qapi/dump: Indent bulleted lists consistently
[qemu/armbru.git] / target / mips / internal.h
blob4b0031d10d348eebab8768772b81faf206d785f6
1 /*
2 * MIPS internal definitions and helpers
4 * This work is licensed under the terms of the GNU GPL, version 2 or later.
5 * See the COPYING file in the top-level directory.
6 */
8 #ifndef MIPS_INTERNAL_H
9 #define MIPS_INTERNAL_H
11 #include "exec/memattrs.h"
12 #ifdef CONFIG_TCG
13 #include "tcg/tcg-internal.h"
14 #endif
15 #include "cpu.h"
18 * MMU types, the first four entries have the same layout as the
19 * CP0C0_MT field.
21 enum mips_mmu_types {
22 MMU_TYPE_NONE = 0,
23 MMU_TYPE_R4000 = 1, /* Standard TLB */
24 MMU_TYPE_BAT = 2, /* Block Address Translation */
25 MMU_TYPE_FMT = 3, /* Fixed Mapping */
26 MMU_TYPE_DVF = 4, /* Dual VTLB and FTLB */
27 MMU_TYPE_R3000,
28 MMU_TYPE_R6000,
29 MMU_TYPE_R8000
32 struct mips_def_t {
33 const char *name;
34 int32_t CP0_PRid;
35 int32_t CP0_Config0;
36 int32_t CP0_Config1;
37 int32_t CP0_Config2;
38 int32_t CP0_Config3;
39 int32_t CP0_Config4;
40 int32_t CP0_Config4_rw_bitmask;
41 int32_t CP0_Config5;
42 int32_t CP0_Config5_rw_bitmask;
43 int32_t CP0_Config6;
44 int32_t CP0_Config6_rw_bitmask;
45 int32_t CP0_Config7;
46 int32_t CP0_Config7_rw_bitmask;
47 target_ulong CP0_LLAddr_rw_bitmask;
48 int CP0_LLAddr_shift;
49 int32_t SYNCI_Step;
51 * @CCRes: rate at which the coprocessor 0 counter increments
53 * The Count register acts as a timer, incrementing at a constant rate,
54 * whether or not an instruction is executed, retired, or any forward
55 * progress is made through the pipeline. The rate at which the counter
56 * increments is implementation dependent, and is a function of the
57 * pipeline clock of the processor, not the issue width of the processor.
59 int32_t CCRes;
60 int32_t CP0_Status_rw_bitmask;
61 int32_t CP0_TCStatus_rw_bitmask;
62 int32_t CP0_SRSCtl;
63 int32_t CP1_fcr0;
64 int32_t CP1_fcr31_rw_bitmask;
65 int32_t CP1_fcr31;
66 int32_t MSAIR;
67 int32_t SEGBITS;
68 int32_t PABITS;
69 int32_t CP0_SRSConf0_rw_bitmask;
70 int32_t CP0_SRSConf0;
71 int32_t CP0_SRSConf1_rw_bitmask;
72 int32_t CP0_SRSConf1;
73 int32_t CP0_SRSConf2_rw_bitmask;
74 int32_t CP0_SRSConf2;
75 int32_t CP0_SRSConf3_rw_bitmask;
76 int32_t CP0_SRSConf3;
77 int32_t CP0_SRSConf4_rw_bitmask;
78 int32_t CP0_SRSConf4;
79 int32_t CP0_PageGrain_rw_bitmask;
80 int32_t CP0_PageGrain;
81 target_ulong CP0_EBaseWG_rw_bitmask;
82 uint64_t insn_flags;
83 enum mips_mmu_types mmu_type;
84 int32_t SAARP;
87 extern const char regnames[32][3];
88 extern const char fregnames[32][4];
90 extern const struct mips_def_t mips_defs[];
91 extern const int mips_defs_number;
93 int mips_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
94 int mips_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
96 #define USEG_LIMIT ((target_ulong)(int32_t)0x7FFFFFFFUL)
97 #define KSEG0_BASE ((target_ulong)(int32_t)0x80000000UL)
