qapi: Use predicate callback to determine visit filtering
[qemu/armbru.git] / include / qom / cpu.h
blobb613ff0329788a7a88705d29044cc08963289b93
1 /*
2 * QEMU CPU model
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
20 #ifndef QEMU_CPU_H
21 #define QEMU_CPU_H
23 #include <signal.h>
24 #include <setjmp.h>
25 #include "hw/qdev-core.h"
26 #include "disas/bfd.h"
27 #include "exec/hwaddr.h"
28 #include "exec/memattrs.h"
29 #include "qemu/queue.h"
30 #include "qemu/thread.h"
31 #include "qemu/typedefs.h"
33 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
34 void *opaque);
36 /**
37 * vaddr:
38 * Type wide enough to contain any #target_ulong virtual address.
40 typedef uint64_t vaddr;
41 #define VADDR_PRId PRId64
42 #define VADDR_PRIu PRIu64
43 #define VADDR_PRIo PRIo64
44 #define VADDR_PRIx PRIx64
45 #define VADDR_PRIX PRIX64
46 #define VADDR_MAX UINT64_MAX
48 /**
49 * SECTION:cpu
50 * @section_id: QEMU-cpu
51 * @title: CPU Class
52 * @short_description: Base class for all CPUs
55 #define TYPE_CPU "cpu"
57 /* Since this macro is used a lot in hot code paths and in conjunction with
58 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
59 * an unchecked cast.
61 #define CPU(obj) ((CPUState *)(obj))
63 #define CPU_CLASS(class) OBJECT_CLASS_CHECK(CPUClass, (class), TYPE_CPU)
64 #define CPU_GET_CLASS(obj) OBJECT_GET_CLASS(CPUClass, (obj), TYPE_CPU)
66 typedef struct CPUState CPUState;
68 typedef void (*CPUUnassignedAccess)(CPUState *cpu, hwaddr addr,
69 bool is_write, bool is_exec, int opaque,
70 unsigned size);
72 struct TranslationBlock;
74 /**
75 * CPUClass:
76 * @class_by_name: Callback to map -cpu command line model name to an
77 * instantiatable CPU type.
78 * @parse_features: Callback to parse command line arguments.
79 * @reset: Callback to reset the #CPUState to its initial state.
80 * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
81 * @has_work: Callback for checking if there is work to do.
82 * @do_interrupt: Callback for interrupt handling.
83 * @do_unassigned_access: Callback for unassigned access handling.
84 * @do_unaligned_access: Callback for unaligned access handling, if
85 * the target defines #ALIGNED_ONLY.
86 * @virtio_is_big_endian: Callback to return %true if a CPU which supports
87 * runtime configurable endianness is currently big-endian. Non-configurable
88 * CPUs can use the default implementation of this method. This method should
89 * not be used by any callers other than the pre-1.0 virtio devices.
90 * @memory_rw_debug: Callback for GDB memory access.
91 * @dump_state: Callback for dumping state.
92 * @dump_statistics: Callback for dumping statistics.
93 * @get_arch_id: Callback for getting architecture-dependent CPU ID.
94 * @get_paging_enabled: Callback for inquiring whether paging is enabled.
95 * @get_memory_mapping: Callback for obtaining the memory mappings.
96 * @set_pc: Callback for setting the Program Counter register.
97 * @synchronize_from_tb: Callback for synchronizing state from a TCG
98 * #TranslationBlock.
99 * @handle_mmu_fault: Callback for handling an MMU fault.
100 * @get_phys_page_debug: Callback for obtaining a physical address.
101 * @gdb_read_register: Callback for letting GDB read a register.
102 * @gdb_write_register: Callback for letting GDB write a register.
103 * @debug_excp_handler: Callback for handling debug exceptions.
104 * @write_elf64_note: Callback for writing a CPU-specific ELF note to a
105 * 64-bit VM coredump.
106 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
107 * note to a 32-bit VM coredump.
108 * @write_elf32_note: Callback for writing a CPU-specific ELF note to a
109 * 32-bit VM coredump.
110 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
111 * note to a 32-bit VM coredump.
112 * @vmsd: State description for migration.
113 * @gdb_num_core_regs: Number of core registers accessible to GDB.
114 * @gdb_core_xml_file: File name for core registers GDB XML description.
