target/arm: Timer _EL02 registers UNDEF for E2H == 0
[qemu/armbru.git] / target / arm / helper.c
blob978df6f28233784d2987bc701b64c7e33e5ccf4f
1 /*
2 * ARM generic helpers.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "trace.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "cpu-features.h"
15 #include "exec/helper-proto.h"
16 #include "qemu/main-loop.h"
17 #include "qemu/timer.h"
18 #include "qemu/bitops.h"
19 #include "qemu/crc32c.h"
20 #include "qemu/qemu-print.h"
21 #include "exec/exec-all.h"
22 #include <zlib.h> /* For crc32 */
23 #include "hw/irq.h"
24 #include "sysemu/cpu-timers.h"
25 #include "sysemu/kvm.h"
26 #include "sysemu/tcg.h"
27 #include "qapi/error.h"
28 #include "qemu/guest-random.h"
29 #ifdef CONFIG_TCG
30 #include "semihosting/common-semi.h"
31 #endif
32 #include "cpregs.h"
33 #include "target/arm/gtimer.h"
35 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
37 static void switch_mode(CPUARMState *env, int mode);
39 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
41 assert(ri->fieldoffset);
42 if (cpreg_field_is_64bit(ri)) {
43 return CPREG_FIELD64(env, ri);
44 } else {
45 return CPREG_FIELD32(env, ri);
49 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
51 assert(ri->fieldoffset);
52 if (cpreg_field_is_64bit(ri)) {
53 CPREG_FIELD64(env, ri) = value;
54 } else {
55 CPREG_FIELD32(env, ri) = value;
59 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
61 return (char *)env + ri->fieldoffset;
64 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
66 /* Raw read of a coprocessor register (as needed for migration, etc). */
67 if (ri->type & ARM_CP_CONST) {
68 return ri->resetvalue;
69 } else if (ri->raw_readfn) {
70 return ri->raw_readfn(env, ri);
71 } else if (ri->readfn) {
72 return ri->readfn(env, ri);
73 } else {
74 return raw_read(env, ri);
78 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
79 uint64_t v)
82 * Raw write of a coprocessor register (as needed for migration, etc).
83 * Note that constant registers are treated as write-ignored; the
84 * caller should check for success by whether a readback gives the
85 * value written.
87 if (ri->type & ARM_CP_CONST) {
88 return;
89 } else if (ri->raw_writefn) {
90 ri->raw_writefn(env, ri, v);
91 } else if (ri->writefn) {
92 ri->writefn(env, ri, v);
93 } else {
94 raw_write(env, ri, v);
98 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
101 * Return true if the regdef would cause an assertion if you called
102 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
103 * program bug for it not to have the NO_RAW flag).
104 * NB that returning false here doesn't necessarily mean that calling
105 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
106 * read/write access functions which are safe for raw use" from "has
107 * read/write access functions which have side effects but has forgotten
108 * to provide raw access functions".
109 * The tests here line up with the conditions in read/write_raw_cp_reg()
110 * and assertions in raw_read()/raw_write().
112 if ((ri->type & ARM_CP_CONST) ||
113 ri->fieldoffset ||
114 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
115 return false;
117 return true;
120 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
122 /* Write the coprocessor state from cpu->env to the (index,value) list. */
123 int i;
124 bool ok = true;
126 for (i = 0; i < cpu->cpreg_array_len; i++) {
127 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
128 const ARMCPRegInfo *ri;
129 uint64_t newval;
131 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
132 if (!ri) {
133 ok = false;
134 continue;
136 if (ri->type & ARM_CP_NO_RAW) {
137 continue;
140 newval = read_raw_cp_reg(&cpu->env, ri);
141 if (kvm_sync) {
143 * Only sync if the previous list->cpustate sync succeeded.
144 * Rather than tracking the success/failure state for every
145 * item in the list, we just recheck "does the raw write we must
146 * have made in write_list_to_cpustate() read back OK" here.
148 uint64_t oldval = cpu->cpreg_values[i];
150 if (oldval == newval) {
151 continue;
154 write_raw_cp_reg(&cpu->env, ri, oldval);
155 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
156 continue;
159 write_raw_cp_reg(&cpu->env, ri, newval);
161 cpu->cpreg_values[i] = newval;
163 return ok;
166 bool write_list_to_cpustate(ARMCPU *cpu)
168 int i;
169 bool ok = true;
171 for (i = 0; i < cpu->cpreg_array_len; i++) {
172 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
173 uint64_t v = cpu->cpreg_values[i];
174 const ARMCPRegInfo *ri;
176 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
177 if (!ri) {
178 ok = false;
179 continue;
181 if (ri->type & ARM_CP_NO_RAW) {
182 continue;
185 * Write value and confirm it reads back as written
186 * (to catch read-only registers and partially read-only
187 * registers where the incoming migration value doesn't match)
189 write_raw_cp_reg(&cpu->env, ri, v);
190 if (read_raw_cp_reg(&cpu->env, ri) != v) {
191 ok = false;
194 return ok;
197 static void add_cpreg_to_list(gpointer key, gpointer opaque)
199 ARMCPU *cpu = opaque;
200 uint32_t regidx = (uintptr_t)key;
201 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
203 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
204 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
205 /* The value array need not be initialized at this point */
206 cpu->cpreg_array_len++;
210 static void count_cpreg(gpointer key, gpointer opaque)
212 ARMCPU *cpu = opaque;
213 const ARMCPRegInfo *ri;
215 ri = g_hash_table_lookup(cpu->cp_regs, key);
217 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
218 cpu->cpreg_array_len++;
222 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
224 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
225 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
227 if (aidx > bidx) {
228 return 1;
230 if (aidx < bidx) {
231 return -1;
233 return 0;
236 void init_cpreg_list(ARMCPU *cpu)
239 * Initialise the cpreg_tuples[] array based on the cp_regs hash.
240 * Note that we require cpreg_tuples[] to be sorted by key ID.
242 GList *keys;
243 int arraylen;
245 keys = g_hash_table_get_keys(cpu->cp_regs);
246 keys = g_list_sort(keys, cpreg_key_compare);
248 cpu->cpreg_array_len = 0;
250 g_list_foreach(keys, count_cpreg, cpu);
252 arraylen = cpu->cpreg_array_len;
253 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
254 cpu->cpreg_values = g_new(uint64_t, arraylen);
255 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
256 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
257 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
258 cpu->cpreg_array_len = 0;
260 g_list_foreach(keys, add_cpreg_to_list, cpu);
262 assert(cpu->cpreg_array_len == arraylen);
264 g_list_free(keys);
267 static bool arm_pan_enabled(CPUARMState *env)
269 if (is_a64(env)) {
270 if ((arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1)) {
271 return false;
273 return env->pstate & PSTATE_PAN;
274 } else {
275 return env->uncached_cpsr & CPSR_PAN;
280 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
282 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
283 const ARMCPRegInfo *ri,
284 bool isread)
286 if (!is_a64(env) && arm_current_el(env) == 3 &&
287 arm_is_secure_below_el3(env)) {
288 return CP_ACCESS_TRAP_UNCATEGORIZED;
290 return CP_ACCESS_OK;
294 * Some secure-only AArch32 registers trap to EL3 if used from
295 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
296 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
297 * We assume that the .access field is set to PL1_RW.
299 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
300 const ARMCPRegInfo *ri,
301 bool isread)
303 if (arm_current_el(env) == 3) {
304 return CP_ACCESS_OK;
306 if (arm_is_secure_below_el3(env)) {
307 if (env->cp15.scr_el3 & SCR_EEL2) {
308 return CP_ACCESS_TRAP_EL2;
310 return CP_ACCESS_TRAP_EL3;
312 /* This will be EL1 NS and EL2 NS, which just UNDEF */
313 return CP_ACCESS_TRAP_UNCATEGORIZED;
317 * Check for traps to performance monitor registers, which are controlled
318 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
320 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
321 bool isread)
323 int el = arm_current_el(env);
324 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
326 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
327 return CP_ACCESS_TRAP_EL2;
329 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
330 return CP_ACCESS_TRAP_EL3;
332 return CP_ACCESS_OK;
335 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
336 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
337 bool isread)
339 if (arm_current_el(env) == 1) {
340 uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
341 if (arm_hcr_el2_eff(env) & trap) {
342 return CP_ACCESS_TRAP_EL2;
345 return CP_ACCESS_OK;
348 /* Check for traps from EL1 due to HCR_EL2.TSW. */
349 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
350 bool isread)
352 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
353 return CP_ACCESS_TRAP_EL2;
355 return CP_ACCESS_OK;
358 /* Check for traps from EL1 due to HCR_EL2.TACR. */
359 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
360 bool isread)
362 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
363 return CP_ACCESS_TRAP_EL2;
365 return CP_ACCESS_OK;
368 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
369 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
370 bool isread)
372 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
373 return CP_ACCESS_TRAP_EL2;
375 return CP_ACCESS_OK;
378 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
379 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
380 bool isread)
382 if (arm_current_el(env) == 1 &&
383 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
384 return CP_ACCESS_TRAP_EL2;
386 return CP_ACCESS_OK;
389 #ifdef TARGET_AARCH64
390 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
391 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
392 bool isread)
394 if (arm_current_el(env) == 1 &&
395 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
396 return CP_ACCESS_TRAP_EL2;
398 return CP_ACCESS_OK;
400 #endif
402 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
404 ARMCPU *cpu = env_archcpu(env);
406 raw_write(env, ri, value);
407 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
410 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
412 ARMCPU *cpu = env_archcpu(env);
414 if (raw_read(env, ri) != value) {
416 * Unlike real hardware the qemu TLB uses virtual addresses,
417 * not modified virtual addresses, so this causes a TLB flush.
419 tlb_flush(CPU(cpu));
420 raw_write(env, ri, value);
424 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
425 uint64_t value)
427 ARMCPU *cpu = env_archcpu(env);
429 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
430 && !extended_addresses_enabled(env)) {
432 * For VMSA (when not using the LPAE long descriptor page table
433 * format) this register includes the ASID, so do a TLB flush.
434 * For PMSA it is purely a process ID and no action is needed.
436 tlb_flush(CPU(cpu));
438 raw_write(env, ri, value);
441 static int alle1_tlbmask(CPUARMState *env)
444 * Note that the 'ALL' scope must invalidate both stage 1 and
445 * stage 2 translations, whereas most other scopes only invalidate
446 * stage 1 translations.
448 return (ARMMMUIdxBit_E10_1 |
449 ARMMMUIdxBit_E10_1_PAN |
450 ARMMMUIdxBit_E10_0 |
451 ARMMMUIdxBit_Stage2 |
452 ARMMMUIdxBit_Stage2_S);
456 /* IS variants of TLB operations must affect all cores */
457 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
458 uint64_t value)
460 CPUState *cs = env_cpu(env);
462 tlb_flush_all_cpus_synced(cs);
465 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
466 uint64_t value)
468 CPUState *cs = env_cpu(env);
470 tlb_flush_all_cpus_synced(cs);
473 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
474 uint64_t value)
476 CPUState *cs = env_cpu(env);
478 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
481 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
482 uint64_t value)
484 CPUState *cs = env_cpu(env);
486 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
490 * Non-IS variants of TLB operations are upgraded to
491 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
492 * force broadcast of these operations.
494 static bool tlb_force_broadcast(CPUARMState *env)
496 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
499 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
500 uint64_t value)
502 /* Invalidate all (TLBIALL) */
503 CPUState *cs = env_cpu(env);
505 if (tlb_force_broadcast(env)) {
506 tlb_flush_all_cpus_synced(cs);
507 } else {
508 tlb_flush(cs);
512 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
513 uint64_t value)
515 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
516 CPUState *cs = env_cpu(env);
518 value &= TARGET_PAGE_MASK;
519 if (tlb_force_broadcast(env)) {
520 tlb_flush_page_all_cpus_synced(cs, value);
521 } else {
522 tlb_flush_page(cs, value);
526 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
527 uint64_t value)
529 /* Invalidate by ASID (TLBIASID) */
530 CPUState *cs = env_cpu(env);
532 if (tlb_force_broadcast(env)) {
533 tlb_flush_all_cpus_synced(cs);
534 } else {
535 tlb_flush(cs);
539 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
540 uint64_t value)
542 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
543 CPUState *cs = env_cpu(env);
545 value &= TARGET_PAGE_MASK;
546 if (tlb_force_broadcast(env)) {
547 tlb_flush_page_all_cpus_synced(cs, value);
548 } else {
549 tlb_flush_page(cs, value);
553 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
554 uint64_t value)
556 CPUState *cs = env_cpu(env);
558 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
561 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
562 uint64_t value)
564 CPUState *cs = env_cpu(env);
566 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
570 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
571 uint64_t value)
573 CPUState *cs = env_cpu(env);
575 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
578 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
579 uint64_t value)
581 CPUState *cs = env_cpu(env);
583 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
586 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
587 uint64_t value)
589 CPUState *cs = env_cpu(env);
590 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
592 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
595 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
596 uint64_t value)
598 CPUState *cs = env_cpu(env);
599 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
601 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
602 ARMMMUIdxBit_E2);
605 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
606 uint64_t value)
608 CPUState *cs = env_cpu(env);
609 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
611 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
614 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
615 uint64_t value)
617 CPUState *cs = env_cpu(env);
618 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
620 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
623 static const ARMCPRegInfo cp_reginfo[] = {
625 * Define the secure and non-secure FCSE identifier CP registers
626 * separately because there is no secure bank in V8 (no _EL3). This allows
627 * the secure register to be properly reset and migrated. There is also no
628 * v8 EL1 version of the register so the non-secure instance stands alone.
630 { .name = "FCSEIDR",
631 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
632 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
633 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
634 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
635 { .name = "FCSEIDR_S",
636 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
637 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
638 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
639 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
641 * Define the secure and non-secure context identifier CP registers
642 * separately because there is no secure bank in V8 (no _EL3). This allows
643 * the secure register to be properly reset and migrated. In the
644 * non-secure case, the 32-bit register will have reset and migration
645 * disabled during registration as it is handled by the 64-bit instance.
647 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
648 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
649 .access = PL1_RW, .accessfn = access_tvm_trvm,
650 .fgt = FGT_CONTEXTIDR_EL1,
651 .nv2_redirect_offset = 0x108 | NV2_REDIR_NV1,
652 .secure = ARM_CP_SECSTATE_NS,
653 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
654 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
655 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
656 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
657 .access = PL1_RW, .accessfn = access_tvm_trvm,
658 .secure = ARM_CP_SECSTATE_S,
659 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
660 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
663 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
665 * NB: Some of these registers exist in v8 but with more precise
666 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
668 /* MMU Domain access control / MPU write buffer control */
669 { .name = "DACR",
670 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
671 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
672 .writefn = dacr_write, .raw_writefn = raw_write,
673 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
674 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
676 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
677 * For v6 and v5, these mappings are overly broad.
679 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
680 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
681 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
682 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
683 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
684 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
685 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
686 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
687 /* Cache maintenance ops; some of this space may be overridden later. */
688 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
689 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
690 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
693 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
695 * Not all pre-v6 cores implemented this WFI, so this is slightly
696 * over-broad.
698 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
699 .access = PL1_W, .type = ARM_CP_WFI },
702 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
704 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
705 * is UNPREDICTABLE; we choose to NOP as most implementations do).
707 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
708 .access = PL1_W, .type = ARM_CP_WFI },
710 * L1 cache lockdown. Not architectural in v6 and earlier but in practice
711 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
712 * OMAPCP will override this space.
714 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
715 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
716 .resetvalue = 0 },
717 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
718 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
719 .resetvalue = 0 },
720 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
721 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
722 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
723 .resetvalue = 0 },
725 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
726 * implementing it as RAZ means the "debug architecture version" bits
727 * will read as a reserved value, which should cause Linux to not try
728 * to use the debug hardware.
730 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
731 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
733 * MMU TLB control. Note that the wildcarding means we cover not just
734 * the unified TLB ops but also the dside/iside/inner-shareable variants.
736 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
737 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
738 .type = ARM_CP_NO_RAW },
739 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
740 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
741 .type = ARM_CP_NO_RAW },
742 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
743 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
744 .type = ARM_CP_NO_RAW },
745 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
746 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
747 .type = ARM_CP_NO_RAW },
748 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
749 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
750 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
751 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
754 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
755 uint64_t value)
757 uint32_t mask = 0;
759 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
760 if (!arm_feature(env, ARM_FEATURE_V8)) {
762 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
763 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
764 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
766 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
767 /* VFP coprocessor: cp10 & cp11 [23:20] */
768 mask |= R_CPACR_ASEDIS_MASK |
769 R_CPACR_D32DIS_MASK |
770 R_CPACR_CP11_MASK |
771 R_CPACR_CP10_MASK;
773 if (!arm_feature(env, ARM_FEATURE_NEON)) {
774 /* ASEDIS [31] bit is RAO/WI */
775 value |= R_CPACR_ASEDIS_MASK;
779 * VFPv3 and upwards with NEON implement 32 double precision
780 * registers (D0-D31).
782 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
783 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
784 value |= R_CPACR_D32DIS_MASK;
787 value &= mask;
791 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
792 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
794 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
795 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
796 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
797 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
800 env->cp15.cpacr_el1 = value;
803 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
806 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
807 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
809 uint64_t value = env->cp15.cpacr_el1;
811 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
812 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
813 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
815 return value;
819 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
822 * Call cpacr_write() so that we reset with the correct RAO bits set
823 * for our CPU features.
825 cpacr_write(env, ri, 0);
828 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
829 bool isread)
831 if (arm_feature(env, ARM_FEATURE_V8)) {
832 /* Check if CPACR accesses are to be trapped to EL2 */
833 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
834 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
835 return CP_ACCESS_TRAP_EL2;
836 /* Check if CPACR accesses are to be trapped to EL3 */
837 } else if (arm_current_el(env) < 3 &&
838 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
839 return CP_ACCESS_TRAP_EL3;
843 return CP_ACCESS_OK;
846 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
847 bool isread)
849 /* Check if CPTR accesses are set to trap to EL3 */
850 if (arm_current_el(env) == 2 &&
851 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
852 return CP_ACCESS_TRAP_EL3;
855 return CP_ACCESS_OK;
858 static const ARMCPRegInfo v6_cp_reginfo[] = {
859 /* prefetch by MVA in v6, NOP in v7 */
860 { .name = "MVA_prefetch",
861 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
862 .access = PL1_W, .type = ARM_CP_NOP },
864 * We need to break the TB after ISB to execute self-modifying code
865 * correctly and also to take any pending interrupts immediately.
866 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
868 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
869 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
870 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
871 .access = PL0_W, .type = ARM_CP_NOP },
872 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
873 .access = PL0_W, .type = ARM_CP_NOP },
874 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
875 .access = PL1_RW, .accessfn = access_tvm_trvm,
876 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
877 offsetof(CPUARMState, cp15.ifar_ns) },
878 .resetvalue = 0, },
880 * Watchpoint Fault Address Register : should actually only be present
881 * for 1136, 1176, 11MPCore.
883 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
884 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
885 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
886 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
887 .fgt = FGT_CPACR_EL1,
888 .nv2_redirect_offset = 0x100 | NV2_REDIR_NV1,
889 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
890 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
893 typedef struct pm_event {
894 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
895 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
896 bool (*supported)(CPUARMState *);
898 * Retrieve the current count of the underlying event. The programmed
899 * counters hold a difference from the return value from this function
901 uint64_t (*get_count)(CPUARMState *);
903 * Return how many nanoseconds it will take (at a minimum) for count events
904 * to occur. A negative value indicates the counter will never overflow, or
905 * that the counter has otherwise arranged for the overflow bit to be set
906 * and the PMU interrupt to be raised on overflow.
908 int64_t (*ns_per_count)(uint64_t);
909 } pm_event;
911 static bool event_always_supported(CPUARMState *env)
913 return true;
916 static uint64_t swinc_get_count(CPUARMState *env)
919 * SW_INCR events are written directly to the pmevcntr's by writes to
920 * PMSWINC, so there is no underlying count maintained by the PMU itself
922 return 0;
925 static int64_t swinc_ns_per(uint64_t ignored)
927 return -1;
931 * Return the underlying cycle count for the PMU cycle counters. If we're in
932 * usermode, simply return 0.
934 static uint64_t cycles_get_count(CPUARMState *env)
936 #ifndef CONFIG_USER_ONLY
937 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
938 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
939 #else
940 return cpu_get_host_ticks();
941 #endif
944 #ifndef CONFIG_USER_ONLY
945 static int64_t cycles_ns_per(uint64_t cycles)
947 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
950 static bool instructions_supported(CPUARMState *env)
952 /* Precise instruction counting */
953 return icount_enabled() == ICOUNT_PRECISE;
956 static uint64_t instructions_get_count(CPUARMState *env)
958 assert(icount_enabled() == ICOUNT_PRECISE);
959 return (uint64_t)icount_get_raw();
962 static int64_t instructions_ns_per(uint64_t icount)
964 assert(icount_enabled() == ICOUNT_PRECISE);
965 return icount_to_ns((int64_t)icount);
967 #endif
969 static bool pmuv3p1_events_supported(CPUARMState *env)
971 /* For events which are supported in any v8.1 PMU */
972 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
975 static bool pmuv3p4_events_supported(CPUARMState *env)
977 /* For events which are supported in any v8.1 PMU */
978 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
981 static uint64_t zero_event_get_count(CPUARMState *env)
983 /* For events which on QEMU never fire, so their count is always zero */
984 return 0;
987 static int64_t zero_event_ns_per(uint64_t cycles)
989 /* An event which never fires can never overflow */
990 return -1;
993 static const pm_event pm_events[] = {
994 { .number = 0x000, /* SW_INCR */
995 .supported = event_always_supported,
996 .get_count = swinc_get_count,
997 .ns_per_count = swinc_ns_per,
999 #ifndef CONFIG_USER_ONLY
1000 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1001 .supported = instructions_supported,
1002 .get_count = instructions_get_count,
1003 .ns_per_count = instructions_ns_per,
1005 { .number = 0x011, /* CPU_CYCLES, Cycle */
1006 .supported = event_always_supported,
1007 .get_count = cycles_get_count,
1008 .ns_per_count = cycles_ns_per,
1010 #endif
1011 { .number = 0x023, /* STALL_FRONTEND */
1012 .supported = pmuv3p1_events_supported,
1013 .get_count = zero_event_get_count,
1014 .ns_per_count = zero_event_ns_per,
1016 { .number = 0x024, /* STALL_BACKEND */
1017 .supported = pmuv3p1_events_supported,
1018 .get_count = zero_event_get_count,
1019 .ns_per_count = zero_event_ns_per,
1021 { .number = 0x03c, /* STALL */
1022 .supported = pmuv3p4_events_supported,
1023 .get_count = zero_event_get_count,
1024 .ns_per_count = zero_event_ns_per,
1029 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1030 * events (i.e. the statistical profiling extension), this implementation
1031 * should first be updated to something sparse instead of the current
1032 * supported_event_map[] array.
1034 #define MAX_EVENT_ID 0x3c
1035 #define UNSUPPORTED_EVENT UINT16_MAX
1036 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1039 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1040 * of ARM event numbers to indices in our pm_events array.
1042 * Note: Events in the 0x40XX range are not currently supported.
1044 void pmu_init(ARMCPU *cpu)
1046 unsigned int i;
1049 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1050 * events to them
1052 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1053 supported_event_map[i] = UNSUPPORTED_EVENT;
1055 cpu->pmceid0 = 0;
1056 cpu->pmceid1 = 0;
1058 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1059 const pm_event *cnt = &pm_events[i];
1060 assert(cnt->number <= MAX_EVENT_ID);
1061 /* We do not currently support events in the 0x40xx range */
1062 assert(cnt->number <= 0x3f);
1064 if (cnt->supported(&cpu->env)) {
1065 supported_event_map[cnt->number] = i;
1066 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1067 if (cnt->number & 0x20) {
1068 cpu->pmceid1 |= event_mask;
1069 } else {
1070 cpu->pmceid0 |= event_mask;
1077 * Check at runtime whether a PMU event is supported for the current machine
1079 static bool event_supported(uint16_t number)
1081 if (number > MAX_EVENT_ID) {
1082 return false;
1084 return supported_event_map[number] != UNSUPPORTED_EVENT;
1087 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1088 bool isread)
1091 * Performance monitor registers user accessibility is controlled
1092 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1093 * trapping to EL2 or EL3 for other accesses.
1095 int el = arm_current_el(env);
1096 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1098 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1099 return CP_ACCESS_TRAP;
1101 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1102 return CP_ACCESS_TRAP_EL2;
1104 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1105 return CP_ACCESS_TRAP_EL3;
1108 return CP_ACCESS_OK;
1111 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1112 const ARMCPRegInfo *ri,
1113 bool isread)
1115 /* ER: event counter read trap control */
1116 if (arm_feature(env, ARM_FEATURE_V8)
1117 && arm_current_el(env) == 0
1118 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1119 && isread) {
1120 return CP_ACCESS_OK;
1123 return pmreg_access(env, ri, isread);
1126 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1127 const ARMCPRegInfo *ri,
1128 bool isread)
1130 /* SW: software increment write trap control */
1131 if (arm_feature(env, ARM_FEATURE_V8)
1132 && arm_current_el(env) == 0
1133 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1134 && !isread) {
1135 return CP_ACCESS_OK;
1138 return pmreg_access(env, ri, isread);
1141 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1142 const ARMCPRegInfo *ri,
1143 bool isread)
1145 /* ER: event counter read trap control */
1146 if (arm_feature(env, ARM_FEATURE_V8)
1147 && arm_current_el(env) == 0
1148 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1149 return CP_ACCESS_OK;
1152 return pmreg_access(env, ri, isread);
1155 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1156 const ARMCPRegInfo *ri,
1157 bool isread)
1159 /* CR: cycle counter read trap control */
1160 if (arm_feature(env, ARM_FEATURE_V8)
1161 && arm_current_el(env) == 0
1162 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1163 && isread) {
1164 return CP_ACCESS_OK;
1167 return pmreg_access(env, ri, isread);
1171 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1172 * We use these to decide whether we need to wrap a write to MDCR_EL2
1173 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1175 #define MDCR_EL2_PMU_ENABLE_BITS \
1176 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
1177 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
1180 * Returns true if the counter (pass 31 for PMCCNTR) should count events using
1181 * the current EL, security state, and register configuration.
1183 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1185 uint64_t filter;
1186 bool e, p, u, nsk, nsu, nsh, m;
1187 bool enabled, prohibited = false, filtered;
1188 bool secure = arm_is_secure(env);
1189 int el = arm_current_el(env);
1190 uint64_t mdcr_el2;
1191 uint8_t hpmn;
1194 * We might be called for M-profile cores where MDCR_EL2 doesn't
1195 * exist and arm_mdcr_el2_eff() will assert, so this early-exit check
1196 * must be before we read that value.
1198 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1199 return false;
1202 mdcr_el2 = arm_mdcr_el2_eff(env);
1203 hpmn = mdcr_el2 & MDCR_HPMN;
1205 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1206 (counter < hpmn || counter == 31)) {
1207 e = env->cp15.c9_pmcr & PMCRE;
1208 } else {
1209 e = mdcr_el2 & MDCR_HPME;
1211 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1213 /* Is event counting prohibited? */
1214 if (el == 2 && (counter < hpmn || counter == 31)) {
1215 prohibited = mdcr_el2 & MDCR_HPMD;
1217 if (secure) {
1218 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
1221 if (counter == 31) {
1223 * The cycle counter defaults to running. PMCR.DP says "disable
1224 * the cycle counter when event counting is prohibited".
1225 * Some MDCR bits disable the cycle counter specifically.
1227 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1228 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1229 if (secure) {
1230 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1232 if (el == 2) {
1233 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1238 if (counter == 31) {
1239 filter = env->cp15.pmccfiltr_el0;
1240 } else {
1241 filter = env->cp15.c14_pmevtyper[counter];
1244 p = filter & PMXEVTYPER_P;
1245 u = filter & PMXEVTYPER_U;
1246 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1247 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1248 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1249 m = arm_el_is_aa64(env, 1) &&
1250 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1252 if (el == 0) {
1253 filtered = secure ? u : u != nsu;
1254 } else if (el == 1) {
1255 filtered = secure ? p : p != nsk;
1256 } else if (el == 2) {
1257 filtered = !nsh;
1258 } else { /* EL3 */
1259 filtered = m != p;
1262 if (counter != 31) {
1264 * If not checking PMCCNTR, ensure the counter is setup to an event we
1265 * support
1267 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1268 if (!event_supported(event)) {
1269 return false;
1273 return enabled && !prohibited && !filtered;
1276 static void pmu_update_irq(CPUARMState *env)
1278 ARMCPU *cpu = env_archcpu(env);
1279 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1280 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1283 static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1286 * Return true if the clock divider is enabled and the cycle counter
1287 * is supposed to tick only once every 64 clock cycles. This is
1288 * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1289 * (64-bit) cycle counter PMCR.D has no effect.
1291 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1294 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1296 /* Return true if the specified event counter is configured to be 64 bit */
1298 /* This isn't intended to be used with the cycle counter */
1299 assert(counter < 31);
1301 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1302 return false;
1305 if (arm_feature(env, ARM_FEATURE_EL2)) {
1307 * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1308 * current security state, so we don't use arm_mdcr_el2_eff() here.
1310 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1311 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1313 if (counter >= hpmn) {
1314 return hlp;
1317 return env->cp15.c9_pmcr & PMCRLP;
1321 * Ensure c15_ccnt is the guest-visible count so that operations such as
1322 * enabling/disabling the counter or filtering, modifying the count itself,
1323 * etc. can be done logically. This is essentially a no-op if the counter is
1324 * not enabled at the time of the call.
1326 static void pmccntr_op_start(CPUARMState *env)
1328 uint64_t cycles = cycles_get_count(env);
1330 if (pmu_counter_enabled(env, 31)) {
1331 uint64_t eff_cycles = cycles;
1332 if (pmccntr_clockdiv_enabled(env)) {
1333 eff_cycles /= 64;
1336 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1338 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1339 1ull << 63 : 1ull << 31;
1340 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1341 env->cp15.c9_pmovsr |= (1ULL << 31);
1342 pmu_update_irq(env);
1345 env->cp15.c15_ccnt = new_pmccntr;
1347 env->cp15.c15_ccnt_delta = cycles;
1351 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1352 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1353 * pmccntr_op_start.
1355 static void pmccntr_op_finish(CPUARMState *env)
1357 if (pmu_counter_enabled(env, 31)) {
1358 #ifndef CONFIG_USER_ONLY
1359 /* Calculate when the counter will next overflow */
1360 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1361 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1362 remaining_cycles = (uint32_t)remaining_cycles;
1364 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1366 if (overflow_in > 0) {
1367 int64_t overflow_at;
1369 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1370 overflow_in, &overflow_at)) {
1371 ARMCPU *cpu = env_archcpu(env);
1372 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1375 #endif
1377 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1378 if (pmccntr_clockdiv_enabled(env)) {
1379 prev_cycles /= 64;
1381 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1385 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1388 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1389 uint64_t count = 0;
1390 if (event_supported(event)) {
1391 uint16_t event_idx = supported_event_map[event];
1392 count = pm_events[event_idx].get_count(env);
1395 if (pmu_counter_enabled(env, counter)) {
1396 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1397 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1398 1ULL << 63 : 1ULL << 31;
1400 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
1401 env->cp15.c9_pmovsr |= (1 << counter);
1402 pmu_update_irq(env);
1404 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1406 env->cp15.c14_pmevcntr_delta[counter] = count;
1409 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1411 if (pmu_counter_enabled(env, counter)) {
1412 #ifndef CONFIG_USER_ONLY
1413 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1414 uint16_t event_idx = supported_event_map[event];
1415 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1416 int64_t overflow_in;
1418 if (!pmevcntr_is_64_bit(env, counter)) {
1419 delta = (uint32_t)delta;
1421 overflow_in = pm_events[event_idx].ns_per_count(delta);
1423 if (overflow_in > 0) {
1424 int64_t overflow_at;
1426 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1427 overflow_in, &overflow_at)) {
1428 ARMCPU *cpu = env_archcpu(env);
1429 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1432 #endif
1434 env->cp15.c14_pmevcntr_delta[counter] -=
1435 env->cp15.c14_pmevcntr[counter];
1439 void pmu_op_start(CPUARMState *env)
1441 unsigned int i;
1442 pmccntr_op_start(env);
1443 for (i = 0; i < pmu_num_counters(env); i++) {
1444 pmevcntr_op_start(env, i);
1448 void pmu_op_finish(CPUARMState *env)
1450 unsigned int i;
1451 pmccntr_op_finish(env);
1452 for (i = 0; i < pmu_num_counters(env); i++) {
1453 pmevcntr_op_finish(env, i);
1457 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1459 pmu_op_start(&cpu->env);
1462 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1464 pmu_op_finish(&cpu->env);
1467 void arm_pmu_timer_cb(void *opaque)
1469 ARMCPU *cpu = opaque;
1472 * Update all the counter values based on the current underlying counts,
1473 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1474 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1475 * counter may expire.
1477 pmu_op_start(&cpu->env);
1478 pmu_op_finish(&cpu->env);
1481 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1482 uint64_t value)
1484 pmu_op_start(env);
1486 if (value & PMCRC) {
1487 /* The counter has been reset */
1488 env->cp15.c15_ccnt = 0;
1491 if (value & PMCRP) {
1492 unsigned int i;
1493 for (i = 0; i < pmu_num_counters(env); i++) {
1494 env->cp15.c14_pmevcntr[i] = 0;
1498 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1499 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1501 pmu_op_finish(env);
1504 static uint64_t pmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1506 uint64_t pmcr = env->cp15.c9_pmcr;
1509 * If EL2 is implemented and enabled for the current security state, reads
1510 * of PMCR.N from EL1 or EL0 return the value of MDCR_EL2.HPMN or HDCR.HPMN.
1512 if (arm_current_el(env) <= 1 && arm_is_el2_enabled(env)) {
1513 pmcr &= ~PMCRN_MASK;
1514 pmcr |= (env->cp15.mdcr_el2 & MDCR_HPMN) << PMCRN_SHIFT;
1517 return pmcr;
1520 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1521 uint64_t value)
1523 unsigned int i;
1524 uint64_t overflow_mask, new_pmswinc;
1526 for (i = 0; i < pmu_num_counters(env); i++) {
1527 /* Increment a counter's count iff: */
1528 if ((value & (1 << i)) && /* counter's bit is set */
1529 /* counter is enabled and not filtered */
1530 pmu_counter_enabled(env, i) &&
1531 /* counter is SW_INCR */
1532 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1533 pmevcntr_op_start(env, i);
1536 * Detect if this write causes an overflow since we can't predict
1537 * PMSWINC overflows like we can for other events
1539 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1541 overflow_mask = pmevcntr_is_64_bit(env, i) ?
1542 1ULL << 63 : 1ULL << 31;
1544 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
1545 env->cp15.c9_pmovsr |= (1 << i);
1546 pmu_update_irq(env);
1549 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1551 pmevcntr_op_finish(env, i);
1556 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1558 uint64_t ret;
1559 pmccntr_op_start(env);
1560 ret = env->cp15.c15_ccnt;
1561 pmccntr_op_finish(env);
1562 return ret;
1565 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1566 uint64_t value)
1569 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1570 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1571 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1572 * accessed.
1574 env->cp15.c9_pmselr = value & 0x1f;
1577 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1578 uint64_t value)
1580 pmccntr_op_start(env);
1581 env->cp15.c15_ccnt = value;
1582 pmccntr_op_finish(env);
1585 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1586 uint64_t value)
1588 uint64_t cur_val = pmccntr_read(env, NULL);
1590 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1593 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1594 uint64_t value)
1596 pmccntr_op_start(env);
1597 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1598 pmccntr_op_finish(env);
1601 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1602 uint64_t value)
1604 pmccntr_op_start(env);
1605 /* M is not accessible from AArch32 */
1606 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1607 (value & PMCCFILTR);
1608 pmccntr_op_finish(env);
1611 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1613 /* M is not visible in AArch32 */
1614 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1617 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1618 uint64_t value)
1620 pmu_op_start(env);
1621 value &= pmu_counter_mask(env);
1622 env->cp15.c9_pmcnten |= value;
1623 pmu_op_finish(env);
1626 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1627 uint64_t value)
1629 pmu_op_start(env);
1630 value &= pmu_counter_mask(env);
1631 env->cp15.c9_pmcnten &= ~value;
1632 pmu_op_finish(env);
1635 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1636 uint64_t value)
1638 value &= pmu_counter_mask(env);
1639 env->cp15.c9_pmovsr &= ~value;
1640 pmu_update_irq(env);
1643 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1644 uint64_t value)
1646 value &= pmu_counter_mask(env);
1647 env->cp15.c9_pmovsr |= value;
1648 pmu_update_irq(env);
1651 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1652 uint64_t value, const uint8_t counter)
1654 if (counter == 31) {
1655 pmccfiltr_write(env, ri, value);
1656 } else if (counter < pmu_num_counters(env)) {
1657 pmevcntr_op_start(env, counter);
1660 * If this counter's event type is changing, store the current
1661 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1662 * pmevcntr_op_finish has the correct baseline when it converts back to
1663 * a delta.
1665 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1666 PMXEVTYPER_EVTCOUNT;
1667 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1668 if (old_event != new_event) {
1669 uint64_t count = 0;
1670 if (event_supported(new_event)) {
1671 uint16_t event_idx = supported_event_map[new_event];
1672 count = pm_events[event_idx].get_count(env);
1674 env->cp15.c14_pmevcntr_delta[counter] = count;
1677 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1678 pmevcntr_op_finish(env, counter);
1681 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1682 * PMSELR value is equal to or greater than the number of implemented
1683 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1687 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1688 const uint8_t counter)
1690 if (counter == 31) {
1691 return env->cp15.pmccfiltr_el0;
1692 } else if (counter < pmu_num_counters(env)) {
1693 return env->cp15.c14_pmevtyper[counter];
1694 } else {
1696 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1697 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1699 return 0;
1703 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1704 uint64_t value)
1706 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1707 pmevtyper_write(env, ri, value, counter);
1710 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1711 uint64_t value)
1713 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1714 env->cp15.c14_pmevtyper[counter] = value;
1717 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1718 * pmu_op_finish calls when loading saved state for a migration. Because
1719 * we're potentially updating the type of event here, the value written to
1720 * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a
1721 * different counter type. Therefore, we need to set this value to the
1722 * current count for the counter type we're writing so that pmu_op_finish
1723 * has the correct count for its calculation.
1725 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1726 if (event_supported(event)) {
1727 uint16_t event_idx = supported_event_map[event];
1728 env->cp15.c14_pmevcntr_delta[counter] =
1729 pm_events[event_idx].get_count(env);
1733 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1735 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1736 return pmevtyper_read(env, ri, counter);
1739 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1740 uint64_t value)
1742 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1745 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1747 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1750 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1751 uint64_t value, uint8_t counter)
1753 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1754 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1755 value &= MAKE_64BIT_MASK(0, 32);
1757 if (counter < pmu_num_counters(env)) {
1758 pmevcntr_op_start(env, counter);
1759 env->cp15.c14_pmevcntr[counter] = value;
1760 pmevcntr_op_finish(env, counter);
1763 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1764 * are CONSTRAINED UNPREDICTABLE.
1768 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1769 uint8_t counter)
1771 if (counter < pmu_num_counters(env)) {
1772 uint64_t ret;
1773 pmevcntr_op_start(env, counter);
1774 ret = env->cp15.c14_pmevcntr[counter];
1775 pmevcntr_op_finish(env, counter);
1776 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1777 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1778 ret &= MAKE_64BIT_MASK(0, 32);
1780 return ret;
1781 } else {
1783 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1784 * are CONSTRAINED UNPREDICTABLE.
1786 return 0;
1790 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1791 uint64_t value)
1793 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1794 pmevcntr_write(env, ri, value, counter);
1797 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1799 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1800 return pmevcntr_read(env, ri, counter);
1803 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1804 uint64_t value)
1806 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1807 assert(counter < pmu_num_counters(env));
1808 env->cp15.c14_pmevcntr[counter] = value;
1809 pmevcntr_write(env, ri, value, counter);
1812 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1814 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1815 assert(counter < pmu_num_counters(env));
1816 return env->cp15.c14_pmevcntr[counter];
1819 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1820 uint64_t value)
1822 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1825 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1827 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1830 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1831 uint64_t value)
1833 if (arm_feature(env, ARM_FEATURE_V8)) {
1834 env->cp15.c9_pmuserenr = value & 0xf;
1835 } else {
1836 env->cp15.c9_pmuserenr = value & 1;
1840 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1841 uint64_t value)
1843 /* We have no event counters so only the C bit can be changed */
1844 value &= pmu_counter_mask(env);
1845 env->cp15.c9_pminten |= value;
1846 pmu_update_irq(env);
1849 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1850 uint64_t value)
1852 value &= pmu_counter_mask(env);
1853 env->cp15.c9_pminten &= ~value;
1854 pmu_update_irq(env);
1857 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1858 uint64_t value)
1861 * Note that even though the AArch64 view of this register has bits
1862 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1863 * architectural requirements for bits which are RES0 only in some
1864 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1865 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1867 raw_write(env, ri, value & ~0x1FULL);
1870 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1872 /* Begin with base v8.0 state. */
1873 uint64_t valid_mask = 0x3fff;
1874 ARMCPU *cpu = env_archcpu(env);
1875 uint64_t changed;
1878 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1879 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1880 * Instead, choose the format based on the mode of EL3.