98 #define KSEG1_BASE ((target_ulong)(int32_t)0xA0000000UL)
99 #define KSEG2_BASE ((target_ulong)(int32_t)0xC0000000UL)
100 #define KSEG3_BASE ((target_ulong)(int32_t)0xE0000000UL)
102 #if !defined(CONFIG_USER_ONLY)
104 enum {
105 TLBRET_XI = -6,
106 TLBRET_RI = -5,
107 TLBRET_DIRTY = -4,
108 TLBRET_INVALID = -3,
109 TLBRET_NOMATCH = -2,
110 TLBRET_BADADDR = -1,
111 TLBRET_MATCH = 0
114 int get_physical_address(CPUMIPSState *env, hwaddr *physical,
115 int *prot, target_ulong real_address,
116 MMUAccessType access_type, int mmu_idx);
117 hwaddr mips_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
119 typedef struct r4k_tlb_t r4k_tlb_t;
120 struct r4k_tlb_t {
121 target_ulong VPN;
122 uint32_t PageMask;
123 uint16_t ASID;
124 uint32_t MMID;
125 unsigned int G:1;
126 unsigned int C0:3;
127 unsigned int C1:3;
128 unsigned int V0:1;
129 unsigned int V1:1;
130 unsigned int D0:1;
131 unsigned int D1:1;
132 unsigned int XI0:1;
133 unsigned int XI1:1;
134 unsigned int RI0:1;
135 unsigned int RI1:1;
136 unsigned int EHINV:1;
137 uint64_t PFN[2];
140 struct CPUMIPSTLBContext {
141 uint32_t nb_tlb;
142 uint32_t tlb_in_use;
143 int (*map_address)(CPUMIPSState *env, hwaddr *physical, int *prot,
144 target_ulong address, MMUAccessType access_type);
145 void (*helper_tlbwi)(CPUMIPSState *env);
146 void (*helper_tlbwr)(CPUMIPSState *env);
147 void (*helper_tlbp)(CPUMIPSState *env);
148 void (*helper_tlbr)(CPUMIPSState *env);
149 void (*helper_tlbinv)(CPUMIPSState *env);
150 void (*helper_tlbinvf)(CPUMIPSState *env);
151 union {
152 struct {
153 r4k_tlb_t tlb[MIPS_TLB_MAX];
154 } r4k;
155 } mmu;
158 void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc);
159 void cpu_mips_store_status(CPUMIPSState *env, target_ulong val);
160 void cpu_mips_store_cause(CPUMIPSState *env, target_ulong val);
162 extern const VMStateDescription vmstate_mips_cpu;
164 #endif /* !CONFIG_USER_ONLY */
166 static inline bool cpu_mips_hw_interrupts_enabled(CPUMIPSState *env)
168 return (env->CP0_Status & (1 << CP0St_IE)) &&
169 !(env->CP0_Status & (1 << CP0St_EXL)) &&
170 !(env->CP0_Status & (1 << CP0St_ERL)) &&
171 !(env->hflags & MIPS_HFLAG_DM) &&
173 * Note that the TCStatus IXMT field is initialized to zero,
174 * and only MT capable cores can set it to one. So we don't
175 * need to check for MT capabilities here.
177 !(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_IXMT));
180 /* Check if there is pending and not masked out interrupt */
181 static inline bool cpu_mips_hw_interrupts_pending(CPUMIPSState *env)
183 int32_t pending;
184 int32_t status;
185 bool r;
187 pending = env->CP0_Cause & CP0Ca_IP_mask;
188 status = env->CP0_Status & CP0Ca_IP_mask;
190 if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
192 * A MIPS configured with a vectorizing external interrupt controller
193 * will feed a vector into the Cause pending lines. The core treats
194 * the status lines as a vector level, not as individual masks.