115 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
116 * before the insn which triggers a watchpoint rather than after it.
117 * @cpu_exec_enter: Callback for cpu_exec preparation.
118 * @cpu_exec_exit: Callback for cpu_exec cleanup.
119 * @cpu_exec_interrupt: Callback for processing interrupts in cpu_exec.
120 * @disas_set_info: Setup architecture specific components of disassembly info
122 * Represents a CPU family or model.
124 typedef struct CPUClass {
125 /*< private >*/
126 DeviceClass parent_class;
127 /*< public >*/
129 ObjectClass *(*class_by_name)(const char *cpu_model);
130 void (*parse_features)(CPUState *cpu, char *str, Error **errp);
132 void (*reset)(CPUState *cpu);
133 int reset_dump_flags;
134 bool (*has_work)(CPUState *cpu);
135 void (*do_interrupt)(CPUState *cpu);
136 CPUUnassignedAccess do_unassigned_access;
137 void (*do_unaligned_access)(CPUState *cpu, vaddr addr,
138 int is_write, int is_user, uintptr_t retaddr);
139 bool (*virtio_is_big_endian)(CPUState *cpu);
140 int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
141 uint8_t *buf, int len, bool is_write);
142 void (*dump_state)(CPUState *cpu, FILE *f, fprintf_function cpu_fprintf,
143 int flags);
144 void (*dump_statistics)(CPUState *cpu, FILE *f,
145 fprintf_function cpu_fprintf, int flags);
146 int64_t (*get_arch_id)(CPUState *cpu);
147 bool (*get_paging_enabled)(const CPUState *cpu);
148 void (*get_memory_mapping)(CPUState *cpu, MemoryMappingList *list,
149 Error **errp);
150 void (*set_pc)(CPUState *cpu, vaddr value);
151 void (*synchronize_from_tb)(CPUState *cpu, struct TranslationBlock *tb);
152 int (*handle_mmu_fault)(CPUState *cpu, vaddr address, int rw,
153 int mmu_index);
154 hwaddr (*get_phys_page_debug)(CPUState *cpu, vaddr addr);
155 int (*gdb_read_register)(CPUState *cpu, uint8_t *buf, int reg);
156 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
157 void (*debug_excp_handler)(CPUState *cpu);
159 int (*write_elf64_note)(WriteCoreDumpFunction f, CPUState *cpu,
160 int cpuid, void *opaque);
161 int (*write_elf64_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
162 void *opaque);
163 int (*write_elf32_note)(WriteCoreDumpFunction f, CPUState *cpu,
164 int cpuid, void *opaque);
165 int (*write_elf32_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
166 void *opaque);
168 const struct VMStateDescription *vmsd;
169 int gdb_num_core_regs;
170 const char *gdb_core_xml_file;
171 bool gdb_stop_before_watchpoint;
173 void (*cpu_exec_enter)(CPUState *cpu);
174 void (*cpu_exec_exit)(CPUState *cpu);
175 bool (*cpu_exec_interrupt)(CPUState *cpu, int interrupt_request);
177 void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
178 } CPUClass;
180 #ifdef HOST_WORDS_BIGENDIAN
181 typedef struct icount_decr_u16 {
182 uint16_t high;
183 uint16_t low;
184 } icount_decr_u16;
185 #else
186 typedef struct icount_decr_u16 {
187 uint16_t low;
188 uint16_t high;
189 } icount_decr_u16;
190 #endif
192 typedef struct CPUBreakpoint {
193 vaddr pc;
194 int flags; /* BP_* */
195 QTAILQ_ENTRY(CPUBreakpoint) entry;
196 } CPUBreakpoint;
198 typedef struct CPUWatchpoint {
199 vaddr vaddr;
200 vaddr len;
201 vaddr hitaddr;
202 MemTxAttrs hitattrs;
203 int flags; /* BP_* */
204 QTAILQ_ENTRY(CPUWatchpoint) entry;
205 } CPUWatchpoint;
207 struct KVMState;
208 struct kvm_run;
210 #define TB_JMP_CACHE_BITS 12
211 #define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS)
214 * CPUState:
215 * @cpu_index: CPU index (informative).
216 * @nr_cores: Number of cores within this CPU package.
217 * @nr_threads: Number of threads within this CPU.
