qapi: document parameters of query-cpu-model-* QAPI commands
[qemu/armbru.git] / accel / tcg / tb-maint.c
blobda39a43bd8c5db3aec0be26901e565f1540834e1
1 /*
2 * Translation Block Maintenance
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/interval-tree.h"
22 #include "qemu/qtree.h"
23 #include "exec/cputlb.h"
24 #include "exec/log.h"
25 #include "exec/exec-all.h"
26 #include "exec/tb-flush.h"
27 #include "exec/translate-all.h"
28 #include "sysemu/tcg.h"
29 #include "tcg/tcg.h"
30 #include "tb-hash.h"
31 #include "tb-context.h"
32 #include "internal-common.h"
33 #include "internal-target.h"
36 /* List iterators for lists of tagged pointers in TranslationBlock. */
37 #define TB_FOR_EACH_TAGGED(head, tb, n, field) \
38 for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \
39 tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \
40 tb = (TranslationBlock *)((uintptr_t)tb & ~1))
42 #define TB_FOR_EACH_JMP(head_tb, tb, n) \
43 TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next)
45 static bool tb_cmp(const void *ap, const void *bp)
47 const TranslationBlock *a = ap;
48 const TranslationBlock *b = bp;
50 return ((tb_cflags(a) & CF_PCREL || a->pc == b->pc) &&
51 a->cs_base == b->cs_base &&
52 a->flags == b->flags &&
53 (tb_cflags(a) & ~CF_INVALID) == (tb_cflags(b) & ~CF_INVALID) &&
54 tb_page_addr0(a) == tb_page_addr0(b) &&
55 tb_page_addr1(a) == tb_page_addr1(b));
58 void tb_htable_init(void)
60 unsigned int mode = QHT_MODE_AUTO_RESIZE;
62 qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode);
65 typedef struct PageDesc PageDesc;
67 #ifdef CONFIG_USER_ONLY
70 * In user-mode page locks aren't used; mmap_lock is enough.
72 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock())
74 static inline void tb_lock_pages(const TranslationBlock *tb) { }
77 * For user-only, since we are protecting all of memory with a single lock,
78 * and because the two pages of a TranslationBlock are always contiguous,
79 * use a single data structure to record all TranslationBlocks.
81 static IntervalTreeRoot tb_root;
83 static void tb_remove_all(void)
85 assert_memory_lock();
86 memset(&tb_root, 0, sizeof(tb_root));
89 /* Call with mmap_lock held. */
90 static void tb_record(TranslationBlock *tb)
92 vaddr addr;
93 int flags;
95 assert_memory_lock();
96 tb->itree.last = tb->itree.start + tb->size - 1;
98 /* translator_loop() must have made all TB pages non-writable */
99 addr = tb_page_addr0(tb);
100 flags = page_get_flags(addr);
101 assert(!(flags & PAGE_WRITE));
103 addr = tb_page_addr1(tb);
104 if (addr != -1) {
105 flags = page_get_flags(addr);
106 assert(!(flags & PAGE_WRITE));
109 interval_tree_insert(&tb->itree, &tb_root);
112 /* Call with mmap_lock held. */
113 static void tb_remove(TranslationBlock *tb)
115 assert_memory_lock();
116 interval_tree_remove(&tb->itree, &tb_root);
119 /* TODO: For now, still shared with translate-all.c for system mode. */
120 #define PAGE_FOR_EACH_TB(start, last, pagedesc, T, N) \
121 for (T = foreach_tb_first(start, last), \
122 N = foreach_tb_next(T, start, last); \
123 T != NULL; \
124 T = N, N = foreach_tb_next(N, start, last))
126 typedef TranslationBlock *PageForEachNext;
128 static PageForEachNext foreach_tb_first(tb_page_addr_t start,
129 tb_page_addr_t last)
131 IntervalTreeNode *n = interval_tree_iter_first(&tb_root, start, last);
132 return n ? container_of(n, TranslationBlock, itree) : NULL;
135 static PageForEachNext foreach_tb_next(PageForEachNext tb,
136 tb_page_addr_t start,
137 tb_page_addr_t last)
139 IntervalTreeNode *n;
141 if (tb) {
142 n = interval_tree_iter_next(&tb->itree, start, last);
143 if (n) {
144 return container_of(n, TranslationBlock, itree);
147 return NULL;
150 #else
152 * In system mode we want L1_MAP to be based on ram offsets.
