qapi: document parameters of query-cpu-model-* QAPI commands
[qemu/armbru.git] / target / m68k / helper.c
blob1a475f082ab7f5d1916e1e8398be55db03d310b4
1 /*
2 * m68k op helpers
4 * Copyright (c) 2006-2007 CodeSourcery
5 * Written by Paul Brook
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu/osdep.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "exec/gdbstub.h"
25 #include "exec/helper-proto.h"
26 #include "gdbstub/helpers.h"
27 #include "fpu/softfloat.h"
28 #include "qemu/qemu-print.h"
30 #define SIGNBIT (1u << 31)
32 static int cf_fpu_gdb_get_reg(CPUState *cs, GByteArray *mem_buf, int n)
34 M68kCPU *cpu = M68K_CPU(cs);
35 CPUM68KState *env = &cpu->env;
37 if (n < 8) {
38 float_status s;
39 return gdb_get_reg64(mem_buf, floatx80_to_float64(env->fregs[n].d, &s));
41 switch (n) {
42 case 8: /* fpcontrol */
43 return gdb_get_reg32(mem_buf, env->fpcr);
44 case 9: /* fpstatus */
45 return gdb_get_reg32(mem_buf, env->fpsr);
46 case 10: /* fpiar, not implemented */
47 return gdb_get_reg32(mem_buf, 0);
49 return 0;
52 static int cf_fpu_gdb_set_reg(CPUState *cs, uint8_t *mem_buf, int n)
54 M68kCPU *cpu = M68K_CPU(cs);
55 CPUM68KState *env = &cpu->env;
57 if (n < 8) {
58 float_status s;
59 env->fregs[n].d = float64_to_floatx80(ldq_p(mem_buf), &s);
60 return 8;
62 switch (n) {
63 case 8: /* fpcontrol */
64 cpu_m68k_set_fpcr(env, ldl_p(mem_buf));
65 return 4;
66 case 9: /* fpstatus */
67 env->fpsr = ldl_p(mem_buf);
68 return 4;
69 case 10: /* fpiar, not implemented */
70 return 4;
72 return 0;
75 static int m68k_fpu_gdb_get_reg(CPUState *cs, GByteArray *mem_buf, int n)
77 M68kCPU *cpu = M68K_CPU(cs);
78 CPUM68KState *env = &cpu->env;
80 if (n < 8) {
81 int len = gdb_get_reg16(mem_buf, env->fregs[n].l.upper);
82 len += gdb_get_reg16(mem_buf, 0);
83 len += gdb_get_reg64(mem_buf, env->fregs[n].l.lower);
84 return len;
86 switch (n) {
87 case 8: /* fpcontrol */
88 return gdb_get_reg32(mem_buf, env->fpcr);
89 case 9: /* fpstatus */
90 return gdb_get_reg32(mem_buf, env->fpsr);
91 case 10: /* fpiar, not implemented */
92 return gdb_get_reg32(mem_buf, 0);
94 return 0;
97 static int m68k_fpu_gdb_set_reg(CPUState *cs, uint8_t *mem_buf, int n)
99 M68kCPU *cpu = M68K_CPU(cs);
100 CPUM68KState *env = &cpu->env;
102 if (n < 8) {
103 env->fregs[n].l.upper = lduw_be_p(mem_buf);
104 env->fregs[n].l.lower = ldq_be_p(mem_buf + 4);
105 return 12;
107 switch (n) {
108 case 8: /* fpcontrol */
109 cpu_m68k_set_fpcr(env, ldl_p(mem_buf));
110 return 4;
111 case 9: /* fpstatus */
112 env->fpsr = ldl_p(mem_buf);
113 return 4;
114 case 10: /* fpiar, not implemented */
115 return 4;
117 return 0;
120 void m68k_cpu_init_gdb(M68kCPU *cpu)
122 CPUState *cs = CPU(cpu);
123 CPUM68KState *env = &cpu->env;
125 if (m68k_feature(env, M68K_FEATURE_CF_FPU)) {
126 gdb_register_coprocessor(cs, cf_fpu_gdb_get_reg, cf_fpu_gdb_set_reg,
127 gdb_find_static_feature("cf-fp.xml"), 18);
128 } else if (m68k_feature(env, M68K_FEATURE_FPU)) {
129 gdb_register_coprocessor(cs, m68k_fpu_gdb_get_reg, m68k_fpu_gdb_set_reg,
130 gdb_find_static_feature("m68k-fp.xml"), 18);
132 /* TODO: Add [E]MAC registers. */
135 void HELPER(cf_movec_to)(CPUM68KState *env, uint32_t reg, uint32_t val)
137 switch (reg) {
138 case M68K_CR_CACR:
139 env->cacr = val;
140 m68k_switch_sp(env);
141 break;
142 case M68K_CR_ACR0:
143 case M68K_CR_ACR1:
144 case M68K_CR_ACR2:
145 case M68K_CR_ACR3:
146 /* TODO: Implement Access Control Registers. */
147 break;
148 case M68K_CR_VBR:
149 env->vbr = val;
150 break;
151 /* TODO: Implement control registers. */
152 default:
153 cpu_abort(env_cpu(env),
154 "Unimplemented control register write 0x%x = 0x%x\n",
155 reg, val);
159 static void raise_exception_ra(CPUM68KState *env, int tt, uintptr_t raddr)
161 CPUState *cs = env_cpu(env);
163 cs->exception_index = tt;
164 cpu_loop_exit_restore(cs, raddr);
167 void HELPER(m68k_movec_to)(CPUM68KState *env, uint32_t reg, uint32_t val)
169 switch (reg) {
170 /* MC680[12346]0 */
171 case M68K_CR_SFC:
172 env->sfc = val & 7;
173 return;
174 /* MC680[12346]0 */
175 case M68K_CR_DFC:
176 env->dfc = val & 7;
177 return;
178 /* MC680[12346]0 */
179 case M68K_CR_VBR:
180 env->vbr = val;
181 return;
182 /* MC680[2346]0 */
183 case M68K_CR_CACR:
184 if (m68k_feature(env, M68K_FEATURE_M68020)) {
185 env->cacr = val & 0x0000000f;
186 } else if (m68k_feature(env, M68K_FEATURE_M68030)) {
187 env->cacr = val & 0x00003f1f;
188 } else if (m68k_feature(env, M68K_FEATURE_M68040)) {
189 env->cacr = val & 0x80008000;
