qapi/dump: Indent bulleted lists consistently
[qemu/armbru.git] / target / arm / kvm64.c
blob810db33ccbd6587f6147a909c5bde0944f67b9a3
1 /*
2 * ARM implementation of KVM hooks, 64 bit specific code
4 * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
5 * Copyright Alex Bennée 2014, Linaro
7 * This work is licensed under the terms of the GNU GPL, version 2 or later.
8 * See the COPYING file in the top-level directory.
12 #include "qemu/osdep.h"
13 #include <sys/ioctl.h>
14 #include <sys/ptrace.h>
16 #include <linux/elf.h>
17 #include <linux/kvm.h>
19 #include "qapi/error.h"
20 #include "cpu.h"
21 #include "qemu/timer.h"
22 #include "qemu/error-report.h"
23 #include "qemu/host-utils.h"
24 #include "qemu/main-loop.h"
25 #include "exec/gdbstub.h"
26 #include "sysemu/runstate.h"
27 #include "sysemu/kvm.h"
28 #include "sysemu/kvm_int.h"
29 #include "kvm_arm.h"
30 #include "internals.h"
31 #include "hw/acpi/acpi.h"
32 #include "hw/acpi/ghes.h"
33 #include "hw/arm/virt.h"
35 static bool have_guest_debug;
38 * Although the ARM implementation of hardware assisted debugging
39 * allows for different breakpoints per-core, the current GDB
40 * interface treats them as a global pool of registers (which seems to
41 * be the case for x86, ppc and s390). As a result we store one copy
42 * of registers which is used for all active cores.
44 * Write access is serialised by virtue of the GDB protocol which
45 * updates things. Read access (i.e. when the values are copied to the
46 * vCPU) is also gated by GDB's run control.
48 * This is not unreasonable as most of the time debugging kernels you
49 * never know which core will eventually execute your function.
52 typedef struct {
53 uint64_t bcr;
54 uint64_t bvr;
55 } HWBreakpoint;
57 /* The watchpoint registers can cover more area than the requested
58 * watchpoint so we need to store the additional information
59 * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
60 * when the watchpoint is hit.
62 typedef struct {
63 uint64_t wcr;
64 uint64_t wvr;
65 CPUWatchpoint details;
66 } HWWatchpoint;
68 /* Maximum and current break/watch point counts */
69 int max_hw_bps, max_hw_wps;
70 GArray *hw_breakpoints, *hw_watchpoints;
72 #define cur_hw_wps (hw_watchpoints->len)
73 #define cur_hw_bps (hw_breakpoints->len)
74 #define get_hw_bp(i) (&g_array_index(hw_breakpoints, HWBreakpoint, i))
75 #define get_hw_wp(i) (&g_array_index(hw_watchpoints, HWWatchpoint, i))
77 void kvm_arm_init_debug(KVMState *s)
79 have_guest_debug = kvm_check_extension(s,
80 KVM_CAP_SET_GUEST_DEBUG);
82 max_hw_wps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_WPS);
83 hw_watchpoints = g_array_sized_new(true, true,
84 sizeof(HWWatchpoint), max_hw_wps);
86 max_hw_bps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_BPS);
87 hw_breakpoints = g_array_sized_new(true, true,
88 sizeof(HWBreakpoint), max_hw_bps);
89 return;
92 /**
93 * insert_hw_breakpoint()
94 * @addr: address of breakpoint
96 * See ARM ARM D2.9.1 for details but here we are only going to create
97 * simple un-linked breakpoints (i.e. we don't chain breakpoints
98 * together to match address and context or vmid). The hardware is
99 * capable of fancier matching but that will require exposing that
100 * fanciness to GDB's interface
102 * DBGBCR<n>_EL1, Debug Breakpoint Control Registers
104 * 31 24 23 20 19 16 15 14 13 12 9 8 5 4 3 2 1 0
105 * +------+------+-------+-----+----+------+-----+------+-----+---+
106 * | RES0 | BT | LBN | SSC | HMC| RES0 | BAS | RES0 | PMC | E |
107 * +------+------+-------+-----+----+------+-----+------+-----+---+
109 * BT: Breakpoint type (0 = unlinked address match)
110 * LBN: Linked BP number (0 = unused)
111 * SSC/HMC/PMC: Security, Higher and Priv access control (Table D-12)
112 * BAS: Byte Address Select (RES1 for AArch64)
113 * E: Enable bit
115 * DBGBVR<n>_EL1, Debug Breakpoint Value Registers
117 * 63 53 52 49 48 2 1 0
118 * +------+-----------+----------+-----+
119 * | RESS | VA[52:49] | VA[48:2] | 0 0 |
120 * +------+-----------+----------+-----+
122 * Depending on the addressing mode bits the top bits of the register
123 * are a sign extension of the highest applicable VA bit. Some
124 * versions of GDB don't do it correctly so we ensure they are correct
125 * here so future PC comparisons will work properly.
128 static int insert_hw_breakpoint(target_ulong addr)
130 HWBreakpoint brk = {
131 .bcr = 0x1, /* BCR E=1, enable */
132 .bvr = sextract64(addr, 0, 53)
135 if (cur_hw_bps >= max_hw_bps) {
136 return -ENOBUFS;
139 brk.bcr = deposit32(brk.bcr, 1, 2, 0x3); /* PMC = 11 */
140 brk.bcr = deposit32(brk.bcr, 5, 4, 0xf); /* BAS = RES1 */
142 g_array_append_val(hw_breakpoints, brk);
144 return 0;
148 * delete_hw_breakpoint()
149 * @pc: address of breakpoint
151 * Delete a breakpoint and shuffle any above down
154 static int delete_hw_breakpoint(target_ulong pc)
156 int i;
157 for (i = 0; i < hw_breakpoints->len; i++) {
158 HWBreakpoint *brk = get_hw_bp(i);
159 if (brk->bvr == pc) {
160 g_array_remove_index(hw_breakpoints, i);
161 return 0;
164 return -ENOENT;
168 * insert_hw_watchpoint()
169 * @addr: address of watch point
170 * @len: size of area
171 * @type: type of watch point
173 * See ARM ARM D2.10. As with the breakpoints we can do some advanced
174 * stuff if we want to. The watch points can be linked with the break
175 * points above to make them context aware. However for simplicity
176 * currently we only deal with simple read/write watch points.