196 r = pending > status;
197 } else {
199 * A MIPS configured with compatibility or VInt (Vectored Interrupts)
200 * treats the pending lines as individual interrupt lines, the status
201 * lines are individual masks.
203 r = (pending & status) != 0;
205 return r;
208 void msa_reset(CPUMIPSState *env);
210 /* cp0_timer.c */
211 uint32_t cpu_mips_get_count(CPUMIPSState *env);
212 void cpu_mips_store_count(CPUMIPSState *env, uint32_t value);
213 void cpu_mips_store_compare(CPUMIPSState *env, uint32_t value);
214 void cpu_mips_start_count(CPUMIPSState *env);
215 void cpu_mips_stop_count(CPUMIPSState *env);
217 static inline void mips_env_set_pc(CPUMIPSState *env, target_ulong value)
219 env->active_tc.PC = value & ~(target_ulong)1;
220 if (value & 1) {
221 env->hflags |= MIPS_HFLAG_M16;
222 } else {
223 env->hflags &= ~(MIPS_HFLAG_M16);
227 static inline void restore_pamask(CPUMIPSState *env)
229 if (env->hflags & MIPS_HFLAG_ELPA) {
230 env->PAMask = (1ULL << env->PABITS) - 1;
231 } else {
232 env->PAMask = PAMASK_BASE;
236 static inline int mips_vpe_active(CPUMIPSState *env)
238 int active = 1;
240 /* Check that the VPE is enabled. */
241 if (!(env->mvp->CP0_MVPControl & (1 << CP0MVPCo_EVP))) {
242 active = 0;
244 /* Check that the VPE is activated. */
245 if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))) {
246 active = 0;
250 * Now verify that there are active thread contexts in the VPE.
252 * This assumes the CPU model will internally reschedule threads
253 * if the active one goes to sleep. If there are no threads available
254 * the active one will be in a sleeping state, and we can turn off
255 * the entire VPE.
257 if (!(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_A))) {
258 /* TC is not activated. */
259 active = 0;
261 if (env->active_tc.CP0_TCHalt & 1) {
262 /* TC is in halt state. */
263 active = 0;
266 return active;
269 static inline int mips_vp_active(CPUMIPSState *env)
271 CPUState *other_cs = first_cpu;
273 /* Check if the VP disabled other VPs (which means the VP is enabled) */
274 if ((env->CP0_VPControl >> CP0VPCtl_DIS) & 1) {
275 return 1;
278 /* Check if the virtual processor is disabled due to a DVP */
279 CPU_FOREACH(other_cs) {
280 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
281 if ((&other_cpu->env != env) &&
282 ((other_cpu->env.CP0_VPControl >> CP0VPCtl_DIS) & 1)) {
283 return 0;
286 return 1;
289 static inline void compute_hflags(CPUMIPSState *env)
291 env->hflags &= ~(MIPS_HFLAG_COP1X | MIPS_HFLAG_64 | MIPS_HFLAG_CP0 |
292 MIPS_HFLAG_F64 | MIPS_HFLAG_FPU | MIPS_HFLAG_KSU |
293 MIPS_HFLAG_AWRAP | MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
294 MIPS_HFLAG_DSP_R3 | MIPS_HFLAG_SBRI | MIPS_HFLAG_MSA |
295 MIPS_HFLAG_FRE | MIPS_HFLAG_ELPA | MIPS_HFLAG_ERL);
296 if (env->CP0_Status & (1 << CP0St_ERL)) {
297 env->hflags |= MIPS_HFLAG_ERL;
299 if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
300 !(env->CP0_Status & (1 << CP0St_ERL)) &&
301 !(env->hflags & MIPS_HFLAG_DM)) {
302 env->hflags |= (env->CP0_Status >> CP0St_KSU) &
303 MIPS_HFLAG_KSU;