218 * @numa_node: NUMA node this CPU is belonging to.
219 * @host_tid: Host thread ID.
220 * @running: #true if CPU is currently running (usermode).
221 * @created: Indicates whether the CPU thread has been successfully created.
222 * @interrupt_request: Indicates a pending interrupt request.
223 * @halted: Nonzero if the CPU is in suspended state.
224 * @stop: Indicates a pending stop request.
225 * @stopped: Indicates the CPU has been artificially stopped.
226 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
227 * @tcg_exit_req: Set to force TCG to stop executing linked TBs for this
228 * CPU and return to its top level loop.
229 * @singlestep_enabled: Flags for single-stepping.
230 * @icount_extra: Instructions until next timer event.
231 * @icount_decr: Number of cycles left, with interrupt flag in high bit.
232 * This allows a single read-compare-cbranch-write sequence to test
233 * for both decrementer underflow and exceptions.
234 * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution
235 * requires that IO only be performed on the last instruction of a TB
236 * so that interrupts take effect immediately.
237 * @env_ptr: Pointer to subclass-specific CPUArchState field.
238 * @current_tb: Currently executing TB.
239 * @gdb_regs: Additional GDB registers.
240 * @gdb_num_regs: Number of total registers accessible to GDB.
241 * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
242 * @next_cpu: Next CPU sharing TB cache.
243 * @opaque: User data.
244 * @mem_io_pc: Host Program Counter at which the memory was accessed.
245 * @mem_io_vaddr: Target virtual address at which the memory was accessed.
246 * @kvm_fd: vCPU file descriptor for KVM.
247 * @work_mutex: Lock to prevent multiple access to queued_work_*.
248 * @queued_work_first: First asynchronous work pending.
250 * State of one CPU core or thread.
252 struct CPUState {
253 /*< private >*/
254 DeviceState parent_obj;
255 /*< public >*/
257 int nr_cores;
258 int nr_threads;
259 int numa_node;
261 struct QemuThread *thread;
262 #ifdef _WIN32
263 HANDLE hThread;
264 #endif
265 int thread_id;
266 uint32_t host_tid;
267 bool running;
268 struct QemuCond *halt_cond;
269 bool thread_kicked;
270 bool created;
271 bool stop;
272 bool stopped;
273 bool crash_occurred;
274 bool exit_request;
275 uint32_t interrupt_request;
276 int singlestep_enabled;
277 int64_t icount_extra;
278 sigjmp_buf jmp_env;
280 QemuMutex work_mutex;
281 struct qemu_work_item *queued_work_first, *queued_work_last;
283 AddressSpace *as;
284 struct AddressSpaceDispatch *memory_dispatch;
285 MemoryListener *tcg_as_listener;
287 void *env_ptr; /* CPUArchState */
288 struct TranslationBlock *current_tb;
289 struct TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE];
290 struct GDBRegisterState *gdb_regs;
291 int gdb_num_regs;
292 int gdb_num_g_regs;
293 QTAILQ_ENTRY(CPUState) node;
295 /* ice debug support */
296 QTAILQ_HEAD(breakpoints_head, CPUBreakpoint) breakpoints;
298 QTAILQ_HEAD(watchpoints_head, CPUWatchpoint) watchpoints;
299 CPUWatchpoint *watchpoint_hit;
301 void *opaque;
303 /* In order to avoid passing too many arguments to the MMIO helpers,
304 * we store some rarely used information in the CPU context.