178 * D7.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers
180 * 31 29 28 24 23 21 20 19 16 15 14 13 12 5 4 3 2 1 0
181 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
182 * | RES0 | MASK | RES0 | WT | LBN | SSC | HMC | BAS | LSC | PAC | E |
183 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
185 * MASK: num bits addr mask (0=none,01/10=res,11=3 bits (8 bytes))
186 * WT: 0 - unlinked, 1 - linked (not currently used)
187 * LBN: Linked BP number (not currently used)
188 * SSC/HMC/PAC: Security, Higher and Priv access control (Table D2-11)
189 * BAS: Byte Address Select
190 * LSC: Load/Store control (01: load, 10: store, 11: both)
191 * E: Enable
193 * The bottom 2 bits of the value register are masked. Therefore to
194 * break on any sizes smaller than an unaligned word you need to set
195 * MASK=0, BAS=bit per byte in question. For larger regions (^2) you
196 * need to ensure you mask the address as required and set BAS=0xff
199 static int insert_hw_watchpoint(target_ulong addr,
200 target_ulong len, int type)
202 HWWatchpoint wp = {
203 .wcr = R_DBGWCR_E_MASK, /* E=1, enable */
204 .wvr = addr & (~0x7ULL),
205 .details = { .vaddr = addr, .len = len }
208 if (cur_hw_wps >= max_hw_wps) {
209 return -ENOBUFS;
213 * HMC=0 SSC=0 PAC=3 will hit EL0 or EL1, any security state,
214 * valid whether EL3 is implemented or not
216 wp.wcr = FIELD_DP64(wp.wcr, DBGWCR, PAC, 3);
218 switch (type) {
219 case GDB_WATCHPOINT_READ:
220 wp.wcr = FIELD_DP64(wp.wcr, DBGWCR, LSC, 1);
221 wp.details.flags = BP_MEM_READ;
222 break;
223 case GDB_WATCHPOINT_WRITE:
224 wp.wcr = FIELD_DP64(wp.wcr, DBGWCR, LSC, 2);
225 wp.details.flags = BP_MEM_WRITE;
226 break;
227 case GDB_WATCHPOINT_ACCESS:
228 wp.wcr = FIELD_DP64(wp.wcr, DBGWCR, LSC, 3);
229 wp.details.flags = BP_MEM_ACCESS;
230 break;
231 default:
232 g_assert_not_reached();
233 break;
235 if (len <= 8) {
236 /* we align the address and set the bits in BAS */
237 int off = addr & 0x7;
238 int bas = (1 << len) - 1;
240 wp.wcr = deposit32(wp.wcr, 5 + off, 8 - off, bas);
241 } else {
242 /* For ranges above 8 bytes we need to be a power of 2 */
243 if (is_power_of_2(len)) {
244 int bits = ctz64(len);
246 wp.wvr &= ~((1 << bits) - 1);
247 wp.wcr = FIELD_DP64(wp.wcr, DBGWCR, MASK, bits);
248 wp.wcr = FIELD_DP64(wp.wcr, DBGWCR, BAS, 0xff);
249 } else {
250 return -ENOBUFS;
254 g_array_append_val(hw_watchpoints, wp);
255 return 0;
259 static bool check_watchpoint_in_range(int i, target_ulong addr)
261 HWWatchpoint *wp = get_hw_wp(i);
262 uint64_t addr_top, addr_bottom = wp->wvr;
263 int bas = extract32(wp->wcr, 5, 8);
264 int mask = extract32(wp->wcr, 24, 4);
266 if (mask) {
267 addr_top = addr_bottom + (1 << mask);
268 } else {
269 /* BAS must be contiguous but can offset against the base
270 * address in DBGWVR */
271 addr_bottom = addr_bottom + ctz32(bas);
272 addr_top = addr_bottom + clo32(bas);
275 if (addr >= addr_bottom && addr <= addr_top) {
276 return true;
279 return false;
283 * delete_hw_watchpoint()
284 * @addr: address of breakpoint
286 * Delete a breakpoint and shuffle any above down
289 static int delete_hw_watchpoint(target_ulong addr,
290 target_ulong len, int type)
292 int i;
293 for (i = 0; i < cur_hw_wps; i++) {
294 if (check_watchpoint_in_range(i, addr)) {
295 g_array_remove_index(hw_watchpoints, i);
296 return 0;
299 return -ENOENT;
303 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
304 target_ulong len, int type)
306 switch (type) {
307 case GDB_BREAKPOINT_HW:
308 return insert_hw_breakpoint(addr);
309 break;
310 case GDB_WATCHPOINT_READ:
311 case GDB_WATCHPOINT_WRITE:
312 case GDB_WATCHPOINT_ACCESS:
313 return insert_hw_watchpoint(addr, len, type);
314 default:
315 return -ENOSYS;
319 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
320 target_ulong len, int type)
322 switch (type) {
323 case GDB_BREAKPOINT_HW:
324 return delete_hw_breakpoint(addr);
325 case GDB_WATCHPOINT_READ:
326 case GDB_WATCHPOINT_WRITE:
327 case GDB_WATCHPOINT_ACCESS:
328 return delete_hw_watchpoint(addr, len, type);
329 default:
330 return -ENOSYS;
335 void kvm_arch_remove_all_hw_breakpoints(void)
337 if (cur_hw_wps > 0) {
338 g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
340 if (cur_hw_bps > 0) {
341 g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
345 void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
347 int i;
348 memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
350 for (i = 0; i < max_hw_wps; i++) {
351 HWWatchpoint *wp = get_hw_wp(i);
352 ptr->dbg_wcr[i] = wp->wcr;
353 ptr->dbg_wvr[i] = wp->wvr;
355 for (i = 0; i < max_hw_bps; i++) {
356 HWBreakpoint *bp = get_hw_bp(i);
357 ptr->dbg_bcr[i] = bp->bcr;
358 ptr->dbg_bvr[i] = bp->bvr;
362 bool kvm_arm_hw_debug_active(CPUState *cs)
364 return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
367 static bool find_hw_breakpoint(CPUState *cpu, target_ulong pc)
369 int i;
371 for (i = 0; i < cur_hw_bps; i++) {
372 HWBreakpoint *bp = get_hw_bp(i);
373 if (bp->bvr == pc) {
374 return true;
377 return false;
380 static CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr)