1882 if (arm_el_is_aa64(env, 3)) {
1883 value |= SCR_FW | SCR_AW; /* RES1 */
1884 valid_mask &= ~SCR_NET; /* RES0 */
1886 if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1887 !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1888 value |= SCR_RW; /* RAO/WI */
1890 if (cpu_isar_feature(aa64_ras, cpu)) {
1891 valid_mask |= SCR_TERR;
1893 if (cpu_isar_feature(aa64_lor, cpu)) {
1894 valid_mask |= SCR_TLOR;
1896 if (cpu_isar_feature(aa64_pauth, cpu)) {
1897 valid_mask |= SCR_API | SCR_APK;
1899 if (cpu_isar_feature(aa64_sel2, cpu)) {
1900 valid_mask |= SCR_EEL2;
1901 } else if (cpu_isar_feature(aa64_rme, cpu)) {
1902 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */
1903 value |= SCR_NS;
1905 if (cpu_isar_feature(aa64_mte, cpu)) {
1906 valid_mask |= SCR_ATA;
1908 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1909 valid_mask |= SCR_ENSCXT;
1911 if (cpu_isar_feature(aa64_doublefault, cpu)) {
1912 valid_mask |= SCR_EASE | SCR_NMEA;
1914 if (cpu_isar_feature(aa64_sme, cpu)) {
1915 valid_mask |= SCR_ENTP2;
1917 if (cpu_isar_feature(aa64_hcx, cpu)) {
1918 valid_mask |= SCR_HXEN;
1920 if (cpu_isar_feature(aa64_fgt, cpu)) {
1921 valid_mask |= SCR_FGTEN;
1923 if (cpu_isar_feature(aa64_rme, cpu)) {
1924 valid_mask |= SCR_NSE | SCR_GPF;
1926 } else {
1927 valid_mask &= ~(SCR_RW | SCR_ST);
1928 if (cpu_isar_feature(aa32_ras, cpu)) {
1929 valid_mask |= SCR_TERR;
1933 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1934 valid_mask &= ~SCR_HCE;
1937 * On ARMv7, SMD (or SCD as it is called in v7) is only
1938 * supported if EL2 exists. The bit is UNK/SBZP when
1939 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1940 * when EL2 is unavailable.
1941 * On ARMv8, this bit is always available.
1943 if (arm_feature(env, ARM_FEATURE_V7) &&
1944 !arm_feature(env, ARM_FEATURE_V8)) {
1945 valid_mask &= ~SCR_SMD;
1949 /* Clear all-context RES0 bits. */
1950 value &= valid_mask;
1951 changed = env->cp15.scr_el3 ^ value;
1952 env->cp15.scr_el3 = value;
1955 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state,
1956 * we must invalidate all TLBs below EL3.
1958 if (changed & (SCR_NS | SCR_NSE)) {
1959 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
1960 ARMMMUIdxBit_E20_0 |
1961 ARMMMUIdxBit_E10_1 |
1962 ARMMMUIdxBit_E20_2 |
1963 ARMMMUIdxBit_E10_1_PAN |
1964 ARMMMUIdxBit_E20_2_PAN |
1965 ARMMMUIdxBit_E2));
1969 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1972 * scr_write will set the RES1 bits on an AArch64-only CPU.
1973 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1975 scr_write(env, ri, 0);
1978 static CPAccessResult access_tid4(CPUARMState *env,
1979 const ARMCPRegInfo *ri,
1980 bool isread)
1982 if (arm_current_el(env) == 1 &&
1983 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
1984 return CP_ACCESS_TRAP_EL2;
1987 return CP_ACCESS_OK;
1990 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1992 ARMCPU *cpu = env_archcpu(env);
1995 * Acquire the CSSELR index from the bank corresponding to the CCSIDR
1996 * bank
1998 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1999 ri->secure & ARM_CP_SECSTATE_S);
2001 return cpu->ccsidr[index];
2004 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2005 uint64_t value)
2007 raw_write(env, ri, value & 0xf);
2010 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2012 CPUState *cs = env_cpu(env);
2013 bool el1 = arm_current_el(env) == 1;
2014 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
2015 uint64_t ret = 0;
2017 if (hcr_el2 & HCR_IMO) {
2018 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
2019 ret |= CPSR_I;
2021 } else {
2022 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
2023 ret |= CPSR_I;
2027 if (hcr_el2 & HCR_FMO) {
2028 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
2029 ret |= CPSR_F;
2031 } else {
2032 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
2033 ret |= CPSR_F;
2037 if (hcr_el2 & HCR_AMO) {
2038 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
2039 ret |= CPSR_A;
2043 return ret;
2046 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2047 bool isread)
2049 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2050 return CP_ACCESS_TRAP_EL2;
2053 return CP_ACCESS_OK;
2056 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2057 bool isread)
2059 if (arm_feature(env, ARM_FEATURE_V8)) {
2060 return access_aa64_tid1(env, ri, isread);
2063 return CP_ACCESS_OK;
2066 static const ARMCPRegInfo v7_cp_reginfo[] = {
2067 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2068 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2069 .access = PL1_W, .type = ARM_CP_NOP },
2071 * Performance monitors are implementation defined in v7,
2072 * but with an ARM recommended set of registers, which we
2073 * follow.
2075 * Performance registers fall into three categories:
2076 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2077 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2078 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2079 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2080 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2082 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2083 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
2084 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2085 .writefn = pmcntenset_write,
2086 .accessfn = pmreg_access,
2087 .fgt = FGT_PMCNTEN,
2088 .raw_writefn = raw_write },
2089 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
2090 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2091 .access = PL0_RW, .accessfn = pmreg_access,
2092 .fgt = FGT_PMCNTEN,
2093 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2094 .writefn = pmcntenset_write, .raw_writefn = raw_write },
2095 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2096 .access = PL0_RW,
2097 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2098 .accessfn = pmreg_access,
2099 .fgt = FGT_PMCNTEN,
2100 .writefn = pmcntenclr_write,
2101 .type = ARM_CP_ALIAS | ARM_CP_IO },
2102 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2103 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2104 .access = PL0_RW, .accessfn = pmreg_access,
2105 .fgt = FGT_PMCNTEN,
2106 .type = ARM_CP_ALIAS | ARM_CP_IO,
2107 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2108 .writefn = pmcntenclr_write },
2109 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2110 .access = PL0_RW, .type = ARM_CP_IO,
2111 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2112 .accessfn = pmreg_access,
2113 .fgt = FGT_PMOVS,
2114 .writefn = pmovsr_write,
2115 .raw_writefn = raw_write },
2116 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2117 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2118 .access = PL0_RW, .accessfn = pmreg_access,
2119 .fgt = FGT_PMOVS,
2120 .type = ARM_CP_ALIAS | ARM_CP_IO,
2121 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2122 .writefn = pmovsr_write,
2123 .raw_writefn = raw_write },
2124 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2125 .access = PL0_W, .accessfn = pmreg_access_swinc,
2126 .fgt = FGT_PMSWINC_EL0,
2127 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2128 .writefn = pmswinc_write },
2129 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2130 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2131 .access = PL0_W, .accessfn = pmreg_access_swinc,
2132 .fgt = FGT_PMSWINC_EL0,
2133 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2134 .writefn = pmswinc_write },
2135 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2136 .access = PL0_RW, .type = ARM_CP_ALIAS,
2137 .fgt = FGT_PMSELR_EL0,
2138 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2139 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2140 .raw_writefn = raw_write},
2141 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2142 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2143 .access = PL0_RW, .accessfn = pmreg_access_selr,
2144 .fgt = FGT_PMSELR_EL0,
2145 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2146 .writefn = pmselr_write, .raw_writefn = raw_write, },
2147 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2148 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2149 .fgt = FGT_PMCCNTR_EL0,
2150 .readfn = pmccntr_read, .writefn = pmccntr_write32,
2151 .accessfn = pmreg_access_ccntr },
2152 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2153 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2154 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2155 .fgt = FGT_PMCCNTR_EL0,
2156 .type = ARM_CP_IO,
2157 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2158 .readfn = pmccntr_read, .writefn = pmccntr_write,
2159 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2160 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2161 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2162 .access = PL0_RW, .accessfn = pmreg_access,
2163 .fgt = FGT_PMCCFILTR_EL0,
2164 .type = ARM_CP_ALIAS | ARM_CP_IO,
2165 .resetvalue = 0, },
2166 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2167 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2168 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2169 .access = PL0_RW, .accessfn = pmreg_access,
2170 .fgt = FGT_PMCCFILTR_EL0,
2171 .type = ARM_CP_IO,
2172 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2173 .resetvalue = 0, },
2174 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2175 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2176 .accessfn = pmreg_access,
2177 .fgt = FGT_PMEVTYPERN_EL0,
2178 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2179 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2180 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2181 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2182 .accessfn = pmreg_access,
2183 .fgt = FGT_PMEVTYPERN_EL0,
2184 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2185 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2186 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2187 .accessfn = pmreg_access_xevcntr,
2188 .fgt = FGT_PMEVCNTRN_EL0,
2189 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2190 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2191 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2192 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2193 .accessfn = pmreg_access_xevcntr,
2194 .fgt = FGT_PMEVCNTRN_EL0,
2195 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2196 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2197 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2198 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2199 .resetvalue = 0,
2200 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2201 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2202 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2203 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2204 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2205 .resetvalue = 0,
2206 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2207 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2208 .access = PL1_RW, .accessfn = access_tpm,
2209 .fgt = FGT_PMINTEN,
2210 .type = ARM_CP_ALIAS | ARM_CP_IO,
2211 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2212 .resetvalue = 0,
2213 .writefn = pmintenset_write, .raw_writefn = raw_write },
2214 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2215 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2216 .access = PL1_RW, .accessfn = access_tpm,
2217 .fgt = FGT_PMINTEN,
2218 .type = ARM_CP_IO,
2219 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2220 .writefn = pmintenset_write, .raw_writefn = raw_write,
2221 .resetvalue = 0x0 },
2222 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2223 .access = PL1_RW, .accessfn = access_tpm,
2224 .fgt = FGT_PMINTEN,
2225 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2226 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2227 .writefn = pmintenclr_write, },
2228 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2229 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2230 .access = PL1_RW, .accessfn = access_tpm,
2231 .fgt = FGT_PMINTEN,
2232 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2233 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2234 .writefn = pmintenclr_write },
2235 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2236 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2237 .access = PL1_R,
2238 .accessfn = access_tid4,
2239 .fgt = FGT_CCSIDR_EL1,
2240 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2241 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2242 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2243 .access = PL1_RW,
2244 .accessfn = access_tid4,
2245 .fgt = FGT_CSSELR_EL1,
2246 .writefn = csselr_write, .resetvalue = 0,
2247 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2248 offsetof(CPUARMState, cp15.csselr_ns) } },
2250 * Auxiliary ID register: this actually has an IMPDEF value but for now
2251 * just RAZ for all cores:
2253 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2254 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2255 .access = PL1_R, .type = ARM_CP_CONST,
2256 .accessfn = access_aa64_tid1,
2257 .fgt = FGT_AIDR_EL1,
2258 .resetvalue = 0 },
2260 * Auxiliary fault status registers: these also are IMPDEF, and we
2261 * choose to RAZ/WI for all cores.
2263 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2264 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2265 .access = PL1_RW, .accessfn = access_tvm_trvm,
2266 .fgt = FGT_AFSR0_EL1,
2267 .nv2_redirect_offset = 0x128 | NV2_REDIR_NV1,
2268 .type = ARM_CP_CONST, .resetvalue = 0 },
2269 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2270 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2271 .access = PL1_RW, .accessfn = access_tvm_trvm,
2272 .fgt = FGT_AFSR1_EL1,
2273 .nv2_redirect_offset = 0x130 | NV2_REDIR_NV1,
2274 .type = ARM_CP_CONST, .resetvalue = 0 },
2276 * MAIR can just read-as-written because we don't implement caches
2277 * and so don't need to care about memory attributes.
2279 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2280 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2281 .access = PL1_RW, .accessfn = access_tvm_trvm,
2282 .fgt = FGT_MAIR_EL1,
2283 .nv2_redirect_offset = 0x140 | NV2_REDIR_NV1,
2284 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2285 .resetvalue = 0 },
2286 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2287 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2288 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2289 .resetvalue = 0 },
2291 * For non-long-descriptor page tables these are PRRR and NMRR;
2292 * regardless they still act as reads-as-written for QEMU.
2295 * MAIR0/1 are defined separately from their 64-bit counterpart which
2296 * allows them to assign the correct fieldoffset based on the endianness
2297 * handled in the field definitions.
2299 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2300 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2301 .access = PL1_RW, .accessfn = access_tvm_trvm,
2302 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2303 offsetof(CPUARMState, cp15.mair0_ns) },
2304 .resetfn = arm_cp_reset_ignore },
2305 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2306 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2307 .access = PL1_RW, .accessfn = access_tvm_trvm,
2308 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2309 offsetof(CPUARMState, cp15.mair1_ns) },
2310 .resetfn = arm_cp_reset_ignore },
2311 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2312 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2313 .fgt = FGT_ISR_EL1,
2314 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2315 /* 32 bit ITLB invalidates */
2316 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2317 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2318 .writefn = tlbiall_write },
2319 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2320 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2321 .writefn = tlbimva_write },
2322 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2323 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2324 .writefn = tlbiasid_write },
2325 /* 32 bit DTLB invalidates */
2326 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2327 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2328 .writefn = tlbiall_write },
2329 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2330 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2331 .writefn = tlbimva_write },
2332 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2333 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2334 .writefn = tlbiasid_write },
2335 /* 32 bit TLB invalidates */
2336 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2337 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2338 .writefn = tlbiall_write },
2339 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2340 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2341 .writefn = tlbimva_write },
2342 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2343 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2344 .writefn = tlbiasid_write },
2345 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2346 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2347 .writefn = tlbimvaa_write },
2350 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2351 /* 32 bit TLB invalidates, Inner Shareable */
2352 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2353 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2354 .writefn = tlbiall_is_write },
2355 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2356 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2357 .writefn = tlbimva_is_write },
2358 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2359 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2360 .writefn = tlbiasid_is_write },
2361 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2362 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2363 .writefn = tlbimvaa_is_write },
2366 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2367 /* PMOVSSET is not implemented in v7 before v7ve */
2368 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2369 .access = PL0_RW, .accessfn = pmreg_access,
2370 .fgt = FGT_PMOVS,
2371 .type = ARM_CP_ALIAS | ARM_CP_IO,
2372 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2373 .writefn = pmovsset_write,
2374 .raw_writefn = raw_write },
2375 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2376 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2377 .access = PL0_RW, .accessfn = pmreg_access,
2378 .fgt = FGT_PMOVS,
2379 .type = ARM_CP_ALIAS | ARM_CP_IO,
2380 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2381 .writefn = pmovsset_write,
2382 .raw_writefn = raw_write },
2385 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2386 uint64_t value)
2388 value &= 1;
2389 env->teecr = value;
2392 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2393 bool isread)
2396 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2397 * at all, so we don't need to check whether we're v8A.
2399 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2400 (env->cp15.hstr_el2 & HSTR_TTEE)) {
2401 return CP_ACCESS_TRAP_EL2;
2403 return CP_ACCESS_OK;
2406 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2407 bool isread)
2409 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2410 return CP_ACCESS_TRAP;
2412 return teecr_access(env, ri, isread);
2415 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2416 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2417 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2418 .resetvalue = 0,
2419 .writefn = teecr_write, .accessfn = teecr_access },
2420 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2421 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2422 .accessfn = teehbr_access, .resetvalue = 0 },
2425 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2426 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2427 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2428 .access = PL0_RW,
2429 .fgt = FGT_TPIDR_EL0,
2430 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2431 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2432 .access = PL0_RW,
2433 .fgt = FGT_TPIDR_EL0,
2434 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2435 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2436 .resetfn = arm_cp_reset_ignore },
2437 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2438 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2439 .access = PL0_R | PL1_W,
2440 .fgt = FGT_TPIDRRO_EL0,
2441 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2442 .resetvalue = 0},
2443 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2444 .access = PL0_R | PL1_W,
2445 .fgt = FGT_TPIDRRO_EL0,
2446 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2447 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2448 .resetfn = arm_cp_reset_ignore },
2449 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2450 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2451 .access = PL1_RW,
2452 .fgt = FGT_TPIDR_EL1,
2453 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2454 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2455 .access = PL1_RW,
2456 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2457 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2458 .resetvalue = 0 },
2461 #ifndef CONFIG_USER_ONLY
2463 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2464 bool isread)
2467 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2468 * Writable only at the highest implemented exception level.
2470 int el = arm_current_el(env);
2471 uint64_t hcr;
2472 uint32_t cntkctl;
2474 switch (el) {
2475 case 0:
2476 hcr = arm_hcr_el2_eff(env);
2477 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2478 cntkctl = env->cp15.cnthctl_el2;
2479 } else {
2480 cntkctl = env->cp15.c14_cntkctl;
2482 if (!extract32(cntkctl, 0, 2)) {
2483 return CP_ACCESS_TRAP;
2485 break;
2486 case 1:
2487 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2488 arm_is_secure_below_el3(env)) {
2489 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2490 return CP_ACCESS_TRAP_UNCATEGORIZED;
2492 break;
2493 case 2:
2494 case 3:
2495 break;
2498 if (!isread && el < arm_highest_el(env)) {
2499 return CP_ACCESS_TRAP_UNCATEGORIZED;
2502 return CP_ACCESS_OK;
2505 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2506 bool isread)
2508 unsigned int cur_el = arm_current_el(env);
2509 bool has_el2 = arm_is_el2_enabled(env);
2510 uint64_t hcr = arm_hcr_el2_eff(env);
2512 switch (cur_el) {
2513 case 0:
2514 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2515 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2516 return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2517 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2520 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2521 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2522 return CP_ACCESS_TRAP;
2524 /* fall through */
2525 case 1:
2526 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2527 if (has_el2 && timeridx == GTIMER_PHYS &&
2528 (hcr & HCR_E2H
2529 ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2530 : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2531 return CP_ACCESS_TRAP_EL2;
2533 break;
2535 return CP_ACCESS_OK;
2538 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2539 bool isread)
2541 unsigned int cur_el = arm_current_el(env);
2542 bool has_el2 = arm_is_el2_enabled(env);
2543 uint64_t hcr = arm_hcr_el2_eff(env);
2545 switch (cur_el) {
2546 case 0:
2547 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2548 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2549 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2550 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2554 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2555 * EL0 if EL0[PV]TEN is zero.
2557 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2558 return CP_ACCESS_TRAP;
2560 /* fall through */
2562 case 1:
2563 if (has_el2 && timeridx == GTIMER_PHYS) {
2564 if (hcr & HCR_E2H) {
2565 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2566 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2567 return CP_ACCESS_TRAP_EL2;
2569 } else {
2570 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2571 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2572 return CP_ACCESS_TRAP_EL2;
2576 break;
2578 return CP_ACCESS_OK;
2581 static CPAccessResult gt_pct_access(CPUARMState *env,
2582 const ARMCPRegInfo *ri,
2583 bool isread)
2585 return gt_counter_access(env, GTIMER_PHYS, isread);
2588 static CPAccessResult gt_vct_access(CPUARMState *env,
2589 const ARMCPRegInfo *ri,
2590 bool isread)
2592 return gt_counter_access(env, GTIMER_VIRT, isread);
2595 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2596 bool isread)
2598 return gt_timer_access(env, GTIMER_PHYS, isread);
2601 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2602 bool isread)
2604 return gt_timer_access(env, GTIMER_VIRT, isread);
2607 static CPAccessResult gt_stimer_access(CPUARMState *env,
2608 const ARMCPRegInfo *ri,
2609 bool isread)
2612 * The AArch64 register view of the secure physical timer is
2613 * always accessible from EL3, and configurably accessible from
2614 * Secure EL1.
2616 switch (arm_current_el(env)) {
2617 case 1:
2618 if (!arm_is_secure(env)) {
2619 return CP_ACCESS_TRAP;
2621 if (!(env->cp15.scr_el3 & SCR_ST)) {
2622 return CP_ACCESS_TRAP_EL3;
2624 return CP_ACCESS_OK;
2625 case 0:
2626 case 2:
2627 return CP_ACCESS_TRAP;
2628 case 3:
2629 return CP_ACCESS_OK;
2630 default:
2631 g_assert_not_reached();
2635 static uint64_t gt_get_countervalue(CPUARMState *env)
2637 ARMCPU *cpu = env_archcpu(env);
2639 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2642 static void gt_update_irq(ARMCPU *cpu, int timeridx)
2644 CPUARMState *env = &cpu->env;
2645 uint64_t cnthctl = env->cp15.cnthctl_el2;
2646 ARMSecuritySpace ss = arm_security_space(env);
2647 /* ISTATUS && !IMASK */
2648 int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4;
2651 * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK.
2652 * It is RES0 in Secure and NonSecure state.
2654 if ((ss == ARMSS_Root || ss == ARMSS_Realm) &&
2655 ((timeridx == GTIMER_VIRT && (cnthctl & CNTHCTL_CNTVMASK)) ||
2656 (timeridx == GTIMER_PHYS && (cnthctl & CNTHCTL_CNTPMASK)))) {
2657 irqstate = 0;
2660 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2661 trace_arm_gt_update_irq(timeridx, irqstate);
2664 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored)
2667 * Changing security state between Root and Secure/NonSecure, which may
2668 * happen when switching EL, can change the effective value of CNTHCTL_EL2
2669 * mask bits. Update the IRQ state accordingly.
2671 gt_update_irq(cpu, GTIMER_VIRT);
2672 gt_update_irq(cpu, GTIMER_PHYS);
2675 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2677 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2679 if (gt->ctl & 1) {
2681 * Timer enabled: calculate and set current ISTATUS, irq, and
2682 * reset timer to when ISTATUS next has to change
2684 uint64_t offset = timeridx == GTIMER_VIRT ?
2685 cpu->env.cp15.cntvoff_el2 : 0;
2686 uint64_t count = gt_get_countervalue(&cpu->env);
2687 /* Note that this must be unsigned 64 bit arithmetic: */
2688 int istatus = count - offset >= gt->cval;
2689 uint64_t nexttick;
2691 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2693 if (istatus) {
2695 * Next transition is when (count - offset) rolls back over to 0.
2696 * If offset > count then this is when count == offset;
2697 * if offset <= count then this is when count == offset + 2^64
2698 * For the latter case we set nexttick to an "as far in future
2699 * as possible" value and let the code below handle it.
2701 if (offset > count) {
2702 nexttick = offset;
2703 } else {
2704 nexttick = UINT64_MAX;
2706 } else {
2708 * Next transition is when (count - offset) == cval, i.e.
2709 * when count == (cval + offset).
2710 * If that would overflow, then again we set up the next interrupt
2711 * for "as far in the future as possible" for the code below.
2713 if (uadd64_overflow(gt->cval, offset, &nexttick)) {
2714 nexttick = UINT64_MAX;
2718 * Note that the desired next expiry time might be beyond the
2719 * signed-64-bit range of a QEMUTimer -- in this case we just
2720 * set the timer for as far in the future as possible. When the
2721 * timer expires we will reset the timer for any remaining period.
2723 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2724 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2725 } else {
2726 timer_mod(cpu->gt_timer[timeridx], nexttick);
2728 trace_arm_gt_recalc(timeridx, nexttick);
2729 } else {
2730 /* Timer disabled: ISTATUS and timer output always clear */
2731 gt->ctl &= ~4;
2732 timer_del(cpu->gt_timer[timeridx]);
2733 trace_arm_gt_recalc_disabled(timeridx);
2735 gt_update_irq(cpu, timeridx);
2738 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2739 int timeridx)
2741 ARMCPU *cpu = env_archcpu(env);
2743 timer_del(cpu->gt_timer[timeridx]);
2746 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2748 return gt_get_countervalue(env);
2751 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2753 uint64_t hcr;
2755 switch (arm_current_el(env)) {
2756 case 2:
2757 hcr = arm_hcr_el2_eff(env);
2758 if (hcr & HCR_E2H) {
2759 return 0;
2761 break;
2762 case 0:
2763 hcr = arm_hcr_el2_eff(env);
2764 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2765 return 0;
2767 break;
2770 return env->cp15.cntvoff_el2;
2773 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2775 return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2778 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2779 int timeridx,
2780 uint64_t value)
2782 trace_arm_gt_cval_write(timeridx, value);
2783 env->cp15.c14_timer[timeridx].cval = value;
2784 gt_recalc_timer(env_archcpu(env), timeridx);
2787 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2788 int timeridx)
2790 uint64_t offset = 0;
2792 switch (timeridx) {
2793 case GTIMER_VIRT:
2794 case GTIMER_HYPVIRT:
2795 offset = gt_virt_cnt_offset(env);
2796 break;
2799 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2800 (gt_get_countervalue(env) - offset));
2803 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2804 int timeridx,
2805 uint64_t value)
2807 uint64_t offset = 0;
2809 switch (timeridx) {
2810 case GTIMER_VIRT:
2811 case GTIMER_HYPVIRT:
2812 offset = gt_virt_cnt_offset(env);
2813 break;
2816 trace_arm_gt_tval_write(timeridx, value);
2817 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2818 sextract64(value, 0, 32);
2819 gt_recalc_timer(env_archcpu(env), timeridx);
2822 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2823 int timeridx,
2824 uint64_t value)
2826 ARMCPU *cpu = env_archcpu(env);
2827 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2829 trace_arm_gt_ctl_write(timeridx, value);
2830 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2831 if ((oldval ^ value) & 1) {
2832 /* Enable toggled */
2833 gt_recalc_timer(cpu, timeridx);
2834 } else if ((oldval ^ value) & 2) {
2836 * IMASK toggled: don't need to recalculate,
2837 * just set the interrupt line based on ISTATUS
2839 trace_arm_gt_imask_toggle(timeridx);
2840 gt_update_irq(cpu, timeridx);
2844 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2846 gt_timer_reset(env, ri, GTIMER_PHYS);
2849 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2850 uint64_t value)
2852 gt_cval_write(env, ri, GTIMER_PHYS, value);
2855 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2857 return gt_tval_read(env, ri, GTIMER_PHYS);
2860 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2861 uint64_t value)
2863 gt_tval_write(env, ri, GTIMER_PHYS, value);
2866 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2867 uint64_t value)
2869 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2872 static int gt_phys_redir_timeridx(CPUARMState *env)
2874 switch (arm_mmu_idx(env)) {
2875 case ARMMMUIdx_E20_0:
2876 case ARMMMUIdx_E20_2:
2877 case ARMMMUIdx_E20_2_PAN:
2878 return GTIMER_HYP;
2879 default:
2880 return GTIMER_PHYS;
2884 static int gt_virt_redir_timeridx(CPUARMState *env)
2886 switch (arm_mmu_idx(env)) {
2887 case ARMMMUIdx_E20_0:
2888 case ARMMMUIdx_E20_2:
2889 case ARMMMUIdx_E20_2_PAN:
2890 return GTIMER_HYPVIRT;
2891 default:
2892 return GTIMER_VIRT;
2896 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2897 const ARMCPRegInfo *ri)
2899 int timeridx = gt_phys_redir_timeridx(env);
2900 return env->cp15.c14_timer[timeridx].cval;
2903 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2904 uint64_t value)
2906 int timeridx = gt_phys_redir_timeridx(env);
2907 gt_cval_write(env, ri, timeridx, value);
2910 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2911 const ARMCPRegInfo *ri)
2913 int timeridx = gt_phys_redir_timeridx(env);
2914 return gt_tval_read(env, ri, timeridx);
2917 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2918 uint64_t value)
2920 int timeridx = gt_phys_redir_timeridx(env);
2921 gt_tval_write(env, ri, timeridx, value);
2924 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2925 const ARMCPRegInfo *ri)
2927 int timeridx = gt_phys_redir_timeridx(env);
2928 return env->cp15.c14_timer[timeridx].ctl;
2931 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2932 uint64_t value)
2934 int timeridx = gt_phys_redir_timeridx(env);
2935 gt_ctl_write(env, ri, timeridx, value);
2938 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2940 gt_timer_reset(env, ri, GTIMER_VIRT);
2943 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2944 uint64_t value)
2946 gt_cval_write(env, ri, GTIMER_VIRT, value);
2949 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2951 return gt_tval_read(env, ri, GTIMER_VIRT);
2954 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2955 uint64_t value)
2957 gt_tval_write(env, ri, GTIMER_VIRT, value);
2960 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2961 uint64_t value)
2963 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2966 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2967 uint64_t value)
2969 ARMCPU *cpu = env_archcpu(env);
2970 uint32_t oldval = env->cp15.cnthctl_el2;
2972 raw_write(env, ri, value);
2974 if ((oldval ^ value) & CNTHCTL_CNTVMASK) {
2975 gt_update_irq(cpu, GTIMER_VIRT);
2976 } else if ((oldval ^ value) & CNTHCTL_CNTPMASK) {
2977 gt_update_irq(cpu, GTIMER_PHYS);
2981 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2982 uint64_t value)
2984 ARMCPU *cpu = env_archcpu(env);
2986 trace_arm_gt_cntvoff_write(value);
2987 raw_write(env, ri, value);
2988 gt_recalc_timer(cpu, GTIMER_VIRT);
2991 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2992 const ARMCPRegInfo *ri)
2994 int timeridx = gt_virt_redir_timeridx(env);
2995 return env->cp15.c14_timer[timeridx].cval;
2998 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2999 uint64_t value)
3001 int timeridx = gt_virt_redir_timeridx(env);
3002 gt_cval_write(env, ri, timeridx, value);
3005 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
3006 const ARMCPRegInfo *ri)
3008 int timeridx = gt_virt_redir_timeridx(env);
3009 return gt_tval_read(env, ri, timeridx);
3012 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3013 uint64_t value)
3015 int timeridx = gt_virt_redir_timeridx(env);
3016 gt_tval_write(env, ri, timeridx, value);
3019 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
3020 const ARMCPRegInfo *ri)
3022 int timeridx = gt_virt_redir_timeridx(env);
3023 return env->cp15.c14_timer[timeridx].ctl;
3026 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3027 uint64_t value)
3029 int timeridx = gt_virt_redir_timeridx(env);
3030 gt_ctl_write(env, ri, timeridx, value);
3033 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3035 gt_timer_reset(env, ri, GTIMER_HYP);
3038 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3039 uint64_t value)
3041 gt_cval_write(env, ri, GTIMER_HYP, value);
3044 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3046 return gt_tval_read(env, ri, GTIMER_HYP);
3049 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3050 uint64_t value)
3052 gt_tval_write(env, ri, GTIMER_HYP, value);
3055 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3056 uint64_t value)
3058 gt_ctl_write(env, ri, GTIMER_HYP, value);
3061 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3063 gt_timer_reset(env, ri, GTIMER_SEC);
3066 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3067 uint64_t value)
3069 gt_cval_write(env, ri, GTIMER_SEC, value);
3072 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3074 return gt_tval_read(env, ri, GTIMER_SEC);
3077 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3078 uint64_t value)
3080 gt_tval_write(env, ri, GTIMER_SEC, value);
3083 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3084 uint64_t value)
3086 gt_ctl_write(env, ri, GTIMER_SEC, value);
3089 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3091 gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3094 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3095 uint64_t value)
3097 gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3100 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3102 return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3105 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3106 uint64_t value)
3108 gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3111 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3112 uint64_t value)
3114 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3117 void arm_gt_ptimer_cb(void *opaque)
3119 ARMCPU *cpu = opaque;
3121 gt_recalc_timer(cpu, GTIMER_PHYS);
3124 void arm_gt_vtimer_cb(void *opaque)
3126 ARMCPU *cpu = opaque;
3128 gt_recalc_timer(cpu, GTIMER_VIRT);
3131 void arm_gt_htimer_cb(void *opaque)
3133 ARMCPU *cpu = opaque;
3135 gt_recalc_timer(cpu, GTIMER_HYP);
3138 void arm_gt_stimer_cb(void *opaque)
3140 ARMCPU *cpu = opaque;
3142 gt_recalc_timer(cpu, GTIMER_SEC);
3145 void arm_gt_hvtimer_cb(void *opaque)
3147 ARMCPU *cpu = opaque;
3149 gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3152 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3154 ARMCPU *cpu = env_archcpu(env);
3156 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3159 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3161 * Note that CNTFRQ is purely reads-as-written for the benefit
3162 * of software; writing it doesn't actually change the timer frequency.
3163 * Our reset value matches the fixed frequency we implement the timer at.
3165 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3166 .type = ARM_CP_ALIAS,
3167 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3168 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3170 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3171 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3172 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3173 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3174 .resetfn = arm_gt_cntfrq_reset,
3176 /* overall control: mostly access permissions */
3177 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3178 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3179 .access = PL1_RW,
3180 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3181 .resetvalue = 0,
3183 /* per-timer control */
3184 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3185 .secure = ARM_CP_SECSTATE_NS,
3186 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3187 .accessfn = gt_ptimer_access,
3188 .fieldoffset = offsetoflow32(CPUARMState,
3189 cp15.c14_timer[GTIMER_PHYS].ctl),
3190 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3191 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3193 { .name = "CNTP_CTL_S",
3194 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3195 .secure = ARM_CP_SECSTATE_S,
3196 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3197 .accessfn = gt_ptimer_access,
3198 .fieldoffset = offsetoflow32(CPUARMState,
3199 cp15.c14_timer[GTIMER_SEC].ctl),
3200 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3202 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3203 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3204 .type = ARM_CP_IO, .access = PL0_RW,
3205 .accessfn = gt_ptimer_access,
3206 .nv2_redirect_offset = 0x180 | NV2_REDIR_NV1,
3207 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3208 .resetvalue = 0,
3209 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3210 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3212 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3213 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3214 .accessfn = gt_vtimer_access,
3215 .fieldoffset = offsetoflow32(CPUARMState,
3216 cp15.c14_timer[GTIMER_VIRT].ctl),
3217 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3218 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3220 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3221 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3222 .type = ARM_CP_IO, .access = PL0_RW,
3223 .accessfn = gt_vtimer_access,
3224 .nv2_redirect_offset = 0x170 | NV2_REDIR_NV1,
3225 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3226 .resetvalue = 0,
3227 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3228 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3230 /* TimerValue views: a 32 bit downcounting view of the underlying state */
3231 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3232 .secure = ARM_CP_SECSTATE_NS,
3233 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3234 .accessfn = gt_ptimer_access,
3235 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3237 { .name = "CNTP_TVAL_S",
3238 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3239 .secure = ARM_CP_SECSTATE_S,
3240 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3241 .accessfn = gt_ptimer_access,
3242 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3244 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3245 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3246 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3247 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3248 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3250 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3251 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3252 .accessfn = gt_vtimer_access,
3253 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3255 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3256 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3257 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3258 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3259 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3261 /* The counter itself */
3262 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3263 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3264 .accessfn = gt_pct_access,
3265 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3267 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3268 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3269 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3270 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3272 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3273 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3274 .accessfn = gt_vct_access,
3275 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3277 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3278 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3279 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3280 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3282 /* Comparison value, indicating when the timer goes off */
3283 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3284 .secure = ARM_CP_SECSTATE_NS,
3285 .access = PL0_RW,
3286 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3287 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3288 .accessfn = gt_ptimer_access,
3289 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3290 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3292 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3293 .secure = ARM_CP_SECSTATE_S,
3294 .access = PL0_RW,
3295 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3296 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3297 .accessfn = gt_ptimer_access,
3298 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3300 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3301 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3302 .access = PL0_RW,
3303 .type = ARM_CP_IO,
3304 .nv2_redirect_offset = 0x178 | NV2_REDIR_NV1,
3305 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3306 .resetvalue = 0, .accessfn = gt_ptimer_access,
3307 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3308 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3310 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3311 .access = PL0_RW,
3312 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3313 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3314 .accessfn = gt_vtimer_access,
3315 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3316 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3318 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3319 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3320 .access = PL0_RW,
3321 .type = ARM_CP_IO,
3322 .nv2_redirect_offset = 0x168 | NV2_REDIR_NV1,
3323 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3324 .resetvalue = 0, .accessfn = gt_vtimer_access,
3325 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3326 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3329 * Secure timer -- this is actually restricted to only EL3
3330 * and configurably Secure-EL1 via the accessfn.
3332 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3333 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3334 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3335 .accessfn = gt_stimer_access,
3336 .readfn = gt_sec_tval_read,
3337 .writefn = gt_sec_tval_write,
3338 .resetfn = gt_sec_timer_reset,
3340 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3341 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3342 .type = ARM_CP_IO, .access = PL1_RW,
3343 .accessfn = gt_stimer_access,
3344 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3345 .resetvalue = 0,
3346 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3348 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3349 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3350 .type = ARM_CP_IO, .access = PL1_RW,
3351 .accessfn = gt_stimer_access,
3352 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3353 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3357 #else
3360 * In user-mode most of the generic timer registers are inaccessible
3361 * however modern kernels (4.12+) allow access to cntvct_el0
3364 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3366 ARMCPU *cpu = env_archcpu(env);
3369 * Currently we have no support for QEMUTimer in linux-user so we
3370 * can't call gt_get_countervalue(env), instead we directly
3371 * call the lower level functions.
3373 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3376 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3377 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3378 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3379 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3380 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3381 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3383 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3384 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3385 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3386 .readfn = gt_virt_cnt_read,
3390 #endif
3392 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3394 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3395 raw_write(env, ri, value);
3396 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3397 raw_write(env, ri, value & 0xfffff6ff);
3398 } else {
3399 raw_write(env, ri, value & 0xfffff1ff);
3403 #ifndef CONFIG_USER_ONLY
3404 /* get_phys_addr() isn't present for user-mode-only targets */
3406 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3407 bool isread)
3409 if (ri->opc2 & 4) {
3411 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3412 * Secure EL1 (which can only happen if EL3 is AArch64).
3413 * They are simply UNDEF if executed from NS EL1.
3414 * They function normally from EL2 or EL3.
3416 if (arm_current_el(env) == 1) {
3417 if (arm_is_secure_below_el3(env)) {
3418 if (env->cp15.scr_el3 & SCR_EEL2) {
3419 return CP_ACCESS_TRAP_EL2;
3421 return CP_ACCESS_TRAP_EL3;
3423 return CP_ACCESS_TRAP_UNCATEGORIZED;
3426 return CP_ACCESS_OK;
3429 #ifdef CONFIG_TCG
3430 static int par_el1_shareability(GetPhysAddrResult *res)
3433 * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC
3434 * memory -- see pseudocode PAREncodeShareability().
3436 if (((res->cacheattrs.attrs & 0xf0) == 0) ||
3437 res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) {
3438 return 2;
3440 return res->cacheattrs.shareability;
3443 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3444 MMUAccessType access_type, ARMMMUIdx mmu_idx,
3445 ARMSecuritySpace ss)
3447 bool ret;
3448 uint64_t par64;
3449 bool format64 = false;
3450 ARMMMUFaultInfo fi = {};
3451 GetPhysAddrResult res = {};
3454 * I_MXTJT: Granule protection checks are not performed on the final address
3455 * of a successful translation.
3457 ret = get_phys_addr_with_space_nogpc(env, value, access_type, mmu_idx, ss,
3458 &res, &fi);
3461 * ATS operations only do S1 or S1+S2 translations, so we never
3462 * have to deal with the ARMCacheAttrs format for S2 only.
3464 assert(!res.cacheattrs.is_s2_format);
3466 if (ret) {
3468 * Some kinds of translation fault must cause exceptions rather
3469 * than being reported in the PAR.
3471 int current_el = arm_current_el(env);
3472 int target_el;
3473 uint32_t syn, fsr, fsc;
3474 bool take_exc = false;
3476 if (fi.s1ptw && current_el == 1
3477 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3479 * Synchronous stage 2 fault on an access made as part of the
3480 * translation table walk for AT S1E0* or AT S1E1* insn
3481 * executed from NS EL1. If this is a synchronous external abort
3482 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3483 * to EL3. Otherwise the fault is taken as an exception to EL2,
3484 * and HPFAR_EL2 holds the faulting IPA.
3486 if (fi.type == ARMFault_SyncExternalOnWalk &&
3487 (env->cp15.scr_el3 & SCR_EA)) {
3488 target_el = 3;
3489 } else {
3490 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3491 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3492 env->cp15.hpfar_el2 |= HPFAR_NS;
3494 target_el = 2;
3496 take_exc = true;
3497 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3499 * Synchronous external aborts during a translation table walk
3500 * are taken as Data Abort exceptions.
3502 if (fi.stage2) {
3503 if (current_el == 3) {
3504 target_el = 3;
3505 } else {
3506 target_el = 2;
3508 } else {
3509 target_el = exception_target_el(env);
3511 take_exc = true;
3514 if (take_exc) {
3515 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3516 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3517 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3518 fsr = arm_fi_to_lfsc(&fi);
3519 fsc = extract32(fsr, 0, 6);
3520 } else {
3521 fsr = arm_fi_to_sfsc(&fi);
3522 fsc = 0x3f;
3525 * Report exception with ESR indicating a fault due to a
3526 * translation table walk for a cache maintenance instruction.
3528 syn = syn_data_abort_no_iss(current_el == target_el, 0,
3529 fi.ea, 1, fi.s1ptw, 1, fsc);
3530 env->exception.vaddress = value;
3531 env->exception.fsr = fsr;
3532 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3536 if (is_a64(env)) {
3537 format64 = true;
3538 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3540 * ATS1Cxx:
3541 * * TTBCR.EAE determines whether the result is returned using the
3542 * 32-bit or the 64-bit PAR format
3543 * * Instructions executed in Hyp mode always use the 64bit format
3545 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3546 * * The Non-secure TTBCR.EAE bit is set to 1
3547 * * The implementation includes EL2, and the value of HCR.VM is 1
3549 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3551 * ATS1Hx always uses the 64bit format.
