block: Don't poll in bdrv_replace_child_noperm()
[qemu/armbru.git] / block / io.c
blobae64830eacfc7629ba2cd1ad3d8c9e19b5f5f994
1 /*
2 * Block layer I/O functions
4 * Copyright (c) 2003 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "block/coroutines.h"
33 #include "block/write-threshold.h"
34 #include "qemu/cutils.h"
35 #include "qemu/memalign.h"
36 #include "qapi/error.h"
37 #include "qemu/error-report.h"
38 #include "qemu/main-loop.h"
39 #include "sysemu/replay.h"
41 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
42 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
44 static void bdrv_parent_cb_resize(BlockDriverState *bs);
45 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
46 int64_t offset, int64_t bytes, BdrvRequestFlags flags);
48 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore)
50 BdrvChild *c, *next;
52 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
53 if (c == ignore) {
54 continue;
56 bdrv_parent_drained_begin_single(c, false);
60 void bdrv_parent_drained_end_single(BdrvChild *c)
62 IO_OR_GS_CODE();
64 assert(c->quiesced_parent);
65 c->quiesced_parent = false;
67 if (c->klass->drained_end) {
68 c->klass->drained_end(c);
72 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore)
74 BdrvChild *c;
76 QLIST_FOREACH(c, &bs->parents, next_parent) {
77 if (c == ignore) {
78 continue;
80 bdrv_parent_drained_end_single(c);
84 bool bdrv_parent_drained_poll_single(BdrvChild *c)
86 if (c->klass->drained_poll) {
87 return c->klass->drained_poll(c);
89 return false;
92 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
93 bool ignore_bds_parents)
95 BdrvChild *c, *next;
96 bool busy = false;
98 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
99 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
100 continue;
102 busy |= bdrv_parent_drained_poll_single(c);
105 return busy;
108 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll)
110 AioContext *ctx = bdrv_child_get_parent_aio_context(c);
111 IO_OR_GS_CODE();
113 assert(!c->quiesced_parent);
114 c->quiesced_parent = true;
116 if (c->klass->drained_begin) {
117 c->klass->drained_begin(c);
119 if (poll) {
120 AIO_WAIT_WHILE(ctx, bdrv_parent_drained_poll_single(c));
124 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
126 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment,
127 src->pdiscard_alignment);
128 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
129 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
130 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer,
131 src->max_hw_transfer);
132 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
133 src->opt_mem_alignment);
134 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
135 src->min_mem_alignment);
136 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
137 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov);
140 typedef struct BdrvRefreshLimitsState {
141 BlockDriverState *bs;
142 BlockLimits old_bl;
143 } BdrvRefreshLimitsState;
145 static void bdrv_refresh_limits_abort(void *opaque)
147 BdrvRefreshLimitsState *s = opaque;
149 s->bs->bl = s->old_bl;
152 static TransactionActionDrv bdrv_refresh_limits_drv = {
153 .abort = bdrv_refresh_limits_abort,
154 .clean = g_free,
157 /* @tran is allowed to be NULL, in this case no rollback is possible. */
158 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp)
160 ERRP_GUARD();
161 BlockDriver *drv = bs->drv;
162 BdrvChild *c;
163 bool have_limits;
165 GLOBAL_STATE_CODE();
167 if (tran) {
168 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1);
169 *s = (BdrvRefreshLimitsState) {
170 .bs = bs,
171 .old_bl = bs->bl,
173 tran_add(tran, &bdrv_refresh_limits_drv, s);
176 memset(&bs->bl, 0, sizeof(bs->bl));
178 if (!drv) {
179 return;
182 /* Default alignment based on whether driver has byte interface */
183 bs->bl.request_alignment = (drv->bdrv_co_preadv ||
184 drv->bdrv_aio_preadv ||
185 drv->bdrv_co_preadv_part) ? 1 : 512;
187 /* Take some limits from the children as a default */
188 have_limits = false;
189 QLIST_FOREACH(c, &bs->children, next) {
190 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
192 bdrv_merge_limits(&bs->bl, &c->bs->bl);
193 have_limits = true;
197 if (!have_limits) {
198 bs->bl.min_mem_alignment = 512;
199 bs->bl.opt_mem_alignment = qemu_real_host_page_size();
201 /* Safe default since most protocols use readv()/writev()/etc */
202 bs->bl.max_iov = IOV_MAX;
205 /* Then let the driver override it */
206 if (drv->bdrv_refresh_limits) {
207 drv->bdrv_refresh_limits(bs, errp);
208 if (*errp) {
209 return;
213 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
214 error_setg(errp, "Driver requires too large request alignment");
219 * The copy-on-read flag is actually a reference count so multiple users may
220 * use the feature without worrying about clobbering its previous state.
221 * Copy-on-read stays enabled until all users have called to disable it.
223 void bdrv_enable_copy_on_read(BlockDriverState *bs)
225 IO_CODE();
226 qatomic_inc(&bs->copy_on_read);
229 void bdrv_disable_copy_on_read(BlockDriverState *bs)
231 int old = qatomic_fetch_dec(&bs->copy_on_read);
232 IO_CODE();
233 assert(old >= 1);
236 typedef struct {
237 Coroutine *co;
238 BlockDriverState *bs;
239 bool done;
240 bool begin;
241 bool poll;
242 BdrvChild *parent;
243 } BdrvCoDrainData;
245 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
246 bool bdrv_drain_poll(BlockDriverState *bs, BdrvChild *ignore_parent,
247 bool ignore_bds_parents)
249 IO_OR_GS_CODE();
251 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
252 return true;
255 if (qatomic_read(&bs->in_flight)) {
256 return true;
259 return false;
262 static bool bdrv_drain_poll_top_level(BlockDriverState *bs,
263 BdrvChild *ignore_parent)
265 return bdrv_drain_poll(bs, ignore_parent, false);
268 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
269 bool poll);
270 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent);
272 static void bdrv_co_drain_bh_cb(void *opaque)
274 BdrvCoDrainData *data = opaque;
275 Coroutine *co = data->co;
276 BlockDriverState *bs = data->bs;
278 if (bs) {
279 AioContext *ctx = bdrv_get_aio_context(bs);
280 aio_context_acquire(ctx);
281 bdrv_dec_in_flight(bs);
282 if (data->begin) {
283 bdrv_do_drained_begin(bs, data->parent, data->poll);
284 } else {
285 assert(!data->poll);
286 bdrv_do_drained_end(bs, data->parent);
288 aio_context_release(ctx);
289 } else {
290 assert(data->begin);
291 bdrv_drain_all_begin();
294 data->done = true;
295 aio_co_wake(co);
298 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
299 bool begin,
300 BdrvChild *parent,
301 bool poll)
303 BdrvCoDrainData data;
304 Coroutine *self = qemu_coroutine_self();
305 AioContext *ctx = bdrv_get_aio_context(bs);
306 AioContext *co_ctx = qemu_coroutine_get_aio_context(self);
308 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
309 * other coroutines run if they were queued by aio_co_enter(). */
311 assert(qemu_in_coroutine());
312 data = (BdrvCoDrainData) {
313 .co = self,
314 .bs = bs,
315 .done = false,
316 .begin = begin,
317 .parent = parent,
318 .poll = poll,
321 if (bs) {
322 bdrv_inc_in_flight(bs);
326 * Temporarily drop the lock across yield or we would get deadlocks.
327 * bdrv_co_drain_bh_cb() reaquires the lock as needed.
329 * When we yield below, the lock for the current context will be
330 * released, so if this is actually the lock that protects bs, don't drop
331 * it a second time.
333 if (ctx != co_ctx) {
334 aio_context_release(ctx);
336 replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data);
338 qemu_coroutine_yield();
339 /* If we are resumed from some other event (such as an aio completion or a
340 * timer callback), it is a bug in the caller that should be fixed. */
341 assert(data.done);
343 /* Reaquire the AioContext of bs if we dropped it */
344 if (ctx != co_ctx) {
345 aio_context_acquire(ctx);
349 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
350 bool poll)
352 IO_OR_GS_CODE();
354 if (qemu_in_coroutine()) {
355 bdrv_co_yield_to_drain(bs, true, parent, poll);
356 return;
359 /* Stop things in parent-to-child order */
360 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
361 aio_disable_external(bdrv_get_aio_context(bs));
362 bdrv_parent_drained_begin(bs, parent);
363 if (bs->drv && bs->drv->bdrv_drain_begin) {
364 bs->drv->bdrv_drain_begin(bs);
369 * Wait for drained requests to finish.
371 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
372 * call is needed so things in this AioContext can make progress even
373 * though we don't return to the main AioContext loop - this automatically
374 * includes other nodes in the same AioContext and therefore all child
375 * nodes.
377 if (poll) {
378 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, parent));
382 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, BdrvChild *parent)
384 bdrv_do_drained_begin(bs, parent, false);
387 void bdrv_drained_begin(BlockDriverState *bs)
389 IO_OR_GS_CODE();
390 bdrv_do_drained_begin(bs, NULL, true);
394 * This function does not poll, nor must any of its recursively called
395 * functions.
397 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent)
399 int old_quiesce_counter;
401 if (qemu_in_coroutine()) {
402 bdrv_co_yield_to_drain(bs, false, parent, false);
403 return;
405 assert(bs->quiesce_counter > 0);
407 /* Re-enable things in child-to-parent order */
408 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
409 if (old_quiesce_counter == 1) {
410 if (bs->drv && bs->drv->bdrv_drain_end) {
411 bs->drv->bdrv_drain_end(bs);
413 bdrv_parent_drained_end(bs, parent);
414 aio_enable_external(bdrv_get_aio_context(bs));
418 void bdrv_drained_end(BlockDriverState *bs)
420 IO_OR_GS_CODE();
421 bdrv_do_drained_end(bs, NULL);
424 void bdrv_drain(BlockDriverState *bs)
426 IO_OR_GS_CODE();
427 bdrv_drained_begin(bs);
428 bdrv_drained_end(bs);
431 static void bdrv_drain_assert_idle(BlockDriverState *bs)
433 BdrvChild *child, *next;
435 assert(qatomic_read(&bs->in_flight) == 0);
436 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
437 bdrv_drain_assert_idle(child->bs);
441 unsigned int bdrv_drain_all_count = 0;
443 static bool bdrv_drain_all_poll(void)
445 BlockDriverState *bs = NULL;
446 bool result = false;
447 GLOBAL_STATE_CODE();
449 /* bdrv_drain_poll() can't make changes to the graph and we are holding the
450 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
451 while ((bs = bdrv_next_all_states(bs))) {
452 AioContext *aio_context = bdrv_get_aio_context(bs);
453 aio_context_acquire(aio_context);
454 result |= bdrv_drain_poll(bs, NULL, true);
455 aio_context_release(aio_context);
458 return result;
462 * Wait for pending requests to complete across all BlockDriverStates
464 * This function does not flush data to disk, use bdrv_flush_all() for that
465 * after calling this function.
467 * This pauses all block jobs and disables external clients. It must
468 * be paired with bdrv_drain_all_end().