382 int i;
384 for (i = 0; i < cur_hw_wps; i++) {
385 if (check_watchpoint_in_range(i, addr)) {
386 return &get_hw_wp(i)->details;
389 return NULL;
392 static bool kvm_arm_set_device_attr(CPUState *cs, struct kvm_device_attr *attr,
393 const char *name)
395 int err;
397 err = kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr);
398 if (err != 0) {
399 error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err));
400 return false;
403 err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, attr);
404 if (err != 0) {
405 error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err));
406 return false;
409 return true;
412 void kvm_arm_pmu_init(CPUState *cs)
414 struct kvm_device_attr attr = {
415 .group = KVM_ARM_VCPU_PMU_V3_CTRL,
416 .attr = KVM_ARM_VCPU_PMU_V3_INIT,
419 if (!ARM_CPU(cs)->has_pmu) {
420 return;
422 if (!kvm_arm_set_device_attr(cs, &attr, "PMU")) {
423 error_report("failed to init PMU");
424 abort();
428 void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
430 struct kvm_device_attr attr = {
431 .group = KVM_ARM_VCPU_PMU_V3_CTRL,
432 .addr = (intptr_t)&irq,
433 .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
436 if (!ARM_CPU(cs)->has_pmu) {
437 return;
439 if (!kvm_arm_set_device_attr(cs, &attr, "PMU")) {
440 error_report("failed to set irq for PMU");
441 abort();
445 void kvm_arm_pvtime_init(CPUState *cs, uint64_t ipa)
447 struct kvm_device_attr attr = {
448 .group = KVM_ARM_VCPU_PVTIME_CTRL,
449 .attr = KVM_ARM_VCPU_PVTIME_IPA,
450 .addr = (uint64_t)&ipa,
453 if (ARM_CPU(cs)->kvm_steal_time == ON_OFF_AUTO_OFF) {
454 return;
456 if (!kvm_arm_set_device_attr(cs, &attr, "PVTIME IPA")) {
457 error_report("failed to init PVTIME IPA");
458 abort();
462 static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
464 uint64_t ret;
465 struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret };
466 int err;
468 assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
469 err = ioctl(fd, KVM_GET_ONE_REG, &idreg);
470 if (err < 0) {
471 return -1;
473 *pret = ret;
474 return 0;
477 static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id)
479 struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
481 assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
482 return ioctl(fd, KVM_GET_ONE_REG, &idreg);
485 static bool kvm_arm_pauth_supported(void)
487 return (kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_ADDRESS) &&
488 kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_GENERIC));
491 bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
493 /* Identify the feature bits corresponding to the host CPU, and
494 * fill out the ARMHostCPUClass fields accordingly. To do this
495 * we have to create a scratch VM, create a single CPU inside it,
496 * and then query that CPU for the relevant ID registers.
498 int fdarray[3];
499 bool sve_supported;
500 bool pmu_supported = false;
501 uint64_t features = 0;
502 int err;
504 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
505 * we know these will only support creating one kind of guest CPU,
506 * which is its preferred CPU type. Fortunately these old kernels
507 * support only a very limited number of CPUs.
509 static const uint32_t cpus_to_try[] = {
510 KVM_ARM_TARGET_AEM_V8,
511 KVM_ARM_TARGET_FOUNDATION_V8,
512 KVM_ARM_TARGET_CORTEX_A57,
513 QEMU_KVM_ARM_TARGET_NONE
516 * target = -1 informs kvm_arm_create_scratch_host_vcpu()
517 * to use the preferred target
519 struct kvm_vcpu_init init = { .target = -1, };
522 * Ask for SVE if supported, so that we can query ID_AA64ZFR0,
523 * which is otherwise RAZ.
525 sve_supported = kvm_arm_sve_supported();
526 if (sve_supported) {
527 init.features[0] |= 1 << KVM_ARM_VCPU_SVE;
531 * Ask for Pointer Authentication if supported, so that we get
532 * the unsanitized field values for AA64ISAR1_EL1.
534 if (kvm_arm_pauth_supported()) {
535 init.features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
536 1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
539 if (kvm_arm_pmu_supported()) {
540 init.features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
541 pmu_supported = true;
544 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
545 return false;
548 ahcf->target = init.target;
549 ahcf->dtb_compatible = "arm,arm-v8";
551 err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0,
552 ARM64_SYS_REG(3, 0, 0, 4, 0));
553 if (unlikely(err < 0)) {
555 * Before v4.15, the kernel only exposed a limited number of system
556 * registers, not including any of the interesting AArch64 ID regs.
557 * For the most part we could leave these fields as zero with minimal
558 * effect, since this does not affect the values seen by the guest.
560 * However, it could cause problems down the line for QEMU,
561 * so provide a minimal v8.0 default.
563 * ??? Could read MIDR and use knowledge from cpu64.c.
564 * ??? Could map a page of memory into our temp guest and
565 * run the tiniest of hand-crafted kernels to extract
566 * the values seen by the guest.
567 * ??? Either of these sounds like too much effort just
568 * to work around running a modern host kernel.
