4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
31 #include "hw/core/tcg-cpu-ops.h"
32 #endif /* CONFIG_TCG */
33 #include "internals.h"
34 #include "exec/exec-all.h"
35 #include "hw/qdev-properties.h"
36 #if !defined(CONFIG_USER_ONLY)
37 #include "hw/loader.h"
38 #include "hw/boards.h"
40 #include "hw/intc/armv7m_nvic.h"
41 #endif /* CONFIG_TCG */
42 #endif /* !CONFIG_USER_ONLY */
43 #include "sysemu/tcg.h"
44 #include "sysemu/qtest.h"
45 #include "sysemu/hw_accel.h"
47 #include "disas/capstone.h"
48 #include "fpu/softfloat.h"
51 static void arm_cpu_set_pc(CPUState
*cs
, vaddr value
)
53 ARMCPU
*cpu
= ARM_CPU(cs
);
54 CPUARMState
*env
= &cpu
->env
;
60 env
->regs
[15] = value
& ~1;
61 env
->thumb
= value
& 1;
65 static vaddr
arm_cpu_get_pc(CPUState
*cs
)
67 ARMCPU
*cpu
= ARM_CPU(cs
);
68 CPUARMState
*env
= &cpu
->env
;
78 void arm_cpu_synchronize_from_tb(CPUState
*cs
,
79 const TranslationBlock
*tb
)
81 /* The program counter is always up to date with CF_PCREL. */
82 if (!(tb_cflags(tb
) & CF_PCREL
)) {
83 CPUARMState
*env
= cs
->env_ptr
;
85 * It's OK to look at env for the current mode here, because it's
86 * never possible for an AArch64 TB to chain to an AArch32 TB.
91 env
->regs
[15] = tb
->pc
;
96 void arm_restore_state_to_opc(CPUState
*cs
,
97 const TranslationBlock
*tb
,
100 CPUARMState
*env
= cs
->env_ptr
;
103 if (tb_cflags(tb
) & CF_PCREL
) {
104 env
->pc
= (env
->pc
& TARGET_PAGE_MASK
) | data
[0];
108 env
->condexec_bits
= 0;
109 env
->exception
.syndrome
= data
[2] << ARM_INSN_START_WORD2_SHIFT
;
111 if (tb_cflags(tb
) & CF_PCREL
) {
112 env
->regs
[15] = (env
->regs
[15] & TARGET_PAGE_MASK
) | data
[0];
114 env
->regs
[15] = data
[0];
116 env
->condexec_bits
= data
[1];
117 env
->exception
.syndrome
= data
[2] << ARM_INSN_START_WORD2_SHIFT
;
120 #endif /* CONFIG_TCG */
122 static bool arm_cpu_has_work(CPUState
*cs
)
124 ARMCPU
*cpu
= ARM_CPU(cs
);
126 return (cpu
->power_state
!= PSCI_OFF
)
127 && cs
->interrupt_request
&
128 (CPU_INTERRUPT_FIQ
| CPU_INTERRUPT_HARD
129 | CPU_INTERRUPT_VFIQ
| CPU_INTERRUPT_VIRQ
| CPU_INTERRUPT_VSERR
130 | CPU_INTERRUPT_EXITTB
);
133 void arm_register_pre_el_change_hook(ARMCPU
*cpu
, ARMELChangeHookFn
*hook
,
136 ARMELChangeHook
*entry
= g_new0(ARMELChangeHook
, 1);
139 entry
->opaque
= opaque
;
141 QLIST_INSERT_HEAD(&cpu
->pre_el_change_hooks
, entry
, node
);
144 void arm_register_el_change_hook(ARMCPU
*cpu
, ARMELChangeHookFn
*hook
,
147 ARMELChangeHook
*entry
= g_new0(ARMELChangeHook
, 1);
150 entry
->opaque
= opaque
;
152 QLIST_INSERT_HEAD(&cpu
->el_change_hooks
, entry
, node
);
155 static void cp_reg_reset(gpointer key
, gpointer value
, gpointer opaque
)
157 /* Reset a single ARMCPRegInfo register */
158 ARMCPRegInfo
*ri
= value
;
159 ARMCPU
*cpu
= opaque
;
161 if (ri
->type
& (ARM_CP_SPECIAL_MASK
| ARM_CP_ALIAS
)) {
166 ri
->resetfn(&cpu
->env
, ri
);
170 /* A zero offset is never possible as it would be regs[0]
171 * so we use it to indicate that reset is being handled elsewhere.
172 * This is basically only used for fields in non-core coprocessors
173 * (like the pxa2xx ones).
175 if (!ri
->fieldoffset
) {
179 if (cpreg_field_is_64bit(ri
)) {
180 CPREG_FIELD64(&cpu
->env
, ri
) = ri
->resetvalue
;
182 CPREG_FIELD32(&cpu
->env
, ri
) = ri
->resetvalue
;
186 static void cp_reg_check_reset(gpointer key
, gpointer value
, gpointer opaque
)
188 /* Purely an assertion check: we've already done reset once,
189 * so now check that running the reset for the cpreg doesn't
190 * change its value. This traps bugs where two different cpregs
191 * both try to reset the same state field but to different values.
193 ARMCPRegInfo
*ri
= value
;
194 ARMCPU
*cpu
= opaque
;
195 uint64_t oldvalue
, newvalue
;
197 if (ri
->type
& (ARM_CP_SPECIAL_MASK
| ARM_CP_ALIAS
| ARM_CP_NO_RAW
)) {
201 oldvalue
= read_raw_cp_reg(&cpu
->env
, ri
);
202 cp_reg_reset(key
, value
, opaque
);
203 newvalue
= read_raw_cp_reg(&cpu
->env
, ri
);
204 assert(oldvalue
== newvalue
);
207 static void arm_cpu_reset_hold(Object
*obj
)
209 CPUState
*s
= CPU(obj
);
210 ARMCPU
*cpu
= ARM_CPU(s
);
211 ARMCPUClass
*acc
= ARM_CPU_GET_CLASS(cpu
);
212 CPUARMState
*env
= &cpu
->env
;
214 if (acc
->parent_phases
.hold
) {
215 acc
->parent_phases
.hold(obj
);
218 memset(env
, 0, offsetof(CPUARMState
, end_reset_fields
));
220 g_hash_table_foreach(cpu
->cp_regs
, cp_reg_reset
, cpu
);
221 g_hash_table_foreach(cpu
->cp_regs
, cp_reg_check_reset
, cpu
);
223 env
->vfp
.xregs
[ARM_VFP_FPSID
] = cpu
->reset_fpsid
;
224 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = cpu
->isar
.mvfr0
;
225 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = cpu
->isar
.mvfr1
;
226 env
->vfp
.xregs
[ARM_VFP_MVFR2
] = cpu
->isar
.mvfr2
;
228 cpu
->power_state
= s
->start_powered_off
? PSCI_OFF
: PSCI_ON
;
230 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
231 env
->iwmmxt
.cregs
[ARM_IWMMXT_wCID
] = 0x69051000 | 'Q';
234 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
235 /* 64 bit CPUs always start in 64 bit mode */
237 #if defined(CONFIG_USER_ONLY)
238 env
->pstate
= PSTATE_MODE_EL0t
;
239 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
240 env
->cp15
.sctlr_el
[1] |= SCTLR_UCT
| SCTLR_UCI
| SCTLR_DZE
;
241 /* Enable all PAC keys. */
242 env
->cp15
.sctlr_el
[1] |= (SCTLR_EnIA
| SCTLR_EnIB
|
243 SCTLR_EnDA
| SCTLR_EnDB
);
244 /* Trap on btype=3 for PACIxSP. */
245 env
->cp15
.sctlr_el
[1] |= SCTLR_BT0
;
246 /* and to the FP/Neon instructions */
247 env
->cp15
.cpacr_el1
= FIELD_DP64(env
->cp15
.cpacr_el1
,
249 /* and to the SVE instructions, with default vector length */
250 if (cpu_isar_feature(aa64_sve
, cpu
)) {
251 env
->cp15
.cpacr_el1
= FIELD_DP64(env
->cp15
.cpacr_el1
,
253 env
->vfp
.zcr_el
[1] = cpu
->sve_default_vq
- 1;
255 /* and for SME instructions, with default vector length, and TPIDR2 */
256 if (cpu_isar_feature(aa64_sme
, cpu
)) {
257 env
->cp15
.sctlr_el
[1] |= SCTLR_EnTP2
;
258 env
->cp15
.cpacr_el1
= FIELD_DP64(env
->cp15
.cpacr_el1
,
260 env
->vfp
.smcr_el
[1] = cpu
->sme_default_vq
- 1;
261 if (cpu_isar_feature(aa64_sme_fa64
, cpu
)) {
262 env
->vfp
.smcr_el
[1] = FIELD_DP64(env
->vfp
.smcr_el
[1],
267 * Enable 48-bit address space (TODO: take reserved_va into account).
268 * Enable TBI0 but not TBI1.
269 * Note that this must match useronly_clean_ptr.
271 env
->cp15
.tcr_el
[1] = 5 | (1ULL << 37);
274 if (cpu_isar_feature(aa64_mte
, cpu
)) {
275 /* Enable tag access, but leave TCF0 as No Effect (0). */
276 env
->cp15
.sctlr_el
[1] |= SCTLR_ATA0
;
278 * Exclude all tags, so that tag 0 is always used.
279 * This corresponds to Linux current->thread.gcr_incl = 0.
281 * Set RRND, so that helper_irg() will generate a seed later.
282 * Here in cpu_reset(), the crypto subsystem has not yet been
285 env
->cp15
.gcr_el1
= 0x1ffff;
288 * Disable access to SCXTNUM_EL0 from CSV2_1p2.
289 * This is not yet exposed from the Linux kernel in any way.
291 env
->cp15
.sctlr_el
[1] |= SCTLR_TSCXT
;
293 /* Reset into the highest available EL */
294 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
295 env
->pstate
= PSTATE_MODE_EL3h
;
296 } else if (arm_feature(env
, ARM_FEATURE_EL2
)) {
297 env
->pstate
= PSTATE_MODE_EL2h
;
299 env
->pstate
= PSTATE_MODE_EL1h
;
302 /* Sample rvbar at reset. */
303 env
->cp15
.rvbar
= cpu
->rvbar_prop
;
304 env
->pc
= env
->cp15
.rvbar
;
307 #if defined(CONFIG_USER_ONLY)
308 /* Userspace expects access to cp10 and cp11 for FP/Neon */
309 env
->cp15
.cpacr_el1
= FIELD_DP64(env
->cp15
.cpacr_el1
,
311 env
->cp15
.cpacr_el1
= FIELD_DP64(env
->cp15
.cpacr_el1
,
314 if (arm_feature(env
, ARM_FEATURE_V8
)) {
315 env
->cp15
.rvbar
= cpu
->rvbar_prop
;
316 env
->regs
[15] = cpu
->rvbar_prop
;
320 #if defined(CONFIG_USER_ONLY)
321 env
->uncached_cpsr
= ARM_CPU_MODE_USR
;
322 /* For user mode we must enable access to coprocessors */
323 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 1 << 30;
324 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
325 env
->cp15
.c15_cpar
= 3;
326 } else if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
327 env
->cp15
.c15_cpar
= 1;
332 * If the highest available EL is EL2, AArch32 will start in Hyp
333 * mode; otherwise it starts in SVC. Note that if we start in
334 * AArch64 then these values in the uncached_cpsr will be ignored.