3553 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3555 if (arm_feature(env, ARM_FEATURE_EL2)) {
3556 if (mmu_idx == ARMMMUIdx_E10_0 ||
3557 mmu_idx == ARMMMUIdx_E10_1 ||
3558 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3559 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3560 } else {
3561 format64 |= arm_current_el(env) == 2;
3566 if (format64) {
3567 /* Create a 64-bit PAR */
3568 par64 = (1 << 11); /* LPAE bit always set */
3569 if (!ret) {
3570 par64 |= res.f.phys_addr & ~0xfffULL;
3571 if (!res.f.attrs.secure) {
3572 par64 |= (1 << 9); /* NS */
3574 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
3575 par64 |= par_el1_shareability(&res) << 7; /* SH */
3576 } else {
3577 uint32_t fsr = arm_fi_to_lfsc(&fi);
3579 par64 |= 1; /* F */
3580 par64 |= (fsr & 0x3f) << 1; /* FS */
3581 if (fi.stage2) {
3582 par64 |= (1 << 9); /* S */
3584 if (fi.s1ptw) {
3585 par64 |= (1 << 8); /* PTW */
3588 } else {
3590 * fsr is a DFSR/IFSR value for the short descriptor
3591 * translation table format (with WnR always clear).
3592 * Convert it to a 32-bit PAR.
3594 if (!ret) {
3595 /* We do not set any attribute bits in the PAR */
3596 if (res.f.lg_page_size == 24
3597 && arm_feature(env, ARM_FEATURE_V7)) {
3598 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
3599 } else {
3600 par64 = res.f.phys_addr & 0xfffff000;
3602 if (!res.f.attrs.secure) {
3603 par64 |= (1 << 9); /* NS */
3605 } else {
3606 uint32_t fsr = arm_fi_to_sfsc(&fi);
3608 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3609 ((fsr & 0xf) << 1) | 1;
3612 return par64;
3614 #endif /* CONFIG_TCG */
3616 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3618 #ifdef CONFIG_TCG
3619 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3620 uint64_t par64;
3621 ARMMMUIdx mmu_idx;
3622 int el = arm_current_el(env);
3623 ARMSecuritySpace ss = arm_security_space(env);
3625 switch (ri->opc2 & 6) {
3626 case 0:
3627 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3628 switch (el) {
3629 case 3:
3630 mmu_idx = ARMMMUIdx_E3;
3631 break;
3632 case 2:
3633 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */
3634 /* fall through */
3635 case 1:
3636 if (ri->crm == 9 && arm_pan_enabled(env)) {
3637 mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3638 } else {
3639 mmu_idx = ARMMMUIdx_Stage1_E1;
3641 break;
3642 default:
3643 g_assert_not_reached();
3645 break;
3646 case 2:
3647 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3648 switch (el) {
3649 case 3:
3650 mmu_idx = ARMMMUIdx_E10_0;
3651 break;
3652 case 2:
3653 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */
3654 mmu_idx = ARMMMUIdx_Stage1_E0;
3655 break;
3656 case 1:
3657 mmu_idx = ARMMMUIdx_Stage1_E0;
3658 break;
3659 default:
3660 g_assert_not_reached();
3662 break;
3663 case 4:
3664 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3665 mmu_idx = ARMMMUIdx_E10_1;
3666 ss = ARMSS_NonSecure;
3667 break;
3668 case 6:
3669 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3670 mmu_idx = ARMMMUIdx_E10_0;
3671 ss = ARMSS_NonSecure;
3672 break;
3673 default:
3674 g_assert_not_reached();
3677 par64 = do_ats_write(env, value, access_type, mmu_idx, ss);
3679 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3680 #else
3681 /* Handled by hardware accelerator. */
3682 g_assert_not_reached();
3683 #endif /* CONFIG_TCG */
3686 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3687 uint64_t value)
3689 #ifdef CONFIG_TCG
3690 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3691 uint64_t par64;
3693 /* There is no SecureEL2 for AArch32. */
3694 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2,
3695 ARMSS_NonSecure);
3697 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3698 #else
3699 /* Handled by hardware accelerator. */
3700 g_assert_not_reached();
3701 #endif /* CONFIG_TCG */
3704 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri,
3705 bool isread)
3708 * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level
3709 * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can
3710 * only happen when executing at EL3 because that combination also causes an
3711 * illegal exception return. We don't need to check FEAT_RME either, because
3712 * scr_write() ensures that the NSE bit is not set otherwise.
3714 if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) {
3715 return CP_ACCESS_TRAP;
3717 return CP_ACCESS_OK;
3720 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3721 bool isread)
3723 if (arm_current_el(env) == 3 &&
3724 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3725 return CP_ACCESS_TRAP;
3727 return at_e012_access(env, ri, isread);
3730 static CPAccessResult at_s1e01_access(CPUARMState *env, const ARMCPRegInfo *ri,
3731 bool isread)
3733 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_AT)) {
3734 return CP_ACCESS_TRAP_EL2;
3736 return at_e012_access(env, ri, isread);
3739 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3740 uint64_t value)
3742 #ifdef CONFIG_TCG
3743 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3744 ARMMMUIdx mmu_idx;
3745 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
3746 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
3748 switch (ri->opc2 & 6) {
3749 case 0:
3750 switch (ri->opc1) {
3751 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3752 if (ri->crm == 9 && arm_pan_enabled(env)) {
3753 mmu_idx = regime_e20 ?
3754 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
3755 } else {
3756 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
3758 break;
3759 case 4: /* AT S1E2R, AT S1E2W */
3760 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
3761 break;
3762 case 6: /* AT S1E3R, AT S1E3W */
3763 mmu_idx = ARMMMUIdx_E3;
3764 break;
3765 default:
3766 g_assert_not_reached();
3768 break;
3769 case 2: /* AT S1E0R, AT S1E0W */
3770 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
3771 break;
3772 case 4: /* AT S12E1R, AT S12E1W */
3773 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
3774 break;
3775 case 6: /* AT S12E0R, AT S12E0W */
3776 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
3777 break;
3778 default:
3779 g_assert_not_reached();
3782 env->cp15.par_el[1] = do_ats_write(env, value, access_type,
3783 mmu_idx, arm_security_space(env));
3784 #else
3785 /* Handled by hardware accelerator. */
3786 g_assert_not_reached();
3787 #endif /* CONFIG_TCG */
3789 #endif
3791 /* Return basic MPU access permission bits. */
3792 static uint32_t simple_mpu_ap_bits(uint32_t val)
3794 uint32_t ret;
3795 uint32_t mask;
3796 int i;
3797 ret = 0;
3798 mask = 3;
3799 for (i = 0; i < 16; i += 2) {
3800 ret |= (val >> i) & mask;
3801 mask <<= 2;
3803 return ret;
3806 /* Pad basic MPU access permission bits to extended format. */
3807 static uint32_t extended_mpu_ap_bits(uint32_t val)
3809 uint32_t ret;
3810 uint32_t mask;
3811 int i;
3812 ret = 0;
3813 mask = 3;
3814 for (i = 0; i < 16; i += 2) {
3815 ret |= (val & mask) << i;
3816 mask <<= 2;
3818 return ret;
3821 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3822 uint64_t value)
3824 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3827 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3829 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3832 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3833 uint64_t value)
3835 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3838 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3840 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3843 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3845 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3847 if (!u32p) {
3848 return 0;
3851 u32p += env->pmsav7.rnr[M_REG_NS];
3852 return *u32p;
3855 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3856 uint64_t value)
3858 ARMCPU *cpu = env_archcpu(env);
3859 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3861 if (!u32p) {
3862 return;
3865 u32p += env->pmsav7.rnr[M_REG_NS];
3866 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3867 *u32p = value;
3870 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3871 uint64_t value)
3873 ARMCPU *cpu = env_archcpu(env);
3874 uint32_t nrgs = cpu->pmsav7_dregion;
3876 if (value >= nrgs) {
3877 qemu_log_mask(LOG_GUEST_ERROR,
3878 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3879 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3880 return;
3883 raw_write(env, ri, value);
3886 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3887 uint64_t value)
3889 ARMCPU *cpu = env_archcpu(env);
3891 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3892 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3895 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3897 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3900 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3901 uint64_t value)
3903 ARMCPU *cpu = env_archcpu(env);
3905 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3906 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3909 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3911 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3914 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3915 uint64_t value)
3917 ARMCPU *cpu = env_archcpu(env);
3920 * Ignore writes that would select not implemented region.
3921 * This is architecturally UNPREDICTABLE.
3923 if (value >= cpu->pmsav7_dregion) {
3924 return;
3927 env->pmsav7.rnr[M_REG_NS] = value;
3930 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3931 uint64_t value)
3933 ARMCPU *cpu = env_archcpu(env);
3935 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3936 env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
3939 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3941 return env->pmsav8.hprbar[env->pmsav8.hprselr];
3944 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3945 uint64_t value)
3947 ARMCPU *cpu = env_archcpu(env);
3949 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3950 env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
3953 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3955 return env->pmsav8.hprlar[env->pmsav8.hprselr];
3958 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3959 uint64_t value)
3961 uint32_t n;
3962 uint32_t bit;
3963 ARMCPU *cpu = env_archcpu(env);
3965 /* Ignore writes to unimplemented regions */
3966 int rmax = MIN(cpu->pmsav8r_hdregion, 32);
3967 value &= MAKE_64BIT_MASK(0, rmax);
3969 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3971 /* Register alias is only valid for first 32 indexes */
3972 for (n = 0; n < rmax; ++n) {
3973 bit = extract32(value, n, 1);
3974 env->pmsav8.hprlar[n] = deposit32(
3975 env->pmsav8.hprlar[n], 0, 1, bit);
3979 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3981 uint32_t n;
3982 uint32_t result = 0x0;
3983 ARMCPU *cpu = env_archcpu(env);
3985 /* Register alias is only valid for first 32 indexes */
3986 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
3987 if (env->pmsav8.hprlar[n] & 0x1) {
3988 result |= (0x1 << n);
3991 return result;
3994 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3995 uint64_t value)
3997 ARMCPU *cpu = env_archcpu(env);
4000 * Ignore writes that would select not implemented region.
4001 * This is architecturally UNPREDICTABLE.
4003 if (value >= cpu->pmsav8r_hdregion) {
4004 return;
4007 env->pmsav8.hprselr = value;
4010 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
4011 uint64_t value)
4013 ARMCPU *cpu = env_archcpu(env);
4014 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
4015 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
4017 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4019 if (ri->opc1 & 4) {
4020 if (index >= cpu->pmsav8r_hdregion) {
4021 return;
4023 if (ri->opc2 & 0x1) {
4024 env->pmsav8.hprlar[index] = value;
4025 } else {
4026 env->pmsav8.hprbar[index] = value;
4028 } else {
4029 if (index >= cpu->pmsav7_dregion) {
4030 return;
4032 if (ri->opc2 & 0x1) {
4033 env->pmsav8.rlar[M_REG_NS][index] = value;
4034 } else {
4035 env->pmsav8.rbar[M_REG_NS][index] = value;
4040 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
4042 ARMCPU *cpu = env_archcpu(env);
4043 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
4044 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
4046 if (ri->opc1 & 4) {
4047 if (index >= cpu->pmsav8r_hdregion) {
4048 return 0x0;
4050 if (ri->opc2 & 0x1) {
4051 return env->pmsav8.hprlar[index];
4052 } else {
4053 return env->pmsav8.hprbar[index];
4055 } else {
4056 if (index >= cpu->pmsav7_dregion) {
4057 return 0x0;
4059 if (ri->opc2 & 0x1) {
4060 return env->pmsav8.rlar[M_REG_NS][index];
4061 } else {
4062 return env->pmsav8.rbar[M_REG_NS][index];
4067 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
4068 { .name = "PRBAR",
4069 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
4070 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4071 .accessfn = access_tvm_trvm,
4072 .readfn = prbar_read, .writefn = prbar_write },
4073 { .name = "PRLAR",
4074 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
4075 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4076 .accessfn = access_tvm_trvm,
4077 .readfn = prlar_read, .writefn = prlar_write },
4078 { .name = "PRSELR", .resetvalue = 0,
4079 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
4080 .access = PL1_RW, .accessfn = access_tvm_trvm,
4081 .writefn = prselr_write,
4082 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
4083 { .name = "HPRBAR", .resetvalue = 0,
4084 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
4085 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4086 .readfn = hprbar_read, .writefn = hprbar_write },
4087 { .name = "HPRLAR",
4088 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
4089 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4090 .readfn = hprlar_read, .writefn = hprlar_write },
4091 { .name = "HPRSELR", .resetvalue = 0,
4092 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
4093 .access = PL2_RW,
4094 .writefn = hprselr_write,
4095 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
4096 { .name = "HPRENR",
4097 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
4098 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4099 .readfn = hprenr_read, .writefn = hprenr_write },
4102 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
4104 * Reset for all these registers is handled in arm_cpu_reset(),
4105 * because the PMSAv7 is also used by M-profile CPUs, which do
4106 * not register cpregs but still need the state to be reset.
4108 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
4109 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4110 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
4111 .readfn = pmsav7_read, .writefn = pmsav7_write,
4112 .resetfn = arm_cp_reset_ignore },
4113 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
4114 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4115 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
4116 .readfn = pmsav7_read, .writefn = pmsav7_write,
4117 .resetfn = arm_cp_reset_ignore },
4118 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
4119 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4120 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
4121 .readfn = pmsav7_read, .writefn = pmsav7_write,
4122 .resetfn = arm_cp_reset_ignore },
4123 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
4124 .access = PL1_RW,
4125 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
4126 .writefn = pmsav7_rgnr_write,
4127 .resetfn = arm_cp_reset_ignore },
4130 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
4131 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4132 .access = PL1_RW, .type = ARM_CP_ALIAS,
4133 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4134 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
4135 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4136 .access = PL1_RW, .type = ARM_CP_ALIAS,
4137 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4138 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
4139 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
4140 .access = PL1_RW,
4141 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4142 .resetvalue = 0, },
4143 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
4144 .access = PL1_RW,
4145 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4146 .resetvalue = 0, },
4147 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4148 .access = PL1_RW,
4149 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
4150 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
4151 .access = PL1_RW,
4152 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
4153 /* Protection region base and size registers */
4154 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
4155 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4156 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
4157 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
4158 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4159 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
4160 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
4161 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4162 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
4163 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
4164 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4165 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
4166 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
4167 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4168 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
4169 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
4170 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4171 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
4172 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
4173 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4174 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
4175 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
4176 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4177 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
4180 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4181 uint64_t value)
4183 ARMCPU *cpu = env_archcpu(env);
4185 if (!arm_feature(env, ARM_FEATURE_V8)) {
4186 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
4188 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
4189 * using Long-descriptor translation table format
4191 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
4192 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
4194 * In an implementation that includes the Security Extensions
4195 * TTBCR has additional fields PD0 [4] and PD1 [5] for
4196 * Short-descriptor translation table format.
4198 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
4199 } else {
4200 value &= TTBCR_N;
4204 if (arm_feature(env, ARM_FEATURE_LPAE)) {
4206 * With LPAE the TTBCR could result in a change of ASID
4207 * via the TTBCR.A1 bit, so do a TLB flush.
4209 tlb_flush(CPU(cpu));
4211 raw_write(env, ri, value);
4214 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
4215 uint64_t value)
4217 ARMCPU *cpu = env_archcpu(env);
4219 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
4220 tlb_flush(CPU(cpu));
4221 raw_write(env, ri, value);
4224 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4225 uint64_t value)
4227 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
4228 if (cpreg_field_is_64bit(ri) &&
4229 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4230 ARMCPU *cpu = env_archcpu(env);
4231 tlb_flush(CPU(cpu));
4233 raw_write(env, ri, value);
4236 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4237 uint64_t value)
4240 * If we are running with E2&0 regime, then an ASID is active.
4241 * Flush if that might be changing. Note we're not checking
4242 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4243 * holds the active ASID, only checking the field that might.
4245 if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4246 (arm_hcr_el2_eff(env) & HCR_E2H)) {
4247 uint16_t mask = ARMMMUIdxBit_E20_2 |
4248 ARMMMUIdxBit_E20_2_PAN |
4249 ARMMMUIdxBit_E20_0;
4250 tlb_flush_by_mmuidx(env_cpu(env), mask);
4252 raw_write(env, ri, value);
4255 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4256 uint64_t value)
4258 ARMCPU *cpu = env_archcpu(env);
4259 CPUState *cs = CPU(cpu);
4262 * A change in VMID to the stage2 page table (Stage2) invalidates
4263 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
4265 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4266 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
4268 raw_write(env, ri, value);
4271 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4272 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4273 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4274 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4275 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4276 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4277 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4278 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4279 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4280 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4281 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4282 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4283 offsetof(CPUARMState, cp15.dfar_ns) } },
4284 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4285 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4286 .access = PL1_RW, .accessfn = access_tvm_trvm,
4287 .fgt = FGT_FAR_EL1,
4288 .nv2_redirect_offset = 0x220 | NV2_REDIR_NV1,
4289 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4290 .resetvalue = 0, },
4293 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4294 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4295 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4296 .access = PL1_RW, .accessfn = access_tvm_trvm,
4297 .fgt = FGT_ESR_EL1,
4298 .nv2_redirect_offset = 0x138 | NV2_REDIR_NV1,
4299 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4300 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4301 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4302 .access = PL1_RW, .accessfn = access_tvm_trvm,
4303 .fgt = FGT_TTBR0_EL1,
4304 .nv2_redirect_offset = 0x200 | NV2_REDIR_NV1,
4305 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4306 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4307 offsetof(CPUARMState, cp15.ttbr0_ns) } },
4308 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4309 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4310 .access = PL1_RW, .accessfn = access_tvm_trvm,
4311 .fgt = FGT_TTBR1_EL1,
4312 .nv2_redirect_offset = 0x210 | NV2_REDIR_NV1,
4313 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4314 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4315 offsetof(CPUARMState, cp15.ttbr1_ns) } },
4316 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4317 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4318 .access = PL1_RW, .accessfn = access_tvm_trvm,
4319 .fgt = FGT_TCR_EL1,
4320 .nv2_redirect_offset = 0x120 | NV2_REDIR_NV1,
4321 .writefn = vmsa_tcr_el12_write,
4322 .raw_writefn = raw_write,
4323 .resetvalue = 0,
4324 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4325 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4326 .access = PL1_RW, .accessfn = access_tvm_trvm,
4327 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4328 .raw_writefn = raw_write,
4329 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4330 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4334 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4335 * qemu tlbs nor adjusting cached masks.
4337 static const ARMCPRegInfo ttbcr2_reginfo = {
4338 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4339 .access = PL1_RW, .accessfn = access_tvm_trvm,
4340 .type = ARM_CP_ALIAS,
4341 .bank_fieldoffsets = {
4342 offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4343 offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
4347 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4348 uint64_t value)
4350 env->cp15.c15_ticonfig = value & 0xe7;
4351 /* The OS_TYPE bit in this register changes the reported CPUID! */
4352 env->cp15.c0_cpuid = (value & (1 << 5)) ?
4353 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4356 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4357 uint64_t value)
4359 env->cp15.c15_threadid = value & 0xffff;
4362 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4363 uint64_t value)
4365 /* Wait-for-interrupt (deprecated) */
4366 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4369 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4370 uint64_t value)
4373 * On OMAP there are registers indicating the max/min index of dcache lines
4374 * containing a dirty line; cache flush operations have to reset these.
4376 env->cp15.c15_i_max = 0x000;
4377 env->cp15.c15_i_min = 0xff0;
4380 static const ARMCPRegInfo omap_cp_reginfo[] = {
4381 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4382 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4383 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4384 .resetvalue = 0, },
4385 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4386 .access = PL1_RW, .type = ARM_CP_NOP },
4387 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4388 .access = PL1_RW,
4389 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4390 .writefn = omap_ticonfig_write },
4391 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4392 .access = PL1_RW,
4393 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4394 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4395 .access = PL1_RW, .resetvalue = 0xff0,
4396 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4397 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4398 .access = PL1_RW,
4399 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4400 .writefn = omap_threadid_write },
4401 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4402 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4403 .type = ARM_CP_NO_RAW,
4404 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4406 * TODO: Peripheral port remap register:
4407 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4408 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4409 * when MMU is off.
4411 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4412 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4413 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4414 .writefn = omap_cachemaint_write },
4415 { .name = "C9", .cp = 15, .crn = 9,
4416 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4417 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4420 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4421 uint64_t value)
4423 env->cp15.c15_cpar = value & 0x3fff;
4426 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4427 { .name = "XSCALE_CPAR",
4428 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4429 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4430 .writefn = xscale_cpar_write, },
4431 { .name = "XSCALE_AUXCR",
4432 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4433 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4434 .resetvalue = 0, },
4436 * XScale specific cache-lockdown: since we have no cache we NOP these
4437 * and hope the guest does not really rely on cache behaviour.
4439 { .name = "XSCALE_LOCK_ICACHE_LINE",
4440 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4441 .access = PL1_W, .type = ARM_CP_NOP },
4442 { .name = "XSCALE_UNLOCK_ICACHE",
4443 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4444 .access = PL1_W, .type = ARM_CP_NOP },
4445 { .name = "XSCALE_DCACHE_LOCK",
4446 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4447 .access = PL1_RW, .type = ARM_CP_NOP },
4448 { .name = "XSCALE_UNLOCK_DCACHE",
4449 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4450 .access = PL1_W, .type = ARM_CP_NOP },
4453 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4455 * RAZ/WI the whole crn=15 space, when we don't have a more specific
4456 * implementation of this implementation-defined space.
4457 * Ideally this should eventually disappear in favour of actually
4458 * implementing the correct behaviour for all cores.
4460 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4461 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4462 .access = PL1_RW,
4463 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4464 .resetvalue = 0 },
4467 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4468 /* Cache status: RAZ because we have no cache so it's always clean */
4469 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4470 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4471 .resetvalue = 0 },
4474 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4475 /* We never have a block transfer operation in progress */
4476 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4477 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4478 .resetvalue = 0 },
4479 /* The cache ops themselves: these all NOP for QEMU */
4480 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4481 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4482 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4483 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4484 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4485 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4486 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4487 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4488 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4489 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4490 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4491 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4494 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4496 * The cache test-and-clean instructions always return (1 << 30)
4497 * to indicate that there are no dirty cache lines.
4499 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4500 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4501 .resetvalue = (1 << 30) },
4502 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4503 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4504 .resetvalue = (1 << 30) },
4507 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4508 /* Ignore ReadBuffer accesses */
4509 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4510 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4511 .access = PL1_RW, .resetvalue = 0,
4512 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4515 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4517 unsigned int cur_el = arm_current_el(env);
4519 if (arm_is_el2_enabled(env) && cur_el == 1) {
4520 return env->cp15.vpidr_el2;
4522 return raw_read(env, ri);
4525 static uint64_t mpidr_read_val(CPUARMState *env)
4527 ARMCPU *cpu = env_archcpu(env);
4528 uint64_t mpidr = cpu->mp_affinity;
4530 if (arm_feature(env, ARM_FEATURE_V7MP)) {
4531 mpidr |= (1U << 31);
4533 * Cores which are uniprocessor (non-coherent)
4534 * but still implement the MP extensions set
4535 * bit 30. (For instance, Cortex-R5).
4537 if (cpu->mp_is_up) {
4538 mpidr |= (1u << 30);
4541 return mpidr;
4544 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4546 unsigned int cur_el = arm_current_el(env);
4548 if (arm_is_el2_enabled(env) && cur_el == 1) {
4549 return env->cp15.vmpidr_el2;
4551 return mpidr_read_val(env);
4554 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4555 /* NOP AMAIR0/1 */
4556 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4557 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4558 .access = PL1_RW, .accessfn = access_tvm_trvm,
4559 .fgt = FGT_AMAIR_EL1,
4560 .nv2_redirect_offset = 0x148 | NV2_REDIR_NV1,
4561 .type = ARM_CP_CONST, .resetvalue = 0 },
4562 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4563 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4564 .access = PL1_RW, .accessfn = access_tvm_trvm,
4565 .type = ARM_CP_CONST, .resetvalue = 0 },
4566 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4567 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4568 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4569 offsetof(CPUARMState, cp15.par_ns)} },
4570 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4571 .access = PL1_RW, .accessfn = access_tvm_trvm,
4572 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4573 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4574 offsetof(CPUARMState, cp15.ttbr0_ns) },
4575 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4576 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4577 .access = PL1_RW, .accessfn = access_tvm_trvm,
4578 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4579 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4580 offsetof(CPUARMState, cp15.ttbr1_ns) },
4581 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4584 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4586 return vfp_get_fpcr(env);
4589 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4590 uint64_t value)
4592 vfp_set_fpcr(env, value);
4595 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4597 return vfp_get_fpsr(env);
4600 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4601 uint64_t value)
4603 vfp_set_fpsr(env, value);
4606 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4607 bool isread)
4609 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4610 return CP_ACCESS_TRAP;
4612 return CP_ACCESS_OK;
4615 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4616 uint64_t value)
4618 env->daif = value & PSTATE_DAIF;
4621 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4623 return env->pstate & PSTATE_PAN;
4626 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4627 uint64_t value)
4629 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4632 static const ARMCPRegInfo pan_reginfo = {
4633 .name = "PAN", .state = ARM_CP_STATE_AA64,
4634 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4635 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4636 .readfn = aa64_pan_read, .writefn = aa64_pan_write
4639 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4641 return env->pstate & PSTATE_UAO;
4644 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4645 uint64_t value)
4647 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4650 static const ARMCPRegInfo uao_reginfo = {
4651 .name = "UAO", .state = ARM_CP_STATE_AA64,
4652 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4653 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4654 .readfn = aa64_uao_read, .writefn = aa64_uao_write
4657 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4659 return env->pstate & PSTATE_DIT;
4662 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4663 uint64_t value)
4665 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4668 static const ARMCPRegInfo dit_reginfo = {
4669 .name = "DIT", .state = ARM_CP_STATE_AA64,
4670 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4671 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4672 .readfn = aa64_dit_read, .writefn = aa64_dit_write
4675 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4677 return env->pstate & PSTATE_SSBS;
4680 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4681 uint64_t value)
4683 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4686 static const ARMCPRegInfo ssbs_reginfo = {
4687 .name = "SSBS", .state = ARM_CP_STATE_AA64,
4688 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4689 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4690 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4693 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4694 const ARMCPRegInfo *ri,
4695 bool isread)
4697 /* Cache invalidate/clean to Point of Coherency or Persistence... */
4698 switch (arm_current_el(env)) {
4699 case 0:
4700 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4701 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4702 return CP_ACCESS_TRAP;
4704 /* fall through */
4705 case 1:
4706 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
4707 if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4708 return CP_ACCESS_TRAP_EL2;
4710 break;
4712 return CP_ACCESS_OK;
4715 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
4717 /* Cache invalidate/clean to Point of Unification... */
4718 switch (arm_current_el(env)) {
4719 case 0:
4720 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4721 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4722 return CP_ACCESS_TRAP;
4724 /* fall through */
4725 case 1:
4726 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */
4727 if (arm_hcr_el2_eff(env) & hcrflags) {
4728 return CP_ACCESS_TRAP_EL2;
4730 break;
4732 return CP_ACCESS_OK;
4735 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
4736 bool isread)
4738 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
4741 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
4742 bool isread)
4744 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
4748 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4749 * Page D4-1736 (DDI0487A.b)
4752 static int vae1_tlbmask(CPUARMState *env)
4754 uint64_t hcr = arm_hcr_el2_eff(env);
4755 uint16_t mask;
4757 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4758 mask = ARMMMUIdxBit_E20_2 |
4759 ARMMMUIdxBit_E20_2_PAN |
4760 ARMMMUIdxBit_E20_0;
4761 } else {
4762 mask = ARMMMUIdxBit_E10_1 |
4763 ARMMMUIdxBit_E10_1_PAN |
4764 ARMMMUIdxBit_E10_0;
4766 return mask;
4769 static int vae2_tlbmask(CPUARMState *env)
4771 uint64_t hcr = arm_hcr_el2_eff(env);
4772 uint16_t mask;
4774 if (hcr & HCR_E2H) {
4775 mask = ARMMMUIdxBit_E20_2 |
4776 ARMMMUIdxBit_E20_2_PAN |
4777 ARMMMUIdxBit_E20_0;
4778 } else {
4779 mask = ARMMMUIdxBit_E2;
4781 return mask;
4784 /* Return 56 if TBI is enabled, 64 otherwise. */
4785 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4786 uint64_t addr)
4788 uint64_t tcr = regime_tcr(env, mmu_idx);
4789 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4790 int select = extract64(addr, 55, 1);
4792 return (tbi >> select) & 1 ? 56 : 64;
4795 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4797 uint64_t hcr = arm_hcr_el2_eff(env);
4798 ARMMMUIdx mmu_idx;
4800 /* Only the regime of the mmu_idx below is significant. */
4801 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4802 mmu_idx = ARMMMUIdx_E20_0;
4803 } else {
4804 mmu_idx = ARMMMUIdx_E10_0;
4807 return tlbbits_for_regime(env, mmu_idx, addr);
4810 static int vae2_tlbbits(CPUARMState *env, uint64_t addr)
4812 uint64_t hcr = arm_hcr_el2_eff(env);
4813 ARMMMUIdx mmu_idx;
4816 * Only the regime of the mmu_idx below is significant.
4817 * Regime EL2&0 has two ranges with separate TBI configuration, while EL2
4818 * only has one.
4820 if (hcr & HCR_E2H) {
4821 mmu_idx = ARMMMUIdx_E20_2;
4822 } else {
4823 mmu_idx = ARMMMUIdx_E2;
4826 return tlbbits_for_regime(env, mmu_idx, addr);
4829 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4830 uint64_t value)
4832 CPUState *cs = env_cpu(env);
4833 int mask = vae1_tlbmask(env);
4835 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4838 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4839 uint64_t value)
4841 CPUState *cs = env_cpu(env);
4842 int mask = vae1_tlbmask(env);
4844 if (tlb_force_broadcast(env)) {
4845 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4846 } else {
4847 tlb_flush_by_mmuidx(cs, mask);
4851 static int e2_tlbmask(CPUARMState *env)
4853 return (ARMMMUIdxBit_E20_0 |
4854 ARMMMUIdxBit_E20_2 |
4855 ARMMMUIdxBit_E20_2_PAN |
4856 ARMMMUIdxBit_E2);
4859 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4860 uint64_t value)
4862 CPUState *cs = env_cpu(env);
4863 int mask = alle1_tlbmask(env);
4865 tlb_flush_by_mmuidx(cs, mask);
4868 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4869 uint64_t value)
4871 CPUState *cs = env_cpu(env);
4872 int mask = e2_tlbmask(env);
4874 tlb_flush_by_mmuidx(cs, mask);
4877 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4878 uint64_t value)
4880 ARMCPU *cpu = env_archcpu(env);
4881 CPUState *cs = CPU(cpu);
4883 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
4886 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4887 uint64_t value)
4889 CPUState *cs = env_cpu(env);
4890 int mask = alle1_tlbmask(env);
4892 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4895 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4896 uint64_t value)
4898 CPUState *cs = env_cpu(env);
4899 int mask = e2_tlbmask(env);
4901 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4904 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4905 uint64_t value)
4907 CPUState *cs = env_cpu(env);
4909 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
4912 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4913 uint64_t value)
4916 * Invalidate by VA, EL2
4917 * Currently handles both VAE2 and VALE2, since we don't support
4918 * flush-last-level-only.
4920 CPUState *cs = env_cpu(env);
4921 int mask = vae2_tlbmask(env);
4922 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4923 int bits = vae2_tlbbits(env, pageaddr);
4925 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4928 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4929 uint64_t value)
4932 * Invalidate by VA, EL3
4933 * Currently handles both VAE3 and VALE3, since we don't support
4934 * flush-last-level-only.
4936 ARMCPU *cpu = env_archcpu(env);
4937 CPUState *cs = CPU(cpu);
4938 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4940 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
4943 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4944 uint64_t value)
4946 CPUState *cs = env_cpu(env);
4947 int mask = vae1_tlbmask(env);
4948 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4949 int bits = vae1_tlbbits(env, pageaddr);
4951 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4954 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4955 uint64_t value)
4958 * Invalidate by VA, EL1&0 (AArch64 version).
4959 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4960 * since we don't support flush-for-specific-ASID-only or
4961 * flush-last-level-only.
4963 CPUState *cs = env_cpu(env);
4964 int mask = vae1_tlbmask(env);
4965 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4966 int bits = vae1_tlbbits(env, pageaddr);
4968 if (tlb_force_broadcast(env)) {
4969 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4970 } else {
4971 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4975 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4976 uint64_t value)
4978 CPUState *cs = env_cpu(env);
4979 int mask = vae2_tlbmask(env);
4980 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4981 int bits = vae2_tlbbits(env, pageaddr);
4983 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4986 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4987 uint64_t value)
4989 CPUState *cs = env_cpu(env);
4990 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4991 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
4993 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4994 ARMMMUIdxBit_E3, bits);
4997 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
5000 * The MSB of value is the NS field, which only applies if SEL2
5001 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
5003 return (value >= 0
5004 && cpu_isar_feature(aa64_sel2, env_archcpu(env))
5005 && arm_is_secure_below_el3(env)
5006 ? ARMMMUIdxBit_Stage2_S
5007 : ARMMMUIdxBit_Stage2);
5010 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5011 uint64_t value)
5013 CPUState *cs = env_cpu(env);
5014 int mask = ipas2e1_tlbmask(env, value);
5015 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5017 if (tlb_force_broadcast(env)) {
5018 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
5019 } else {
5020 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
5024 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5025 uint64_t value)
5027 CPUState *cs = env_cpu(env);
5028 int mask = ipas2e1_tlbmask(env, value);
5029 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5031 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
5034 #ifdef TARGET_AARCH64
5035 typedef struct {
5036 uint64_t base;
5037 uint64_t length;
5038 } TLBIRange;
5040 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
5043 * Note that the TLBI range TG field encoding differs from both
5044 * TG0 and TG1 encodings.
5046 switch (tg) {
5047 case 1:
5048 return Gran4K;
5049 case 2:
5050 return Gran16K;
5051 case 3:
5052 return Gran64K;
5053 default:
5054 return GranInvalid;
5058 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
5059 uint64_t value)
5061 unsigned int page_size_granule, page_shift, num, scale, exponent;
5062 /* Extract one bit to represent the va selector in use. */
5063 uint64_t select = sextract64(value, 36, 1);
5064 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false);
5065 TLBIRange ret = { };
5066 ARMGranuleSize gran;
5068 page_size_granule = extract64(value, 46, 2);
5069 gran = tlbi_range_tg_to_gran_size(page_size_granule);
5071 /* The granule encoded in value must match the granule in use. */
5072 if (gran != param.gran) {
5073 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
5074 page_size_granule);
5075 return ret;
5078 page_shift = arm_granule_bits(gran);
5079 num = extract64(value, 39, 5);
5080 scale = extract64(value, 44, 2);
5081 exponent = (5 * scale) + 1;
5083 ret.length = (num + 1) << (exponent + page_shift);
5085 if (param.select) {
5086 ret.base = sextract64(value, 0, 37);
5087 } else {
5088 ret.base = extract64(value, 0, 37);
5090 if (param.ds) {
5092 * With DS=1, BaseADDR is always shifted 16 so that it is able
5093 * to address all 52 va bits. The input address is perforce
5094 * aligned on a 64k boundary regardless of translation granule.
5096 page_shift = 16;
5098 ret.base <<= page_shift;
5100 return ret;
5103 static void do_rvae_write(CPUARMState *env, uint64_t value,
5104 int idxmap, bool synced)
5106 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
5107 TLBIRange range;
5108 int bits;
5110 range = tlbi_aa64_get_range(env, one_idx, value);
5111 bits = tlbbits_for_regime(env, one_idx, range.base);
5113 if (synced) {
5114 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
5115 range.base,
5116 range.length,
5117 idxmap,
5118 bits);
5119 } else {
5120 tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
5121 range.length, idxmap, bits);
5125 static void tlbi_aa64_rvae1_write(CPUARMState *env,
5126 const ARMCPRegInfo *ri,
5127 uint64_t value)
5130 * Invalidate by VA range, EL1&0.
5131 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
5132 * since we don't support flush-for-specific-ASID-only or
5133 * flush-last-level-only.
5136 do_rvae_write(env, value, vae1_tlbmask(env),
5137 tlb_force_broadcast(env));
5140 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
5141 const ARMCPRegInfo *ri,
5142 uint64_t value)
5145 * Invalidate by VA range, Inner/Outer Shareable EL1&0.
5146 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
5147 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
5148 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
5149 * shareable specific flushes.
5152 do_rvae_write(env, value, vae1_tlbmask(env), true);
5155 static void tlbi_aa64_rvae2_write(CPUARMState *env,
5156 const ARMCPRegInfo *ri,
5157 uint64_t value)
5160 * Invalidate by VA range, EL2.
5161 * Currently handles all of RVAE2 and RVALE2,
5162 * since we don't support flush-for-specific-ASID-only or
5163 * flush-last-level-only.
5166 do_rvae_write(env, value, vae2_tlbmask(env),
5167 tlb_force_broadcast(env));
5172 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
5173 const ARMCPRegInfo *ri,
5174 uint64_t value)
5177 * Invalidate by VA range, Inner/Outer Shareable, EL2.
5178 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
5179 * since we don't support flush-for-specific-ASID-only,
5180 * flush-last-level-only or inner/outer shareable specific flushes.
5183 do_rvae_write(env, value, vae2_tlbmask(env), true);
5187 static void tlbi_aa64_rvae3_write(CPUARMState *env,
5188 const ARMCPRegInfo *ri,
5189 uint64_t value)
5192 * Invalidate by VA range, EL3.
5193 * Currently handles all of RVAE3 and RVALE3,
5194 * since we don't support flush-for-specific-ASID-only or
5195 * flush-last-level-only.
5198 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
5201 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
5202 const ARMCPRegInfo *ri,
5203 uint64_t value)
5206 * Invalidate by VA range, EL3, Inner/Outer Shareable.
5207 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
5208 * since we don't support flush-for-specific-ASID-only,
5209 * flush-last-level-only or inner/outer specific flushes.
5212 do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
5215 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5216 uint64_t value)
5218 do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
5219 tlb_force_broadcast(env));
5222 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
5223 const ARMCPRegInfo *ri,
5224 uint64_t value)
5226 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
5228 #endif
5230 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
5231 bool isread)
5233 int cur_el = arm_current_el(env);
5235 if (cur_el < 2) {
5236 uint64_t hcr = arm_hcr_el2_eff(env);
5238 if (cur_el == 0) {
5239 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5240 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
5241 return CP_ACCESS_TRAP_EL2;
5243 } else {
5244 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
5245 return CP_ACCESS_TRAP;
5247 if (hcr & HCR_TDZ) {
5248 return CP_ACCESS_TRAP_EL2;
5251 } else if (hcr & HCR_TDZ) {
5252 return CP_ACCESS_TRAP_EL2;
5255 return CP_ACCESS_OK;
5258 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
5260 ARMCPU *cpu = env_archcpu(env);
5261 int dzp_bit = 1 << 4;
5263 /* DZP indicates whether DC ZVA access is allowed */
5264 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
5265 dzp_bit = 0;
5267 return cpu->dcz_blocksize | dzp_bit;
5270 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5271 bool isread)
5273 if (!(env->pstate & PSTATE_SP)) {
5275 * Access to SP_EL0 is undefined if it's being used as
5276 * the stack pointer.
5278 return CP_ACCESS_TRAP_UNCATEGORIZED;
5280 return CP_ACCESS_OK;
5283 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
5285 return env->pstate & PSTATE_SP;
5288 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5290 update_spsel(env, val);
5293 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5294 uint64_t value)
5296 ARMCPU *cpu = env_archcpu(env);
5298 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
5299 /* M bit is RAZ/WI for PMSA with no MPU implemented */
5300 value &= ~SCTLR_M;
5303 /* ??? Lots of these bits are not implemented. */
5305 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5306 if (ri->opc1 == 6) { /* SCTLR_EL3 */
5307 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5308 } else {
5309 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5310 SCTLR_ATA0 | SCTLR_ATA);
5314 if (raw_read(env, ri) == value) {
5316 * Skip the TLB flush if nothing actually changed; Linux likes
5317 * to do a lot of pointless SCTLR writes.
5319 return;
5322 raw_write(env, ri, value);
5324 /* This may enable/disable the MMU, so do a TLB flush. */
5325 tlb_flush(CPU(cpu));
5327 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) {
5329 * Normally we would always end the TB on an SCTLR write; see the
5330 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5331 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5332 * of hflags from the translator, so do it here.
5334 arm_rebuild_hflags(env);
5338 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5339 uint64_t value)
5342 * Some MDCR_EL3 bits affect whether PMU counters are running:
5343 * if we are trying to change any of those then we must
5344 * bracket this update with PMU start/finish calls.
5346 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
5348 if (pmu_op) {
5349 pmu_op_start(env);
5351 env->cp15.mdcr_el3 = value;
5352 if (pmu_op) {
5353 pmu_op_finish(env);
5357 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5358 uint64_t value)
5360 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
5361 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
5364 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5365 uint64_t value)
5368 * Some MDCR_EL2 bits affect whether PMU counters are running:
5369 * if we are trying to change any of those then we must
5370 * bracket this update with PMU start/finish calls.
5372 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
5374 if (pmu_op) {
5375 pmu_op_start(env);
5377 env->cp15.mdcr_el2 = value;
5378 if (pmu_op) {
5379 pmu_op_finish(env);
5383 static CPAccessResult access_nv1(CPUARMState *env, const ARMCPRegInfo *ri,
5384 bool isread)
5386 if (arm_current_el(env) == 1) {
5387 uint64_t hcr_nv = arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1 | HCR_NV2);
5389 if (hcr_nv == (HCR_NV | HCR_NV1)) {
5390 return CP_ACCESS_TRAP_EL2;
5393 return CP_ACCESS_OK;
5396 #ifdef CONFIG_USER_ONLY
5398 * `IC IVAU` is handled to improve compatibility with JITs that dual-map their
5399 * code to get around W^X restrictions, where one region is writable and the
5400 * other is executable.