190 } else if (m68k_feature(env, M68K_FEATURE_M68060)) {
191 env->cacr = val & 0xf8e0e000;
192 } else {
193 break;
195 m68k_switch_sp(env);
196 return;
197 /* MC680[46]0 */
198 case M68K_CR_TC:
199 if (m68k_feature(env, M68K_FEATURE_M68040)
200 || m68k_feature(env, M68K_FEATURE_M68060)) {
201 env->mmu.tcr = val;
202 return;
204 break;
205 /* MC68040 */
206 case M68K_CR_MMUSR:
207 if (m68k_feature(env, M68K_FEATURE_M68040)) {
208 env->mmu.mmusr = val;
209 return;
211 break;
212 /* MC680[46]0 */
213 case M68K_CR_SRP:
214 if (m68k_feature(env, M68K_FEATURE_M68040)
215 || m68k_feature(env, M68K_FEATURE_M68060)) {
216 env->mmu.srp = val;
217 return;
219 break;
220 /* MC680[46]0 */
221 case M68K_CR_URP:
222 if (m68k_feature(env, M68K_FEATURE_M68040)
223 || m68k_feature(env, M68K_FEATURE_M68060)) {
224 env->mmu.urp = val;
225 return;
227 break;
228 /* MC680[12346]0 */
229 case M68K_CR_USP:
230 env->sp[M68K_USP] = val;
231 return;
232 /* MC680[234]0 */
233 case M68K_CR_MSP:
234 if (m68k_feature(env, M68K_FEATURE_M68020)
235 || m68k_feature(env, M68K_FEATURE_M68030)
236 || m68k_feature(env, M68K_FEATURE_M68040)) {
237 env->sp[M68K_SSP] = val;
238 return;
240 break;
241 /* MC680[234]0 */
242 case M68K_CR_ISP:
243 if (m68k_feature(env, M68K_FEATURE_M68020)
244 || m68k_feature(env, M68K_FEATURE_M68030)
245 || m68k_feature(env, M68K_FEATURE_M68040)) {
246 env->sp[M68K_ISP] = val;
247 return;
249 break;
250 /* MC68040/MC68LC040 */
251 case M68K_CR_ITT0: /* MC68EC040 only: M68K_CR_IACR0 */
252 if (m68k_feature(env, M68K_FEATURE_M68040)) {
253 env->mmu.ttr[M68K_ITTR0] = val;
254 return;
256 break;
257 /* MC68040/MC68LC040 */
258 case M68K_CR_ITT1: /* MC68EC040 only: M68K_CR_IACR1 */
259 if (m68k_feature(env, M68K_FEATURE_M68040)) {
260 env->mmu.ttr[M68K_ITTR1] = val;
261 return;
263 break;
264 /* MC68040/MC68LC040 */
265 case M68K_CR_DTT0: /* MC68EC040 only: M68K_CR_DACR0 */
266 if (m68k_feature(env, M68K_FEATURE_M68040)) {
267 env->mmu.ttr[M68K_DTTR0] = val;
268 return;
270 break;
271 /* MC68040/MC68LC040 */
272 case M68K_CR_DTT1: /* MC68EC040 only: M68K_CR_DACR1 */
273 if (m68k_feature(env, M68K_FEATURE_M68040)) {
274 env->mmu.ttr[M68K_DTTR1] = val;
275 return;
277 break;
278 /* Unimplemented Registers */
279 case M68K_CR_CAAR:
280 case M68K_CR_PCR:
281 case M68K_CR_BUSCR:
282 cpu_abort(env_cpu(env),
283 "Unimplemented control register write 0x%x = 0x%x\n",
284 reg, val);
287 /* Invalid control registers will generate an exception. */
288 raise_exception_ra(env, EXCP_ILLEGAL, 0);
289 return;
292 uint32_t HELPER(m68k_movec_from)(CPUM68KState *env, uint32_t reg)
294 switch (reg) {
295 /* MC680[12346]0 */
296 case M68K_CR_SFC:
297 return env->sfc;
298 /* MC680[12346]0 */
299 case M68K_CR_DFC:
300 return env->dfc;
301 /* MC680[12346]0 */
302 case M68K_CR_VBR:
303 return env->vbr;
304 /* MC680[2346]0 */
305 case M68K_CR_CACR:
306 if (m68k_feature(env, M68K_FEATURE_M68020)
307 || m68k_feature(env, M68K_FEATURE_M68030)
308 || m68k_feature(env, M68K_FEATURE_M68040)
309 || m68k_feature(env, M68K_FEATURE_M68060)) {
310 return env->cacr;
312 break;
313 /* MC680[46]0 */
314 case M68K_CR_TC:
315 if (m68k_feature(env, M68K_FEATURE_M68040)
316 || m68k_feature(env, M68K_FEATURE_M68060)) {
317 return env->mmu.tcr;
319 break;
320 /* MC68040 */
321 case M68K_CR_MMUSR:
322 if (m68k_feature(env, M68K_FEATURE_M68040)) {
323 return env->mmu.mmusr;
325 break;
326 /* MC680[46]0 */
327 case M68K_CR_SRP:
328 if (m68k_feature(env, M68K_FEATURE_M68040)
329 || m68k_feature(env, M68K_FEATURE_M68060)) {
330 return env->mmu.srp;
332 break;
333 /* MC68040/MC68LC040 */
334 case M68K_CR_URP:
335 if (m68k_feature(env, M68K_FEATURE_M68040)
336 || m68k_feature(env, M68K_FEATURE_M68060)) {
337 return env->mmu.urp;
339 break;
340 /* MC680[46]0 */
341 case M68K_CR_USP:
342 return env->sp[M68K_USP];
343 /* MC680[234]0 */
344 case M68K_CR_MSP:
345 if (m68k_feature(env, M68K_FEATURE_M68020)
346 || m68k_feature(env, M68K_FEATURE_M68030)
347 || m68k_feature(env, M68K_FEATURE_M68040)) {
348 return env->sp[M68K_SSP];
350 break;
351 /* MC680[234]0 */
352 case M68K_CR_ISP:
353 if (m68k_feature(env, M68K_FEATURE_M68020)
354 || m68k_feature(env, M68K_FEATURE_M68030)
355 || m68k_feature(env, M68K_FEATURE_M68040)) {
356 return env->sp[M68K_ISP];
358 break;
359 /* MC68040/MC68LC040 */
360 case M68K_CR_ITT0: /* MC68EC040 only: M68K_CR_IACR0 */
361 if (m68k_feature(env, M68K_FEATURE_M68040)) {
362 return env->mmu.ttr[M68K_ITTR0];
364 break;
365 /* MC68040/MC68LC040 */