336 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
337 !arm_feature(env
, ARM_FEATURE_EL3
)) {
338 env
->uncached_cpsr
= ARM_CPU_MODE_HYP
;
340 env
->uncached_cpsr
= ARM_CPU_MODE_SVC
;
342 env
->daif
= PSTATE_D
| PSTATE_A
| PSTATE_I
| PSTATE_F
;
344 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
345 * executing as AArch32 then check if highvecs are enabled and
346 * adjust the PC accordingly.
348 if (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_V
) {
349 env
->regs
[15] = 0xFFFF0000;
352 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 0;
355 if (arm_feature(env
, ARM_FEATURE_M
)) {
356 #ifndef CONFIG_USER_ONLY
357 uint32_t initial_msp
; /* Loaded from 0x0 */
358 uint32_t initial_pc
; /* Loaded from 0x4 */
363 if (cpu_isar_feature(aa32_lob
, cpu
)) {
365 * LTPSIZE is constant 4 if MVE not implemented, and resets
366 * to an UNKNOWN value if MVE is implemented. We choose to
369 env
->v7m
.ltpsize
= 4;
370 /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
371 env
->v7m
.fpdscr
[M_REG_NS
] = 4 << FPCR_LTPSIZE_SHIFT
;
372 env
->v7m
.fpdscr
[M_REG_S
] = 4 << FPCR_LTPSIZE_SHIFT
;
375 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
376 env
->v7m
.secure
= true;
378 /* This bit resets to 0 if security is supported, but 1 if
379 * it is not. The bit is not present in v7M, but we set it
380 * here so we can avoid having to make checks on it conditional
381 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
383 env
->v7m
.aircr
= R_V7M_AIRCR_BFHFNMINS_MASK
;
385 * Set NSACR to indicate "NS access permitted to everything";
386 * this avoids having to have all the tests of it being
387 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
388 * v8.1M the guest-visible value of NSACR in a CPU without the
389 * Security Extension is 0xcff.
391 env
->v7m
.nsacr
= 0xcff;
394 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
395 * that it resets to 1, so QEMU always does that rather than making
396 * it dependent on CPU model. In v8M it is RES1.
398 env
->v7m
.ccr
[M_REG_NS
] = R_V7M_CCR_STKALIGN_MASK
;
399 env
->v7m
.ccr
[M_REG_S
] = R_V7M_CCR_STKALIGN_MASK
;
400 if (arm_feature(env
, ARM_FEATURE_V8
)) {
401 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
402 env
->v7m
.ccr
[M_REG_NS
] |= R_V7M_CCR_NONBASETHRDENA_MASK
;
403 env
->v7m
.ccr
[M_REG_S
] |= R_V7M_CCR_NONBASETHRDENA_MASK
;
405 if (!arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
406 env
->v7m
.ccr
[M_REG_NS
] |= R_V7M_CCR_UNALIGN_TRP_MASK
;
407 env
->v7m
.ccr
[M_REG_S
] |= R_V7M_CCR_UNALIGN_TRP_MASK
;
410 if (cpu_isar_feature(aa32_vfp_simd
, cpu
)) {
411 env
->v7m
.fpccr
[M_REG_NS
] = R_V7M_FPCCR_ASPEN_MASK
;
412 env
->v7m
.fpccr
[M_REG_S
] = R_V7M_FPCCR_ASPEN_MASK
|
413 R_V7M_FPCCR_LSPEN_MASK
| R_V7M_FPCCR_S_MASK
;
416 #ifndef CONFIG_USER_ONLY
417 /* Unlike A/R profile, M profile defines the reset LR value */
418 env
->regs
[14] = 0xffffffff;
420 env
->v7m
.vecbase
[M_REG_S
] = cpu
->init_svtor
& 0xffffff80;
421 env
->v7m
.vecbase
[M_REG_NS
] = cpu
->init_nsvtor
& 0xffffff80;
423 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
424 vecbase
= env
->v7m
.vecbase
[env
->v7m
.secure
];
425 rom
= rom_ptr_for_as(s
->as
, vecbase
, 8);
427 /* Address zero is covered by ROM which hasn't yet been
428 * copied into physical memory.
430 initial_msp
= ldl_p(rom
);
431 initial_pc
= ldl_p(rom
+ 4);
433 /* Address zero not covered by a ROM blob, or the ROM blob
434 * is in non-modifiable memory and this is a second reset after
435 * it got copied into memory. In the latter case, rom_ptr
436 * will return a NULL pointer and we should use ldl_phys instead.
438 initial_msp
= ldl_phys(s
->as
, vecbase
);
439 initial_pc
= ldl_phys(s
->as
, vecbase
+ 4);
442 qemu_log_mask(CPU_LOG_INT
,
443 "Loaded reset SP 0x%x PC 0x%x from vector table\n",
444 initial_msp
, initial_pc
);
446 env
->regs
[13] = initial_msp
& 0xFFFFFFFC;
447 env
->regs
[15] = initial_pc
& ~1;
448 env
->thumb
= initial_pc
& 1;
451 * For user mode we run non-secure and with access to the FPU.
452 * The FPU context is active (ie does not need further setup)
453 * and is owned by non-secure.
455 env
->v7m
.secure
= false;
456 env
->v7m
.nsacr
= 0xcff;
457 env
->v7m
.cpacr
[M_REG_NS
] = 0xf0ffff;
458 env
->v7m
.fpccr
[M_REG_S
] &=
459 ~(R_V7M_FPCCR_LSPEN_MASK
| R_V7M_FPCCR_S_MASK
);
460 env
->v7m
.control
[M_REG_S
] |= R_V7M_CONTROL_FPCA_MASK
;
464 /* M profile requires that reset clears the exclusive monitor;
465 * A profile does not, but clearing it makes more sense than having it
466 * set with an exclusive access on address zero.
468 arm_clear_exclusive(env
);
470 if (arm_feature(env
, ARM_FEATURE_PMSA
)) {
471 if (cpu
->pmsav7_dregion
> 0) {
472 if (arm_feature(env
, ARM_FEATURE_V8
)) {
473 memset(env
->pmsav8
.rbar
[M_REG_NS
], 0,
474 sizeof(*env
->pmsav8
.rbar
[M_REG_NS
])
475 * cpu
->pmsav7_dregion
);
476 memset(env
->pmsav8
.rlar
[M_REG_NS
], 0,
477 sizeof(*env
->pmsav8
.rlar
[M_REG_NS
])
478 * cpu
->pmsav7_dregion
);
479 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
480 memset(env
->pmsav8
.rbar
[M_REG_S
], 0,
481 sizeof(*env
->pmsav8
.rbar
[M_REG_S
])
482 * cpu
->pmsav7_dregion
);
483 memset(env
->pmsav8
.rlar
[M_REG_S
], 0,
484 sizeof(*env
->pmsav8
.rlar
[M_REG_S
])
485 * cpu
->pmsav7_dregion
);
487 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
488 memset(env
->pmsav7
.drbar
, 0,
489 sizeof(*env
->pmsav7
.drbar
) * cpu
->pmsav7_dregion
);
490 memset(env
->pmsav7
.drsr
, 0,
491 sizeof(*env
->pmsav7
.drsr
) * cpu
->pmsav7_dregion
);
492 memset(env
->pmsav7
.dracr
, 0,
493 sizeof(*env
->pmsav7
.dracr
) * cpu
->pmsav7_dregion
);
497 if (cpu
->pmsav8r_hdregion
> 0) {
498 memset(env
->pmsav8
.hprbar
, 0,
499 sizeof(*env
->pmsav8
.hprbar
) * cpu
->pmsav8r_hdregion
);
500 memset(env
->pmsav8
.hprlar
, 0,
501 sizeof(*env
->pmsav8
.hprlar
) * cpu
->pmsav8r_hdregion
);
504 env
->pmsav7
.rnr
[M_REG_NS
] = 0;
505 env
->pmsav7
.rnr
[M_REG_S
] = 0;
506 env
->pmsav8
.mair0
[M_REG_NS
] = 0;
507 env
->pmsav8
.mair0
[M_REG_S
] = 0;
508 env
->pmsav8
.mair1
[M_REG_NS
] = 0;
509 env
->pmsav8
.mair1
[M_REG_S
] = 0;
512 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
513 if (cpu
->sau_sregion
> 0) {
514 memset(env
->sau
.rbar
, 0, sizeof(*env
->sau
.rbar
) * cpu
->sau_sregion
);
515 memset(env
->sau
.rlar
, 0, sizeof(*env
->sau
.rlar
) * cpu
->sau_sregion
);
518 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
519 * the Cortex-M33 does.
524 set_flush_to_zero(1, &env
->vfp
.standard_fp_status
);
525 set_flush_inputs_to_zero(1, &env
->vfp
.standard_fp_status
);
526 set_default_nan_mode(1, &env
->vfp
.standard_fp_status
);
527 set_default_nan_mode(1, &env
->vfp
.standard_fp_status_f16
);
528 set_float_detect_tininess(float_tininess_before_rounding
,
529 &env
->vfp
.fp_status
);
530 set_float_detect_tininess(float_tininess_before_rounding
,
531 &env
->vfp
.standard_fp_status
);
532 set_float_detect_tininess(float_tininess_before_rounding
,
533 &env
->vfp
.fp_status_f16
);
534 set_float_detect_tininess(float_tininess_before_rounding
,
535 &env
->vfp
.standard_fp_status_f16
);
536 #ifndef CONFIG_USER_ONLY
538 kvm_arm_reset_vcpu(cpu
);
543 hw_breakpoint_update_all(cpu
);
544 hw_watchpoint_update_all(cpu
);
546 arm_rebuild_hflags(env
);
550 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
552 static inline bool arm_excp_unmasked(CPUState
*cs
, unsigned int excp_idx
,
553 unsigned int target_el
,
554 unsigned int cur_el
, bool secure
,
557 CPUARMState
*env
= cs
->env_ptr
;
558 bool pstate_unmasked
;
559 bool unmasked
= false;
562 * Don't take exceptions if they target a lower EL.