470 * NOTE: no new block jobs or BlockDriverStates can be created between
471 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
473 void bdrv_drain_all_begin(void)
475 BlockDriverState *bs = NULL;
476 GLOBAL_STATE_CODE();
478 if (qemu_in_coroutine()) {
479 bdrv_co_yield_to_drain(NULL, true, NULL, true);
480 return;
484 * bdrv queue is managed by record/replay,
485 * waiting for finishing the I/O requests may
486 * be infinite
488 if (replay_events_enabled()) {
489 return;
492 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
493 * loop AioContext, so make sure we're in the main context. */
494 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
495 assert(bdrv_drain_all_count < INT_MAX);
496 bdrv_drain_all_count++;
498 /* Quiesce all nodes, without polling in-flight requests yet. The graph
499 * cannot change during this loop. */
500 while ((bs = bdrv_next_all_states(bs))) {
501 AioContext *aio_context = bdrv_get_aio_context(bs);
503 aio_context_acquire(aio_context);
504 bdrv_do_drained_begin(bs, NULL, false);
505 aio_context_release(aio_context);
508 /* Now poll the in-flight requests */
509 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
511 while ((bs = bdrv_next_all_states(bs))) {
512 bdrv_drain_assert_idle(bs);
516 void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
518 GLOBAL_STATE_CODE();
520 g_assert(bs->quiesce_counter > 0);
521 g_assert(!bs->refcnt);
523 while (bs->quiesce_counter) {
524 bdrv_do_drained_end(bs, NULL);
528 void bdrv_drain_all_end(void)
530 BlockDriverState *bs = NULL;
531 GLOBAL_STATE_CODE();
534 * bdrv queue is managed by record/replay,
535 * waiting for finishing the I/O requests may
536 * be endless
538 if (replay_events_enabled()) {
539 return;
542 while ((bs = bdrv_next_all_states(bs))) {
543 AioContext *aio_context = bdrv_get_aio_context(bs);
545 aio_context_acquire(aio_context);
546 bdrv_do_drained_end(bs, NULL);
547 aio_context_release(aio_context);
550 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
551 assert(bdrv_drain_all_count > 0);
552 bdrv_drain_all_count--;
555 void bdrv_drain_all(void)
557 GLOBAL_STATE_CODE();
558 bdrv_drain_all_begin();
559 bdrv_drain_all_end();
563 * Remove an active request from the tracked requests list
565 * This function should be called when a tracked request is completing.
567 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req)
569 if (req->serialising) {
570 qatomic_dec(&req->bs->serialising_in_flight);
573 qemu_co_mutex_lock(&req->bs->reqs_lock);
574 QLIST_REMOVE(req, list);
575 qemu_co_queue_restart_all(&req->wait_queue);
576 qemu_co_mutex_unlock(&req->bs->reqs_lock);
580 * Add an active request to the tracked requests list
582 static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req,
583 BlockDriverState *bs,
584 int64_t offset,
585 int64_t bytes,
586 enum BdrvTrackedRequestType type)
588 bdrv_check_request(offset, bytes, &error_abort);
590 *req = (BdrvTrackedRequest){
591 .bs = bs,
592 .offset = offset,
593 .bytes = bytes,
594 .type = type,
595 .co = qemu_coroutine_self(),
596 .serialising = false,
597 .overlap_offset = offset,
598 .overlap_bytes = bytes,
601 qemu_co_queue_init(&req->wait_queue);
603 qemu_co_mutex_lock(&bs->reqs_lock);
604 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
605 qemu_co_mutex_unlock(&bs->reqs_lock);
608 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
609 int64_t offset, int64_t bytes)
611 bdrv_check_request(offset, bytes, &error_abort);
613 /* aaaa bbbb */
614 if (offset >= req->overlap_offset + req->overlap_bytes) {
615 return false;
617 /* bbbb aaaa */
618 if (req->overlap_offset >= offset + bytes) {
619 return false;
621 return true;
624 /* Called with self->bs->reqs_lock held */
625 static coroutine_fn BdrvTrackedRequest *
626 bdrv_find_conflicting_request(BdrvTrackedRequest *self)
628 BdrvTrackedRequest *req;
630 QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
631 if (req == self || (!req->serialising && !self->serialising)) {
632 continue;
634 if (tracked_request_overlaps(req, self->overlap_offset,
635 self->overlap_bytes))
638 * Hitting this means there was a reentrant request, for
639 * example, a block driver issuing nested requests. This must
640 * never happen since it means deadlock.
642 assert(qemu_coroutine_self() != req->co);
645 * If the request is already (indirectly) waiting for us, or
646 * will wait for us as soon as it wakes up, then just go on
647 * (instead of producing a deadlock in the former case).
649 if (!req->waiting_for) {
650 return req;
655 return NULL;
658 /* Called with self->bs->reqs_lock held */
659 static void coroutine_fn
660 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
662 BdrvTrackedRequest *req;
664 while ((req = bdrv_find_conflicting_request(self))) {
665 self->waiting_for = req;
666 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
667 self->waiting_for = NULL;
671 /* Called with req->bs->reqs_lock held */
672 static void tracked_request_set_serialising(BdrvTrackedRequest *req,
673 uint64_t align)
675 int64_t overlap_offset = req->offset & ~(align - 1);
676 int64_t overlap_bytes =
677 ROUND_UP(req->offset + req->bytes, align) - overlap_offset;
679 bdrv_check_request(req->offset, req->bytes, &error_abort);
681 if (!req->serialising) {
682 qatomic_inc(&req->bs->serialising_in_flight);
683 req->serialising = true;
686 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
687 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
691 * Return the tracked request on @bs for the current coroutine, or
692 * NULL if there is none.
694 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
696 BdrvTrackedRequest *req;
697 Coroutine *self = qemu_coroutine_self();
698 IO_CODE();
700 QLIST_FOREACH(req, &bs->tracked_requests, list) {
701 if (req->co == self) {
702 return req;
706 return NULL;
710 * Round a region to cluster boundaries
712 void bdrv_round_to_clusters(BlockDriverState *bs,
713 int64_t offset, int64_t bytes,
714 int64_t *cluster_offset,
715 int64_t *cluster_bytes)
717 BlockDriverInfo bdi;
718 IO_CODE();
719 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
720 *cluster_offset = offset;
721 *cluster_bytes = bytes;
722 } else {
723 int64_t c = bdi.cluster_size;
724 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
725 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
729 static int bdrv_get_cluster_size(BlockDriverState *bs)
731 BlockDriverInfo bdi;
732 int ret;
734 ret = bdrv_get_info(bs, &bdi);
735 if (ret < 0 || bdi.cluster_size == 0) {
736 return bs->bl.request_alignment;
737 } else {
738 return bdi.cluster_size;
742 void bdrv_inc_in_flight(BlockDriverState *bs)
744 IO_CODE();
745 qatomic_inc(&bs->in_flight);
748 void bdrv_wakeup(BlockDriverState *bs)
750 IO_CODE();
751 aio_wait_kick();
754 void bdrv_dec_in_flight(BlockDriverState *bs)
756 IO_CODE();
757 qatomic_dec(&bs->in_flight);
758 bdrv_wakeup(bs);
761 static void coroutine_fn
762 bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
764 BlockDriverState *bs = self->bs;
766 if (!qatomic_read(&bs->serialising_in_flight)) {
767 return;
770 qemu_co_mutex_lock(&bs->reqs_lock);
771 bdrv_wait_serialising_requests_locked(self);
772 qemu_co_mutex_unlock(&bs->reqs_lock);
775 void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
776 uint64_t align)
778 IO_CODE();
780 qemu_co_mutex_lock(&req->bs->reqs_lock);
782 tracked_request_set_serialising(req, align);
783 bdrv_wait_serialising_requests_locked(req);
785 qemu_co_mutex_unlock(&req->bs->reqs_lock);
788 int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
789 QEMUIOVector *qiov, size_t qiov_offset,
790 Error **errp)
793 * Check generic offset/bytes correctness
796 if (offset < 0) {
797 error_setg(errp, "offset is negative: %" PRIi64, offset);
798 return -EIO;
801 if (bytes < 0) {
802 error_setg(errp, "bytes is negative: %" PRIi64, bytes);
803 return -EIO;
806 if (bytes > BDRV_MAX_LENGTH) {
807 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
808 bytes, BDRV_MAX_LENGTH);
809 return -EIO;
812 if (offset > BDRV_MAX_LENGTH) {
813 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
814 offset, BDRV_MAX_LENGTH);
815 return -EIO;
818 if (offset > BDRV_MAX_LENGTH - bytes) {
819 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") "
820 "exceeds maximum(%" PRIi64 ")", offset, bytes,
821 BDRV_MAX_LENGTH);
822 return -EIO;
825 if (!qiov) {
826 return 0;
830 * Check qiov and qiov_offset
833 if (qiov_offset > qiov->size) {
834 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)",
835 qiov_offset, qiov->size);
836 return -EIO;
839 if (bytes > qiov->size - qiov_offset) {
840 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io "
841 "vector size(%zu)", bytes, qiov_offset, qiov->size);
842 return -EIO;
845 return 0;
848 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp)
850 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp);
853 static int bdrv_check_request32(int64_t offset, int64_t bytes,
854 QEMUIOVector *qiov, size_t qiov_offset)
856 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
857 if (ret < 0) {
858 return ret;
861 if (bytes > BDRV_REQUEST_MAX_BYTES) {
862 return -EIO;
865 return 0;
869 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
870 * The operation is sped up by checking the block status and only writing
871 * zeroes to the device if they currently do not return zeroes. Optional
872 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
873 * BDRV_REQ_FUA).
875 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
877 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
879 int ret;
880 int64_t target_size, bytes, offset = 0;
881 BlockDriverState *bs = child->bs;
882 IO_CODE();
884 target_size = bdrv_getlength(bs);
885 if (target_size < 0) {
886 return target_size;
889 for (;;) {
890 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
891 if (bytes <= 0) {
892 return 0;
894 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
895 if (ret < 0) {
896 return ret;
898 if (ret & BDRV_BLOCK_ZERO) {
899 offset += bytes;
900 continue;
902 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
903 if (ret < 0) {
904 return ret;
906 offset += bytes;
911 * Writes to the file and ensures that no writes are reordered across this
912 * request (acts as a barrier)
914 * Returns 0 on success, -errno in error cases.