154 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
155 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
156 #else
157 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
158 #endif
160 /* Size of the L2 (and L3, etc) page tables. */
161 #define V_L2_BITS 10
162 #define V_L2_SIZE (1 << V_L2_BITS)
165 * L1 Mapping properties
167 static int v_l1_size;
168 static int v_l1_shift;
169 static int v_l2_levels;
172 * The bottom level has pointers to PageDesc, and is indexed by
173 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
175 #define V_L1_MIN_BITS 4
176 #define V_L1_MAX_BITS (V_L2_BITS + 3)
177 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
179 static void *l1_map[V_L1_MAX_SIZE];
181 struct PageDesc {
182 QemuSpin lock;
183 /* list of TBs intersecting this ram page */
184 uintptr_t first_tb;
187 void page_table_config_init(void)
189 uint32_t v_l1_bits;
191 assert(TARGET_PAGE_BITS);
192 /* The bits remaining after N lower levels of page tables. */
193 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
194 if (v_l1_bits < V_L1_MIN_BITS) {
195 v_l1_bits += V_L2_BITS;
198 v_l1_size = 1 << v_l1_bits;
199 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
200 v_l2_levels = v_l1_shift / V_L2_BITS - 1;
202 assert(v_l1_bits <= V_L1_MAX_BITS);
203 assert(v_l1_shift % V_L2_BITS == 0);
204 assert(v_l2_levels >= 0);
207 static PageDesc *page_find_alloc(tb_page_addr_t index, bool alloc)
209 PageDesc *pd;
210 void **lp;
212 /* Level 1. Always allocated. */
213 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
215 /* Level 2..N-1. */
216 for (int i = v_l2_levels; i > 0; i--) {
217 void **p = qatomic_rcu_read(lp);
219 if (p == NULL) {
220 void *existing;
222 if (!alloc) {
223 return NULL;
225 p = g_new0(void *, V_L2_SIZE);
226 existing = qatomic_cmpxchg(lp, NULL, p);
227 if (unlikely(existing)) {
228 g_free(p);
229 p = existing;
233 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
236 pd = qatomic_rcu_read(lp);
237 if (pd == NULL) {
238 void *existing;
240 if (!alloc) {
241 return NULL;
244 pd = g_new0(PageDesc, V_L2_SIZE);
245 for (int i = 0; i < V_L2_SIZE; i++) {
246 qemu_spin_init(&pd[i].lock);
249 existing = qatomic_cmpxchg(lp, NULL, pd);
250 if (unlikely(existing)) {
251 for (int i = 0; i < V_L2_SIZE; i++) {
252 qemu_spin_destroy(&pd[i].lock);
254 g_free(pd);
255 pd = existing;
259 return pd + (index & (V_L2_SIZE - 1));
262 static inline PageDesc *page_find(tb_page_addr_t index)
264 return page_find_alloc(index, false);
268 * struct page_entry - page descriptor entry
269 * @pd: pointer to the &struct PageDesc of the page this entry represents
270 * @index: page index of the page
271 * @locked: whether the page is locked
273 * This struct helps us keep track of the locked state of a page, without
274 * bloating &struct PageDesc.
276 * A page lock protects accesses to all fields of &struct PageDesc.
278 * See also: &struct page_collection.
280 struct page_entry {
281 PageDesc *pd;
282 tb_page_addr_t index;
283 bool locked;
287 * struct page_collection - tracks a set of pages (i.e. &struct page_entry's)
288 * @tree: Binary search tree (BST) of the pages, with key == page index
289 * @max: Pointer to the page in @tree with the highest page index
291 * To avoid deadlock we lock pages in ascending order of page index.
292 * When operating on a set of pages, we need to keep track of them so that
293 * we can lock them in order and also unlock them later. For this we collect
294 * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the
295 * @tree implementation we use does not provide an O(1) operation to obtain the
296 * highest-ranked element, we use @max to keep track of the inserted page
297 * with the highest index. This is valuable because if a page is not in
298 * the tree and its index is higher than @max's, then we can lock it
299 * without breaking the locking order rule.
301 * Note on naming: 'struct page_set' would be shorter, but we already have a few
302 * page_set_*() helpers, so page_collection is used instead to avoid confusion.
304 * See also: page_collection_lock().