570 ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */
571 err = 0;
572 } else {
573 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1,
574 ARM64_SYS_REG(3, 0, 0, 4, 1));
575 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64smfr0,
576 ARM64_SYS_REG(3, 0, 0, 4, 5));
577 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr0,
578 ARM64_SYS_REG(3, 0, 0, 5, 0));
579 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr1,
580 ARM64_SYS_REG(3, 0, 0, 5, 1));
581 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0,
582 ARM64_SYS_REG(3, 0, 0, 6, 0));
583 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1,
584 ARM64_SYS_REG(3, 0, 0, 6, 1));
585 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0,
586 ARM64_SYS_REG(3, 0, 0, 7, 0));
587 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1,
588 ARM64_SYS_REG(3, 0, 0, 7, 1));
589 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr2,
590 ARM64_SYS_REG(3, 0, 0, 7, 2));
593 * Note that if AArch32 support is not present in the host,
594 * the AArch32 sysregs are present to be read, but will
595 * return UNKNOWN values. This is neither better nor worse
596 * than skipping the reads and leaving 0, as we must avoid
597 * considering the values in every case.
599 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr0,
600 ARM64_SYS_REG(3, 0, 0, 1, 0));
601 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr1,
602 ARM64_SYS_REG(3, 0, 0, 1, 1));
603 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr0,
604 ARM64_SYS_REG(3, 0, 0, 1, 2));
605 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr0,
606 ARM64_SYS_REG(3, 0, 0, 1, 4));
607 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr1,
608 ARM64_SYS_REG(3, 0, 0, 1, 5));
609 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr2,
610 ARM64_SYS_REG(3, 0, 0, 1, 6));
611 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr3,
612 ARM64_SYS_REG(3, 0, 0, 1, 7));
613 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
614 ARM64_SYS_REG(3, 0, 0, 2, 0));
615 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
616 ARM64_SYS_REG(3, 0, 0, 2, 1));
617 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
618 ARM64_SYS_REG(3, 0, 0, 2, 2));
619 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
620 ARM64_SYS_REG(3, 0, 0, 2, 3));
621 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
622 ARM64_SYS_REG(3, 0, 0, 2, 4));
623 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
624 ARM64_SYS_REG(3, 0, 0, 2, 5));
625 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr4,
626 ARM64_SYS_REG(3, 0, 0, 2, 6));
627 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
628 ARM64_SYS_REG(3, 0, 0, 2, 7));
630 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
631 ARM64_SYS_REG(3, 0, 0, 3, 0));
632 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
633 ARM64_SYS_REG(3, 0, 0, 3, 1));
634 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2,
635 ARM64_SYS_REG(3, 0, 0, 3, 2));
636 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr2,
637 ARM64_SYS_REG(3, 0, 0, 3, 4));
638 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr1,
639 ARM64_SYS_REG(3, 0, 0, 3, 5));
640 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr5,
641 ARM64_SYS_REG(3, 0, 0, 3, 6));
644 * DBGDIDR is a bit complicated because the kernel doesn't
645 * provide an accessor for it in 64-bit mode, which is what this
646 * scratch VM is in, and there's no architected "64-bit sysreg
647 * which reads the same as the 32-bit register" the way there is
648 * for other ID registers. Instead we synthesize a value from the
649 * AArch64 ID_AA64DFR0, the same way the kernel code in
650 * arch/arm64/kvm/sys_regs.c:trap_dbgidr() does.
651 * We only do this if the CPU supports AArch32 at EL1.
653 if (FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL1) >= 2) {
654 int wrps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, WRPS);
655 int brps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, BRPS);
656 int ctx_cmps =
657 FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS);
658 int version = 6; /* ARMv8 debug architecture */
659 bool has_el3 =
660 !!FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL3);
661 uint32_t dbgdidr = 0;
663 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, WRPS, wrps);
664 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, BRPS, brps);
665 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, CTX_CMPS, ctx_cmps);
666 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, VERSION, version);
667 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, NSUHD_IMP, has_el3);
668 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, SE_IMP, has_el3);
669 dbgdidr |= (1 << 15); /* RES1 bit */
670 ahcf->isar.dbgdidr = dbgdidr;
673 if (pmu_supported) {
674 /* PMCR_EL0 is only accessible if the vCPU has feature PMU_V3 */
675 err |= read_sys_reg64(fdarray[2], &ahcf->isar.reset_pmcr_el0,
676 ARM64_SYS_REG(3, 3, 9, 12, 0));
679 if (sve_supported) {
681 * There is a range of kernels between kernel commit 73433762fcae
682 * and f81cb2c3ad41 which have a bug where the kernel doesn't
683 * expose SYS_ID_AA64ZFR0_EL1 via the ONE_REG API unless the VM has
684 * enabled SVE support, which resulted in an error rather than RAZ.
685 * So only read the register if we set KVM_ARM_VCPU_SVE above.
687 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64zfr0,
688 ARM64_SYS_REG(3, 0, 0, 4, 4));
692 kvm_arm_destroy_scratch_host_vcpu(fdarray);
694 if (err < 0) {
695 return false;
699 * We can assume any KVM supporting CPU is at least a v8
700 * with VFPv4+Neon; this in turn implies most of the other
701 * feature bits.
703 features |= 1ULL << ARM_FEATURE_V8;
704 features |= 1ULL << ARM_FEATURE_NEON;
705 features |= 1ULL << ARM_FEATURE_AARCH64;
706 features |= 1ULL << ARM_FEATURE_PMU;
707 features |= 1ULL << ARM_FEATURE_GENERIC_TIMER;
709 ahcf->features = features;
711 return true;
714 void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
716 bool has_steal_time = kvm_arm_steal_time_supported();
718 if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) {
719 if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
720 cpu->kvm_steal_time = ON_OFF_AUTO_OFF;
721 } else {
722 cpu->kvm_steal_time = ON_OFF_AUTO_ON;
724 } else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) {
725 if (!has_steal_time) {
726 error_setg(errp, "'kvm-steal-time' cannot be enabled "
727 "on this host");
728 return;
729 } else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
731 * DEN0057A chapter 2 says "This specification only covers
732 * systems in which the Execution state of the hypervisor
733 * as well as EL1 of virtual machines is AArch64.". And,
734 * to ensure that, the smc/hvc calls are only specified as
735 * smc64/hvc64.