306 uintptr_t mem_io_pc;
307 vaddr mem_io_vaddr;
309 int kvm_fd;
310 bool kvm_vcpu_dirty;
311 struct KVMState *kvm_state;
312 struct kvm_run *kvm_run;
314 /* TODO Move common fields from CPUArchState here. */
315 int cpu_index; /* used by alpha TCG */
316 uint32_t halted; /* used by alpha, cris, ppc TCG */
317 union {
318 uint32_t u32;
319 icount_decr_u16 u16;
320 } icount_decr;
321 uint32_t can_do_io;
322 int32_t exception_index; /* used by m68k TCG */
324 /* Used to keep track of an outstanding cpu throttle thread for migration
325 * autoconverge
327 bool throttle_thread_scheduled;
329 /* Note that this is accessed at the start of every TB via a negative
330 offset from AREG0. Leave this field at the end so as to make the
331 (absolute value) offset as small as possible. This reduces code
332 size, especially for hosts without large memory offsets. */
333 uint32_t tcg_exit_req;
336 QTAILQ_HEAD(CPUTailQ, CPUState);
337 extern struct CPUTailQ cpus;
338 #define CPU_NEXT(cpu) QTAILQ_NEXT(cpu, node)
339 #define CPU_FOREACH(cpu) QTAILQ_FOREACH(cpu, &cpus, node)
340 #define CPU_FOREACH_SAFE(cpu, next_cpu) \
341 QTAILQ_FOREACH_SAFE(cpu, &cpus, node, next_cpu)
342 #define CPU_FOREACH_REVERSE(cpu) \
343 QTAILQ_FOREACH_REVERSE(cpu, &cpus, CPUTailQ, node)
344 #define first_cpu QTAILQ_FIRST(&cpus)
346 extern __thread CPUState *current_cpu;
349 * cpu_paging_enabled:
350 * @cpu: The CPU whose state is to be inspected.
352 * Returns: %true if paging is enabled, %false otherwise.
354 bool cpu_paging_enabled(const CPUState *cpu);
357 * cpu_get_memory_mapping:
358 * @cpu: The CPU whose memory mappings are to be obtained.
359 * @list: Where to write the memory mappings to.
360 * @errp: Pointer for reporting an #Error.
362 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
363 Error **errp);
366 * cpu_write_elf64_note:
367 * @f: pointer to a function that writes memory to a file
368 * @cpu: The CPU whose memory is to be dumped
369 * @cpuid: ID number of the CPU
370 * @opaque: pointer to the CPUState struct
372 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
373 int cpuid, void *opaque);
376 * cpu_write_elf64_qemunote:
377 * @f: pointer to a function that writes memory to a file
378 * @cpu: The CPU whose memory is to be dumped
379 * @cpuid: ID number of the CPU
380 * @opaque: pointer to the CPUState struct
382 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
383 void *opaque);
386 * cpu_write_elf32_note:
387 * @f: pointer to a function that writes memory to a file
388 * @cpu: The CPU whose memory is to be dumped
389 * @cpuid: ID number of the CPU
390 * @opaque: pointer to the CPUState struct
392 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
393 int cpuid, void *opaque);
396 * cpu_write_elf32_qemunote:
397 * @f: pointer to a function that writes memory to a file
398 * @cpu: The CPU whose memory is to be dumped
399 * @cpuid: ID number of the CPU
400 * @opaque: pointer to the CPUState struct
402 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
403 void *opaque);
406 * CPUDumpFlags:
407 * @CPU_DUMP_CODE:
408 * @CPU_DUMP_FPU: dump FPU register state, not just integer
409 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
411 enum CPUDumpFlags {
412 CPU_DUMP_CODE = 0x00010000,
413 CPU_DUMP_FPU = 0x00020000,
414 CPU_DUMP_CCOP = 0x00040000,
418 * cpu_dump_state:
419 * @cpu: The CPU whose state is to be dumped.
420 * @f: File to dump to.
421 * @cpu_fprintf: Function to dump with.
422 * @flags: Flags what to dump.
424 * Dumps CPU state.
426 void cpu_dump_state(CPUState *cpu, FILE *f, fprintf_function cpu_fprintf,
427 int flags);
430 * cpu_dump_statistics:
431 * @cpu: The CPU whose state is to be dumped.
432 * @f: File to dump to.
433 * @cpu_fprintf: Function to dump with.
434 * @flags: Flags what to dump.
436 * Dumps CPU statistics.
438 void cpu_dump_statistics(CPUState *cpu, FILE *f, fprintf_function cpu_fprintf,
439 int flags);
441 #ifndef CONFIG_USER_ONLY
443 * cpu_get_phys_page_debug:
444 * @cpu: The CPU to obtain the physical page address for.
445 * @addr: The virtual address.
447 * Obtains the physical page corresponding to a virtual one.
448 * Use it only for debugging because no protection checks are done.
450 * Returns: Corresponding physical page address or -1 if no page found.