306 struct page_collection {
307 QTree *tree;
308 struct page_entry *max;
311 typedef int PageForEachNext;
312 #define PAGE_FOR_EACH_TB(start, last, pagedesc, tb, n) \
313 TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next)
315 #ifdef CONFIG_DEBUG_TCG
317 static __thread GHashTable *ht_pages_locked_debug;
319 static void ht_pages_locked_debug_init(void)
321 if (ht_pages_locked_debug) {
322 return;
324 ht_pages_locked_debug = g_hash_table_new(NULL, NULL);
327 static bool page_is_locked(const PageDesc *pd)
329 PageDesc *found;
331 ht_pages_locked_debug_init();
332 found = g_hash_table_lookup(ht_pages_locked_debug, pd);
333 return !!found;
336 static void page_lock__debug(PageDesc *pd)
338 ht_pages_locked_debug_init();
339 g_assert(!page_is_locked(pd));
340 g_hash_table_insert(ht_pages_locked_debug, pd, pd);
343 static void page_unlock__debug(const PageDesc *pd)
345 bool removed;
347 ht_pages_locked_debug_init();
348 g_assert(page_is_locked(pd));
349 removed = g_hash_table_remove(ht_pages_locked_debug, pd);
350 g_assert(removed);
353 static void do_assert_page_locked(const PageDesc *pd,
354 const char *file, int line)
356 if (unlikely(!page_is_locked(pd))) {
357 error_report("assert_page_lock: PageDesc %p not locked @ %s:%d",
358 pd, file, line);
359 abort();
362 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__)
364 void assert_no_pages_locked(void)
366 ht_pages_locked_debug_init();
367 g_assert(g_hash_table_size(ht_pages_locked_debug) == 0);
370 #else /* !CONFIG_DEBUG_TCG */
372 static inline void page_lock__debug(const PageDesc *pd) { }
373 static inline void page_unlock__debug(const PageDesc *pd) { }
374 static inline void assert_page_locked(const PageDesc *pd) { }
376 #endif /* CONFIG_DEBUG_TCG */
378 static void page_lock(PageDesc *pd)
380 page_lock__debug(pd);
381 qemu_spin_lock(&pd->lock);
384 /* Like qemu_spin_trylock, returns false on success */
385 static bool page_trylock(PageDesc *pd)
387 bool busy = qemu_spin_trylock(&pd->lock);
388 if (!busy) {
389 page_lock__debug(pd);
391 return busy;
394 static void page_unlock(PageDesc *pd)
396 qemu_spin_unlock(&pd->lock);
397 page_unlock__debug(pd);
400 void tb_lock_page0(tb_page_addr_t paddr)
402 page_lock(page_find_alloc(paddr >> TARGET_PAGE_BITS, true));
405 void tb_lock_page1(tb_page_addr_t paddr0, tb_page_addr_t paddr1)
407 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS;
408 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS;
409 PageDesc *pd0, *pd1;
411 if (pindex0 == pindex1) {
412 /* Identical pages, and the first page is already locked. */
413 return;
416 pd1 = page_find_alloc(pindex1, true);
417 if (pindex0 < pindex1) {
418 /* Correct locking order, we may block. */
419 page_lock(pd1);
420 return;
423 /* Incorrect locking order, we cannot block lest we deadlock. */
424 if (!page_trylock(pd1)) {
425 return;
429 * Drop the lock on page0 and get both page locks in the right order.
430 * Restart translation via longjmp.
432 pd0 = page_find_alloc(pindex0, false);
433 page_unlock(pd0);
434 page_lock(pd1);
435 page_lock(pd0);
436 siglongjmp(tcg_ctx->jmp_trans, -3);
439 void tb_unlock_page1(tb_page_addr_t paddr0, tb_page_addr_t paddr1)
441 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS;
442 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS;
444 if (pindex0 != pindex1) {
445 page_unlock(page_find_alloc(pindex1, false));
449 static void tb_lock_pages(TranslationBlock *tb)
451 tb_page_addr_t paddr0 = tb_page_addr0(tb);
452 tb_page_addr_t paddr1 = tb_page_addr1(tb);
453 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS;
454 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS;
456 if (unlikely(paddr0 == -1)) {
457 return;
459 if (unlikely(paddr1 != -1) && pindex0 != pindex1) {
460 if (pindex0 < pindex1) {
461 page_lock(page_find_alloc(pindex0, true));
462 page_lock(page_find_alloc(pindex1, true));
463 return;
465 page_lock(page_find_alloc(pindex1, true));
467 page_lock(page_find_alloc(pindex0, true));
470 void tb_unlock_pages(TranslationBlock *tb)
472 tb_page_addr_t paddr0 = tb_page_addr0(tb);
473 tb_page_addr_t paddr1 = tb_page_addr1(tb);
474 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS;
475 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS;
477 if (unlikely(paddr0 == -1)) {
478 return;
480 if (unlikely(paddr1 != -1) && pindex0 != pindex1) {
481 page_unlock(page_find_alloc(pindex1, false));
483 page_unlock(page_find_alloc(pindex0, false));
486 static inline struct page_entry *
487 page_entry_new(PageDesc *pd, tb_page_addr_t index)
489 struct page_entry *pe = g_malloc(sizeof(*pe));
491 pe->index = index;
492 pe->pd = pd;
493 pe->locked = false;
494 return pe;
497 static void page_entry_destroy(gpointer p)
499 struct page_entry *pe = p;
501 g_assert(pe->locked);
502 page_unlock(pe->pd);
503 g_free(pe);
506 /* returns false on success */
507 static bool page_entry_trylock(struct page_entry *pe)
509 bool busy = page_trylock(pe->pd);
510 if (!busy) {
511 g_assert(!pe->locked);
512 pe->locked = true;
514 return busy;
517 static void do_page_entry_lock(struct page_entry *pe)
519 page_lock(pe->pd);
520 g_assert(!pe->locked);
521 pe->locked = true;
524 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data)
526 struct page_entry *pe = value;
528 do_page_entry_lock(pe);
529 return FALSE;
532 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data)
534 struct page_entry *pe = value;
536 if (pe->locked) {
537 pe->locked = false;
538 page_unlock(pe->pd);
540 return FALSE;
544 * Trylock a page, and if successful, add the page to a collection.