916 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset,
917 int64_t bytes, const void *buf,
918 BdrvRequestFlags flags)
920 int ret;
921 IO_CODE();
923 ret = bdrv_co_pwrite(child, offset, bytes, buf, flags);
924 if (ret < 0) {
925 return ret;
928 ret = bdrv_co_flush(child->bs);
929 if (ret < 0) {
930 return ret;
933 return 0;
936 typedef struct CoroutineIOCompletion {
937 Coroutine *coroutine;
938 int ret;
939 } CoroutineIOCompletion;
941 static void bdrv_co_io_em_complete(void *opaque, int ret)
943 CoroutineIOCompletion *co = opaque;
945 co->ret = ret;
946 aio_co_wake(co->coroutine);
949 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
950 int64_t offset, int64_t bytes,
951 QEMUIOVector *qiov,
952 size_t qiov_offset, int flags)
954 BlockDriver *drv = bs->drv;
955 int64_t sector_num;
956 unsigned int nb_sectors;
957 QEMUIOVector local_qiov;
958 int ret;
960 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
961 assert(!(flags & ~bs->supported_read_flags));
963 if (!drv) {
964 return -ENOMEDIUM;
967 if (drv->bdrv_co_preadv_part) {
968 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
969 flags);
972 if (qiov_offset > 0 || bytes != qiov->size) {
973 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
974 qiov = &local_qiov;
977 if (drv->bdrv_co_preadv) {
978 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
979 goto out;
982 if (drv->bdrv_aio_preadv) {
983 BlockAIOCB *acb;
984 CoroutineIOCompletion co = {
985 .coroutine = qemu_coroutine_self(),
988 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
989 bdrv_co_io_em_complete, &co);
990 if (acb == NULL) {
991 ret = -EIO;
992 goto out;
993 } else {
994 qemu_coroutine_yield();
995 ret = co.ret;
996 goto out;
1000 sector_num = offset >> BDRV_SECTOR_BITS;
1001 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1003 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1004 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1005 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1006 assert(drv->bdrv_co_readv);
1008 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1010 out:
1011 if (qiov == &local_qiov) {
1012 qemu_iovec_destroy(&local_qiov);
1015 return ret;
1018 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1019 int64_t offset, int64_t bytes,
1020 QEMUIOVector *qiov,
1021 size_t qiov_offset,
1022 BdrvRequestFlags flags)
1024 BlockDriver *drv = bs->drv;
1025 bool emulate_fua = false;
1026 int64_t sector_num;
1027 unsigned int nb_sectors;
1028 QEMUIOVector local_qiov;
1029 int ret;
1031 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1033 if (!drv) {
1034 return -ENOMEDIUM;
1037 if ((flags & BDRV_REQ_FUA) &&
1038 (~bs->supported_write_flags & BDRV_REQ_FUA)) {
1039 flags &= ~BDRV_REQ_FUA;
1040 emulate_fua = true;
1043 flags &= bs->supported_write_flags;
1045 if (drv->bdrv_co_pwritev_part) {
1046 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1047 flags);
1048 goto emulate_flags;
1051 if (qiov_offset > 0 || bytes != qiov->size) {
1052 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1053 qiov = &local_qiov;
1056 if (drv->bdrv_co_pwritev) {
1057 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags);
1058 goto emulate_flags;
1061 if (drv->bdrv_aio_pwritev) {
1062 BlockAIOCB *acb;
1063 CoroutineIOCompletion co = {
1064 .coroutine = qemu_coroutine_self(),
1067 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags,
1068 bdrv_co_io_em_complete, &co);
1069 if (acb == NULL) {
1070 ret = -EIO;
1071 } else {
1072 qemu_coroutine_yield();
1073 ret = co.ret;
1075 goto emulate_flags;
1078 sector_num = offset >> BDRV_SECTOR_BITS;
1079 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1081 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1082 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1083 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1085 assert(drv->bdrv_co_writev);
1086 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, flags);
1088 emulate_flags:
1089 if (ret == 0 && emulate_fua) {
1090 ret = bdrv_co_flush(bs);
1093 if (qiov == &local_qiov) {
1094 qemu_iovec_destroy(&local_qiov);
1097 return ret;
1100 static int coroutine_fn
1101 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset,
1102 int64_t bytes, QEMUIOVector *qiov,
1103 size_t qiov_offset)
1105 BlockDriver *drv = bs->drv;
1106 QEMUIOVector local_qiov;
1107 int ret;
1109 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1111 if (!drv) {
1112 return -ENOMEDIUM;
1115 if (!block_driver_can_compress(drv)) {
1116 return -ENOTSUP;
1119 if (drv->bdrv_co_pwritev_compressed_part) {
1120 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1121 qiov, qiov_offset);
1124 if (qiov_offset == 0) {
1125 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1128 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1129 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1130 qemu_iovec_destroy(&local_qiov);
1132 return ret;
1135 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1136 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1137 size_t qiov_offset, int flags)
1139 BlockDriverState *bs = child->bs;
1141 /* Perform I/O through a temporary buffer so that users who scribble over
1142 * their read buffer while the operation is in progress do not end up
1143 * modifying the image file. This is critical for zero-copy guest I/O
1144 * where anything might happen inside guest memory.
1146 void *bounce_buffer = NULL;
1148 BlockDriver *drv = bs->drv;
1149 int64_t cluster_offset;
1150 int64_t cluster_bytes;
1151 int64_t skip_bytes;
1152 int ret;
1153 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1154 BDRV_REQUEST_MAX_BYTES);
1155 int64_t progress = 0;
1156 bool skip_write;
1158 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1160 if (!drv) {
1161 return -ENOMEDIUM;
1165 * Do not write anything when the BDS is inactive. That is not
1166 * allowed, and it would not help.
1168 skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1170 /* FIXME We cannot require callers to have write permissions when all they
1171 * are doing is a read request. If we did things right, write permissions
1172 * would be obtained anyway, but internally by the copy-on-read code. As
1173 * long as it is implemented here rather than in a separate filter driver,
1174 * the copy-on-read code doesn't have its own BdrvChild, however, for which
1175 * it could request permissions. Therefore we have to bypass the permission
1176 * system for the moment. */
1177 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1179 /* Cover entire cluster so no additional backing file I/O is required when
1180 * allocating cluster in the image file. Note that this value may exceed
1181 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1182 * is one reason we loop rather than doing it all at once.
1184 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1185 skip_bytes = offset - cluster_offset;
1187 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1188 cluster_offset, cluster_bytes);
1190 while (cluster_bytes) {
1191 int64_t pnum;
1193 if (skip_write) {
1194 ret = 1; /* "already allocated", so nothing will be copied */
1195 pnum = MIN(cluster_bytes, max_transfer);
1196 } else {
1197 ret = bdrv_is_allocated(bs, cluster_offset,
1198 MIN(cluster_bytes, max_transfer), &pnum);
1199 if (ret < 0) {
1201 * Safe to treat errors in querying allocation as if
1202 * unallocated; we'll probably fail again soon on the
1203 * read, but at least that will set a decent errno.
1205 pnum = MIN(cluster_bytes, max_transfer);
1208 /* Stop at EOF if the image ends in the middle of the cluster */
1209 if (ret == 0 && pnum == 0) {
1210 assert(progress >= bytes);
1211 break;
1214 assert(skip_bytes < pnum);
1217 if (ret <= 0) {
1218 QEMUIOVector local_qiov;
1220 /* Must copy-on-read; use the bounce buffer */
1221 pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1222 if (!bounce_buffer) {
1223 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
1224 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1225 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1227 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1228 if (!bounce_buffer) {
1229 ret = -ENOMEM;
1230 goto err;
1233 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1235 ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1236 &local_qiov, 0, 0);
1237 if (ret < 0) {
1238 goto err;
1241 bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1242 if (drv->bdrv_co_pwrite_zeroes &&
1243 buffer_is_zero(bounce_buffer, pnum)) {
1244 /* FIXME: Should we (perhaps conditionally) be setting
1245 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1246 * that still correctly reads as zero? */
1247 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1248 BDRV_REQ_WRITE_UNCHANGED);
1249 } else {
1250 /* This does not change the data on the disk, it is not
1251 * necessary to flush even in cache=writethrough mode.
1253 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1254 &local_qiov, 0,
1255 BDRV_REQ_WRITE_UNCHANGED);
1258 if (ret < 0) {
1259 /* It might be okay to ignore write errors for guest
1260 * requests. If this is a deliberate copy-on-read
1261 * then we don't want to ignore the error. Simply
1262 * report it in all cases.
1264 goto err;
1267 if (!(flags & BDRV_REQ_PREFETCH)) {
1268 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1269 bounce_buffer + skip_bytes,
1270 MIN(pnum - skip_bytes, bytes - progress));
1272 } else if (!(flags & BDRV_REQ_PREFETCH)) {
1273 /* Read directly into the destination */
1274 ret = bdrv_driver_preadv(bs, offset + progress,
1275 MIN(pnum - skip_bytes, bytes - progress),
1276 qiov, qiov_offset + progress, 0);
1277 if (ret < 0) {
1278 goto err;
1282 cluster_offset += pnum;
1283 cluster_bytes -= pnum;
1284 progress += pnum - skip_bytes;
1285 skip_bytes = 0;
1287 ret = 0;
1289 err:
1290 qemu_vfree(bounce_buffer);
1291 return ret;
1295 * Forwards an already correctly aligned request to the BlockDriver. This
1296 * handles copy on read, zeroing after EOF, and fragmentation of large
1297 * reads; any other features must be implemented by the caller.
1299 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1300 BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
1301 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1303 BlockDriverState *bs = child->bs;
1304 int64_t total_bytes, max_bytes;
1305 int ret = 0;
1306 int64_t bytes_remaining = bytes;
1307 int max_transfer;
1309 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1310 assert(is_power_of_2(align));
1311 assert((offset & (align - 1)) == 0);
1312 assert((bytes & (align - 1)) == 0);
1313 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1314 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1315 align);
1318 * TODO: We would need a per-BDS .supported_read_flags and
1319 * potential fallback support, if we ever implement any read flags
1320 * to pass through to drivers. For now, there aren't any
1321 * passthrough flags except the BDRV_REQ_REGISTERED_BUF optimization hint.
1323 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH |
1324 BDRV_REQ_REGISTERED_BUF)));
1326 /* Handle Copy on Read and associated serialisation */
1327 if (flags & BDRV_REQ_COPY_ON_READ) {
1328 /* If we touch the same cluster it counts as an overlap. This
1329 * guarantees that allocating writes will be serialized and not race
1330 * with each other for the same cluster. For example, in copy-on-read
1331 * it ensures that the CoR read and write operations are atomic and
1332 * guest writes cannot interleave between them. */
1333 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1334 } else {
1335 bdrv_wait_serialising_requests(req);
1338 if (flags & BDRV_REQ_COPY_ON_READ) {
1339 int64_t pnum;
1341 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
1342 flags &= ~BDRV_REQ_COPY_ON_READ;
1344 ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1345 if (ret < 0) {
1346 goto out;
1349 if (!ret || pnum != bytes) {
1350 ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1351 qiov, qiov_offset, flags);
1352 goto out;
1353 } else if (flags & BDRV_REQ_PREFETCH) {
1354 goto out;
1358 /* Forward the request to the BlockDriver, possibly fragmenting it */
1359 total_bytes = bdrv_getlength(bs);
1360 if (total_bytes < 0) {
1361 ret = total_bytes;
1362 goto out;
1365 assert(!(flags & ~(bs->supported_read_flags | BDRV_REQ_REGISTERED_BUF)));
1367 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1368 if (bytes <= max_bytes && bytes <= max_transfer) {
1369 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
1370 goto out;
1373 while (bytes_remaining) {
1374 int64_t num;
1376 if (max_bytes) {
1377 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1378 assert(num);
1380 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1381 num, qiov,
1382 qiov_offset + bytes - bytes_remaining,
1383 flags);
1384 max_bytes -= num;
1385 } else {
1386 num = bytes_remaining;
1387 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1388 0, bytes_remaining);
1390 if (ret < 0) {
1391 goto out;
1393 bytes_remaining -= num;
1396 out:
1397 return ret < 0 ? ret : 0;
1401 * Request padding
1403 * |<---- align ----->| |<----- align ---->|
1404 * |<- head ->|<------------- bytes ------------->|<-- tail -->|
1405 * | | | | | |
1406 * -*----------$-------*-------- ... --------*-----$------------*---
1407 * | | | | | |
1408 * | offset | | end |
1409 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end)
1410 * [buf ... ) [tail_buf )
1412 * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1413 * is placed at the beginning of @buf and @tail at the @end.