737 error_setg(errp, "'kvm-steal-time' cannot be enabled "
738 "for AArch32 guests");
739 return;
744 bool kvm_arm_aarch32_supported(void)
746 return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT);
749 bool kvm_arm_sve_supported(void)
751 return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE);
754 bool kvm_arm_steal_time_supported(void)
756 return kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME);
759 QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
761 uint32_t kvm_arm_sve_get_vls(CPUState *cs)
763 /* Only call this function if kvm_arm_sve_supported() returns true. */
764 static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
765 static bool probed;
766 uint32_t vq = 0;
767 int i;
770 * KVM ensures all host CPUs support the same set of vector lengths.
771 * So we only need to create the scratch VCPUs once and then cache
772 * the results.
774 if (!probed) {
775 struct kvm_vcpu_init init = {
776 .target = -1,
777 .features[0] = (1 << KVM_ARM_VCPU_SVE),
779 struct kvm_one_reg reg = {
780 .id = KVM_REG_ARM64_SVE_VLS,
781 .addr = (uint64_t)&vls[0],
783 int fdarray[3], ret;
785 probed = true;
787 if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) {
788 error_report("failed to create scratch VCPU with SVE enabled");
789 abort();
791 ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &reg);
792 kvm_arm_destroy_scratch_host_vcpu(fdarray);
793 if (ret) {
794 error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
795 strerror(errno));
796 abort();
799 for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
800 if (vls[i]) {
801 vq = 64 - clz64(vls[i]) + i * 64;
802 break;
805 if (vq > ARM_MAX_VQ) {
806 warn_report("KVM supports vector lengths larger than "
807 "QEMU can enable");
808 vls[0] &= MAKE_64BIT_MASK(0, ARM_MAX_VQ);
812 return vls[0];
815 static int kvm_arm_sve_set_vls(CPUState *cs)
817 ARMCPU *cpu = ARM_CPU(cs);
818 uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = { cpu->sve_vq.map };
819 struct kvm_one_reg reg = {
820 .id = KVM_REG_ARM64_SVE_VLS,
821 .addr = (uint64_t)&vls[0],
824 assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
826 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
829 #define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5
831 int kvm_arch_init_vcpu(CPUState *cs)
833 int ret;
834 uint64_t mpidr;
835 ARMCPU *cpu = ARM_CPU(cs);
836 CPUARMState *env = &cpu->env;
837 uint64_t psciver;
839 if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
840 !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
841 error_report("KVM is not supported for this guest CPU type");
842 return -EINVAL;
845 qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cs);
847 /* Determine init features for this CPU */
848 memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
849 if (cs->start_powered_off) {
850 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
852 if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
853 cpu->psci_version = QEMU_PSCI_VERSION_0_2;
854 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
856 if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
857 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
859 if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
860 cpu->has_pmu = false;
862 if (cpu->has_pmu) {
863 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
864 } else {
865 env->features &= ~(1ULL << ARM_FEATURE_PMU);
867 if (cpu_isar_feature(aa64_sve, cpu)) {
868 assert(kvm_arm_sve_supported());
869 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
871 if (cpu_isar_feature(aa64_pauth, cpu)) {
872 cpu->kvm_init_features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
873 1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
876 /* Do KVM_ARM_VCPU_INIT ioctl */
877 ret = kvm_arm_vcpu_init(cs);
878 if (ret) {
879 return ret;
882 if (cpu_isar_feature(aa64_sve, cpu)) {
883 ret = kvm_arm_sve_set_vls(cs);
884 if (ret) {
885 return ret;
887 ret = kvm_arm_vcpu_finalize(cs, KVM_ARM_VCPU_SVE);
888 if (ret) {
889 return ret;
894 * KVM reports the exact PSCI version it is implementing via a
895 * special sysreg. If it is present, use its contents to determine
896 * what to report to the guest in the dtb (it is the PSCI version,
897 * in the same 15-bits major 16-bits minor format that PSCI_VERSION
898 * returns).
900 if (!kvm_get_one_reg(cs, KVM_REG_ARM_PSCI_VERSION, &psciver)) {
901 cpu->psci_version = psciver;
905 * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
906 * Currently KVM has its own idea about MPIDR assignment, so we
907 * override our defaults with what we get from KVM.
909 ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
910 if (ret) {
911 return ret;
913 cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
915 /* Check whether user space can specify guest syndrome value */
916 kvm_arm_init_serror_injection(cs);
918 return kvm_arm_init_cpreg_list(cpu);
921 int kvm_arch_destroy_vcpu(CPUState *cs)
923 return 0;
926 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
928 /* Return true if the regidx is a register we should synchronize
929 * via the cpreg_tuples array (ie is not a core or sve reg that
930 * we sync by hand in kvm_arch_get/put_registers())
932 switch (regidx & KVM_REG_ARM_COPROC_MASK) {
933 case KVM_REG_ARM_CORE:
934 case KVM_REG_ARM64_SVE:
935 return false;
936 default:
937 return true;
941 typedef struct CPRegStateLevel {
942 uint64_t regidx;
943 int level;
944 } CPRegStateLevel;
946 /* All system registers not listed in the following table are assumed to be
947 * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
948 * often, you must add it to this table with a state of either
949 * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
951 static const CPRegStateLevel non_runtime_cpregs[] = {
952 { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
955 int kvm_arm_cpreg_level(uint64_t regidx)
957 int i;
959 for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
960 const CPRegStateLevel *l = &non_runtime_cpregs[i];
961 if (l->regidx == regidx) {
962 return l->level;
966 return KVM_PUT_RUNTIME_STATE;
969 /* Callers must hold the iothread mutex lock */
970 static void kvm_inject_arm_sea(CPUState *c)
972 ARMCPU *cpu = ARM_CPU(c);
973 CPUARMState *env = &cpu->env;
974 uint32_t esr;
975 bool same_el;
977 c->exception_index = EXCP_DATA_ABORT;
978 env->exception.target_el = 1;
981 * Set the DFSC to synchronous external abort and set FnV to not valid,
982 * this will tell guest the FAR_ELx is UNKNOWN for this abort.