452 static inline hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr)
454 CPUClass *cc = CPU_GET_CLASS(cpu);
456 return cc->get_phys_page_debug(cpu, addr);
458 #endif
461 * cpu_reset:
462 * @cpu: The CPU whose state is to be reset.
464 void cpu_reset(CPUState *cpu);
467 * cpu_class_by_name:
468 * @typename: The CPU base type.
469 * @cpu_model: The model string without any parameters.
471 * Looks up a CPU #ObjectClass matching name @cpu_model.
473 * Returns: A #CPUClass or %NULL if not matching class is found.
475 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
478 * cpu_generic_init:
479 * @typename: The CPU base type.
480 * @cpu_model: The model string including optional parameters.
482 * Instantiates a CPU, processes optional parameters and realizes the CPU.
484 * Returns: A #CPUState or %NULL if an error occurred.
486 CPUState *cpu_generic_init(const char *typename, const char *cpu_model);
489 * cpu_has_work:
490 * @cpu: The vCPU to check.
492 * Checks whether the CPU has work to do.
494 * Returns: %true if the CPU has work, %false otherwise.
496 static inline bool cpu_has_work(CPUState *cpu)
498 CPUClass *cc = CPU_GET_CLASS(cpu);
500 g_assert(cc->has_work);
501 return cc->has_work(cpu);
505 * qemu_cpu_is_self:
506 * @cpu: The vCPU to check against.
508 * Checks whether the caller is executing on the vCPU thread.
510 * Returns: %true if called from @cpu's thread, %false otherwise.
512 bool qemu_cpu_is_self(CPUState *cpu);
515 * qemu_cpu_kick:
516 * @cpu: The vCPU to kick.
518 * Kicks @cpu's thread.
520 void qemu_cpu_kick(CPUState *cpu);
523 * cpu_is_stopped:
524 * @cpu: The CPU to check.
526 * Checks whether the CPU is stopped.
528 * Returns: %true if run state is not running or if artificially stopped;
529 * %false otherwise.
531 bool cpu_is_stopped(CPUState *cpu);
534 * run_on_cpu:
535 * @cpu: The vCPU to run on.
536 * @func: The function to be executed.
537 * @data: Data to pass to the function.
539 * Schedules the function @func for execution on the vCPU @cpu.
541 void run_on_cpu(CPUState *cpu, void (*func)(void *data), void *data);
544 * async_run_on_cpu:
545 * @cpu: The vCPU to run on.
546 * @func: The function to be executed.
547 * @data: Data to pass to the function.
549 * Schedules the function @func for execution on the vCPU @cpu asynchronously.
551 void async_run_on_cpu(CPUState *cpu, void (*func)(void *data), void *data);
554 * qemu_get_cpu:
555 * @index: The CPUState@cpu_index value of the CPU to obtain.
557 * Gets a CPU matching @index.
559 * Returns: The CPU or %NULL if there is no matching CPU.
561 CPUState *qemu_get_cpu(int index);
564 * cpu_exists:
565 * @id: Guest-exposed CPU ID to lookup.
567 * Search for CPU with specified ID.
569 * Returns: %true - CPU is found, %false - CPU isn't found.
571 bool cpu_exists(int64_t id);
574 * cpu_throttle_set:
575 * @new_throttle_pct: Percent of sleep time. Valid range is 1 to 99.
577 * Throttles all vcpus by forcing them to sleep for the given percentage of
578 * time. A throttle_percentage of 25 corresponds to a 75% duty cycle roughly.
579 * (example: 10ms sleep for every 30ms awake).
581 * cpu_throttle_set can be called as needed to adjust new_throttle_pct.
582 * Once the throttling starts, it will remain in effect until cpu_throttle_stop
583 * is called.
585 void cpu_throttle_set(int new_throttle_pct);
588 * cpu_throttle_stop:
590 * Stops the vcpu throttling started by cpu_throttle_set.
592 void cpu_throttle_stop(void);
595 * cpu_throttle_active:
597 * Returns: %true if the vcpus are currently being throttled, %false otherwise.
599 bool cpu_throttle_active(void);
602 * cpu_throttle_get_percentage:
604 * Returns the vcpu throttle percentage. See cpu_throttle_set for details.
606 * Returns: The throttle percentage in range 1 to 99.