563 * This check should catch any exceptions that would not be taken
566 if (cur_el
> target_el
) {
572 pstate_unmasked
= !(env
->daif
& PSTATE_F
);
576 pstate_unmasked
= !(env
->daif
& PSTATE_I
);
580 if (!(hcr_el2
& HCR_FMO
) || (hcr_el2
& HCR_TGE
)) {
581 /* VFIQs are only taken when hypervized. */
584 return !(env
->daif
& PSTATE_F
);
586 if (!(hcr_el2
& HCR_IMO
) || (hcr_el2
& HCR_TGE
)) {
587 /* VIRQs are only taken when hypervized. */
590 return !(env
->daif
& PSTATE_I
);
592 if (!(hcr_el2
& HCR_AMO
) || (hcr_el2
& HCR_TGE
)) {
593 /* VIRQs are only taken when hypervized. */
596 return !(env
->daif
& PSTATE_A
);
598 g_assert_not_reached();
602 * Use the target EL, current execution state and SCR/HCR settings to
603 * determine whether the corresponding CPSR bit is used to mask the
606 if ((target_el
> cur_el
) && (target_el
!= 1)) {
607 /* Exceptions targeting a higher EL may not be maskable */
608 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
612 * According to ARM DDI 0487H.a, an interrupt can be masked
613 * when HCR_E2H and HCR_TGE are both set regardless of the
614 * current Security state. Note that we need to revisit this
615 * part again once we need to support NMI.
617 if ((hcr_el2
& (HCR_E2H
| HCR_TGE
)) != (HCR_E2H
| HCR_TGE
)) {
622 /* Interrupt cannot be masked when the target EL is 3 */
626 g_assert_not_reached();
630 * The old 32-bit-only environment has a more complicated
631 * masking setup. HCR and SCR bits not only affect interrupt
632 * routing but also change the behaviour of masking.
639 * If FIQs are routed to EL3 or EL2 then there are cases where
640 * we override the CPSR.F in determining if the exception is
641 * masked or not. If neither of these are set then we fall back
642 * to the CPSR.F setting otherwise we further assess the state
645 hcr
= hcr_el2
& HCR_FMO
;
646 scr
= (env
->cp15
.scr_el3
& SCR_FIQ
);
649 * When EL3 is 32-bit, the SCR.FW bit controls whether the
650 * CPSR.F bit masks FIQ interrupts when taken in non-secure
651 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
652 * when non-secure but only when FIQs are only routed to EL3.
654 scr
= scr
&& !((env
->cp15
.scr_el3
& SCR_FW
) && !hcr
);
658 * When EL3 execution state is 32-bit, if HCR.IMO is set then
659 * we may override the CPSR.I masking when in non-secure state.
660 * The SCR.IRQ setting has already been taken into consideration
661 * when setting the target EL, so it does not have a further
664 hcr
= hcr_el2
& HCR_IMO
;
668 g_assert_not_reached();
671 if ((scr
|| hcr
) && !secure
) {
678 * The PSTATE bits only mask the interrupt if we have not overriden the
681 return unmasked
|| pstate_unmasked
;
684 static bool arm_cpu_exec_interrupt(CPUState
*cs
, int interrupt_request
)
686 CPUClass
*cc
= CPU_GET_CLASS(cs
);
687 CPUARMState
*env
= cs
->env_ptr
;
688 uint32_t cur_el
= arm_current_el(env
);
689 bool secure
= arm_is_secure(env
);
690 uint64_t hcr_el2
= arm_hcr_el2_eff(env
);
694 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
696 if (interrupt_request
& CPU_INTERRUPT_FIQ
) {
698 target_el
= arm_phys_excp_target_el(cs
, excp_idx
, cur_el
, secure
);
699 if (arm_excp_unmasked(cs
, excp_idx
, target_el
,
700 cur_el
, secure
, hcr_el2
)) {
704 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
706 target_el
= arm_phys_excp_target_el(cs
, excp_idx
, cur_el
, secure
);
707 if (arm_excp_unmasked(cs
, excp_idx
, target_el
,
708 cur_el
, secure
, hcr_el2
)) {
712 if (interrupt_request
& CPU_INTERRUPT_VIRQ
) {
713 excp_idx
= EXCP_VIRQ
;
715 if (arm_excp_unmasked(cs
, excp_idx
, target_el
,
716 cur_el
, secure
, hcr_el2
)) {
720 if (interrupt_request
& CPU_INTERRUPT_VFIQ
) {
721 excp_idx
= EXCP_VFIQ
;
723 if (arm_excp_unmasked(cs
, excp_idx
, target_el
,
724 cur_el
, secure
, hcr_el2
)) {
728 if (interrupt_request
& CPU_INTERRUPT_VSERR
) {
729 excp_idx
= EXCP_VSERR
;
731 if (arm_excp_unmasked(cs
, excp_idx
, target_el
,
732 cur_el
, secure
, hcr_el2
)) {
733 /* Taking a virtual abort clears HCR_EL2.VSE */
734 env
->cp15
.hcr_el2
&= ~HCR_VSE
;
735 cpu_reset_interrupt(cs
, CPU_INTERRUPT_VSERR
);
742 cs
->exception_index
= excp_idx
;
743 env
->exception
.target_el
= target_el
;
744 cc
->tcg_ops
->do_interrupt(cs
);
748 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
750 void arm_cpu_update_virq(ARMCPU
*cpu
)
753 * Update the interrupt level for VIRQ, which is the logical OR of
754 * the HCR_EL2.VI bit and the input line level from the GIC.
756 CPUARMState
*env
= &cpu
->env
;
757 CPUState
*cs
= CPU(cpu
);
759 bool new_state
= (env
->cp15
.hcr_el2
& HCR_VI
) ||
760 (env
->irq_line_state
& CPU_INTERRUPT_VIRQ
);
762 if (new_state
!= ((cs
->interrupt_request
& CPU_INTERRUPT_VIRQ
) != 0)) {
764 cpu_interrupt(cs
, CPU_INTERRUPT_VIRQ
);
766 cpu_reset_interrupt(cs
, CPU_INTERRUPT_VIRQ
);
771 void arm_cpu_update_vfiq(ARMCPU
*cpu
)
774 * Update the interrupt level for VFIQ, which is the logical OR of
775 * the HCR_EL2.VF bit and the input line level from the GIC.
777 CPUARMState
*env
= &cpu
->env
;
778 CPUState
*cs
= CPU(cpu
);
780 bool new_state
= (env
->cp15
.hcr_el2
& HCR_VF
) ||
781 (env
->irq_line_state
& CPU_INTERRUPT_VFIQ
);
783 if (new_state
!= ((cs
->interrupt_request
& CPU_INTERRUPT_VFIQ
) != 0)) {
785 cpu_interrupt(cs
, CPU_INTERRUPT_VFIQ
);
787 cpu_reset_interrupt(cs
, CPU_INTERRUPT_VFIQ
);
792 void arm_cpu_update_vserr(ARMCPU
*cpu
)
795 * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
797 CPUARMState
*env
= &cpu
->env
;
798 CPUState
*cs
= CPU(cpu
);
800 bool new_state
= env
->cp15
.hcr_el2
& HCR_VSE
;
802 if (new_state
!= ((cs
->interrupt_request
& CPU_INTERRUPT_VSERR
) != 0)) {
804 cpu_interrupt(cs
, CPU_INTERRUPT_VSERR
);
806 cpu_reset_interrupt(cs
, CPU_INTERRUPT_VSERR
);
811 #ifndef CONFIG_USER_ONLY
812 static void arm_cpu_set_irq(void *opaque
, int irq
, int level
)
814 ARMCPU
*cpu
= opaque
;
815 CPUARMState
*env
= &cpu
->env
;
816 CPUState
*cs
= CPU(cpu
);
817 static const int mask
[] = {
818 [ARM_CPU_IRQ
] = CPU_INTERRUPT_HARD
,
819 [ARM_CPU_FIQ
] = CPU_INTERRUPT_FIQ
,
820 [ARM_CPU_VIRQ
] = CPU_INTERRUPT_VIRQ
,
821 [ARM_CPU_VFIQ
] = CPU_INTERRUPT_VFIQ
824 if (!arm_feature(env
, ARM_FEATURE_EL2
) &&
825 (irq
== ARM_CPU_VIRQ
|| irq
== ARM_CPU_VFIQ
)) {
827 * The GIC might tell us about VIRQ and VFIQ state, but if we don't
828 * have EL2 support we don't care. (Unless the guest is doing something
829 * silly this will only be calls saying "level is still 0".)