5402 * Since the executable region is never written to we cannot detect code
5403 * changes when running in user mode, and rely on the emulated JIT telling us
5404 * that the code has changed by executing this instruction.
5406 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri,
5407 uint64_t value)
5409 uint64_t icache_line_mask, start_address, end_address;
5410 const ARMCPU *cpu;
5412 cpu = env_archcpu(env);
5414 icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1;
5415 start_address = value & ~icache_line_mask;
5416 end_address = value | icache_line_mask;
5418 mmap_lock();
5420 tb_invalidate_phys_range(start_address, end_address);
5422 mmap_unlock();
5424 #endif
5426 static const ARMCPRegInfo v8_cp_reginfo[] = {
5428 * Minimal set of EL0-visible registers. This will need to be expanded
5429 * significantly for system emulation of AArch64 CPUs.
5431 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5432 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5433 .access = PL0_RW, .type = ARM_CP_NZCV },
5434 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5435 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5436 .type = ARM_CP_NO_RAW,
5437 .access = PL0_RW, .accessfn = aa64_daif_access,
5438 .fieldoffset = offsetof(CPUARMState, daif),
5439 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5440 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5441 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5442 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5443 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5444 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5445 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5446 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5447 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5448 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5449 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5450 .access = PL0_R, .type = ARM_CP_NO_RAW,
5451 .fgt = FGT_DCZID_EL0,
5452 .readfn = aa64_dczid_read },
5453 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5454 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5455 .access = PL0_W, .type = ARM_CP_DC_ZVA,
5456 #ifndef CONFIG_USER_ONLY
5457 /* Avoid overhead of an access check that always passes in user-mode */
5458 .accessfn = aa64_zva_access,
5459 .fgt = FGT_DCZVA,
5460 #endif
5462 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5463 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5464 .access = PL1_R, .type = ARM_CP_CURRENTEL },
5466 * Instruction cache ops. All of these except `IC IVAU` NOP because we
5467 * don't emulate caches.
5469 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5470 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5471 .access = PL1_W, .type = ARM_CP_NOP,
5472 .fgt = FGT_ICIALLUIS,
5473 .accessfn = access_ticab },
5474 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5475 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5476 .access = PL1_W, .type = ARM_CP_NOP,
5477 .fgt = FGT_ICIALLU,
5478 .accessfn = access_tocu },
5479 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5480 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5481 .access = PL0_W,
5482 .fgt = FGT_ICIVAU,
5483 .accessfn = access_tocu,
5484 #ifdef CONFIG_USER_ONLY
5485 .type = ARM_CP_NO_RAW,
5486 .writefn = ic_ivau_write
5487 #else
5488 .type = ARM_CP_NOP
5489 #endif
5491 /* Cache ops: all NOPs since we don't emulate caches */
5492 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5493 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5494 .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5495 .fgt = FGT_DCIVAC,
5496 .type = ARM_CP_NOP },
5497 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5498 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5499 .fgt = FGT_DCISW,
5500 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5501 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5502 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5503 .access = PL0_W, .type = ARM_CP_NOP,
5504 .fgt = FGT_DCCVAC,
5505 .accessfn = aa64_cacheop_poc_access },
5506 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5507 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5508 .fgt = FGT_DCCSW,
5509 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5510 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5511 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5512 .access = PL0_W, .type = ARM_CP_NOP,
5513 .fgt = FGT_DCCVAU,
5514 .accessfn = access_tocu },
5515 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5516 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5517 .access = PL0_W, .type = ARM_CP_NOP,
5518 .fgt = FGT_DCCIVAC,
5519 .accessfn = aa64_cacheop_poc_access },
5520 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5521 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5522 .fgt = FGT_DCCISW,
5523 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5524 /* TLBI operations */
5525 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5526 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5527 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5528 .fgt = FGT_TLBIVMALLE1IS,
5529 .writefn = tlbi_aa64_vmalle1is_write },
5530 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5531 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5532 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5533 .fgt = FGT_TLBIVAE1IS,
5534 .writefn = tlbi_aa64_vae1is_write },
5535 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5536 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5537 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5538 .fgt = FGT_TLBIASIDE1IS,
5539 .writefn = tlbi_aa64_vmalle1is_write },
5540 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5541 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5542 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5543 .fgt = FGT_TLBIVAAE1IS,
5544 .writefn = tlbi_aa64_vae1is_write },
5545 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5546 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5547 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5548 .fgt = FGT_TLBIVALE1IS,
5549 .writefn = tlbi_aa64_vae1is_write },
5550 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5551 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5552 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5553 .fgt = FGT_TLBIVAALE1IS,
5554 .writefn = tlbi_aa64_vae1is_write },
5555 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5556 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5557 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5558 .fgt = FGT_TLBIVMALLE1,
5559 .writefn = tlbi_aa64_vmalle1_write },
5560 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5561 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5562 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5563 .fgt = FGT_TLBIVAE1,
5564 .writefn = tlbi_aa64_vae1_write },
5565 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5566 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5567 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5568 .fgt = FGT_TLBIASIDE1,
5569 .writefn = tlbi_aa64_vmalle1_write },
5570 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5571 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5572 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5573 .fgt = FGT_TLBIVAAE1,
5574 .writefn = tlbi_aa64_vae1_write },
5575 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5576 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5577 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5578 .fgt = FGT_TLBIVALE1,
5579 .writefn = tlbi_aa64_vae1_write },
5580 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5581 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5582 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5583 .fgt = FGT_TLBIVAALE1,
5584 .writefn = tlbi_aa64_vae1_write },
5585 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5586 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5587 .access = PL2_W, .type = ARM_CP_NO_RAW,
5588 .writefn = tlbi_aa64_ipas2e1is_write },
5589 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5590 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5591 .access = PL2_W, .type = ARM_CP_NO_RAW,
5592 .writefn = tlbi_aa64_ipas2e1is_write },
5593 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5594 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5595 .access = PL2_W, .type = ARM_CP_NO_RAW,
5596 .writefn = tlbi_aa64_alle1is_write },
5597 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5598 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5599 .access = PL2_W, .type = ARM_CP_NO_RAW,
5600 .writefn = tlbi_aa64_alle1is_write },
5601 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5602 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5603 .access = PL2_W, .type = ARM_CP_NO_RAW,
5604 .writefn = tlbi_aa64_ipas2e1_write },
5605 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5606 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5607 .access = PL2_W, .type = ARM_CP_NO_RAW,
5608 .writefn = tlbi_aa64_ipas2e1_write },
5609 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5610 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5611 .access = PL2_W, .type = ARM_CP_NO_RAW,
5612 .writefn = tlbi_aa64_alle1_write },
5613 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5614 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5615 .access = PL2_W, .type = ARM_CP_NO_RAW,
5616 .writefn = tlbi_aa64_alle1is_write },
5617 #ifndef CONFIG_USER_ONLY
5618 /* 64 bit address translation operations */
5619 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5620 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5621 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5622 .fgt = FGT_ATS1E1R,
5623 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5624 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5625 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5626 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5627 .fgt = FGT_ATS1E1W,
5628 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5629 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5630 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5631 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5632 .fgt = FGT_ATS1E0R,
5633 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5634 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5635 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5636 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5637 .fgt = FGT_ATS1E0W,
5638 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5639 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5640 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5641 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5642 .accessfn = at_e012_access, .writefn = ats_write64 },
5643 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5644 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5645 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5646 .accessfn = at_e012_access, .writefn = ats_write64 },
5647 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5648 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5649 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5650 .accessfn = at_e012_access, .writefn = ats_write64 },
5651 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5652 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5653 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5654 .accessfn = at_e012_access, .writefn = ats_write64 },
5655 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5656 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5657 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5658 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5659 .writefn = ats_write64 },
5660 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5661 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5662 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5663 .writefn = ats_write64 },
5664 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5665 .type = ARM_CP_ALIAS,
5666 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5667 .access = PL1_RW, .resetvalue = 0,
5668 .fgt = FGT_PAR_EL1,
5669 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5670 .writefn = par_write },
5671 #endif
5672 /* TLB invalidate last level of translation table walk */
5673 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5674 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5675 .writefn = tlbimva_is_write },
5676 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5677 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5678 .writefn = tlbimvaa_is_write },
5679 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5680 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5681 .writefn = tlbimva_write },
5682 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5683 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5684 .writefn = tlbimvaa_write },
5685 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5686 .type = ARM_CP_NO_RAW, .access = PL2_W,
5687 .writefn = tlbimva_hyp_write },
5688 { .name = "TLBIMVALHIS",
5689 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5690 .type = ARM_CP_NO_RAW, .access = PL2_W,
5691 .writefn = tlbimva_hyp_is_write },
5692 { .name = "TLBIIPAS2",
5693 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5694 .type = ARM_CP_NO_RAW, .access = PL2_W,
5695 .writefn = tlbiipas2_hyp_write },
5696 { .name = "TLBIIPAS2IS",
5697 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5698 .type = ARM_CP_NO_RAW, .access = PL2_W,
5699 .writefn = tlbiipas2is_hyp_write },
5700 { .name = "TLBIIPAS2L",
5701 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5702 .type = ARM_CP_NO_RAW, .access = PL2_W,
5703 .writefn = tlbiipas2_hyp_write },
5704 { .name = "TLBIIPAS2LIS",
5705 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5706 .type = ARM_CP_NO_RAW, .access = PL2_W,
5707 .writefn = tlbiipas2is_hyp_write },
5708 /* 32 bit cache operations */
5709 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5710 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
5711 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5712 .type = ARM_CP_NOP, .access = PL1_W },
5713 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5714 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5715 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5716 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5717 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5718 .type = ARM_CP_NOP, .access = PL1_W },
5719 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5720 .type = ARM_CP_NOP, .access = PL1_W },
5721 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5722 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5723 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5724 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5725 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5726 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5727 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5728 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5729 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5730 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5731 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5732 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5733 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5734 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5735 /* MMU Domain access control / MPU write buffer control */
5736 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5737 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5738 .writefn = dacr_write, .raw_writefn = raw_write,
5739 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5740 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5741 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5742 .type = ARM_CP_ALIAS,
5743 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5744 .access = PL1_RW, .accessfn = access_nv1,
5745 .nv2_redirect_offset = 0x230 | NV2_REDIR_NV1,
5746 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5747 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5748 .type = ARM_CP_ALIAS,
5749 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5750 .access = PL1_RW, .accessfn = access_nv1,
5751 .nv2_redirect_offset = 0x160 | NV2_REDIR_NV1,
5752 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5754 * We rely on the access checks not allowing the guest to write to the
5755 * state field when SPSel indicates that it's being used as the stack
5756 * pointer.
5758 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5759 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5760 .access = PL1_RW, .accessfn = sp_el0_access,
5761 .type = ARM_CP_ALIAS,
5762 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5763 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5764 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5765 .nv2_redirect_offset = 0x240,
5766 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
5767 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5768 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5769 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5770 .type = ARM_CP_NO_RAW,
5771 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5772 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5773 .type = ARM_CP_ALIAS,
5774 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5775 .access = PL2_RW,
5776 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5777 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5778 .type = ARM_CP_ALIAS,
5779 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5780 .access = PL2_RW,
5781 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5782 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5783 .type = ARM_CP_ALIAS,
5784 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5785 .access = PL2_RW,
5786 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5787 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5788 .type = ARM_CP_ALIAS,
5789 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5790 .access = PL2_RW,
5791 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5792 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5793 .type = ARM_CP_IO,
5794 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5795 .resetvalue = 0,
5796 .access = PL3_RW,
5797 .writefn = mdcr_el3_write,
5798 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5799 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
5800 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5801 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5802 .writefn = sdcr_write,
5803 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5806 /* These are present only when EL1 supports AArch32 */
5807 static const ARMCPRegInfo v8_aa32_el1_reginfo[] = {
5808 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5809 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5810 .access = PL2_RW,
5811 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5812 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5813 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5814 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5815 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5816 .writefn = dacr_write, .raw_writefn = raw_write,
5817 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5818 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5819 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5820 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5821 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5824 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5826 ARMCPU *cpu = env_archcpu(env);
5828 if (arm_feature(env, ARM_FEATURE_V8)) {
5829 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
5830 } else {
5831 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
5834 if (arm_feature(env, ARM_FEATURE_EL3)) {
5835 valid_mask &= ~HCR_HCD;
5836 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5838 * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5839 * However, if we're using the SMC PSCI conduit then QEMU is
5840 * effectively acting like EL3 firmware and so the guest at
5841 * EL2 should retain the ability to prevent EL1 from being
5842 * able to make SMC calls into the ersatz firmware, so in
5843 * that case HCR.TSC should be read/write.
5845 valid_mask &= ~HCR_TSC;
5848 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5849 if (cpu_isar_feature(aa64_vh, cpu)) {
5850 valid_mask |= HCR_E2H;
5852 if (cpu_isar_feature(aa64_ras, cpu)) {
5853 valid_mask |= HCR_TERR | HCR_TEA;
5855 if (cpu_isar_feature(aa64_lor, cpu)) {
5856 valid_mask |= HCR_TLOR;
5858 if (cpu_isar_feature(aa64_pauth, cpu)) {
5859 valid_mask |= HCR_API | HCR_APK;
5861 if (cpu_isar_feature(aa64_mte, cpu)) {
5862 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5864 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
5865 valid_mask |= HCR_ENSCXT;
5867 if (cpu_isar_feature(aa64_fwb, cpu)) {
5868 valid_mask |= HCR_FWB;
5870 if (cpu_isar_feature(aa64_rme, cpu)) {
5871 valid_mask |= HCR_GPF;
5873 if (cpu_isar_feature(aa64_nv, cpu)) {
5874 valid_mask |= HCR_NV | HCR_NV1 | HCR_AT;
5876 if (cpu_isar_feature(aa64_nv2, cpu)) {
5877 valid_mask |= HCR_NV2;
5881 if (cpu_isar_feature(any_evt, cpu)) {
5882 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
5883 } else if (cpu_isar_feature(any_half_evt, cpu)) {
5884 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
5887 /* Clear RES0 bits. */
5888 value &= valid_mask;
5891 * These bits change the MMU setup:
5892 * HCR_VM enables stage 2 translation
5893 * HCR_PTW forbids certain page-table setups
5894 * HCR_DC disables stage1 and enables stage2 translation
5895 * HCR_DCT enables tagging on (disabled) stage1 translation
5896 * HCR_FWB changes the interpretation of stage2 descriptor bits
5897 * HCR_NV and HCR_NV1 affect interpretation of descriptor bits
5899 if ((env->cp15.hcr_el2 ^ value) &
5900 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB | HCR_NV | HCR_NV1)) {
5901 tlb_flush(CPU(cpu));
5903 env->cp15.hcr_el2 = value;
5906 * Updates to VI and VF require us to update the status of
5907 * virtual interrupts, which are the logical OR of these bits
5908 * and the state of the input lines from the GIC. (This requires
5909 * that we have the BQL, which is done by marking the
5910 * reginfo structs as ARM_CP_IO.)
5911 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5912 * possible for it to be taken immediately, because VIRQ and
5913 * VFIQ are masked unless running at EL0 or EL1, and HCR
5914 * can only be written at EL2.
5916 g_assert(bql_locked());
5917 arm_cpu_update_virq(cpu);
5918 arm_cpu_update_vfiq(cpu);
5919 arm_cpu_update_vserr(cpu);
5922 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5924 do_hcr_write(env, value, 0);
5927 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5928 uint64_t value)
5930 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5931 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5932 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5935 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5936 uint64_t value)
5938 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5939 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5940 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5944 * Return the effective value of HCR_EL2, at the given security state.
5945 * Bits that are not included here:
5946 * RW (read from SCR_EL3.RW as needed)
5948 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space)
5950 uint64_t ret = env->cp15.hcr_el2;
5952 assert(space != ARMSS_Root);
5954 if (!arm_is_el2_enabled_secstate(env, space)) {
5956 * "This register has no effect if EL2 is not enabled in the
5957 * current Security state". This is ARMv8.4-SecEL2 speak for
5958 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5960 * Prior to that, the language was "In an implementation that
5961 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5962 * as if this field is 0 for all purposes other than a direct
5963 * read or write access of HCR_EL2". With lots of enumeration
5964 * on a per-field basis. In current QEMU, this is condition
5965 * is arm_is_secure_below_el3.
5967 * Since the v8.4 language applies to the entire register, and
5968 * appears to be backward compatible, use that.
5970 return 0;
5974 * For a cpu that supports both aarch64 and aarch32, we can set bits
5975 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5976 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5978 if (!arm_el_is_aa64(env, 2)) {
5979 uint64_t aa32_valid;
5982 * These bits are up-to-date as of ARMv8.6.
5983 * For HCR, it's easiest to list just the 2 bits that are invalid.
5984 * For HCR2, list those that are valid.
5986 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5987 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5988 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5989 ret &= aa32_valid;
5992 if (ret & HCR_TGE) {
5993 /* These bits are up-to-date as of ARMv8.6. */
5994 if (ret & HCR_E2H) {
5995 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5996 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5997 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5998 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5999 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
6000 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
6001 } else {
6002 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
6004 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
6005 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
6006 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
6007 HCR_TLOR);
6010 return ret;
6013 uint64_t arm_hcr_el2_eff(CPUARMState *env)
6015 if (arm_feature(env, ARM_FEATURE_M)) {
6016 return 0;
6018 return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env));
6022 * Corresponds to ARM pseudocode function ELIsInHost().
6024 bool el_is_in_host(CPUARMState *env, int el)
6026 uint64_t mask;
6029 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
6030 * Perform the simplest bit tests first, and validate EL2 afterward.
6032 if (el & 1) {
6033 return false; /* EL1 or EL3 */
6037 * Note that hcr_write() checks isar_feature_aa64_vh(),
6038 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
6040 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
6041 if ((env->cp15.hcr_el2 & mask) != mask) {
6042 return false;
6045 /* TGE and/or E2H set: double check those bits are currently legal. */
6046 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
6049 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
6050 uint64_t value)
6052 uint64_t valid_mask = 0;
6054 /* FEAT_MOPS adds MSCEn and MCE2 */
6055 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
6056 valid_mask |= HCRX_MSCEN | HCRX_MCE2;
6059 /* Clear RES0 bits. */
6060 env->cp15.hcrx_el2 = value & valid_mask;
6063 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
6064 bool isread)
6066 if (arm_current_el(env) == 2
6067 && arm_feature(env, ARM_FEATURE_EL3)
6068 && !(env->cp15.scr_el3 & SCR_HXEN)) {
6069 return CP_ACCESS_TRAP_EL3;
6071 return CP_ACCESS_OK;
6074 static const ARMCPRegInfo hcrx_el2_reginfo = {
6075 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
6076 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
6077 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
6078 .nv2_redirect_offset = 0xa0,
6079 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
6082 /* Return the effective value of HCRX_EL2. */
6083 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
6086 * The bits in this register behave as 0 for all purposes other than
6087 * direct reads of the register if SCR_EL3.HXEn is 0.
6088 * If EL2 is not enabled in the current security state, then the
6089 * bit may behave as if 0, or as if 1, depending on the bit.
6090 * For the moment, we treat the EL2-disabled case as taking
6091 * priority over the HXEn-disabled case. This is true for the only
6092 * bit for a feature which we implement where the answer is different
6093 * for the two cases (MSCEn for FEAT_MOPS).
6094 * This may need to be revisited for future bits.
6096 if (!arm_is_el2_enabled(env)) {
6097 uint64_t hcrx = 0;
6098 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
6099 /* MSCEn behaves as 1 if EL2 is not enabled */
6100 hcrx |= HCRX_MSCEN;
6102 return hcrx;
6104 if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) {
6105 return 0;
6107 return env->cp15.hcrx_el2;
6110 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
6111 uint64_t value)
6114 * For A-profile AArch32 EL3, if NSACR.CP10
6115 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6117 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6118 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6119 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6120 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
6122 env->cp15.cptr_el[2] = value;
6125 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
6128 * For A-profile AArch32 EL3, if NSACR.CP10
6129 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6131 uint64_t value = env->cp15.cptr_el[2];
6133 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6134 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6135 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6137 return value;
6140 static const ARMCPRegInfo el2_cp_reginfo[] = {
6141 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
6142 .type = ARM_CP_IO,
6143 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6144 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6145 .nv2_redirect_offset = 0x78,
6146 .writefn = hcr_write, .raw_writefn = raw_write },
6147 { .name = "HCR", .state = ARM_CP_STATE_AA32,
6148 .type = ARM_CP_ALIAS | ARM_CP_IO,
6149 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6150 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6151 .writefn = hcr_writelow },
6152 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
6153 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
6154 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
6155 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
6156 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT,
6157 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
6158 .access = PL2_RW,
6159 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
6160 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
6161 .type = ARM_CP_NV2_REDIRECT,
6162 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
6163 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
6164 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
6165 .type = ARM_CP_NV2_REDIRECT,
6166 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
6167 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
6168 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
6169 .type = ARM_CP_ALIAS,
6170 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
6171 .access = PL2_RW,
6172 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
6173 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
6174 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT,
6175 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
6176 .access = PL2_RW,
6177 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
6178 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
6179 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
6180 .access = PL2_RW, .writefn = vbar_write,
6181 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
6182 .resetvalue = 0 },
6183 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
6184 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
6185 .access = PL3_RW, .type = ARM_CP_ALIAS,
6186 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
6187 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
6188 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
6189 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
6190 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
6191 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
6192 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
6193 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
6194 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
6195 .resetvalue = 0 },
6196 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
6197 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
6198 .access = PL2_RW, .type = ARM_CP_ALIAS,
6199 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
6200 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
6201 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
6202 .access = PL2_RW, .type = ARM_CP_CONST,
6203 .resetvalue = 0 },
6204 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
6205 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
6206 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
6207 .access = PL2_RW, .type = ARM_CP_CONST,
6208 .resetvalue = 0 },
6209 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
6210 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
6211 .access = PL2_RW, .type = ARM_CP_CONST,
6212 .resetvalue = 0 },
6213 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
6214 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
6215 .access = PL2_RW, .type = ARM_CP_CONST,
6216 .resetvalue = 0 },
6217 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
6218 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
6219 .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
6220 .raw_writefn = raw_write,
6221 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
6222 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
6223 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6224 .type = ARM_CP_ALIAS,
6225 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6226 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
6227 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
6228 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6229 .access = PL2_RW,
6230 .nv2_redirect_offset = 0x40,
6231 /* no .writefn needed as this can't cause an ASID change */
6232 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
6233 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
6234 .cp = 15, .opc1 = 6, .crm = 2,
6235 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6236 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6237 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
6238 .writefn = vttbr_write, .raw_writefn = raw_write },
6239 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
6240 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
6241 .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write,
6242 .nv2_redirect_offset = 0x20,
6243 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
6244 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
6245 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
6246 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
6247 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
6248 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6249 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
6250 .access = PL2_RW, .resetvalue = 0,
6251 .nv2_redirect_offset = 0x90,
6252 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
6253 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
6254 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
6255 .access = PL2_RW, .resetvalue = 0,
6256 .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write,
6257 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6258 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
6259 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6260 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6261 { .name = "TLBIALLNSNH",
6262 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
6263 .type = ARM_CP_NO_RAW, .access = PL2_W,
6264 .writefn = tlbiall_nsnh_write },
6265 { .name = "TLBIALLNSNHIS",
6266 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
6267 .type = ARM_CP_NO_RAW, .access = PL2_W,
6268 .writefn = tlbiall_nsnh_is_write },
6269 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6270 .type = ARM_CP_NO_RAW, .access = PL2_W,
6271 .writefn = tlbiall_hyp_write },
6272 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6273 .type = ARM_CP_NO_RAW, .access = PL2_W,
6274 .writefn = tlbiall_hyp_is_write },
6275 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6276 .type = ARM_CP_NO_RAW, .access = PL2_W,
6277 .writefn = tlbimva_hyp_write },
6278 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6279 .type = ARM_CP_NO_RAW, .access = PL2_W,
6280 .writefn = tlbimva_hyp_is_write },
6281 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
6282 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6283 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6284 .writefn = tlbi_aa64_alle2_write },
6285 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
6286 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6287 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6288 .writefn = tlbi_aa64_vae2_write },
6289 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
6290 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
6291 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6292 .writefn = tlbi_aa64_vae2_write },
6293 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
6294 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6295 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6296 .writefn = tlbi_aa64_alle2is_write },
6297 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
6298 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6299 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6300 .writefn = tlbi_aa64_vae2is_write },
6301 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
6302 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
6303 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6304 .writefn = tlbi_aa64_vae2is_write },
6305 #ifndef CONFIG_USER_ONLY
6307 * Unlike the other EL2-related AT operations, these must
6308 * UNDEF from EL3 if EL2 is not implemented, which is why we
6309 * define them here rather than with the rest of the AT ops.
6311 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
6312 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6313 .access = PL2_W, .accessfn = at_s1e2_access,
6314 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6315 .writefn = ats_write64 },
6316 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
6317 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6318 .access = PL2_W, .accessfn = at_s1e2_access,
6319 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6320 .writefn = ats_write64 },
6322 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
6323 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
6324 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
6325 * to behave as if SCR.NS was 1.
6327 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6328 .access = PL2_W,
6329 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6330 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6331 .access = PL2_W,
6332 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6333 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
6334 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
6336 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
6337 * reset values as IMPDEF. We choose to reset to 3 to comply with
6338 * both ARMv7 and ARMv8.
6340 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3,
6341 .writefn = gt_cnthctl_write, .raw_writefn = raw_write,
6342 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
6343 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
6344 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
6345 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
6346 .writefn = gt_cntvoff_write,
6347 .nv2_redirect_offset = 0x60,
6348 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6349 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
6350 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
6351 .writefn = gt_cntvoff_write,
6352 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6353 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6354 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
6355 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6356 .type = ARM_CP_IO, .access = PL2_RW,
6357 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6358 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
6359 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6360 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
6361 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6362 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6363 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
6364 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6365 .resetfn = gt_hyp_timer_reset,
6366 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
6367 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6368 .type = ARM_CP_IO,
6369 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
6370 .access = PL2_RW,
6371 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
6372 .resetvalue = 0,
6373 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
6374 #endif
6375 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
6376 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6377 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6378 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6379 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
6380 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6381 .access = PL2_RW,
6382 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6383 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
6384 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
6385 .access = PL2_RW,
6386 .nv2_redirect_offset = 0x80,
6387 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
6390 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
6391 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
6392 .type = ARM_CP_ALIAS | ARM_CP_IO,
6393 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
6394 .access = PL2_RW,
6395 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
6396 .writefn = hcr_writehigh },
6399 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
6400 bool isread)
6402 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
6403 return CP_ACCESS_OK;
6405 return CP_ACCESS_TRAP_UNCATEGORIZED;
6408 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
6409 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
6410 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
6411 .access = PL2_RW, .accessfn = sel2_access,
6412 .nv2_redirect_offset = 0x30,
6413 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
6414 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
6415 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
6416 .access = PL2_RW, .accessfn = sel2_access,
6417 .nv2_redirect_offset = 0x48,
6418 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
6421 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
6422 bool isread)
6425 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
6426 * At Secure EL1 it traps to EL3 or EL2.
6428 if (arm_current_el(env) == 3) {
6429 return CP_ACCESS_OK;
6431 if (arm_is_secure_below_el3(env)) {
6432 if (env->cp15.scr_el3 & SCR_EEL2) {
6433 return CP_ACCESS_TRAP_EL2;
6435 return CP_ACCESS_TRAP_EL3;
6437 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
6438 if (isread) {
6439 return CP_ACCESS_OK;
6441 return CP_ACCESS_TRAP_UNCATEGORIZED;
6444 static const ARMCPRegInfo el3_cp_reginfo[] = {
6445 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6446 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6447 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6448 .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write },
6449 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6450 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6451 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6452 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6453 .writefn = scr_write, .raw_writefn = raw_write },
6454 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6455 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6456 .access = PL3_RW, .resetvalue = 0,
6457 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6458 { .name = "SDER",
6459 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6460 .access = PL3_RW, .resetvalue = 0,
6461 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6462 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6463 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6464 .writefn = vbar_write, .resetvalue = 0,
6465 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6466 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6467 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6468 .access = PL3_RW, .resetvalue = 0,
6469 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6470 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6471 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6472 .access = PL3_RW,
6473 /* no .writefn needed as this can't cause an ASID change */
6474 .resetvalue = 0,
6475 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6476 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6477 .type = ARM_CP_ALIAS,
6478 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6479 .access = PL3_RW,
6480 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6481 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6482 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6483 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6484 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6485 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6486 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6487 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6488 .type = ARM_CP_ALIAS,
6489 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6490 .access = PL3_RW,
6491 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6492 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6493 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6494 .access = PL3_RW, .writefn = vbar_write,
6495 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6496 .resetvalue = 0 },
6497 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6498 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6499 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6500 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6501 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6502 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6503 .access = PL3_RW, .resetvalue = 0,
6504 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6505 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6506 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6507 .access = PL3_RW, .type = ARM_CP_CONST,
6508 .resetvalue = 0 },
6509 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6510 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6511 .access = PL3_RW, .type = ARM_CP_CONST,
6512 .resetvalue = 0 },
6513 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6514 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6515 .access = PL3_RW, .type = ARM_CP_CONST,
6516 .resetvalue = 0 },
6517 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6518 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6519 .access = PL3_W, .type = ARM_CP_NO_RAW,
6520 .writefn = tlbi_aa64_alle3is_write },
6521 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6522 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6523 .access = PL3_W, .type = ARM_CP_NO_RAW,
6524 .writefn = tlbi_aa64_vae3is_write },
6525 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6526 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6527 .access = PL3_W, .type = ARM_CP_NO_RAW,
6528 .writefn = tlbi_aa64_vae3is_write },
6529 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6530 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6531 .access = PL3_W, .type = ARM_CP_NO_RAW,
6532 .writefn = tlbi_aa64_alle3_write },
6533 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6534 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6535 .access = PL3_W, .type = ARM_CP_NO_RAW,
6536 .writefn = tlbi_aa64_vae3_write },
6537 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6538 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6539 .access = PL3_W, .type = ARM_CP_NO_RAW,
6540 .writefn = tlbi_aa64_vae3_write },
6543 #ifndef CONFIG_USER_ONLY
6545 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
6546 bool isread)
6548 if (arm_current_el(env) == 1) {
6549 /* This must be a FEAT_NV access */
6550 /* TODO: FEAT_ECV will need to check CNTHCTL_EL2 here */
6551 return CP_ACCESS_OK;
6553 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
6554 return CP_ACCESS_TRAP_UNCATEGORIZED;
6556 return CP_ACCESS_OK;
6559 /* Test if system register redirection is to occur in the current state. */
6560 static bool redirect_for_e2h(CPUARMState *env)
6562 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6565 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6567 CPReadFn *readfn;
6569 if (redirect_for_e2h(env)) {
6570 /* Switch to the saved EL2 version of the register. */
6571 ri = ri->opaque;
6572 readfn = ri->readfn;
6573 } else {
6574 readfn = ri->orig_readfn;
6576 if (readfn == NULL) {
6577 readfn = raw_read;
6579 return readfn(env, ri);
6582 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6583 uint64_t value)
6585 CPWriteFn *writefn;
6587 if (redirect_for_e2h(env)) {
6588 /* Switch to the saved EL2 version of the register. */
6589 ri = ri->opaque;
6590 writefn = ri->writefn;
6591 } else {
6592 writefn = ri->orig_writefn;
6594 if (writefn == NULL) {
6595 writefn = raw_write;
6597 writefn(env, ri, value);
6600 static uint64_t el2_e2h_e12_read(CPUARMState *env, const ARMCPRegInfo *ri)
6602 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */
6603 return ri->orig_readfn(env, ri->opaque);
6606 static void el2_e2h_e12_write(CPUARMState *env, const ARMCPRegInfo *ri,
6607 uint64_t value)
6609 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */
6610 return ri->orig_writefn(env, ri->opaque, value);
6613 static CPAccessResult el2_e2h_e12_access(CPUARMState *env,
6614 const ARMCPRegInfo *ri,
6615 bool isread)
6617 if (arm_current_el(env) == 1) {
6619 * This must be a FEAT_NV access (will either trap or redirect
6620 * to memory). None of the registers with _EL12 aliases want to
6621 * apply their trap controls for this kind of access, so don't
6622 * call the orig_accessfn or do the "UNDEF when E2H is 0" check.
6624 return CP_ACCESS_OK;
6626 /* FOO_EL12 aliases only exist when E2H is 1; otherwise they UNDEF */
6627 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
6628 return CP_ACCESS_TRAP_UNCATEGORIZED;
6630 if (ri->orig_accessfn) {
6631 return ri->orig_accessfn(env, ri->opaque, isread);
6633 return CP_ACCESS_OK;
6636 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6638 struct E2HAlias {
6639 uint32_t src_key, dst_key, new_key;
6640 const char *src_name, *dst_name, *new_name;
6641 bool (*feature)(const ARMISARegisters *id);
6644 #define K(op0, op1, crn, crm, op2) \
6645 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6647 static const struct E2HAlias aliases[] = {
6648 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
6649 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6650 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
6651 "CPACR", "CPTR_EL2", "CPACR_EL12" },
6652 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
6653 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6654 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
6655 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6656 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
6657 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6658 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
6659 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6660 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
6661 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6662 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
6663 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6664 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
6665 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6666 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
6667 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6668 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
6669 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6670 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6671 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6672 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6673 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6674 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6675 "VBAR", "VBAR_EL2", "VBAR_EL12" },
6676 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6677 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6678 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6679 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6682 * Note that redirection of ZCR is mentioned in the description
6683 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6684 * not in the summary table.
6686 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
6687 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6688 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6),
6689 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
6691 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
6692 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6694 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
6695 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
6696 isar_feature_aa64_scxtnum },
6698 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6699 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6701 #undef K
6703 size_t i;
6705 for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6706 const struct E2HAlias *a = &aliases[i];
6707 ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
6708 bool ok;
6710 if (a->feature && !a->feature(&cpu->isar)) {
6711 continue;
6714 src_reg = g_hash_table_lookup(cpu->cp_regs,
6715 (gpointer)(uintptr_t)a->src_key);
6716 dst_reg = g_hash_table_lookup(cpu->cp_regs,
6717 (gpointer)(uintptr_t)a->dst_key);
6718 g_assert(src_reg != NULL);
6719 g_assert(dst_reg != NULL);
6721 /* Cross-compare names to detect typos in the keys. */
6722 g_assert(strcmp(src_reg->name, a->src_name) == 0);
6723 g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6725 /* None of the core system registers use opaque; we will. */
6726 g_assert(src_reg->opaque == NULL);
6728 /* Create alias before redirection so we dup the right data. */
6729 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6731 new_reg->name = a->new_name;
6732 new_reg->type |= ARM_CP_ALIAS;
6733 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
6734 new_reg->access &= PL2_RW | PL3_RW;
6735 /* The new_reg op fields are as per new_key, not the target reg */
6736 new_reg->crn = (a->new_key & CP_REG_ARM64_SYSREG_CRN_MASK)
6737 >> CP_REG_ARM64_SYSREG_CRN_SHIFT;
6738 new_reg->crm = (a->new_key & CP_REG_ARM64_SYSREG_CRM_MASK)
6739 >> CP_REG_ARM64_SYSREG_CRM_SHIFT;
6740 new_reg->opc0 = (a->new_key & CP_REG_ARM64_SYSREG_OP0_MASK)
6741 >> CP_REG_ARM64_SYSREG_OP0_SHIFT;
6742 new_reg->opc1 = (a->new_key & CP_REG_ARM64_SYSREG_OP1_MASK)
6743 >> CP_REG_ARM64_SYSREG_OP1_SHIFT;
6744 new_reg->opc2 = (a->new_key & CP_REG_ARM64_SYSREG_OP2_MASK)
6745 >> CP_REG_ARM64_SYSREG_OP2_SHIFT;
6746 new_reg->opaque = src_reg;
6747 new_reg->orig_readfn = src_reg->readfn ?: raw_read;
6748 new_reg->orig_writefn = src_reg->writefn ?: raw_write;
6749 new_reg->orig_accessfn = src_reg->accessfn;
6750 if (!new_reg->raw_readfn) {
6751 new_reg->raw_readfn = raw_read;
6753 if (!new_reg->raw_writefn) {
6754 new_reg->raw_writefn = raw_write;
6756 new_reg->readfn = el2_e2h_e12_read;
6757 new_reg->writefn = el2_e2h_e12_write;
6758 new_reg->accessfn = el2_e2h_e12_access;
6761 * If the _EL1 register is redirected to memory by FEAT_NV2,
6762 * then it shares the offset with the _EL12 register,
6763 * and which one is redirected depends on HCR_EL2.NV1.
6765 if (new_reg->nv2_redirect_offset) {
6766 assert(new_reg->nv2_redirect_offset & NV2_REDIR_NV1);
6767 new_reg->nv2_redirect_offset &= ~NV2_REDIR_NV1;
6768 new_reg->nv2_redirect_offset |= NV2_REDIR_NO_NV1;
6771 ok = g_hash_table_insert(cpu->cp_regs,
6772 (gpointer)(uintptr_t)a->new_key, new_reg);
6773 g_assert(ok);
6775 src_reg->opaque = dst_reg;
6776 src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6777 src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6778 if (!src_reg->raw_readfn) {
6779 src_reg->raw_readfn = raw_read;
6781 if (!src_reg->raw_writefn) {
6782 src_reg->raw_writefn = raw_write;
6784 src_reg->readfn = el2_e2h_read;
6785 src_reg->writefn = el2_e2h_write;
6788 #endif
6790 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6791 bool isread)
6793 int cur_el = arm_current_el(env);
6795 if (cur_el < 2) {
6796 uint64_t hcr = arm_hcr_el2_eff(env);
6798 if (cur_el == 0) {
6799 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6800 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6801 return CP_ACCESS_TRAP_EL2;
6803 } else {
6804 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6805 return CP_ACCESS_TRAP;
6807 if (hcr & HCR_TID2) {
6808 return CP_ACCESS_TRAP_EL2;
6811 } else if (hcr & HCR_TID2) {
6812 return CP_ACCESS_TRAP_EL2;
6816 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6817 return CP_ACCESS_TRAP_EL2;
6820 return CP_ACCESS_OK;
6824 * Check for traps to RAS registers, which are controlled
6825 * by HCR_EL2.TERR and SCR_EL3.TERR.
6827 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
6828 bool isread)
6830 int el = arm_current_el(env);
6832 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
6833 return CP_ACCESS_TRAP_EL2;
6835 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
6836 return CP_ACCESS_TRAP_EL3;
6838 return CP_ACCESS_OK;
6841 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
6843 int el = arm_current_el(env);
6845 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6846 return env->cp15.vdisr_el2;
6848 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6849 return 0; /* RAZ/WI */
6851 return env->cp15.disr_el1;
6854 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6856 int el = arm_current_el(env);
6858 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6859 env->cp15.vdisr_el2 = val;
6860 return;
6862 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6863 return; /* RAZ/WI */
6865 env->cp15.disr_el1 = val;
6869 * Minimal RAS implementation with no Error Records.
6870 * Which means that all of the Error Record registers:
6871 * ERXADDR_EL1
6872 * ERXCTLR_EL1
6873 * ERXFR_EL1
6874 * ERXMISC0_EL1
6875 * ERXMISC1_EL1
6876 * ERXMISC2_EL1
6877 * ERXMISC3_EL1
6878 * ERXPFGCDN_EL1 (RASv1p1)
6879 * ERXPFGCTL_EL1 (RASv1p1)
6880 * ERXPFGF_EL1 (RASv1p1)
6881 * ERXSTATUS_EL1
6882 * and
6883 * ERRSELR_EL1
6884 * may generate UNDEFINED, which is the effect we get by not
6885 * listing them at all.
6887 * These registers have fine-grained trap bits, but UNDEF-to-EL1
6888 * is higher priority than FGT-to-EL2 so we do not need to list them
6889 * in order to check for an FGT.
6891 static const ARMCPRegInfo minimal_ras_reginfo[] = {
6892 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
6893 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
6894 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
6895 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
6896 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
6897 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
6898 .access = PL1_R, .accessfn = access_terr,
6899 .fgt = FGT_ERRIDR_EL1,
6900 .type = ARM_CP_CONST, .resetvalue = 0 },
6901 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
6902 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
6903 .nv2_redirect_offset = 0x500,
6904 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
6905 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
6906 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
6907 .nv2_redirect_offset = 0x508,
6908 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
6912 * Return the exception level to which exceptions should be taken
6913 * via SVEAccessTrap. This excludes the check for whether the exception
6914 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily
6915 * be found by testing 0 < fp_exception_el < sve_exception_el.
6917 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the
6918 * pseudocode does *not* separate out the FP trap checks, but has them
6919 * all in one function.
6921 int sve_exception_el(CPUARMState *env, int el)
6923 #ifndef CONFIG_USER_ONLY
6924 if (el <= 1 && !el_is_in_host(env, el)) {
6925 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
6926 case 1:
6927 if (el != 0) {
6928 break;
6930 /* fall through */
6931 case 0:
6932 case 2:
6933 return 1;
6937 if (el <= 2 && arm_is_el2_enabled(env)) {
6938 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6939 if (env->cp15.hcr_el2 & HCR_E2H) {
6940 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
6941 case 1:
6942 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6943 break;
6945 /* fall through */
6946 case 0:
6947 case 2:
6948 return 2;
6950 } else {
6951 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
6952 return 2;
6957 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
6958 if (arm_feature(env, ARM_FEATURE_EL3)
6959 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
6960 return 3;
6962 #endif
6963 return 0;
6967 * Return the exception level to which exceptions should be taken for SME.
6968 * C.f. the ARM pseudocode function CheckSMEAccess.