545 * Returns true ("busy") if the page could not be locked; false otherwise.
547 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr)
549 tb_page_addr_t index = addr >> TARGET_PAGE_BITS;
550 struct page_entry *pe;
551 PageDesc *pd;
553 pe = q_tree_lookup(set->tree, &index);
554 if (pe) {
555 return false;
558 pd = page_find(index);
559 if (pd == NULL) {
560 return false;
563 pe = page_entry_new(pd, index);
564 q_tree_insert(set->tree, &pe->index, pe);
567 * If this is either (1) the first insertion or (2) a page whose index
568 * is higher than any other so far, just lock the page and move on.
570 if (set->max == NULL || pe->index > set->max->index) {
571 set->max = pe;
572 do_page_entry_lock(pe);
573 return false;
576 * Try to acquire out-of-order lock; if busy, return busy so that we acquire
577 * locks in order.
579 return page_entry_trylock(pe);
582 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata)
584 tb_page_addr_t a = *(const tb_page_addr_t *)ap;
585 tb_page_addr_t b = *(const tb_page_addr_t *)bp;
587 if (a == b) {
588 return 0;
589 } else if (a < b) {
590 return -1;
592 return 1;
596 * Lock a range of pages ([@start,@last]) as well as the pages of all
597 * intersecting TBs.
598 * Locking order: acquire locks in ascending order of page index.
600 static struct page_collection *page_collection_lock(tb_page_addr_t start,
601 tb_page_addr_t last)
603 struct page_collection *set = g_malloc(sizeof(*set));
604 tb_page_addr_t index;
605 PageDesc *pd;
607 start >>= TARGET_PAGE_BITS;
608 last >>= TARGET_PAGE_BITS;
609 g_assert(start <= last);
611 set->tree = q_tree_new_full(tb_page_addr_cmp, NULL, NULL,
612 page_entry_destroy);
613 set->max = NULL;
614 assert_no_pages_locked();
616 retry:
617 q_tree_foreach(set->tree, page_entry_lock, NULL);
619 for (index = start; index <= last; index++) {
620 TranslationBlock *tb;
621 PageForEachNext n;
623 pd = page_find(index);
624 if (pd == NULL) {
625 continue;
627 if (page_trylock_add(set, index << TARGET_PAGE_BITS)) {
628 q_tree_foreach(set->tree, page_entry_unlock, NULL);
629 goto retry;
631 assert_page_locked(pd);
632 PAGE_FOR_EACH_TB(unused, unused, pd, tb, n) {
633 if (page_trylock_add(set, tb_page_addr0(tb)) ||
634 (tb_page_addr1(tb) != -1 &&
635 page_trylock_add(set, tb_page_addr1(tb)))) {
636 /* drop all locks, and reacquire in order */
637 q_tree_foreach(set->tree, page_entry_unlock, NULL);
638 goto retry;
642 return set;
645 static void page_collection_unlock(struct page_collection *set)
647 /* entries are unlocked and freed via page_entry_destroy */
648 q_tree_destroy(set->tree);
649 g_free(set);
652 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
653 static void tb_remove_all_1(int level, void **lp)
655 int i;
657 if (*lp == NULL) {
658 return;
660 if (level == 0) {
661 PageDesc *pd = *lp;
663 for (i = 0; i < V_L2_SIZE; ++i) {
664 page_lock(&pd[i]);
665 pd[i].first_tb = (uintptr_t)NULL;
666 page_unlock(&pd[i]);
668 } else {
669 void **pp = *lp;
671 for (i = 0; i < V_L2_SIZE; ++i) {
672 tb_remove_all_1(level - 1, pp + i);
677 static void tb_remove_all(void)
679 int i, l1_sz = v_l1_size;
681 for (i = 0; i < l1_sz; i++) {
682 tb_remove_all_1(v_l2_levels, l1_map + i);
687 * Add the tb in the target page and protect it if necessary.