835 env
->irq_line_state
|= mask
[irq
];
837 env
->irq_line_state
&= ~mask
[irq
];
842 arm_cpu_update_virq(cpu
);
845 arm_cpu_update_vfiq(cpu
);
850 cpu_interrupt(cs
, mask
[irq
]);
852 cpu_reset_interrupt(cs
, mask
[irq
]);
856 g_assert_not_reached();
860 static void arm_cpu_kvm_set_irq(void *opaque
, int irq
, int level
)
863 ARMCPU
*cpu
= opaque
;
864 CPUARMState
*env
= &cpu
->env
;
865 CPUState
*cs
= CPU(cpu
);
866 uint32_t linestate_bit
;
871 irq_id
= KVM_ARM_IRQ_CPU_IRQ
;
872 linestate_bit
= CPU_INTERRUPT_HARD
;
875 irq_id
= KVM_ARM_IRQ_CPU_FIQ
;
876 linestate_bit
= CPU_INTERRUPT_FIQ
;
879 g_assert_not_reached();
883 env
->irq_line_state
|= linestate_bit
;
885 env
->irq_line_state
&= ~linestate_bit
;
887 kvm_arm_set_irq(cs
->cpu_index
, KVM_ARM_IRQ_TYPE_CPU
, irq_id
, !!level
);
891 static bool arm_cpu_virtio_is_big_endian(CPUState
*cs
)
893 ARMCPU
*cpu
= ARM_CPU(cs
);
894 CPUARMState
*env
= &cpu
->env
;
896 cpu_synchronize_state(cs
);
897 return arm_cpu_data_is_big_endian(env
);
902 static void arm_disas_set_info(CPUState
*cpu
, disassemble_info
*info
)
904 ARMCPU
*ac
= ARM_CPU(cpu
);
905 CPUARMState
*env
= &ac
->env
;
909 info
->cap_arch
= CS_ARCH_ARM64
;
910 info
->cap_insn_unit
= 4;
911 info
->cap_insn_split
= 4;
915 info
->cap_insn_unit
= 2;
916 info
->cap_insn_split
= 4;
917 cap_mode
= CS_MODE_THUMB
;
919 info
->cap_insn_unit
= 4;
920 info
->cap_insn_split
= 4;
921 cap_mode
= CS_MODE_ARM
;
923 if (arm_feature(env
, ARM_FEATURE_V8
)) {
924 cap_mode
|= CS_MODE_V8
;
926 if (arm_feature(env
, ARM_FEATURE_M
)) {
927 cap_mode
|= CS_MODE_MCLASS
;
929 info
->cap_arch
= CS_ARCH_ARM
;
930 info
->cap_mode
= cap_mode
;
933 sctlr_b
= arm_sctlr_b(env
);
934 if (bswap_code(sctlr_b
)) {
935 #if TARGET_BIG_ENDIAN
936 info
->endian
= BFD_ENDIAN_LITTLE
;
938 info
->endian
= BFD_ENDIAN_BIG
;
941 info
->flags
&= ~INSN_ARM_BE32
;
942 #ifndef CONFIG_USER_ONLY
944 info
->flags
|= INSN_ARM_BE32
;
949 #ifdef TARGET_AARCH64
951 static void aarch64_cpu_dump_state(CPUState
*cs
, FILE *f
, int flags
)
953 ARMCPU
*cpu
= ARM_CPU(cs
);
954 CPUARMState
*env
= &cpu
->env
;
955 uint32_t psr
= pstate_read(env
);
957 int el
= arm_current_el(env
);
958 const char *ns_status
;
961 qemu_fprintf(f
, " PC=%016" PRIx64
" ", env
->pc
);
962 for (i
= 0; i
< 32; i
++) {
964 qemu_fprintf(f
, " SP=%016" PRIx64
"\n", env
->xregs
[i
]);
966 qemu_fprintf(f
, "X%02d=%016" PRIx64
"%s", i
, env
->xregs
[i
],
967 (i
+ 2) % 3 ? " " : "\n");
971 if (arm_feature(env
, ARM_FEATURE_EL3
) && el
!= 3) {
972 ns_status
= env
->cp15
.scr_el3
& SCR_NS
? "NS " : "S ";
976 qemu_fprintf(f
, "PSTATE=%08x %c%c%c%c %sEL%d%c",
978 psr
& PSTATE_N
? 'N' : '-',
979 psr
& PSTATE_Z
? 'Z' : '-',
980 psr
& PSTATE_C
? 'C' : '-',
981 psr
& PSTATE_V
? 'V' : '-',
984 psr
& PSTATE_SP
? 'h' : 't');
986 if (cpu_isar_feature(aa64_sme
, cpu
)) {
987 qemu_fprintf(f
, " SVCR=%08" PRIx64
" %c%c",
989 (FIELD_EX64(env
->svcr
, SVCR
, ZA
) ? 'Z' : '-'),
990 (FIELD_EX64(env
->svcr
, SVCR
, SM
) ? 'S' : '-'));
992 if (cpu_isar_feature(aa64_bti
, cpu
)) {
993 qemu_fprintf(f
, " BTYPE=%d", (psr
& PSTATE_BTYPE
) >> 10);
995 if (!(flags
& CPU_DUMP_FPU
)) {
996 qemu_fprintf(f
, "\n");
999 if (fp_exception_el(env
, el
) != 0) {
1000 qemu_fprintf(f
, " FPU disabled\n");
1003 qemu_fprintf(f
, " FPCR=%08x FPSR=%08x\n",
1004 vfp_get_fpcr(env
), vfp_get_fpsr(env
));
1006 if (cpu_isar_feature(aa64_sme
, cpu
) && FIELD_EX64(env
->svcr
, SVCR
, SM
)) {
1007 sve
= sme_exception_el(env
, el
) == 0;
1008 } else if (cpu_isar_feature(aa64_sve
, cpu
)) {
1009 sve
= sve_exception_el(env
, el
) == 0;
1015 int j
, zcr_len
= sve_vqm1_for_el(env
, el
);
1017 for (i
= 0; i
<= FFR_PRED_NUM
; i
++) {
1019 if (i
== FFR_PRED_NUM
) {
1020 qemu_fprintf(f
, "FFR=");
1021 /* It's last, so end the line. */
1024 qemu_fprintf(f
, "P%02d=", i
);
1037 /* More than one quadword per predicate. */
1042 for (j
= zcr_len
/ 4; j
>= 0; j
--) {
1044 if (j
* 4 + 4 <= zcr_len
+ 1) {
1047 digits
= (zcr_len
% 4 + 1) * 4;
1049 qemu_fprintf(f
, "%0*" PRIx64
"%s", digits
,
1050 env
->vfp
.pregs
[i
].p
[j
],
1051 j
? ":" : eol
? "\n" : " ");
1055 for (i
= 0; i
< 32; i
++) {
1057 qemu_fprintf(f
, "Z%02d=%016" PRIx64
":%016" PRIx64
"%s",
1058 i
, env
->vfp
.zregs
[i
].d
[1],
1059 env
->vfp
.zregs
[i
].d
[0], i
& 1 ? "\n" : " ");
1060 } else if (zcr_len
== 1) {
1061 qemu_fprintf(f
, "Z%02d=%016" PRIx64
":%016" PRIx64
1062 ":%016" PRIx64
":%016" PRIx64
"\n",
1063 i
, env
->vfp
.zregs
[i
].d
[3], env
->vfp
.zregs
[i
].d
[2],
1064 env
->vfp
.zregs
[i
].d
[1], env
->vfp
.zregs
[i
].d
[0]);
1066 for (j
= zcr_len
; j
>= 0; j
--) {
1067 bool odd
= (zcr_len
- j
) % 2 != 0;
1069 qemu_fprintf(f
, "Z%02d[%x-%x]=", i
, j
, j
- 1);
1072 qemu_fprintf(f
, " [%x-%x]=", j
, j
- 1);
1074 qemu_fprintf(f
, " [%x]=", j
);
1077 qemu_fprintf(f
, "%016" PRIx64
":%016" PRIx64
"%s",
1078 env
->vfp
.zregs
[i
].d
[j
* 2 + 1],
1079 env
->vfp
.zregs
[i
].d
[j
* 2],
1080 odd
|| j
== 0 ? "\n" : ":");
1085 for (i
= 0; i
< 32; i
++) {
1086 uint64_t *q
= aa64_vfp_qreg(env
, i
);
1087 qemu_fprintf(f
, "Q%02d=%016" PRIx64
":%016" PRIx64
"%s",
1088 i
, q
[1], q
[0], (i
& 1 ? "\n" : " "));
1095 static inline void aarch64_cpu_dump_state(CPUState
*cs
, FILE *f
, int flags
)
1097 g_assert_not_reached();
1102 static void arm_cpu_dump_state(CPUState
*cs
, FILE *f
, int flags
)
1104 ARMCPU
*cpu
= ARM_CPU(cs
);
1105 CPUARMState
*env
= &cpu
->env
;
1109 aarch64_cpu_dump_state(cs
, f
, flags
);
1113 for (i
= 0; i
< 16; i
++) {
1114 qemu_fprintf(f
, "R%02d=%08x", i
, env
->regs
[i
]);
1116 qemu_fprintf(f
, "\n");
1118 qemu_fprintf(f
, " ");
1122 if (arm_feature(env
, ARM_FEATURE_M
)) {
1123 uint32_t xpsr
= xpsr_read(env
);
1125 const char *ns_status
= "";
1127 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1128 ns_status
= env
->v7m
.secure
? "S " : "NS ";
1131 if (xpsr
& XPSR_EXCP
) {
1134 if (env
->v7m
.control
[env
->v7m
.secure
] & R_V7M_CONTROL_NPRIV_MASK
) {
1135 mode
= "unpriv-thread";
1137 mode
= "priv-thread";
1141 qemu_fprintf(f
, "XPSR=%08x %c%c%c%c %c %s%s\n",
1143 xpsr
& XPSR_N
? 'N' : '-',
1144 xpsr
& XPSR_Z
? 'Z' : '-',
1145 xpsr
& XPSR_C
? 'C' : '-',
1146 xpsr
& XPSR_V
? 'V' : '-',
1147 xpsr
& XPSR_T
? 'T' : 'A',
1151 uint32_t psr
= cpsr_read(env
);
1152 const char *ns_status
= "";
1154 if (arm_feature(env
, ARM_FEATURE_EL3
) &&
1155 (psr
& CPSR_M
) != ARM_CPU_MODE_MON
) {
1156 ns_status
= env
->cp15
.scr_el3
& SCR_NS
? "NS " : "S ";
1159 qemu_fprintf(f
, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1161 psr
& CPSR_N
? 'N' : '-',
1162 psr
& CPSR_Z
? 'Z' : '-',
1163 psr
& CPSR_C
? 'C' : '-',
1164 psr
& CPSR_V
? 'V' : '-',
1165 psr
& CPSR_T
? 'T' : 'A',
1167 aarch32_mode_name(psr
), (psr
& 0x10) ? 32 : 26);
1170 if (flags
& CPU_DUMP_FPU
) {
1172 if (cpu_isar_feature(aa32_simd_r32
, cpu
)) {
1174 } else if (cpu_isar_feature(aa32_vfp_simd
, cpu
)) {
1177 for (i
= 0; i
< numvfpregs
; i
++) {
1178 uint64_t v
= *aa32_vfp_dreg(env
, i
);
1179 qemu_fprintf(f
, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64
"\n",
1181 i
* 2 + 1, (uint32_t)(v
>> 32),
1184 qemu_fprintf(f
, "FPSCR: %08x\n", vfp_get_fpscr(env
));
1185 if (cpu_isar_feature(aa32_mve
, cpu
)) {
1186 qemu_fprintf(f
, "VPR: %08x\n", env
->v7m
.vpr
);
1191 uint64_t arm_cpu_mp_affinity(int idx
, uint8_t clustersz
)
1193 uint32_t Aff1
= idx
/ clustersz
;
1194 uint32_t Aff0
= idx
% clustersz
;
1195 return (Aff1
<< ARM_AFF1_SHIFT
) | Aff0
;
1198 static void arm_cpu_initfn(Object
*obj
)
1200 ARMCPU
*cpu
= ARM_CPU(obj
);
1202 cpu_set_cpustate_pointers(cpu
);
1203 cpu
->cp_regs
= g_hash_table_new_full(g_direct_hash
, g_direct_equal
,
1206 QLIST_INIT(&cpu
->pre_el_change_hooks
);
1207 QLIST_INIT(&cpu
->el_change_hooks
);
1209 #ifdef CONFIG_USER_ONLY
1210 # ifdef TARGET_AARCH64
1212 * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1213 * These values were chosen to fit within the default signal frame.
1214 * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1215 * and our corresponding cpu property.
1217 cpu
->sve_default_vq
= 4;
1218 cpu
->sme_default_vq
= 2;
1221 /* Our inbound IRQ and FIQ lines */
1222 if (kvm_enabled()) {
1223 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1224 * the same interface as non-KVM CPUs.
1226 qdev_init_gpio_in(DEVICE(cpu
), arm_cpu_kvm_set_irq
, 4);
1228 qdev_init_gpio_in(DEVICE(cpu
), arm_cpu_set_irq
, 4);
1231 qdev_init_gpio_out(DEVICE(cpu
), cpu
->gt_timer_outputs
,
1232 ARRAY_SIZE(cpu
->gt_timer_outputs
));
1234 qdev_init_gpio_out_named(DEVICE(cpu
), &cpu
->gicv3_maintenance_interrupt
,
1235 "gicv3-maintenance-interrupt", 1);
1236 qdev_init_gpio_out_named(DEVICE(cpu
), &cpu
->pmu_interrupt
,
1237 "pmu-interrupt", 1);
1240 /* DTB consumers generally don't in fact care what the 'compatible'
1241 * string is, so always provide some string and trust that a hypothetical
1242 * picky DTB consumer will also provide a helpful error message.
