807 control_desc(head->type), head->type, head->len);
1808 if (head->type == RDMA_CONTROL_ERROR) {
1809 rdma->received_error = true;
1811 return -1;
1813 if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1814 error_setg(errp, "too long length: %d", head->len);
1815 return -1;
1817 if (sizeof(*head) + head->len != byte_len) {
1818 error_setg(errp, "Malformed length: %d byte_len %d",
1819 head->len, byte_len);
1820 return -1;
1823 return 0;
1827 * When a RECV work request has completed, the work request's
1828 * buffer is pointed at the header.
1830 * This will advance the pointer to the data portion
1831 * of the control message of the work request's buffer that
1832 * was populated after the work request finished.
1834 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1835 RDMAControlHeader *head)
1837 rdma->wr_data[idx].control_len = head->len;
1838 rdma->wr_data[idx].control_curr =
1839 rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1843 * This is an 'atomic' high-level operation to deliver a single, unified
1844 * control-channel message.
1846 * Additionally, if the user is expecting some kind of reply to this message,
1847 * they can request a 'resp' response message be filled in by posting an
1848 * additional work request on behalf of the user and waiting for an additional
1849 * completion.
1851 * The extra (optional) response is used during registration to us from having
1852 * to perform an *additional* exchange of message just to provide a response by
1853 * instead piggy-backing on the acknowledgement.
1855 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1856 uint8_t *data, RDMAControlHeader *resp,
1857 int *resp_idx,
1858 int (*callback)(RDMAContext *rdma,
1859 Error **errp),
1860 Error **errp)
1862 int ret;
1865 * Wait until the dest is ready before attempting to deliver the message
1866 * by waiting for a READY message.
1868 if (rdma->control_ready_expected) {
1869 RDMAControlHeader resp_ignored;
1871 ret = qemu_rdma_exchange_get_response(rdma, &resp_ignored,
1872 RDMA_CONTROL_READY,
1873 RDMA_WRID_READY, errp);
1874 if (ret < 0) {
1875 return -1;
1880 * If the user is expecting a response, post a WR in anticipation of it.
1882 if (resp) {
1883 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA, errp);
1884 if (ret < 0) {
1885 return -1;
1890 * Post a WR to replace the one we just consumed for the READY message.
1892 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY, errp);
1893 if (ret < 0) {
1894 return -1;
1898 * Deliver the control message that was requested.
1900 ret = qemu_rdma_post_send_control(rdma, data, head, errp);
1902 if (ret < 0) {
1903 return -1;
1907 * If we're expecting a response, block and wait for it.
1909 if (resp) {
1910 if (callback) {
1911 trace_qemu_rdma_exchange_send_issue_callback();
1912 ret = callback(rdma, errp);
1913 if (ret < 0) {
1914 return -1;
1918 trace_qemu_rdma_exchange_send_waiting(control_desc(resp->type));
1919 ret = qemu_rdma_exchange_get_response(rdma, resp,
1920 resp->type, RDMA_WRID_DATA,
1921 errp);
1923 if (ret < 0) {
1924 return -1;
1927 qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1928 if (resp_idx) {
1929 *resp_idx = RDMA_WRID_DATA;
1931 trace_qemu_rdma_exchange_send_received(control_desc(resp->type));
1934 rdma->control_ready_expected = 1;
1936 return 0;
1940 * This is an 'atomic' high-level operation to receive a single, unified
1941 * control-channel message.
1943 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1944 uint32_t expecting, Error **errp)
1946 RDMAControlHeader ready = {
1947 .len = 0,
1948 .type = RDMA_CONTROL_READY,
1949 .repeat = 1,
1951 int ret;
1954 * Inform the source that we're ready to receive a message.
1956 ret = qemu_rdma_post_send_control(rdma, NULL, &ready, errp);
1958 if (ret < 0) {
1959 return -1;
1963 * Block and wait for the message.
1965 ret = qemu_rdma_exchange_get_response(rdma, head,
1966 expecting, RDMA_WRID_READY, errp);
1968 if (ret < 0) {
1969 return -1;
1972 qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1975 * Post a new RECV work request to replace the one we just consumed.
1977 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY, errp);
1978 if (ret < 0) {
1979 return -1;
1982 return 0;
1986 * Write an actual chunk of memory using RDMA.
1988 * If we're using dynamic registration on the dest-side, we have to
1989 * send a registration command first.
1991 static int qemu_rdma_write_one(RDMAContext *rdma,
1992 int current_index, uint64_t current_addr,
1993 uint64_t length, Error **errp)
1995 struct ibv_sge sge;
1996 struct ibv_send_wr send_wr = { 0 };
1997 struct ibv_send_wr *bad_wr;
1998 int reg_result_idx, ret, count = 0;
1999 uint64_t chunk, chunks;
2000 uint8_t *chunk_start, *chunk_end;
2001 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
2002 RDMARegister reg;
2003 RDMARegisterResult *reg_result;
2004 RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
2005 RDMAControlHeader head = { .len = sizeof(RDMARegister),
2006 .type = RDMA_CONTROL_REGISTER_REQUEST,
2007 .repeat = 1,
2010 retry:
2011 sge.addr = (uintptr_t)(block->local_host_addr +
2012 (current_addr - block->offset));
2013 sge.length = length;
2015 chunk = ram_chunk_index(block->local_host_addr,
2016 (uint8_t *)(uintptr_t)sge.addr);
2017 chunk_start = ram_chunk_start(block, chunk);
2019 if (block->is_ram_block) {
2020 chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
2022 if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2023 chunks--;
2025 } else {
2026 chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
2028 if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2029 chunks--;
2033 trace_qemu_rdma_write_one_top(chunks + 1,
2034 (chunks + 1) *
2035 (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
2037 chunk_end = ram_chunk_end(block, chunk + chunks);
2040 while (test_bit(chunk, block->transit_bitmap)) {
2041 (void)count;
2042 trace_qemu_rdma_write_one_block(count++, current_index, chunk,
2043 sge.addr, length, rdma->nb_sent, block->nb_chunks);
2045 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2047 if (ret < 0) {
2048 error_setg(errp, "Failed to Wait for previous write to complete "
2049 "block %d chunk %" PRIu64
2050 " current %" PRIu64 " len %" PRIu64 " %d",
2051 current_index, chunk, sge.addr, length, rdma->nb_sent);
2052 return -1;
2056 if (!rdma->pin_all || !block->is_ram_block) {
2057 if (!block->remote_keys[chunk]) {
2059 * This chunk has not yet been registered, so first check to see
2060 * if the entire chunk is zero. If so, tell the other size to
2061 * memset() + madvise() the entire chunk without RDMA.
2064 if (buffer_is_zero((void *)(uintptr_t)sge.addr, length)) {
2065 RDMACompress comp = {
2066 .offset = current_addr,
2067 .value = 0,
2068 .block_idx = current_index,
2069 .length = length,
2072 head.len = sizeof(comp);
2073 head.type = RDMA_CONTROL_COMPRESS;
2075 trace_qemu_rdma_write_one_zero(chunk, sge.length,
2076 current_index, current_addr);
2078 compress_to_network(rdma, &comp);
2079 ret = qemu_rdma_exchange_send(rdma, &head,
2080 (uint8_t *) &comp, NULL, NULL, NULL, errp);
2082 if (ret < 0) {
2083 return -1;
2087 * TODO: Here we are sending something, but we are not
2088 * accounting for anything transferred. The following is wrong:
2090 * stat64_add(&mig_stats.rdma_bytes, sge.length);
2092 * because we are using some kind of compression. I
2093 * would think that head.len would be the more similar
2094 * thing to a correct value.
2096 stat64_add(&mig_stats.zero_pages,
2097 sge.length / qemu_target_page_size());
2098 return 1;
2102 * Otherwise, tell other side to register.