305 #if defined(TARGET_MIPS64)
306 if ((env->insn_flags & ISA_MIPS3) &&
307 (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_UM) ||
308 (env->CP0_Status & (1 << CP0St_PX)) ||
309 (env->CP0_Status & (1 << CP0St_UX)))) {
310 env->hflags |= MIPS_HFLAG_64;
313 if (!(env->insn_flags & ISA_MIPS3)) {
314 env->hflags |= MIPS_HFLAG_AWRAP;
315 } else if (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_UM) &&
316 !(env->CP0_Status & (1 << CP0St_UX))) {
317 env->hflags |= MIPS_HFLAG_AWRAP;
318 } else if (env->insn_flags & ISA_MIPS_R6) {
319 /* Address wrapping for Supervisor and Kernel is specified in R6 */
320 if ((((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_SM) &&
321 !(env->CP0_Status & (1 << CP0St_SX))) ||
322 (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_KM) &&
323 !(env->CP0_Status & (1 << CP0St_KX)))) {
324 env->hflags |= MIPS_HFLAG_AWRAP;
327 #endif
328 if (((env->CP0_Status & (1 << CP0St_CU0)) &&
329 !(env->insn_flags & ISA_MIPS_R6)) ||
330 !(env->hflags & MIPS_HFLAG_KSU)) {
331 env->hflags |= MIPS_HFLAG_CP0;
333 if (env->CP0_Status & (1 << CP0St_CU1)) {
334 env->hflags |= MIPS_HFLAG_FPU;
336 if (env->CP0_Status & (1 << CP0St_FR)) {
337 env->hflags |= MIPS_HFLAG_F64;
339 if (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_KM) &&
340 (env->CP0_Config5 & (1 << CP0C5_SBRI))) {
341 env->hflags |= MIPS_HFLAG_SBRI;
343 if (env->insn_flags & ASE_DSP_R3) {
345 * Our cpu supports DSP R3 ASE, so enable
346 * access to DSP R3 resources.
348 if (env->CP0_Status & (1 << CP0St_MX)) {
349 env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
350 MIPS_HFLAG_DSP_R3;
352 } else if (env->insn_flags & ASE_DSP_R2) {
354 * Our cpu supports DSP R2 ASE, so enable
355 * access to DSP R2 resources.
357 if (env->CP0_Status & (1 << CP0St_MX)) {
358 env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2;
361 } else if (env->insn_flags & ASE_DSP) {
363 * Our cpu supports DSP ASE, so enable
364 * access to DSP resources.
366 if (env->CP0_Status & (1 << CP0St_MX)) {
367 env->hflags |= MIPS_HFLAG_DSP;
371 if (env->insn_flags & ISA_MIPS_R2) {
372 if (env->active_fpu.fcr0 & (1 << FCR0_F64)) {
373 env->hflags |= MIPS_HFLAG_COP1X;
375 } else if (env->insn_flags & ISA_MIPS_R1) {
376 if (env->hflags & MIPS_HFLAG_64) {
377 env->hflags |= MIPS_HFLAG_COP1X;
379 } else if (env->insn_flags & ISA_MIPS4) {
381 * All supported MIPS IV CPUs use the XX (CU3) to enable
382 * and disable the MIPS IV extensions to the MIPS III ISA.
383 * Some other MIPS IV CPUs ignore the bit, so the check here
384 * would be too restrictive for them.
386 if (env->CP0_Status & (1U << CP0St_CU3)) {
387 env->hflags |= MIPS_HFLAG_COP1X;
390 if (ase_msa_available(env)) {
391 if (env->CP0_Config5 & (1 << CP0C5_MSAEn)) {
392 env->hflags |= MIPS_HFLAG_MSA;
395 if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
396 if (env->CP0_Config5 & (1 << CP0C5_FRE)) {
397 env->hflags |= MIPS_HFLAG_FRE;
400 if (env->CP0_Config3 & (1 << CP0C3_LPA)) {
401 if (env->CP0_PageGrain & (1 << CP0PG_ELPA)) {
402 env->hflags |= MIPS_HFLAG_ELPA;
407 #endif