1244 cpu
->dtb_compatible
= "qemu,unknown";
1245 cpu
->psci_version
= QEMU_PSCI_VERSION_0_1
; /* By default assume PSCI v0.1 */
1246 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_NONE
;
1248 if (tcg_enabled() || hvf_enabled()) {
1249 /* TCG and HVF implement PSCI 1.1 */
1250 cpu
->psci_version
= QEMU_PSCI_VERSION_1_1
;
1254 static Property arm_cpu_gt_cntfrq_property
=
1255 DEFINE_PROP_UINT64("cntfrq", ARMCPU
, gt_cntfrq_hz
,
1256 NANOSECONDS_PER_SECOND
/ GTIMER_SCALE
);
1258 static Property arm_cpu_reset_cbar_property
=
1259 DEFINE_PROP_UINT64("reset-cbar", ARMCPU
, reset_cbar
, 0);
1261 static Property arm_cpu_reset_hivecs_property
=
1262 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU
, reset_hivecs
, false);
1264 #ifndef CONFIG_USER_ONLY
1265 static Property arm_cpu_has_el2_property
=
1266 DEFINE_PROP_BOOL("has_el2", ARMCPU
, has_el2
, true);
1268 static Property arm_cpu_has_el3_property
=
1269 DEFINE_PROP_BOOL("has_el3", ARMCPU
, has_el3
, true);
1272 static Property arm_cpu_cfgend_property
=
1273 DEFINE_PROP_BOOL("cfgend", ARMCPU
, cfgend
, false);
1275 static Property arm_cpu_has_vfp_property
=
1276 DEFINE_PROP_BOOL("vfp", ARMCPU
, has_vfp
, true);
1278 static Property arm_cpu_has_neon_property
=
1279 DEFINE_PROP_BOOL("neon", ARMCPU
, has_neon
, true);
1281 static Property arm_cpu_has_dsp_property
=
1282 DEFINE_PROP_BOOL("dsp", ARMCPU
, has_dsp
, true);
1284 static Property arm_cpu_has_mpu_property
=
1285 DEFINE_PROP_BOOL("has-mpu", ARMCPU
, has_mpu
, true);
1287 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1288 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1289 * the right value for that particular CPU type, and we don't want
1290 * to override that with an incorrect constant value.
1292 static Property arm_cpu_pmsav7_dregion_property
=
1293 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU
,
1295 qdev_prop_uint32
, uint32_t);
1297 static bool arm_get_pmu(Object
*obj
, Error
**errp
)
1299 ARMCPU
*cpu
= ARM_CPU(obj
);
1301 return cpu
->has_pmu
;
1304 static void arm_set_pmu(Object
*obj
, bool value
, Error
**errp
)
1306 ARMCPU
*cpu
= ARM_CPU(obj
);
1309 if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1310 error_setg(errp
, "'pmu' feature not supported by KVM on this host");
1313 set_feature(&cpu
->env
, ARM_FEATURE_PMU
);
1315 unset_feature(&cpu
->env
, ARM_FEATURE_PMU
);
1317 cpu
->has_pmu
= value
;
1320 unsigned int gt_cntfrq_period_ns(ARMCPU
*cpu
)
1323 * The exact approach to calculating guest ticks is:
1325 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1326 * NANOSECONDS_PER_SECOND);
1328 * We don't do that. Rather we intentionally use integer division
1329 * truncation below and in the caller for the conversion of host monotonic
1330 * time to guest ticks to provide the exact inverse for the semantics of
1331 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1332 * it loses precision when representing frequencies where
1333 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1334 * provide an exact inverse leads to scheduling timers with negative
1335 * periods, which in turn leads to sticky behaviour in the guest.
1337 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1338 * cannot become zero.
1340 return NANOSECONDS_PER_SECOND
> cpu
->gt_cntfrq_hz
?
1341 NANOSECONDS_PER_SECOND
/ cpu
->gt_cntfrq_hz
: 1;
1344 void arm_cpu_post_init(Object
*obj
)
1346 ARMCPU
*cpu
= ARM_CPU(obj
);
1348 /* M profile implies PMSA. We have to do this here rather than
1349 * in realize with the other feature-implication checks because
1350 * we look at the PMSA bit to see if we should add some properties.
1352 if (arm_feature(&cpu
->env
, ARM_FEATURE_M
)) {
1353 set_feature(&cpu
->env
, ARM_FEATURE_PMSA
);
1356 if (arm_feature(&cpu
->env
, ARM_FEATURE_CBAR
) ||
1357 arm_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
)) {
1358 qdev_property_add_static(DEVICE(obj
), &arm_cpu_reset_cbar_property
);
1361 if (!arm_feature(&cpu
->env
, ARM_FEATURE_M
)) {
1362 qdev_property_add_static(DEVICE(obj
), &arm_cpu_reset_hivecs_property
);
1365 if (arm_feature(&cpu
->env
, ARM_FEATURE_V8
)) {
1366 object_property_add_uint64_ptr(obj
, "rvbar",
1368 OBJ_PROP_FLAG_READWRITE
);
1371 #ifndef CONFIG_USER_ONLY
1372 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL3
)) {
1373 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1374 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1376 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_el3_property
);
1378 object_property_add_link(obj
, "secure-memory",
1380 (Object
**)&cpu
->secure_memory
,
1381 qdev_prop_allow_set_link_before_realize
,
1382 OBJ_PROP_LINK_STRONG
);
1385 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL2
)) {
1386 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_el2_property
);
1390 if (arm_feature(&cpu
->env
, ARM_FEATURE_PMU
)) {
1391 cpu
->has_pmu
= true;
1392 object_property_add_bool(obj
, "pmu", arm_get_pmu
, arm_set_pmu
);
1396 * Allow user to turn off VFP and Neon support, but only for TCG --
1397 * KVM does not currently allow us to lie to the guest about its
1398 * ID/feature registers, so the guest always sees what the host has.
1400 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)
1401 ? cpu_isar_feature(aa64_fp_simd
, cpu
)
1402 : cpu_isar_feature(aa32_vfp
, cpu
)) {
1403 cpu
->has_vfp
= true;
1404 if (!kvm_enabled()) {
1405 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_vfp_property
);
1409 if (arm_feature(&cpu
->env
, ARM_FEATURE_NEON
)) {
1410 cpu
->has_neon
= true;
1411 if (!kvm_enabled()) {
1412 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_neon_property
);
1416 if (arm_feature(&cpu
->env
, ARM_FEATURE_M
) &&
1417 arm_feature(&cpu
->env
, ARM_FEATURE_THUMB_DSP
)) {
1418 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_dsp_property
);
1421 if (arm_feature(&cpu
->env
, ARM_FEATURE_PMSA
)) {
1422 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_mpu_property
);
1423 if (arm_feature(&cpu
->env
, ARM_FEATURE_V7
)) {
1424 qdev_property_add_static(DEVICE(obj
),
1425 &arm_cpu_pmsav7_dregion_property
);
1429 if (arm_feature(&cpu
->env
, ARM_FEATURE_M_SECURITY
)) {
1430 object_property_add_link(obj
, "idau", TYPE_IDAU_INTERFACE
, &cpu
->idau
,
1431 qdev_prop_allow_set_link_before_realize
,
1432 OBJ_PROP_LINK_STRONG
);
1434 * M profile: initial value of the Secure VTOR. We can't just use
1435 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1436 * the property to be set after realize.
1438 object_property_add_uint32_ptr(obj
, "init-svtor",
1440 OBJ_PROP_FLAG_READWRITE
);
1442 if (arm_feature(&cpu
->env
, ARM_FEATURE_M
)) {
1444 * Initial value of the NS VTOR (for cores without the Security
1445 * extension, this is the only VTOR)
1447 object_property_add_uint32_ptr(obj
, "init-nsvtor",
1449 OBJ_PROP_FLAG_READWRITE
);
1452 /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1453 object_property_add_uint32_ptr(obj
, "psci-conduit",
1455 OBJ_PROP_FLAG_READWRITE
);
1457 qdev_property_add_static(DEVICE(obj
), &arm_cpu_cfgend_property
);
1459 if (arm_feature(&cpu
->env
, ARM_FEATURE_GENERIC_TIMER
)) {
1460 qdev_property_add_static(DEVICE(cpu
), &arm_cpu_gt_cntfrq_property
);
1463 if (kvm_enabled()) {
1464 kvm_arm_add_vcpu_properties(obj
);
1467 #ifndef CONFIG_USER_ONLY
1468 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
) &&
1469 cpu_isar_feature(aa64_mte
, cpu
)) {
1470 object_property_add_link(obj
, "tag-memory",
1472 (Object
**)&cpu
->tag_memory
,
1473 qdev_prop_allow_set_link_before_realize
,
1474 OBJ_PROP_LINK_STRONG
);
1476 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL3
)) {
1477 object_property_add_link(obj
, "secure-tag-memory",
1479 (Object
**)&cpu
->secure_tag_memory
,
1480 qdev_prop_allow_set_link_before_realize
,
1481 OBJ_PROP_LINK_STRONG
);
1487 static void arm_cpu_finalizefn(Object
*obj
)
1489 ARMCPU
*cpu
= ARM_CPU(obj
);
1490 ARMELChangeHook
*hook
, *next
;
1492 g_hash_table_destroy(cpu
->cp_regs
);
1494 QLIST_FOREACH_SAFE(hook
, &cpu
->pre_el_change_hooks
, node
, next
) {
1495 QLIST_REMOVE(hook
, node
);
1498 QLIST_FOREACH_SAFE(hook
, &cpu
->el_change_hooks
, node
, next
) {
1499 QLIST_REMOVE(hook
, node
);
1502 #ifndef CONFIG_USER_ONLY
1503 if (cpu
->pmu_timer
) {
1504 timer_free(cpu
->pmu_timer
);
1509 void arm_cpu_finalize_features(ARMCPU
*cpu
, Error
**errp
)
1511 Error
*local_err
= NULL
;
1513 #ifdef TARGET_AARCH64
1514 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
1515 arm_cpu_sve_finalize(cpu
, &local_err
);
1516 if (local_err
!= NULL
) {
1517 error_propagate(errp
, local_err
);
1521 arm_cpu_sme_finalize(cpu
, &local_err
);
1522 if (local_err
!= NULL
) {
1523 error_propagate(errp
, local_err
);
1527 arm_cpu_pauth_finalize(cpu
, &local_err
);
1528 if (local_err
!= NULL
) {
1529 error_propagate(errp
, local_err
);
1533 arm_cpu_lpa2_finalize(cpu
, &local_err
);
1534 if (local_err
!= NULL
) {
1535 error_propagate(errp
, local_err
);
1541 if (kvm_enabled()) {
1542 kvm_arm_steal_time_finalize(cpu
, &local_err
);
1543 if (local_err
!= NULL
) {
1544 error_propagate(errp
, local_err
);
1550 static void arm_cpu_realizefn(DeviceState
*dev
, Error
**errp
)
1552 CPUState
*cs
= CPU(dev
);
1553 ARMCPU
*cpu
= ARM_CPU(dev
);
1554 ARMCPUClass
*acc
= ARM_CPU_GET_CLASS(dev
);
1555 CPUARMState
*env
= &cpu
->env
;
1557 Error
*local_err
= NULL
;
1558 bool no_aa32
= false;
1560 /* Use pc-relative instructions in system-mode */
1561 #ifndef CONFIG_USER_ONLY
1562 cs
->tcg_cflags
|= CF_PCREL
;
1565 /* If we needed to query the host kernel for the CPU features
1566 * then it's possible that might have failed in the initfn, but
1567 * this is the first point where we can report it.