366 case M68K_CR_ITT1: /* MC68EC040 only: M68K_CR_IACR1 */
367 if (m68k_feature(env, M68K_FEATURE_M68040)) {
368 return env->mmu.ttr[M68K_ITTR1];
370 break;
371 /* MC68040/MC68LC040 */
372 case M68K_CR_DTT0: /* MC68EC040 only: M68K_CR_DACR0 */
373 if (m68k_feature(env, M68K_FEATURE_M68040)) {
374 return env->mmu.ttr[M68K_DTTR0];
376 break;
377 /* MC68040/MC68LC040 */
378 case M68K_CR_DTT1: /* MC68EC040 only: M68K_CR_DACR1 */
379 if (m68k_feature(env, M68K_FEATURE_M68040)) {
380 return env->mmu.ttr[M68K_DTTR1];
382 break;
383 /* Unimplemented Registers */
384 case M68K_CR_CAAR:
385 case M68K_CR_PCR:
386 case M68K_CR_BUSCR:
387 cpu_abort(env_cpu(env), "Unimplemented control register read 0x%x\n",
388 reg);
391 /* Invalid control registers will generate an exception. */
392 raise_exception_ra(env, EXCP_ILLEGAL, 0);
394 return 0;
397 void HELPER(set_macsr)(CPUM68KState *env, uint32_t val)
399 uint32_t acc;
400 int8_t exthigh;
401 uint8_t extlow;
402 uint64_t regval;
403 int i;
404 if ((env->macsr ^ val) & (MACSR_FI | MACSR_SU)) {
405 for (i = 0; i < 4; i++) {
406 regval = env->macc[i];
407 exthigh = regval >> 40;
408 if (env->macsr & MACSR_FI) {
409 acc = regval >> 8;
410 extlow = regval;
411 } else {
412 acc = regval;
413 extlow = regval >> 32;
415 if (env->macsr & MACSR_FI) {
416 regval = (((uint64_t)acc) << 8) | extlow;
417 regval |= ((int64_t)exthigh) << 40;
418 } else if (env->macsr & MACSR_SU) {
419 regval = acc | (((int64_t)extlow) << 32);
420 regval |= ((int64_t)exthigh) << 40;
421 } else {
422 regval = acc | (((uint64_t)extlow) << 32);
423 regval |= ((uint64_t)(uint8_t)exthigh) << 40;
425 env->macc[i] = regval;
428 env->macsr = val;
431 void m68k_switch_sp(CPUM68KState *env)
433 int new_sp;
435 env->sp[env->current_sp] = env->aregs[7];
436 if (m68k_feature(env, M68K_FEATURE_M68K)) {
437 if (env->sr & SR_S) {
438 /* SR:Master-Mode bit unimplemented then ISP is not available */
439 if (!m68k_feature(env, M68K_FEATURE_MSP) || env->sr & SR_M) {
440 new_sp = M68K_SSP;
441 } else {
442 new_sp = M68K_ISP;
444 } else {
445 new_sp = M68K_USP;
447 } else {
448 new_sp = (env->sr & SR_S && env->cacr & M68K_CACR_EUSP)
449 ? M68K_SSP : M68K_USP;
451 env->aregs[7] = env->sp[new_sp];
452 env->current_sp = new_sp;
455 #if !defined(CONFIG_USER_ONLY)
456 /* MMU: 68040 only */
458 static void print_address_zone(uint32_t logical, uint32_t physical,
459 uint32_t size, int attr)
461 qemu_printf("%08x - %08x -> %08x - %08x %c ",
462 logical, logical + size - 1,
463 physical, physical + size - 1,
464 attr & 4 ? 'W' : '-');
465 size >>= 10;
466 if (size < 1024) {
467 qemu_printf("(%d KiB)\n", size);
468 } else {
469 size >>= 10;
470 if (size < 1024) {
471 qemu_printf("(%d MiB)\n", size);
472 } else {
473 size >>= 10;
474 qemu_printf("(%d GiB)\n", size);
479 static void dump_address_map(CPUM68KState *env, uint32_t root_pointer)
481 int i, j, k;
482 int tic_size, tic_shift;
483 uint32_t tib_mask;
484 uint32_t tia, tib, tic;
485 uint32_t logical = 0xffffffff, physical = 0xffffffff;
486 uint32_t first_logical = 0xffffffff, first_physical = 0xffffffff;
487 uint32_t last_logical, last_physical;
488 int32_t size;
489 int last_attr = -1, attr = -1;
490 CPUState *cs = env_cpu(env);
491 MemTxResult txres;
493 if (env->mmu.tcr & M68K_TCR_PAGE_8K) {
494 /* 8k page */
495 tic_size = 32;
496 tic_shift = 13;
497 tib_mask = M68K_8K_PAGE_MASK;
498 } else {
499 /* 4k page */
500 tic_size = 64;
501 tic_shift = 12;
502 tib_mask = M68K_4K_PAGE_MASK;
504 for (i = 0; i < M68K_ROOT_POINTER_ENTRIES; i++) {
505 tia = address_space_ldl(cs->as, M68K_POINTER_BASE(root_pointer) + i * 4,
506 MEMTXATTRS_UNSPECIFIED, &txres);
507 if (txres != MEMTX_OK || !M68K_UDT_VALID(tia)) {
508 continue;
510 for (j = 0; j < M68K_ROOT_POINTER_ENTRIES; j++) {
511 tib = address_space_ldl(cs->as, M68K_POINTER_BASE(tia) + j * 4,
512 MEMTXATTRS_UNSPECIFIED, &txres);
513 if (txres != MEMTX_OK || !M68K_UDT_VALID(tib)) {
514 continue;
516 for (k = 0; k < tic_size; k++) {
517 tic = address_space_ldl(cs->as, (tib & tib_mask) + k * 4,
518 MEMTXATTRS_UNSPECIFIED, &txres);
519 if (txres != MEMTX_OK || !M68K_PDT_VALID(tic)) {
520 continue;
522 if (M68K_PDT_INDIRECT(tic)) {
523 tic = address_space_ldl(cs->as, M68K_INDIRECT_POINTER(tic),
524 MEMTXATTRS_UNSPECIFIED, &txres);
525 if (txres != MEMTX_OK) {
526 continue;
530 last_logical = logical;
531 logical = (i << M68K_TTS_ROOT_SHIFT) |
532 (j << M68K_TTS_POINTER_SHIFT) |
533 (k << tic_shift);
535 last_physical = physical;
536 physical = tic & ~((1 << tic_shift) - 1);