688 * Called with @p->lock held.
690 static void tb_page_add(PageDesc *p, TranslationBlock *tb, unsigned int n)
692 bool page_already_protected;
694 assert_page_locked(p);
696 tb->page_next[n] = p->first_tb;
697 page_already_protected = p->first_tb != 0;
698 p->first_tb = (uintptr_t)tb | n;
701 * If some code is already present, then the pages are already
702 * protected. So we handle the case where only the first TB is
703 * allocated in a physical page.
705 if (!page_already_protected) {
706 tlb_protect_code(tb->page_addr[n] & TARGET_PAGE_MASK);
710 static void tb_record(TranslationBlock *tb)
712 tb_page_addr_t paddr0 = tb_page_addr0(tb);
713 tb_page_addr_t paddr1 = tb_page_addr1(tb);
714 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS;
715 tb_page_addr_t pindex1 = paddr0 >> TARGET_PAGE_BITS;
717 assert(paddr0 != -1);
718 if (unlikely(paddr1 != -1) && pindex0 != pindex1) {
719 tb_page_add(page_find_alloc(pindex1, false), tb, 1);
721 tb_page_add(page_find_alloc(pindex0, false), tb, 0);
724 static void tb_page_remove(PageDesc *pd, TranslationBlock *tb)
726 TranslationBlock *tb1;
727 uintptr_t *pprev;
728 PageForEachNext n1;
730 assert_page_locked(pd);
731 pprev = &pd->first_tb;
732 PAGE_FOR_EACH_TB(unused, unused, pd, tb1, n1) {
733 if (tb1 == tb) {
734 *pprev = tb1->page_next[n1];
735 return;
737 pprev = &tb1->page_next[n1];
739 g_assert_not_reached();
742 static void tb_remove(TranslationBlock *tb)
744 tb_page_addr_t paddr0 = tb_page_addr0(tb);
745 tb_page_addr_t paddr1 = tb_page_addr1(tb);
746 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS;
747 tb_page_addr_t pindex1 = paddr0 >> TARGET_PAGE_BITS;
749 assert(paddr0 != -1);
750 if (unlikely(paddr1 != -1) && pindex0 != pindex1) {
751 tb_page_remove(page_find_alloc(pindex1, false), tb);
753 tb_page_remove(page_find_alloc(pindex0, false), tb);
755 #endif /* CONFIG_USER_ONLY */
757 /* flush all the translation blocks */
758 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
760 bool did_flush = false;
762 mmap_lock();
763 /* If it is already been done on request of another CPU, just retry. */
764 if (tb_ctx.tb_flush_count != tb_flush_count.host_int) {
765 goto done;
767 did_flush = true;
769 CPU_FOREACH(cpu) {
770 tcg_flush_jmp_cache(cpu);
773 qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
774 tb_remove_all();
776 tcg_region_reset_all();
777 /* XXX: flush processor icache at this point if cache flush is expensive */
778 qatomic_inc(&tb_ctx.tb_flush_count);
780 done:
781 mmap_unlock();
782 if (did_flush) {
783 qemu_plugin_flush_cb();
787 void tb_flush(CPUState *cpu)
789 if (tcg_enabled()) {
790 unsigned tb_flush_count = qatomic_read(&tb_ctx.tb_flush_count);
792 if (cpu_in_serial_context(cpu)) {
793 do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count));
794 } else {
795 async_safe_run_on_cpu(cpu, do_tb_flush,
796 RUN_ON_CPU_HOST_INT(tb_flush_count));
801 /* remove @orig from its @n_orig-th jump list */
802 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig)
804 uintptr_t ptr, ptr_locked;
805 TranslationBlock *dest;
806 TranslationBlock *tb;
807 uintptr_t *pprev;
808 int n;
810 /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */
811 ptr = qatomic_or_fetch(&orig->jmp_dest[n_orig], 1);
812 dest = (TranslationBlock *)(ptr & ~1);
813 if (dest == NULL) {
814 return;
817 qemu_spin_lock(&dest->jmp_lock);
819 * While acquiring the lock, the jump might have been removed if the
820 * destination TB was invalidated; check again.