2104 reg.current_index = current_index;
2105 if (block->is_ram_block) {
2106 reg.key.current_addr = current_addr;
2107 } else {
2108 reg.key.chunk = chunk;
2110 reg.chunks = chunks;
2112 trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
2113 current_addr);
2115 register_to_network(rdma, &reg);
2116 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
2117 &resp, &reg_result_idx, NULL, errp);
2118 if (ret < 0) {
2119 return -1;
2122 /* try to overlap this single registration with the one we sent. */
2123 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2124 &sge.lkey, NULL, chunk,
2125 chunk_start, chunk_end)) {
2126 error_setg(errp, "cannot get lkey");
2127 return -1;
2130 reg_result = (RDMARegisterResult *)
2131 rdma->wr_data[reg_result_idx].control_curr;
2133 network_to_result(reg_result);
2135 trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
2136 reg_result->rkey, chunk);
2138 block->remote_keys[chunk] = reg_result->rkey;
2139 block->remote_host_addr = reg_result->host_addr;
2140 } else {
2141 /* already registered before */
2142 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2143 &sge.lkey, NULL, chunk,
2144 chunk_start, chunk_end)) {
2145 error_setg(errp, "cannot get lkey!");
2146 return -1;
2150 send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2151 } else {
2152 send_wr.wr.rdma.rkey = block->remote_rkey;
2154 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2155 &sge.lkey, NULL, chunk,
2156 chunk_start, chunk_end)) {
2157 error_setg(errp, "cannot get lkey!");
2158 return -1;
2163 * Encode the ram block index and chunk within this wrid.
2164 * We will use this information at the time of completion
2165 * to figure out which bitmap to check against and then which
2166 * chunk in the bitmap to look for.
2168 send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2169 current_index, chunk);
2171 send_wr.opcode = IBV_WR_RDMA_WRITE;
2172 send_wr.send_flags = IBV_SEND_SIGNALED;
2173 send_wr.sg_list = &sge;
2174 send_wr.num_sge = 1;
2175 send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2176 (current_addr - block->offset);
2178 trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2179 sge.length);
2182 * ibv_post_send() does not return negative error numbers,
2183 * per the specification they are positive - no idea why.
2185 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2187 if (ret == ENOMEM) {
2188 trace_qemu_rdma_write_one_queue_full();
2189 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2190 if (ret < 0) {
2191 error_setg(errp, "rdma migration: failed to make "
2192 "room in full send queue!");
2193 return -1;
2196 goto retry;
2198 } else if (ret > 0) {
2199 error_setg_errno(errp, ret,
2200 "rdma migration: post rdma write failed");
2201 return -1;
2204 set_bit(chunk, block->transit_bitmap);
2205 stat64_add(&mig_stats.normal_pages, sge.length / qemu_target_page_size());
2207 * We are adding to transferred the amount of data written, but no
2208 * overhead at all. I will asume that RDMA is magicaly and don't
2209 * need to transfer (at least) the addresses where it wants to
2210 * write the pages. Here it looks like it should be something
2211 * like:
2212 * sizeof(send_wr) + sge.length
2213 * but this being RDMA, who knows.
2215 stat64_add(&mig_stats.rdma_bytes, sge.length);
2216 ram_transferred_add(sge.length);
2217 rdma->total_writes++;
2219 return 0;
2223 * Push out any unwritten RDMA operations.
2225 * We support sending out multiple chunks at the same time.
2226 * Not all of them need to get signaled in the completion queue.
2228 static int qemu_rdma_write_flush(RDMAContext *rdma, Error **errp)
2230 int ret;
2232 if (!rdma->current_length) {
2233 return 0;
2236 ret = qemu_rdma_write_one(rdma, rdma->current_index, rdma->current_addr,
2237 rdma->current_length, errp);
2239 if (ret < 0) {
2240 return -1;
2243 if (ret == 0) {
2244 rdma->nb_sent++;
2245 trace_qemu_rdma_write_flush(rdma->nb_sent);
2248 rdma->current_length = 0;
2249 rdma->current_addr = 0;
2251 return 0;
2254 static inline bool qemu_rdma_buffer_mergeable(RDMAContext *rdma,
2255 uint64_t offset, uint64_t len)
2257 RDMALocalBlock *block;
2258 uint8_t *host_addr;
2259 uint8_t *chunk_end;
2261 if (rdma->current_index < 0) {
2262 return false;
2265 if (rdma->current_chunk < 0) {
2266 return false;
2269 block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2270 host_addr = block->local_host_addr + (offset - block->offset);
2271 chunk_end = ram_chunk_end(block, rdma->current_chunk);
2273 if (rdma->current_length == 0) {
2274 return false;
2278 * Only merge into chunk sequentially.
2280 if (offset != (rdma->current_addr + rdma->current_length)) {
2281 return false;
2284 if (offset < block->offset) {
2285 return false;
2288 if ((offset + len) > (block->offset + block->length)) {
2289 return false;
2292 if ((host_addr + len) > chunk_end) {
2293 return false;
2296 return true;
2300 * We're not actually writing here, but doing three things:
2302 * 1. Identify the chunk the buffer belongs to.
2303 * 2. If the chunk is full or the buffer doesn't belong to the current
2304 * chunk, then start a new chunk and flush() the old chunk.
2305 * 3. To keep the hardware busy, we also group chunks into batches
2306 * and only require that a batch gets acknowledged in the completion
2307 * queue instead of each individual chunk.
2309 static int qemu_rdma_write(RDMAContext *rdma,
2310 uint64_t block_offset, uint64_t offset,
2311 uint64_t len, Error **errp)
2313 uint64_t current_addr = block_offset + offset;
2314 uint64_t index = rdma->current_index;
2315 uint64_t chunk = rdma->current_chunk;
2317 /* If we cannot merge it, we flush the current buffer first. */
2318 if (!qemu_rdma_buffer_mergeable(rdma, current_addr, len)) {
2319 if (qemu_rdma_write_flush(rdma, errp) < 0) {
2320 return -1;
2322 rdma->current_length = 0;
2323 rdma->current_addr = current_addr;
2325 qemu_rdma_search_ram_block(rdma, block_offset,
2326 offset, len, &index, &chunk);
2327 rdma->current_index = index;
2328 rdma->current_chunk = chunk;
2331 /* merge it */
2332 rdma->current_length += len;
2334 /* flush it if buffer is too large */
2335 if (rdma->current_length >= RDMA_MERGE_MAX) {
2336 return qemu_rdma_write_flush(rdma, errp);
2339 return 0;
2342 static void qemu_rdma_cleanup(RDMAContext *rdma)
2344 Error *err = NULL;
2346 if (rdma->cm_id && rdma->connected) {
2347 if ((rdma->errored ||
2348 migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) &&
2349 !rdma->received_error) {
2350 RDMAControlHeader head = { .len = 0,
2351 .type = RDMA_CONTROL_ERROR,
2352 .repeat = 1,
2354 warn_report("Early error. Sending error.");
2355 if (qemu_rdma_post_send_control(rdma, NULL, &head, &err) < 0) {
2356 warn_report_err(err);
2360 rdma_disconnect(rdma->cm_id);
2361 trace_qemu_rdma_cleanup_disconnect();
2362 rdma->connected = false;
2365 if (rdma->channel) {
2366 qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
2368 g_free(rdma->dest_blocks);
2369 rdma->dest_blocks = NULL;
2371 for (int i = 0; i < RDMA_WRID_MAX; i++) {
2372 if (rdma->wr_data[i].control_mr) {
2373 rdma->total_registrations--;
2374 ibv_dereg_mr(rdma->wr_data[i].control_mr);
2376 rdma->wr_data[i].control_mr = NULL;
2379 if (rdma->local_ram_blocks.block) {
2380 while (rdma->local_ram_blocks.nb_blocks) {
2381 rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2385 if (rdma->qp) {
2386 rdma_destroy_qp(rdma->cm_id);
2387 rdma->qp = NULL;
2389 if (rdma->recv_cq) {
2390 ibv_destroy_cq(rdma->recv_cq);
2391 rdma->recv_cq = NULL;
2393 if (rdma->send_cq) {
2394 ibv_destroy_cq(rdma->send_cq);
2395 rdma->send_cq = NULL;
2397 if (rdma->recv_comp_channel) {
2398 ibv_destroy_comp_channel(rdma->recv_comp_channel);
2399 rdma->recv_comp_channel = NULL;
2401 if (rdma->send_comp_channel) {
2402 ibv_destroy_comp_channel(rdma->send_comp_channel);
2403 rdma->send_comp_channel = NULL;
2405 if (rdma->pd) {
2406 ibv_dealloc_pd(rdma->pd);
2407 rdma->pd = NULL;
2409 if (rdma->cm_id) {
2410 rdma_destroy_id(rdma->cm_id);
2411 rdma->cm_id = NULL;
2414 /* the destination side, listen_id and channel is shared */
2415 if (rdma->listen_id) {
2416 if (!rdma->is_return_path) {
2417 rdma_destroy_id(rdma->listen_id);
2419 rdma->listen_id = NULL;
2421 if (rdma->channel) {
2422 if (!rdma->is_return_path) {
2423 rdma_destroy_event_channel(rdma->channel);
2425 rdma->channel = NULL;
2429 if (rdma->channel) {
2430 rdma_destroy_event_channel(rdma->channel);
2431 rdma->channel = NULL;
2433 g_free(rdma->host);
2434 g_free(rdma->host_port);
2435 rdma->host = NULL;
2436 rdma->host_port = NULL;
2440 static int qemu_rdma_source_init(RDMAContext *rdma, bool pin_all, Error **errp)
2442 int ret;
2445 * Will be validated against destination's actual capabilities
2446 * after the connect() completes.