538 last_attr = attr;
539 attr = tic & ((1 << tic_shift) - 1);
541 if ((logical != (last_logical + (1 << tic_shift))) ||
542 (physical != (last_physical + (1 << tic_shift))) ||
543 (attr & 4) != (last_attr & 4)) {
545 if (first_logical != 0xffffffff) {
546 size = last_logical + (1 << tic_shift) -
547 first_logical;
548 print_address_zone(first_logical,
549 first_physical, size, last_attr);
551 first_logical = logical;
552 first_physical = physical;
557 if (first_logical != logical || (attr & 4) != (last_attr & 4)) {
558 size = logical + (1 << tic_shift) - first_logical;
559 print_address_zone(first_logical, first_physical, size, last_attr);
563 #define DUMP_CACHEFLAGS(a) \
564 switch (a & M68K_DESC_CACHEMODE) { \
565 case M68K_DESC_CM_WRTHRU: /* cacheable, write-through */ \
566 qemu_printf("T"); \
567 break; \
568 case M68K_DESC_CM_COPYBK: /* cacheable, copyback */ \
569 qemu_printf("C"); \
570 break; \
571 case M68K_DESC_CM_SERIAL: /* noncachable, serialized */ \
572 qemu_printf("S"); \
573 break; \
574 case M68K_DESC_CM_NCACHE: /* noncachable */ \
575 qemu_printf("N"); \
576 break; \
579 static void dump_ttr(uint32_t ttr)
581 if ((ttr & M68K_TTR_ENABLED) == 0) {
582 qemu_printf("disabled\n");
583 return;
585 qemu_printf("Base: 0x%08x Mask: 0x%08x Control: ",
586 ttr & M68K_TTR_ADDR_BASE,
587 (ttr & M68K_TTR_ADDR_MASK) << M68K_TTR_ADDR_MASK_SHIFT);
588 switch (ttr & M68K_TTR_SFIELD) {
589 case M68K_TTR_SFIELD_USER:
590 qemu_printf("U");
591 break;
592 case M68K_TTR_SFIELD_SUPER:
593 qemu_printf("S");
594 break;
595 default:
596 qemu_printf("*");
597 break;
599 DUMP_CACHEFLAGS(ttr);
600 if (ttr & M68K_DESC_WRITEPROT) {
601 qemu_printf("R");
602 } else {
603 qemu_printf("W");
605 qemu_printf(" U: %d\n", (ttr & M68K_DESC_USERATTR) >>
606 M68K_DESC_USERATTR_SHIFT);
609 void dump_mmu(CPUM68KState *env)
611 if ((env->mmu.tcr & M68K_TCR_ENABLED) == 0) {
612 qemu_printf("Translation disabled\n");
613 return;
615 qemu_printf("Page Size: ");
616 if (env->mmu.tcr & M68K_TCR_PAGE_8K) {
617 qemu_printf("8kB\n");
618 } else {
619 qemu_printf("4kB\n");
622 qemu_printf("MMUSR: ");
623 if (env->mmu.mmusr & M68K_MMU_B_040) {
624 qemu_printf("BUS ERROR\n");
625 } else {
626 qemu_printf("Phy=%08x Flags: ", env->mmu.mmusr & 0xfffff000);
627 /* flags found on the page descriptor */
628 if (env->mmu.mmusr & M68K_MMU_G_040) {
629 qemu_printf("G"); /* Global */
630 } else {
631 qemu_printf(".");
633 if (env->mmu.mmusr & M68K_MMU_S_040) {
634 qemu_printf("S"); /* Supervisor */
635 } else {
636 qemu_printf(".");
638 if (env->mmu.mmusr & M68K_MMU_M_040) {
639 qemu_printf("M"); /* Modified */
640 } else {
641 qemu_printf(".");
643 if (env->mmu.mmusr & M68K_MMU_WP_040) {
644 qemu_printf("W"); /* Write protect */
645 } else {
646 qemu_printf(".");
648 if (env->mmu.mmusr & M68K_MMU_T_040) {
649 qemu_printf("T"); /* Transparent */
650 } else {
651 qemu_printf(".");
653 if (env->mmu.mmusr & M68K_MMU_R_040) {
654 qemu_printf("R"); /* Resident */
655 } else {
656 qemu_printf(".");
658 qemu_printf(" Cache: ");
659 DUMP_CACHEFLAGS(env->mmu.mmusr);
660 qemu_printf(" U: %d\n", (env->mmu.mmusr >> 8) & 3);
661 qemu_printf("\n");
664 qemu_printf("ITTR0: ");
665 dump_ttr(env->mmu.ttr[M68K_ITTR0]);
666 qemu_printf("ITTR1: ");
667 dump_ttr(env->mmu.ttr[M68K_ITTR1]);
668 qemu_printf("DTTR0: ");
669 dump_ttr(env->mmu.ttr[M68K_DTTR0]);
670 qemu_printf("DTTR1: ");
671 dump_ttr(env->mmu.ttr[M68K_DTTR1]);
673 qemu_printf("SRP: 0x%08x\n", env->mmu.srp);
674 dump_address_map(env, env->mmu.srp);
676 qemu_printf("URP: 0x%08x\n", env->mmu.urp);
677 dump_address_map(env, env->mmu.urp);
680 static int check_TTR(uint32_t ttr, int *prot, target_ulong addr,
681 int access_type)
683 uint32_t base, mask;
685 /* check if transparent translation is enabled */
686 if ((ttr & M68K_TTR_ENABLED) == 0) {
687 return 0;
690 /* check mode access */
691 switch (ttr & M68K_TTR_SFIELD) {
692 case M68K_TTR_SFIELD_USER:
693 /* match only if user */
694 if ((access_type & ACCESS_SUPER) != 0) {
695 return 0;
697 break;
698 case M68K_TTR_SFIELD_SUPER:
699 /* match only if supervisor */
700 if ((access_type & ACCESS_SUPER) == 0) {
701 return 0;
703 break;
704 default:
705 /* all other values disable mode matching (FC2) */
706 break;
709 /* check address matching */
711 base = ttr & M68K_TTR_ADDR_BASE;
712 mask = (ttr & M68K_TTR_ADDR_MASK) ^ M68K_TTR_ADDR_MASK;
713 mask <<= M68K_TTR_ADDR_MASK_SHIFT;
715 if ((addr & mask) != (base & mask)) {
716 return 0;
719 *prot = PAGE_READ | PAGE_EXEC;