1569 if (cpu
->host_cpu_probe_failed
) {
1570 if (!kvm_enabled() && !hvf_enabled()) {
1571 error_setg(errp
, "The 'host' CPU type can only be used with KVM or HVF");
1573 error_setg(errp
, "Failed to retrieve host CPU features");
1578 #ifndef CONFIG_USER_ONLY
1579 /* The NVIC and M-profile CPU are two halves of a single piece of
1580 * hardware; trying to use one without the other is a command line
1581 * error and will result in segfaults if not caught here.
1583 if (arm_feature(env
, ARM_FEATURE_M
)) {
1585 error_setg(errp
, "This board cannot be used with Cortex-M CPUs");
1590 error_setg(errp
, "This board can only be used with Cortex-M CPUs");
1595 if (!tcg_enabled() && !qtest_enabled()) {
1597 * We assume that no accelerator except TCG (and the "not really an
1598 * accelerator" qtest) can handle these features, because Arm hardware
1599 * virtualization can't virtualize them.
1601 * Catch all the cases which might cause us to create more than one
1602 * address space for the CPU (otherwise we will assert() later in
1603 * cpu_address_space_init()).
1605 if (arm_feature(env
, ARM_FEATURE_M
)) {
1607 "Cannot enable %s when using an M-profile guest CPU",
1608 current_accel_name());
1613 "Cannot enable %s when guest CPU has EL3 enabled",
1614 current_accel_name());
1617 if (cpu
->tag_memory
) {
1619 "Cannot enable %s when guest CPUs has MTE enabled",
1620 current_accel_name());
1628 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
1629 if (!cpu
->gt_cntfrq_hz
) {
1630 error_setg(errp
, "Invalid CNTFRQ: %"PRId64
"Hz",
1634 scale
= gt_cntfrq_period_ns(cpu
);
1636 scale
= GTIMER_SCALE
;
1639 cpu
->gt_timer
[GTIMER_PHYS
] = timer_new(QEMU_CLOCK_VIRTUAL
, scale
,
1640 arm_gt_ptimer_cb
, cpu
);
1641 cpu
->gt_timer
[GTIMER_VIRT
] = timer_new(QEMU_CLOCK_VIRTUAL
, scale
,
1642 arm_gt_vtimer_cb
, cpu
);
1643 cpu
->gt_timer
[GTIMER_HYP
] = timer_new(QEMU_CLOCK_VIRTUAL
, scale
,
1644 arm_gt_htimer_cb
, cpu
);
1645 cpu
->gt_timer
[GTIMER_SEC
] = timer_new(QEMU_CLOCK_VIRTUAL
, scale
,
1646 arm_gt_stimer_cb
, cpu
);
1647 cpu
->gt_timer
[GTIMER_HYPVIRT
] = timer_new(QEMU_CLOCK_VIRTUAL
, scale
,
1648 arm_gt_hvtimer_cb
, cpu
);
1652 cpu_exec_realizefn(cs
, &local_err
);
1653 if (local_err
!= NULL
) {
1654 error_propagate(errp
, local_err
);
1658 arm_cpu_finalize_features(cpu
, &local_err
);
1659 if (local_err
!= NULL
) {
1660 error_propagate(errp
, local_err
);
1664 if (arm_feature(env
, ARM_FEATURE_AARCH64
) &&
1665 cpu
->has_vfp
!= cpu
->has_neon
) {
1667 * This is an architectural requirement for AArch64; AArch32 is
1668 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1671 "AArch64 CPUs must have both VFP and Neon or neither");
1675 if (!cpu
->has_vfp
) {
1679 t
= cpu
->isar
.id_aa64isar1
;
1680 t
= FIELD_DP64(t
, ID_AA64ISAR1
, JSCVT
, 0);
1681 cpu
->isar
.id_aa64isar1
= t
;
1683 t
= cpu
->isar
.id_aa64pfr0
;
1684 t
= FIELD_DP64(t
, ID_AA64PFR0
, FP
, 0xf);
1685 cpu
->isar
.id_aa64pfr0
= t
;
1687 u
= cpu
->isar
.id_isar6
;
1688 u
= FIELD_DP32(u
, ID_ISAR6
, JSCVT
, 0);
1689 u
= FIELD_DP32(u
, ID_ISAR6
, BF16
, 0);
1690 cpu
->isar
.id_isar6
= u
;
1692 u
= cpu
->isar
.mvfr0
;
1693 u
= FIELD_DP32(u
, MVFR0
, FPSP
, 0);
1694 u
= FIELD_DP32(u
, MVFR0
, FPDP
, 0);
1695 u
= FIELD_DP32(u
, MVFR0
, FPDIVIDE
, 0);
1696 u
= FIELD_DP32(u
, MVFR0
, FPSQRT
, 0);
1697 u
= FIELD_DP32(u
, MVFR0
, FPROUND
, 0);
1698 if (!arm_feature(env
, ARM_FEATURE_M
)) {
1699 u
= FIELD_DP32(u
, MVFR0
, FPTRAP
, 0);
1700 u
= FIELD_DP32(u
, MVFR0
, FPSHVEC
, 0);
1702 cpu
->isar
.mvfr0
= u
;
1704 u
= cpu
->isar
.mvfr1
;
1705 u
= FIELD_DP32(u
, MVFR1
, FPFTZ
, 0);
1706 u
= FIELD_DP32(u
, MVFR1
, FPDNAN
, 0);
1707 u
= FIELD_DP32(u
, MVFR1
, FPHP
, 0);
1708 if (arm_feature(env
, ARM_FEATURE_M
)) {
1709 u
= FIELD_DP32(u
, MVFR1
, FP16
, 0);
1711 cpu
->isar
.mvfr1
= u
;
1713 u
= cpu
->isar
.mvfr2
;
1714 u
= FIELD_DP32(u
, MVFR2
, FPMISC
, 0);
1715 cpu
->isar
.mvfr2
= u
;
1718 if (!cpu
->has_neon
) {
1722 unset_feature(env
, ARM_FEATURE_NEON
);
1724 t
= cpu
->isar
.id_aa64isar0
;
1725 t
= FIELD_DP64(t
, ID_AA64ISAR0
, AES
, 0);
1726 t
= FIELD_DP64(t
, ID_AA64ISAR0
, SHA1
, 0);
1727 t
= FIELD_DP64(t
, ID_AA64ISAR0
, SHA2
, 0);
1728 t
= FIELD_DP64(t
, ID_AA64ISAR0
, SHA3
, 0);
1729 t
= FIELD_DP64(t
, ID_AA64ISAR0
, SM3
, 0);
1730 t
= FIELD_DP64(t
, ID_AA64ISAR0
, SM4
, 0);
1731 t
= FIELD_DP64(t
, ID_AA64ISAR0
, DP
, 0);
1732 cpu
->isar
.id_aa64isar0
= t
;
1734 t
= cpu
->isar
.id_aa64isar1
;
1735 t
= FIELD_DP64(t
, ID_AA64ISAR1
, FCMA
, 0);
1736 t
= FIELD_DP64(t
, ID_AA64ISAR1
, BF16
, 0);
1737 t
= FIELD_DP64(t
, ID_AA64ISAR1
, I8MM
, 0);
1738 cpu
->isar
.id_aa64isar1
= t
;
1740 t
= cpu
->isar
.id_aa64pfr0
;
1741 t
= FIELD_DP64(t
, ID_AA64PFR0
, ADVSIMD
, 0xf);
1742 cpu
->isar
.id_aa64pfr0
= t
;
1744 u
= cpu
->isar
.id_isar5
;
1745 u
= FIELD_DP32(u
, ID_ISAR5
, AES
, 0);
1746 u
= FIELD_DP32(u
, ID_ISAR5
, SHA1
, 0);
1747 u
= FIELD_DP32(u
, ID_ISAR5
, SHA2
, 0);
1748 u
= FIELD_DP32(u
, ID_ISAR5
, RDM
, 0);
1749 u
= FIELD_DP32(u
, ID_ISAR5
, VCMA
, 0);
1750 cpu
->isar
.id_isar5
= u
;
1752 u
= cpu
->isar
.id_isar6
;
1753 u
= FIELD_DP32(u
, ID_ISAR6
, DP
, 0);
1754 u
= FIELD_DP32(u
, ID_ISAR6
, FHM
, 0);
1755 u
= FIELD_DP32(u
, ID_ISAR6
, BF16
, 0);
1756 u
= FIELD_DP32(u
, ID_ISAR6
, I8MM
, 0);
1757 cpu
->isar
.id_isar6
= u
;
1759 if (!arm_feature(env
, ARM_FEATURE_M
)) {
1760 u
= cpu
->isar
.mvfr1
;
1761 u
= FIELD_DP32(u
, MVFR1
, SIMDLS
, 0);
1762 u
= FIELD_DP32(u
, MVFR1
, SIMDINT
, 0);
1763 u
= FIELD_DP32(u
, MVFR1
, SIMDSP
, 0);
1764 u
= FIELD_DP32(u
, MVFR1
, SIMDHP
, 0);
1765 cpu
->isar
.mvfr1
= u
;
1767 u
= cpu
->isar
.mvfr2
;
1768 u
= FIELD_DP32(u
, MVFR2
, SIMDMISC
, 0);
1769 cpu
->isar
.mvfr2
= u
;
1773 if (!cpu
->has_neon
&& !cpu
->has_vfp
) {
1777 t
= cpu
->isar
.id_aa64isar0
;
1778 t
= FIELD_DP64(t
, ID_AA64ISAR0
, FHM
, 0);
1779 cpu
->isar
.id_aa64isar0
= t
;
1781 t
= cpu
->isar
.id_aa64isar1
;
1782 t
= FIELD_DP64(t
, ID_AA64ISAR1
, FRINTTS
, 0);
1783 cpu
->isar
.id_aa64isar1
= t
;
1785 u
= cpu
->isar
.mvfr0
;
1786 u
= FIELD_DP32(u
, MVFR0
, SIMDREG
, 0);
1787 cpu
->isar
.mvfr0
= u
;
1789 /* Despite the name, this field covers both VFP and Neon */
1790 u
= cpu
->isar
.mvfr1
;
1791 u
= FIELD_DP32(u
, MVFR1
, SIMDFMAC
, 0);
1792 cpu
->isar
.mvfr1
= u
;
1795 if (arm_feature(env
, ARM_FEATURE_M
) && !cpu
->has_dsp
) {
1798 unset_feature(env
, ARM_FEATURE_THUMB_DSP
);
1800 u
= cpu
->isar
.id_isar1
;
1801 u
= FIELD_DP32(u
, ID_ISAR1
, EXTEND
, 1);
1802 cpu
->isar
.id_isar1
= u
;
1804 u
= cpu
->isar
.id_isar2
;
1805 u
= FIELD_DP32(u
, ID_ISAR2
, MULTU
, 1);
1806 u
= FIELD_DP32(u
, ID_ISAR2
, MULTS
, 1);
1807 cpu
->isar
.id_isar2
= u
;
1809 u
= cpu
->isar
.id_isar3
;
1810 u
= FIELD_DP32(u
, ID_ISAR3
, SIMD
, 1);
1811 u
= FIELD_DP32(u
, ID_ISAR3
, SATURATE
, 0);
1812 cpu
->isar
.id_isar3
= u
;
1815 /* Some features automatically imply others: */
1816 if (arm_feature(env
, ARM_FEATURE_V8
)) {
1817 if (arm_feature(env
, ARM_FEATURE_M
)) {
1818 set_feature(env
, ARM_FEATURE_V7
);
1820 set_feature(env
, ARM_FEATURE_V7VE
);
1825 * There exist AArch64 cpus without AArch32 support. When KVM
1826 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1827 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1828 * As a general principle, we also do not make ID register
1829 * consistency checks anywhere unless using TCG, because only
1830 * for TCG would a consistency-check failure be a QEMU bug.