822 ptr_locked = qatomic_read(&orig->jmp_dest[n_orig]);
823 if (ptr_locked != ptr) {
824 qemu_spin_unlock(&dest->jmp_lock);
826 * The only possibility is that the jump was unlinked via
827 * tb_jump_unlink(dest). Seeing here another destination would be a bug,
828 * because we set the LSB above.
830 g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID);
831 return;
834 * We first acquired the lock, and since the destination pointer matches,
835 * we know for sure that @orig is in the jmp list.
837 pprev = &dest->jmp_list_head;
838 TB_FOR_EACH_JMP(dest, tb, n) {
839 if (tb == orig && n == n_orig) {
840 *pprev = tb->jmp_list_next[n];
841 /* no need to set orig->jmp_dest[n]; setting the LSB was enough */
842 qemu_spin_unlock(&dest->jmp_lock);
843 return;
845 pprev = &tb->jmp_list_next[n];
847 g_assert_not_reached();
851 * Reset the jump entry 'n' of a TB so that it is not chained to another TB.
853 void tb_reset_jump(TranslationBlock *tb, int n)
855 uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]);
856 tb_set_jmp_target(tb, n, addr);
859 /* remove any jumps to the TB */
860 static inline void tb_jmp_unlink(TranslationBlock *dest)
862 TranslationBlock *tb;
863 int n;
865 qemu_spin_lock(&dest->jmp_lock);
867 TB_FOR_EACH_JMP(dest, tb, n) {
868 tb_reset_jump(tb, n);
869 qatomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1);
870 /* No need to clear the list entry; setting the dest ptr is enough */
872 dest->jmp_list_head = (uintptr_t)NULL;
874 qemu_spin_unlock(&dest->jmp_lock);
877 static void tb_jmp_cache_inval_tb(TranslationBlock *tb)
879 CPUState *cpu;
881 if (tb_cflags(tb) & CF_PCREL) {
882 /* A TB may be at any virtual address */
883 CPU_FOREACH(cpu) {
884 tcg_flush_jmp_cache(cpu);
886 } else {
887 uint32_t h = tb_jmp_cache_hash_func(tb->pc);
889 CPU_FOREACH(cpu) {
890 CPUJumpCache *jc = cpu->tb_jmp_cache;
892 if (qatomic_read(&jc->array[h].tb) == tb) {
893 qatomic_set(&jc->array[h].tb, NULL);
900 * In user-mode, call with mmap_lock held.
901 * In !user-mode, if @rm_from_page_list is set, call with the TB's pages'
902 * locks held.
904 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list)
906 uint32_t h;
907 tb_page_addr_t phys_pc;
908 uint32_t orig_cflags = tb_cflags(tb);
910 assert_memory_lock();
912 /* make sure no further incoming jumps will be chained to this TB */
913 qemu_spin_lock(&tb->jmp_lock);
914 qatomic_set(&tb->cflags, tb->cflags | CF_INVALID);
915 qemu_spin_unlock(&tb->jmp_lock);
917 /* remove the TB from the hash list */
918 phys_pc = tb_page_addr0(tb);
919 h = tb_hash_func(phys_pc, (orig_cflags & CF_PCREL ? 0 : tb->pc),
920 tb->flags, tb->cs_base, orig_cflags);
921 if (!qht_remove(&tb_ctx.htable, tb, h)) {
922 return;
925 /* remove the TB from the page list */
926 if (rm_from_page_list) {
927 tb_remove(tb);
930 /* remove the TB from the hash list */
931 tb_jmp_cache_inval_tb(tb);
933 /* suppress this TB from the two jump lists */
934 tb_remove_from_jmp_list(tb, 0);
935 tb_remove_from_jmp_list(tb, 1);
937 /* suppress any remaining jumps to this TB */
938 tb_jmp_unlink(tb);
940 qatomic_set(&tb_ctx.tb_phys_invalidate_count,
941 tb_ctx.tb_phys_invalidate_count + 1);
944 static void tb_phys_invalidate__locked(TranslationBlock *tb)
946 qemu_thread_jit_write();
947 do_tb_phys_invalidate(tb, true);
948 qemu_thread_jit_execute();
952 * Invalidate one TB.
953 * Called with mmap_lock held in user-mode.
955 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
957 if (page_addr == -1 && tb_page_addr0(tb) != -1) {
958 tb_lock_pages(tb);
959 do_tb_phys_invalidate(tb, true);
960 tb_unlock_pages(tb);
961 } else {
962 do_tb_phys_invalidate(tb, false);
967 * Add a new TB and link it to the physical page tables.