2448 rdma->pin_all = pin_all;
2450 ret = qemu_rdma_resolve_host(rdma, errp);
2451 if (ret < 0) {
2452 goto err_rdma_source_init;
2455 ret = qemu_rdma_alloc_pd_cq(rdma, errp);
2456 if (ret < 0) {
2457 goto err_rdma_source_init;
2460 ret = qemu_rdma_alloc_qp(rdma);
2461 if (ret < 0) {
2462 error_setg(errp, "RDMA ERROR: rdma migration: error allocating qp!");
2463 goto err_rdma_source_init;
2466 qemu_rdma_init_ram_blocks(rdma);
2468 /* Build the hash that maps from offset to RAMBlock */
2469 rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2470 for (int i = 0; i < rdma->local_ram_blocks.nb_blocks; i++) {
2471 g_hash_table_insert(rdma->blockmap,
2472 (void *)(uintptr_t)rdma->local_ram_blocks.block[i].offset,
2473 &rdma->local_ram_blocks.block[i]);
2476 for (int i = 0; i < RDMA_WRID_MAX; i++) {
2477 ret = qemu_rdma_reg_control(rdma, i);
2478 if (ret < 0) {
2479 error_setg(errp, "RDMA ERROR: rdma migration: error "
2480 "registering %d control!", i);
2481 goto err_rdma_source_init;
2485 return 0;
2487 err_rdma_source_init:
2488 qemu_rdma_cleanup(rdma);
2489 return -1;
2492 static int qemu_get_cm_event_timeout(RDMAContext *rdma,
2493 struct rdma_cm_event **cm_event,
2494 long msec, Error **errp)
2496 int ret;
2497 struct pollfd poll_fd = {
2498 .fd = rdma->channel->fd,
2499 .events = POLLIN,
2500 .revents = 0
2503 do {
2504 ret = poll(&poll_fd, 1, msec);
2505 } while (ret < 0 && errno == EINTR);
2507 if (ret == 0) {
2508 error_setg(errp, "RDMA ERROR: poll cm event timeout");
2509 return -1;
2510 } else if (ret < 0) {
2511 error_setg(errp, "RDMA ERROR: failed to poll cm event, errno=%i",
2512 errno);
2513 return -1;
2514 } else if (poll_fd.revents & POLLIN) {
2515 if (rdma_get_cm_event(rdma->channel, cm_event) < 0) {
2516 error_setg(errp, "RDMA ERROR: failed to get cm event");
2517 return -1;
2519 return 0;
2520 } else {
2521 error_setg(errp, "RDMA ERROR: no POLLIN event, revent=%x",
2522 poll_fd.revents);
2523 return -1;
2527 static int qemu_rdma_connect(RDMAContext *rdma, bool return_path,
2528 Error **errp)
2530 RDMACapabilities cap = {
2531 .version = RDMA_CONTROL_VERSION_CURRENT,
2532 .flags = 0,
2534 struct rdma_conn_param conn_param = { .initiator_depth = 2,
2535 .retry_count = 5,
2536 .private_data = &cap,
2537 .private_data_len = sizeof(cap),
2539 struct rdma_cm_event *cm_event;
2540 int ret;
2543 * Only negotiate the capability with destination if the user
2544 * on the source first requested the capability.
2546 if (rdma->pin_all) {
2547 trace_qemu_rdma_connect_pin_all_requested();
2548 cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2551 caps_to_network(&cap);
2553 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY, errp);
2554 if (ret < 0) {
2555 goto err_rdma_source_connect;
2558 ret = rdma_connect(rdma->cm_id, &conn_param);
2559 if (ret < 0) {
2560 error_setg_errno(errp, errno,
2561 "RDMA ERROR: connecting to destination!");
2562 goto err_rdma_source_connect;
2565 if (return_path) {
2566 ret = qemu_get_cm_event_timeout(rdma, &cm_event, 5000, errp);
2567 } else {
2568 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2569 if (ret < 0) {
2570 error_setg_errno(errp, errno,
2571 "RDMA ERROR: failed to get cm event");
2574 if (ret < 0) {
2575 goto err_rdma_source_connect;
2578 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2579 error_setg(errp, "RDMA ERROR: connecting to destination!");
2580 rdma_ack_cm_event(cm_event);
2581 goto err_rdma_source_connect;
2583 rdma->connected = true;
2585 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2586 network_to_caps(&cap);
2589 * Verify that the *requested* capabilities are supported by the destination
2590 * and disable them otherwise.
2592 if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2593 warn_report("RDMA: Server cannot support pinning all memory. "
2594 "Will register memory dynamically.");
2595 rdma->pin_all = false;
2598 trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2600 rdma_ack_cm_event(cm_event);
2602 rdma->control_ready_expected = 1;
2603 rdma->nb_sent = 0;
2604 return 0;
2606 err_rdma_source_connect:
2607 qemu_rdma_cleanup(rdma);
2608 return -1;
2611 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2613 Error *err = NULL;
2614 int ret;
2615 struct rdma_cm_id *listen_id;
2616 char ip[40] = "unknown";
2617 struct rdma_addrinfo *res, *e;
2618 char port_str[16];
2619 int reuse = 1;
2621 for (int i = 0; i < RDMA_WRID_MAX; i++) {
2622 rdma->wr_data[i].control_len = 0;
2623 rdma->wr_data[i].control_curr = NULL;
2626 if (!rdma->host || !rdma->host[0]) {
2627 error_setg(errp, "RDMA ERROR: RDMA host is not set!");
2628 rdma->errored = true;
2629 return -1;
2631 /* create CM channel */
2632 rdma->channel = rdma_create_event_channel();
2633 if (!rdma->channel) {
2634 error_setg(errp, "RDMA ERROR: could not create rdma event channel");
2635 rdma->errored = true;
2636 return -1;
2639 /* create CM id */
2640 ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2641 if (ret < 0) {
2642 error_setg(errp, "RDMA ERROR: could not create cm_id!");
2643 goto err_dest_init_create_listen_id;
2646 snprintf(port_str, 16, "%d", rdma->port);
2647 port_str[15] = '\0';
2649 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2650 if (ret) {
2651 error_setg(errp, "RDMA ERROR: could not rdma_getaddrinfo address %s",
2652 rdma->host);
2653 goto err_dest_init_bind_addr;
2656 ret = rdma_set_option(listen_id, RDMA_OPTION_ID, RDMA_OPTION_ID_REUSEADDR,
2657 &reuse, sizeof reuse);
2658 if (ret < 0) {
2659 error_setg(errp, "RDMA ERROR: Error: could not set REUSEADDR option");
2660 goto err_dest_init_bind_addr;
2663 /* Try all addresses, saving the first error in @err */
2664 for (e = res; e != NULL; e = e->ai_next) {
2665 Error **local_errp = err ? NULL : &err;
2667 inet_ntop(e->ai_family,
2668 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2669 trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2670 ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2671 if (ret < 0) {
2672 continue;
2674 if (e->ai_family == AF_INET6) {
2675 ret = qemu_rdma_broken_ipv6_kernel(listen_id->verbs,
2676 local_errp);
2677 if (ret < 0) {
2678 continue;
2681 error_free(err);
2682 break;
2685 rdma_freeaddrinfo(res);
2686 if (!e) {
2687 if (err) {
2688 error_propagate(errp, err);
2689 } else {
2690 error_setg(errp, "RDMA ERROR: Error: could not rdma_bind_addr!");
2692 goto err_dest_init_bind_addr;
2695 rdma->listen_id = listen_id;
2696 qemu_rdma_dump_gid("dest_init", listen_id);
2697 return 0;
2699 err_dest_init_bind_addr:
2700 rdma_destroy_id(listen_id);
2701 err_dest_init_create_listen_id:
2702 rdma_destroy_event_channel(rdma->channel);
2703 rdma->channel = NULL;
2704 rdma->errored = true;
2705 return -1;
2709 static void qemu_rdma_return_path_dest_init(RDMAContext *rdma_return_path,
2710 RDMAContext *rdma)
2712 for (int i = 0; i < RDMA_WRID_MAX; i++) {
2713 rdma_return_path->wr_data[i].control_len = 0;
2714 rdma_return_path->wr_data[i].control_curr = NULL;
2717 /*the CM channel and CM id is shared*/
2718 rdma_return_path->channel = rdma->channel;
2719 rdma_return_path->listen_id = rdma->listen_id;
2721 rdma->return_path = rdma_return_path;
2722 rdma_return_path->return_path = rdma;
2723 rdma_return_path->is_return_path = true;
2726 static RDMAContext *qemu_rdma_data_init(const char *host_port, Error **errp)
2728 RDMAContext *rdma = NULL;
2729 InetSocketAddress *addr;
2731 rdma = g_new0(RDMAContext, 1);
2732 rdma->current_index = -1;
2733 rdma->current_chunk = -1;
2735 addr = g_new(InetSocketAddress, 1);
2736 if (!inet_parse(addr, host_port, NULL)) {
2737 rdma->port = atoi(addr->port);
2738 rdma->host = g_strdup(addr->host);
2739 rdma->host_port = g_strdup(host_port);
2740 } else {
2741 error_setg(errp, "RDMA ERROR: bad RDMA migration address '%s'",
2742 host_port);
2743 g_free(rdma);
2744 rdma = NULL;
2747 qapi_free_InetSocketAddress(addr);
2748 return rdma;
2752 * QEMUFile interface to the control channel.