6970 int sme_exception_el(CPUARMState *env, int el)
6972 #ifndef CONFIG_USER_ONLY
6973 if (el <= 1 && !el_is_in_host(env, el)) {
6974 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
6975 case 1:
6976 if (el != 0) {
6977 break;
6979 /* fall through */
6980 case 0:
6981 case 2:
6982 return 1;
6986 if (el <= 2 && arm_is_el2_enabled(env)) {
6987 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6988 if (env->cp15.hcr_el2 & HCR_E2H) {
6989 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
6990 case 1:
6991 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6992 break;
6994 /* fall through */
6995 case 0:
6996 case 2:
6997 return 2;
6999 } else {
7000 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
7001 return 2;
7006 /* CPTR_EL3. Since ESM is negative we must check for EL3. */
7007 if (arm_feature(env, ARM_FEATURE_EL3)
7008 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7009 return 3;
7011 #endif
7012 return 0;
7016 * Given that SVE is enabled, return the vector length for EL.
7018 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
7020 ARMCPU *cpu = env_archcpu(env);
7021 uint64_t *cr = env->vfp.zcr_el;
7022 uint32_t map = cpu->sve_vq.map;
7023 uint32_t len = ARM_MAX_VQ - 1;
7025 if (sm) {
7026 cr = env->vfp.smcr_el;
7027 map = cpu->sme_vq.map;
7030 if (el <= 1 && !el_is_in_host(env, el)) {
7031 len = MIN(len, 0xf & (uint32_t)cr[1]);
7033 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
7034 len = MIN(len, 0xf & (uint32_t)cr[2]);
7036 if (arm_feature(env, ARM_FEATURE_EL3)) {
7037 len = MIN(len, 0xf & (uint32_t)cr[3]);
7040 map &= MAKE_64BIT_MASK(0, len + 1);
7041 if (map != 0) {
7042 return 31 - clz32(map);
7045 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
7046 assert(sm);
7047 return ctz32(cpu->sme_vq.map);
7050 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
7052 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
7055 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7056 uint64_t value)
7058 int cur_el = arm_current_el(env);
7059 int old_len = sve_vqm1_for_el(env, cur_el);
7060 int new_len;
7062 /* Bits other than [3:0] are RAZ/WI. */
7063 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
7064 raw_write(env, ri, value & 0xf);
7067 * Because we arrived here, we know both FP and SVE are enabled;
7068 * otherwise we would have trapped access to the ZCR_ELn register.
7070 new_len = sve_vqm1_for_el(env, cur_el);
7071 if (new_len < old_len) {
7072 aarch64_sve_narrow_vq(env, new_len + 1);
7076 static const ARMCPRegInfo zcr_reginfo[] = {
7077 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
7078 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
7079 .nv2_redirect_offset = 0x1e0 | NV2_REDIR_NV1,
7080 .access = PL1_RW, .type = ARM_CP_SVE,
7081 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
7082 .writefn = zcr_write, .raw_writefn = raw_write },
7083 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
7084 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
7085 .access = PL2_RW, .type = ARM_CP_SVE,
7086 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
7087 .writefn = zcr_write, .raw_writefn = raw_write },
7088 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
7089 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
7090 .access = PL3_RW, .type = ARM_CP_SVE,
7091 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
7092 .writefn = zcr_write, .raw_writefn = raw_write },
7095 #ifdef TARGET_AARCH64
7096 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
7097 bool isread)
7099 int el = arm_current_el(env);
7101 if (el == 0) {
7102 uint64_t sctlr = arm_sctlr(env, el);
7103 if (!(sctlr & SCTLR_EnTP2)) {
7104 return CP_ACCESS_TRAP;
7107 /* TODO: FEAT_FGT */
7108 if (el < 3
7109 && arm_feature(env, ARM_FEATURE_EL3)
7110 && !(env->cp15.scr_el3 & SCR_ENTP2)) {
7111 return CP_ACCESS_TRAP_EL3;
7113 return CP_ACCESS_OK;
7116 static CPAccessResult access_smprimap(CPUARMState *env, const ARMCPRegInfo *ri,
7117 bool isread)
7119 /* If EL1 this is a FEAT_NV access and CPTR_EL3.ESM doesn't apply */
7120 if (arm_current_el(env) == 2
7121 && arm_feature(env, ARM_FEATURE_EL3)
7122 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7123 return CP_ACCESS_TRAP_EL3;
7125 return CP_ACCESS_OK;
7128 static CPAccessResult access_smpri(CPUARMState *env, const ARMCPRegInfo *ri,
7129 bool isread)
7131 if (arm_current_el(env) < 3
7132 && arm_feature(env, ARM_FEATURE_EL3)
7133 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7134 return CP_ACCESS_TRAP_EL3;
7136 return CP_ACCESS_OK;
7139 /* ResetSVEState */
7140 static void arm_reset_sve_state(CPUARMState *env)
7142 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
7143 /* Recall that FFR is stored as pregs[16]. */
7144 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
7145 vfp_set_fpcr(env, 0x0800009f);
7148 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
7150 uint64_t change = (env->svcr ^ new) & mask;
7152 if (change == 0) {
7153 return;
7155 env->svcr ^= change;
7157 if (change & R_SVCR_SM_MASK) {
7158 arm_reset_sve_state(env);
7162 * ResetSMEState.
7164 * SetPSTATE_ZA zeros on enable and disable. We can zero this only
7165 * on enable: while disabled, the storage is inaccessible and the
7166 * value does not matter. We're not saving the storage in vmstate
7167 * when disabled either.
7169 if (change & new & R_SVCR_ZA_MASK) {
7170 memset(env->zarray, 0, sizeof(env->zarray));
7173 if (tcg_enabled()) {
7174 arm_rebuild_hflags(env);
7178 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7179 uint64_t value)
7181 aarch64_set_svcr(env, value, -1);
7184 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7185 uint64_t value)
7187 int cur_el = arm_current_el(env);
7188 int old_len = sve_vqm1_for_el(env, cur_el);
7189 int new_len;
7191 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
7192 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
7193 raw_write(env, ri, value);
7196 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
7197 * when SVL is widened (old values kept, or zeros). Choose to keep the
7198 * current values for simplicity. But for QEMU internals, we must still
7199 * apply the narrower SVL to the Zregs and Pregs -- see the comment
7200 * above aarch64_sve_narrow_vq.
7202 new_len = sve_vqm1_for_el(env, cur_el);
7203 if (new_len < old_len) {
7204 aarch64_sve_narrow_vq(env, new_len + 1);
7208 static const ARMCPRegInfo sme_reginfo[] = {
7209 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
7210 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
7211 .access = PL0_RW, .accessfn = access_tpidr2,
7212 .fgt = FGT_NTPIDR2_EL0,
7213 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
7214 { .name = "SVCR", .state = ARM_CP_STATE_AA64,
7215 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
7216 .access = PL0_RW, .type = ARM_CP_SME,
7217 .fieldoffset = offsetof(CPUARMState, svcr),
7218 .writefn = svcr_write, .raw_writefn = raw_write },
7219 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
7220 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
7221 .nv2_redirect_offset = 0x1f0 | NV2_REDIR_NV1,
7222 .access = PL1_RW, .type = ARM_CP_SME,
7223 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
7224 .writefn = smcr_write, .raw_writefn = raw_write },
7225 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
7226 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
7227 .access = PL2_RW, .type = ARM_CP_SME,
7228 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
7229 .writefn = smcr_write, .raw_writefn = raw_write },
7230 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
7231 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
7232 .access = PL3_RW, .type = ARM_CP_SME,
7233 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
7234 .writefn = smcr_write, .raw_writefn = raw_write },
7235 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
7236 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
7237 .access = PL1_R, .accessfn = access_aa64_tid1,
7239 * IMPLEMENTOR = 0 (software)
7240 * REVISION = 0 (implementation defined)
7241 * SMPS = 0 (no streaming execution priority in QEMU)
7242 * AFFINITY = 0 (streaming sve mode not shared with other PEs)
7244 .type = ARM_CP_CONST, .resetvalue = 0, },
7246 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
7248 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
7249 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
7250 .access = PL1_RW, .accessfn = access_smpri,
7251 .fgt = FGT_NSMPRI_EL1,
7252 .type = ARM_CP_CONST, .resetvalue = 0 },
7253 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
7254 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
7255 .nv2_redirect_offset = 0x1f8,
7256 .access = PL2_RW, .accessfn = access_smprimap,
7257 .type = ARM_CP_CONST, .resetvalue = 0 },
7260 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri,
7261 uint64_t value)
7263 CPUState *cs = env_cpu(env);
7265 tlb_flush(cs);
7268 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7269 uint64_t value)
7271 /* L0GPTSZ is RO; other bits not mentioned are RES0. */
7272 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK |
7273 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK |
7274 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK;
7276 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask);
7279 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
7281 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ,
7282 env_archcpu(env)->reset_l0gptsz);
7285 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri,
7286 uint64_t value)
7288 CPUState *cs = env_cpu(env);
7290 tlb_flush_all_cpus_synced(cs);
7293 static const ARMCPRegInfo rme_reginfo[] = {
7294 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64,
7295 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6,
7296 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset,
7297 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) },
7298 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64,
7299 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4,
7300 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) },
7301 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64,
7302 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5,
7303 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) },
7304 { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64,
7305 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4,
7306 .access = PL3_W, .type = ARM_CP_NO_RAW,
7307 .writefn = tlbi_aa64_paall_write },
7308 { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64,
7309 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4,
7310 .access = PL3_W, .type = ARM_CP_NO_RAW,
7311 .writefn = tlbi_aa64_paallos_write },
7313 * QEMU does not have a way to invalidate by physical address, thus
7314 * invalidating a range of physical addresses is accomplished by
7315 * flushing all tlb entries in the outer shareable domain,
7316 * just like PAALLOS.
7318 { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64,
7319 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7,
7320 .access = PL3_W, .type = ARM_CP_NO_RAW,
7321 .writefn = tlbi_aa64_paallos_write },
7322 { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64,
7323 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3,
7324 .access = PL3_W, .type = ARM_CP_NO_RAW,
7325 .writefn = tlbi_aa64_paallos_write },
7326 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64,
7327 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1,
7328 .access = PL3_W, .type = ARM_CP_NOP },
7331 static const ARMCPRegInfo rme_mte_reginfo[] = {
7332 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64,
7333 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5,
7334 .access = PL3_W, .type = ARM_CP_NOP },
7336 #endif /* TARGET_AARCH64 */
7338 static void define_pmu_regs(ARMCPU *cpu)
7341 * v7 performance monitor control register: same implementor
7342 * field as main ID register, and we implement four counters in
7343 * addition to the cycle count register.
7345 unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
7346 ARMCPRegInfo pmcr = {
7347 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
7348 .access = PL0_RW,
7349 .fgt = FGT_PMCR_EL0,
7350 .type = ARM_CP_IO | ARM_CP_ALIAS,
7351 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
7352 .accessfn = pmreg_access,
7353 .readfn = pmcr_read, .raw_readfn = raw_read,
7354 .writefn = pmcr_write, .raw_writefn = raw_write,
7356 ARMCPRegInfo pmcr64 = {
7357 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
7358 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
7359 .access = PL0_RW, .accessfn = pmreg_access,
7360 .fgt = FGT_PMCR_EL0,
7361 .type = ARM_CP_IO,
7362 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
7363 .resetvalue = cpu->isar.reset_pmcr_el0,
7364 .readfn = pmcr_read, .raw_readfn = raw_read,
7365 .writefn = pmcr_write, .raw_writefn = raw_write,
7368 define_one_arm_cp_reg(cpu, &pmcr);
7369 define_one_arm_cp_reg(cpu, &pmcr64);
7370 for (i = 0; i < pmcrn; i++) {
7371 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
7372 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
7373 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
7374 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
7375 ARMCPRegInfo pmev_regs[] = {
7376 { .name = pmevcntr_name, .cp = 15, .crn = 14,
7377 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7378 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7379 .fgt = FGT_PMEVCNTRN_EL0,
7380 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7381 .accessfn = pmreg_access_xevcntr },
7382 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
7383 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
7384 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
7385 .type = ARM_CP_IO,
7386 .fgt = FGT_PMEVCNTRN_EL0,
7387 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7388 .raw_readfn = pmevcntr_rawread,
7389 .raw_writefn = pmevcntr_rawwrite },
7390 { .name = pmevtyper_name, .cp = 15, .crn = 14,
7391 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7392 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7393 .fgt = FGT_PMEVTYPERN_EL0,
7394 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7395 .accessfn = pmreg_access },
7396 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
7397 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
7398 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
7399 .fgt = FGT_PMEVTYPERN_EL0,
7400 .type = ARM_CP_IO,
7401 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7402 .raw_writefn = pmevtyper_rawwrite },
7404 define_arm_cp_regs(cpu, pmev_regs);
7405 g_free(pmevcntr_name);
7406 g_free(pmevcntr_el0_name);
7407 g_free(pmevtyper_name);
7408 g_free(pmevtyper_el0_name);
7410 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
7411 ARMCPRegInfo v81_pmu_regs[] = {
7412 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
7413 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
7414 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7415 .fgt = FGT_PMCEIDN_EL0,
7416 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
7417 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
7418 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
7419 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7420 .fgt = FGT_PMCEIDN_EL0,
7421 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
7423 define_arm_cp_regs(cpu, v81_pmu_regs);
7425 if (cpu_isar_feature(any_pmuv3p4, cpu)) {
7426 static const ARMCPRegInfo v84_pmmir = {
7427 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
7428 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
7429 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7430 .fgt = FGT_PMMIR_EL1,
7431 .resetvalue = 0
7433 define_one_arm_cp_reg(cpu, &v84_pmmir);
7437 #ifndef CONFIG_USER_ONLY
7439 * We don't know until after realize whether there's a GICv3
7440 * attached, and that is what registers the gicv3 sysregs.
7441 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
7442 * at runtime.
7444 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
7446 ARMCPU *cpu = env_archcpu(env);
7447 uint64_t pfr1 = cpu->isar.id_pfr1;
7449 if (env->gicv3state) {
7450 pfr1 |= 1 << 28;
7452 return pfr1;
7455 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
7457 ARMCPU *cpu = env_archcpu(env);
7458 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
7460 if (env->gicv3state) {
7461 pfr0 |= 1 << 24;
7463 return pfr0;
7465 #endif
7468 * Shared logic between LORID and the rest of the LOR* registers.
7469 * Secure state exclusion has already been dealt with.
7471 static CPAccessResult access_lor_ns(CPUARMState *env,
7472 const ARMCPRegInfo *ri, bool isread)
7474 int el = arm_current_el(env);
7476 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
7477 return CP_ACCESS_TRAP_EL2;
7479 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
7480 return CP_ACCESS_TRAP_EL3;
7482 return CP_ACCESS_OK;
7485 static CPAccessResult access_lor_other(CPUARMState *env,
7486 const ARMCPRegInfo *ri, bool isread)
7488 if (arm_is_secure_below_el3(env)) {
7489 /* Access denied in secure mode. */
7490 return CP_ACCESS_TRAP;
7492 return access_lor_ns(env, ri, isread);
7496 * A trivial implementation of ARMv8.1-LOR leaves all of these
7497 * registers fixed at 0, which indicates that there are zero
7498 * supported Limited Ordering regions.
7500 static const ARMCPRegInfo lor_reginfo[] = {
7501 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7502 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7503 .access = PL1_RW, .accessfn = access_lor_other,
7504 .fgt = FGT_LORSA_EL1,
7505 .type = ARM_CP_CONST, .resetvalue = 0 },
7506 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7507 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7508 .access = PL1_RW, .accessfn = access_lor_other,
7509 .fgt = FGT_LOREA_EL1,
7510 .type = ARM_CP_CONST, .resetvalue = 0 },
7511 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7512 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7513 .access = PL1_RW, .accessfn = access_lor_other,
7514 .fgt = FGT_LORN_EL1,
7515 .type = ARM_CP_CONST, .resetvalue = 0 },
7516 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7517 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7518 .access = PL1_RW, .accessfn = access_lor_other,
7519 .fgt = FGT_LORC_EL1,
7520 .type = ARM_CP_CONST, .resetvalue = 0 },
7521 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7522 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7523 .access = PL1_R, .accessfn = access_lor_ns,
7524 .fgt = FGT_LORID_EL1,
7525 .type = ARM_CP_CONST, .resetvalue = 0 },
7528 #ifdef TARGET_AARCH64
7529 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7530 bool isread)
7532 int el = arm_current_el(env);
7534 if (el < 2 &&
7535 arm_is_el2_enabled(env) &&
7536 !(arm_hcr_el2_eff(env) & HCR_APK)) {
7537 return CP_ACCESS_TRAP_EL2;
7539 if (el < 3 &&
7540 arm_feature(env, ARM_FEATURE_EL3) &&
7541 !(env->cp15.scr_el3 & SCR_APK)) {
7542 return CP_ACCESS_TRAP_EL3;
7544 return CP_ACCESS_OK;
7547 static const ARMCPRegInfo pauth_reginfo[] = {
7548 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7549 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7550 .access = PL1_RW, .accessfn = access_pauth,
7551 .fgt = FGT_APDAKEY,
7552 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7553 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7554 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7555 .access = PL1_RW, .accessfn = access_pauth,
7556 .fgt = FGT_APDAKEY,
7557 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7558 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7559 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7560 .access = PL1_RW, .accessfn = access_pauth,
7561 .fgt = FGT_APDBKEY,
7562 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7563 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7564 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7565 .access = PL1_RW, .accessfn = access_pauth,
7566 .fgt = FGT_APDBKEY,
7567 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7568 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7569 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7570 .access = PL1_RW, .accessfn = access_pauth,
7571 .fgt = FGT_APGAKEY,
7572 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7573 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7574 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7575 .access = PL1_RW, .accessfn = access_pauth,
7576 .fgt = FGT_APGAKEY,
7577 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7578 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7579 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7580 .access = PL1_RW, .accessfn = access_pauth,
7581 .fgt = FGT_APIAKEY,
7582 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7583 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7584 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7585 .access = PL1_RW, .accessfn = access_pauth,
7586 .fgt = FGT_APIAKEY,
7587 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7588 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7589 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7590 .access = PL1_RW, .accessfn = access_pauth,
7591 .fgt = FGT_APIBKEY,
7592 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7593 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7594 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7595 .access = PL1_RW, .accessfn = access_pauth,
7596 .fgt = FGT_APIBKEY,
7597 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7600 static const ARMCPRegInfo tlbirange_reginfo[] = {
7601 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7602 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7603 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7604 .fgt = FGT_TLBIRVAE1IS,
7605 .writefn = tlbi_aa64_rvae1is_write },
7606 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7607 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7608 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7609 .fgt = FGT_TLBIRVAAE1IS,
7610 .writefn = tlbi_aa64_rvae1is_write },
7611 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7612 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7613 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7614 .fgt = FGT_TLBIRVALE1IS,
7615 .writefn = tlbi_aa64_rvae1is_write },
7616 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7617 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7618 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7619 .fgt = FGT_TLBIRVAALE1IS,
7620 .writefn = tlbi_aa64_rvae1is_write },
7621 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7622 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7623 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7624 .fgt = FGT_TLBIRVAE1OS,
7625 .writefn = tlbi_aa64_rvae1is_write },
7626 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7627 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7628 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7629 .fgt = FGT_TLBIRVAAE1OS,
7630 .writefn = tlbi_aa64_rvae1is_write },
7631 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7632 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7633 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7634 .fgt = FGT_TLBIRVALE1OS,
7635 .writefn = tlbi_aa64_rvae1is_write },
7636 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7637 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7638 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7639 .fgt = FGT_TLBIRVAALE1OS,
7640 .writefn = tlbi_aa64_rvae1is_write },
7641 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7642 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7643 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7644 .fgt = FGT_TLBIRVAE1,
7645 .writefn = tlbi_aa64_rvae1_write },
7646 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7647 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7648 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7649 .fgt = FGT_TLBIRVAAE1,
7650 .writefn = tlbi_aa64_rvae1_write },
7651 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7652 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7653 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7654 .fgt = FGT_TLBIRVALE1,
7655 .writefn = tlbi_aa64_rvae1_write },
7656 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7657 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7658 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7659 .fgt = FGT_TLBIRVAALE1,
7660 .writefn = tlbi_aa64_rvae1_write },
7661 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7662 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7663 .access = PL2_W, .type = ARM_CP_NO_RAW,
7664 .writefn = tlbi_aa64_ripas2e1is_write },
7665 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7666 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7667 .access = PL2_W, .type = ARM_CP_NO_RAW,
7668 .writefn = tlbi_aa64_ripas2e1is_write },
7669 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7670 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7671 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7672 .writefn = tlbi_aa64_rvae2is_write },
7673 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7674 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7675 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7676 .writefn = tlbi_aa64_rvae2is_write },
7677 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7678 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7679 .access = PL2_W, .type = ARM_CP_NO_RAW,
7680 .writefn = tlbi_aa64_ripas2e1_write },
7681 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7682 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7683 .access = PL2_W, .type = ARM_CP_NO_RAW,
7684 .writefn = tlbi_aa64_ripas2e1_write },
7685 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7686 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7687 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7688 .writefn = tlbi_aa64_rvae2is_write },
7689 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7690 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7691 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7692 .writefn = tlbi_aa64_rvae2is_write },
7693 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7694 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7695 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7696 .writefn = tlbi_aa64_rvae2_write },
7697 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7698 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7699 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7700 .writefn = tlbi_aa64_rvae2_write },
7701 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7702 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7703 .access = PL3_W, .type = ARM_CP_NO_RAW,
7704 .writefn = tlbi_aa64_rvae3is_write },
7705 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7706 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7707 .access = PL3_W, .type = ARM_CP_NO_RAW,
7708 .writefn = tlbi_aa64_rvae3is_write },
7709 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7710 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7711 .access = PL3_W, .type = ARM_CP_NO_RAW,
7712 .writefn = tlbi_aa64_rvae3is_write },
7713 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7714 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7715 .access = PL3_W, .type = ARM_CP_NO_RAW,
7716 .writefn = tlbi_aa64_rvae3is_write },
7717 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7718 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7719 .access = PL3_W, .type = ARM_CP_NO_RAW,
7720 .writefn = tlbi_aa64_rvae3_write },
7721 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7722 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7723 .access = PL3_W, .type = ARM_CP_NO_RAW,
7724 .writefn = tlbi_aa64_rvae3_write },
7727 static const ARMCPRegInfo tlbios_reginfo[] = {
7728 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7729 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7730 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7731 .fgt = FGT_TLBIVMALLE1OS,
7732 .writefn = tlbi_aa64_vmalle1is_write },
7733 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
7734 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
7735 .fgt = FGT_TLBIVAE1OS,
7736 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7737 .writefn = tlbi_aa64_vae1is_write },
7738 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7739 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7740 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7741 .fgt = FGT_TLBIASIDE1OS,
7742 .writefn = tlbi_aa64_vmalle1is_write },
7743 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7744 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
7745 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7746 .fgt = FGT_TLBIVAAE1OS,
7747 .writefn = tlbi_aa64_vae1is_write },
7748 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
7749 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
7750 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7751 .fgt = FGT_TLBIVALE1OS,
7752 .writefn = tlbi_aa64_vae1is_write },
7753 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
7754 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
7755 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7756 .fgt = FGT_TLBIVAALE1OS,
7757 .writefn = tlbi_aa64_vae1is_write },
7758 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7759 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7760 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7761 .writefn = tlbi_aa64_alle2is_write },
7762 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
7763 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
7764 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7765 .writefn = tlbi_aa64_vae2is_write },
7766 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7767 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7768 .access = PL2_W, .type = ARM_CP_NO_RAW,
7769 .writefn = tlbi_aa64_alle1is_write },
7770 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
7771 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
7772 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7773 .writefn = tlbi_aa64_vae2is_write },
7774 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7775 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7776 .access = PL2_W, .type = ARM_CP_NO_RAW,
7777 .writefn = tlbi_aa64_alle1is_write },
7778 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7779 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7780 .access = PL2_W, .type = ARM_CP_NOP },
7781 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7782 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7783 .access = PL2_W, .type = ARM_CP_NOP },
7784 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7785 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7786 .access = PL2_W, .type = ARM_CP_NOP },
7787 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7788 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7789 .access = PL2_W, .type = ARM_CP_NOP },
7790 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7791 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7792 .access = PL3_W, .type = ARM_CP_NO_RAW,
7793 .writefn = tlbi_aa64_alle3is_write },
7794 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
7795 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
7796 .access = PL3_W, .type = ARM_CP_NO_RAW,
7797 .writefn = tlbi_aa64_vae3is_write },
7798 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
7799 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
7800 .access = PL3_W, .type = ARM_CP_NO_RAW,
7801 .writefn = tlbi_aa64_vae3is_write },
7804 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7806 Error *err = NULL;
7807 uint64_t ret;
7809 /* Success sets NZCV = 0000. */
7810 env->NF = env->CF = env->VF = 0, env->ZF = 1;
7812 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7814 * ??? Failed, for unknown reasons in the crypto subsystem.
7815 * The best we can do is log the reason and return the
7816 * timed-out indication to the guest. There is no reason
7817 * we know to expect this failure to be transitory, so the
7818 * guest may well hang retrying the operation.
7820 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7821 ri->name, error_get_pretty(err));
7822 error_free(err);
7824 env->ZF = 0; /* NZCF = 0100 */
7825 return 0;
7827 return ret;
7830 /* We do not support re-seeding, so the two registers operate the same. */
7831 static const ARMCPRegInfo rndr_reginfo[] = {
7832 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7833 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7834 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7835 .access = PL0_R, .readfn = rndr_readfn },
7836 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7837 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7838 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7839 .access = PL0_R, .readfn = rndr_readfn },
7842 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7843 uint64_t value)
7845 #ifdef CONFIG_TCG
7846 ARMCPU *cpu = env_archcpu(env);
7847 /* CTR_EL0 System register -> DminLine, bits [19:16] */
7848 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7849 uint64_t vaddr_in = (uint64_t) value;
7850 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7851 void *haddr;
7852 int mem_idx = arm_env_mmu_index(env);
7854 /* This won't be crossing page boundaries */
7855 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7856 if (haddr) {
7857 #ifndef CONFIG_USER_ONLY
7859 ram_addr_t offset;
7860 MemoryRegion *mr;
7862 /* RCU lock is already being held */
7863 mr = memory_region_from_host(haddr, &offset);
7865 if (mr) {
7866 memory_region_writeback(mr, offset, dline_size);
7868 #endif /*CONFIG_USER_ONLY*/
7870 #else
7871 /* Handled by hardware accelerator. */
7872 g_assert_not_reached();
7873 #endif /* CONFIG_TCG */
7876 static const ARMCPRegInfo dcpop_reg[] = {
7877 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7878 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7879 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7880 .fgt = FGT_DCCVAP,
7881 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7884 static const ARMCPRegInfo dcpodp_reg[] = {
7885 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7886 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7887 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7888 .fgt = FGT_DCCVADP,
7889 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7892 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7893 bool isread)
7895 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7896 return CP_ACCESS_TRAP_EL2;
7899 return CP_ACCESS_OK;
7902 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7903 bool isread)
7905 int el = arm_current_el(env);
7906 if (el < 2 && arm_is_el2_enabled(env)) {
7907 uint64_t hcr = arm_hcr_el2_eff(env);
7908 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7909 return CP_ACCESS_TRAP_EL2;
7912 if (el < 3 &&
7913 arm_feature(env, ARM_FEATURE_EL3) &&
7914 !(env->cp15.scr_el3 & SCR_ATA)) {
7915 return CP_ACCESS_TRAP_EL3;
7917 return CP_ACCESS_OK;
7920 static CPAccessResult access_tfsr_el1(CPUARMState *env, const ARMCPRegInfo *ri,
7921 bool isread)
7923 CPAccessResult nv1 = access_nv1(env, ri, isread);
7925 if (nv1 != CP_ACCESS_OK) {
7926 return nv1;
7928 return access_mte(env, ri, isread);
7931 static CPAccessResult access_tfsr_el2(CPUARMState *env, const ARMCPRegInfo *ri,
7932 bool isread)
7935 * TFSR_EL2: similar to generic access_mte(), but we need to
7936 * account for FEAT_NV. At EL1 this must be a FEAT_NV access;
7937 * if NV2 is enabled then we will redirect this to TFSR_EL1
7938 * after doing the HCR and SCR ATA traps; otherwise this will
7939 * be a trap to EL2 and the HCR/SCR traps do not apply.
7941 int el = arm_current_el(env);
7943 if (el == 1 && (arm_hcr_el2_eff(env) & HCR_NV2)) {
7944 return CP_ACCESS_OK;
7946 if (el < 2 && arm_is_el2_enabled(env)) {
7947 uint64_t hcr = arm_hcr_el2_eff(env);
7948 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7949 return CP_ACCESS_TRAP_EL2;
7952 if (el < 3 &&
7953 arm_feature(env, ARM_FEATURE_EL3) &&
7954 !(env->cp15.scr_el3 & SCR_ATA)) {
7955 return CP_ACCESS_TRAP_EL3;
7957 return CP_ACCESS_OK;
7960 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7962 return env->pstate & PSTATE_TCO;
7965 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7967 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7970 static const ARMCPRegInfo mte_reginfo[] = {
7971 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7972 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7973 .access = PL1_RW, .accessfn = access_mte,
7974 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7975 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7976 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7977 .access = PL1_RW, .accessfn = access_tfsr_el1,
7978 .nv2_redirect_offset = 0x190 | NV2_REDIR_NV1,
7979 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7980 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7981 .type = ARM_CP_NV2_REDIRECT,
7982 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7983 .access = PL2_RW, .accessfn = access_tfsr_el2,
7984 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7985 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7986 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7987 .access = PL3_RW,
7988 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7989 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7990 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7991 .access = PL1_RW, .accessfn = access_mte,
7992 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7993 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7994 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7995 .access = PL1_RW, .accessfn = access_mte,
7996 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7997 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7998 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7999 .type = ARM_CP_NO_RAW,
8000 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
8001 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
8002 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
8003 .type = ARM_CP_NOP, .access = PL1_W,
8004 .fgt = FGT_DCIVAC,
8005 .accessfn = aa64_cacheop_poc_access },
8006 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
8007 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
8008 .fgt = FGT_DCISW,
8009 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8010 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
8011 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
8012 .type = ARM_CP_NOP, .access = PL1_W,
8013 .fgt = FGT_DCIVAC,
8014 .accessfn = aa64_cacheop_poc_access },
8015 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
8016 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
8017 .fgt = FGT_DCISW,
8018 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8019 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
8020 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
8021 .fgt = FGT_DCCSW,
8022 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8023 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
8024 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
8025 .fgt = FGT_DCCSW,
8026 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8027 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
8028 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
8029 .fgt = FGT_DCCISW,
8030 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8031 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
8032 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
8033 .fgt = FGT_DCCISW,
8034 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8037 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
8038 { .name = "TCO", .state = ARM_CP_STATE_AA64,
8039 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
8040 .type = ARM_CP_CONST, .access = PL0_RW, },
8043 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
8044 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
8045 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
8046 .type = ARM_CP_NOP, .access = PL0_W,
8047 .fgt = FGT_DCCVAC,
8048 .accessfn = aa64_cacheop_poc_access },
8049 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
8050 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
8051 .type = ARM_CP_NOP, .access = PL0_W,
8052 .fgt = FGT_DCCVAC,
8053 .accessfn = aa64_cacheop_poc_access },
8054 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
8055 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
8056 .type = ARM_CP_NOP, .access = PL0_W,
8057 .fgt = FGT_DCCVAP,
8058 .accessfn = aa64_cacheop_poc_access },
8059 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
8060 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
8061 .type = ARM_CP_NOP, .access = PL0_W,
8062 .fgt = FGT_DCCVAP,
8063 .accessfn = aa64_cacheop_poc_access },
8064 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
8065 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
8066 .type = ARM_CP_NOP, .access = PL0_W,
8067 .fgt = FGT_DCCVADP,
8068 .accessfn = aa64_cacheop_poc_access },
8069 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
8070 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
8071 .type = ARM_CP_NOP, .access = PL0_W,
8072 .fgt = FGT_DCCVADP,
8073 .accessfn = aa64_cacheop_poc_access },
8074 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
8075 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
8076 .type = ARM_CP_NOP, .access = PL0_W,
8077 .fgt = FGT_DCCIVAC,
8078 .accessfn = aa64_cacheop_poc_access },
8079 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
8080 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
8081 .type = ARM_CP_NOP, .access = PL0_W,
8082 .fgt = FGT_DCCIVAC,
8083 .accessfn = aa64_cacheop_poc_access },
8084 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
8085 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
8086 .access = PL0_W, .type = ARM_CP_DC_GVA,
8087 #ifndef CONFIG_USER_ONLY
8088 /* Avoid overhead of an access check that always passes in user-mode */
8089 .accessfn = aa64_zva_access,
8090 .fgt = FGT_DCZVA,
8091 #endif
8093 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
8094 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
8095 .access = PL0_W, .type = ARM_CP_DC_GZVA,
8096 #ifndef CONFIG_USER_ONLY
8097 /* Avoid overhead of an access check that always passes in user-mode */
8098 .accessfn = aa64_zva_access,
8099 .fgt = FGT_DCZVA,
8100 #endif
8104 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
8105 bool isread)
8107 uint64_t hcr = arm_hcr_el2_eff(env);
8108 int el = arm_current_el(env);
8110 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
8111 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
8112 if (hcr & HCR_TGE) {
8113 return CP_ACCESS_TRAP_EL2;
8115 return CP_ACCESS_TRAP;
8117 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
8118 return CP_ACCESS_TRAP_EL2;
8120 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
8121 return CP_ACCESS_TRAP_EL2;
8123 if (el < 3
8124 && arm_feature(env, ARM_FEATURE_EL3)
8125 && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
8126 return CP_ACCESS_TRAP_EL3;
8128 return CP_ACCESS_OK;
8131 static CPAccessResult access_scxtnum_el1(CPUARMState *env,
8132 const ARMCPRegInfo *ri,
8133 bool isread)
8135 CPAccessResult nv1 = access_nv1(env, ri, isread);
8137 if (nv1 != CP_ACCESS_OK) {
8138 return nv1;
8140 return access_scxtnum(env, ri, isread);
8143 static const ARMCPRegInfo scxtnum_reginfo[] = {
8144 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
8145 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
8146 .access = PL0_RW, .accessfn = access_scxtnum,
8147 .fgt = FGT_SCXTNUM_EL0,
8148 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
8149 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
8150 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
8151 .access = PL1_RW, .accessfn = access_scxtnum_el1,
8152 .fgt = FGT_SCXTNUM_EL1,
8153 .nv2_redirect_offset = 0x188 | NV2_REDIR_NV1,
8154 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
8155 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
8156 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
8157 .access = PL2_RW, .accessfn = access_scxtnum,
8158 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
8159 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
8160 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
8161 .access = PL3_RW,
8162 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
8165 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
8166 bool isread)
8168 if (arm_current_el(env) == 2 &&
8169 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) {
8170 return CP_ACCESS_TRAP_EL3;
8172 return CP_ACCESS_OK;
8175 static const ARMCPRegInfo fgt_reginfo[] = {
8176 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
8177 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
8178 .nv2_redirect_offset = 0x1b8,
8179 .access = PL2_RW, .accessfn = access_fgt,
8180 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
8181 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
8182 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
8183 .nv2_redirect_offset = 0x1c0,
8184 .access = PL2_RW, .accessfn = access_fgt,
8185 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
8186 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
8187 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
8188 .nv2_redirect_offset = 0x1d0,
8189 .access = PL2_RW, .accessfn = access_fgt,
8190 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
8191 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
8192 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
8193 .nv2_redirect_offset = 0x1d8,
8194 .access = PL2_RW, .accessfn = access_fgt,
8195 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
8196 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
8197 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
8198 .nv2_redirect_offset = 0x1c8,
8199 .access = PL2_RW, .accessfn = access_fgt,
8200 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
8203 static void vncr_write(CPUARMState *env, const ARMCPRegInfo *ri,
8204 uint64_t value)
8207 * Clear the RES0 bottom 12 bits; this means at runtime we can guarantee
8208 * that VNCR_EL2 + offset is 64-bit aligned. We don't need to do anything
8209 * about the RESS bits at the top -- we choose the "generate an EL2
8210 * translation abort on use" CONSTRAINED UNPREDICTABLE option (i.e. let
8211 * the ptw.c code detect the resulting invalid address).
8213 env->cp15.vncr_el2 = value & ~0xfffULL;
8216 static const ARMCPRegInfo nv2_reginfo[] = {
8217 { .name = "VNCR_EL2", .state = ARM_CP_STATE_AA64,
8218 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 2, .opc2 = 0,
8219 .access = PL2_RW,
8220 .writefn = vncr_write,
8221 .nv2_redirect_offset = 0xb0,
8222 .fieldoffset = offsetof(CPUARMState, cp15.vncr_el2) },
8225 #endif /* TARGET_AARCH64 */
8227 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
8228 bool isread)
8230 int el = arm_current_el(env);
8232 if (el == 0) {
8233 uint64_t sctlr = arm_sctlr(env, el);
8234 if (!(sctlr & SCTLR_EnRCTX)) {
8235 return CP_ACCESS_TRAP;
8237 } else if (el == 1) {
8238 uint64_t hcr = arm_hcr_el2_eff(env);
8239 if (hcr & HCR_NV) {
8240 return CP_ACCESS_TRAP_EL2;
8243 return CP_ACCESS_OK;
8246 static const ARMCPRegInfo predinv_reginfo[] = {
8247 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
8248 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
8249 .fgt = FGT_CFPRCTX,
8250 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8251 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
8252 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
8253 .fgt = FGT_DVPRCTX,
8254 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8255 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
8256 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
8257 .fgt = FGT_CPPRCTX,
8258 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8260 * Note the AArch32 opcodes have a different OPC1.
8262 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
8263 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
8264 .fgt = FGT_CFPRCTX,
8265 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8266 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
8267 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
8268 .fgt = FGT_DVPRCTX,
8269 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8270 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
8271 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
8272 .fgt = FGT_CPPRCTX,
8273 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8276 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
8278 /* Read the high 32 bits of the current CCSIDR */
8279 return extract64(ccsidr_read(env, ri), 32, 32);
8282 static const ARMCPRegInfo ccsidr2_reginfo[] = {
8283 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
8284 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
8285 .access = PL1_R,
8286 .accessfn = access_tid4,
8287 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
8290 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8291 bool isread)
8293 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
8294 return CP_ACCESS_TRAP_EL2;
8297 return CP_ACCESS_OK;
8300 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8301 bool isread)
8303 if (arm_feature(env, ARM_FEATURE_V8)) {
8304 return access_aa64_tid3(env, ri, isread);
8307 return CP_ACCESS_OK;
8310 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
8311 bool isread)
8313 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
8314 return CP_ACCESS_TRAP_EL2;
8317 return CP_ACCESS_OK;
8320 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
8321 const ARMCPRegInfo *ri, bool isread)
8324 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
8325 * in v7A, not in v8A.
8327 if (!arm_feature(env, ARM_FEATURE_V8) &&
8328 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
8329 (env->cp15.hstr_el2 & HSTR_TJDBX)) {
8330 return CP_ACCESS_TRAP_EL2;
8332 return CP_ACCESS_OK;
8335 static const ARMCPRegInfo jazelle_regs[] = {
8336 { .name = "JIDR",
8337 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
8338 .access = PL1_R, .accessfn = access_jazelle,
8339 .type = ARM_CP_CONST, .resetvalue = 0 },
8340 { .name = "JOSCR",
8341 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
8342 .accessfn = access_joscr_jmcr,
8343 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8344 { .name = "JMCR",
8345 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
8346 .accessfn = access_joscr_jmcr,
8347 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8350 static const ARMCPRegInfo contextidr_el2 = {
8351 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
8352 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
8353 .access = PL2_RW,
8354 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
8357 static const ARMCPRegInfo vhe_reginfo[] = {
8358 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
8359 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
8360 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
8361 .raw_writefn = raw_write,
8362 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
8363 #ifndef CONFIG_USER_ONLY
8364 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
8365 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
8366 .fieldoffset =
8367 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
8368 .type = ARM_CP_IO, .access = PL2_RW,
8369 .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
8370 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
8371 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
8372 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
8373 .resetfn = gt_hv_timer_reset,
8374 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
8375 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
8376 .type = ARM_CP_IO,
8377 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
8378 .access = PL2_RW,
8379 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
8380 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
8381 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
8382 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
8383 .type = ARM_CP_IO | ARM_CP_ALIAS,
8384 .access = PL2_RW, .accessfn = e2h_access,
8385 .nv2_redirect_offset = 0x180 | NV2_REDIR_NO_NV1,
8386 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
8387 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
8388 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
8389 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
8390 .type = ARM_CP_IO | ARM_CP_ALIAS,
8391 .access = PL2_RW, .accessfn = e2h_access,
8392 .nv2_redirect_offset = 0x170 | NV2_REDIR_NO_NV1,
8393 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
8394 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
8395 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8396 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
8397 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8398 .access = PL2_RW, .accessfn = e2h_access,
8399 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
8400 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8401 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
8402 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8403 .access = PL2_RW, .accessfn = e2h_access,
8404 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
8405 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8406 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
8407 .type = ARM_CP_IO | ARM_CP_ALIAS,
8408 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
8409 .nv2_redirect_offset = 0x178 | NV2_REDIR_NO_NV1,
8410 .access = PL2_RW, .accessfn = e2h_access,
8411 .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
8412 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8413 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
8414 .type = ARM_CP_IO | ARM_CP_ALIAS,
8415 .nv2_redirect_offset = 0x168 | NV2_REDIR_NO_NV1,
8416 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
8417 .access = PL2_RW, .accessfn = e2h_access,
8418 .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
8419 #endif
8422 #ifndef CONFIG_USER_ONLY
8423 static const ARMCPRegInfo ats1e1_reginfo[] = {
8424 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64,
8425 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8426 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8427 .fgt = FGT_ATS1E1RP,
8428 .accessfn = at_s1e01_access, .writefn = ats_write64 },
8429 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64,
8430 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8431 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8432 .fgt = FGT_ATS1E1WP,
8433 .accessfn = at_s1e01_access, .writefn = ats_write64 },
8436 static const ARMCPRegInfo ats1cp_reginfo[] = {
8437 { .name = "ATS1CPRP",
8438 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8439 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8440 .writefn = ats_write },
8441 { .name = "ATS1CPWP",
8442 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8443 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8444 .writefn = ats_write },
8446 #endif
8449 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
8450 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
8451 * is non-zero, which is never for ARMv7, optionally in ARMv8
8452 * and mandatorily for ARMv8.2 and up.
