target/arm: Consolidate ifdef blocks in reset
[qemu/armbru.git] / target / arm / cpu.c
blob30e2cb9224d3ed5a018c7c314faa51d1b73d3272
1 /*
2 * QEMU ARM CPU
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #ifdef CONFIG_TCG
30 #include "hw/core/tcg-cpu-ops.h"
31 #endif /* CONFIG_TCG */
32 #include "internals.h"
33 #include "exec/exec-all.h"
34 #include "hw/qdev-properties.h"
35 #if !defined(CONFIG_USER_ONLY)
36 #include "hw/loader.h"
37 #include "hw/boards.h"
38 #endif
39 #include "sysemu/tcg.h"
40 #include "sysemu/hw_accel.h"
41 #include "kvm_arm.h"
42 #include "disas/capstone.h"
43 #include "fpu/softfloat.h"
45 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
47 ARMCPU *cpu = ARM_CPU(cs);
48 CPUARMState *env = &cpu->env;
50 if (is_a64(env)) {
51 env->pc = value;
52 env->thumb = 0;
53 } else {
54 env->regs[15] = value & ~1;
55 env->thumb = value & 1;
59 #ifdef CONFIG_TCG
60 void arm_cpu_synchronize_from_tb(CPUState *cs,
61 const TranslationBlock *tb)
63 ARMCPU *cpu = ARM_CPU(cs);
64 CPUARMState *env = &cpu->env;
67 * It's OK to look at env for the current mode here, because it's
68 * never possible for an AArch64 TB to chain to an AArch32 TB.
70 if (is_a64(env)) {
71 env->pc = tb->pc;
72 } else {
73 env->regs[15] = tb->pc;
76 #endif /* CONFIG_TCG */
78 static bool arm_cpu_has_work(CPUState *cs)
80 ARMCPU *cpu = ARM_CPU(cs);
82 return (cpu->power_state != PSCI_OFF)
83 && cs->interrupt_request &
84 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
85 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
86 | CPU_INTERRUPT_EXITTB);
89 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
90 void *opaque)
92 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
94 entry->hook = hook;
95 entry->opaque = opaque;
97 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
100 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
101 void *opaque)
103 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
105 entry->hook = hook;
106 entry->opaque = opaque;
108 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
111 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
113 /* Reset a single ARMCPRegInfo register */
114 ARMCPRegInfo *ri = value;
115 ARMCPU *cpu = opaque;
117 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
118 return;
121 if (ri->resetfn) {
122 ri->resetfn(&cpu->env, ri);
123 return;
126 /* A zero offset is never possible as it would be regs[0]
127 * so we use it to indicate that reset is being handled elsewhere.
128 * This is basically only used for fields in non-core coprocessors
129 * (like the pxa2xx ones).
131 if (!ri->fieldoffset) {
132 return;
135 if (cpreg_field_is_64bit(ri)) {
136 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
137 } else {
138 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
142 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
144 /* Purely an assertion check: we've already done reset once,
145 * so now check that running the reset for the cpreg doesn't
146 * change its value. This traps bugs where two different cpregs
147 * both try to reset the same state field but to different values.
149 ARMCPRegInfo *ri = value;
150 ARMCPU *cpu = opaque;
151 uint64_t oldvalue, newvalue;
153 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
154 return;
157 oldvalue = read_raw_cp_reg(&cpu->env, ri);
158 cp_reg_reset(key, value, opaque);
159 newvalue = read_raw_cp_reg(&cpu->env, ri);
160 assert(oldvalue == newvalue);
163 static void arm_cpu_reset(DeviceState *dev)
165 CPUState *s = CPU(dev);
166 ARMCPU *cpu = ARM_CPU(s);
167 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
168 CPUARMState *env = &cpu->env;
170 acc->parent_reset(dev);
172 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
174 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
175 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
177 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
178 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
179 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
180 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
182 cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
184 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
185 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
188 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
189 /* 64 bit CPUs always start in 64 bit mode */
190 env->aarch64 = 1;
191 #if defined(CONFIG_USER_ONLY)
192 env->pstate = PSTATE_MODE_EL0t;
193 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
194 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
195 /* Enable all PAC keys. */
196 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
197 SCTLR_EnDA | SCTLR_EnDB);
198 /* and to the FP/Neon instructions */
199 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
200 /* and to the SVE instructions */
201 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
202 /* with reasonable vector length */
203 if (cpu_isar_feature(aa64_sve, cpu)) {
204 env->vfp.zcr_el[1] =
205 aarch64_sve_zcr_get_valid_len(cpu, cpu->sve_default_vq - 1);
208 * Enable TBI0 but not TBI1.