1832 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
1833 no_aa32
= !cpu_isar_feature(aa64_aa32
, cpu
);
1836 if (arm_feature(env
, ARM_FEATURE_V7VE
)) {
1837 /* v7 Virtualization Extensions. In real hardware this implies
1838 * EL2 and also the presence of the Security Extensions.
1839 * For QEMU, for backwards-compatibility we implement some
1840 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1841 * include the various other features that V7VE implies.
1842 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1843 * Security Extensions is ARM_FEATURE_EL3.
1845 assert(!tcg_enabled() || no_aa32
||
1846 cpu_isar_feature(aa32_arm_div
, cpu
));
1847 set_feature(env
, ARM_FEATURE_LPAE
);
1848 set_feature(env
, ARM_FEATURE_V7
);
1850 if (arm_feature(env
, ARM_FEATURE_V7
)) {
1851 set_feature(env
, ARM_FEATURE_VAPA
);
1852 set_feature(env
, ARM_FEATURE_THUMB2
);
1853 set_feature(env
, ARM_FEATURE_MPIDR
);
1854 if (!arm_feature(env
, ARM_FEATURE_M
)) {
1855 set_feature(env
, ARM_FEATURE_V6K
);
1857 set_feature(env
, ARM_FEATURE_V6
);
1860 /* Always define VBAR for V7 CPUs even if it doesn't exist in
1861 * non-EL3 configs. This is needed by some legacy boards.
1863 set_feature(env
, ARM_FEATURE_VBAR
);
1865 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
1866 set_feature(env
, ARM_FEATURE_V6
);
1867 set_feature(env
, ARM_FEATURE_MVFR
);
1869 if (arm_feature(env
, ARM_FEATURE_V6
)) {
1870 set_feature(env
, ARM_FEATURE_V5
);
1871 if (!arm_feature(env
, ARM_FEATURE_M
)) {
1872 assert(!tcg_enabled() || no_aa32
||
1873 cpu_isar_feature(aa32_jazelle
, cpu
));
1874 set_feature(env
, ARM_FEATURE_AUXCR
);
1877 if (arm_feature(env
, ARM_FEATURE_V5
)) {
1878 set_feature(env
, ARM_FEATURE_V4T
);
1880 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1881 set_feature(env
, ARM_FEATURE_V7MP
);
1883 if (arm_feature(env
, ARM_FEATURE_CBAR_RO
)) {
1884 set_feature(env
, ARM_FEATURE_CBAR
);
1886 if (arm_feature(env
, ARM_FEATURE_THUMB2
) &&
1887 !arm_feature(env
, ARM_FEATURE_M
)) {
1888 set_feature(env
, ARM_FEATURE_THUMB_DSP
);
1892 * We rely on no XScale CPU having VFP so we can use the same bits in the
1893 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1895 assert(arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
) ||
1896 !cpu_isar_feature(aa32_vfp_simd
, cpu
) ||
1897 !arm_feature(env
, ARM_FEATURE_XSCALE
));
1899 if (arm_feature(env
, ARM_FEATURE_V7
) &&
1900 !arm_feature(env
, ARM_FEATURE_M
) &&
1901 !arm_feature(env
, ARM_FEATURE_PMSA
)) {
1902 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1907 /* For CPUs which might have tiny 1K pages, or which have an
1908 * MPU and might have small region sizes, stick with 1K pages.
1912 if (!set_preferred_target_page_bits(pagebits
)) {
1913 /* This can only ever happen for hotplugging a CPU, or if
1914 * the board code incorrectly creates a CPU which it has
1915 * promised via minimum_page_size that it will not.
1917 error_setg(errp
, "This CPU requires a smaller page size than the "
1922 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1923 * We don't support setting cluster ID ([16..23]) (known as Aff2
1924 * in later ARM ARM versions), or any of the higher affinity level fields,
1925 * so these bits always RAZ.
1927 if (cpu
->mp_affinity
== ARM64_AFFINITY_INVALID
) {
1928 cpu
->mp_affinity
= arm_cpu_mp_affinity(cs
->cpu_index
,
1929 ARM_DEFAULT_CPUS_PER_CLUSTER
);
1932 if (cpu
->reset_hivecs
) {
1933 cpu
->reset_sctlr
|= (1 << 13);
1937 if (arm_feature(&cpu
->env
, ARM_FEATURE_V7
)) {
1938 cpu
->reset_sctlr
|= SCTLR_EE
;
1940 cpu
->reset_sctlr
|= SCTLR_B
;
1944 if (!arm_feature(env
, ARM_FEATURE_M
) && !cpu
->has_el3
) {
1945 /* If the has_el3 CPU property is disabled then we need to disable the
1948 unset_feature(env
, ARM_FEATURE_EL3
);
1951 * Disable the security extension feature bits in the processor
1952 * feature registers as well.
1954 cpu
->isar
.id_pfr1
= FIELD_DP32(cpu
->isar
.id_pfr1
, ID_PFR1
, SECURITY
, 0);
1955 cpu
->isar
.id_dfr0
= FIELD_DP32(cpu
->isar
.id_dfr0
, ID_DFR0
, COPSDBG
, 0);
1956 cpu
->isar
.id_aa64pfr0
= FIELD_DP64(cpu
->isar
.id_aa64pfr0
,
1957 ID_AA64PFR0
, EL3
, 0);
1960 if (!cpu
->has_el2
) {
1961 unset_feature(env
, ARM_FEATURE_EL2
);
1964 if (!cpu
->has_pmu
) {
1965 unset_feature(env
, ARM_FEATURE_PMU
);
1967 if (arm_feature(env
, ARM_FEATURE_PMU
)) {
1970 if (!kvm_enabled()) {
1971 arm_register_pre_el_change_hook(cpu
, &pmu_pre_el_change
, 0);
1972 arm_register_el_change_hook(cpu
, &pmu_post_el_change
, 0);
1975 #ifndef CONFIG_USER_ONLY
1976 cpu
->pmu_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, arm_pmu_timer_cb
,
1980 cpu
->isar
.id_aa64dfr0
=
1981 FIELD_DP64(cpu
->isar
.id_aa64dfr0
, ID_AA64DFR0
, PMUVER
, 0);
1982 cpu
->isar
.id_dfr0
= FIELD_DP32(cpu
->isar
.id_dfr0
, ID_DFR0
, PERFMON
, 0);
1987 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
1989 * Disable the hypervisor feature bits in the processor feature
1990 * registers if we don't have EL2.
1992 cpu
->isar
.id_aa64pfr0
= FIELD_DP64(cpu
->isar
.id_aa64pfr0
,
1993 ID_AA64PFR0
, EL2
, 0);
1994 cpu
->isar
.id_pfr1
= FIELD_DP32(cpu
->isar
.id_pfr1
,
1995 ID_PFR1
, VIRTUALIZATION
, 0);
1998 #ifndef CONFIG_USER_ONLY
1999 if (cpu
->tag_memory
== NULL
&& cpu_isar_feature(aa64_mte
, cpu
)) {
2001 * Disable the MTE feature bits if we do not have tag-memory
2002 * provided by the machine.
2004 cpu
->isar
.id_aa64pfr1
=
2005 FIELD_DP64(cpu
->isar
.id_aa64pfr1
, ID_AA64PFR1
, MTE
, 0);
2009 if (tcg_enabled()) {
2011 * Don't report the Statistical Profiling Extension in the ID
2012 * registers, because TCG doesn't implement it yet (not even a
2013 * minimal stub version) and guests will fall over when they
2014 * try to access the non-existent system registers for it.
2016 cpu
->isar
.id_aa64dfr0
=
2017 FIELD_DP64(cpu
->isar
.id_aa64dfr0
, ID_AA64DFR0
, PMSVER
, 0);
2020 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
2021 * to false or by setting pmsav7-dregion to 0.