1415 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1416 * around tail, if tail exists.
1418 * @merge_reads is true for small requests,
1419 * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1420 * head and tail exist but @buf_len == align and @tail_buf == @buf.
1422 typedef struct BdrvRequestPadding {
1423 uint8_t *buf;
1424 size_t buf_len;
1425 uint8_t *tail_buf;
1426 size_t head;
1427 size_t tail;
1428 bool merge_reads;
1429 QEMUIOVector local_qiov;
1430 } BdrvRequestPadding;
1432 static bool bdrv_init_padding(BlockDriverState *bs,
1433 int64_t offset, int64_t bytes,
1434 BdrvRequestPadding *pad)
1436 int64_t align = bs->bl.request_alignment;
1437 int64_t sum;
1439 bdrv_check_request(offset, bytes, &error_abort);
1440 assert(align <= INT_MAX); /* documented in block/block_int.h */
1441 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */
1443 memset(pad, 0, sizeof(*pad));
1445 pad->head = offset & (align - 1);
1446 pad->tail = ((offset + bytes) & (align - 1));
1447 if (pad->tail) {
1448 pad->tail = align - pad->tail;
1451 if (!pad->head && !pad->tail) {
1452 return false;
1455 assert(bytes); /* Nothing good in aligning zero-length requests */
1457 sum = pad->head + bytes + pad->tail;
1458 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1459 pad->buf = qemu_blockalign(bs, pad->buf_len);
1460 pad->merge_reads = sum == pad->buf_len;
1461 if (pad->tail) {
1462 pad->tail_buf = pad->buf + pad->buf_len - align;
1465 return true;
1468 static coroutine_fn int bdrv_padding_rmw_read(BdrvChild *child,
1469 BdrvTrackedRequest *req,
1470 BdrvRequestPadding *pad,
1471 bool zero_middle)
1473 QEMUIOVector local_qiov;
1474 BlockDriverState *bs = child->bs;
1475 uint64_t align = bs->bl.request_alignment;
1476 int ret;
1478 assert(req->serialising && pad->buf);
1480 if (pad->head || pad->merge_reads) {
1481 int64_t bytes = pad->merge_reads ? pad->buf_len : align;
1483 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1485 if (pad->head) {
1486 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1488 if (pad->merge_reads && pad->tail) {
1489 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1491 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1492 align, &local_qiov, 0, 0);
1493 if (ret < 0) {
1494 return ret;
1496 if (pad->head) {
1497 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1499 if (pad->merge_reads && pad->tail) {
1500 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1503 if (pad->merge_reads) {
1504 goto zero_mem;
1508 if (pad->tail) {
1509 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1511 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1512 ret = bdrv_aligned_preadv(
1513 child, req,
1514 req->overlap_offset + req->overlap_bytes - align,
1515 align, align, &local_qiov, 0, 0);
1516 if (ret < 0) {
1517 return ret;
1519 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1522 zero_mem:
1523 if (zero_middle) {
1524 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1527 return 0;
1530 static void bdrv_padding_destroy(BdrvRequestPadding *pad)
1532 if (pad->buf) {
1533 qemu_vfree(pad->buf);
1534 qemu_iovec_destroy(&pad->local_qiov);
1536 memset(pad, 0, sizeof(*pad));
1540 * bdrv_pad_request
1542 * Exchange request parameters with padded request if needed. Don't include RMW
1543 * read of padding, bdrv_padding_rmw_read() should be called separately if
1544 * needed.
1546 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out:
1547 * - on function start they represent original request
1548 * - on failure or when padding is not needed they are unchanged
1549 * - on success when padding is needed they represent padded request
1551 static int bdrv_pad_request(BlockDriverState *bs,
1552 QEMUIOVector **qiov, size_t *qiov_offset,
1553 int64_t *offset, int64_t *bytes,
1554 BdrvRequestPadding *pad, bool *padded,
1555 BdrvRequestFlags *flags)
1557 int ret;
1559 bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort);
1561 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) {
1562 if (padded) {
1563 *padded = false;
1565 return 0;
1568 ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head,
1569 *qiov, *qiov_offset, *bytes,
1570 pad->buf + pad->buf_len - pad->tail,
1571 pad->tail);
1572 if (ret < 0) {
1573 bdrv_padding_destroy(pad);
1574 return ret;
1576 *bytes += pad->head + pad->tail;
1577 *offset -= pad->head;
1578 *qiov = &pad->local_qiov;
1579 *qiov_offset = 0;
1580 if (padded) {
1581 *padded = true;
1583 if (flags) {
1584 /* Can't use optimization hint with bounce buffer */
1585 *flags &= ~BDRV_REQ_REGISTERED_BUF;
1588 return 0;
1591 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1592 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1593 BdrvRequestFlags flags)
1595 IO_CODE();
1596 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1599 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1600 int64_t offset, int64_t bytes,
1601 QEMUIOVector *qiov, size_t qiov_offset,
1602 BdrvRequestFlags flags)
1604 BlockDriverState *bs = child->bs;
1605 BdrvTrackedRequest req;
1606 BdrvRequestPadding pad;
1607 int ret;
1608 IO_CODE();
1610 trace_bdrv_co_preadv_part(bs, offset, bytes, flags);
1612 if (!bdrv_is_inserted(bs)) {
1613 return -ENOMEDIUM;
1616 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
1617 if (ret < 0) {
1618 return ret;
1621 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1623 * Aligning zero request is nonsense. Even if driver has special meaning
1624 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1625 * it to driver due to request_alignment.
1627 * Still, no reason to return an error if someone do unaligned
1628 * zero-length read occasionally.
1630 return 0;
1633 bdrv_inc_in_flight(bs);
1635 /* Don't do copy-on-read if we read data before write operation */
1636 if (qatomic_read(&bs->copy_on_read)) {
1637 flags |= BDRV_REQ_COPY_ON_READ;
1640 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
1641 NULL, &flags);
1642 if (ret < 0) {
1643 goto fail;
1646 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1647 ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1648 bs->bl.request_alignment,
1649 qiov, qiov_offset, flags);
1650 tracked_request_end(&req);
1651 bdrv_padding_destroy(&pad);
1653 fail:
1654 bdrv_dec_in_flight(bs);
1656 return ret;
1659 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1660 int64_t offset, int64_t bytes, BdrvRequestFlags flags)
1662 BlockDriver *drv = bs->drv;
1663 QEMUIOVector qiov;
1664 void *buf = NULL;
1665 int ret = 0;
1666 bool need_flush = false;
1667 int head = 0;
1668 int tail = 0;
1670 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes,
1671 INT64_MAX);
1672 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1673 bs->bl.request_alignment);
1674 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1676 bdrv_check_request(offset, bytes, &error_abort);
1678 if (!drv) {
1679 return -ENOMEDIUM;
1682 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1683 return -ENOTSUP;
1686 /* By definition there is no user buffer so this flag doesn't make sense */
1687 if (flags & BDRV_REQ_REGISTERED_BUF) {
1688 return -EINVAL;
1691 /* Invalidate the cached block-status data range if this write overlaps */
1692 bdrv_bsc_invalidate_range(bs, offset, bytes);
1694 assert(alignment % bs->bl.request_alignment == 0);
1695 head = offset % alignment;
1696 tail = (offset + bytes) % alignment;
1697 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1698 assert(max_write_zeroes >= bs->bl.request_alignment);
1700 while (bytes > 0 && !ret) {
1701 int64_t num = bytes;
1703 /* Align request. Block drivers can expect the "bulk" of the request
1704 * to be aligned, and that unaligned requests do not cross cluster
1705 * boundaries.
1707 if (head) {
1708 /* Make a small request up to the first aligned sector. For
1709 * convenience, limit this request to max_transfer even if
1710 * we don't need to fall back to writes. */
1711 num = MIN(MIN(bytes, max_transfer), alignment - head);
1712 head = (head + num) % alignment;
1713 assert(num < max_write_zeroes);
1714 } else if (tail && num > alignment) {
1715 /* Shorten the request to the last aligned sector. */
1716 num -= tail;
1719 /* limit request size */
1720 if (num > max_write_zeroes) {
1721 num = max_write_zeroes;
1724 ret = -ENOTSUP;
1725 /* First try the efficient write zeroes operation */
1726 if (drv->bdrv_co_pwrite_zeroes) {
1727 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1728 flags & bs->supported_zero_flags);
1729 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1730 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1731 need_flush = true;
1733 } else {
1734 assert(!bs->supported_zero_flags);
1737 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1738 /* Fall back to bounce buffer if write zeroes is unsupported */
1739 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1741 if ((flags & BDRV_REQ_FUA) &&
1742 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1743 /* No need for bdrv_driver_pwrite() to do a fallback
1744 * flush on each chunk; use just one at the end */
1745 write_flags &= ~BDRV_REQ_FUA;
1746 need_flush = true;
1748 num = MIN(num, max_transfer);
1749 if (buf == NULL) {
1750 buf = qemu_try_blockalign0(bs, num);
1751 if (buf == NULL) {
1752 ret = -ENOMEM;
1753 goto fail;
1756 qemu_iovec_init_buf(&qiov, buf, num);
1758 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1760 /* Keep bounce buffer around if it is big enough for all
1761 * all future requests.