209 * Note that this must match useronly_clean_ptr.
211 env->cp15.tcr_el[1].raw_tcr = (1ULL << 37);
213 /* Enable MTE */
214 if (cpu_isar_feature(aa64_mte, cpu)) {
215 /* Enable tag access, but leave TCF0 as No Effect (0). */
216 env->cp15.sctlr_el[1] |= SCTLR_ATA0;
218 * Exclude all tags, so that tag 0 is always used.
219 * This corresponds to Linux current->thread.gcr_incl = 0.
221 * Set RRND, so that helper_irg() will generate a seed later.
222 * Here in cpu_reset(), the crypto subsystem has not yet been
223 * initialized.
225 env->cp15.gcr_el1 = 0x1ffff;
227 #else
228 /* Reset into the highest available EL */
229 if (arm_feature(env, ARM_FEATURE_EL3)) {
230 env->pstate = PSTATE_MODE_EL3h;
231 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
232 env->pstate = PSTATE_MODE_EL2h;
233 } else {
234 env->pstate = PSTATE_MODE_EL1h;
236 env->pc = cpu->rvbar;
237 #endif
238 } else {
239 #if defined(CONFIG_USER_ONLY)
240 /* Userspace expects access to cp10 and cp11 for FP/Neon */
241 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
242 #endif
245 #if defined(CONFIG_USER_ONLY)
246 env->uncached_cpsr = ARM_CPU_MODE_USR;
247 /* For user mode we must enable access to coprocessors */
248 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
249 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
250 env->cp15.c15_cpar = 3;
251 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
252 env->cp15.c15_cpar = 1;
254 #else
257 * If the highest available EL is EL2, AArch32 will start in Hyp
258 * mode; otherwise it starts in SVC. Note that if we start in
259 * AArch64 then these values in the uncached_cpsr will be ignored.
261 if (arm_feature(env, ARM_FEATURE_EL2) &&
262 !arm_feature(env, ARM_FEATURE_EL3)) {
263 env->uncached_cpsr = ARM_CPU_MODE_HYP;
264 } else {
265 env->uncached_cpsr = ARM_CPU_MODE_SVC;
267 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
269 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
270 * executing as AArch32 then check if highvecs are enabled and
271 * adjust the PC accordingly.
273 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
274 env->regs[15] = 0xFFFF0000;
277 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
278 #endif
280 if (arm_feature(env, ARM_FEATURE_M)) {
281 #ifndef CONFIG_USER_ONLY
282 uint32_t initial_msp; /* Loaded from 0x0 */
283 uint32_t initial_pc; /* Loaded from 0x4 */
284 uint8_t *rom;
285 uint32_t vecbase;
286 #endif
288 if (cpu_isar_feature(aa32_lob, cpu)) {
290 * LTPSIZE is constant 4 if MVE not implemented, and resets
291 * to an UNKNOWN value if MVE is implemented. We choose to
292 * always reset to 4.
294 env->v7m.ltpsize = 4;
295 /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
296 env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
297 env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
300 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
301 env->v7m.secure = true;
302 } else {
303 /* This bit resets to 0 if security is supported, but 1 if
304 * it is not. The bit is not present in v7M, but we set it
305 * here so we can avoid having to make checks on it conditional
306 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
308 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
310 * Set NSACR to indicate "NS access permitted to everything";
311 * this avoids having to have all the tests of it being
312 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
313 * v8.1M the guest-visible value of NSACR in a CPU without the
314 * Security Extension is 0xcff.
316 env->v7m.nsacr = 0xcff;
319 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
320 * that it resets to 1, so QEMU always does that rather than making
321 * it dependent on CPU model. In v8M it is RES1.