8453 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
8454 * implementation is RAZ/WI we can ignore this detail, as we
8455 * do for ACTLR.
8457 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
8458 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
8459 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
8460 .access = PL1_RW, .accessfn = access_tacr,
8461 .type = ARM_CP_CONST, .resetvalue = 0 },
8462 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
8463 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
8464 .access = PL2_RW, .type = ARM_CP_CONST,
8465 .resetvalue = 0 },
8468 void register_cp_regs_for_features(ARMCPU *cpu)
8470 /* Register all the coprocessor registers based on feature bits */
8471 CPUARMState *env = &cpu->env;
8472 if (arm_feature(env, ARM_FEATURE_M)) {
8473 /* M profile has no coprocessor registers */
8474 return;
8477 define_arm_cp_regs(cpu, cp_reginfo);
8478 if (!arm_feature(env, ARM_FEATURE_V8)) {
8480 * Must go early as it is full of wildcards that may be
8481 * overridden by later definitions.
8483 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
8486 if (arm_feature(env, ARM_FEATURE_V6)) {
8487 /* The ID registers all have impdef reset values */
8488 ARMCPRegInfo v6_idregs[] = {
8489 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
8490 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
8491 .access = PL1_R, .type = ARM_CP_CONST,
8492 .accessfn = access_aa32_tid3,
8493 .resetvalue = cpu->isar.id_pfr0 },
8495 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
8496 * the value of the GIC field until after we define these regs.
8498 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
8499 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
8500 .access = PL1_R, .type = ARM_CP_NO_RAW,
8501 .accessfn = access_aa32_tid3,
8502 #ifdef CONFIG_USER_ONLY
8503 .type = ARM_CP_CONST,
8504 .resetvalue = cpu->isar.id_pfr1,
8505 #else
8506 .type = ARM_CP_NO_RAW,
8507 .accessfn = access_aa32_tid3,
8508 .readfn = id_pfr1_read,
8509 .writefn = arm_cp_write_ignore
8510 #endif
8512 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
8513 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
8514 .access = PL1_R, .type = ARM_CP_CONST,
8515 .accessfn = access_aa32_tid3,
8516 .resetvalue = cpu->isar.id_dfr0 },
8517 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
8518 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
8519 .access = PL1_R, .type = ARM_CP_CONST,
8520 .accessfn = access_aa32_tid3,
8521 .resetvalue = cpu->id_afr0 },
8522 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
8523 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
8524 .access = PL1_R, .type = ARM_CP_CONST,
8525 .accessfn = access_aa32_tid3,
8526 .resetvalue = cpu->isar.id_mmfr0 },
8527 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
8528 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
8529 .access = PL1_R, .type = ARM_CP_CONST,
8530 .accessfn = access_aa32_tid3,
8531 .resetvalue = cpu->isar.id_mmfr1 },
8532 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
8533 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
8534 .access = PL1_R, .type = ARM_CP_CONST,
8535 .accessfn = access_aa32_tid3,
8536 .resetvalue = cpu->isar.id_mmfr2 },
8537 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
8538 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
8539 .access = PL1_R, .type = ARM_CP_CONST,
8540 .accessfn = access_aa32_tid3,
8541 .resetvalue = cpu->isar.id_mmfr3 },
8542 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
8543 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
8544 .access = PL1_R, .type = ARM_CP_CONST,
8545 .accessfn = access_aa32_tid3,
8546 .resetvalue = cpu->isar.id_isar0 },
8547 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
8548 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
8549 .access = PL1_R, .type = ARM_CP_CONST,
8550 .accessfn = access_aa32_tid3,
8551 .resetvalue = cpu->isar.id_isar1 },
8552 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
8553 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
8554 .access = PL1_R, .type = ARM_CP_CONST,
8555 .accessfn = access_aa32_tid3,
8556 .resetvalue = cpu->isar.id_isar2 },
8557 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
8558 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
8559 .access = PL1_R, .type = ARM_CP_CONST,
8560 .accessfn = access_aa32_tid3,
8561 .resetvalue = cpu->isar.id_isar3 },
8562 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
8563 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
8564 .access = PL1_R, .type = ARM_CP_CONST,
8565 .accessfn = access_aa32_tid3,
8566 .resetvalue = cpu->isar.id_isar4 },
8567 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
8568 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
8569 .access = PL1_R, .type = ARM_CP_CONST,
8570 .accessfn = access_aa32_tid3,
8571 .resetvalue = cpu->isar.id_isar5 },
8572 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
8573 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
8574 .access = PL1_R, .type = ARM_CP_CONST,
8575 .accessfn = access_aa32_tid3,
8576 .resetvalue = cpu->isar.id_mmfr4 },
8577 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
8578 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
8579 .access = PL1_R, .type = ARM_CP_CONST,
8580 .accessfn = access_aa32_tid3,
8581 .resetvalue = cpu->isar.id_isar6 },
8583 define_arm_cp_regs(cpu, v6_idregs);
8584 define_arm_cp_regs(cpu, v6_cp_reginfo);
8585 } else {
8586 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
8588 if (arm_feature(env, ARM_FEATURE_V6K)) {
8589 define_arm_cp_regs(cpu, v6k_cp_reginfo);
8591 if (arm_feature(env, ARM_FEATURE_V7MP) &&
8592 !arm_feature(env, ARM_FEATURE_PMSA)) {
8593 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
8595 if (arm_feature(env, ARM_FEATURE_V7VE)) {
8596 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
8598 if (arm_feature(env, ARM_FEATURE_V7)) {
8599 ARMCPRegInfo clidr = {
8600 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
8601 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
8602 .access = PL1_R, .type = ARM_CP_CONST,
8603 .accessfn = access_tid4,
8604 .fgt = FGT_CLIDR_EL1,
8605 .resetvalue = cpu->clidr
8607 define_one_arm_cp_reg(cpu, &clidr);
8608 define_arm_cp_regs(cpu, v7_cp_reginfo);
8609 define_debug_regs(cpu);
8610 define_pmu_regs(cpu);
8611 } else {
8612 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
8614 if (arm_feature(env, ARM_FEATURE_V8)) {
8616 * v8 ID registers, which all have impdef reset values.
8617 * Note that within the ID register ranges the unused slots
8618 * must all RAZ, not UNDEF; future architecture versions may
8619 * define new registers here.
8620 * ID registers which are AArch64 views of the AArch32 ID registers
8621 * which already existed in v6 and v7 are handled elsewhere,
8622 * in v6_idregs[].
8624 int i;
8625 ARMCPRegInfo v8_idregs[] = {
8627 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
8628 * emulation because we don't know the right value for the
8629 * GIC field until after we define these regs.
8631 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
8632 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
8633 .access = PL1_R,
8634 #ifdef CONFIG_USER_ONLY
8635 .type = ARM_CP_CONST,
8636 .resetvalue = cpu->isar.id_aa64pfr0
8637 #else
8638 .type = ARM_CP_NO_RAW,
8639 .accessfn = access_aa64_tid3,
8640 .readfn = id_aa64pfr0_read,
8641 .writefn = arm_cp_write_ignore
8642 #endif
8644 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
8645 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
8646 .access = PL1_R, .type = ARM_CP_CONST,
8647 .accessfn = access_aa64_tid3,
8648 .resetvalue = cpu->isar.id_aa64pfr1},
8649 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8650 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
8651 .access = PL1_R, .type = ARM_CP_CONST,
8652 .accessfn = access_aa64_tid3,
8653 .resetvalue = 0 },
8654 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8655 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
8656 .access = PL1_R, .type = ARM_CP_CONST,
8657 .accessfn = access_aa64_tid3,
8658 .resetvalue = 0 },
8659 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
8660 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
8661 .access = PL1_R, .type = ARM_CP_CONST,
8662 .accessfn = access_aa64_tid3,
8663 .resetvalue = cpu->isar.id_aa64zfr0 },
8664 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
8665 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
8666 .access = PL1_R, .type = ARM_CP_CONST,
8667 .accessfn = access_aa64_tid3,
8668 .resetvalue = cpu->isar.id_aa64smfr0 },
8669 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8670 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
8671 .access = PL1_R, .type = ARM_CP_CONST,
8672 .accessfn = access_aa64_tid3,
8673 .resetvalue = 0 },
8674 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8675 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
8676 .access = PL1_R, .type = ARM_CP_CONST,
8677 .accessfn = access_aa64_tid3,
8678 .resetvalue = 0 },
8679 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
8680 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
8681 .access = PL1_R, .type = ARM_CP_CONST,
8682 .accessfn = access_aa64_tid3,
8683 .resetvalue = cpu->isar.id_aa64dfr0 },
8684 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
8685 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
8686 .access = PL1_R, .type = ARM_CP_CONST,
8687 .accessfn = access_aa64_tid3,
8688 .resetvalue = cpu->isar.id_aa64dfr1 },
8689 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8690 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
8691 .access = PL1_R, .type = ARM_CP_CONST,
8692 .accessfn = access_aa64_tid3,
8693 .resetvalue = 0 },
8694 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8695 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
8696 .access = PL1_R, .type = ARM_CP_CONST,
8697 .accessfn = access_aa64_tid3,
8698 .resetvalue = 0 },
8699 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
8700 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
8701 .access = PL1_R, .type = ARM_CP_CONST,
8702 .accessfn = access_aa64_tid3,
8703 .resetvalue = cpu->id_aa64afr0 },
8704 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
8705 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
8706 .access = PL1_R, .type = ARM_CP_CONST,
8707 .accessfn = access_aa64_tid3,
8708 .resetvalue = cpu->id_aa64afr1 },
8709 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8710 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
8711 .access = PL1_R, .type = ARM_CP_CONST,
8712 .accessfn = access_aa64_tid3,
8713 .resetvalue = 0 },
8714 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8715 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
8716 .access = PL1_R, .type = ARM_CP_CONST,
8717 .accessfn = access_aa64_tid3,
8718 .resetvalue = 0 },
8719 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
8720 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
8721 .access = PL1_R, .type = ARM_CP_CONST,
8722 .accessfn = access_aa64_tid3,
8723 .resetvalue = cpu->isar.id_aa64isar0 },
8724 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
8725 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
8726 .access = PL1_R, .type = ARM_CP_CONST,
8727 .accessfn = access_aa64_tid3,
8728 .resetvalue = cpu->isar.id_aa64isar1 },
8729 { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64,
8730 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
8731 .access = PL1_R, .type = ARM_CP_CONST,
8732 .accessfn = access_aa64_tid3,
8733 .resetvalue = cpu->isar.id_aa64isar2 },
8734 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8735 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
8736 .access = PL1_R, .type = ARM_CP_CONST,
8737 .accessfn = access_aa64_tid3,
8738 .resetvalue = 0 },
8739 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8740 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
8741 .access = PL1_R, .type = ARM_CP_CONST,
8742 .accessfn = access_aa64_tid3,
8743 .resetvalue = 0 },
8744 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8745 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
8746 .access = PL1_R, .type = ARM_CP_CONST,
8747 .accessfn = access_aa64_tid3,
8748 .resetvalue = 0 },
8749 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8750 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
8751 .access = PL1_R, .type = ARM_CP_CONST,
8752 .accessfn = access_aa64_tid3,
8753 .resetvalue = 0 },
8754 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8755 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
8756 .access = PL1_R, .type = ARM_CP_CONST,
8757 .accessfn = access_aa64_tid3,
8758 .resetvalue = 0 },
8759 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
8760 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
8761 .access = PL1_R, .type = ARM_CP_CONST,
8762 .accessfn = access_aa64_tid3,
8763 .resetvalue = cpu->isar.id_aa64mmfr0 },
8764 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
8765 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
8766 .access = PL1_R, .type = ARM_CP_CONST,
8767 .accessfn = access_aa64_tid3,
8768 .resetvalue = cpu->isar.id_aa64mmfr1 },
8769 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
8770 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
8771 .access = PL1_R, .type = ARM_CP_CONST,
8772 .accessfn = access_aa64_tid3,
8773 .resetvalue = cpu->isar.id_aa64mmfr2 },
8774 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8775 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
8776 .access = PL1_R, .type = ARM_CP_CONST,
8777 .accessfn = access_aa64_tid3,
8778 .resetvalue = 0 },
8779 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8780 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
8781 .access = PL1_R, .type = ARM_CP_CONST,
8782 .accessfn = access_aa64_tid3,
8783 .resetvalue = 0 },
8784 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8785 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
8786 .access = PL1_R, .type = ARM_CP_CONST,
8787 .accessfn = access_aa64_tid3,
8788 .resetvalue = 0 },
8789 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8790 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
8791 .access = PL1_R, .type = ARM_CP_CONST,
8792 .accessfn = access_aa64_tid3,
8793 .resetvalue = 0 },
8794 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8795 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
8796 .access = PL1_R, .type = ARM_CP_CONST,
8797 .accessfn = access_aa64_tid3,
8798 .resetvalue = 0 },
8799 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
8800 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8801 .access = PL1_R, .type = ARM_CP_CONST,
8802 .accessfn = access_aa64_tid3,
8803 .resetvalue = cpu->isar.mvfr0 },
8804 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
8805 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8806 .access = PL1_R, .type = ARM_CP_CONST,
8807 .accessfn = access_aa64_tid3,
8808 .resetvalue = cpu->isar.mvfr1 },
8809 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
8810 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8811 .access = PL1_R, .type = ARM_CP_CONST,
8812 .accessfn = access_aa64_tid3,
8813 .resetvalue = cpu->isar.mvfr2 },
8815 * "0, c0, c3, {0,1,2}" are the encodings corresponding to
8816 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
8817 * as RAZ, since it is in the "reserved for future ID
8818 * registers, RAZ" part of the AArch32 encoding space.
8820 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
8821 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8822 .access = PL1_R, .type = ARM_CP_CONST,
8823 .accessfn = access_aa64_tid3,
8824 .resetvalue = 0 },
8825 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
8826 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8827 .access = PL1_R, .type = ARM_CP_CONST,
8828 .accessfn = access_aa64_tid3,
8829 .resetvalue = 0 },
8830 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
8831 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8832 .access = PL1_R, .type = ARM_CP_CONST,
8833 .accessfn = access_aa64_tid3,
8834 .resetvalue = 0 },
8836 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
8837 * they're also RAZ for AArch64, and in v8 are gradually
8838 * being filled with AArch64-view-of-AArch32-ID-register
8839 * for new ID registers.
8841 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
8842 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
8843 .access = PL1_R, .type = ARM_CP_CONST,
8844 .accessfn = access_aa64_tid3,
8845 .resetvalue = 0 },
8846 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
8847 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
8848 .access = PL1_R, .type = ARM_CP_CONST,
8849 .accessfn = access_aa64_tid3,
8850 .resetvalue = cpu->isar.id_pfr2 },
8851 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
8852 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
8853 .access = PL1_R, .type = ARM_CP_CONST,
8854 .accessfn = access_aa64_tid3,
8855 .resetvalue = cpu->isar.id_dfr1 },
8856 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
8857 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
8858 .access = PL1_R, .type = ARM_CP_CONST,
8859 .accessfn = access_aa64_tid3,
8860 .resetvalue = cpu->isar.id_mmfr5 },
8861 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
8862 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
8863 .access = PL1_R, .type = ARM_CP_CONST,
8864 .accessfn = access_aa64_tid3,
8865 .resetvalue = 0 },
8866 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
8867 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
8868 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8869 .fgt = FGT_PMCEIDN_EL0,
8870 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
8871 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
8872 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
8873 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8874 .fgt = FGT_PMCEIDN_EL0,
8875 .resetvalue = cpu->pmceid0 },
8876 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
8877 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
8878 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8879 .fgt = FGT_PMCEIDN_EL0,
8880 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
8881 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
8882 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
8883 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8884 .fgt = FGT_PMCEIDN_EL0,
8885 .resetvalue = cpu->pmceid1 },
8887 #ifdef CONFIG_USER_ONLY
8888 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
8889 { .name = "ID_AA64PFR0_EL1",
8890 .exported_bits = R_ID_AA64PFR0_FP_MASK |
8891 R_ID_AA64PFR0_ADVSIMD_MASK |
8892 R_ID_AA64PFR0_SVE_MASK |
8893 R_ID_AA64PFR0_DIT_MASK,
8894 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
8895 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
8896 { .name = "ID_AA64PFR1_EL1",
8897 .exported_bits = R_ID_AA64PFR1_BT_MASK |
8898 R_ID_AA64PFR1_SSBS_MASK |
8899 R_ID_AA64PFR1_MTE_MASK |
8900 R_ID_AA64PFR1_SME_MASK },
8901 { .name = "ID_AA64PFR*_EL1_RESERVED",
8902 .is_glob = true },
8903 { .name = "ID_AA64ZFR0_EL1",
8904 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
8905 R_ID_AA64ZFR0_AES_MASK |
8906 R_ID_AA64ZFR0_BITPERM_MASK |
8907 R_ID_AA64ZFR0_BFLOAT16_MASK |
8908 R_ID_AA64ZFR0_B16B16_MASK |
8909 R_ID_AA64ZFR0_SHA3_MASK |
8910 R_ID_AA64ZFR0_SM4_MASK |
8911 R_ID_AA64ZFR0_I8MM_MASK |
8912 R_ID_AA64ZFR0_F32MM_MASK |
8913 R_ID_AA64ZFR0_F64MM_MASK },
8914 { .name = "ID_AA64SMFR0_EL1",
8915 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
8916 R_ID_AA64SMFR0_BI32I32_MASK |
8917 R_ID_AA64SMFR0_B16F32_MASK |
8918 R_ID_AA64SMFR0_F16F32_MASK |
8919 R_ID_AA64SMFR0_I8I32_MASK |
8920 R_ID_AA64SMFR0_F16F16_MASK |
8921 R_ID_AA64SMFR0_B16B16_MASK |
8922 R_ID_AA64SMFR0_I16I32_MASK |
8923 R_ID_AA64SMFR0_F64F64_MASK |
8924 R_ID_AA64SMFR0_I16I64_MASK |
8925 R_ID_AA64SMFR0_SMEVER_MASK |
8926 R_ID_AA64SMFR0_FA64_MASK },
8927 { .name = "ID_AA64MMFR0_EL1",
8928 .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
8929 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
8930 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
8931 { .name = "ID_AA64MMFR1_EL1",
8932 .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
8933 { .name = "ID_AA64MMFR2_EL1",
8934 .exported_bits = R_ID_AA64MMFR2_AT_MASK },
8935 { .name = "ID_AA64MMFR*_EL1_RESERVED",
8936 .is_glob = true },
8937 { .name = "ID_AA64DFR0_EL1",
8938 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
8939 { .name = "ID_AA64DFR1_EL1" },
8940 { .name = "ID_AA64DFR*_EL1_RESERVED",
8941 .is_glob = true },
8942 { .name = "ID_AA64AFR*",
8943 .is_glob = true },
8944 { .name = "ID_AA64ISAR0_EL1",
8945 .exported_bits = R_ID_AA64ISAR0_AES_MASK |
8946 R_ID_AA64ISAR0_SHA1_MASK |
8947 R_ID_AA64ISAR0_SHA2_MASK |
8948 R_ID_AA64ISAR0_CRC32_MASK |
8949 R_ID_AA64ISAR0_ATOMIC_MASK |
8950 R_ID_AA64ISAR0_RDM_MASK |
8951 R_ID_AA64ISAR0_SHA3_MASK |
8952 R_ID_AA64ISAR0_SM3_MASK |
8953 R_ID_AA64ISAR0_SM4_MASK |
8954 R_ID_AA64ISAR0_DP_MASK |
8955 R_ID_AA64ISAR0_FHM_MASK |
8956 R_ID_AA64ISAR0_TS_MASK |
8957 R_ID_AA64ISAR0_RNDR_MASK },
8958 { .name = "ID_AA64ISAR1_EL1",
8959 .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
8960 R_ID_AA64ISAR1_APA_MASK |
8961 R_ID_AA64ISAR1_API_MASK |
8962 R_ID_AA64ISAR1_JSCVT_MASK |
8963 R_ID_AA64ISAR1_FCMA_MASK |
8964 R_ID_AA64ISAR1_LRCPC_MASK |
8965 R_ID_AA64ISAR1_GPA_MASK |
8966 R_ID_AA64ISAR1_GPI_MASK |
8967 R_ID_AA64ISAR1_FRINTTS_MASK |
8968 R_ID_AA64ISAR1_SB_MASK |
8969 R_ID_AA64ISAR1_BF16_MASK |
8970 R_ID_AA64ISAR1_DGH_MASK |
8971 R_ID_AA64ISAR1_I8MM_MASK },
8972 { .name = "ID_AA64ISAR2_EL1",
8973 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
8974 R_ID_AA64ISAR2_RPRES_MASK |
8975 R_ID_AA64ISAR2_GPA3_MASK |
8976 R_ID_AA64ISAR2_APA3_MASK |
8977 R_ID_AA64ISAR2_MOPS_MASK |
8978 R_ID_AA64ISAR2_BC_MASK |
8979 R_ID_AA64ISAR2_RPRFM_MASK |
8980 R_ID_AA64ISAR2_CSSC_MASK },
8981 { .name = "ID_AA64ISAR*_EL1_RESERVED",
8982 .is_glob = true },
8984 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
8985 #endif
8987 * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL.
8988 * TODO: For RMR, a write with bit 1 set should do something with
8989 * cpu_reset(). In the meantime, "the bit is strictly a request",
8990 * so we are in spec just ignoring writes.
8992 if (!arm_feature(env, ARM_FEATURE_EL3) &&
8993 !arm_feature(env, ARM_FEATURE_EL2)) {
8994 ARMCPRegInfo el1_reset_regs[] = {
8995 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
8996 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8997 .access = PL1_R,
8998 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
8999 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH,
9000 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
9001 .access = PL1_RW, .type = ARM_CP_CONST,
9002 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }
9004 define_arm_cp_regs(cpu, el1_reset_regs);
9006 define_arm_cp_regs(cpu, v8_idregs);
9007 define_arm_cp_regs(cpu, v8_cp_reginfo);
9008 if (cpu_isar_feature(aa64_aa32_el1, cpu)) {
9009 define_arm_cp_regs(cpu, v8_aa32_el1_reginfo);
9012 for (i = 4; i < 16; i++) {
9014 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
9015 * For pre-v8 cores there are RAZ patterns for these in
9016 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
9017 * v8 extends the "must RAZ" part of the ID register space
9018 * to also cover c0, 0, c{8-15}, {0-7}.
9019 * These are STATE_AA32 because in the AArch64 sysreg space
9020 * c4-c7 is where the AArch64 ID registers live (and we've
9021 * already defined those in v8_idregs[]), and c8-c15 are not
9022 * "must RAZ" for AArch64.
9024 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
9025 ARMCPRegInfo v8_aa32_raz_idregs = {
9026 .name = name,
9027 .state = ARM_CP_STATE_AA32,
9028 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
9029 .access = PL1_R, .type = ARM_CP_CONST,
9030 .accessfn = access_aa64_tid3,
9031 .resetvalue = 0 };
9032 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
9037 * Register the base EL2 cpregs.
9038 * Pre v8, these registers are implemented only as part of the
9039 * Virtualization Extensions (EL2 present). Beginning with v8,
9040 * if EL2 is missing but EL3 is enabled, mostly these become
9041 * RES0 from EL3, with some specific exceptions.
9043 if (arm_feature(env, ARM_FEATURE_EL2)
9044 || (arm_feature(env, ARM_FEATURE_EL3)
9045 && arm_feature(env, ARM_FEATURE_V8))) {
9046 uint64_t vmpidr_def = mpidr_read_val(env);
9047 ARMCPRegInfo vpidr_regs[] = {
9048 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
9049 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
9050 .access = PL2_RW, .accessfn = access_el3_aa32ns,
9051 .resetvalue = cpu->midr,
9052 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
9053 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
9054 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
9055 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
9056 .access = PL2_RW, .resetvalue = cpu->midr,
9057 .type = ARM_CP_EL3_NO_EL2_C_NZ,
9058 .nv2_redirect_offset = 0x88,
9059 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
9060 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
9061 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
9062 .access = PL2_RW, .accessfn = access_el3_aa32ns,
9063 .resetvalue = vmpidr_def,
9064 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
9065 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
9066 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
9067 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
9068 .access = PL2_RW, .resetvalue = vmpidr_def,
9069 .type = ARM_CP_EL3_NO_EL2_C_NZ,
9070 .nv2_redirect_offset = 0x50,
9071 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
9074 * The only field of MDCR_EL2 that has a defined architectural reset
9075 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
9077 ARMCPRegInfo mdcr_el2 = {
9078 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
9079 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
9080 .writefn = mdcr_el2_write,
9081 .access = PL2_RW, .resetvalue = pmu_num_counters(env),
9082 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
9084 define_one_arm_cp_reg(cpu, &mdcr_el2);
9085 define_arm_cp_regs(cpu, vpidr_regs);
9086 define_arm_cp_regs(cpu, el2_cp_reginfo);
9087 if (arm_feature(env, ARM_FEATURE_V8)) {
9088 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
9090 if (cpu_isar_feature(aa64_sel2, cpu)) {
9091 define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
9094 * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL.
9095 * See commentary near RMR_EL1.
9097 if (!arm_feature(env, ARM_FEATURE_EL3)) {
9098 static const ARMCPRegInfo el2_reset_regs[] = {
9099 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
9100 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
9101 .access = PL2_R,
9102 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
9103 { .name = "RVBAR", .type = ARM_CP_ALIAS,
9104 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
9105 .access = PL2_R,
9106 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
9107 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64,
9108 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2,
9109 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
9111 define_arm_cp_regs(cpu, el2_reset_regs);
9115 /* Register the base EL3 cpregs. */
9116 if (arm_feature(env, ARM_FEATURE_EL3)) {
9117 define_arm_cp_regs(cpu, el3_cp_reginfo);
9118 ARMCPRegInfo el3_regs[] = {
9119 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
9120 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
9121 .access = PL3_R,
9122 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), },
9123 { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64,
9124 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2,
9125 .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
9126 { .name = "RMR", .state = ARM_CP_STATE_AA32,
9127 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
9128 .access = PL3_RW, .type = ARM_CP_CONST,
9129 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) },
9130 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
9131 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
9132 .access = PL3_RW,
9133 .raw_writefn = raw_write, .writefn = sctlr_write,
9134 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
9135 .resetvalue = cpu->reset_sctlr },
9138 define_arm_cp_regs(cpu, el3_regs);
9141 * The behaviour of NSACR is sufficiently various that we don't
9142 * try to describe it in a single reginfo:
9143 * if EL3 is 64 bit, then trap to EL3 from S EL1,
9144 * reads as constant 0xc00 from NS EL1 and NS EL2
9145 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
9146 * if v7 without EL3, register doesn't exist
9147 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
9149 if (arm_feature(env, ARM_FEATURE_EL3)) {
9150 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
9151 static const ARMCPRegInfo nsacr = {
9152 .name = "NSACR", .type = ARM_CP_CONST,
9153 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9154 .access = PL1_RW, .accessfn = nsacr_access,
9155 .resetvalue = 0xc00
9157 define_one_arm_cp_reg(cpu, &nsacr);
9158 } else {
9159 static const ARMCPRegInfo nsacr = {
9160 .name = "NSACR",
9161 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9162 .access = PL3_RW | PL1_R,
9163 .resetvalue = 0,
9164 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
9166 define_one_arm_cp_reg(cpu, &nsacr);
9168 } else {
9169 if (arm_feature(env, ARM_FEATURE_V8)) {
9170 static const ARMCPRegInfo nsacr = {
9171 .name = "NSACR", .type = ARM_CP_CONST,
9172 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9173 .access = PL1_R,
9174 .resetvalue = 0xc00
9176 define_one_arm_cp_reg(cpu, &nsacr);
9180 if (arm_feature(env, ARM_FEATURE_PMSA)) {
9181 if (arm_feature(env, ARM_FEATURE_V6)) {
9182 /* PMSAv6 not implemented */
9183 assert(arm_feature(env, ARM_FEATURE_V7));
9184 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
9185 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
9186 } else {
9187 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
9189 } else {
9190 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
9191 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
9192 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
9193 if (cpu_isar_feature(aa32_hpd, cpu)) {
9194 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
9197 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
9198 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
9200 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
9201 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
9203 if (arm_feature(env, ARM_FEATURE_VAPA)) {
9204 ARMCPRegInfo vapa_cp_reginfo[] = {
9205 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
9206 .access = PL1_RW, .resetvalue = 0,
9207 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
9208 offsetoflow32(CPUARMState, cp15.par_ns) },
9209 .writefn = par_write},
9210 #ifndef CONFIG_USER_ONLY
9211 /* This underdecoding is safe because the reginfo is NO_RAW. */
9212 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
9213 .access = PL1_W, .accessfn = ats_access,
9214 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
9215 #endif
9219 * When LPAE exists this 32-bit PAR register is an alias of the
9220 * 64-bit AArch32 PAR register defined in lpae_cp_reginfo[]
9222 if (arm_feature(env, ARM_FEATURE_LPAE)) {
9223 vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB;
9225 define_arm_cp_regs(cpu, vapa_cp_reginfo);
9227 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
9228 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
9230 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
9231 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
9233 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
9234 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
9236 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
9237 define_arm_cp_regs(cpu, omap_cp_reginfo);
9239 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
9240 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
9242 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9243 define_arm_cp_regs(cpu, xscale_cp_reginfo);
9245 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
9246 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
9248 if (arm_feature(env, ARM_FEATURE_LPAE)) {
9249 define_arm_cp_regs(cpu, lpae_cp_reginfo);
9251 if (cpu_isar_feature(aa32_jazelle, cpu)) {
9252 define_arm_cp_regs(cpu, jazelle_regs);
9255 * Slightly awkwardly, the OMAP and StrongARM cores need all of
9256 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
9257 * be read-only (ie write causes UNDEF exception).
9260 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
9262 * Pre-v8 MIDR space.
9263 * Note that the MIDR isn't a simple constant register because
9264 * of the TI925 behaviour where writes to another register can
9265 * cause the MIDR value to change.
9267 * Unimplemented registers in the c15 0 0 0 space default to
9268 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
9269 * and friends override accordingly.
9271 { .name = "MIDR",
9272 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
9273 .access = PL1_R, .resetvalue = cpu->midr,
9274 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
9275 .readfn = midr_read,
9276 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
9277 .type = ARM_CP_OVERRIDE },
9278 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
9279 { .name = "DUMMY",
9280 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
9281 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9282 { .name = "DUMMY",
9283 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
9284 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9285 { .name = "DUMMY",
9286 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
9287 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9288 { .name = "DUMMY",
9289 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
9290 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9291 { .name = "DUMMY",
9292 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
9293 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9295 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
9296 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
9297 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
9298 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
9299 .fgt = FGT_MIDR_EL1,
9300 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
9301 .readfn = midr_read },
9302 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
9303 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
9304 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
9305 .access = PL1_R, .resetvalue = cpu->midr },
9306 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
9307 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
9308 .access = PL1_R,
9309 .accessfn = access_aa64_tid1,
9310 .fgt = FGT_REVIDR_EL1,
9311 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
9313 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
9314 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB,
9315 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9316 .access = PL1_R, .resetvalue = cpu->midr
9318 ARMCPRegInfo id_cp_reginfo[] = {
9319 /* These are common to v8 and pre-v8 */
9320 { .name = "CTR",
9321 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
9322 .access = PL1_R, .accessfn = ctr_el0_access,
9323 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9324 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
9325 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
9326 .access = PL0_R, .accessfn = ctr_el0_access,
9327 .fgt = FGT_CTR_EL0,
9328 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9329 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
9330 { .name = "TCMTR",
9331 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
9332 .access = PL1_R,
9333 .accessfn = access_aa32_tid1,
9334 .type = ARM_CP_CONST, .resetvalue = 0 },
9336 /* TLBTR is specific to VMSA */
9337 ARMCPRegInfo id_tlbtr_reginfo = {
9338 .name = "TLBTR",
9339 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
9340 .access = PL1_R,
9341 .accessfn = access_aa32_tid1,
9342 .type = ARM_CP_CONST, .resetvalue = 0,
9344 /* MPUIR is specific to PMSA V6+ */
9345 ARMCPRegInfo id_mpuir_reginfo = {
9346 .name = "MPUIR",
9347 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9348 .access = PL1_R, .type = ARM_CP_CONST,
9349 .resetvalue = cpu->pmsav7_dregion << 8
9351 /* HMPUIR is specific to PMSA V8 */
9352 ARMCPRegInfo id_hmpuir_reginfo = {
9353 .name = "HMPUIR",
9354 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
9355 .access = PL2_R, .type = ARM_CP_CONST,
9356 .resetvalue = cpu->pmsav8r_hdregion
9358 static const ARMCPRegInfo crn0_wi_reginfo = {
9359 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
9360 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
9361 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
9363 #ifdef CONFIG_USER_ONLY
9364 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
9365 { .name = "MIDR_EL1",
9366 .exported_bits = R_MIDR_EL1_REVISION_MASK |
9367 R_MIDR_EL1_PARTNUM_MASK |
9368 R_MIDR_EL1_ARCHITECTURE_MASK |
9369 R_MIDR_EL1_VARIANT_MASK |
9370 R_MIDR_EL1_IMPLEMENTER_MASK },
9371 { .name = "REVIDR_EL1" },
9373 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
9374 #endif
9375 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
9376 arm_feature(env, ARM_FEATURE_STRONGARM)) {
9377 size_t i;
9379 * Register the blanket "writes ignored" value first to cover the
9380 * whole space. Then update the specific ID registers to allow write
9381 * access, so that they ignore writes rather than causing them to
9382 * UNDEF.
9384 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
9385 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
9386 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
9388 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
9389 id_cp_reginfo[i].access = PL1_RW;
9391 id_mpuir_reginfo.access = PL1_RW;
9392 id_tlbtr_reginfo.access = PL1_RW;
9394 if (arm_feature(env, ARM_FEATURE_V8)) {
9395 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
9396 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9397 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
9399 } else {
9400 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
9402 define_arm_cp_regs(cpu, id_cp_reginfo);
9403 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9404 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
9405 } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
9406 arm_feature(env, ARM_FEATURE_V8)) {
9407 uint32_t i = 0;
9408 char *tmp_string;
9410 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9411 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
9412 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
9414 /* Register alias is only valid for first 32 indexes */
9415 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
9416 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9417 uint8_t opc1 = extract32(i, 4, 1);
9418 uint8_t opc2 = extract32(i, 0, 1) << 2;
9420 tmp_string = g_strdup_printf("PRBAR%u", i);
9421 ARMCPRegInfo tmp_prbarn_reginfo = {
9422 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9423 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9424 .access = PL1_RW, .resetvalue = 0,
9425 .accessfn = access_tvm_trvm,
9426 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9428 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
9429 g_free(tmp_string);
9431 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9432 tmp_string = g_strdup_printf("PRLAR%u", i);
9433 ARMCPRegInfo tmp_prlarn_reginfo = {
9434 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9435 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9436 .access = PL1_RW, .resetvalue = 0,
9437 .accessfn = access_tvm_trvm,
9438 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9440 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
9441 g_free(tmp_string);
9444 /* Register alias is only valid for first 32 indexes */
9445 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
9446 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9447 uint8_t opc1 = 0b100 | extract32(i, 4, 1);
9448 uint8_t opc2 = extract32(i, 0, 1) << 2;
9450 tmp_string = g_strdup_printf("HPRBAR%u", i);
9451 ARMCPRegInfo tmp_hprbarn_reginfo = {
9452 .name = tmp_string,
9453 .type = ARM_CP_NO_RAW,
9454 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9455 .access = PL2_RW, .resetvalue = 0,
9456 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9458 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
9459 g_free(tmp_string);
9461 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9462 tmp_string = g_strdup_printf("HPRLAR%u", i);
9463 ARMCPRegInfo tmp_hprlarn_reginfo = {
9464 .name = tmp_string,
9465 .type = ARM_CP_NO_RAW,
9466 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9467 .access = PL2_RW, .resetvalue = 0,
9468 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9470 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
9471 g_free(tmp_string);
9473 } else if (arm_feature(env, ARM_FEATURE_V7)) {
9474 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9478 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
9479 ARMCPRegInfo mpidr_cp_reginfo[] = {
9480 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
9481 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
9482 .fgt = FGT_MPIDR_EL1,
9483 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
9485 #ifdef CONFIG_USER_ONLY
9486 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
9487 { .name = "MPIDR_EL1",
9488 .fixed_bits = 0x0000000080000000 },
9490 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
9491 #endif
9492 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
9495 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
9496 ARMCPRegInfo auxcr_reginfo[] = {
9497 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
9498 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
9499 .access = PL1_RW, .accessfn = access_tacr,
9500 .nv2_redirect_offset = 0x118,
9501 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
9502 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
9503 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
9504 .access = PL2_RW, .type = ARM_CP_CONST,
9505 .resetvalue = 0 },
9506 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
9507 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
9508 .access = PL3_RW, .type = ARM_CP_CONST,
9509 .resetvalue = 0 },
9511 define_arm_cp_regs(cpu, auxcr_reginfo);
9512 if (cpu_isar_feature(aa32_ac2, cpu)) {
9513 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
9517 if (arm_feature(env, ARM_FEATURE_CBAR)) {
9519 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
9520 * There are two flavours:
9521 * (1) older 32-bit only cores have a simple 32-bit CBAR
9522 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
9523 * 32-bit register visible to AArch32 at a different encoding
9524 * to the "flavour 1" register and with the bits rearranged to
9525 * be able to squash a 64-bit address into the 32-bit view.
9526 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
9527 * in future if we support AArch32-only configs of some of the
9528 * AArch64 cores we might need to add a specific feature flag
9529 * to indicate cores with "flavour 2" CBAR.
9531 if (arm_feature(env, ARM_FEATURE_V8)) {
9532 /* 32 bit view is [31:18] 0...0 [43:32]. */
9533 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
9534 | extract64(cpu->reset_cbar, 32, 12);
9535 ARMCPRegInfo cbar_reginfo[] = {
9536 { .name = "CBAR",
9537 .type = ARM_CP_CONST,
9538 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
9539 .access = PL1_R, .resetvalue = cbar32 },
9540 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
9541 .type = ARM_CP_CONST,
9542 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
9543 .access = PL1_R, .resetvalue = cpu->reset_cbar },
9545 /* We don't implement a r/w 64 bit CBAR currently */
9546 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
9547 define_arm_cp_regs(cpu, cbar_reginfo);
9548 } else {
9549 ARMCPRegInfo cbar = {
9550 .name = "CBAR",
9551 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
9552 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
9553 .fieldoffset = offsetof(CPUARMState,
9554 cp15.c15_config_base_address)
9556 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
9557 cbar.access = PL1_R;
9558 cbar.fieldoffset = 0;
9559 cbar.type = ARM_CP_CONST;
9561 define_one_arm_cp_reg(cpu, &cbar);
9565 if (arm_feature(env, ARM_FEATURE_VBAR)) {
9566 static const ARMCPRegInfo vbar_cp_reginfo[] = {
9567 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
9568 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
9569 .access = PL1_RW, .writefn = vbar_write,
9570 .accessfn = access_nv1,
9571 .fgt = FGT_VBAR_EL1,
9572 .nv2_redirect_offset = 0x250 | NV2_REDIR_NV1,
9573 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
9574 offsetof(CPUARMState, cp15.vbar_ns) },
9575 .resetvalue = 0 },
9577 define_arm_cp_regs(cpu, vbar_cp_reginfo);
9580 /* Generic registers whose values depend on the implementation */
9582 ARMCPRegInfo sctlr = {
9583 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
9584 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
9585 .access = PL1_RW, .accessfn = access_tvm_trvm,
9586 .fgt = FGT_SCTLR_EL1,
9587 .nv2_redirect_offset = 0x110 | NV2_REDIR_NV1,
9588 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
9589 offsetof(CPUARMState, cp15.sctlr_ns) },
9590 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
9591 .raw_writefn = raw_write,
9593 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9595 * Normally we would always end the TB on an SCTLR write, but Linux
9596 * arch/arm/mach-pxa/sleep.S expects two instructions following
9597 * an MMU enable to execute from cache. Imitate this behaviour.