968 * Called with mmap_lock held for user-mode emulation.
970 * Returns a pointer @tb, or a pointer to an existing TB that matches @tb.
971 * Note that in !user-mode, another thread might have already added a TB
972 * for the same block of guest code that @tb corresponds to. In that case,
973 * the caller should discard the original @tb, and use instead the returned TB.
975 TranslationBlock *tb_link_page(TranslationBlock *tb)
977 void *existing_tb = NULL;
978 uint32_t h;
980 assert_memory_lock();
981 tcg_debug_assert(!(tb->cflags & CF_INVALID));
983 tb_record(tb);
985 /* add in the hash table */
986 h = tb_hash_func(tb_page_addr0(tb), (tb->cflags & CF_PCREL ? 0 : tb->pc),
987 tb->flags, tb->cs_base, tb->cflags);
988 qht_insert(&tb_ctx.htable, tb, h, &existing_tb);
990 /* remove TB from the page(s) if we couldn't insert it */
991 if (unlikely(existing_tb)) {
992 tb_remove(tb);
993 tb_unlock_pages(tb);
994 return existing_tb;
997 tb_unlock_pages(tb);
998 return tb;
1001 #ifdef CONFIG_USER_ONLY
1003 * Invalidate all TBs which intersect with the target address range.
1004 * Called with mmap_lock held for user-mode emulation.
1005 * NOTE: this function must not be called while a TB is running.
1007 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t last)
1009 TranslationBlock *tb;
1010 PageForEachNext n;
1012 assert_memory_lock();
1014 PAGE_FOR_EACH_TB(start, last, unused, tb, n) {
1015 tb_phys_invalidate__locked(tb);
1020 * Invalidate all TBs which intersect with the target address page @addr.
1021 * Called with mmap_lock held for user-mode emulation
1022 * NOTE: this function must not be called while a TB is running.
1024 static void tb_invalidate_phys_page(tb_page_addr_t addr)
1026 tb_page_addr_t start, last;
1028 start = addr & TARGET_PAGE_MASK;
1029 last = addr | ~TARGET_PAGE_MASK;
1030 tb_invalidate_phys_range(start, last);
1034 * Called with mmap_lock held. If pc is not 0 then it indicates the
1035 * host PC of the faulting store instruction that caused this invalidate.
1036 * Returns true if the caller needs to abort execution of the current
1037 * TB (because it was modified by this store and the guest CPU has
1038 * precise-SMC semantics).
1040 bool tb_invalidate_phys_page_unwind(tb_page_addr_t addr, uintptr_t pc)
1042 TranslationBlock *current_tb;
1043 bool current_tb_modified;
1044 TranslationBlock *tb;
1045 PageForEachNext n;
1046 tb_page_addr_t last;
1049 * Without precise smc semantics, or when outside of a TB,
1050 * we can skip to invalidate.
1052 #ifndef TARGET_HAS_PRECISE_SMC
1053 pc = 0;
1054 #endif
1055 if (!pc) {
1056 tb_invalidate_phys_page(addr);
1057 return false;
1060 assert_memory_lock();
1061 current_tb = tcg_tb_lookup(pc);
1063 last = addr | ~TARGET_PAGE_MASK;
1064 addr &= TARGET_PAGE_MASK;
1065 current_tb_modified = false;
1067 PAGE_FOR_EACH_TB(addr, last, unused, tb, n) {
1068 if (current_tb == tb &&
1069 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
1071 * If we are modifying the current TB, we must stop its
1072 * execution. We could be more precise by checking that
1073 * the modification is after the current PC, but it would
1074 * require a specialized function to partially restore
1075 * the CPU state.
1077 current_tb_modified = true;
1078 cpu_restore_state_from_tb(current_cpu, current_tb, pc);
1080 tb_phys_invalidate__locked(tb);
1083 if (current_tb_modified) {
1084 /* Force execution of one insn next time. */
1085 CPUState *cpu = current_cpu;
1086 cpu->cflags_next_tb = 1 | CF_NOIRQ | curr_cflags(current_cpu);
1087 return true;
1089 return false;
1091 #else
1093 * @p must be non-NULL.
1094 * Call with all @pages locked.