1763 if (num < max_transfer) {
1764 qemu_vfree(buf);
1765 buf = NULL;
1769 offset += num;
1770 bytes -= num;
1773 fail:
1774 if (ret == 0 && need_flush) {
1775 ret = bdrv_co_flush(bs);
1777 qemu_vfree(buf);
1778 return ret;
1781 static inline int coroutine_fn
1782 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes,
1783 BdrvTrackedRequest *req, int flags)
1785 BlockDriverState *bs = child->bs;
1787 bdrv_check_request(offset, bytes, &error_abort);
1789 if (bdrv_is_read_only(bs)) {
1790 return -EPERM;
1793 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1794 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1795 assert(!(flags & ~BDRV_REQ_MASK));
1796 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
1798 if (flags & BDRV_REQ_SERIALISING) {
1799 QEMU_LOCK_GUARD(&bs->reqs_lock);
1801 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
1803 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
1804 return -EBUSY;
1807 bdrv_wait_serialising_requests_locked(req);
1808 } else {
1809 bdrv_wait_serialising_requests(req);
1812 assert(req->overlap_offset <= offset);
1813 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1814 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE ||
1815 child->perm & BLK_PERM_RESIZE);
1817 switch (req->type) {
1818 case BDRV_TRACKED_WRITE:
1819 case BDRV_TRACKED_DISCARD:
1820 if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1821 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1822 } else {
1823 assert(child->perm & BLK_PERM_WRITE);
1825 bdrv_write_threshold_check_write(bs, offset, bytes);
1826 return 0;
1827 case BDRV_TRACKED_TRUNCATE:
1828 assert(child->perm & BLK_PERM_RESIZE);
1829 return 0;
1830 default:
1831 abort();
1835 static inline void coroutine_fn
1836 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes,
1837 BdrvTrackedRequest *req, int ret)
1839 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1840 BlockDriverState *bs = child->bs;
1842 bdrv_check_request(offset, bytes, &error_abort);
1844 qatomic_inc(&bs->write_gen);
1847 * Discard cannot extend the image, but in error handling cases, such as
1848 * when reverting a qcow2 cluster allocation, the discarded range can pass
1849 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
1850 * here. Instead, just skip it, since semantically a discard request
1851 * beyond EOF cannot expand the image anyway.
1853 if (ret == 0 &&
1854 (req->type == BDRV_TRACKED_TRUNCATE ||
1855 end_sector > bs->total_sectors) &&
1856 req->type != BDRV_TRACKED_DISCARD) {
1857 bs->total_sectors = end_sector;
1858 bdrv_parent_cb_resize(bs);
1859 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
1861 if (req->bytes) {
1862 switch (req->type) {
1863 case BDRV_TRACKED_WRITE:
1864 stat64_max(&bs->wr_highest_offset, offset + bytes);
1865 /* fall through, to set dirty bits */
1866 case BDRV_TRACKED_DISCARD:
1867 bdrv_set_dirty(bs, offset, bytes);
1868 break;
1869 default:
1870 break;
1876 * Forwards an already correctly aligned write request to the BlockDriver,
1877 * after possibly fragmenting it.
1879 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1880 BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
1881 int64_t align, QEMUIOVector *qiov, size_t qiov_offset,
1882 BdrvRequestFlags flags)
1884 BlockDriverState *bs = child->bs;
1885 BlockDriver *drv = bs->drv;
1886 int ret;
1888 int64_t bytes_remaining = bytes;
1889 int max_transfer;
1891 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1893 if (!drv) {
1894 return -ENOMEDIUM;
1897 if (bdrv_has_readonly_bitmaps(bs)) {
1898 return -EPERM;
1901 assert(is_power_of_2(align));
1902 assert((offset & (align - 1)) == 0);
1903 assert((bytes & (align - 1)) == 0);
1904 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1905 align);
1907 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
1909 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1910 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1911 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
1912 flags |= BDRV_REQ_ZERO_WRITE;
1913 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1914 flags |= BDRV_REQ_MAY_UNMAP;
1918 if (ret < 0) {
1919 /* Do nothing, write notifier decided to fail this request */
1920 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1921 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1922 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1923 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1924 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
1925 qiov, qiov_offset);
1926 } else if (bytes <= max_transfer) {
1927 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1928 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
1929 } else {
1930 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1931 while (bytes_remaining) {
1932 int num = MIN(bytes_remaining, max_transfer);
1933 int local_flags = flags;
1935 assert(num);
1936 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1937 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1938 /* If FUA is going to be emulated by flush, we only
1939 * need to flush on the last iteration */
1940 local_flags &= ~BDRV_REQ_FUA;
1943 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1944 num, qiov,
1945 qiov_offset + bytes - bytes_remaining,
1946 local_flags);
1947 if (ret < 0) {
1948 break;
1950 bytes_remaining -= num;
1953 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1955 if (ret >= 0) {
1956 ret = 0;
1958 bdrv_co_write_req_finish(child, offset, bytes, req, ret);
1960 return ret;
1963 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1964 int64_t offset,
1965 int64_t bytes,
1966 BdrvRequestFlags flags,
1967 BdrvTrackedRequest *req)
1969 BlockDriverState *bs = child->bs;
1970 QEMUIOVector local_qiov;
1971 uint64_t align = bs->bl.request_alignment;
1972 int ret = 0;
1973 bool padding;
1974 BdrvRequestPadding pad;
1976 /* This flag doesn't make sense for padding or zero writes */
1977 flags &= ~BDRV_REQ_REGISTERED_BUF;
1979 padding = bdrv_init_padding(bs, offset, bytes, &pad);
1980 if (padding) {
1981 assert(!(flags & BDRV_REQ_NO_WAIT));
1982 bdrv_make_request_serialising(req, align);
1984 bdrv_padding_rmw_read(child, req, &pad, true);
1986 if (pad.head || pad.merge_reads) {
1987 int64_t aligned_offset = offset & ~(align - 1);
1988 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
1990 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
1991 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
1992 align, &local_qiov, 0,
1993 flags & ~BDRV_REQ_ZERO_WRITE);
1994 if (ret < 0 || pad.merge_reads) {
1995 /* Error or all work is done */
1996 goto out;
1998 offset += write_bytes - pad.head;
1999 bytes -= write_bytes - pad.head;
2003 assert(!bytes || (offset & (align - 1)) == 0);
2004 if (bytes >= align) {
2005 /* Write the aligned part in the middle. */
2006 int64_t aligned_bytes = bytes & ~(align - 1);
2007 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2008 NULL, 0, flags);
2009 if (ret < 0) {
2010 goto out;
2012 bytes -= aligned_bytes;
2013 offset += aligned_bytes;
2016 assert(!bytes || (offset & (align - 1)) == 0);
2017 if (bytes) {
2018 assert(align == pad.tail + bytes);
2020 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2021 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2022 &local_qiov, 0,
2023 flags & ~BDRV_REQ_ZERO_WRITE);
2026 out:
2027 bdrv_padding_destroy(&pad);
2029 return ret;
2033 * Handle a write request in coroutine context
2035 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2036 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
2037 BdrvRequestFlags flags)
2039 IO_CODE();
2040 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2043 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2044 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset,
2045 BdrvRequestFlags flags)
2047 BlockDriverState *bs = child->bs;
2048 BdrvTrackedRequest req;
2049 uint64_t align = bs->bl.request_alignment;
2050 BdrvRequestPadding pad;
2051 int ret;
2052 bool padded = false;
2053 IO_CODE();
2055 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags);
2057 if (!bdrv_is_inserted(bs)) {
2058 return -ENOMEDIUM;
2061 if (flags & BDRV_REQ_ZERO_WRITE) {
2062 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
2063 } else {
2064 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
2066 if (ret < 0) {
2067 return ret;
2070 /* If the request is misaligned then we can't make it efficient */
2071 if ((flags & BDRV_REQ_NO_FALLBACK) &&
2072 !QEMU_IS_ALIGNED(offset | bytes, align))
2074 return -ENOTSUP;
2077 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2079 * Aligning zero request is nonsense. Even if driver has special meaning
2080 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2081 * it to driver due to request_alignment.
2083 * Still, no reason to return an error if someone do unaligned
2084 * zero-length write occasionally.
2086 return 0;
2089 if (!(flags & BDRV_REQ_ZERO_WRITE)) {
2091 * Pad request for following read-modify-write cycle.
2092 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do
2093 * alignment only if there is no ZERO flag.
2095 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
2096 &padded, &flags);
2097 if (ret < 0) {
2098 return ret;
2102 bdrv_inc_in_flight(bs);
2103 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2105 if (flags & BDRV_REQ_ZERO_WRITE) {
2106 assert(!padded);
2107 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2108 goto out;
2111 if (padded) {
2113 * Request was unaligned to request_alignment and therefore
2114 * padded. We are going to do read-modify-write, and must
2115 * serialize the request to prevent interactions of the
2116 * widened region with other transactions.
2118 assert(!(flags & BDRV_REQ_NO_WAIT));
2119 bdrv_make_request_serialising(&req, align);
2120 bdrv_padding_rmw_read(child, &req, &pad, false);
2123 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2124 qiov, qiov_offset, flags);
2126 bdrv_padding_destroy(&pad);
2128 out:
2129 tracked_request_end(&req);
2130 bdrv_dec_in_flight(bs);
2132 return ret;
2135 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2136 int64_t bytes, BdrvRequestFlags flags)
2138 IO_CODE();
2139 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2141 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2142 flags &= ~BDRV_REQ_MAY_UNMAP;
2145 return bdrv_co_pwritev(child, offset, bytes, NULL,
2146 BDRV_REQ_ZERO_WRITE | flags);
2150 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2152 int bdrv_flush_all(void)
2154 BdrvNextIterator it;
2155 BlockDriverState *bs = NULL;
2156 int result = 0;
2158 GLOBAL_STATE_CODE();
2161 * bdrv queue is managed by record/replay,
2162 * creating new flush request for stopping
2163 * the VM may break the determinism
2165 if (replay_events_enabled()) {
2166 return result;
2169 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2170 AioContext *aio_context = bdrv_get_aio_context(bs);
2171 int ret;
2173 aio_context_acquire(aio_context);
2174 ret = bdrv_flush(bs);
2175 if (ret < 0 && !result) {
2176 result = ret;
2178 aio_context_release(aio_context);
2181 return result;
2185 * Returns the allocation status of the specified sectors.
2186 * Drivers not implementing the functionality are assumed to not support
2187 * backing files, hence all their sectors are reported as allocated.
2189 * If 'want_zero' is true, the caller is querying for mapping
2190 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2191 * _ZERO where possible; otherwise, the result favors larger 'pnum',
2192 * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2194 * If 'offset' is beyond the end of the disk image the return value is
2195 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2197 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
2198 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2199 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2201 * 'pnum' is set to the number of bytes (including and immediately
2202 * following the specified offset) that are easily known to be in the
2203 * same allocated/unallocated state. Note that a second call starting
2204 * at the original offset plus returned pnum may have the same status.
2205 * The returned value is non-zero on success except at end-of-file.
2207 * Returns negative errno on failure. Otherwise, if the
2208 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2209 * set to the host mapping and BDS corresponding to the guest offset.