2753 * SEND messages for control only.
2754 * VM's ram is handled with regular RDMA messages.
2756 static ssize_t qio_channel_rdma_writev(QIOChannel *ioc,
2757 const struct iovec *iov,
2758 size_t niov,
2759 int *fds,
2760 size_t nfds,
2761 int flags,
2762 Error **errp)
2764 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2765 RDMAContext *rdma;
2766 int ret;
2767 ssize_t done = 0;
2768 size_t len;
2770 RCU_READ_LOCK_GUARD();
2771 rdma = qatomic_rcu_read(&rioc->rdmaout);
2773 if (!rdma) {
2774 error_setg(errp, "RDMA control channel output is not set");
2775 return -1;
2778 if (rdma->errored) {
2779 error_setg(errp,
2780 "RDMA is in an error state waiting migration to abort!");
2781 return -1;
2785 * Push out any writes that
2786 * we're queued up for VM's ram.
2788 ret = qemu_rdma_write_flush(rdma, errp);
2789 if (ret < 0) {
2790 rdma->errored = true;
2791 return -1;
2794 for (int i = 0; i < niov; i++) {
2795 size_t remaining = iov[i].iov_len;
2796 uint8_t * data = (void *)iov[i].iov_base;
2797 while (remaining) {
2798 RDMAControlHeader head = {};
2800 len = MIN(remaining, RDMA_SEND_INCREMENT);
2801 remaining -= len;
2803 head.len = len;
2804 head.type = RDMA_CONTROL_QEMU_FILE;
2806 ret = qemu_rdma_exchange_send(rdma, &head,
2807 data, NULL, NULL, NULL, errp);
2809 if (ret < 0) {
2810 rdma->errored = true;
2811 return -1;
2814 data += len;
2815 done += len;
2819 return done;
2822 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2823 size_t size, int idx)
2825 size_t len = 0;
2827 if (rdma->wr_data[idx].control_len) {
2828 trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2830 len = MIN(size, rdma->wr_data[idx].control_len);
2831 memcpy(buf, rdma->wr_data[idx].control_curr, len);
2832 rdma->wr_data[idx].control_curr += len;
2833 rdma->wr_data[idx].control_len -= len;
2836 return len;
2840 * QEMUFile interface to the control channel.
2841 * RDMA links don't use bytestreams, so we have to
2842 * return bytes to QEMUFile opportunistically.
2844 static ssize_t qio_channel_rdma_readv(QIOChannel *ioc,
2845 const struct iovec *iov,
2846 size_t niov,
2847 int **fds,
2848 size_t *nfds,
2849 int flags,
2850 Error **errp)
2852 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2853 RDMAContext *rdma;
2854 RDMAControlHeader head;
2855 int ret;
2856 ssize_t done = 0;
2857 size_t len;
2859 RCU_READ_LOCK_GUARD();
2860 rdma = qatomic_rcu_read(&rioc->rdmain);
2862 if (!rdma) {
2863 error_setg(errp, "RDMA control channel input is not set");
2864 return -1;
2867 if (rdma->errored) {
2868 error_setg(errp,
2869 "RDMA is in an error state waiting migration to abort!");
2870 return -1;
2873 for (int i = 0; i < niov; i++) {
2874 size_t want = iov[i].iov_len;
2875 uint8_t *data = (void *)iov[i].iov_base;
2878 * First, we hold on to the last SEND message we
2879 * were given and dish out the bytes until we run
2880 * out of bytes.
2882 len = qemu_rdma_fill(rdma, data, want, 0);
2883 done += len;
2884 want -= len;
2885 /* Got what we needed, so go to next iovec */
2886 if (want == 0) {
2887 continue;
2890 /* If we got any data so far, then don't wait
2891 * for more, just return what we have */
2892 if (done > 0) {
2893 break;
2897 /* We've got nothing at all, so lets wait for
2898 * more to arrive
2900 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE,
2901 errp);
2903 if (ret < 0) {
2904 rdma->errored = true;
2905 return -1;
2909 * SEND was received with new bytes, now try again.
2911 len = qemu_rdma_fill(rdma, data, want, 0);
2912 done += len;
2913 want -= len;
2915 /* Still didn't get enough, so lets just return */
2916 if (want) {
2917 if (done == 0) {
2918 return QIO_CHANNEL_ERR_BLOCK;
2919 } else {
2920 break;
2924 return done;
2928 * Block until all the outstanding chunks have been delivered by the hardware.
2930 static int qemu_rdma_drain_cq(RDMAContext *rdma)
2932 Error *err = NULL;
2934 if (qemu_rdma_write_flush(rdma, &err) < 0) {
2935 error_report_err(err);
2936 return -1;
2939 while (rdma->nb_sent) {
2940 if (qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL) < 0) {
2941 error_report("rdma migration: complete polling error!");
2942 return -1;
2946 qemu_rdma_unregister_waiting(rdma);
2948 return 0;
2952 static int qio_channel_rdma_set_blocking(QIOChannel *ioc,
2953 bool blocking,
2954 Error **errp)
2956 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2957 /* XXX we should make readv/writev actually honour this :-) */
2958 rioc->blocking = blocking;
2959 return 0;
2963 typedef struct QIOChannelRDMASource QIOChannelRDMASource;
2964 struct QIOChannelRDMASource {
2965 GSource parent;
2966 QIOChannelRDMA *rioc;
2967 GIOCondition condition;
2970 static gboolean
2971 qio_channel_rdma_source_prepare(GSource *source,
2972 gint *timeout)
2974 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2975 RDMAContext *rdma;
2976 GIOCondition cond = 0;
2977 *timeout = -1;
2979 RCU_READ_LOCK_GUARD();
2980 if (rsource->condition == G_IO_IN) {
2981 rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
2982 } else {
2983 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
2986 if (!rdma) {
2987 error_report("RDMAContext is NULL when prepare Gsource");
2988 return FALSE;
2991 if (rdma->wr_data[0].control_len) {
2992 cond |= G_IO_IN;
2994 cond |= G_IO_OUT;
2996 return cond & rsource->condition;
2999 static gboolean
3000 qio_channel_rdma_source_check(GSource *source)
3002 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3003 RDMAContext *rdma;
3004 GIOCondition cond = 0;
3006 RCU_READ_LOCK_GUARD();
3007 if (rsource->condition == G_IO_IN) {
3008 rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3009 } else {
3010 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3013 if (!rdma) {
3014 error_report("RDMAContext is NULL when check Gsource");
3015 return FALSE;
3018 if (rdma->wr_data[0].control_len) {
3019 cond |= G_IO_IN;
3021 cond |= G_IO_OUT;
3023 return cond & rsource->condition;
3026 static gboolean
3027 qio_channel_rdma_source_dispatch(GSource *source,
3028 GSourceFunc callback,
3029 gpointer user_data)
3031 QIOChannelFunc func = (QIOChannelFunc)callback;
3032 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3033 RDMAContext *rdma;
3034 GIOCondition cond = 0;
3036 RCU_READ_LOCK_GUARD();
3037 if (rsource->condition == G_IO_IN) {
3038 rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3039 } else {
3040 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3043 if (!rdma) {
3044 error_report("RDMAContext is NULL when dispatch Gsource");
3045 return FALSE;
3048 if (rdma->wr_data[0].control_len) {
3049 cond |= G_IO_IN;
3051 cond |= G_IO_OUT;
3053 return (*func)(QIO_CHANNEL(rsource->rioc),
3054 (cond & rsource->condition),
3055 user_data);
3058 static void
3059 qio_channel_rdma_source_finalize(GSource *source)
3061 QIOChannelRDMASource *ssource = (QIOChannelRDMASource *)source;
3063 object_unref(OBJECT(ssource->rioc));
3066 static GSourceFuncs qio_channel_rdma_source_funcs = {
3067 qio_channel_rdma_source_prepare,
3068 qio_channel_rdma_source_check,
3069 qio_channel_rdma_source_dispatch,
3070 qio_channel_rdma_source_finalize
3073 static GSource *qio_channel_rdma_create_watch(QIOChannel *ioc,
3074 GIOCondition condition)