720 if ((ttr & M68K_DESC_WRITEPROT) == 0) {
721 *prot |= PAGE_WRITE;
724 return 1;
727 static int get_physical_address(CPUM68KState *env, hwaddr *physical,
728 int *prot, target_ulong address,
729 int access_type, target_ulong *page_size)
731 CPUState *cs = env_cpu(env);
732 uint32_t entry;
733 uint32_t next;
734 target_ulong page_mask;
735 bool debug = access_type & ACCESS_DEBUG;
736 int page_bits;
737 int i;
738 MemTxResult txres;
740 /* Transparent Translation (physical = logical) */
741 for (i = 0; i < M68K_MAX_TTR; i++) {
742 if (check_TTR(env->mmu.TTR(access_type, i),
743 prot, address, access_type)) {
744 if (access_type & ACCESS_PTEST) {
745 /* Transparent Translation Register bit */
746 env->mmu.mmusr = M68K_MMU_T_040 | M68K_MMU_R_040;
748 *physical = address;
749 *page_size = TARGET_PAGE_SIZE;
750 return 0;
754 /* Page Table Root Pointer */
755 *prot = PAGE_READ | PAGE_WRITE;
756 if (access_type & ACCESS_CODE) {
757 *prot |= PAGE_EXEC;
759 if (access_type & ACCESS_SUPER) {
760 next = env->mmu.srp;
761 } else {
762 next = env->mmu.urp;
765 /* Root Index */
766 entry = M68K_POINTER_BASE(next) | M68K_ROOT_INDEX(address);
768 next = address_space_ldl(cs->as, entry, MEMTXATTRS_UNSPECIFIED, &txres);
769 if (txres != MEMTX_OK) {
770 goto txfail;
772 if (!M68K_UDT_VALID(next)) {
773 return -1;
775 if (!(next & M68K_DESC_USED) && !debug) {
776 address_space_stl(cs->as, entry, next | M68K_DESC_USED,
777 MEMTXATTRS_UNSPECIFIED, &txres);
778 if (txres != MEMTX_OK) {
779 goto txfail;
782 if (next & M68K_DESC_WRITEPROT) {
783 if (access_type & ACCESS_PTEST) {
784 env->mmu.mmusr |= M68K_MMU_WP_040;
786 *prot &= ~PAGE_WRITE;
787 if (access_type & ACCESS_STORE) {
788 return -1;
792 /* Pointer Index */
793 entry = M68K_POINTER_BASE(next) | M68K_POINTER_INDEX(address);
795 next = address_space_ldl(cs->as, entry, MEMTXATTRS_UNSPECIFIED, &txres);
796 if (txres != MEMTX_OK) {
797 goto txfail;
799 if (!M68K_UDT_VALID(next)) {
800 return -1;
802 if (!(next & M68K_DESC_USED) && !debug) {
803 address_space_stl(cs->as, entry, next | M68K_DESC_USED,
804 MEMTXATTRS_UNSPECIFIED, &txres);
805 if (txres != MEMTX_OK) {
806 goto txfail;
809 if (next & M68K_DESC_WRITEPROT) {
810 if (access_type & ACCESS_PTEST) {
811 env->mmu.mmusr |= M68K_MMU_WP_040;
813 *prot &= ~PAGE_WRITE;
814 if (access_type & ACCESS_STORE) {
815 return -1;
819 /* Page Index */
820 if (env->mmu.tcr & M68K_TCR_PAGE_8K) {
821 entry = M68K_8K_PAGE_BASE(next) | M68K_8K_PAGE_INDEX(address);
822 } else {
823 entry = M68K_4K_PAGE_BASE(next) | M68K_4K_PAGE_INDEX(address);
826 next = address_space_ldl(cs->as, entry, MEMTXATTRS_UNSPECIFIED, &txres);
827 if (txres != MEMTX_OK) {
828 goto txfail;
831 if (!M68K_PDT_VALID(next)) {
832 return -1;
834 if (M68K_PDT_INDIRECT(next)) {
835 next = address_space_ldl(cs->as, M68K_INDIRECT_POINTER(next),
836 MEMTXATTRS_UNSPECIFIED, &txres);
837 if (txres != MEMTX_OK) {
838 goto txfail;
841 if (access_type & ACCESS_STORE) {
842 if (next & M68K_DESC_WRITEPROT) {
843 if (!(next & M68K_DESC_USED) && !debug) {
844 address_space_stl(cs->as, entry, next | M68K_DESC_USED,
845 MEMTXATTRS_UNSPECIFIED, &txres);
846 if (txres != MEMTX_OK) {
847 goto txfail;
850 } else if ((next & (M68K_DESC_MODIFIED | M68K_DESC_USED)) !=
851 (M68K_DESC_MODIFIED | M68K_DESC_USED) && !debug) {
852 address_space_stl(cs->as, entry,
853 next | (M68K_DESC_MODIFIED | M68K_DESC_USED),
854 MEMTXATTRS_UNSPECIFIED, &txres);
855 if (txres != MEMTX_OK) {
856 goto txfail;
859 } else {
860 if (!(next & M68K_DESC_USED) && !debug) {
861 address_space_stl(cs->as, entry, next | M68K_DESC_USED,
862 MEMTXATTRS_UNSPECIFIED, &txres);
863 if (txres != MEMTX_OK) {
864 goto txfail;
869 if (env->mmu.tcr & M68K_TCR_PAGE_8K) {
870 page_bits = 13;
871 } else {
872 page_bits = 12;
874 *page_size = 1 << page_bits;
875 page_mask = ~(*page_size - 1);
876 *physical = (next & page_mask) + (address & (*page_size - 1));
878 if (access_type & ACCESS_PTEST) {
879 env->mmu.mmusr |= next & M68K_MMU_SR_MASK_040;
880 env->mmu.mmusr |= *physical & 0xfffff000;
881 env->mmu.mmusr |= M68K_MMU_R_040;
884 if (next & M68K_DESC_WRITEPROT) {
885 *prot &= ~PAGE_WRITE;
886 if (access_type & ACCESS_STORE) {
887 return -1;
890 if (next & M68K_DESC_SUPERONLY) {
891 if ((access_type & ACCESS_SUPER) == 0) {
892 return -1;
896 return 0;
898 txfail:
900 * A page table load/store failed. TODO: we should really raise a
901 * suitable guest fault here if this is not a debug access.
902 * For now just return that the translation failed.