984 same_el = arm_current_el(env) == env->exception.target_el;
985 esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10);
987 env->exception.syndrome = esr;
989 arm_cpu_do_interrupt(c);
992 #define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
993 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
995 #define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
996 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
998 #define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
999 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1001 static int kvm_arch_put_fpsimd(CPUState *cs)
1003 CPUARMState *env = &ARM_CPU(cs)->env;
1004 struct kvm_one_reg reg;
1005 int i, ret;
1007 for (i = 0; i < 32; i++) {
1008 uint64_t *q = aa64_vfp_qreg(env, i);
1009 #if HOST_BIG_ENDIAN
1010 uint64_t fp_val[2] = { q[1], q[0] };
1011 reg.addr = (uintptr_t)fp_val;
1012 #else
1013 reg.addr = (uintptr_t)q;
1014 #endif
1015 reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
1016 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1017 if (ret) {
1018 return ret;
1022 return 0;
1026 * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
1027 * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
1028 * code the slice index to zero for now as it's unlikely we'll need more than
1029 * one slice for quite some time.
1031 static int kvm_arch_put_sve(CPUState *cs)
1033 ARMCPU *cpu = ARM_CPU(cs);
1034 CPUARMState *env = &cpu->env;
1035 uint64_t tmp[ARM_MAX_VQ * 2];
1036 uint64_t *r;
1037 struct kvm_one_reg reg;
1038 int n, ret;
1040 for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
1041 r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
1042 reg.addr = (uintptr_t)r;
1043 reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
1044 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1045 if (ret) {
1046 return ret;
1050 for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
1051 r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
1052 DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
1053 reg.addr = (uintptr_t)r;
1054 reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
1055 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1056 if (ret) {
1057 return ret;
1061 r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
1062 DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
1063 reg.addr = (uintptr_t)r;
1064 reg.id = KVM_REG_ARM64_SVE_FFR(0);
1065 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1066 if (ret) {
1067 return ret;
1070 return 0;
1073 int kvm_arch_put_registers(CPUState *cs, int level)
1075 struct kvm_one_reg reg;
1076 uint64_t val;
1077 uint32_t fpr;
1078 int i, ret;
1079 unsigned int el;
1081 ARMCPU *cpu = ARM_CPU(cs);
1082 CPUARMState *env = &cpu->env;
1084 /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
1085 * AArch64 registers before pushing them out to 64-bit KVM.
1087 if (!is_a64(env)) {
1088 aarch64_sync_32_to_64(env);
1091 for (i = 0; i < 31; i++) {
1092 reg.id = AARCH64_CORE_REG(regs.regs[i]);
1093 reg.addr = (uintptr_t) &env->xregs[i];
1094 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1095 if (ret) {
1096 return ret;
1100 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
1101 * QEMU side we keep the current SP in xregs[31] as well.
1103 aarch64_save_sp(env, 1);
1105 reg.id = AARCH64_CORE_REG(regs.sp);
1106 reg.addr = (uintptr_t) &env->sp_el[0];
1107 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1108 if (ret) {
1109 return ret;
1112 reg.id = AARCH64_CORE_REG(sp_el1);
1113 reg.addr = (uintptr_t) &env->sp_el[1];
1114 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1115 if (ret) {
1116 return ret;
1119 /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
1120 if (is_a64(env)) {
1121 val = pstate_read(env);
1122 } else {
1123 val = cpsr_read(env);
1125 reg.id = AARCH64_CORE_REG(regs.pstate);
1126 reg.addr = (uintptr_t) &val;
1127 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1128 if (ret) {
1129 return ret;
1132 reg.id = AARCH64_CORE_REG(regs.pc);
1133 reg.addr = (uintptr_t) &env->pc;
1134 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1135 if (ret) {
1136 return ret;
1139 reg.id = AARCH64_CORE_REG(elr_el1);
1140 reg.addr = (uintptr_t) &env->elr_el[1];
1141 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1142 if (ret) {
1143 return ret;
1146 /* Saved Program State Registers
1148 * Before we restore from the banked_spsr[] array we need to
1149 * ensure that any modifications to env->spsr are correctly
1150 * reflected in the banks.
1152 el = arm_current_el(env);
1153 if (el > 0 && !is_a64(env)) {
1154 i = bank_number(env->uncached_cpsr & CPSR_M);
1155 env->banked_spsr[i] = env->spsr;
1158 /* KVM 0-4 map to QEMU banks 1-5 */
1159 for (i = 0; i < KVM_NR_SPSR; i++) {
1160 reg.id = AARCH64_CORE_REG(spsr[i]);
1161 reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
1162 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1163 if (ret) {
1164 return ret;
1168 if (cpu_isar_feature(aa64_sve, cpu)) {
1169 ret = kvm_arch_put_sve(cs);
1170 } else {
1171 ret = kvm_arch_put_fpsimd(cs);
1173 if (ret) {
1174 return ret;
1177 reg.addr = (uintptr_t)(&fpr);
1178 fpr = vfp_get_fpsr(env);
1179 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
1180 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1181 if (ret) {
1182 return ret;
1185 reg.addr = (uintptr_t)(&fpr);
1186 fpr = vfp_get_fpcr(env);
1187 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
1188 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1189 if (ret) {
1190 return ret;
1193 write_cpustate_to_list(cpu, true);
1195 if (!write_list_to_kvmstate(cpu, level)) {
1196 return -EINVAL;
1200 * Setting VCPU events should be triggered after syncing the registers
1201 * to avoid overwriting potential changes made by KVM upon calling
1202 * KVM_SET_VCPU_EVENTS ioctl
1204 ret = kvm_put_vcpu_events(cpu);
1205 if (ret) {
1206 return ret;
1209 kvm_arm_sync_mpstate_to_kvm(cpu);
1211 return ret;
1214 static int kvm_arch_get_fpsimd(CPUState *cs)
1216 CPUARMState *env = &ARM_CPU(cs)->env;
1217 struct kvm_one_reg reg;
1218 int i, ret;
1220 for (i = 0; i < 32; i++) {
1221 uint64_t *q = aa64_vfp_qreg(env, i);
1222 reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
1223 reg.addr = (uintptr_t)q;
1224 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1225 if (ret) {
1226 return ret;
1227 } else {
1228 #if HOST_BIG_ENDIAN
1229 uint64_t t;
1230 t = q[0], q[0] = q[1], q[1] = t;
1231 #endif
1235 return 0;
1239 * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
1240 * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
1241 * code the slice index to zero for now as it's unlikely we'll need more than
1242 * one slice for quite some time.