3076 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3077 QIOChannelRDMASource *ssource;
3078 GSource *source;
3080 source = g_source_new(&qio_channel_rdma_source_funcs,
3081 sizeof(QIOChannelRDMASource));
3082 ssource = (QIOChannelRDMASource *)source;
3084 ssource->rioc = rioc;
3085 object_ref(OBJECT(rioc));
3087 ssource->condition = condition;
3089 return source;
3092 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel *ioc,
3093 AioContext *read_ctx,
3094 IOHandler *io_read,
3095 AioContext *write_ctx,
3096 IOHandler *io_write,
3097 void *opaque)
3099 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3100 if (io_read) {
3101 aio_set_fd_handler(read_ctx, rioc->rdmain->recv_comp_channel->fd,
3102 io_read, io_write, NULL, NULL, opaque);
3103 aio_set_fd_handler(read_ctx, rioc->rdmain->send_comp_channel->fd,
3104 io_read, io_write, NULL, NULL, opaque);
3105 } else {
3106 aio_set_fd_handler(write_ctx, rioc->rdmaout->recv_comp_channel->fd,
3107 io_read, io_write, NULL, NULL, opaque);
3108 aio_set_fd_handler(write_ctx, rioc->rdmaout->send_comp_channel->fd,
3109 io_read, io_write, NULL, NULL, opaque);
3113 struct rdma_close_rcu {
3114 struct rcu_head rcu;
3115 RDMAContext *rdmain;
3116 RDMAContext *rdmaout;
3119 /* callback from qio_channel_rdma_close via call_rcu */
3120 static void qio_channel_rdma_close_rcu(struct rdma_close_rcu *rcu)
3122 if (rcu->rdmain) {
3123 qemu_rdma_cleanup(rcu->rdmain);
3126 if (rcu->rdmaout) {
3127 qemu_rdma_cleanup(rcu->rdmaout);
3130 g_free(rcu->rdmain);
3131 g_free(rcu->rdmaout);
3132 g_free(rcu);
3135 static int qio_channel_rdma_close(QIOChannel *ioc,
3136 Error **errp)
3138 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3139 RDMAContext *rdmain, *rdmaout;
3140 struct rdma_close_rcu *rcu = g_new(struct rdma_close_rcu, 1);
3142 trace_qemu_rdma_close();
3144 rdmain = rioc->rdmain;
3145 if (rdmain) {
3146 qatomic_rcu_set(&rioc->rdmain, NULL);
3149 rdmaout = rioc->rdmaout;
3150 if (rdmaout) {
3151 qatomic_rcu_set(&rioc->rdmaout, NULL);
3154 rcu->rdmain = rdmain;
3155 rcu->rdmaout = rdmaout;
3156 call_rcu(rcu, qio_channel_rdma_close_rcu, rcu);
3158 return 0;
3161 static int
3162 qio_channel_rdma_shutdown(QIOChannel *ioc,
3163 QIOChannelShutdown how,
3164 Error **errp)
3166 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3167 RDMAContext *rdmain, *rdmaout;
3169 RCU_READ_LOCK_GUARD();
3171 rdmain = qatomic_rcu_read(&rioc->rdmain);
3172 rdmaout = qatomic_rcu_read(&rioc->rdmain);
3174 switch (how) {
3175 case QIO_CHANNEL_SHUTDOWN_READ:
3176 if (rdmain) {
3177 rdmain->errored = true;
3179 break;
3180 case QIO_CHANNEL_SHUTDOWN_WRITE:
3181 if (rdmaout) {
3182 rdmaout->errored = true;
3184 break;
3185 case QIO_CHANNEL_SHUTDOWN_BOTH:
3186 default:
3187 if (rdmain) {
3188 rdmain->errored = true;
3190 if (rdmaout) {
3191 rdmaout->errored = true;
3193 break;
3196 return 0;
3200 * Parameters:
3201 * @offset == 0 :
3202 * This means that 'block_offset' is a full virtual address that does not
3203 * belong to a RAMBlock of the virtual machine and instead
3204 * represents a private malloc'd memory area that the caller wishes to
3205 * transfer.
3207 * @offset != 0 :
3208 * Offset is an offset to be added to block_offset and used
3209 * to also lookup the corresponding RAMBlock.
3211 * @size : Number of bytes to transfer
3213 * @pages_sent : User-specificed pointer to indicate how many pages were
3214 * sent. Usually, this will not be more than a few bytes of
3215 * the protocol because most transfers are sent asynchronously.
3217 static int qemu_rdma_save_page(QEMUFile *f, ram_addr_t block_offset,
3218 ram_addr_t offset, size_t size)
3220 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3221 Error *err = NULL;
3222 RDMAContext *rdma;
3223 int ret;
3225 RCU_READ_LOCK_GUARD();
3226 rdma = qatomic_rcu_read(&rioc->rdmaout);
3228 if (!rdma) {
3229 return -1;
3232 if (rdma_errored(rdma)) {
3233 return -1;
3236 qemu_fflush(f);
3239 * Add this page to the current 'chunk'. If the chunk
3240 * is full, or the page doesn't belong to the current chunk,
3241 * an actual RDMA write will occur and a new chunk will be formed.
3243 ret = qemu_rdma_write(rdma, block_offset, offset, size, &err);
3244 if (ret < 0) {
3245 error_report_err(err);
3246 goto err;
3250 * Drain the Completion Queue if possible, but do not block,
3251 * just poll.
3253 * If nothing to poll, the end of the iteration will do this
3254 * again to make sure we don't overflow the request queue.
3256 while (1) {
3257 uint64_t wr_id, wr_id_in;
3258 ret = qemu_rdma_poll(rdma, rdma->recv_cq, &wr_id_in, NULL);
3260 if (ret < 0) {
3261 error_report("rdma migration: polling error");
3262 goto err;
3265 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3267 if (wr_id == RDMA_WRID_NONE) {
3268 break;
3272 while (1) {
3273 uint64_t wr_id, wr_id_in;
3274 ret = qemu_rdma_poll(rdma, rdma->send_cq, &wr_id_in, NULL);
3276 if (ret < 0) {
3277 error_report("rdma migration: polling error");
3278 goto err;
3281 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3283 if (wr_id == RDMA_WRID_NONE) {
3284 break;
3288 return RAM_SAVE_CONTROL_DELAYED;
3290 err:
3291 rdma->errored = true;
3292 return -1;
3295 int rdma_control_save_page(QEMUFile *f, ram_addr_t block_offset,
3296 ram_addr_t offset, size_t size)
3298 if (!migrate_rdma() || migration_in_postcopy()) {
3299 return RAM_SAVE_CONTROL_NOT_SUPP;
3302 int ret = qemu_rdma_save_page(f, block_offset, offset, size);
3304 if (ret != RAM_SAVE_CONTROL_DELAYED &&
3305 ret != RAM_SAVE_CONTROL_NOT_SUPP) {
3306 if (ret < 0) {
3307 qemu_file_set_error(f, ret);
3310 return ret;
3313 static void rdma_accept_incoming_migration(void *opaque);
3315 static void rdma_cm_poll_handler(void *opaque)
3317 RDMAContext *rdma = opaque;
3318 struct rdma_cm_event *cm_event;
3319 MigrationIncomingState *mis = migration_incoming_get_current();
3321 if (rdma_get_cm_event(rdma->channel, &cm_event) < 0) {
3322 error_report("get_cm_event failed %d", errno);
3323 return;
3326 if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
3327 cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
3328 if (!rdma->errored &&
3329 migration_incoming_get_current()->state !=
3330 MIGRATION_STATUS_COMPLETED) {
3331 error_report("receive cm event, cm event is %d", cm_event->event);
3332 rdma->errored = true;
3333 if (rdma->return_path) {
3334 rdma->return_path->errored = true;
3337 rdma_ack_cm_event(cm_event);
3338 if (mis->loadvm_co) {
3339 qemu_coroutine_enter(mis->loadvm_co);
3341 return;
3343 rdma_ack_cm_event(cm_event);
3346 static int qemu_rdma_accept(RDMAContext *rdma)
3348 Error *err = NULL;
3349 RDMACapabilities cap;
3350 struct rdma_conn_param conn_param = {
3351 .responder_resources = 2,
3352 .private_data = &cap,
3353 .private_data_len = sizeof(cap),
3355 RDMAContext *rdma_return_path = NULL;
3356 struct rdma_cm_event *cm_event;
3357 struct ibv_context *verbs;
3358 int ret;
3360 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3361 if (ret < 0) {
3362 goto err_rdma_dest_wait;
3365 if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
3366 rdma_ack_cm_event(cm_event);
3367 goto err_rdma_dest_wait;
3371 * initialize the RDMAContext for return path for postcopy after first
3372 * connection request reached.