904 return -1;
907 hwaddr m68k_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
909 CPUM68KState *env = cpu_env(cs);
910 hwaddr phys_addr;
911 int prot;
912 int access_type;
913 target_ulong page_size;
915 if ((env->mmu.tcr & M68K_TCR_ENABLED) == 0) {
916 /* MMU disabled */
917 return addr;
920 access_type = ACCESS_DATA | ACCESS_DEBUG;
921 if (env->sr & SR_S) {
922 access_type |= ACCESS_SUPER;
925 if (get_physical_address(env, &phys_addr, &prot,
926 addr, access_type, &page_size) != 0) {
927 return -1;
930 return phys_addr;
934 * Notify CPU of a pending interrupt. Prioritization and vectoring should
935 * be handled by the interrupt controller. Real hardware only requests
936 * the vector when the interrupt is acknowledged by the CPU. For
937 * simplicity we calculate it when the interrupt is signalled.
939 void m68k_set_irq_level(M68kCPU *cpu, int level, uint8_t vector)
941 CPUState *cs = CPU(cpu);
942 CPUM68KState *env = &cpu->env;
944 env->pending_level = level;
945 env->pending_vector = vector;
946 if (level) {
947 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
948 } else {
949 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
953 bool m68k_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
954 MMUAccessType qemu_access_type, int mmu_idx,
955 bool probe, uintptr_t retaddr)
957 CPUM68KState *env = cpu_env(cs);
958 hwaddr physical;
959 int prot;
960 int access_type;
961 int ret;
962 target_ulong page_size;
964 if ((env->mmu.tcr & M68K_TCR_ENABLED) == 0) {
965 /* MMU disabled */
966 tlb_set_page(cs, address & TARGET_PAGE_MASK,
967 address & TARGET_PAGE_MASK,
968 PAGE_READ | PAGE_WRITE | PAGE_EXEC,
969 mmu_idx, TARGET_PAGE_SIZE);
970 return true;
973 if (qemu_access_type == MMU_INST_FETCH) {
974 access_type = ACCESS_CODE;
975 } else {
976 access_type = ACCESS_DATA;
977 if (qemu_access_type == MMU_DATA_STORE) {
978 access_type |= ACCESS_STORE;
981 if (mmu_idx != MMU_USER_IDX) {
982 access_type |= ACCESS_SUPER;
985 ret = get_physical_address(env, &physical, &prot,
986 address, access_type, &page_size);
987 if (likely(ret == 0)) {
988 tlb_set_page(cs, address & TARGET_PAGE_MASK,
989 physical & TARGET_PAGE_MASK, prot, mmu_idx, page_size);
990 return true;
993 if (probe) {
994 return false;
997 /* page fault */
998 env->mmu.ssw = M68K_ATC_040;
999 switch (size) {
1000 case 1:
1001 env->mmu.ssw |= M68K_BA_SIZE_BYTE;
1002 break;
1003 case 2:
1004 env->mmu.ssw |= M68K_BA_SIZE_WORD;
1005 break;
1006 case 4:
1007 env->mmu.ssw |= M68K_BA_SIZE_LONG;
1008 break;
1010 if (access_type & ACCESS_SUPER) {
1011 env->mmu.ssw |= M68K_TM_040_SUPER;
1013 if (access_type & ACCESS_CODE) {
1014 env->mmu.ssw |= M68K_TM_040_CODE;
1015 } else {
1016 env->mmu.ssw |= M68K_TM_040_DATA;
1018 if (!(access_type & ACCESS_STORE)) {
1019 env->mmu.ssw |= M68K_RW_040;
1022 cs->exception_index = EXCP_ACCESS;
1023 env->mmu.ar = address;
1024 cpu_loop_exit_restore(cs, retaddr);
1026 #endif /* !CONFIG_USER_ONLY */
1028 uint32_t HELPER(bitrev)(uint32_t x)
1030 x = ((x >> 1) & 0x55555555u) | ((x << 1) & 0xaaaaaaaau);
1031 x = ((x >> 2) & 0x33333333u) | ((x << 2) & 0xccccccccu);
1032 x = ((x >> 4) & 0x0f0f0f0fu) | ((x << 4) & 0xf0f0f0f0u);
1033 return bswap32(x);
1036 uint32_t HELPER(ff1)(uint32_t x)
1038 int n;
1039 for (n = 32; x; n--)
1040 x >>= 1;
1041 return n;
1044 uint32_t HELPER(sats)(uint32_t val, uint32_t v)
1046 /* The result has the opposite sign to the original value. */
1047 if ((int32_t)v < 0) {
1048 val = (((int32_t)val) >> 31) ^ SIGNBIT;
1050 return val;
1053 void cpu_m68k_set_sr(CPUM68KState *env, uint32_t sr)
1055 env->sr = sr & 0xffe0;
1056 cpu_m68k_set_ccr(env, sr);
1057 m68k_switch_sp(env);
1060 void HELPER(set_sr)(CPUM68KState *env, uint32_t val)
1062 cpu_m68k_set_sr(env, val);
1065 /* MAC unit. */
1067 * FIXME: The MAC unit implementation is a bit of a mess. Some helpers
1068 * take values, others take register numbers and manipulate the contents
1069 * in-place.
1071 void HELPER(mac_move)(CPUM68KState *env, uint32_t dest, uint32_t src)
1073 uint32_t mask;
1074 env->macc[dest] = env->macc[src];
1075 mask = MACSR_PAV0 << dest;
1076 if (env->macsr & (MACSR_PAV0 << src))
1077 env->macsr |= mask;
1078 else
1079 env->macsr &= ~mask;
1082 uint64_t HELPER(macmuls)(CPUM68KState *env, uint32_t op1, uint32_t op2)
1084 int64_t product;
1085 int64_t res;
1087 product = (uint64_t)op1 * op2;
1088 res = (product << 24) >> 24;
1089 if (res != product) {
1090 env->macsr |= MACSR_V;
1091 if (env->macsr & MACSR_OMC) {
1092 /* Make sure the accumulate operation overflows. */
1093 if (product < 0)
1094 res = ~(1ll << 50);
1095 else
1096 res = 1ll << 50;
1099 return res;
1102 uint64_t HELPER(macmulu)(CPUM68KState *env, uint32_t op1, uint32_t op2)
1104 uint64_t product;
1106 product = (uint64_t)op1 * op2;
1107 if (product & (0xffffffull << 40)) {
1108 env->macsr |= MACSR_V;
1109 if (env->macsr & MACSR_OMC) {
1110 /* Make sure the accumulate operation overflows. */
1111 product = 1ll << 50;
1112 } else {
1113 product &= ((1ull << 40) - 1);
1116 return product;
1119 uint64_t HELPER(macmulf)(CPUM68KState *env, uint32_t op1, uint32_t op2)
1121 uint64_t product;
1122 uint32_t remainder;
1124 product = (uint64_t)op1 * op2;
1125 if (env->macsr & MACSR_RT) {
1126 remainder = product & 0xffffff;
1127 product >>= 24;
1128 if (remainder > 0x800000)
1129 product++;
1130 else if (remainder == 0x800000)
1131 product += (product & 1);
1132 } else {
1133 product >>= 24;
1135 return product;
1138 void HELPER(macsats)(CPUM68KState *env, uint32_t acc)
1140 int64_t tmp;
1141 int64_t result;
1142 tmp = env->macc[acc];
1143 result = ((tmp << 16) >> 16);
1144 if (result != tmp) {
1145 env->macsr |= MACSR_V;
1147 if (env->macsr & MACSR_V) {
1148 env->macsr |= MACSR_PAV0 << acc;
1149 if (env->macsr & MACSR_OMC) {
1151 * The result is saturated to 32 bits, despite overflow occurring
1152 * at 48 bits. Seems weird, but that's what the hardware docs
1153 * say.