1244 static int kvm_arch_get_sve(CPUState *cs)
1246 ARMCPU *cpu = ARM_CPU(cs);
1247 CPUARMState *env = &cpu->env;
1248 struct kvm_one_reg reg;
1249 uint64_t *r;
1250 int n, ret;
1252 for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
1253 r = &env->vfp.zregs[n].d[0];
1254 reg.addr = (uintptr_t)r;
1255 reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
1256 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1257 if (ret) {
1258 return ret;
1260 sve_bswap64(r, r, cpu->sve_max_vq * 2);
1263 for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
1264 r = &env->vfp.pregs[n].p[0];
1265 reg.addr = (uintptr_t)r;
1266 reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
1267 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1268 if (ret) {
1269 return ret;
1271 sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
1274 r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
1275 reg.addr = (uintptr_t)r;
1276 reg.id = KVM_REG_ARM64_SVE_FFR(0);
1277 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1278 if (ret) {
1279 return ret;
1281 sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
1283 return 0;
1286 int kvm_arch_get_registers(CPUState *cs)
1288 struct kvm_one_reg reg;
1289 uint64_t val;
1290 unsigned int el;
1291 uint32_t fpr;
1292 int i, ret;
1294 ARMCPU *cpu = ARM_CPU(cs);
1295 CPUARMState *env = &cpu->env;
1297 for (i = 0; i < 31; i++) {
1298 reg.id = AARCH64_CORE_REG(regs.regs[i]);
1299 reg.addr = (uintptr_t) &env->xregs[i];
1300 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1301 if (ret) {
1302 return ret;
1306 reg.id = AARCH64_CORE_REG(regs.sp);
1307 reg.addr = (uintptr_t) &env->sp_el[0];
1308 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1309 if (ret) {
1310 return ret;
1313 reg.id = AARCH64_CORE_REG(sp_el1);
1314 reg.addr = (uintptr_t) &env->sp_el[1];
1315 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1316 if (ret) {
1317 return ret;
1320 reg.id = AARCH64_CORE_REG(regs.pstate);
1321 reg.addr = (uintptr_t) &val;
1322 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1323 if (ret) {
1324 return ret;
1327 env->aarch64 = ((val & PSTATE_nRW) == 0);
1328 if (is_a64(env)) {
1329 pstate_write(env, val);
1330 } else {
1331 cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
1334 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
1335 * QEMU side we keep the current SP in xregs[31] as well.
1337 aarch64_restore_sp(env, 1);
1339 reg.id = AARCH64_CORE_REG(regs.pc);
1340 reg.addr = (uintptr_t) &env->pc;
1341 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1342 if (ret) {
1343 return ret;
1346 /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
1347 * incoming AArch64 regs received from 64-bit KVM.
1348 * We must perform this after all of the registers have been acquired from
1349 * the kernel.
1351 if (!is_a64(env)) {
1352 aarch64_sync_64_to_32(env);
1355 reg.id = AARCH64_CORE_REG(elr_el1);
1356 reg.addr = (uintptr_t) &env->elr_el[1];
1357 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1358 if (ret) {
1359 return ret;
1362 /* Fetch the SPSR registers
1364 * KVM SPSRs 0-4 map to QEMU banks 1-5
1366 for (i = 0; i < KVM_NR_SPSR; i++) {
1367 reg.id = AARCH64_CORE_REG(spsr[i]);
1368 reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
1369 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1370 if (ret) {
1371 return ret;
1375 el = arm_current_el(env);
1376 if (el > 0 && !is_a64(env)) {
1377 i = bank_number(env->uncached_cpsr & CPSR_M);
1378 env->spsr = env->banked_spsr[i];
1381 if (cpu_isar_feature(aa64_sve, cpu)) {
1382 ret = kvm_arch_get_sve(cs);
1383 } else {
1384 ret = kvm_arch_get_fpsimd(cs);
1386 if (ret) {
1387 return ret;
1390 reg.addr = (uintptr_t)(&fpr);
1391 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
1392 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1393 if (ret) {
1394 return ret;
1396 vfp_set_fpsr(env, fpr);
1398 reg.addr = (uintptr_t)(&fpr);
1399 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
1400 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1401 if (ret) {
1402 return ret;
1404 vfp_set_fpcr(env, fpr);
1406 ret = kvm_get_vcpu_events(cpu);
1407 if (ret) {
1408 return ret;
1411 if (!write_kvmstate_to_list(cpu)) {
1412 return -EINVAL;
1414 /* Note that it's OK to have registers which aren't in CPUState,
1415 * so we can ignore a failure return here.