1096 static void
1097 tb_invalidate_phys_page_range__locked(struct page_collection *pages,
1098 PageDesc *p, tb_page_addr_t start,
1099 tb_page_addr_t last,
1100 uintptr_t retaddr)
1102 TranslationBlock *tb;
1103 PageForEachNext n;
1104 #ifdef TARGET_HAS_PRECISE_SMC
1105 bool current_tb_modified = false;
1106 TranslationBlock *current_tb = retaddr ? tcg_tb_lookup(retaddr) : NULL;
1107 #endif /* TARGET_HAS_PRECISE_SMC */
1109 /* Range may not cross a page. */
1110 tcg_debug_assert(((start ^ last) & TARGET_PAGE_MASK) == 0);
1113 * We remove all the TBs in the range [start, last].
1114 * XXX: see if in some cases it could be faster to invalidate all the code
1116 PAGE_FOR_EACH_TB(start, last, p, tb, n) {
1117 tb_page_addr_t tb_start, tb_last;
1119 /* NOTE: this is subtle as a TB may span two physical pages */
1120 tb_start = tb_page_addr0(tb);
1121 tb_last = tb_start + tb->size - 1;
1122 if (n == 0) {
1123 tb_last = MIN(tb_last, tb_start | ~TARGET_PAGE_MASK);
1124 } else {
1125 tb_start = tb_page_addr1(tb);
1126 tb_last = tb_start + (tb_last & ~TARGET_PAGE_MASK);
1128 if (!(tb_last < start || tb_start > last)) {
1129 #ifdef TARGET_HAS_PRECISE_SMC
1130 if (current_tb == tb &&
1131 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
1133 * If we are modifying the current TB, we must stop
1134 * its execution. We could be more precise by checking
1135 * that the modification is after the current PC, but it
1136 * would require a specialized function to partially
1137 * restore the CPU state.
1139 current_tb_modified = true;
1140 cpu_restore_state_from_tb(current_cpu, current_tb, retaddr);
1142 #endif /* TARGET_HAS_PRECISE_SMC */
1143 tb_phys_invalidate__locked(tb);
1147 /* if no code remaining, no need to continue to use slow writes */
1148 if (!p->first_tb) {
1149 tlb_unprotect_code(start);
1152 #ifdef TARGET_HAS_PRECISE_SMC
1153 if (current_tb_modified) {
1154 page_collection_unlock(pages);
1155 /* Force execution of one insn next time. */
1156 current_cpu->cflags_next_tb = 1 | CF_NOIRQ | curr_cflags(current_cpu);
1157 mmap_unlock();
1158 cpu_loop_exit_noexc(current_cpu);
1160 #endif
1164 * Invalidate all TBs which intersect with the target physical address range
1165 * [start;last]. NOTE: start and end may refer to *different* physical pages.
1166 * 'is_cpu_write_access' should be true if called from a real cpu write
1167 * access: the virtual CPU will exit the current TB if code is modified inside
1168 * this TB.
1170 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t last)
1172 struct page_collection *pages;
1173 tb_page_addr_t index, index_last;
1175 pages = page_collection_lock(start, last);
1177 index_last = last >> TARGET_PAGE_BITS;
1178 for (index = start >> TARGET_PAGE_BITS; index <= index_last; index++) {
1179 PageDesc *pd = page_find(index);
1180 tb_page_addr_t page_start, page_last;
1182 if (pd == NULL) {
1183 continue;
1185 assert_page_locked(pd);
1186 page_start = index << TARGET_PAGE_BITS;
1187 page_last = page_start | ~TARGET_PAGE_MASK;
1188 page_last = MIN(page_last, last);
1189 tb_invalidate_phys_page_range__locked(pages, pd,
1190 page_start, page_last, 0);
1192 page_collection_unlock(pages);
1196 * Call with all @pages in the range [@start, @start + len[ locked.
1198 static void tb_invalidate_phys_page_fast__locked(struct page_collection *pages,
1199 tb_page_addr_t start,
1200 unsigned len, uintptr_t ra)
1202 PageDesc *p;
1204 p = page_find(start >> TARGET_PAGE_BITS);
1205 if (!p) {
1206 return;
1209 assert_page_locked(p);
1210 tb_invalidate_phys_page_range__locked(pages, p, start, start + len - 1, ra);
1214 * len must be <= 8 and start must be a multiple of len.
1215 * Called via softmmu_template.h when code areas are written to with
1216 * iothread mutex not held.
1218 void tb_invalidate_phys_range_fast(ram_addr_t ram_addr,
1219 unsigned size,
1220 uintptr_t retaddr)
1222 struct page_collection *pages;
1224 pages = page_collection_lock(ram_addr, ram_addr + size - 1);
1225 tb_invalidate_phys_page_fast__locked(pages, ram_addr, size, retaddr);
1226 page_collection_unlock(pages);
1229 #endif /* CONFIG_USER_ONLY */