9599 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
9601 define_one_arm_cp_reg(cpu, &sctlr);
9603 if (arm_feature(env, ARM_FEATURE_PMSA) &&
9604 arm_feature(env, ARM_FEATURE_V8)) {
9605 ARMCPRegInfo vsctlr = {
9606 .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
9607 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
9608 .access = PL2_RW, .resetvalue = 0x0,
9609 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
9611 define_one_arm_cp_reg(cpu, &vsctlr);
9615 if (cpu_isar_feature(aa64_lor, cpu)) {
9616 define_arm_cp_regs(cpu, lor_reginfo);
9618 if (cpu_isar_feature(aa64_pan, cpu)) {
9619 define_one_arm_cp_reg(cpu, &pan_reginfo);
9621 #ifndef CONFIG_USER_ONLY
9622 if (cpu_isar_feature(aa64_ats1e1, cpu)) {
9623 define_arm_cp_regs(cpu, ats1e1_reginfo);
9625 if (cpu_isar_feature(aa32_ats1e1, cpu)) {
9626 define_arm_cp_regs(cpu, ats1cp_reginfo);
9628 #endif
9629 if (cpu_isar_feature(aa64_uao, cpu)) {
9630 define_one_arm_cp_reg(cpu, &uao_reginfo);
9633 if (cpu_isar_feature(aa64_dit, cpu)) {
9634 define_one_arm_cp_reg(cpu, &dit_reginfo);
9636 if (cpu_isar_feature(aa64_ssbs, cpu)) {
9637 define_one_arm_cp_reg(cpu, &ssbs_reginfo);
9639 if (cpu_isar_feature(any_ras, cpu)) {
9640 define_arm_cp_regs(cpu, minimal_ras_reginfo);
9643 if (cpu_isar_feature(aa64_vh, cpu) ||
9644 cpu_isar_feature(aa64_debugv8p2, cpu)) {
9645 define_one_arm_cp_reg(cpu, &contextidr_el2);
9647 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9648 define_arm_cp_regs(cpu, vhe_reginfo);
9651 if (cpu_isar_feature(aa64_sve, cpu)) {
9652 define_arm_cp_regs(cpu, zcr_reginfo);
9655 if (cpu_isar_feature(aa64_hcx, cpu)) {
9656 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
9659 #ifdef TARGET_AARCH64
9660 if (cpu_isar_feature(aa64_sme, cpu)) {
9661 define_arm_cp_regs(cpu, sme_reginfo);
9663 if (cpu_isar_feature(aa64_pauth, cpu)) {
9664 define_arm_cp_regs(cpu, pauth_reginfo);
9666 if (cpu_isar_feature(aa64_rndr, cpu)) {
9667 define_arm_cp_regs(cpu, rndr_reginfo);
9669 if (cpu_isar_feature(aa64_tlbirange, cpu)) {
9670 define_arm_cp_regs(cpu, tlbirange_reginfo);
9672 if (cpu_isar_feature(aa64_tlbios, cpu)) {
9673 define_arm_cp_regs(cpu, tlbios_reginfo);
9675 /* Data Cache clean instructions up to PoP */
9676 if (cpu_isar_feature(aa64_dcpop, cpu)) {
9677 define_one_arm_cp_reg(cpu, dcpop_reg);
9679 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
9680 define_one_arm_cp_reg(cpu, dcpodp_reg);
9685 * If full MTE is enabled, add all of the system registers.
9686 * If only "instructions available at EL0" are enabled,
9687 * then define only a RAZ/WI version of PSTATE.TCO.
9689 if (cpu_isar_feature(aa64_mte, cpu)) {
9690 ARMCPRegInfo gmid_reginfo = {
9691 .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
9692 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
9693 .access = PL1_R, .accessfn = access_aa64_tid5,
9694 .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize,
9696 define_one_arm_cp_reg(cpu, &gmid_reginfo);
9697 define_arm_cp_regs(cpu, mte_reginfo);
9698 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9699 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
9700 define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
9701 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9704 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
9705 define_arm_cp_regs(cpu, scxtnum_reginfo);
9708 if (cpu_isar_feature(aa64_fgt, cpu)) {
9709 define_arm_cp_regs(cpu, fgt_reginfo);
9712 if (cpu_isar_feature(aa64_rme, cpu)) {
9713 define_arm_cp_regs(cpu, rme_reginfo);
9714 if (cpu_isar_feature(aa64_mte, cpu)) {
9715 define_arm_cp_regs(cpu, rme_mte_reginfo);
9719 if (cpu_isar_feature(aa64_nv2, cpu)) {
9720 define_arm_cp_regs(cpu, nv2_reginfo);
9722 #endif
9724 if (cpu_isar_feature(any_predinv, cpu)) {
9725 define_arm_cp_regs(cpu, predinv_reginfo);
9728 if (cpu_isar_feature(any_ccidx, cpu)) {
9729 define_arm_cp_regs(cpu, ccsidr2_reginfo);
9732 #ifndef CONFIG_USER_ONLY
9734 * Register redirections and aliases must be done last,
9735 * after the registers from the other extensions have been defined.
9737 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9738 define_arm_vh_e2h_redirects_aliases(cpu);
9740 #endif
9744 * Private utility function for define_one_arm_cp_reg_with_opaque():
9745 * add a single reginfo struct to the hash table.
9747 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
9748 void *opaque, CPState state,
9749 CPSecureState secstate,
9750 int crm, int opc1, int opc2,
9751 const char *name)
9753 CPUARMState *env = &cpu->env;
9754 uint32_t key;
9755 ARMCPRegInfo *r2;
9756 bool is64 = r->type & ARM_CP_64BIT;
9757 bool ns = secstate & ARM_CP_SECSTATE_NS;
9758 int cp = r->cp;
9759 size_t name_len;
9760 bool make_const;
9762 switch (state) {
9763 case ARM_CP_STATE_AA32:
9764 /* We assume it is a cp15 register if the .cp field is left unset. */
9765 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
9766 cp = 15;
9768 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
9769 break;
9770 case ARM_CP_STATE_AA64:
9772 * To allow abbreviation of ARMCPRegInfo definitions, we treat
9773 * cp == 0 as equivalent to the value for "standard guest-visible
9774 * sysreg". STATE_BOTH definitions are also always "standard sysreg"
9775 * in their AArch64 view (the .cp value may be non-zero for the
9776 * benefit of the AArch32 view).
9778 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
9779 cp = CP_REG_ARM64_SYSREG_CP;
9781 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
9782 break;
9783 default:
9784 g_assert_not_reached();
9787 /* Overriding of an existing definition must be explicitly requested. */
9788 if (!(r->type & ARM_CP_OVERRIDE)) {
9789 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
9790 if (oldreg) {
9791 assert(oldreg->type & ARM_CP_OVERRIDE);
9796 * Eliminate registers that are not present because the EL is missing.
9797 * Doing this here makes it easier to put all registers for a given
9798 * feature into the same ARMCPRegInfo array and define them all at once.
9800 make_const = false;
9801 if (arm_feature(env, ARM_FEATURE_EL3)) {
9803 * An EL2 register without EL2 but with EL3 is (usually) RES0.
9804 * See rule RJFFP in section D1.1.3 of DDI0487H.a.
9806 int min_el = ctz32(r->access) / 2;
9807 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
9808 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
9809 return;
9811 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
9813 } else {
9814 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
9815 ? PL2_RW : PL1_RW);
9816 if ((r->access & max_el) == 0) {
9817 return;
9821 /* Combine cpreg and name into one allocation. */
9822 name_len = strlen(name) + 1;
9823 r2 = g_malloc(sizeof(*r2) + name_len);
9824 *r2 = *r;
9825 r2->name = memcpy(r2 + 1, name, name_len);
9828 * Update fields to match the instantiation, overwiting wildcards
9829 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
9831 r2->cp = cp;
9832 r2->crm = crm;
9833 r2->opc1 = opc1;
9834 r2->opc2 = opc2;
9835 r2->state = state;
9836 r2->secure = secstate;
9837 if (opaque) {
9838 r2->opaque = opaque;
9841 if (make_const) {
9842 /* This should not have been a very special register to begin. */
9843 int old_special = r2->type & ARM_CP_SPECIAL_MASK;
9844 assert(old_special == 0 || old_special == ARM_CP_NOP);
9846 * Set the special function to CONST, retaining the other flags.
9847 * This is important for e.g. ARM_CP_SVE so that we still
9848 * take the SVE trap if CPTR_EL3.EZ == 0.
9850 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
9852 * Usually, these registers become RES0, but there are a few
9853 * special cases like VPIDR_EL2 which have a constant non-zero
9854 * value with writes ignored.
9856 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
9857 r2->resetvalue = 0;
9860 * ARM_CP_CONST has precedence, so removing the callbacks and
9861 * offsets are not strictly necessary, but it is potentially
9862 * less confusing to debug later.
9864 r2->readfn = NULL;
9865 r2->writefn = NULL;
9866 r2->raw_readfn = NULL;
9867 r2->raw_writefn = NULL;
9868 r2->resetfn = NULL;
9869 r2->fieldoffset = 0;
9870 r2->bank_fieldoffsets[0] = 0;
9871 r2->bank_fieldoffsets[1] = 0;
9872 } else {
9873 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
9875 if (isbanked) {
9877 * Register is banked (using both entries in array).
9878 * Overwriting fieldoffset as the array is only used to define
9879 * banked registers but later only fieldoffset is used.
9881 r2->fieldoffset = r->bank_fieldoffsets[ns];
9883 if (state == ARM_CP_STATE_AA32) {
9884 if (isbanked) {
9886 * If the register is banked then we don't need to migrate or
9887 * reset the 32-bit instance in certain cases:
9889 * 1) If the register has both 32-bit and 64-bit instances
9890 * then we can count on the 64-bit instance taking care
9891 * of the non-secure bank.
9892 * 2) If ARMv8 is enabled then we can count on a 64-bit
9893 * version taking care of the secure bank. This requires
9894 * that separate 32 and 64-bit definitions are provided.
9896 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
9897 (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
9898 r2->type |= ARM_CP_ALIAS;
9900 } else if ((secstate != r->secure) && !ns) {
9902 * The register is not banked so we only want to allow
9903 * migration of the non-secure instance.
9905 r2->type |= ARM_CP_ALIAS;
9908 if (HOST_BIG_ENDIAN &&
9909 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
9910 r2->fieldoffset += sizeof(uint32_t);
9916 * By convention, for wildcarded registers only the first
9917 * entry is used for migration; the others are marked as
9918 * ALIAS so we don't try to transfer the register
9919 * multiple times. Special registers (ie NOP/WFI) are
9920 * never migratable and not even raw-accessible.
9922 if (r2->type & ARM_CP_SPECIAL_MASK) {
9923 r2->type |= ARM_CP_NO_RAW;
9925 if (((r->crm == CP_ANY) && crm != 0) ||
9926 ((r->opc1 == CP_ANY) && opc1 != 0) ||
9927 ((r->opc2 == CP_ANY) && opc2 != 0)) {
9928 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
9932 * Check that raw accesses are either forbidden or handled. Note that
9933 * we can't assert this earlier because the setup of fieldoffset for
9934 * banked registers has to be done first.
9936 if (!(r2->type & ARM_CP_NO_RAW)) {
9937 assert(!raw_accessors_invalid(r2));
9940 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
9944 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
9945 const ARMCPRegInfo *r, void *opaque)
9948 * Define implementations of coprocessor registers.
9949 * We store these in a hashtable because typically
9950 * there are less than 150 registers in a space which
9951 * is 16*16*16*8*8 = 262144 in size.
9952 * Wildcarding is supported for the crm, opc1 and opc2 fields.
9953 * If a register is defined twice then the second definition is
9954 * used, so this can be used to define some generic registers and
9955 * then override them with implementation specific variations.
9956 * At least one of the original and the second definition should
9957 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
9958 * against accidental use.
9960 * The state field defines whether the register is to be
9961 * visible in the AArch32 or AArch64 execution state. If the
9962 * state is set to ARM_CP_STATE_BOTH then we synthesise a
9963 * reginfo structure for the AArch32 view, which sees the lower
9964 * 32 bits of the 64 bit register.
9966 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
9967 * be wildcarded. AArch64 registers are always considered to be 64
9968 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
9969 * the register, if any.
9971 int crm, opc1, opc2;
9972 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
9973 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
9974 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
9975 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
9976 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
9977 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
9978 CPState state;
9980 /* 64 bit registers have only CRm and Opc1 fields */
9981 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
9982 /* op0 only exists in the AArch64 encodings */
9983 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
9984 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
9985 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
9987 * This API is only for Arm's system coprocessors (14 and 15) or
9988 * (M-profile or v7A-and-earlier only) for implementation defined
9989 * coprocessors in the range 0..7. Our decode assumes this, since
9990 * 8..13 can be used for other insns including VFP and Neon. See
9991 * valid_cp() in translate.c. Assert here that we haven't tried
9992 * to use an invalid coprocessor number.
9994 switch (r->state) {
9995 case ARM_CP_STATE_BOTH:
9996 /* 0 has a special meaning, but otherwise the same rules as AA32. */
9997 if (r->cp == 0) {
9998 break;
10000 /* fall through */
10001 case ARM_CP_STATE_AA32:
10002 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
10003 !arm_feature(&cpu->env, ARM_FEATURE_M)) {
10004 assert(r->cp >= 14 && r->cp <= 15);
10005 } else {
10006 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
10008 break;
10009 case ARM_CP_STATE_AA64:
10010 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
10011 break;
10012 default:
10013 g_assert_not_reached();
10016 * The AArch64 pseudocode CheckSystemAccess() specifies that op1
10017 * encodes a minimum access level for the register. We roll this
10018 * runtime check into our general permission check code, so check
10019 * here that the reginfo's specified permissions are strict enough
10020 * to encompass the generic architectural permission check.
10022 if (r->state != ARM_CP_STATE_AA32) {
10023 CPAccessRights mask;
10024 switch (r->opc1) {
10025 case 0:
10026 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
10027 mask = PL0U_R | PL1_RW;
10028 break;
10029 case 1: case 2:
10030 /* min_EL EL1 */
10031 mask = PL1_RW;
10032 break;
10033 case 3:
10034 /* min_EL EL0 */
10035 mask = PL0_RW;
10036 break;
10037 case 4:
10038 case 5:
10039 /* min_EL EL2 */
10040 mask = PL2_RW;
10041 break;
10042 case 6:
10043 /* min_EL EL3 */
10044 mask = PL3_RW;
10045 break;
10046 case 7:
10047 /* min_EL EL1, secure mode only (we don't check the latter) */
10048 mask = PL1_RW;
10049 break;
10050 default:
10051 /* broken reginfo with out-of-range opc1 */
10052 g_assert_not_reached();
10054 /* assert our permissions are not too lax (stricter is fine) */
10055 assert((r->access & ~mask) == 0);
10059 * Check that the register definition has enough info to handle
10060 * reads and writes if they are permitted.
10062 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
10063 if (r->access & PL3_R) {
10064 assert((r->fieldoffset ||
10065 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
10066 r->readfn);
10068 if (r->access & PL3_W) {
10069 assert((r->fieldoffset ||
10070 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
10071 r->writefn);
10075 for (crm = crmmin; crm <= crmmax; crm++) {
10076 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
10077 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
10078 for (state = ARM_CP_STATE_AA32;
10079 state <= ARM_CP_STATE_AA64; state++) {
10080 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
10081 continue;
10083 if (state == ARM_CP_STATE_AA32) {
10085 * Under AArch32 CP registers can be common
10086 * (same for secure and non-secure world) or banked.
10088 char *name;
10090 switch (r->secure) {
10091 case ARM_CP_SECSTATE_S:
10092 case ARM_CP_SECSTATE_NS:
10093 add_cpreg_to_hashtable(cpu, r, opaque, state,
10094 r->secure, crm, opc1, opc2,
10095 r->name);
10096 break;
10097 case ARM_CP_SECSTATE_BOTH:
10098 name = g_strdup_printf("%s_S", r->name);
10099 add_cpreg_to_hashtable(cpu, r, opaque, state,
10100 ARM_CP_SECSTATE_S,
10101 crm, opc1, opc2, name);
10102 g_free(name);
10103 add_cpreg_to_hashtable(cpu, r, opaque, state,
10104 ARM_CP_SECSTATE_NS,
10105 crm, opc1, opc2, r->name);
10106 break;
10107 default:
10108 g_assert_not_reached();
10110 } else {
10112 * AArch64 registers get mapped to non-secure instance
10113 * of AArch32
10115 add_cpreg_to_hashtable(cpu, r, opaque, state,
10116 ARM_CP_SECSTATE_NS,
10117 crm, opc1, opc2, r->name);
10125 /* Define a whole list of registers */
10126 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
10127 void *opaque, size_t len)
10129 size_t i;
10130 for (i = 0; i < len; ++i) {
10131 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
10136 * Modify ARMCPRegInfo for access from userspace.
10138 * This is a data driven modification directed by
10139 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
10140 * user-space cannot alter any values and dynamic values pertaining to
10141 * execution state are hidden from user space view anyway.
10143 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
10144 const ARMCPRegUserSpaceInfo *mods,
10145 size_t mods_len)
10147 for (size_t mi = 0; mi < mods_len; ++mi) {
10148 const ARMCPRegUserSpaceInfo *m = mods + mi;
10149 GPatternSpec *pat = NULL;
10151 if (m->is_glob) {
10152 pat = g_pattern_spec_new(m->name);
10154 for (size_t ri = 0; ri < regs_len; ++ri) {
10155 ARMCPRegInfo *r = regs + ri;
10157 if (pat && g_pattern_match_string(pat, r->name)) {
10158 r->type = ARM_CP_CONST;
10159 r->access = PL0U_R;
10160 r->resetvalue = 0;
10161 /* continue */
10162 } else if (strcmp(r->name, m->name) == 0) {
10163 r->type = ARM_CP_CONST;
10164 r->access = PL0U_R;
10165 r->resetvalue &= m->exported_bits;
10166 r->resetvalue |= m->fixed_bits;
10167 break;
10170 if (pat) {
10171 g_pattern_spec_free(pat);
10176 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
10178 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
10181 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
10182 uint64_t value)
10184 /* Helper coprocessor write function for write-ignore registers */
10187 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
10189 /* Helper coprocessor write function for read-as-zero registers */
10190 return 0;
10193 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
10195 /* Helper coprocessor reset function for do-nothing-on-reset registers */
10198 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
10201 * Return true if it is not valid for us to switch to
10202 * this CPU mode (ie all the UNPREDICTABLE cases in
10203 * the ARM ARM CPSRWriteByInstr pseudocode).
10206 /* Changes to or from Hyp via MSR and CPS are illegal. */
10207 if (write_type == CPSRWriteByInstr &&
10208 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
10209 mode == ARM_CPU_MODE_HYP)) {
10210 return 1;
10213 switch (mode) {
10214 case ARM_CPU_MODE_USR:
10215 return 0;
10216 case ARM_CPU_MODE_SYS:
10217 case ARM_CPU_MODE_SVC:
10218 case ARM_CPU_MODE_ABT:
10219 case ARM_CPU_MODE_UND:
10220 case ARM_CPU_MODE_IRQ:
10221 case ARM_CPU_MODE_FIQ:
10223 * Note that we don't implement the IMPDEF NSACR.RFR which in v7
10224 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
10227 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
10228 * and CPS are treated as illegal mode changes.
10230 if (write_type == CPSRWriteByInstr &&
10231 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
10232 (arm_hcr_el2_eff(env) & HCR_TGE)) {
10233 return 1;
10235 return 0;
10236 case ARM_CPU_MODE_HYP:
10237 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
10238 case ARM_CPU_MODE_MON:
10239 return arm_current_el(env) < 3;
10240 default:
10241 return 1;
10245 uint32_t cpsr_read(CPUARMState *env)
10247 int ZF;
10248 ZF = (env->ZF == 0);
10249 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
10250 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
10251 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
10252 | ((env->condexec_bits & 0xfc) << 8)
10253 | (env->GE << 16) | (env->daif & CPSR_AIF);
10256 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
10257 CPSRWriteType write_type)
10259 uint32_t changed_daif;
10260 bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
10261 (mask & (CPSR_M | CPSR_E | CPSR_IL));
10263 if (mask & CPSR_NZCV) {
10264 env->ZF = (~val) & CPSR_Z;
10265 env->NF = val;
10266 env->CF = (val >> 29) & 1;
10267 env->VF = (val << 3) & 0x80000000;
10269 if (mask & CPSR_Q) {
10270 env->QF = ((val & CPSR_Q) != 0);
10272 if (mask & CPSR_T) {
10273 env->thumb = ((val & CPSR_T) != 0);
10275 if (mask & CPSR_IT_0_1) {
10276 env->condexec_bits &= ~3;
10277 env->condexec_bits |= (val >> 25) & 3;
10279 if (mask & CPSR_IT_2_7) {
10280 env->condexec_bits &= 3;
10281 env->condexec_bits |= (val >> 8) & 0xfc;
10283 if (mask & CPSR_GE) {
10284 env->GE = (val >> 16) & 0xf;
10288 * In a V7 implementation that includes the security extensions but does
10289 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
10290 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
10291 * bits respectively.
10293 * In a V8 implementation, it is permitted for privileged software to
10294 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
10296 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
10297 arm_feature(env, ARM_FEATURE_EL3) &&
10298 !arm_feature(env, ARM_FEATURE_EL2) &&
10299 !arm_is_secure(env)) {
10301 changed_daif = (env->daif ^ val) & mask;
10303 if (changed_daif & CPSR_A) {
10305 * Check to see if we are allowed to change the masking of async
10306 * abort exceptions from a non-secure state.
10308 if (!(env->cp15.scr_el3 & SCR_AW)) {
10309 qemu_log_mask(LOG_GUEST_ERROR,
10310 "Ignoring attempt to switch CPSR_A flag from "
10311 "non-secure world with SCR.AW bit clear\n");
10312 mask &= ~CPSR_A;
10316 if (changed_daif & CPSR_F) {
10318 * Check to see if we are allowed to change the masking of FIQ
10319 * exceptions from a non-secure state.
10321 if (!(env->cp15.scr_el3 & SCR_FW)) {
10322 qemu_log_mask(LOG_GUEST_ERROR,
10323 "Ignoring attempt to switch CPSR_F flag from "
10324 "non-secure world with SCR.FW bit clear\n");
10325 mask &= ~CPSR_F;
10329 * Check whether non-maskable FIQ (NMFI) support is enabled.
10330 * If this bit is set software is not allowed to mask
10331 * FIQs, but is allowed to set CPSR_F to 0.
10333 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
10334 (val & CPSR_F)) {
10335 qemu_log_mask(LOG_GUEST_ERROR,
10336 "Ignoring attempt to enable CPSR_F flag "
10337 "(non-maskable FIQ [NMFI] support enabled)\n");
10338 mask &= ~CPSR_F;
10343 env->daif &= ~(CPSR_AIF & mask);
10344 env->daif |= val & CPSR_AIF & mask;
10346 if (write_type != CPSRWriteRaw &&
10347 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
10348 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
10350 * Note that we can only get here in USR mode if this is a
10351 * gdb stub write; for this case we follow the architectural
10352 * behaviour for guest writes in USR mode of ignoring an attempt
10353 * to switch mode. (Those are caught by translate.c for writes
10354 * triggered by guest instructions.)
10356 mask &= ~CPSR_M;
10357 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
10359 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in
10360 * v7, and has defined behaviour in v8:
10361 * + leave CPSR.M untouched
10362 * + allow changes to the other CPSR fields
10363 * + set PSTATE.IL
10364 * For user changes via the GDB stub, we don't set PSTATE.IL,
10365 * as this would be unnecessarily harsh for a user error.
10367 mask &= ~CPSR_M;
10368 if (write_type != CPSRWriteByGDBStub &&
10369 arm_feature(env, ARM_FEATURE_V8)) {
10370 mask |= CPSR_IL;
10371 val |= CPSR_IL;
10373 qemu_log_mask(LOG_GUEST_ERROR,
10374 "Illegal AArch32 mode switch attempt from %s to %s\n",
10375 aarch32_mode_name(env->uncached_cpsr),
10376 aarch32_mode_name(val));
10377 } else {
10378 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
10379 write_type == CPSRWriteExceptionReturn ?
10380 "Exception return from AArch32" :
10381 "AArch32 mode switch from",
10382 aarch32_mode_name(env->uncached_cpsr),
10383 aarch32_mode_name(val), env->regs[15]);
10384 switch_mode(env, val & CPSR_M);
10387 mask &= ~CACHED_CPSR_BITS;
10388 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
10389 if (tcg_enabled() && rebuild_hflags) {
10390 arm_rebuild_hflags(env);
10394 #ifdef CONFIG_USER_ONLY
10396 static void switch_mode(CPUARMState *env, int mode)
10398 ARMCPU *cpu = env_archcpu(env);
10400 if (mode != ARM_CPU_MODE_USR) {
10401 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
10405 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10406 uint32_t cur_el, bool secure)
10408 return 1;
10411 void aarch64_sync_64_to_32(CPUARMState *env)
10413 g_assert_not_reached();
10416 #else
10418 static void switch_mode(CPUARMState *env, int mode)
10420 int old_mode;
10421 int i;
10423 old_mode = env->uncached_cpsr & CPSR_M;
10424 if (mode == old_mode) {
10425 return;
10428 if (old_mode == ARM_CPU_MODE_FIQ) {
10429 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
10430 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
10431 } else if (mode == ARM_CPU_MODE_FIQ) {
10432 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
10433 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
10436 i = bank_number(old_mode);
10437 env->banked_r13[i] = env->regs[13];
10438 env->banked_spsr[i] = env->spsr;
10440 i = bank_number(mode);
10441 env->regs[13] = env->banked_r13[i];
10442 env->spsr = env->banked_spsr[i];
10444 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
10445 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
10449 * Physical Interrupt Target EL Lookup Table
10451 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
10453 * The below multi-dimensional table is used for looking up the target
10454 * exception level given numerous condition criteria. Specifically, the
10455 * target EL is based on SCR and HCR routing controls as well as the
10456 * currently executing EL and secure state.
10458 * Dimensions:
10459 * target_el_table[2][2][2][2][2][4]
10460 * | | | | | +--- Current EL
10461 * | | | | +------ Non-secure(0)/Secure(1)
10462 * | | | +--------- HCR mask override
10463 * | | +------------ SCR exec state control
10464 * | +--------------- SCR mask override
10465 * +------------------ 32-bit(0)/64-bit(1) EL3
10467 * The table values are as such:
10468 * 0-3 = EL0-EL3
10469 * -1 = Cannot occur
10471 * The ARM ARM target EL table includes entries indicating that an "exception
10472 * is not taken". The two cases where this is applicable are:
10473 * 1) An exception is taken from EL3 but the SCR does not have the exception
10474 * routed to EL3.
10475 * 2) An exception is taken from EL2 but the HCR does not have the exception
10476 * routed to EL2.
10477 * In these two cases, the below table contain a target of EL1. This value is
10478 * returned as it is expected that the consumer of the table data will check
10479 * for "target EL >= current EL" to ensure the exception is not taken.
10481 * SCR HCR
10482 * 64 EA AMO From
10483 * BIT IRQ IMO Non-secure Secure
10484 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
10486 static const int8_t target_el_table[2][2][2][2][2][4] = {
10487 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
10488 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
10489 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
10490 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
10491 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
10492 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
10493 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
10494 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
10495 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
10496 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},},
10497 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },},
10498 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},},
10499 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
10500 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
10501 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},
10502 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},},
10506 * Determine the target EL for physical exceptions
10508 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10509 uint32_t cur_el, bool secure)
10511 CPUARMState *env = cpu_env(cs);
10512 bool rw;
10513 bool scr;
10514 bool hcr;
10515 int target_el;
10516 /* Is the highest EL AArch64? */
10517 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
10518 uint64_t hcr_el2;
10520 if (arm_feature(env, ARM_FEATURE_EL3)) {
10521 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
10522 } else {
10524 * Either EL2 is the highest EL (and so the EL2 register width
10525 * is given by is64); or there is no EL2 or EL3, in which case
10526 * the value of 'rw' does not affect the table lookup anyway.
10528 rw = is64;
10531 hcr_el2 = arm_hcr_el2_eff(env);
10532 switch (excp_idx) {
10533 case EXCP_IRQ:
10534 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
10535 hcr = hcr_el2 & HCR_IMO;
10536 break;
10537 case EXCP_FIQ:
10538 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
10539 hcr = hcr_el2 & HCR_FMO;
10540 break;
10541 default:
10542 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
10543 hcr = hcr_el2 & HCR_AMO;
10544 break;
10548 * For these purposes, TGE and AMO/IMO/FMO both force the
10549 * interrupt to EL2. Fold TGE into the bit extracted above.
10551 hcr |= (hcr_el2 & HCR_TGE) != 0;
10553 /* Perform a table-lookup for the target EL given the current state */
10554 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
10556 assert(target_el > 0);
10558 return target_el;
10561 void arm_log_exception(CPUState *cs)
10563 int idx = cs->exception_index;
10565 if (qemu_loglevel_mask(CPU_LOG_INT)) {
10566 const char *exc = NULL;
10567 static const char * const excnames[] = {
10568 [EXCP_UDEF] = "Undefined Instruction",
10569 [EXCP_SWI] = "SVC",
10570 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
10571 [EXCP_DATA_ABORT] = "Data Abort",
10572 [EXCP_IRQ] = "IRQ",
10573 [EXCP_FIQ] = "FIQ",
10574 [EXCP_BKPT] = "Breakpoint",
10575 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
10576 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
10577 [EXCP_HVC] = "Hypervisor Call",
10578 [EXCP_HYP_TRAP] = "Hypervisor Trap",
10579 [EXCP_SMC] = "Secure Monitor Call",
10580 [EXCP_VIRQ] = "Virtual IRQ",
10581 [EXCP_VFIQ] = "Virtual FIQ",
10582 [EXCP_SEMIHOST] = "Semihosting call",
10583 [EXCP_NOCP] = "v7M NOCP UsageFault",
10584 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
10585 [EXCP_STKOF] = "v8M STKOF UsageFault",
10586 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
10587 [EXCP_LSERR] = "v8M LSERR UsageFault",
10588 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
10589 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
10590 [EXCP_VSERR] = "Virtual SERR",
10591 [EXCP_GPC] = "Granule Protection Check",
10594 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
10595 exc = excnames[idx];
10597 if (!exc) {
10598 exc = "unknown";
10600 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
10601 idx, exc, cs->cpu_index);
10606 * Function used to synchronize QEMU's AArch64 register set with AArch32
10607 * register set. This is necessary when switching between AArch32 and AArch64
10608 * execution state.
10610 void aarch64_sync_32_to_64(CPUARMState *env)
10612 int i;
10613 uint32_t mode = env->uncached_cpsr & CPSR_M;
10615 /* We can blanket copy R[0:7] to X[0:7] */
10616 for (i = 0; i < 8; i++) {
10617 env->xregs[i] = env->regs[i];
10621 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
10622 * Otherwise, they come from the banked user regs.
10624 if (mode == ARM_CPU_MODE_FIQ) {
10625 for (i = 8; i < 13; i++) {
10626 env->xregs[i] = env->usr_regs[i - 8];
10628 } else {
10629 for (i = 8; i < 13; i++) {
10630 env->xregs[i] = env->regs[i];
10635 * Registers x13-x23 are the various mode SP and FP registers. Registers
10636 * r13 and r14 are only copied if we are in that mode, otherwise we copy
10637 * from the mode banked register.
10639 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10640 env->xregs[13] = env->regs[13];
10641 env->xregs[14] = env->regs[14];
10642 } else {
10643 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
10644 /* HYP is an exception in that it is copied from r14 */
10645 if (mode == ARM_CPU_MODE_HYP) {
10646 env->xregs[14] = env->regs[14];
10647 } else {
10648 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
10652 if (mode == ARM_CPU_MODE_HYP) {
10653 env->xregs[15] = env->regs[13];
10654 } else {
10655 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
10658 if (mode == ARM_CPU_MODE_IRQ) {
10659 env->xregs[16] = env->regs[14];
10660 env->xregs[17] = env->regs[13];
10661 } else {
10662 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
10663 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
10666 if (mode == ARM_CPU_MODE_SVC) {
10667 env->xregs[18] = env->regs[14];
10668 env->xregs[19] = env->regs[13];
10669 } else {
10670 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
10671 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
10674 if (mode == ARM_CPU_MODE_ABT) {
10675 env->xregs[20] = env->regs[14];
10676 env->xregs[21] = env->regs[13];
10677 } else {
10678 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
10679 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
10682 if (mode == ARM_CPU_MODE_UND) {
10683 env->xregs[22] = env->regs[14];
10684 env->xregs[23] = env->regs[13];
10685 } else {
10686 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
10687 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
10691 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
10692 * mode, then we can copy from r8-r14. Otherwise, we copy from the
10693 * FIQ bank for r8-r14.
10695 if (mode == ARM_CPU_MODE_FIQ) {
10696 for (i = 24; i < 31; i++) {
10697 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
10699 } else {
10700 for (i = 24; i < 29; i++) {
10701 env->xregs[i] = env->fiq_regs[i - 24];
10703 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
10704 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
10707 env->pc = env->regs[15];
10711 * Function used to synchronize QEMU's AArch32 register set with AArch64
10712 * register set. This is necessary when switching between AArch32 and AArch64
10713 * execution state.
10715 void aarch64_sync_64_to_32(CPUARMState *env)
10717 int i;
10718 uint32_t mode = env->uncached_cpsr & CPSR_M;
10720 /* We can blanket copy X[0:7] to R[0:7] */
10721 for (i = 0; i < 8; i++) {
10722 env->regs[i] = env->xregs[i];
10726 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
10727 * Otherwise, we copy x8-x12 into the banked user regs.
10729 if (mode == ARM_CPU_MODE_FIQ) {
10730 for (i = 8; i < 13; i++) {
10731 env->usr_regs[i - 8] = env->xregs[i];
10733 } else {
10734 for (i = 8; i < 13; i++) {
10735 env->regs[i] = env->xregs[i];
10740 * Registers r13 & r14 depend on the current mode.
10741 * If we are in a given mode, we copy the corresponding x registers to r13
10742 * and r14. Otherwise, we copy the x register to the banked r13 and r14
10743 * for the mode.
10745 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10746 env->regs[13] = env->xregs[13];
10747 env->regs[14] = env->xregs[14];
10748 } else {
10749 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
10752 * HYP is an exception in that it does not have its own banked r14 but
10753 * shares the USR r14
10755 if (mode == ARM_CPU_MODE_HYP) {
10756 env->regs[14] = env->xregs[14];
10757 } else {
10758 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
10762 if (mode == ARM_CPU_MODE_HYP) {
10763 env->regs[13] = env->xregs[15];
10764 } else {
10765 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
10768 if (mode == ARM_CPU_MODE_IRQ) {
10769 env->regs[14] = env->xregs[16];
10770 env->regs[13] = env->xregs[17];
10771 } else {
10772 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
10773 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
10776 if (mode == ARM_CPU_MODE_SVC) {
10777 env->regs[14] = env->xregs[18];
10778 env->regs[13] = env->xregs[19];
10779 } else {
10780 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
10781 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
10784 if (mode == ARM_CPU_MODE_ABT) {
10785 env->regs[14] = env->xregs[20];
10786 env->regs[13] = env->xregs[21];
10787 } else {
10788 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
10789 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
10792 if (mode == ARM_CPU_MODE_UND) {
10793 env->regs[14] = env->xregs[22];
10794 env->regs[13] = env->xregs[23];
10795 } else {
10796 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
10797 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
10801 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
10802 * mode, then we can copy to r8-r14. Otherwise, we copy to the
10803 * FIQ bank for r8-r14.
10805 if (mode == ARM_CPU_MODE_FIQ) {
10806 for (i = 24; i < 31; i++) {
10807 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
10809 } else {
10810 for (i = 24; i < 29; i++) {
10811 env->fiq_regs[i - 24] = env->xregs[i];
10813 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
10814 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
10817 env->regs[15] = env->pc;
10820 static void take_aarch32_exception(CPUARMState *env, int new_mode,
10821 uint32_t mask, uint32_t offset,
10822 uint32_t newpc)
10824 int new_el;
10826 /* Change the CPU state so as to actually take the exception. */
10827 switch_mode(env, new_mode);
10830 * For exceptions taken to AArch32 we must clear the SS bit in both
10831 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
10833 env->pstate &= ~PSTATE_SS;
10834 env->spsr = cpsr_read(env);
10835 /* Clear IT bits. */
10836 env->condexec_bits = 0;
10837 /* Switch to the new mode, and to the correct instruction set. */
10838 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
10840 /* This must be after mode switching. */
10841 new_el = arm_current_el(env);
10843 /* Set new mode endianness */
10844 env->uncached_cpsr &= ~CPSR_E;
10845 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
10846 env->uncached_cpsr |= CPSR_E;
10848 /* J and IL must always be cleared for exception entry */
10849 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
10850 env->daif |= mask;
10852 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
10853 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
10854 env->uncached_cpsr |= CPSR_SSBS;
10855 } else {
10856 env->uncached_cpsr &= ~CPSR_SSBS;
10860 if (new_mode == ARM_CPU_MODE_HYP) {
10861 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
10862 env->elr_el[2] = env->regs[15];
10863 } else {
10864 /* CPSR.PAN is normally preserved preserved unless... */
10865 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
10866 switch (new_el) {
10867 case 3:
10868 if (!arm_is_secure_below_el3(env)) {
10869 /* ... the target is EL3, from non-secure state. */
10870 env->uncached_cpsr &= ~CPSR_PAN;
10871 break;
10873 /* ... the target is EL3, from secure state ... */
10874 /* fall through */
10875 case 1:
10876 /* ... the target is EL1 and SCTLR.SPAN is 0. */
10877 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
10878 env->uncached_cpsr |= CPSR_PAN;
10880 break;
10884 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
10885 * and we should just guard the thumb mode on V4
10887 if (arm_feature(env, ARM_FEATURE_V4T)) {
10888 env->thumb =
10889 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
10891 env->regs[14] = env->regs[15] + offset;
10893 env->regs[15] = newpc;
10895 if (tcg_enabled()) {
10896 arm_rebuild_hflags(env);
10900 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
10903 * Handle exception entry to Hyp mode; this is sufficiently
10904 * different to entry to other AArch32 modes that we handle it
10905 * separately here.
10907 * The vector table entry used is always the 0x14 Hyp mode entry point,
10908 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
10909 * The offset applied to the preferred return address is always zero
10910 * (see DDI0487C.a section G1.12.3).
10911 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
10913 uint32_t addr, mask;
10914 ARMCPU *cpu = ARM_CPU(cs);
10915 CPUARMState *env = &cpu->env;
10917 switch (cs->exception_index) {
10918 case EXCP_UDEF:
10919 addr = 0x04;
10920 break;
10921 case EXCP_SWI:
10922 addr = 0x08;
10923 break;
10924 case EXCP_BKPT:
10925 /* Fall through to prefetch abort. */
10926 case EXCP_PREFETCH_ABORT:
10927 env->cp15.ifar_s = env->exception.vaddress;
10928 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
10929 (uint32_t)env->exception.vaddress);
10930 addr = 0x0c;
10931 break;
10932 case EXCP_DATA_ABORT:
10933 env->cp15.dfar_s = env->exception.vaddress;
10934 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
10935 (uint32_t)env->exception.vaddress);
10936 addr = 0x10;
10937 break;
10938 case EXCP_IRQ:
10939 addr = 0x18;
10940 break;
10941 case EXCP_FIQ:
10942 addr = 0x1c;
10943 break;
10944 case EXCP_HVC:
10945 addr = 0x08;
10946 break;
10947 case EXCP_HYP_TRAP:
10948 addr = 0x14;
10949 break;
10950 default:
10951 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10954 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
10955 if (!arm_feature(env, ARM_FEATURE_V8)) {
10957 * QEMU syndrome values are v8-style. v7 has the IL bit
10958 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
10959 * If this is a v7 CPU, squash the IL bit in those cases.