323 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
324 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
325 if (arm_feature(env, ARM_FEATURE_V8)) {
326 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
327 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
328 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
330 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
331 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
332 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
335 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
336 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
337 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
338 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
341 #ifndef CONFIG_USER_ONLY
342 /* Unlike A/R profile, M profile defines the reset LR value */
343 env->regs[14] = 0xffffffff;
345 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
346 env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
348 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
349 vecbase = env->v7m.vecbase[env->v7m.secure];
350 rom = rom_ptr_for_as(s->as, vecbase, 8);
351 if (rom) {
352 /* Address zero is covered by ROM which hasn't yet been
353 * copied into physical memory.
355 initial_msp = ldl_p(rom);
356 initial_pc = ldl_p(rom + 4);
357 } else {
358 /* Address zero not covered by a ROM blob, or the ROM blob
359 * is in non-modifiable memory and this is a second reset after
360 * it got copied into memory. In the latter case, rom_ptr
361 * will return a NULL pointer and we should use ldl_phys instead.
363 initial_msp = ldl_phys(s->as, vecbase);
364 initial_pc = ldl_phys(s->as, vecbase + 4);
367 env->regs[13] = initial_msp & 0xFFFFFFFC;
368 env->regs[15] = initial_pc & ~1;
369 env->thumb = initial_pc & 1;
370 #else
372 * For user mode we run non-secure and with access to the FPU.
373 * The FPU context is active (ie does not need further setup)
374 * and is owned by non-secure.
376 env->v7m.secure = false;
377 env->v7m.nsacr = 0xcff;
378 env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
379 env->v7m.fpccr[M_REG_S] &=
380 ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
381 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
382 #endif
385 /* M profile requires that reset clears the exclusive monitor;
386 * A profile does not, but clearing it makes more sense than having it
387 * set with an exclusive access on address zero.
389 arm_clear_exclusive(env);
391 if (arm_feature(env, ARM_FEATURE_PMSA)) {
392 if (cpu->pmsav7_dregion > 0) {
393 if (arm_feature(env, ARM_FEATURE_V8)) {
394 memset(env->pmsav8.rbar[M_REG_NS], 0,
395 sizeof(*env->pmsav8.rbar[M_REG_NS])
396 * cpu->pmsav7_dregion);
397 memset(env->pmsav8.rlar[M_REG_NS], 0,
398 sizeof(*env->pmsav8.rlar[M_REG_NS])
399 * cpu->pmsav7_dregion);
400 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
401 memset(env->pmsav8.rbar[M_REG_S], 0,
402 sizeof(*env->pmsav8.rbar[M_REG_S])
403 * cpu->pmsav7_dregion);
404 memset(env->pmsav8.rlar[M_REG_S], 0,
405 sizeof(*env->pmsav8.rlar[M_REG_S])
406 * cpu->pmsav7_dregion);
408 } else if (arm_feature(env, ARM_FEATURE_V7)) {
409 memset(env->pmsav7.drbar, 0,
410 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
411 memset(env->pmsav7.drsr, 0,
412 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
413 memset(env->pmsav7.dracr, 0,
414 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
417 env->pmsav7.rnr[M_REG_NS] = 0;
418 env->pmsav7.rnr[M_REG_S] = 0;
419 env->pmsav8.mair0[M_REG_NS] = 0;
420 env->pmsav8.mair0[M_REG_S] = 0;
421 env->pmsav8.mair1[M_REG_NS] = 0;
422 env->pmsav8.mair1[M_REG_S] = 0;
425 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
426 if (cpu->sau_sregion > 0) {
427 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
428 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
430 env->sau.rnr = 0;
431 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
432 * the Cortex-M33 does.