608 int cpu_throttle_get_percentage(void);
610 #ifndef CONFIG_USER_ONLY
612 typedef void (*CPUInterruptHandler)(CPUState *, int);
614 extern CPUInterruptHandler cpu_interrupt_handler;
617 * cpu_interrupt:
618 * @cpu: The CPU to set an interrupt on.
619 * @mask: The interupts to set.
621 * Invokes the interrupt handler.
623 static inline void cpu_interrupt(CPUState *cpu, int mask)
625 cpu_interrupt_handler(cpu, mask);
628 #else /* USER_ONLY */
630 void cpu_interrupt(CPUState *cpu, int mask);
632 #endif /* USER_ONLY */
634 #ifdef CONFIG_SOFTMMU
635 static inline void cpu_unassigned_access(CPUState *cpu, hwaddr addr,
636 bool is_write, bool is_exec,
637 int opaque, unsigned size)
639 CPUClass *cc = CPU_GET_CLASS(cpu);
641 if (cc->do_unassigned_access) {
642 cc->do_unassigned_access(cpu, addr, is_write, is_exec, opaque, size);
646 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
647 int is_write, int is_user,
648 uintptr_t retaddr)
650 CPUClass *cc = CPU_GET_CLASS(cpu);
652 cc->do_unaligned_access(cpu, addr, is_write, is_user, retaddr);
654 #endif
657 * cpu_set_pc:
658 * @cpu: The CPU to set the program counter for.
659 * @addr: Program counter value.
661 * Sets the program counter for a CPU.
663 static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
665 CPUClass *cc = CPU_GET_CLASS(cpu);
667 cc->set_pc(cpu, addr);
671 * cpu_reset_interrupt:
672 * @cpu: The CPU to clear the interrupt on.
673 * @mask: The interrupt mask to clear.
675 * Resets interrupts on the vCPU @cpu.
677 void cpu_reset_interrupt(CPUState *cpu, int mask);
680 * cpu_exit:
681 * @cpu: The CPU to exit.
683 * Requests the CPU @cpu to exit execution.
685 void cpu_exit(CPUState *cpu);
688 * cpu_resume:
689 * @cpu: The CPU to resume.
691 * Resumes CPU, i.e. puts CPU into runnable state.
693 void cpu_resume(CPUState *cpu);
696 * qemu_init_vcpu:
697 * @cpu: The vCPU to initialize.
699 * Initializes a vCPU.
701 void qemu_init_vcpu(CPUState *cpu);
703 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
704 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
705 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
708 * cpu_single_step:
709 * @cpu: CPU to the flags for.
710 * @enabled: Flags to enable.
712 * Enables or disables single-stepping for @cpu.
714 void cpu_single_step(CPUState *cpu, int enabled);
716 /* Breakpoint/watchpoint flags */
717 #define BP_MEM_READ 0x01
718 #define BP_MEM_WRITE 0x02
719 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
720 #define BP_STOP_BEFORE_ACCESS 0x04
721 /* 0x08 currently unused */
722 #define BP_GDB 0x10
723 #define BP_CPU 0x20
724 #define BP_ANY (BP_GDB | BP_CPU)
725 #define BP_WATCHPOINT_HIT_READ 0x40
726 #define BP_WATCHPOINT_HIT_WRITE 0x80
727 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE)
729 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
730 CPUBreakpoint **breakpoint);
731 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
732 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
733 void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
735 /* Return true if PC matches an installed breakpoint. */
736 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
738 CPUBreakpoint *bp;
740 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
741 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
742 if (bp->pc == pc && (bp->flags & mask)) {
743 return true;
747 return false;
750 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
751 int flags, CPUWatchpoint **watchpoint);
752 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
753 vaddr len, int flags);
754 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
755 void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
757 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...)
758 GCC_FMT_ATTR(2, 3);
759 void cpu_exec_exit(CPUState *cpu);
761 #ifdef CONFIG_SOFTMMU
762 extern const struct VMStateDescription vmstate_cpu_common;
763 #else
764 #define vmstate_cpu_common vmstate_dummy
765 #endif
767 #define VMSTATE_CPU() { \
768 .name = "parent_obj", \
769 .size = sizeof(CPUState), \
770 .vmsd = &vmstate_cpu_common, \
771 .flags = VMS_STRUCT, \
772 .offset = 0, \
775 #endif