2211 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2212 bool want_zero,
2213 int64_t offset, int64_t bytes,
2214 int64_t *pnum, int64_t *map,
2215 BlockDriverState **file)
2217 int64_t total_size;
2218 int64_t n; /* bytes */
2219 int ret;
2220 int64_t local_map = 0;
2221 BlockDriverState *local_file = NULL;
2222 int64_t aligned_offset, aligned_bytes;
2223 uint32_t align;
2224 bool has_filtered_child;
2226 assert(pnum);
2227 *pnum = 0;
2228 total_size = bdrv_getlength(bs);
2229 if (total_size < 0) {
2230 ret = total_size;
2231 goto early_out;
2234 if (offset >= total_size) {
2235 ret = BDRV_BLOCK_EOF;
2236 goto early_out;
2238 if (!bytes) {
2239 ret = 0;
2240 goto early_out;
2243 n = total_size - offset;
2244 if (n < bytes) {
2245 bytes = n;
2248 /* Must be non-NULL or bdrv_getlength() would have failed */
2249 assert(bs->drv);
2250 has_filtered_child = bdrv_filter_child(bs);
2251 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2252 *pnum = bytes;
2253 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2254 if (offset + bytes == total_size) {
2255 ret |= BDRV_BLOCK_EOF;
2257 if (bs->drv->protocol_name) {
2258 ret |= BDRV_BLOCK_OFFSET_VALID;
2259 local_map = offset;
2260 local_file = bs;
2262 goto early_out;
2265 bdrv_inc_in_flight(bs);
2267 /* Round out to request_alignment boundaries */
2268 align = bs->bl.request_alignment;
2269 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2270 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2272 if (bs->drv->bdrv_co_block_status) {
2274 * Use the block-status cache only for protocol nodes: Format
2275 * drivers are generally quick to inquire the status, but protocol
2276 * drivers often need to get information from outside of qemu, so
2277 * we do not have control over the actual implementation. There
2278 * have been cases where inquiring the status took an unreasonably
2279 * long time, and we can do nothing in qemu to fix it.
2280 * This is especially problematic for images with large data areas,
2281 * because finding the few holes in them and giving them special
2282 * treatment does not gain much performance. Therefore, we try to
2283 * cache the last-identified data region.
2285 * Second, limiting ourselves to protocol nodes allows us to assume
2286 * the block status for data regions to be DATA | OFFSET_VALID, and
2287 * that the host offset is the same as the guest offset.
2289 * Note that it is possible that external writers zero parts of
2290 * the cached regions without the cache being invalidated, and so
2291 * we may report zeroes as data. This is not catastrophic,
2292 * however, because reporting zeroes as data is fine.
2294 if (QLIST_EMPTY(&bs->children) &&
2295 bdrv_bsc_is_data(bs, aligned_offset, pnum))
2297 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
2298 local_file = bs;
2299 local_map = aligned_offset;
2300 } else {
2301 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2302 aligned_bytes, pnum, &local_map,
2303 &local_file);
2306 * Note that checking QLIST_EMPTY(&bs->children) is also done when
2307 * the cache is queried above. Technically, we do not need to check
2308 * it here; the worst that can happen is that we fill the cache for
2309 * non-protocol nodes, and then it is never used. However, filling
2310 * the cache requires an RCU update, so double check here to avoid
2311 * such an update if possible.
2313 * Check want_zero, because we only want to update the cache when we
2314 * have accurate information about what is zero and what is data.
2316 if (want_zero &&
2317 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) &&
2318 QLIST_EMPTY(&bs->children))
2321 * When a protocol driver reports BLOCK_OFFSET_VALID, the
2322 * returned local_map value must be the same as the offset we
2323 * have passed (aligned_offset), and local_bs must be the node
2324 * itself.
2325 * Assert this, because we follow this rule when reading from
2326 * the cache (see the `local_file = bs` and
2327 * `local_map = aligned_offset` assignments above), and the
2328 * result the cache delivers must be the same as the driver
2329 * would deliver.
2331 assert(local_file == bs);
2332 assert(local_map == aligned_offset);
2333 bdrv_bsc_fill(bs, aligned_offset, *pnum);
2336 } else {
2337 /* Default code for filters */
2339 local_file = bdrv_filter_bs(bs);
2340 assert(local_file);
2342 *pnum = aligned_bytes;
2343 local_map = aligned_offset;
2344 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2346 if (ret < 0) {
2347 *pnum = 0;
2348 goto out;
2352 * The driver's result must be a non-zero multiple of request_alignment.
2353 * Clamp pnum and adjust map to original request.
2355 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2356 align > offset - aligned_offset);
2357 if (ret & BDRV_BLOCK_RECURSE) {
2358 assert(ret & BDRV_BLOCK_DATA);
2359 assert(ret & BDRV_BLOCK_OFFSET_VALID);
2360 assert(!(ret & BDRV_BLOCK_ZERO));
2363 *pnum -= offset - aligned_offset;
2364 if (*pnum > bytes) {
2365 *pnum = bytes;
2367 if (ret & BDRV_BLOCK_OFFSET_VALID) {
2368 local_map += offset - aligned_offset;
2371 if (ret & BDRV_BLOCK_RAW) {
2372 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2373 ret = bdrv_co_block_status(local_file, want_zero, local_map,
2374 *pnum, pnum, &local_map, &local_file);
2375 goto out;
2378 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2379 ret |= BDRV_BLOCK_ALLOCATED;
2380 } else if (bs->drv->supports_backing) {
2381 BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2383 if (!cow_bs) {
2384 ret |= BDRV_BLOCK_ZERO;
2385 } else if (want_zero) {
2386 int64_t size2 = bdrv_getlength(cow_bs);
2388 if (size2 >= 0 && offset >= size2) {
2389 ret |= BDRV_BLOCK_ZERO;
2394 if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2395 local_file && local_file != bs &&
2396 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2397 (ret & BDRV_BLOCK_OFFSET_VALID)) {
2398 int64_t file_pnum;
2399 int ret2;
2401 ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2402 *pnum, &file_pnum, NULL, NULL);
2403 if (ret2 >= 0) {
2404 /* Ignore errors. This is just providing extra information, it
2405 * is useful but not necessary.
2407 if (ret2 & BDRV_BLOCK_EOF &&
2408 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2410 * It is valid for the format block driver to read
2411 * beyond the end of the underlying file's current
2412 * size; such areas read as zero.
2414 ret |= BDRV_BLOCK_ZERO;
2415 } else {
2416 /* Limit request to the range reported by the protocol driver */
2417 *pnum = file_pnum;
2418 ret |= (ret2 & BDRV_BLOCK_ZERO);
2423 out:
2424 bdrv_dec_in_flight(bs);
2425 if (ret >= 0 && offset + *pnum == total_size) {
2426 ret |= BDRV_BLOCK_EOF;
2428 early_out:
2429 if (file) {
2430 *file = local_file;
2432 if (map) {
2433 *map = local_map;
2435 return ret;
2438 int coroutine_fn
2439 bdrv_co_common_block_status_above(BlockDriverState *bs,
2440 BlockDriverState *base,
2441 bool include_base,
2442 bool want_zero,
2443 int64_t offset,
2444 int64_t bytes,
2445 int64_t *pnum,
2446 int64_t *map,
2447 BlockDriverState **file,
2448 int *depth)
2450 int ret;
2451 BlockDriverState *p;
2452 int64_t eof = 0;
2453 int dummy;
2454 IO_CODE();
2456 assert(!include_base || base); /* Can't include NULL base */
2458 if (!depth) {
2459 depth = &dummy;
2461 *depth = 0;
2463 if (!include_base && bs == base) {
2464 *pnum = bytes;
2465 return 0;
2468 ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file);
2469 ++*depth;
2470 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2471 return ret;
2474 if (ret & BDRV_BLOCK_EOF) {
2475 eof = offset + *pnum;
2478 assert(*pnum <= bytes);
2479 bytes = *pnum;
2481 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2482 p = bdrv_filter_or_cow_bs(p))
2484 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2485 file);
2486 ++*depth;
2487 if (ret < 0) {
2488 return ret;
2490 if (*pnum == 0) {
2492 * The top layer deferred to this layer, and because this layer is
2493 * short, any zeroes that we synthesize beyond EOF behave as if they
2494 * were allocated at this layer.
2496 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2497 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2498 * below.
2500 assert(ret & BDRV_BLOCK_EOF);
2501 *pnum = bytes;
2502 if (file) {
2503 *file = p;
2505 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2506 break;
2508 if (ret & BDRV_BLOCK_ALLOCATED) {
2510 * We've found the node and the status, we must break.
2512 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2513 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2514 * below.
2516 ret &= ~BDRV_BLOCK_EOF;
2517 break;
2520 if (p == base) {
2521 assert(include_base);
2522 break;
2526 * OK, [offset, offset + *pnum) region is unallocated on this layer,
2527 * let's continue the diving.
2529 assert(*pnum <= bytes);
2530 bytes = *pnum;
2533 if (offset + *pnum == eof) {
2534 ret |= BDRV_BLOCK_EOF;
2537 return ret;
2540 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2541 int64_t offset, int64_t bytes, int64_t *pnum,
2542 int64_t *map, BlockDriverState **file)
2544 IO_CODE();
2545 return bdrv_common_block_status_above(bs, base, false, true, offset, bytes,
2546 pnum, map, file, NULL);
2549 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2550 int64_t *pnum, int64_t *map, BlockDriverState **file)
2552 IO_CODE();
2553 return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2554 offset, bytes, pnum, map, file);
2558 * Check @bs (and its backing chain) to see if the range defined
2559 * by @offset and @bytes is known to read as zeroes.
2560 * Return 1 if that is the case, 0 otherwise and -errno on error.
2561 * This test is meant to be fast rather than accurate so returning 0
2562 * does not guarantee non-zero data.
2564 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2565 int64_t bytes)
2567 int ret;
2568 int64_t pnum = bytes;
2569 IO_CODE();
2571 if (!bytes) {
2572 return 1;
2575 ret = bdrv_co_common_block_status_above(bs, NULL, false, false, offset,
2576 bytes, &pnum, NULL, NULL, NULL);
2578 if (ret < 0) {
2579 return ret;
2582 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2585 int bdrv_is_allocated(BlockDriverState *bs, int64_t offset, int64_t bytes,
2586 int64_t *pnum)
2588 int ret;
2589 int64_t dummy;
2590 IO_CODE();
2592 ret = bdrv_common_block_status_above(bs, bs, true, false, offset,
2593 bytes, pnum ? pnum : &dummy, NULL,
2594 NULL, NULL);
2595 if (ret < 0) {
2596 return ret;
2598 return !!(ret & BDRV_BLOCK_ALLOCATED);
2602 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2604 * Return a positive depth if (a prefix of) the given range is allocated
2605 * in any image between BASE and TOP (BASE is only included if include_base
2606 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth.
2607 * BASE can be NULL to check if the given offset is allocated in any
2608 * image of the chain. Return 0 otherwise, or negative errno on
2609 * failure.
2611 * 'pnum' is set to the number of bytes (including and immediately
2612 * following the specified offset) that are known to be in the same
2613 * allocated/unallocated state. Note that a subsequent call starting
2614 * at 'offset + *pnum' may return the same allocation status (in other
2615 * words, the result is not necessarily the maximum possible range);
2616 * but 'pnum' will only be 0 when end of file is reached.