3374 if ((migrate_postcopy() || migrate_return_path())
3375 && !rdma->is_return_path) {
3376 rdma_return_path = qemu_rdma_data_init(rdma->host_port, NULL);
3377 if (rdma_return_path == NULL) {
3378 rdma_ack_cm_event(cm_event);
3379 goto err_rdma_dest_wait;
3382 qemu_rdma_return_path_dest_init(rdma_return_path, rdma);
3385 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
3387 network_to_caps(&cap);
3389 if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
3390 error_report("Unknown source RDMA version: %d, bailing...",
3391 cap.version);
3392 rdma_ack_cm_event(cm_event);
3393 goto err_rdma_dest_wait;
3397 * Respond with only the capabilities this version of QEMU knows about.
3399 cap.flags &= known_capabilities;
3402 * Enable the ones that we do know about.
3403 * Add other checks here as new ones are introduced.
3405 if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
3406 rdma->pin_all = true;
3409 rdma->cm_id = cm_event->id;
3410 verbs = cm_event->id->verbs;
3412 rdma_ack_cm_event(cm_event);
3414 trace_qemu_rdma_accept_pin_state(rdma->pin_all);
3416 caps_to_network(&cap);
3418 trace_qemu_rdma_accept_pin_verbsc(verbs);
3420 if (!rdma->verbs) {
3421 rdma->verbs = verbs;
3422 } else if (rdma->verbs != verbs) {
3423 error_report("ibv context not matching %p, %p!", rdma->verbs,
3424 verbs);
3425 goto err_rdma_dest_wait;
3428 qemu_rdma_dump_id("dest_init", verbs);
3430 ret = qemu_rdma_alloc_pd_cq(rdma, &err);
3431 if (ret < 0) {
3432 error_report_err(err);
3433 goto err_rdma_dest_wait;
3436 ret = qemu_rdma_alloc_qp(rdma);
3437 if (ret < 0) {
3438 error_report("rdma migration: error allocating qp!");
3439 goto err_rdma_dest_wait;
3442 qemu_rdma_init_ram_blocks(rdma);
3444 for (int i = 0; i < RDMA_WRID_MAX; i++) {
3445 ret = qemu_rdma_reg_control(rdma, i);
3446 if (ret < 0) {
3447 error_report("rdma: error registering %d control", i);
3448 goto err_rdma_dest_wait;
3452 /* Accept the second connection request for return path */
3453 if ((migrate_postcopy() || migrate_return_path())
3454 && !rdma->is_return_path) {
3455 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3456 NULL,
3457 (void *)(intptr_t)rdma->return_path);
3458 } else {
3459 qemu_set_fd_handler(rdma->channel->fd, rdma_cm_poll_handler,
3460 NULL, rdma);
3463 ret = rdma_accept(rdma->cm_id, &conn_param);
3464 if (ret < 0) {
3465 error_report("rdma_accept failed");
3466 goto err_rdma_dest_wait;
3469 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3470 if (ret < 0) {
3471 error_report("rdma_accept get_cm_event failed");
3472 goto err_rdma_dest_wait;
3475 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
3476 error_report("rdma_accept not event established");
3477 rdma_ack_cm_event(cm_event);
3478 goto err_rdma_dest_wait;
3481 rdma_ack_cm_event(cm_event);
3482 rdma->connected = true;
3484 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY, &err);
3485 if (ret < 0) {
3486 error_report_err(err);
3487 goto err_rdma_dest_wait;
3490 qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
3492 return 0;
3494 err_rdma_dest_wait:
3495 rdma->errored = true;
3496 qemu_rdma_cleanup(rdma);
3497 g_free(rdma_return_path);
3498 return -1;
3501 static int dest_ram_sort_func(const void *a, const void *b)
3503 unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
3504 unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
3506 return (a_index < b_index) ? -1 : (a_index != b_index);
3510 * During each iteration of the migration, we listen for instructions
3511 * by the source VM to perform dynamic page registrations before they
3512 * can perform RDMA operations.
3514 * We respond with the 'rkey'.
3516 * Keep doing this until the source tells us to stop.
3518 int rdma_registration_handle(QEMUFile *f)
3520 RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
3521 .type = RDMA_CONTROL_REGISTER_RESULT,
3522 .repeat = 0,
3524 RDMAControlHeader unreg_resp = { .len = 0,
3525 .type = RDMA_CONTROL_UNREGISTER_FINISHED,
3526 .repeat = 0,
3528 RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
3529 .repeat = 1 };
3530 QIOChannelRDMA *rioc;
3531 Error *err = NULL;
3532 RDMAContext *rdma;
3533 RDMALocalBlocks *local;
3534 RDMAControlHeader head;
3535 RDMARegister *reg, *registers;
3536 RDMACompress *comp;
3537 RDMARegisterResult *reg_result;
3538 static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
3539 RDMALocalBlock *block;
3540 void *host_addr;
3541 int ret;
3542 int idx = 0;
3544 if (!migrate_rdma()) {
3545 return 0;
3548 RCU_READ_LOCK_GUARD();
3549 rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3550 rdma = qatomic_rcu_read(&rioc->rdmain);
3552 if (!rdma) {
3553 return -1;
3556 if (rdma_errored(rdma)) {
3557 return -1;
3560 local = &rdma->local_ram_blocks;
3561 do {
3562 trace_rdma_registration_handle_wait();
3564 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE, &err);
3566 if (ret < 0) {
3567 error_report_err(err);
3568 break;
3571 if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
3572 error_report("rdma: Too many requests in this message (%d)."
3573 "Bailing.", head.repeat);
3574 break;
3577 switch (head.type) {
3578 case RDMA_CONTROL_COMPRESS:
3579 comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
3580 network_to_compress(comp);
3582 trace_rdma_registration_handle_compress(comp->length,
3583 comp->block_idx,
3584 comp->offset);
3585 if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
3586 error_report("rdma: 'compress' bad block index %u (vs %d)",
3587 (unsigned int)comp->block_idx,
3588 rdma->local_ram_blocks.nb_blocks);
3589 goto err;
3591 block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3593 host_addr = block->local_host_addr +
3594 (comp->offset - block->offset);
3595 if (comp->value) {
3596 error_report("rdma: Zero page with non-zero (%d) value",
3597 comp->value);
3598 goto err;
3600 ram_handle_zero(host_addr, comp->length);
3601 break;
3603 case RDMA_CONTROL_REGISTER_FINISHED:
3604 trace_rdma_registration_handle_finished();
3605 return 0;
3607 case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3608 trace_rdma_registration_handle_ram_blocks();
3610 /* Sort our local RAM Block list so it's the same as the source,
3611 * we can do this since we've filled in a src_index in the list
3612 * as we received the RAMBlock list earlier.
3614 qsort(rdma->local_ram_blocks.block,
3615 rdma->local_ram_blocks.nb_blocks,
3616 sizeof(RDMALocalBlock), dest_ram_sort_func);
3617 for (int i = 0; i < local->nb_blocks; i++) {
3618 local->block[i].index = i;
3621 if (rdma->pin_all) {
3622 ret = qemu_rdma_reg_whole_ram_blocks(rdma, &err);
3623 if (ret < 0) {
3624 error_report_err(err);
3625 goto err;
3630 * Dest uses this to prepare to transmit the RAMBlock descriptions
3631 * to the source VM after connection setup.