1155 result = (result >> 63) ^ 0x7fffffff;
1158 env->macc[acc] = result;
1161 void HELPER(macsatu)(CPUM68KState *env, uint32_t acc)
1163 uint64_t val;
1165 val = env->macc[acc];
1166 if (val & (0xffffull << 48)) {
1167 env->macsr |= MACSR_V;
1169 if (env->macsr & MACSR_V) {
1170 env->macsr |= MACSR_PAV0 << acc;
1171 if (env->macsr & MACSR_OMC) {
1172 if (val > (1ull << 53))
1173 val = 0;
1174 else
1175 val = (1ull << 48) - 1;
1176 } else {
1177 val &= ((1ull << 48) - 1);
1180 env->macc[acc] = val;
1183 void HELPER(macsatf)(CPUM68KState *env, uint32_t acc)
1185 int64_t sum;
1186 int64_t result;
1188 sum = env->macc[acc];
1189 result = (sum << 16) >> 16;
1190 if (result != sum) {
1191 env->macsr |= MACSR_V;
1193 if (env->macsr & MACSR_V) {
1194 env->macsr |= MACSR_PAV0 << acc;
1195 if (env->macsr & MACSR_OMC) {
1196 result = (result >> 63) ^ 0x7fffffffffffll;
1199 env->macc[acc] = result;
1202 void HELPER(mac_set_flags)(CPUM68KState *env, uint32_t acc)
1204 uint64_t val;
1205 val = env->macc[acc];
1206 if (val == 0) {
1207 env->macsr |= MACSR_Z;
1208 } else if (val & (1ull << 47)) {
1209 env->macsr |= MACSR_N;
1211 if (env->macsr & (MACSR_PAV0 << acc)) {
1212 env->macsr |= MACSR_V;
1214 if (env->macsr & MACSR_FI) {
1215 val = ((int64_t)val) >> 40;
1216 if (val != 0 && val != -1)
1217 env->macsr |= MACSR_EV;
1218 } else if (env->macsr & MACSR_SU) {
1219 val = ((int64_t)val) >> 32;
1220 if (val != 0 && val != -1)
1221 env->macsr |= MACSR_EV;
1222 } else {
1223 if ((val >> 32) != 0)
1224 env->macsr |= MACSR_EV;
1228 #define EXTSIGN(val, index) ( \
1229 (index == 0) ? (int8_t)(val) : ((index == 1) ? (int16_t)(val) : (val)) \
1232 #define COMPUTE_CCR(op, x, n, z, v, c) { \
1233 switch (op) { \
1234 case CC_OP_FLAGS: \
1235 /* Everything in place. */ \
1236 break; \
1237 case CC_OP_ADDB: \
1238 case CC_OP_ADDW: \
1239 case CC_OP_ADDL: \
1240 res = n; \
1241 src2 = v; \
1242 src1 = EXTSIGN(res - src2, op - CC_OP_ADDB); \
1243 c = x; \
1244 z = n; \
1245 v = (res ^ src1) & ~(src1 ^ src2); \
1246 break; \
1247 case CC_OP_SUBB: \
1248 case CC_OP_SUBW: \
1249 case CC_OP_SUBL: \
1250 res = n; \
1251 src2 = v; \
1252 src1 = EXTSIGN(res + src2, op - CC_OP_SUBB); \
1253 c = x; \
1254 z = n; \
1255 v = (res ^ src1) & (src1 ^ src2); \
1256 break; \
1257 case CC_OP_CMPB: \
1258 case CC_OP_CMPW: \
1259 case CC_OP_CMPL: \
1260 src1 = n; \
1261 src2 = v; \
1262 res = EXTSIGN(src1 - src2, op - CC_OP_CMPB); \
1263 n = res; \
1264 z = res; \
1265 c = src1 < src2; \
1266 v = (res ^ src1) & (src1 ^ src2); \
1267 break; \
1268 case CC_OP_LOGIC: \
1269 c = v = 0; \
1270 z = n; \
1271 break; \
1272 default: \
1273 cpu_abort(env_cpu(env), "Bad CC_OP %d", op); \
1275 } while (0)
1277 uint32_t cpu_m68k_get_ccr(CPUM68KState *env)
1279 uint32_t x, c, n, z, v;
1280 uint32_t res, src1, src2;
1282 x = env->cc_x;
1283 n = env->cc_n;
1284 z = env->cc_z;
1285 v = env->cc_v;
1286 c = env->cc_c;
1288 COMPUTE_CCR(env->cc_op, x, n, z, v, c);
1290 n = n >> 31;
1291 z = (z == 0);
1292 v = v >> 31;
1294 return x * CCF_X + n * CCF_N + z * CCF_Z + v * CCF_V + c * CCF_C;
1297 uint32_t HELPER(get_ccr)(CPUM68KState *env)
1299 return cpu_m68k_get_ccr(env);
1302 void cpu_m68k_set_ccr(CPUM68KState *env, uint32_t ccr)
1304 env->cc_x = (ccr & CCF_X ? 1 : 0);
1305 env->cc_n = (ccr & CCF_N ? -1 : 0);
1306 env->cc_z = (ccr & CCF_Z ? 0 : 1);
1307 env->cc_v = (ccr & CCF_V ? -1 : 0);
1308 env->cc_c = (ccr & CCF_C ? 1 : 0);
1309 env->cc_op = CC_OP_FLAGS;
1312 void HELPER(set_ccr)(CPUM68KState *env, uint32_t ccr)
1314 cpu_m68k_set_ccr(env, ccr);
1317 void HELPER(flush_flags)(CPUM68KState *env, uint32_t cc_op)
1319 uint32_t res, src1, src2;
1321 COMPUTE_CCR(cc_op, env->cc_x, env->cc_n, env->cc_z, env->cc_v, env->cc_c);
1322 env->cc_op = CC_OP_FLAGS;
1325 uint32_t HELPER(get_macf)(CPUM68KState *env, uint64_t val)
1327 int rem;
1328 uint32_t result;
1330 if (env->macsr & MACSR_SU) {
1331 /* 16-bit rounding. */
1332 rem = val & 0xffffff;
1333 val = (val >> 24) & 0xffffu;
1334 if (rem > 0x800000)
1335 val++;
1336 else if (rem == 0x800000)