2618 int bdrv_is_allocated_above(BlockDriverState *top,
2619 BlockDriverState *base,
2620 bool include_base, int64_t offset,
2621 int64_t bytes, int64_t *pnum)
2623 int depth;
2624 int ret = bdrv_common_block_status_above(top, base, include_base, false,
2625 offset, bytes, pnum, NULL, NULL,
2626 &depth);
2627 IO_CODE();
2628 if (ret < 0) {
2629 return ret;
2632 if (ret & BDRV_BLOCK_ALLOCATED) {
2633 return depth;
2635 return 0;
2638 int coroutine_fn
2639 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2641 BlockDriver *drv = bs->drv;
2642 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2643 int ret;
2644 IO_CODE();
2646 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2647 if (ret < 0) {
2648 return ret;
2651 if (!drv) {
2652 return -ENOMEDIUM;
2655 bdrv_inc_in_flight(bs);
2657 if (drv->bdrv_load_vmstate) {
2658 ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2659 } else if (child_bs) {
2660 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2661 } else {
2662 ret = -ENOTSUP;
2665 bdrv_dec_in_flight(bs);
2667 return ret;
2670 int coroutine_fn
2671 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2673 BlockDriver *drv = bs->drv;
2674 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2675 int ret;
2676 IO_CODE();
2678 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2679 if (ret < 0) {
2680 return ret;
2683 if (!drv) {
2684 return -ENOMEDIUM;
2687 bdrv_inc_in_flight(bs);
2689 if (drv->bdrv_save_vmstate) {
2690 ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2691 } else if (child_bs) {
2692 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2693 } else {
2694 ret = -ENOTSUP;
2697 bdrv_dec_in_flight(bs);
2699 return ret;
2702 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2703 int64_t pos, int size)
2705 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2706 int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2707 IO_CODE();
2709 return ret < 0 ? ret : size;
2712 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2713 int64_t pos, int size)
2715 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2716 int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2717 IO_CODE();
2719 return ret < 0 ? ret : size;
2722 /**************************************************************/
2723 /* async I/Os */
2725 void bdrv_aio_cancel(BlockAIOCB *acb)
2727 IO_CODE();
2728 qemu_aio_ref(acb);
2729 bdrv_aio_cancel_async(acb);
2730 while (acb->refcnt > 1) {
2731 if (acb->aiocb_info->get_aio_context) {
2732 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2733 } else if (acb->bs) {
2734 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2735 * assert that we're not using an I/O thread. Thread-safe
2736 * code should use bdrv_aio_cancel_async exclusively.
2738 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2739 aio_poll(bdrv_get_aio_context(acb->bs), true);
2740 } else {
2741 abort();
2744 qemu_aio_unref(acb);
2747 /* Async version of aio cancel. The caller is not blocked if the acb implements
2748 * cancel_async, otherwise we do nothing and let the request normally complete.
2749 * In either case the completion callback must be called. */
2750 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2752 IO_CODE();
2753 if (acb->aiocb_info->cancel_async) {
2754 acb->aiocb_info->cancel_async(acb);
2758 /**************************************************************/
2759 /* Coroutine block device emulation */
2761 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2763 BdrvChild *primary_child = bdrv_primary_child(bs);
2764 BdrvChild *child;
2765 int current_gen;
2766 int ret = 0;
2767 IO_CODE();
2769 bdrv_inc_in_flight(bs);
2771 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2772 bdrv_is_sg(bs)) {
2773 goto early_exit;
2776 qemu_co_mutex_lock(&bs->reqs_lock);
2777 current_gen = qatomic_read(&bs->write_gen);
2779 /* Wait until any previous flushes are completed */
2780 while (bs->active_flush_req) {
2781 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2784 /* Flushes reach this point in nondecreasing current_gen order. */
2785 bs->active_flush_req = true;
2786 qemu_co_mutex_unlock(&bs->reqs_lock);
2788 /* Write back all layers by calling one driver function */
2789 if (bs->drv->bdrv_co_flush) {
2790 ret = bs->drv->bdrv_co_flush(bs);
2791 goto out;
2794 /* Write back cached data to the OS even with cache=unsafe */
2795 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
2796 if (bs->drv->bdrv_co_flush_to_os) {
2797 ret = bs->drv->bdrv_co_flush_to_os(bs);
2798 if (ret < 0) {
2799 goto out;
2803 /* But don't actually force it to the disk with cache=unsafe */
2804 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2805 goto flush_children;
2808 /* Check if we really need to flush anything */
2809 if (bs->flushed_gen == current_gen) {
2810 goto flush_children;
2813 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
2814 if (!bs->drv) {
2815 /* bs->drv->bdrv_co_flush() might have ejected the BDS
2816 * (even in case of apparent success) */
2817 ret = -ENOMEDIUM;
2818 goto out;
2820 if (bs->drv->bdrv_co_flush_to_disk) {
2821 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2822 } else if (bs->drv->bdrv_aio_flush) {
2823 BlockAIOCB *acb;
2824 CoroutineIOCompletion co = {
2825 .coroutine = qemu_coroutine_self(),
2828 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2829 if (acb == NULL) {
2830 ret = -EIO;
2831 } else {
2832 qemu_coroutine_yield();
2833 ret = co.ret;
2835 } else {
2837 * Some block drivers always operate in either writethrough or unsafe
2838 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2839 * know how the server works (because the behaviour is hardcoded or
2840 * depends on server-side configuration), so we can't ensure that
2841 * everything is safe on disk. Returning an error doesn't work because
2842 * that would break guests even if the server operates in writethrough
2843 * mode.
2845 * Let's hope the user knows what he's doing.
2847 ret = 0;
2850 if (ret < 0) {
2851 goto out;
2854 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2855 * in the case of cache=unsafe, so there are no useless flushes.
2857 flush_children:
2858 ret = 0;
2859 QLIST_FOREACH(child, &bs->children, next) {
2860 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
2861 int this_child_ret = bdrv_co_flush(child->bs);
2862 if (!ret) {
2863 ret = this_child_ret;
2868 out:
2869 /* Notify any pending flushes that we have completed */
2870 if (ret == 0) {
2871 bs->flushed_gen = current_gen;
2874 qemu_co_mutex_lock(&bs->reqs_lock);
2875 bs->active_flush_req = false;
2876 /* Return value is ignored - it's ok if wait queue is empty */
2877 qemu_co_queue_next(&bs->flush_queue);
2878 qemu_co_mutex_unlock(&bs->reqs_lock);
2880 early_exit:
2881 bdrv_dec_in_flight(bs);
2882 return ret;
2885 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
2886 int64_t bytes)
2888 BdrvTrackedRequest req;
2889 int ret;
2890 int64_t max_pdiscard;
2891 int head, tail, align;
2892 BlockDriverState *bs = child->bs;
2893 IO_CODE();
2895 if (!bs || !bs->drv || !bdrv_is_inserted(bs)) {
2896 return -ENOMEDIUM;
2899 if (bdrv_has_readonly_bitmaps(bs)) {
2900 return -EPERM;
2903 ret = bdrv_check_request(offset, bytes, NULL);
2904 if (ret < 0) {
2905 return ret;
2908 /* Do nothing if disabled. */
2909 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2910 return 0;
2913 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2914 return 0;
2917 /* Invalidate the cached block-status data range if this discard overlaps */
2918 bdrv_bsc_invalidate_range(bs, offset, bytes);
2920 /* Discard is advisory, but some devices track and coalesce
2921 * unaligned requests, so we must pass everything down rather than
2922 * round here. Still, most devices will just silently ignore
2923 * unaligned requests (by returning -ENOTSUP), so we must fragment
2924 * the request accordingly. */
2925 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2926 assert(align % bs->bl.request_alignment == 0);
2927 head = offset % align;
2928 tail = (offset + bytes) % align;
2930 bdrv_inc_in_flight(bs);
2931 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2933 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
2934 if (ret < 0) {
2935 goto out;
2938 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX),
2939 align);
2940 assert(max_pdiscard >= bs->bl.request_alignment);
2942 while (bytes > 0) {
2943 int64_t num = bytes;
2945 if (head) {
2946 /* Make small requests to get to alignment boundaries. */
2947 num = MIN(bytes, align - head);
2948 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2949 num %= bs->bl.request_alignment;
2951 head = (head + num) % align;
2952 assert(num < max_pdiscard);
2953 } else if (tail) {
2954 if (num > align) {
2955 /* Shorten the request to the last aligned cluster. */
2956 num -= tail;
2957 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2958 tail > bs->bl.request_alignment) {
2959 tail %= bs->bl.request_alignment;
2960 num -= tail;
2963 /* limit request size */
2964 if (num > max_pdiscard) {
2965 num = max_pdiscard;
2968 if (!bs->drv) {
2969 ret = -ENOMEDIUM;
2970 goto out;
2972 if (bs->drv->bdrv_co_pdiscard) {
2973 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2974 } else {
2975 BlockAIOCB *acb;
2976 CoroutineIOCompletion co = {
2977 .coroutine = qemu_coroutine_self(),
2980 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2981 bdrv_co_io_em_complete, &co);
2982 if (acb == NULL) {
2983 ret = -EIO;
2984 goto out;
2985 } else {
2986 qemu_coroutine_yield();
2987 ret = co.ret;
2990 if (ret && ret != -ENOTSUP) {
2991 goto out;
2994 offset += num;
2995 bytes -= num;
2997 ret = 0;
2998 out:
2999 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3000 tracked_request_end(&req);
3001 bdrv_dec_in_flight(bs);
3002 return ret;
3005 int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3007 BlockDriver *drv = bs->drv;
3008 CoroutineIOCompletion co = {
3009 .coroutine = qemu_coroutine_self(),
3011 BlockAIOCB *acb;
3012 IO_CODE();
3014 bdrv_inc_in_flight(bs);
3015 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3016 co.ret = -ENOTSUP;
3017 goto out;
3020 if (drv->bdrv_co_ioctl) {
3021 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3022 } else {
3023 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3024 if (!acb) {
3025 co.ret = -ENOTSUP;
3026 goto out;
3028 qemu_coroutine_yield();
3030 out:
3031 bdrv_dec_in_flight(bs);
3032 return co.ret;
3035 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3037 IO_CODE();
3038 return qemu_memalign(bdrv_opt_mem_align(bs), size);
3041 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3043 IO_CODE();
3044 return memset(qemu_blockalign(bs, size), 0, size);
3047 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3049 size_t align = bdrv_opt_mem_align(bs);
3050 IO_CODE();
3052 /* Ensure that NULL is never returned on success */
3053 assert(align > 0);
3054 if (size == 0) {
3055 size = align;
3058 return qemu_try_memalign(align, size);
3061 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3063 void *mem = qemu_try_blockalign(bs, size);
3064 IO_CODE();
3066 if (mem) {
3067 memset(mem, 0, size);