3632 * Both sides use the "remote" structure to communicate and update
3633 * their "local" descriptions with what was sent.
3635 for (int i = 0; i < local->nb_blocks; i++) {
3636 rdma->dest_blocks[i].remote_host_addr =
3637 (uintptr_t)(local->block[i].local_host_addr);
3639 if (rdma->pin_all) {
3640 rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3643 rdma->dest_blocks[i].offset = local->block[i].offset;
3644 rdma->dest_blocks[i].length = local->block[i].length;
3646 dest_block_to_network(&rdma->dest_blocks[i]);
3647 trace_rdma_registration_handle_ram_blocks_loop(
3648 local->block[i].block_name,
3649 local->block[i].offset,
3650 local->block[i].length,
3651 local->block[i].local_host_addr,
3652 local->block[i].src_index);
3655 blocks.len = rdma->local_ram_blocks.nb_blocks
3656 * sizeof(RDMADestBlock);
3659 ret = qemu_rdma_post_send_control(rdma,
3660 (uint8_t *) rdma->dest_blocks, &blocks,
3661 &err);
3663 if (ret < 0) {
3664 error_report_err(err);
3665 goto err;
3668 break;
3669 case RDMA_CONTROL_REGISTER_REQUEST:
3670 trace_rdma_registration_handle_register(head.repeat);
3672 reg_resp.repeat = head.repeat;
3673 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3675 for (int count = 0; count < head.repeat; count++) {
3676 uint64_t chunk;
3677 uint8_t *chunk_start, *chunk_end;
3679 reg = &registers[count];
3680 network_to_register(reg);
3682 reg_result = &results[count];
3684 trace_rdma_registration_handle_register_loop(count,
3685 reg->current_index, reg->key.current_addr, reg->chunks);
3687 if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3688 error_report("rdma: 'register' bad block index %u (vs %d)",
3689 (unsigned int)reg->current_index,
3690 rdma->local_ram_blocks.nb_blocks);
3691 goto err;
3693 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3694 if (block->is_ram_block) {
3695 if (block->offset > reg->key.current_addr) {
3696 error_report("rdma: bad register address for block %s"
3697 " offset: %" PRIx64 " current_addr: %" PRIx64,
3698 block->block_name, block->offset,
3699 reg->key.current_addr);
3700 goto err;
3702 host_addr = (block->local_host_addr +
3703 (reg->key.current_addr - block->offset));
3704 chunk = ram_chunk_index(block->local_host_addr,
3705 (uint8_t *) host_addr);
3706 } else {
3707 chunk = reg->key.chunk;
3708 host_addr = block->local_host_addr +
3709 (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3710 /* Check for particularly bad chunk value */
3711 if (host_addr < (void *)block->local_host_addr) {
3712 error_report("rdma: bad chunk for block %s"
3713 " chunk: %" PRIx64,
3714 block->block_name, reg->key.chunk);
3715 goto err;
3718 chunk_start = ram_chunk_start(block, chunk);
3719 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3720 /* avoid "-Waddress-of-packed-member" warning */
3721 uint32_t tmp_rkey = 0;
3722 if (qemu_rdma_register_and_get_keys(rdma, block,
3723 (uintptr_t)host_addr, NULL, &tmp_rkey,
3724 chunk, chunk_start, chunk_end)) {
3725 error_report("cannot get rkey");
3726 goto err;
3728 reg_result->rkey = tmp_rkey;
3730 reg_result->host_addr = (uintptr_t)block->local_host_addr;
3732 trace_rdma_registration_handle_register_rkey(reg_result->rkey);
3734 result_to_network(reg_result);
3737 ret = qemu_rdma_post_send_control(rdma,
3738 (uint8_t *) results, &reg_resp, &err);
3740 if (ret < 0) {
3741 error_report_err(err);
3742 goto err;
3744 break;
3745 case RDMA_CONTROL_UNREGISTER_REQUEST:
3746 trace_rdma_registration_handle_unregister(head.repeat);
3747 unreg_resp.repeat = head.repeat;
3748 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3750 for (int count = 0; count < head.repeat; count++) {
3751 reg = &registers[count];
3752 network_to_register(reg);
3754 trace_rdma_registration_handle_unregister_loop(count,
3755 reg->current_index, reg->key.chunk);
3757 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3759 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3760 block->pmr[reg->key.chunk] = NULL;
3762 if (ret != 0) {
3763 error_report("rdma unregistration chunk failed: %s",
3764 strerror(errno));
3765 goto err;
3768 rdma->total_registrations--;
3770 trace_rdma_registration_handle_unregister_success(reg->key.chunk);
3773 ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp, &err);
3775 if (ret < 0) {
3776 error_report_err(err);
3777 goto err;
3779 break;
3780 case RDMA_CONTROL_REGISTER_RESULT:
3781 error_report("Invalid RESULT message at dest.");
3782 goto err;
3783 default:
3784 error_report("Unknown control message %s", control_desc(head.type));
3785 goto err;
3787 } while (1);
3789 err:
3790 rdma->errored = true;
3791 return -1;
3794 /* Destination:
3795 * Called during the initial RAM load section which lists the
3796 * RAMBlocks by name. This lets us know the order of the RAMBlocks on
3797 * the source. We've already built our local RAMBlock list, but not
3798 * yet sent the list to the source.
3800 int rdma_block_notification_handle(QEMUFile *f, const char *name)
3802 int curr;
3803 int found = -1;
3805 if (!migrate_rdma()) {
3806 return 0;
3809 RCU_READ_LOCK_GUARD();
3810 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3811 RDMAContext *rdma = qatomic_rcu_read(&rioc->rdmain);
3813 if (!rdma) {
3814 return -1;
3817 /* Find the matching RAMBlock in our local list */
3818 for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3819 if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3820 found = curr;
3821 break;
3825 if (found == -1) {
3826 error_report("RAMBlock '%s' not found on destination", name);
3827 return -1;
3830 rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3831 trace_rdma_block_notification_handle(name, rdma->next_src_index);
3832 rdma->next_src_index++;
3834 return 0;
3837 int rdma_registration_start(QEMUFile *f, uint64_t flags)
3839 if (!migrate_rdma() || migration_in_postcopy()) {
3840 return 0;
3843 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3844 RCU_READ_LOCK_GUARD();
3845 RDMAContext *rdma = qatomic_rcu_read(&rioc->rdmaout);
3846 if (!rdma) {
3847 return -1;
3850 if (rdma_errored(rdma)) {
3851 return -1;
3854 trace_rdma_registration_start(flags);
3855 qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3856 return qemu_fflush(f);
3860 * Inform dest that dynamic registrations are done for now.
3861 * First, flush writes, if any.
3863 int rdma_registration_stop(QEMUFile *f, uint64_t flags)
3865 QIOChannelRDMA *rioc;
3866 Error *err = NULL;
3867 RDMAContext *rdma;
3868 RDMAControlHeader head = { .len = 0, .repeat = 1 };
3869 int ret;
3871 if (!migrate_rdma() || migration_in_postcopy()) {
3872 return 0;
3875 RCU_READ_LOCK_GUARD();
3876 rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3877 rdma = qatomic_rcu_read(&rioc->rdmaout);
3878 if (!rdma) {
3879 return -1;
3882 if (rdma_errored(rdma)) {
3883 return -1;
3886 qemu_fflush(f);
3887 ret = qemu_rdma_drain_cq(rdma);
3889 if (ret < 0) {
3890 goto err;
3893 if (flags == RAM_CONTROL_SETUP) {
3894 RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3895 RDMALocalBlocks *local = &rdma->local_ram_blocks;
3896 int reg_result_idx, nb_dest_blocks;
3898 head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3899 trace_rdma_registration_stop_ram();
3902 * Make sure that we parallelize the pinning on both sides.
3903 * For very large guests, doing this serially takes a really
3904 * long time, so we have to 'interleave' the pinning locally
3905 * with the control messages by performing the pinning on this
3906 * side before we receive the control response from the other
3907 * side that the pinning has completed.
3909 ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3910 &reg_result_idx, rdma->pin_all ?
3911 qemu_rdma_reg_whole_ram_blocks : NULL,
3912 &err);
3913 if (ret < 0) {
3914 error_report_err(err);
3915 return -1;
3918 nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
3921 * The protocol uses two different sets of rkeys (mutually exclusive):
3922 * 1. One key to represent the virtual address of the entire ram block.
3923 * (dynamic chunk registration disabled - pin everything with one rkey.)