2023 if (!cpu
->has_mpu
|| cpu
->pmsav7_dregion
== 0) {
2024 cpu
->has_mpu
= false;
2025 cpu
->pmsav7_dregion
= 0;
2026 cpu
->pmsav8r_hdregion
= 0;
2029 if (arm_feature(env
, ARM_FEATURE_PMSA
) &&
2030 arm_feature(env
, ARM_FEATURE_V7
)) {
2031 uint32_t nr
= cpu
->pmsav7_dregion
;
2034 error_setg(errp
, "PMSAv7 MPU #regions invalid %" PRIu32
, nr
);
2039 if (arm_feature(env
, ARM_FEATURE_V8
)) {
2041 env
->pmsav8
.rbar
[M_REG_NS
] = g_new0(uint32_t, nr
);
2042 env
->pmsav8
.rlar
[M_REG_NS
] = g_new0(uint32_t, nr
);
2043 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
2044 env
->pmsav8
.rbar
[M_REG_S
] = g_new0(uint32_t, nr
);
2045 env
->pmsav8
.rlar
[M_REG_S
] = g_new0(uint32_t, nr
);
2048 env
->pmsav7
.drbar
= g_new0(uint32_t, nr
);
2049 env
->pmsav7
.drsr
= g_new0(uint32_t, nr
);
2050 env
->pmsav7
.dracr
= g_new0(uint32_t, nr
);
2054 if (cpu
->pmsav8r_hdregion
> 0xff) {
2055 error_setg(errp
, "PMSAv8 MPU EL2 #regions invalid %" PRIu32
,
2056 cpu
->pmsav8r_hdregion
);
2060 if (cpu
->pmsav8r_hdregion
) {
2061 env
->pmsav8
.hprbar
= g_new0(uint32_t,
2062 cpu
->pmsav8r_hdregion
);
2063 env
->pmsav8
.hprlar
= g_new0(uint32_t,
2064 cpu
->pmsav8r_hdregion
);
2068 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
2069 uint32_t nr
= cpu
->sau_sregion
;
2072 error_setg(errp
, "v8M SAU #regions invalid %" PRIu32
, nr
);
2077 env
->sau
.rbar
= g_new0(uint32_t, nr
);
2078 env
->sau
.rlar
= g_new0(uint32_t, nr
);
2082 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
2083 set_feature(env
, ARM_FEATURE_VBAR
);
2086 register_cp_regs_for_features(cpu
);
2087 arm_cpu_register_gdb_regs_for_features(cpu
);
2089 init_cpreg_list(cpu
);
2091 #ifndef CONFIG_USER_ONLY
2092 MachineState
*ms
= MACHINE(qdev_get_machine());
2093 unsigned int smp_cpus
= ms
->smp
.cpus
;
2094 bool has_secure
= cpu
->has_el3
|| arm_feature(env
, ARM_FEATURE_M_SECURITY
);
2097 * We must set cs->num_ases to the final value before
2098 * the first call to cpu_address_space_init.
2100 if (cpu
->tag_memory
!= NULL
) {
2101 cs
->num_ases
= 3 + has_secure
;
2103 cs
->num_ases
= 1 + has_secure
;
2107 if (!cpu
->secure_memory
) {
2108 cpu
->secure_memory
= cs
->memory
;
2110 cpu_address_space_init(cs
, ARMASIdx_S
, "cpu-secure-memory",
2111 cpu
->secure_memory
);
2114 if (cpu
->tag_memory
!= NULL
) {
2115 cpu_address_space_init(cs
, ARMASIdx_TagNS
, "cpu-tag-memory",
2118 cpu_address_space_init(cs
, ARMASIdx_TagS
, "cpu-tag-memory",
2119 cpu
->secure_tag_memory
);
2123 cpu_address_space_init(cs
, ARMASIdx_NS
, "cpu-memory", cs
->memory
);
2125 /* No core_count specified, default to smp_cpus. */
2126 if (cpu
->core_count
== -1) {
2127 cpu
->core_count
= smp_cpus
;
2131 if (tcg_enabled()) {
2132 int dcz_blocklen
= 4 << cpu
->dcz_blocksize
;
2135 * We only support DCZ blocklen that fits on one page.
2137 * Architectually this is always true. However TARGET_PAGE_SIZE
2138 * is variable and, for compatibility with -machine virt-2.7,
2139 * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2140 * But even then, while the largest architectural DCZ blocklen
2141 * is 2KiB, no cpu actually uses such a large blocklen.
2143 assert(dcz_blocklen
<= TARGET_PAGE_SIZE
);
2146 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2147 * both nibbles of each byte storing tag data may be written at once.
2148 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2150 if (cpu_isar_feature(aa64_mte
, cpu
)) {
2151 assert(dcz_blocklen
>= 2 * TAG_GRANULE
);
2158 acc
->parent_realize(dev
, errp
);
2161 static ObjectClass
*arm_cpu_class_by_name(const char *cpu_model
)
2166 const char *cpunamestr
;
2168 cpuname
= g_strsplit(cpu_model
, ",", 1);
2169 cpunamestr
= cpuname
[0];
2170 #ifdef CONFIG_USER_ONLY
2171 /* For backwards compatibility usermode emulation allows "-cpu any",
2172 * which has the same semantics as "-cpu max".
2174 if (!strcmp(cpunamestr
, "any")) {
2178 typename
= g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr
);
2179 oc
= object_class_by_name(typename
);
2180 g_strfreev(cpuname
);
2182 if (!oc
|| !object_class_dynamic_cast(oc
, TYPE_ARM_CPU
) ||
2183 object_class_is_abstract(oc
)) {
2189 static Property arm_cpu_properties
[] = {
2190 DEFINE_PROP_UINT64("midr", ARMCPU
, midr
, 0),
2191 DEFINE_PROP_UINT64("mp-affinity", ARMCPU
,
2192 mp_affinity
, ARM64_AFFINITY_INVALID
),
2193 DEFINE_PROP_INT32("node-id", ARMCPU
, node_id
, CPU_UNSET_NUMA_NODE_ID
),
2194 DEFINE_PROP_INT32("core-count", ARMCPU
, core_count
, -1),
2195 DEFINE_PROP_END_OF_LIST()
2198 static gchar
*arm_gdb_arch_name(CPUState
*cs
)
2200 ARMCPU
*cpu
= ARM_CPU(cs
);
2201 CPUARMState
*env
= &cpu
->env
;
2203 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
2204 return g_strdup("iwmmxt");
2206 return g_strdup("arm");
2209 #ifndef CONFIG_USER_ONLY
2210 #include "hw/core/sysemu-cpu-ops.h"
2212 static const struct SysemuCPUOps arm_sysemu_ops
= {
2213 .get_phys_page_attrs_debug
= arm_cpu_get_phys_page_attrs_debug
,
2214 .asidx_from_attrs
= arm_asidx_from_attrs
,
2215 .write_elf32_note
= arm_cpu_write_elf32_note
,
2216 .write_elf64_note
= arm_cpu_write_elf64_note
,
2217 .virtio_is_big_endian
= arm_cpu_virtio_is_big_endian
,
2218 .legacy_vmsd
= &vmstate_arm_cpu
,
2223 static const struct TCGCPUOps arm_tcg_ops
= {
2224 .initialize
= arm_translate_init
,
2225 .synchronize_from_tb
= arm_cpu_synchronize_from_tb
,
2226 .debug_excp_handler
= arm_debug_excp_handler
,
2227 .restore_state_to_opc
= arm_restore_state_to_opc
,
2229 #ifdef CONFIG_USER_ONLY
2230 .record_sigsegv
= arm_cpu_record_sigsegv
,
2231 .record_sigbus
= arm_cpu_record_sigbus
,
2233 .tlb_fill
= arm_cpu_tlb_fill
,
2234 .cpu_exec_interrupt
= arm_cpu_exec_interrupt
,
2235 .do_interrupt
= arm_cpu_do_interrupt
,
2236 .do_transaction_failed
= arm_cpu_do_transaction_failed
,
2237 .do_unaligned_access
= arm_cpu_do_unaligned_access
,
2238 .adjust_watchpoint_address
= arm_adjust_watchpoint_address
,
2239 .debug_check_watchpoint
= arm_debug_check_watchpoint
,
2240 .debug_check_breakpoint
= arm_debug_check_breakpoint
,
2241 #endif /* !CONFIG_USER_ONLY */
2243 #endif /* CONFIG_TCG */
2245 static void arm_cpu_class_init(ObjectClass
*oc
, void *data
)
2247 ARMCPUClass
*acc
= ARM_CPU_CLASS(oc
);
2248 CPUClass
*cc
= CPU_CLASS(acc
);
2249 DeviceClass
*dc
= DEVICE_CLASS(oc
);
2250 ResettableClass
*rc
= RESETTABLE_CLASS(oc
);
2252 device_class_set_parent_realize(dc
, arm_cpu_realizefn
,
2253 &acc
->parent_realize
);
2255 device_class_set_props(dc
, arm_cpu_properties
);
2257 resettable_class_set_parent_phases(rc
, NULL
, arm_cpu_reset_hold
, NULL
,
2258 &acc
->parent_phases
);
2260 cc
->class_by_name
= arm_cpu_class_by_name
;
2261 cc
->has_work
= arm_cpu_has_work
;
2262 cc
->dump_state
= arm_cpu_dump_state
;
2263 cc
->set_pc
= arm_cpu_set_pc
;
2264 cc
->get_pc
= arm_cpu_get_pc
;
2265 cc
->gdb_read_register
= arm_cpu_gdb_read_register
;
2266 cc
->gdb_write_register
= arm_cpu_gdb_write_register
;
2267 #ifndef CONFIG_USER_ONLY
2268 cc
->sysemu_ops
= &arm_sysemu_ops
;
2270 cc
->gdb_num_core_regs
= 26;
2271 cc
->gdb_core_xml_file
= "arm-core.xml";
2272 cc
->gdb_arch_name
= arm_gdb_arch_name
;
2273 cc
->gdb_get_dynamic_xml
= arm_gdb_get_dynamic_xml
;
2274 cc
->gdb_stop_before_watchpoint
= true;
2275 cc
->disas_set_info
= arm_disas_set_info
;
2278 cc
->tcg_ops
= &arm_tcg_ops
;
2279 #endif /* CONFIG_TCG */
2282 static void arm_cpu_instance_init(Object
*obj
)
2284 ARMCPUClass
*acc
= ARM_CPU_GET_CLASS(obj
);
2286 acc
->info
->initfn(obj
);
2287 arm_cpu_post_init(obj
);
2290 static void cpu_register_class_init(ObjectClass
*oc
, void *data
)
2292 ARMCPUClass
*acc
= ARM_CPU_CLASS(oc
);
2297 void arm_cpu_register(const ARMCPUInfo
*info
)
2299 TypeInfo type_info
= {
2300 .parent
= TYPE_ARM_CPU
,
2301 .instance_size
= sizeof(ARMCPU
),
2302 .instance_align
= __alignof__(ARMCPU
),
2303 .instance_init
= arm_cpu_instance_init
,
2304 .class_size
= sizeof(ARMCPUClass
),
2305 .class_init
= info
->class_init
?: cpu_register_class_init
,
2306 .class_data
= (void *)info
,
2309 type_info
.name
= g_strdup_printf("%s-" TYPE_ARM_CPU
, info
->name
);
2310 type_register(&type_info
);
2311 g_free((void *)type_info
.name
);
2314 static const TypeInfo arm_cpu_type_info
= {
2315 .name
= TYPE_ARM_CPU
,
2317 .instance_size
= sizeof(ARMCPU
),
2318 .instance_align
= __alignof__(ARMCPU
),
2319 .instance_init
= arm_cpu_initfn
,
2320 .instance_finalize
= arm_cpu_finalizefn
,
2322 .class_size
= sizeof(ARMCPUClass
),
2323 .class_init
= arm_cpu_class_init
,
2326 static void arm_cpu_register_types(void)
2328 type_register_static(&arm_cpu_type_info
);
2331 type_init(arm_cpu_register_types
)