1417 write_list_to_cpustate(cpu);
1419 kvm_arm_sync_mpstate_to_qemu(cpu);
1421 /* TODO: other registers */
1422 return ret;
1425 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
1427 ram_addr_t ram_addr;
1428 hwaddr paddr;
1430 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
1432 if (acpi_ghes_present() && addr) {
1433 ram_addr = qemu_ram_addr_from_host(addr);
1434 if (ram_addr != RAM_ADDR_INVALID &&
1435 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
1436 kvm_hwpoison_page_add(ram_addr);
1438 * If this is a BUS_MCEERR_AR, we know we have been called
1439 * synchronously from the vCPU thread, so we can easily
1440 * synchronize the state and inject an error.
1442 * TODO: we currently don't tell the guest at all about
1443 * BUS_MCEERR_AO. In that case we might either be being
1444 * called synchronously from the vCPU thread, or a bit
1445 * later from the main thread, so doing the injection of
1446 * the error would be more complicated.
1448 if (code == BUS_MCEERR_AR) {
1449 kvm_cpu_synchronize_state(c);
1450 if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) {
1451 kvm_inject_arm_sea(c);
1452 } else {
1453 error_report("failed to record the error");
1454 abort();
1457 return;
1459 if (code == BUS_MCEERR_AO) {
1460 error_report("Hardware memory error at addr %p for memory used by "
1461 "QEMU itself instead of guest system!", addr);
1465 if (code == BUS_MCEERR_AR) {
1466 error_report("Hardware memory error!");
1467 exit(1);
1471 /* C6.6.29 BRK instruction */
1472 static const uint32_t brk_insn = 0xd4200000;
1474 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1476 if (have_guest_debug) {
1477 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
1478 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
1479 return -EINVAL;
1481 return 0;
1482 } else {
1483 error_report("guest debug not supported on this kernel");
1484 return -EINVAL;
1488 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1490 static uint32_t brk;
1492 if (have_guest_debug) {
1493 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
1494 brk != brk_insn ||
1495 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
1496 return -EINVAL;
1498 return 0;
1499 } else {
1500 error_report("guest debug not supported on this kernel");
1501 return -EINVAL;
1505 /* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
1507 * To minimise translating between kernel and user-space the kernel
1508 * ABI just provides user-space with the full exception syndrome
1509 * register value to be decoded in QEMU.
1512 bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
1514 int hsr_ec = syn_get_ec(debug_exit->hsr);
1515 ARMCPU *cpu = ARM_CPU(cs);
1516 CPUARMState *env = &cpu->env;
1518 /* Ensure PC is synchronised */
1519 kvm_cpu_synchronize_state(cs);
1521 switch (hsr_ec) {
1522 case EC_SOFTWARESTEP:
1523 if (cs->singlestep_enabled) {
1524 return true;
1525 } else {
1527 * The kernel should have suppressed the guest's ability to
1528 * single step at this point so something has gone wrong.
1530 error_report("%s: guest single-step while debugging unsupported"
1531 " (%"PRIx64", %"PRIx32")",
1532 __func__, env->pc, debug_exit->hsr);
1533 return false;
1535 break;
1536 case EC_AA64_BKPT:
1537 if (kvm_find_sw_breakpoint(cs, env->pc)) {
1538 return true;
1540 break;
1541 case EC_BREAKPOINT:
1542 if (find_hw_breakpoint(cs, env->pc)) {
1543 return true;
1545 break;
1546 case EC_WATCHPOINT:
1548 CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
1549 if (wp) {
1550 cs->watchpoint_hit = wp;
1551 return true;
1553 break;
1555 default:
1556 error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
1557 __func__, debug_exit->hsr, env->pc);
1560 /* If we are not handling the debug exception it must belong to
1561 * the guest. Let's re-use the existing TCG interrupt code to set
1562 * everything up properly.
1564 cs->exception_index = EXCP_BKPT;
1565 env->exception.syndrome = debug_exit->hsr;
1566 env->exception.vaddress = debug_exit->far;
1567 env->exception.target_el = 1;
1568 qemu_mutex_lock_iothread();
1569 arm_cpu_do_interrupt(cs);
1570 qemu_mutex_unlock_iothread();
1572 return false;
1575 #define ARM64_REG_ESR_EL1 ARM64_SYS_REG(3, 0, 5, 2, 0)
1576 #define ARM64_REG_TCR_EL1 ARM64_SYS_REG(3, 0, 2, 0, 2)
1579 * ESR_EL1
1580 * ISS encoding
1581 * AARCH64: DFSC, bits [5:0]
1582 * AARCH32:
1583 * TTBCR.EAE == 0
1584 * FS[4] - DFSR[10]
1585 * FS[3:0] - DFSR[3:0]
1586 * TTBCR.EAE == 1
1587 * FS, bits [5:0]
1589 #define ESR_DFSC(aarch64, lpae, v) \
1590 ((aarch64 || (lpae)) ? ((v) & 0x3F) \
1591 : (((v) >> 6) | ((v) & 0x1F)))
1593 #define ESR_DFSC_EXTABT(aarch64, lpae) \
1594 ((aarch64) ? 0x10 : (lpae) ? 0x10 : 0x8)
1596 bool kvm_arm_verify_ext_dabt_pending(CPUState *cs)
1598 uint64_t dfsr_val;
1600 if (!kvm_get_one_reg(cs, ARM64_REG_ESR_EL1, &dfsr_val)) {
1601 ARMCPU *cpu = ARM_CPU(cs);
1602 CPUARMState *env = &cpu->env;
1603 int aarch64_mode = arm_feature(env, ARM_FEATURE_AARCH64);
1604 int lpae = 0;
1606 if (!aarch64_mode) {
1607 uint64_t ttbcr;
1609 if (!kvm_get_one_reg(cs, ARM64_REG_TCR_EL1, &ttbcr)) {
1610 lpae = arm_feature(env, ARM_FEATURE_LPAE)
1611 && (ttbcr & TTBCR_EAE);
1615 * The verification here is based on the DFSC bits
1616 * of the ESR_EL1 reg only
1618 return (ESR_DFSC(aarch64_mode, lpae, dfsr_val) ==
1619 ESR_DFSC_EXTABT(aarch64_mode, lpae));
1621 return false;