1337 val += (val & 1);
1338 } else if (env->macsr & MACSR_RT) {
1339 /* 32-bit rounding. */
1340 rem = val & 0xff;
1341 val >>= 8;
1342 if (rem > 0x80)
1343 val++;
1344 else if (rem == 0x80)
1345 val += (val & 1);
1346 } else {
1347 /* No rounding. */
1348 val >>= 8;
1350 if (env->macsr & MACSR_OMC) {
1351 /* Saturate. */
1352 if (env->macsr & MACSR_SU) {
1353 if (val != (uint16_t) val) {
1354 result = ((val >> 63) ^ 0x7fff) & 0xffff;
1355 } else {
1356 result = val & 0xffff;
1358 } else {
1359 if (val != (uint32_t)val) {
1360 result = ((uint32_t)(val >> 63) & 0x7fffffff);
1361 } else {
1362 result = (uint32_t)val;
1365 } else {
1366 /* No saturation. */
1367 if (env->macsr & MACSR_SU) {
1368 result = val & 0xffff;
1369 } else {
1370 result = (uint32_t)val;
1373 return result;
1376 uint32_t HELPER(get_macs)(uint64_t val)
1378 if (val == (int32_t)val) {
1379 return (int32_t)val;
1380 } else {
1381 return (val >> 61) ^ ~SIGNBIT;
1385 uint32_t HELPER(get_macu)(uint64_t val)
1387 if ((val >> 32) == 0) {
1388 return (uint32_t)val;
1389 } else {
1390 return 0xffffffffu;
1394 uint32_t HELPER(get_mac_extf)(CPUM68KState *env, uint32_t acc)
1396 uint32_t val;
1397 val = env->macc[acc] & 0x00ff;
1398 val |= (env->macc[acc] >> 32) & 0xff00;
1399 val |= (env->macc[acc + 1] << 16) & 0x00ff0000;
1400 val |= (env->macc[acc + 1] >> 16) & 0xff000000;
1401 return val;
1404 uint32_t HELPER(get_mac_exti)(CPUM68KState *env, uint32_t acc)
1406 uint32_t val;
1407 val = (env->macc[acc] >> 32) & 0xffff;
1408 val |= (env->macc[acc + 1] >> 16) & 0xffff0000;
1409 return val;
1412 void HELPER(set_mac_extf)(CPUM68KState *env, uint32_t val, uint32_t acc)
1414 int64_t res;
1415 int32_t tmp;
1416 res = env->macc[acc] & 0xffffffff00ull;
1417 tmp = (int16_t)(val & 0xff00);
1418 res |= ((int64_t)tmp) << 32;
1419 res |= val & 0xff;
1420 env->macc[acc] = res;
1421 res = env->macc[acc + 1] & 0xffffffff00ull;
1422 tmp = (val & 0xff000000);
1423 res |= ((int64_t)tmp) << 16;
1424 res |= (val >> 16) & 0xff;
1425 env->macc[acc + 1] = res;
1428 void HELPER(set_mac_exts)(CPUM68KState *env, uint32_t val, uint32_t acc)
1430 int64_t res;
1431 int32_t tmp;
1432 res = (uint32_t)env->macc[acc];
1433 tmp = (int16_t)val;
1434 res |= ((int64_t)tmp) << 32;
1435 env->macc[acc] = res;
1436 res = (uint32_t)env->macc[acc + 1];
1437 tmp = val & 0xffff0000;
1438 res |= (int64_t)tmp << 16;
1439 env->macc[acc + 1] = res;
1442 void HELPER(set_mac_extu)(CPUM68KState *env, uint32_t val, uint32_t acc)
1444 uint64_t res;
1445 res = (uint32_t)env->macc[acc];
1446 res |= ((uint64_t)(val & 0xffff)) << 32;
1447 env->macc[acc] = res;
1448 res = (uint32_t)env->macc[acc + 1];
1449 res |= (uint64_t)(val & 0xffff0000) << 16;
1450 env->macc[acc + 1] = res;
1453 #if !defined(CONFIG_USER_ONLY)
1454 void HELPER(ptest)(CPUM68KState *env, uint32_t addr, uint32_t is_read)
1456 hwaddr physical;
1457 int access_type;
1458 int prot;
1459 int ret;
1460 target_ulong page_size;
1462 access_type = ACCESS_PTEST;
1463 if (env->dfc & 4) {
1464 access_type |= ACCESS_SUPER;
1466 if ((env->dfc & 3) == 2) {
1467 access_type |= ACCESS_CODE;
1469 if (!is_read) {
1470 access_type |= ACCESS_STORE;
1473 env->mmu.mmusr = 0;
1474 env->mmu.ssw = 0;
1475 ret = get_physical_address(env, &physical, &prot, addr,
1476 access_type, &page_size);
1477 if (ret == 0) {
1478 tlb_set_page(env_cpu(env), addr & TARGET_PAGE_MASK,
1479 physical & TARGET_PAGE_MASK,
1480 prot, access_type & ACCESS_SUPER ?
1481 MMU_KERNEL_IDX : MMU_USER_IDX, page_size);
1485 void HELPER(pflush)(CPUM68KState *env, uint32_t addr, uint32_t opmode)
1487 CPUState *cs = env_cpu(env);
1489 switch (opmode) {
1490 case 0: /* Flush page entry if not global */
1491 case 1: /* Flush page entry */
1492 tlb_flush_page(cs, addr);
1493 break;
1494 case 2: /* Flush all except global entries */
1495 tlb_flush(cs);
1496 break;
1497 case 3: /* Flush all entries */
1498 tlb_flush(cs);
1499 break;
1503 void HELPER(reset)(CPUM68KState *env)
1505 /* FIXME: reset all except CPU */
1507 #endif /* !CONFIG_USER_ONLY */