3924 * 2. One to represent individual chunks within a ram block.
3925 * (dynamic chunk registration enabled - pin individual chunks.)
3927 * Once the capability is successfully negotiated, the destination transmits
3928 * the keys to use (or sends them later) including the virtual addresses
3929 * and then propagates the remote ram block descriptions to his local copy.
3932 if (local->nb_blocks != nb_dest_blocks) {
3933 error_report("ram blocks mismatch (Number of blocks %d vs %d)",
3934 local->nb_blocks, nb_dest_blocks);
3935 error_printf("Your QEMU command line parameters are probably "
3936 "not identical on both the source and destination.");
3937 rdma->errored = true;
3938 return -1;
3941 qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3942 memcpy(rdma->dest_blocks,
3943 rdma->wr_data[reg_result_idx].control_curr, resp.len);
3944 for (int i = 0; i < nb_dest_blocks; i++) {
3945 network_to_dest_block(&rdma->dest_blocks[i]);
3947 /* We require that the blocks are in the same order */
3948 if (rdma->dest_blocks[i].length != local->block[i].length) {
3949 error_report("Block %s/%d has a different length %" PRIu64
3950 "vs %" PRIu64,
3951 local->block[i].block_name, i,
3952 local->block[i].length,
3953 rdma->dest_blocks[i].length);
3954 rdma->errored = true;
3955 return -1;
3957 local->block[i].remote_host_addr =
3958 rdma->dest_blocks[i].remote_host_addr;
3959 local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
3963 trace_rdma_registration_stop(flags);
3965 head.type = RDMA_CONTROL_REGISTER_FINISHED;
3966 ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL, &err);
3968 if (ret < 0) {
3969 error_report_err(err);
3970 goto err;
3973 return 0;
3974 err:
3975 rdma->errored = true;
3976 return -1;
3979 static void qio_channel_rdma_finalize(Object *obj)
3981 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(obj);
3982 if (rioc->rdmain) {
3983 qemu_rdma_cleanup(rioc->rdmain);
3984 g_free(rioc->rdmain);
3985 rioc->rdmain = NULL;
3987 if (rioc->rdmaout) {
3988 qemu_rdma_cleanup(rioc->rdmaout);
3989 g_free(rioc->rdmaout);
3990 rioc->rdmaout = NULL;
3994 static void qio_channel_rdma_class_init(ObjectClass *klass,
3995 void *class_data G_GNUC_UNUSED)
3997 QIOChannelClass *ioc_klass = QIO_CHANNEL_CLASS(klass);
3999 ioc_klass->io_writev = qio_channel_rdma_writev;
4000 ioc_klass->io_readv = qio_channel_rdma_readv;
4001 ioc_klass->io_set_blocking = qio_channel_rdma_set_blocking;
4002 ioc_klass->io_close = qio_channel_rdma_close;
4003 ioc_klass->io_create_watch = qio_channel_rdma_create_watch;
4004 ioc_klass->io_set_aio_fd_handler = qio_channel_rdma_set_aio_fd_handler;
4005 ioc_klass->io_shutdown = qio_channel_rdma_shutdown;
4008 static const TypeInfo qio_channel_rdma_info = {
4009 .parent = TYPE_QIO_CHANNEL,
4010 .name = TYPE_QIO_CHANNEL_RDMA,
4011 .instance_size = sizeof(QIOChannelRDMA),
4012 .instance_finalize = qio_channel_rdma_finalize,
4013 .class_init = qio_channel_rdma_class_init,
4016 static void qio_channel_rdma_register_types(void)
4018 type_register_static(&qio_channel_rdma_info);
4021 type_init(qio_channel_rdma_register_types);
4023 static QEMUFile *rdma_new_input(RDMAContext *rdma)
4025 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
4027 rioc->file = qemu_file_new_input(QIO_CHANNEL(rioc));
4028 rioc->rdmain = rdma;
4029 rioc->rdmaout = rdma->return_path;
4031 return rioc->file;
4034 static QEMUFile *rdma_new_output(RDMAContext *rdma)
4036 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
4038 rioc->file = qemu_file_new_output(QIO_CHANNEL(rioc));
4039 rioc->rdmaout = rdma;
4040 rioc->rdmain = rdma->return_path;
4042 return rioc->file;
4045 static void rdma_accept_incoming_migration(void *opaque)
4047 RDMAContext *rdma = opaque;
4048 QEMUFile *f;
4049 Error *local_err = NULL;
4051 trace_qemu_rdma_accept_incoming_migration();
4052 if (qemu_rdma_accept(rdma) < 0) {
4053 error_report("RDMA ERROR: Migration initialization failed");
4054 return;
4057 trace_qemu_rdma_accept_incoming_migration_accepted();
4059 if (rdma->is_return_path) {
4060 return;
4063 f = rdma_new_input(rdma);
4064 if (f == NULL) {
4065 error_report("RDMA ERROR: could not open RDMA for input");
4066 qemu_rdma_cleanup(rdma);
4067 return;
4070 rdma->migration_started_on_destination = 1;
4071 migration_fd_process_incoming(f, &local_err);
4072 if (local_err) {
4073 error_reportf_err(local_err, "RDMA ERROR:");
4077 void rdma_start_incoming_migration(const char *host_port, Error **errp)
4079 MigrationState *s = migrate_get_current();
4080 int ret;
4081 RDMAContext *rdma;
4083 trace_rdma_start_incoming_migration();
4085 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4086 if (ram_block_discard_is_required()) {
4087 error_setg(errp, "RDMA: cannot disable RAM discard");
4088 return;
4091 rdma = qemu_rdma_data_init(host_port, errp);
4092 if (rdma == NULL) {
4093 goto err;
4096 ret = qemu_rdma_dest_init(rdma, errp);
4097 if (ret < 0) {
4098 goto err;
4101 trace_rdma_start_incoming_migration_after_dest_init();
4103 ret = rdma_listen(rdma->listen_id, 5);
4105 if (ret < 0) {
4106 error_setg(errp, "RDMA ERROR: listening on socket!");
4107 goto cleanup_rdma;
4110 trace_rdma_start_incoming_migration_after_rdma_listen();
4111 s->rdma_migration = true;
4112 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
4113 NULL, (void *)(intptr_t)rdma);
4114 return;
4116 cleanup_rdma:
4117 qemu_rdma_cleanup(rdma);
4118 err:
4119 if (rdma) {
4120 g_free(rdma->host);
4121 g_free(rdma->host_port);
4123 g_free(rdma);
4126 void rdma_start_outgoing_migration(void *opaque,
4127 const char *host_port, Error **errp)
4129 MigrationState *s = opaque;
4130 RDMAContext *rdma_return_path = NULL;
4131 RDMAContext *rdma;
4132 int ret;
4134 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4135 if (ram_block_discard_is_required()) {
4136 error_setg(errp, "RDMA: cannot disable RAM discard");
4137 return;
4140 rdma = qemu_rdma_data_init(host_port, errp);
4141 if (rdma == NULL) {
4142 goto err;
4145 ret = qemu_rdma_source_init(rdma, migrate_rdma_pin_all(), errp);
4147 if (ret < 0) {
4148 goto err;
4151 trace_rdma_start_outgoing_migration_after_rdma_source_init();
4152 ret = qemu_rdma_connect(rdma, false, errp);
4154 if (ret < 0) {
4155 goto err;
4158 /* RDMA postcopy need a separate queue pair for return path */
4159 if (migrate_postcopy() || migrate_return_path()) {
4160 rdma_return_path = qemu_rdma_data_init(host_port, errp);
4162 if (rdma_return_path == NULL) {
4163 goto return_path_err;
4166 ret = qemu_rdma_source_init(rdma_return_path,
4167 migrate_rdma_pin_all(), errp);
4169 if (ret < 0) {
4170 goto return_path_err;
4173 ret = qemu_rdma_connect(rdma_return_path, true, errp);
4175 if (ret < 0) {
4176 goto return_path_err;
4179 rdma->return_path = rdma_return_path;
4180 rdma_return_path->return_path = rdma;
4181 rdma_return_path->is_return_path = true;
4184 trace_rdma_start_outgoing_migration_after_rdma_connect();
4186 s->to_dst_file = rdma_new_output(rdma);
4187 s->rdma_migration = true;
4188 migrate_fd_connect(s, NULL);
4189 return;
4190 return_path_err:
4191 qemu_rdma_cleanup(rdma);
4192 err:
4193 g_free(rdma);
4194 g_free(rdma_return_path);