3070 return mem;
3073 void bdrv_io_plug(BlockDriverState *bs)
3075 BdrvChild *child;
3076 IO_CODE();
3078 QLIST_FOREACH(child, &bs->children, next) {
3079 bdrv_io_plug(child->bs);
3082 if (qatomic_fetch_inc(&bs->io_plugged) == 0) {
3083 BlockDriver *drv = bs->drv;
3084 if (drv && drv->bdrv_io_plug) {
3085 drv->bdrv_io_plug(bs);
3090 void bdrv_io_unplug(BlockDriverState *bs)
3092 BdrvChild *child;
3093 IO_CODE();
3095 assert(bs->io_plugged);
3096 if (qatomic_fetch_dec(&bs->io_plugged) == 1) {
3097 BlockDriver *drv = bs->drv;
3098 if (drv && drv->bdrv_io_unplug) {
3099 drv->bdrv_io_unplug(bs);
3103 QLIST_FOREACH(child, &bs->children, next) {
3104 bdrv_io_unplug(child->bs);
3108 /* Helper that undoes bdrv_register_buf() when it fails partway through */
3109 static void bdrv_register_buf_rollback(BlockDriverState *bs,
3110 void *host,
3111 size_t size,
3112 BdrvChild *final_child)
3114 BdrvChild *child;
3116 QLIST_FOREACH(child, &bs->children, next) {
3117 if (child == final_child) {
3118 break;
3121 bdrv_unregister_buf(child->bs, host, size);
3124 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3125 bs->drv->bdrv_unregister_buf(bs, host, size);
3129 bool bdrv_register_buf(BlockDriverState *bs, void *host, size_t size,
3130 Error **errp)
3132 BdrvChild *child;
3134 GLOBAL_STATE_CODE();
3135 if (bs->drv && bs->drv->bdrv_register_buf) {
3136 if (!bs->drv->bdrv_register_buf(bs, host, size, errp)) {
3137 return false;
3140 QLIST_FOREACH(child, &bs->children, next) {
3141 if (!bdrv_register_buf(child->bs, host, size, errp)) {
3142 bdrv_register_buf_rollback(bs, host, size, child);
3143 return false;
3146 return true;
3149 void bdrv_unregister_buf(BlockDriverState *bs, void *host, size_t size)
3151 BdrvChild *child;
3153 GLOBAL_STATE_CODE();
3154 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3155 bs->drv->bdrv_unregister_buf(bs, host, size);
3157 QLIST_FOREACH(child, &bs->children, next) {
3158 bdrv_unregister_buf(child->bs, host, size);
3162 static int coroutine_fn bdrv_co_copy_range_internal(
3163 BdrvChild *src, int64_t src_offset, BdrvChild *dst,
3164 int64_t dst_offset, int64_t bytes,
3165 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3166 bool recurse_src)
3168 BdrvTrackedRequest req;
3169 int ret;
3171 /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3172 assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3173 assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3174 assert(!(read_flags & BDRV_REQ_NO_WAIT));
3175 assert(!(write_flags & BDRV_REQ_NO_WAIT));
3177 if (!dst || !dst->bs || !bdrv_is_inserted(dst->bs)) {
3178 return -ENOMEDIUM;
3180 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0);
3181 if (ret) {
3182 return ret;
3184 if (write_flags & BDRV_REQ_ZERO_WRITE) {
3185 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3188 if (!src || !src->bs || !bdrv_is_inserted(src->bs)) {
3189 return -ENOMEDIUM;
3191 ret = bdrv_check_request32(src_offset, bytes, NULL, 0);
3192 if (ret) {
3193 return ret;
3196 if (!src->bs->drv->bdrv_co_copy_range_from
3197 || !dst->bs->drv->bdrv_co_copy_range_to
3198 || src->bs->encrypted || dst->bs->encrypted) {
3199 return -ENOTSUP;
3202 if (recurse_src) {
3203 bdrv_inc_in_flight(src->bs);
3204 tracked_request_begin(&req, src->bs, src_offset, bytes,
3205 BDRV_TRACKED_READ);
3207 /* BDRV_REQ_SERIALISING is only for write operation */
3208 assert(!(read_flags & BDRV_REQ_SERIALISING));
3209 bdrv_wait_serialising_requests(&req);
3211 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3212 src, src_offset,
3213 dst, dst_offset,
3214 bytes,
3215 read_flags, write_flags);
3217 tracked_request_end(&req);
3218 bdrv_dec_in_flight(src->bs);
3219 } else {
3220 bdrv_inc_in_flight(dst->bs);
3221 tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3222 BDRV_TRACKED_WRITE);
3223 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3224 write_flags);
3225 if (!ret) {
3226 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3227 src, src_offset,
3228 dst, dst_offset,
3229 bytes,
3230 read_flags, write_flags);
3232 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3233 tracked_request_end(&req);
3234 bdrv_dec_in_flight(dst->bs);
3237 return ret;
3240 /* Copy range from @src to @dst.
3242 * See the comment of bdrv_co_copy_range for the parameter and return value
3243 * semantics. */
3244 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset,
3245 BdrvChild *dst, int64_t dst_offset,
3246 int64_t bytes,
3247 BdrvRequestFlags read_flags,
3248 BdrvRequestFlags write_flags)
3250 IO_CODE();
3251 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3252 read_flags, write_flags);
3253 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3254 bytes, read_flags, write_flags, true);
3257 /* Copy range from @src to @dst.
3259 * See the comment of bdrv_co_copy_range for the parameter and return value
3260 * semantics. */
3261 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset,
3262 BdrvChild *dst, int64_t dst_offset,
3263 int64_t bytes,
3264 BdrvRequestFlags read_flags,
3265 BdrvRequestFlags write_flags)
3267 IO_CODE();
3268 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3269 read_flags, write_flags);
3270 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3271 bytes, read_flags, write_flags, false);
3274 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
3275 BdrvChild *dst, int64_t dst_offset,
3276 int64_t bytes, BdrvRequestFlags read_flags,
3277 BdrvRequestFlags write_flags)
3279 IO_CODE();
3280 return bdrv_co_copy_range_from(src, src_offset,
3281 dst, dst_offset,
3282 bytes, read_flags, write_flags);
3285 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3287 BdrvChild *c;
3288 QLIST_FOREACH(c, &bs->parents, next_parent) {
3289 if (c->klass->resize) {
3290 c->klass->resize(c);
3296 * Truncate file to 'offset' bytes (needed only for file protocols)
3298 * If 'exact' is true, the file must be resized to exactly the given
3299 * 'offset'. Otherwise, it is sufficient for the node to be at least
3300 * 'offset' bytes in length.
3302 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3303 PreallocMode prealloc, BdrvRequestFlags flags,
3304 Error **errp)
3306 BlockDriverState *bs = child->bs;
3307 BdrvChild *filtered, *backing;
3308 BlockDriver *drv = bs->drv;
3309 BdrvTrackedRequest req;
3310 int64_t old_size, new_bytes;
3311 int ret;
3312 IO_CODE();
3314 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3315 if (!drv) {
3316 error_setg(errp, "No medium inserted");
3317 return -ENOMEDIUM;
3319 if (offset < 0) {
3320 error_setg(errp, "Image size cannot be negative");
3321 return -EINVAL;
3324 ret = bdrv_check_request(offset, 0, errp);
3325 if (ret < 0) {
3326 return ret;
3329 old_size = bdrv_getlength(bs);
3330 if (old_size < 0) {
3331 error_setg_errno(errp, -old_size, "Failed to get old image size");
3332 return old_size;
3335 if (bdrv_is_read_only(bs)) {
3336 error_setg(errp, "Image is read-only");
3337 return -EACCES;
3340 if (offset > old_size) {
3341 new_bytes = offset - old_size;
3342 } else {
3343 new_bytes = 0;
3346 bdrv_inc_in_flight(bs);
3347 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3348 BDRV_TRACKED_TRUNCATE);
3350 /* If we are growing the image and potentially using preallocation for the
3351 * new area, we need to make sure that no write requests are made to it
3352 * concurrently or they might be overwritten by preallocation. */
3353 if (new_bytes) {
3354 bdrv_make_request_serialising(&req, 1);
3356 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3358 if (ret < 0) {
3359 error_setg_errno(errp, -ret,
3360 "Failed to prepare request for truncation");
3361 goto out;
3364 filtered = bdrv_filter_child(bs);
3365 backing = bdrv_cow_child(bs);
3368 * If the image has a backing file that is large enough that it would
3369 * provide data for the new area, we cannot leave it unallocated because
3370 * then the backing file content would become visible. Instead, zero-fill
3371 * the new area.
3373 * Note that if the image has a backing file, but was opened without the
3374 * backing file, taking care of keeping things consistent with that backing
3375 * file is the user's responsibility.
3377 if (new_bytes && backing) {
3378 int64_t backing_len;
3380 backing_len = bdrv_getlength(backing->bs);
3381 if (backing_len < 0) {
3382 ret = backing_len;
3383 error_setg_errno(errp, -ret, "Could not get backing file size");
3384 goto out;
3387 if (backing_len > old_size) {
3388 flags |= BDRV_REQ_ZERO_WRITE;
3392 if (drv->bdrv_co_truncate) {
3393 if (flags & ~bs->supported_truncate_flags) {
3394 error_setg(errp, "Block driver does not support requested flags");
3395 ret = -ENOTSUP;
3396 goto out;
3398 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3399 } else if (filtered) {
3400 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3401 } else {
3402 error_setg(errp, "Image format driver does not support resize");
3403 ret = -ENOTSUP;
3404 goto out;
3406 if (ret < 0) {
3407 goto out;
3410 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3411 if (ret < 0) {
3412 error_setg_errno(errp, -ret, "Could not refresh total sector count");
3413 } else {
3414 offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3416 /* It's possible that truncation succeeded but refresh_total_sectors
3417 * failed, but the latter doesn't affect how we should finish the request.
3418 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */
3419 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3421 out:
3422 tracked_request_end(&req);
3423 bdrv_dec_in_flight(bs);
3425 return ret;
3428 void bdrv_cancel_in_flight(BlockDriverState *bs)
3430 GLOBAL_STATE_CODE();
3431 if (!bs || !bs->drv) {
3432 return;
3435 if (bs->drv->bdrv_cancel_in_flight) {
3436 bs->drv->bdrv_cancel_in_flight(bs);
3440 int coroutine_fn
3441 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes,
3442 QEMUIOVector *qiov, size_t qiov_offset)
3444 BlockDriverState *bs = child->bs;
3445 BlockDriver *drv = bs->drv;
3446 int ret;
3447 IO_CODE();
3449 if (!drv) {
3450 return -ENOMEDIUM;
3453 if (!drv->bdrv_co_preadv_snapshot) {
3454 return -ENOTSUP;
3457 bdrv_inc_in_flight(bs);
3458 ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset);
3459 bdrv_dec_in_flight(bs);
3461 return ret;
3464 int coroutine_fn
3465 bdrv_co_snapshot_block_status(BlockDriverState *bs,
3466 bool want_zero, int64_t offset, int64_t bytes,
3467 int64_t *pnum, int64_t *map,
3468 BlockDriverState **file)
3470 BlockDriver *drv = bs->drv;
3471 int ret;
3472 IO_CODE();
3474 if (!drv) {
3475 return -ENOMEDIUM;
3478 if (!drv->bdrv_co_snapshot_block_status) {
3479 return -ENOTSUP;
3482 bdrv_inc_in_flight(bs);
3483 ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes,
3484 pnum, map, file);
3485 bdrv_dec_in_flight(bs);
3487 return ret;
3490 int coroutine_fn
3491 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes)
3493 BlockDriver *drv = bs->drv;
3494 int ret;
3495 IO_CODE();
3497 if (!drv) {
3498 return -ENOMEDIUM;
3501 if (!drv->bdrv_co_pdiscard_snapshot) {
3502 return -ENOTSUP;
3505 bdrv_inc_in_flight(bs);
3506 ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes);
3507 bdrv_dec_in_flight(bs);
3509 return ret;