10961 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
10962 (cs->exception_index == EXCP_DATA_ABORT &&
10963 !(env->exception.syndrome & ARM_EL_ISV)) ||
10964 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
10965 env->exception.syndrome &= ~ARM_EL_IL;
10968 env->cp15.esr_el[2] = env->exception.syndrome;
10971 if (arm_current_el(env) != 2 && addr < 0x14) {
10972 addr = 0x14;
10975 mask = 0;
10976 if (!(env->cp15.scr_el3 & SCR_EA)) {
10977 mask |= CPSR_A;
10979 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
10980 mask |= CPSR_I;
10982 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
10983 mask |= CPSR_F;
10986 addr += env->cp15.hvbar;
10988 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
10991 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
10993 ARMCPU *cpu = ARM_CPU(cs);
10994 CPUARMState *env = &cpu->env;
10995 uint32_t addr;
10996 uint32_t mask;
10997 int new_mode;
10998 uint32_t offset;
10999 uint32_t moe;
11001 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
11002 switch (syn_get_ec(env->exception.syndrome)) {
11003 case EC_BREAKPOINT:
11004 case EC_BREAKPOINT_SAME_EL:
11005 moe = 1;
11006 break;
11007 case EC_WATCHPOINT:
11008 case EC_WATCHPOINT_SAME_EL:
11009 moe = 10;
11010 break;
11011 case EC_AA32_BKPT:
11012 moe = 3;
11013 break;
11014 case EC_VECTORCATCH:
11015 moe = 5;
11016 break;
11017 default:
11018 moe = 0;
11019 break;
11022 if (moe) {
11023 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
11026 if (env->exception.target_el == 2) {
11027 /* Debug exceptions are reported differently on AArch32 */
11028 switch (syn_get_ec(env->exception.syndrome)) {
11029 case EC_BREAKPOINT:
11030 case EC_BREAKPOINT_SAME_EL:
11031 case EC_AA32_BKPT:
11032 case EC_VECTORCATCH:
11033 env->exception.syndrome = syn_insn_abort(arm_current_el(env) == 2,
11034 0, 0, 0x22);
11035 break;
11036 case EC_WATCHPOINT:
11037 env->exception.syndrome = syn_set_ec(env->exception.syndrome,
11038 EC_DATAABORT);
11039 break;
11040 case EC_WATCHPOINT_SAME_EL:
11041 env->exception.syndrome = syn_set_ec(env->exception.syndrome,
11042 EC_DATAABORT_SAME_EL);
11043 break;
11045 arm_cpu_do_interrupt_aarch32_hyp(cs);
11046 return;
11049 switch (cs->exception_index) {
11050 case EXCP_UDEF:
11051 new_mode = ARM_CPU_MODE_UND;
11052 addr = 0x04;
11053 mask = CPSR_I;
11054 if (env->thumb) {
11055 offset = 2;
11056 } else {
11057 offset = 4;
11059 break;
11060 case EXCP_SWI:
11061 new_mode = ARM_CPU_MODE_SVC;
11062 addr = 0x08;
11063 mask = CPSR_I;
11064 /* The PC already points to the next instruction. */
11065 offset = 0;
11066 break;
11067 case EXCP_BKPT:
11068 /* Fall through to prefetch abort. */
11069 case EXCP_PREFETCH_ABORT:
11070 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
11071 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
11072 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
11073 env->exception.fsr, (uint32_t)env->exception.vaddress);
11074 new_mode = ARM_CPU_MODE_ABT;
11075 addr = 0x0c;
11076 mask = CPSR_A | CPSR_I;
11077 offset = 4;
11078 break;
11079 case EXCP_DATA_ABORT:
11080 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
11081 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
11082 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
11083 env->exception.fsr,
11084 (uint32_t)env->exception.vaddress);
11085 new_mode = ARM_CPU_MODE_ABT;
11086 addr = 0x10;
11087 mask = CPSR_A | CPSR_I;
11088 offset = 8;
11089 break;
11090 case EXCP_IRQ:
11091 new_mode = ARM_CPU_MODE_IRQ;
11092 addr = 0x18;
11093 /* Disable IRQ and imprecise data aborts. */
11094 mask = CPSR_A | CPSR_I;
11095 offset = 4;
11096 if (env->cp15.scr_el3 & SCR_IRQ) {
11097 /* IRQ routed to monitor mode */
11098 new_mode = ARM_CPU_MODE_MON;
11099 mask |= CPSR_F;
11101 break;
11102 case EXCP_FIQ:
11103 new_mode = ARM_CPU_MODE_FIQ;
11104 addr = 0x1c;
11105 /* Disable FIQ, IRQ and imprecise data aborts. */
11106 mask = CPSR_A | CPSR_I | CPSR_F;
11107 if (env->cp15.scr_el3 & SCR_FIQ) {
11108 /* FIQ routed to monitor mode */
11109 new_mode = ARM_CPU_MODE_MON;
11111 offset = 4;
11112 break;
11113 case EXCP_VIRQ:
11114 new_mode = ARM_CPU_MODE_IRQ;
11115 addr = 0x18;
11116 /* Disable IRQ and imprecise data aborts. */
11117 mask = CPSR_A | CPSR_I;
11118 offset = 4;
11119 break;
11120 case EXCP_VFIQ:
11121 new_mode = ARM_CPU_MODE_FIQ;
11122 addr = 0x1c;
11123 /* Disable FIQ, IRQ and imprecise data aborts. */
11124 mask = CPSR_A | CPSR_I | CPSR_F;
11125 offset = 4;
11126 break;
11127 case EXCP_VSERR:
11130 * Note that this is reported as a data abort, but the DFAR
11131 * has an UNKNOWN value. Construct the SError syndrome from
11132 * AET and ExT fields.
11134 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
11136 if (extended_addresses_enabled(env)) {
11137 env->exception.fsr = arm_fi_to_lfsc(&fi);
11138 } else {
11139 env->exception.fsr = arm_fi_to_sfsc(&fi);
11141 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
11142 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
11143 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
11144 env->exception.fsr);
11146 new_mode = ARM_CPU_MODE_ABT;
11147 addr = 0x10;
11148 mask = CPSR_A | CPSR_I;
11149 offset = 8;
11151 break;
11152 case EXCP_SMC:
11153 new_mode = ARM_CPU_MODE_MON;
11154 addr = 0x08;
11155 mask = CPSR_A | CPSR_I | CPSR_F;
11156 offset = 0;
11157 break;
11158 default:
11159 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11160 return; /* Never happens. Keep compiler happy. */
11163 if (new_mode == ARM_CPU_MODE_MON) {
11164 addr += env->cp15.mvbar;
11165 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
11166 /* High vectors. When enabled, base address cannot be remapped. */
11167 addr += 0xffff0000;
11168 } else {
11170 * ARM v7 architectures provide a vector base address register to remap
11171 * the interrupt vector table.
11172 * This register is only followed in non-monitor mode, and is banked.
11173 * Note: only bits 31:5 are valid.
11175 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
11178 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
11179 env->cp15.scr_el3 &= ~SCR_NS;
11182 take_aarch32_exception(env, new_mode, mask, offset, addr);
11185 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
11188 * Return the register number of the AArch64 view of the AArch32
11189 * register @aarch32_reg. The CPUARMState CPSR is assumed to still
11190 * be that of the AArch32 mode the exception came from.
11192 int mode = env->uncached_cpsr & CPSR_M;
11194 switch (aarch32_reg) {
11195 case 0 ... 7:
11196 return aarch32_reg;
11197 case 8 ... 12:
11198 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
11199 case 13:
11200 switch (mode) {
11201 case ARM_CPU_MODE_USR:
11202 case ARM_CPU_MODE_SYS:
11203 return 13;
11204 case ARM_CPU_MODE_HYP:
11205 return 15;
11206 case ARM_CPU_MODE_IRQ:
11207 return 17;
11208 case ARM_CPU_MODE_SVC:
11209 return 19;
11210 case ARM_CPU_MODE_ABT:
11211 return 21;
11212 case ARM_CPU_MODE_UND:
11213 return 23;
11214 case ARM_CPU_MODE_FIQ:
11215 return 29;
11216 default:
11217 g_assert_not_reached();
11219 case 14:
11220 switch (mode) {
11221 case ARM_CPU_MODE_USR:
11222 case ARM_CPU_MODE_SYS:
11223 case ARM_CPU_MODE_HYP:
11224 return 14;
11225 case ARM_CPU_MODE_IRQ:
11226 return 16;
11227 case ARM_CPU_MODE_SVC:
11228 return 18;
11229 case ARM_CPU_MODE_ABT:
11230 return 20;
11231 case ARM_CPU_MODE_UND:
11232 return 22;
11233 case ARM_CPU_MODE_FIQ:
11234 return 30;
11235 default:
11236 g_assert_not_reached();
11238 case 15:
11239 return 31;
11240 default:
11241 g_assert_not_reached();
11245 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
11247 uint32_t ret = cpsr_read(env);
11249 /* Move DIT to the correct location for SPSR_ELx */
11250 if (ret & CPSR_DIT) {
11251 ret &= ~CPSR_DIT;
11252 ret |= PSTATE_DIT;
11254 /* Merge PSTATE.SS into SPSR_ELx */
11255 ret |= env->pstate & PSTATE_SS;
11257 return ret;
11260 static bool syndrome_is_sync_extabt(uint32_t syndrome)
11262 /* Return true if this syndrome value is a synchronous external abort */
11263 switch (syn_get_ec(syndrome)) {
11264 case EC_INSNABORT:
11265 case EC_INSNABORT_SAME_EL:
11266 case EC_DATAABORT:
11267 case EC_DATAABORT_SAME_EL:
11268 /* Look at fault status code for all the synchronous ext abort cases */
11269 switch (syndrome & 0x3f) {
11270 case 0x10:
11271 case 0x13:
11272 case 0x14:
11273 case 0x15:
11274 case 0x16:
11275 case 0x17:
11276 return true;
11277 default:
11278 return false;
11280 default:
11281 return false;
11285 /* Handle exception entry to a target EL which is using AArch64 */
11286 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
11288 ARMCPU *cpu = ARM_CPU(cs);
11289 CPUARMState *env = &cpu->env;
11290 unsigned int new_el = env->exception.target_el;
11291 target_ulong addr = env->cp15.vbar_el[new_el];
11292 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
11293 unsigned int old_mode;
11294 unsigned int cur_el = arm_current_el(env);
11295 int rt;
11297 if (tcg_enabled()) {
11299 * Note that new_el can never be 0. If cur_el is 0, then
11300 * el0_a64 is is_a64(), else el0_a64 is ignored.
11302 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
11305 if (cur_el < new_el) {
11307 * Entry vector offset depends on whether the implemented EL
11308 * immediately lower than the target level is using AArch32 or AArch64
11310 bool is_aa64;
11311 uint64_t hcr;
11313 switch (new_el) {
11314 case 3:
11315 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
11316 break;
11317 case 2:
11318 hcr = arm_hcr_el2_eff(env);
11319 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11320 is_aa64 = (hcr & HCR_RW) != 0;
11321 break;
11323 /* fall through */
11324 case 1:
11325 is_aa64 = is_a64(env);
11326 break;
11327 default:
11328 g_assert_not_reached();
11331 if (is_aa64) {
11332 addr += 0x400;
11333 } else {
11334 addr += 0x600;
11336 } else if (pstate_read(env) & PSTATE_SP) {
11337 addr += 0x200;
11340 switch (cs->exception_index) {
11341 case EXCP_GPC:
11342 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n",
11343 env->cp15.mfar_el3);
11344 /* fall through */
11345 case EXCP_PREFETCH_ABORT:
11346 case EXCP_DATA_ABORT:
11348 * FEAT_DoubleFault allows synchronous external aborts taken to EL3
11349 * to be taken to the SError vector entrypoint.
11351 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
11352 syndrome_is_sync_extabt(env->exception.syndrome)) {
11353 addr += 0x180;
11355 env->cp15.far_el[new_el] = env->exception.vaddress;
11356 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
11357 env->cp15.far_el[new_el]);
11358 /* fall through */
11359 case EXCP_BKPT:
11360 case EXCP_UDEF:
11361 case EXCP_SWI:
11362 case EXCP_HVC:
11363 case EXCP_HYP_TRAP:
11364 case EXCP_SMC:
11365 switch (syn_get_ec(env->exception.syndrome)) {
11366 case EC_ADVSIMDFPACCESSTRAP:
11368 * QEMU internal FP/SIMD syndromes from AArch32 include the
11369 * TA and coproc fields which are only exposed if the exception
11370 * is taken to AArch32 Hyp mode. Mask them out to get a valid
11371 * AArch64 format syndrome.
11373 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
11374 break;
11375 case EC_CP14RTTRAP:
11376 case EC_CP15RTTRAP:
11377 case EC_CP14DTTRAP:
11379 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
11380 * the raw register field from the insn; when taking this to
11381 * AArch64 we must convert it to the AArch64 view of the register
11382 * number. Notice that we read a 4-bit AArch32 register number and
11383 * write back a 5-bit AArch64 one.
11385 rt = extract32(env->exception.syndrome, 5, 4);
11386 rt = aarch64_regnum(env, rt);
11387 env->exception.syndrome = deposit32(env->exception.syndrome,
11388 5, 5, rt);
11389 break;
11390 case EC_CP15RRTTRAP:
11391 case EC_CP14RRTTRAP:
11392 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
11393 rt = extract32(env->exception.syndrome, 5, 4);
11394 rt = aarch64_regnum(env, rt);
11395 env->exception.syndrome = deposit32(env->exception.syndrome,
11396 5, 5, rt);
11397 rt = extract32(env->exception.syndrome, 10, 4);
11398 rt = aarch64_regnum(env, rt);
11399 env->exception.syndrome = deposit32(env->exception.syndrome,
11400 10, 5, rt);
11401 break;
11403 env->cp15.esr_el[new_el] = env->exception.syndrome;
11404 break;
11405 case EXCP_IRQ:
11406 case EXCP_VIRQ:
11407 addr += 0x80;
11408 break;
11409 case EXCP_FIQ:
11410 case EXCP_VFIQ:
11411 addr += 0x100;
11412 break;
11413 case EXCP_VSERR:
11414 addr += 0x180;
11415 /* Construct the SError syndrome from IDS and ISS fields. */
11416 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
11417 env->cp15.esr_el[new_el] = env->exception.syndrome;
11418 break;
11419 default:
11420 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11423 if (is_a64(env)) {
11424 old_mode = pstate_read(env);
11425 aarch64_save_sp(env, arm_current_el(env));
11426 env->elr_el[new_el] = env->pc;
11428 if (cur_el == 1 && new_el == 1) {
11429 uint64_t hcr = arm_hcr_el2_eff(env);
11430 if ((hcr & (HCR_NV | HCR_NV1 | HCR_NV2)) == HCR_NV ||
11431 (hcr & (HCR_NV | HCR_NV2)) == (HCR_NV | HCR_NV2)) {
11433 * FEAT_NV, FEAT_NV2 may need to report EL2 in the SPSR
11434 * by setting M[3:2] to 0b10.
11435 * If NV2 is disabled, change SPSR when NV,NV1 == 1,0 (I_ZJRNN)
11436 * If NV2 is enabled, change SPSR when NV is 1 (I_DBTLM)
11438 old_mode = deposit32(old_mode, 2, 2, 2);
11441 } else {
11442 old_mode = cpsr_read_for_spsr_elx(env);
11443 env->elr_el[new_el] = env->regs[15];
11445 aarch64_sync_32_to_64(env);
11447 env->condexec_bits = 0;
11449 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
11451 qemu_log_mask(CPU_LOG_INT, "...with SPSR 0x%x\n", old_mode);
11452 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
11453 env->elr_el[new_el]);
11455 if (cpu_isar_feature(aa64_pan, cpu)) {
11456 /* The value of PSTATE.PAN is normally preserved, except when ... */
11457 new_mode |= old_mode & PSTATE_PAN;
11458 switch (new_el) {
11459 case 2:
11460 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
11461 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
11462 != (HCR_E2H | HCR_TGE)) {
11463 break;
11465 /* fall through */
11466 case 1:
11467 /* ... the target is EL1 ... */
11468 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
11469 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
11470 new_mode |= PSTATE_PAN;
11472 break;
11475 if (cpu_isar_feature(aa64_mte, cpu)) {
11476 new_mode |= PSTATE_TCO;
11479 if (cpu_isar_feature(aa64_ssbs, cpu)) {
11480 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
11481 new_mode |= PSTATE_SSBS;
11482 } else {
11483 new_mode &= ~PSTATE_SSBS;
11487 pstate_write(env, PSTATE_DAIF | new_mode);
11488 env->aarch64 = true;
11489 aarch64_restore_sp(env, new_el);
11491 if (tcg_enabled()) {
11492 helper_rebuild_hflags_a64(env, new_el);
11495 env->pc = addr;
11497 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
11498 new_el, env->pc, pstate_read(env));
11502 * Do semihosting call and set the appropriate return value. All the
11503 * permission and validity checks have been done at translate time.
11505 * We only see semihosting exceptions in TCG only as they are not
11506 * trapped to the hypervisor in KVM.
11508 #ifdef CONFIG_TCG
11509 static void tcg_handle_semihosting(CPUState *cs)
11511 ARMCPU *cpu = ARM_CPU(cs);
11512 CPUARMState *env = &cpu->env;
11514 if (is_a64(env)) {
11515 qemu_log_mask(CPU_LOG_INT,
11516 "...handling as semihosting call 0x%" PRIx64 "\n",
11517 env->xregs[0]);
11518 do_common_semihosting(cs);
11519 env->pc += 4;
11520 } else {
11521 qemu_log_mask(CPU_LOG_INT,
11522 "...handling as semihosting call 0x%x\n",
11523 env->regs[0]);
11524 do_common_semihosting(cs);
11525 env->regs[15] += env->thumb ? 2 : 4;
11528 #endif
11531 * Handle a CPU exception for A and R profile CPUs.
11532 * Do any appropriate logging, handle PSCI calls, and then hand off
11533 * to the AArch64-entry or AArch32-entry function depending on the
11534 * target exception level's register width.
11536 * Note: this is used for both TCG (as the do_interrupt tcg op),
11537 * and KVM to re-inject guest debug exceptions, and to
11538 * inject a Synchronous-External-Abort.
11540 void arm_cpu_do_interrupt(CPUState *cs)
11542 ARMCPU *cpu = ARM_CPU(cs);
11543 CPUARMState *env = &cpu->env;
11544 unsigned int new_el = env->exception.target_el;
11546 assert(!arm_feature(env, ARM_FEATURE_M));
11548 arm_log_exception(cs);
11549 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
11550 new_el);
11551 if (qemu_loglevel_mask(CPU_LOG_INT)
11552 && !excp_is_internal(cs->exception_index)) {
11553 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
11554 syn_get_ec(env->exception.syndrome),
11555 env->exception.syndrome);
11558 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) {
11559 arm_handle_psci_call(cpu);
11560 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
11561 return;
11565 * Semihosting semantics depend on the register width of the code
11566 * that caused the exception, not the target exception level, so
11567 * must be handled here.
11569 #ifdef CONFIG_TCG
11570 if (cs->exception_index == EXCP_SEMIHOST) {
11571 tcg_handle_semihosting(cs);
11572 return;
11574 #endif
11577 * Hooks may change global state so BQL should be held, also the
11578 * BQL needs to be held for any modification of
11579 * cs->interrupt_request.
11581 g_assert(bql_locked());
11583 arm_call_pre_el_change_hook(cpu);
11585 assert(!excp_is_internal(cs->exception_index));
11586 if (arm_el_is_aa64(env, new_el)) {
11587 arm_cpu_do_interrupt_aarch64(cs);
11588 } else {
11589 arm_cpu_do_interrupt_aarch32(cs);
11592 arm_call_el_change_hook(cpu);
11594 if (!kvm_enabled()) {
11595 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
11598 #endif /* !CONFIG_USER_ONLY */
11600 uint64_t arm_sctlr(CPUARMState *env, int el)
11602 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
11603 if (el == 0) {
11604 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
11605 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1;
11607 return env->cp15.sctlr_el[el];
11610 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11612 if (regime_has_2_ranges(mmu_idx)) {
11613 return extract64(tcr, 37, 2);
11614 } else if (regime_is_stage2(mmu_idx)) {
11615 return 0; /* VTCR_EL2 */
11616 } else {
11617 /* Replicate the single TBI bit so we always have 2 bits. */
11618 return extract32(tcr, 20, 1) * 3;
11622 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11624 if (regime_has_2_ranges(mmu_idx)) {
11625 return extract64(tcr, 51, 2);
11626 } else if (regime_is_stage2(mmu_idx)) {
11627 return 0; /* VTCR_EL2 */
11628 } else {
11629 /* Replicate the single TBID bit so we always have 2 bits. */
11630 return extract32(tcr, 29, 1) * 3;
11634 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11636 if (regime_has_2_ranges(mmu_idx)) {
11637 return extract64(tcr, 57, 2);
11638 } else {
11639 /* Replicate the single TCMA bit so we always have 2 bits. */
11640 return extract32(tcr, 30, 1) * 3;
11644 static ARMGranuleSize tg0_to_gran_size(int tg)
11646 switch (tg) {
11647 case 0:
11648 return Gran4K;
11649 case 1:
11650 return Gran64K;
11651 case 2:
11652 return Gran16K;
11653 default:
11654 return GranInvalid;
11658 static ARMGranuleSize tg1_to_gran_size(int tg)
11660 switch (tg) {
11661 case 1:
11662 return Gran16K;
11663 case 2:
11664 return Gran4K;
11665 case 3:
11666 return Gran64K;
11667 default:
11668 return GranInvalid;
11672 static inline bool have4k(ARMCPU *cpu, bool stage2)
11674 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
11675 : cpu_isar_feature(aa64_tgran4, cpu);
11678 static inline bool have16k(ARMCPU *cpu, bool stage2)
11680 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
11681 : cpu_isar_feature(aa64_tgran16, cpu);
11684 static inline bool have64k(ARMCPU *cpu, bool stage2)
11686 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
11687 : cpu_isar_feature(aa64_tgran64, cpu);
11690 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
11691 bool stage2)
11693 switch (gran) {
11694 case Gran4K:
11695 if (have4k(cpu, stage2)) {
11696 return gran;
11698 break;
11699 case Gran16K:
11700 if (have16k(cpu, stage2)) {
11701 return gran;
11703 break;
11704 case Gran64K:
11705 if (have64k(cpu, stage2)) {
11706 return gran;
11708 break;
11709 case GranInvalid:
11710 break;
11713 * If the guest selects a granule size that isn't implemented,
11714 * the architecture requires that we behave as if it selected one
11715 * that is (with an IMPDEF choice of which one to pick). We choose
11716 * to implement the smallest supported granule size.
11718 if (have4k(cpu, stage2)) {
11719 return Gran4K;
11721 if (have16k(cpu, stage2)) {
11722 return Gran16K;
11724 assert(have64k(cpu, stage2));
11725 return Gran64K;
11728 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11729 ARMMMUIdx mmu_idx, bool data,
11730 bool el1_is_aa32)
11732 uint64_t tcr = regime_tcr(env, mmu_idx);
11733 bool epd, hpd, tsz_oob, ds, ha, hd;
11734 int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
11735 ARMGranuleSize gran;
11736 ARMCPU *cpu = env_archcpu(env);
11737 bool stage2 = regime_is_stage2(mmu_idx);
11739 if (!regime_has_2_ranges(mmu_idx)) {
11740 select = 0;
11741 tsz = extract32(tcr, 0, 6);
11742 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11743 if (stage2) {
11744 /* VTCR_EL2 */
11745 hpd = false;
11746 } else {
11747 hpd = extract32(tcr, 24, 1);
11749 epd = false;
11750 sh = extract32(tcr, 12, 2);
11751 ps = extract32(tcr, 16, 3);
11752 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
11753 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11754 ds = extract64(tcr, 32, 1);
11755 } else {
11756 bool e0pd;
11759 * Bit 55 is always between the two regions, and is canonical for
11760 * determining if address tagging is enabled.
11762 select = extract64(va, 55, 1);
11763 if (!select) {
11764 tsz = extract32(tcr, 0, 6);
11765 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11766 epd = extract32(tcr, 7, 1);
11767 sh = extract32(tcr, 12, 2);
11768 hpd = extract64(tcr, 41, 1);
11769 e0pd = extract64(tcr, 55, 1);
11770 } else {
11771 tsz = extract32(tcr, 16, 6);
11772 gran = tg1_to_gran_size(extract32(tcr, 30, 2));
11773 epd = extract32(tcr, 23, 1);
11774 sh = extract32(tcr, 28, 2);
11775 hpd = extract64(tcr, 42, 1);
11776 e0pd = extract64(tcr, 56, 1);
11778 ps = extract64(tcr, 32, 3);
11779 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
11780 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11781 ds = extract64(tcr, 59, 1);
11783 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
11784 regime_is_user(env, mmu_idx)) {
11785 epd = true;
11789 gran = sanitize_gran_size(cpu, gran, stage2);
11791 if (cpu_isar_feature(aa64_st, cpu)) {
11792 max_tsz = 48 - (gran == Gran64K);
11793 } else {
11794 max_tsz = 39;
11798 * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
11799 * adjust the effective value of DS, as documented.
11801 min_tsz = 16;
11802 if (gran == Gran64K) {
11803 if (cpu_isar_feature(aa64_lva, cpu)) {
11804 min_tsz = 12;
11806 ds = false;
11807 } else if (ds) {
11808 if (regime_is_stage2(mmu_idx)) {
11809 if (gran == Gran16K) {
11810 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
11811 } else {
11812 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
11814 } else {
11815 if (gran == Gran16K) {
11816 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
11817 } else {
11818 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
11821 if (ds) {
11822 min_tsz = 12;
11826 if (stage2 && el1_is_aa32) {
11828 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements
11829 * are loosened: a configured IPA of 40 bits is permitted even if
11830 * the implemented PA is less than that (and so a 40 bit IPA would
11831 * fault for an AArch64 EL1). See R_DTLMN.
11833 min_tsz = MIN(min_tsz, 24);
11836 if (tsz > max_tsz) {
11837 tsz = max_tsz;
11838 tsz_oob = true;
11839 } else if (tsz < min_tsz) {
11840 tsz = min_tsz;
11841 tsz_oob = true;
11842 } else {
11843 tsz_oob = false;
11846 /* Present TBI as a composite with TBID. */
11847 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11848 if (!data) {
11849 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11851 tbi = (tbi >> select) & 1;
11853 return (ARMVAParameters) {
11854 .tsz = tsz,
11855 .ps = ps,
11856 .sh = sh,
11857 .select = select,
11858 .tbi = tbi,
11859 .epd = epd,
11860 .hpd = hpd,
11861 .tsz_oob = tsz_oob,
11862 .ds = ds,
11863 .ha = ha,
11864 .hd = ha && hd,
11865 .gran = gran,
11870 * Note that signed overflow is undefined in C. The following routines are
11871 * careful to use unsigned types where modulo arithmetic is required.
11872 * Failure to do so _will_ break on newer gcc.
11875 /* Signed saturating arithmetic. */
11877 /* Perform 16-bit signed saturating addition. */
11878 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11880 uint16_t res;
11882 res = a + b;
11883 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11884 if (a & 0x8000) {
11885 res = 0x8000;
11886 } else {
11887 res = 0x7fff;
11890 return res;
11893 /* Perform 8-bit signed saturating addition. */
11894 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11896 uint8_t res;
11898 res = a + b;
11899 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
11900 if (a & 0x80) {
11901 res = 0x80;
11902 } else {
11903 res = 0x7f;
11906 return res;
11909 /* Perform 16-bit signed saturating subtraction. */
11910 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
11912 uint16_t res;
11914 res = a - b;
11915 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
11916 if (a & 0x8000) {
11917 res = 0x8000;
11918 } else {
11919 res = 0x7fff;
11922 return res;
11925 /* Perform 8-bit signed saturating subtraction. */
11926 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
11928 uint8_t res;
11930 res = a - b;
11931 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
11932 if (a & 0x80) {
11933 res = 0x80;
11934 } else {
11935 res = 0x7f;
11938 return res;
11941 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
11942 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
11943 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
11944 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
11945 #define PFX q
11947 #include "op_addsub.h"
11949 /* Unsigned saturating arithmetic. */
11950 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
11952 uint16_t res;
11953 res = a + b;
11954 if (res < a) {
11955 res = 0xffff;
11957 return res;
11960 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
11962 if (a > b) {
11963 return a - b;
11964 } else {
11965 return 0;
11969 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11971 uint8_t res;
11972 res = a + b;
11973 if (res < a) {
11974 res = 0xff;
11976 return res;
11979 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11981 if (a > b) {
11982 return a - b;
11983 } else {
11984 return 0;
11988 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11989 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11990 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
11991 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
11992 #define PFX uq
11994 #include "op_addsub.h"
11996 /* Signed modulo arithmetic. */
11997 #define SARITH16(a, b, n, op) do { \
11998 int32_t sum; \
11999 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12000 RESULT(sum, n, 16); \
12001 if (sum >= 0) \
12002 ge |= 3 << (n * 2); \
12003 } while (0)
12005 #define SARITH8(a, b, n, op) do { \
12006 int32_t sum; \
12007 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12008 RESULT(sum, n, 8); \
12009 if (sum >= 0) \
12010 ge |= 1 << n; \
12011 } while (0)
12014 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12015 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12016 #define ADD8(a, b, n) SARITH8(a, b, n, +)
12017 #define SUB8(a, b, n) SARITH8(a, b, n, -)
12018 #define PFX s
12019 #define ARITH_GE
12021 #include "op_addsub.h"
12023 /* Unsigned modulo arithmetic. */
12024 #define ADD16(a, b, n) do { \
12025 uint32_t sum; \
12026 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12027 RESULT(sum, n, 16); \
12028 if ((sum >> 16) == 1) \
12029 ge |= 3 << (n * 2); \
12030 } while (0)
12032 #define ADD8(a, b, n) do { \
12033 uint32_t sum; \
12034 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12035 RESULT(sum, n, 8); \
12036 if ((sum >> 8) == 1) \
12037 ge |= 1 << n; \
12038 } while (0)
12040 #define SUB16(a, b, n) do { \
12041 uint32_t sum; \
12042 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12043 RESULT(sum, n, 16); \
12044 if ((sum >> 16) == 0) \
12045 ge |= 3 << (n * 2); \
12046 } while (0)
12048 #define SUB8(a, b, n) do { \
12049 uint32_t sum; \
12050 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12051 RESULT(sum, n, 8); \
12052 if ((sum >> 8) == 0) \
12053 ge |= 1 << n; \
12054 } while (0)
12056 #define PFX u
12057 #define ARITH_GE
12059 #include "op_addsub.h"
12061 /* Halved signed arithmetic. */
12062 #define ADD16(a, b, n) \
12063 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12064 #define SUB16(a, b, n) \
12065 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12066 #define ADD8(a, b, n) \
12067 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12068 #define SUB8(a, b, n) \
12069 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12070 #define PFX sh
12072 #include "op_addsub.h"
12074 /* Halved unsigned arithmetic. */
12075 #define ADD16(a, b, n) \
12076 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12077 #define SUB16(a, b, n) \
12078 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12079 #define ADD8(a, b, n) \
12080 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12081 #define SUB8(a, b, n) \
12082 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12083 #define PFX uh
12085 #include "op_addsub.h"
12087 static inline uint8_t do_usad(uint8_t a, uint8_t b)
12089 if (a > b) {
12090 return a - b;
12091 } else {
12092 return b - a;
12096 /* Unsigned sum of absolute byte differences. */
12097 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12099 uint32_t sum;
12100 sum = do_usad(a, b);
12101 sum += do_usad(a >> 8, b >> 8);
12102 sum += do_usad(a >> 16, b >> 16);
12103 sum += do_usad(a >> 24, b >> 24);
12104 return sum;
12107 /* For ARMv6 SEL instruction. */
12108 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12110 uint32_t mask;
12112 mask = 0;
12113 if (flags & 1) {
12114 mask |= 0xff;
12116 if (flags & 2) {
12117 mask |= 0xff00;
12119 if (flags & 4) {
12120 mask |= 0xff0000;
12122 if (flags & 8) {
12123 mask |= 0xff000000;
12125 return (a & mask) | (b & ~mask);
12129 * CRC helpers.
12130 * The upper bytes of val (above the number specified by 'bytes') must have
12131 * been zeroed out by the caller.
12133 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12135 uint8_t buf[4];
12137 stl_le_p(buf, val);
12139 /* zlib crc32 converts the accumulator and output to one's complement. */
12140 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12143 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12145 uint8_t buf[4];
12147 stl_le_p(buf, val);
12149 /* Linux crc32c converts the output to one's complement. */
12150 return crc32c(acc, buf, bytes) ^ 0xffffffff;
12154 * Return the exception level to which FP-disabled exceptions should
12155 * be taken, or 0 if FP is enabled.
12157 int fp_exception_el(CPUARMState *env, int cur_el)
12159 #ifndef CONFIG_USER_ONLY
12160 uint64_t hcr_el2;
12163 * CPACR and the CPTR registers don't exist before v6, so FP is
12164 * always accessible
12166 if (!arm_feature(env, ARM_FEATURE_V6)) {
12167 return 0;
12170 if (arm_feature(env, ARM_FEATURE_M)) {
12171 /* CPACR can cause a NOCP UsageFault taken to current security state */
12172 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
12173 return 1;
12176 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
12177 if (!extract32(env->v7m.nsacr, 10, 1)) {
12178 /* FP insns cause a NOCP UsageFault taken to Secure */
12179 return 3;
12183 return 0;
12186 hcr_el2 = arm_hcr_el2_eff(env);
12189 * The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12190 * 0, 2 : trap EL0 and EL1/PL1 accesses
12191 * 1 : trap only EL0 accesses
12192 * 3 : trap no accesses
12193 * This register is ignored if E2H+TGE are both set.
12195 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12196 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
12198 switch (fpen) {
12199 case 1:
12200 if (cur_el != 0) {
12201 break;
12203 /* fall through */
12204 case 0:
12205 case 2:
12206 /* Trap from Secure PL0 or PL1 to Secure PL1. */
12207 if (!arm_el_is_aa64(env, 3)
12208 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
12209 return 3;
12211 if (cur_el <= 1) {
12212 return 1;
12214 break;
12219 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
12220 * to control non-secure access to the FPU. It doesn't have any
12221 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
12223 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
12224 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
12225 if (!extract32(env->cp15.nsacr, 10, 1)) {
12226 /* FP insns act as UNDEF */
12227 return cur_el == 2 ? 2 : 1;
12232 * CPTR_EL2 is present in v7VE or v8, and changes format
12233 * with HCR_EL2.E2H (regardless of TGE).
12235 if (cur_el <= 2) {
12236 if (hcr_el2 & HCR_E2H) {
12237 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
12238 case 1:
12239 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
12240 break;
12242 /* fall through */
12243 case 0:
12244 case 2:
12245 return 2;
12247 } else if (arm_is_el2_enabled(env)) {
12248 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
12249 return 2;
12254 /* CPTR_EL3 : present in v8 */
12255 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
12256 /* Trap all FP ops to EL3 */
12257 return 3;
12259 #endif
12260 return 0;
12263 /* Return the exception level we're running at if this is our mmu_idx */
12264 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
12266 if (mmu_idx & ARM_MMU_IDX_M) {
12267 return mmu_idx & ARM_MMU_IDX_M_PRIV;
12270 switch (mmu_idx) {
12271 case ARMMMUIdx_E10_0:
12272 case ARMMMUIdx_E20_0:
12273 return 0;
12274 case ARMMMUIdx_E10_1:
12275 case ARMMMUIdx_E10_1_PAN:
12276 return 1;
12277 case ARMMMUIdx_E2:
12278 case ARMMMUIdx_E20_2:
12279 case ARMMMUIdx_E20_2_PAN:
12280 return 2;
12281 case ARMMMUIdx_E3:
12282 return 3;
12283 default:
12284 g_assert_not_reached();
12288 #ifndef CONFIG_TCG
12289 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12291 g_assert_not_reached();
12293 #endif
12295 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
12297 ARMMMUIdx idx;
12298 uint64_t hcr;
12300 if (arm_feature(env, ARM_FEATURE_M)) {
12301 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12304 /* See ARM pseudo-function ELIsInHost. */
12305 switch (el) {
12306 case 0:
12307 hcr = arm_hcr_el2_eff(env);
12308 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
12309 idx = ARMMMUIdx_E20_0;
12310 } else {
12311 idx = ARMMMUIdx_E10_0;
12313 break;
12314 case 1:
12315 if (arm_pan_enabled(env)) {
12316 idx = ARMMMUIdx_E10_1_PAN;
12317 } else {
12318 idx = ARMMMUIdx_E10_1;
12320 break;
12321 case 2:
12322 /* Note that TGE does not apply at EL2. */
12323 if (arm_hcr_el2_eff(env) & HCR_E2H) {
12324 if (arm_pan_enabled(env)) {
12325 idx = ARMMMUIdx_E20_2_PAN;
12326 } else {
12327 idx = ARMMMUIdx_E20_2;
12329 } else {
12330 idx = ARMMMUIdx_E2;
12332 break;
12333 case 3:
12334 return ARMMMUIdx_E3;
12335 default:
12336 g_assert_not_reached();
12339 return idx;
12342 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12344 return arm_mmu_idx_el(env, arm_current_el(env));
12347 static bool mve_no_pred(CPUARMState *env)
12350 * Return true if there is definitely no predication of MVE
12351 * instructions by VPR or LTPSIZE. (Returning false even if there
12352 * isn't any predication is OK; generated code will just be
12353 * a little worse.)
12354 * If the CPU does not implement MVE then this TB flag is always 0.
12356 * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
12357 * logic in gen_update_fp_context() needs to be updated to match.
12359 * We do not include the effect of the ECI bits here -- they are
12360 * tracked in other TB flags. This simplifies the logic for
12361 * "when did we emit code that changes the MVE_NO_PRED TB flag
12362 * and thus need to end the TB?".
12364 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
12365 return false;
12367 if (env->v7m.vpr) {
12368 return false;
12370 if (env->v7m.ltpsize < 4) {
12371 return false;
12373 return true;
12376 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
12377 uint64_t *cs_base, uint32_t *pflags)
12379 CPUARMTBFlags flags;
12381 assert_hflags_rebuild_correctly(env);
12382 flags = env->hflags;
12384 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
12385 *pc = env->pc;
12386 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12387 DP_TBFLAG_A64(flags, BTYPE, env->btype);
12389 } else {
12390 *pc = env->regs[15];
12392 if (arm_feature(env, ARM_FEATURE_M)) {
12393 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
12394 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
12395 != env->v7m.secure) {
12396 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
12399 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
12400 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
12401 (env->v7m.secure &&
12402 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
12404 * ASPEN is set, but FPCA/SFPA indicate that there is no
12405 * active FP context; we must create a new FP context before
12406 * executing any FP insn.
12408 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
12411 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
12412 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
12413 DP_TBFLAG_M32(flags, LSPACT, 1);
12416 if (mve_no_pred(env)) {
12417 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
12419 } else {
12421 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
12422 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
12424 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
12425 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
12426 } else {
12427 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
12428 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
12430 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
12431 DP_TBFLAG_A32(flags, VFPEN, 1);
12435 DP_TBFLAG_AM32(flags, THUMB, env->thumb);
12436 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
12440 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12441 * states defined in the ARM ARM for software singlestep:
12442 * SS_ACTIVE PSTATE.SS State
12443 * 0 x Inactive (the TB flag for SS is always 0)
12444 * 1 0 Active-pending
12445 * 1 1 Active-not-pending
12446 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
12448 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
12449 DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
12452 *pflags = flags.flags;
12453 *cs_base = flags.flags2;
12456 #ifdef TARGET_AARCH64
12458 * The manual says that when SVE is enabled and VQ is widened the
12459 * implementation is allowed to zero the previously inaccessible
12460 * portion of the registers. The corollary to that is that when
12461 * SVE is enabled and VQ is narrowed we are also allowed to zero
12462 * the now inaccessible portion of the registers.
12464 * The intent of this is that no predicate bit beyond VQ is ever set.
12465 * Which means that some operations on predicate registers themselves
12466 * may operate on full uint64_t or even unrolled across the maximum
12467 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
12468 * may well be cheaper than conditionals to restrict the operation
12469 * to the relevant portion of a uint16_t[16].
12471 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12473 int i, j;
12474 uint64_t pmask;
12476 assert(vq >= 1 && vq <= ARM_MAX_VQ);
12477 assert(vq <= env_archcpu(env)->sve_max_vq);
12479 /* Zap the high bits of the zregs. */
12480 for (i = 0; i < 32; i++) {
12481 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12484 /* Zap the high bits of the pregs and ffr. */
12485 pmask = 0;
12486 if (vq & 3) {
12487 pmask = ~(-1ULL << (16 * (vq & 3)));
12489 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12490 for (i = 0; i < 17; ++i) {
12491 env->vfp.pregs[i].p[j] &= pmask;
12493 pmask = 0;
12497 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
12499 int exc_el;
12501 if (sm) {
12502 exc_el = sme_exception_el(env, el);
12503 } else {
12504 exc_el = sve_exception_el(env, el);
12506 if (exc_el) {
12507 return 0; /* disabled */
12509 return sve_vqm1_for_el_sm(env, el, sm);
12513 * Notice a change in SVE vector size when changing EL.
12515 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12516 int new_el, bool el0_a64)
12518 ARMCPU *cpu = env_archcpu(env);
12519 int old_len, new_len;
12520 bool old_a64, new_a64, sm;
12522 /* Nothing to do if no SVE. */
12523 if (!cpu_isar_feature(aa64_sve, cpu)) {
12524 return;
12527 /* Nothing to do if FP is disabled in either EL. */
12528 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12529 return;
12532 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12533 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12536 * Both AArch64.TakeException and AArch64.ExceptionReturn
12537 * invoke ResetSVEState when taking an exception from, or
12538 * returning to, AArch32 state when PSTATE.SM is enabled.
12540 sm = FIELD_EX64(env->svcr, SVCR, SM);
12541 if (old_a64 != new_a64 && sm) {
12542 arm_reset_sve_state(env);
12543 return;
12547 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12548 * at ELx, or not available because the EL is in AArch32 state, then
12549 * for all purposes other than a direct read, the ZCR_ELx.LEN field
12550 * has an effective value of 0".
12552 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12553 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12554 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
12555 * we already have the correct register contents when encountering the
12556 * vq0->vq0 transition between EL0->EL1.
12558 old_len = new_len = 0;
12559 if (old_a64) {
12560 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
12562 if (new_a64) {
12563 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
12566 /* When changing vector length, clear inaccessible state. */
12567 if (new_len < old_len) {
12568 aarch64_sve_narrow_vq(env, new_len + 1);
12571 #endif
12573 #ifndef CONFIG_USER_ONLY
12574 ARMSecuritySpace arm_security_space(CPUARMState *env)
12576 if (arm_feature(env, ARM_FEATURE_M)) {
12577 return arm_secure_to_space(env->v7m.secure);
12581 * If EL3 is not supported then the secure state is implementation
12582 * defined, in which case QEMU defaults to non-secure.
12584 if (!arm_feature(env, ARM_FEATURE_EL3)) {
12585 return ARMSS_NonSecure;
12588 /* Check for AArch64 EL3 or AArch32 Mon. */
12589 if (is_a64(env)) {
12590 if (extract32(env->pstate, 2, 2) == 3) {
12591 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) {
12592 return ARMSS_Root;
12593 } else {
12594 return ARMSS_Secure;
12597 } else {
12598 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
12599 return ARMSS_Secure;
12603 return arm_security_space_below_el3(env);
12606 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
12608 assert(!arm_feature(env, ARM_FEATURE_M));
12611 * If EL3 is not supported then the secure state is implementation
12612 * defined, in which case QEMU defaults to non-secure.
12614 if (!arm_feature(env, ARM_FEATURE_EL3)) {
12615 return ARMSS_NonSecure;
12619 * Note NSE cannot be set without RME, and NSE & !NS is Reserved.
12620 * Ignoring NSE when !NS retains consistency without having to
12621 * modify other predicates.
12623 if (!(env->cp15.scr_el3 & SCR_NS)) {
12624 return ARMSS_Secure;
12625 } else if (env->cp15.scr_el3 & SCR_NSE) {
12626 return ARMSS_Realm;
12627 } else {
12628 return ARMSS_NonSecure;
12631 #endif /* !CONFIG_USER_ONLY */