434 env->sau.ctrl = 0;
437 set_flush_to_zero(1, &env->vfp.standard_fp_status);
438 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
439 set_default_nan_mode(1, &env->vfp.standard_fp_status);
440 set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
441 set_float_detect_tininess(float_tininess_before_rounding,
442 &env->vfp.fp_status);
443 set_float_detect_tininess(float_tininess_before_rounding,
444 &env->vfp.standard_fp_status);
445 set_float_detect_tininess(float_tininess_before_rounding,
446 &env->vfp.fp_status_f16);
447 set_float_detect_tininess(float_tininess_before_rounding,
448 &env->vfp.standard_fp_status_f16);
449 #ifndef CONFIG_USER_ONLY
450 if (kvm_enabled()) {
451 kvm_arm_reset_vcpu(cpu);
453 #endif
455 hw_breakpoint_update_all(cpu);
456 hw_watchpoint_update_all(cpu);
457 arm_rebuild_hflags(env);
460 #ifndef CONFIG_USER_ONLY
462 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
463 unsigned int target_el,
464 unsigned int cur_el, bool secure,
465 uint64_t hcr_el2)
467 CPUARMState *env = cs->env_ptr;
468 bool pstate_unmasked;
469 bool unmasked = false;
472 * Don't take exceptions if they target a lower EL.
473 * This check should catch any exceptions that would not be taken
474 * but left pending.
476 if (cur_el > target_el) {
477 return false;
480 switch (excp_idx) {
481 case EXCP_FIQ:
482 pstate_unmasked = !(env->daif & PSTATE_F);
483 break;
485 case EXCP_IRQ:
486 pstate_unmasked = !(env->daif & PSTATE_I);
487 break;
489 case EXCP_VFIQ:
490 if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
491 /* VFIQs are only taken when hypervized. */
492 return false;
494 return !(env->daif & PSTATE_F);
495 case EXCP_VIRQ:
496 if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
497 /* VIRQs are only taken when hypervized. */
498 return false;
500 return !(env->daif & PSTATE_I);
501 default:
502 g_assert_not_reached();
506 * Use the target EL, current execution state and SCR/HCR settings to
507 * determine whether the corresponding CPSR bit is used to mask the
508 * interrupt.
510 if ((target_el > cur_el) && (target_el != 1)) {
511 /* Exceptions targeting a higher EL may not be maskable */
512 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
514 * 64-bit masking rules are simple: exceptions to EL3
515 * can't be masked, and exceptions to EL2 can only be
516 * masked from Secure state. The HCR and SCR settings
517 * don't affect the masking logic, only the interrupt routing.
519 if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
520 unmasked = true;
522 } else {
524 * The old 32-bit-only environment has a more complicated
525 * masking setup. HCR and SCR bits not only affect interrupt
526 * routing but also change the behaviour of masking.
528 bool hcr, scr;
530 switch (excp_idx) {
531 case EXCP_FIQ:
533 * If FIQs are routed to EL3 or EL2 then there are cases where
534 * we override the CPSR.F in determining if the exception is
535 * masked or not. If neither of these are set then we fall back
536 * to the CPSR.F setting otherwise we further assess the state
537 * below.
539 hcr = hcr_el2 & HCR_FMO;
540 scr = (env->cp15.scr_el3 & SCR_FIQ);
543 * When EL3 is 32-bit, the SCR.FW bit controls whether the
544 * CPSR.F bit masks FIQ interrupts when taken in non-secure
545 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
546 * when non-secure but only when FIQs are only routed to EL3.
548 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
549 break;
550 case EXCP_IRQ:
552 * When EL3 execution state is 32-bit, if HCR.IMO is set then
553 * we may override the CPSR.I masking when in non-secure state.
554 * The SCR.IRQ setting has already been taken into consideration
555 * when setting the target EL, so it does not have a further
556 * affect here.
558 hcr = hcr_el2 & HCR_IMO;
559 scr = false;
560 break;
561 default:
562 g_assert_not_reached();
565 if ((scr || hcr) && !secure) {
566 unmasked = true;
572 * The PSTATE bits only mask the interrupt if we have not overriden the
573 * ability above.
575 return unmasked || pstate_unmasked;
578 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
580 CPUClass *cc = CPU_GET_CLASS(cs);
581 CPUARMState *env = cs->env_ptr;
582 uint32_t cur_el = arm_current_el(env);
583 bool secure = arm_is_secure(env);
584 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
585 uint32_t target_el;
586 uint32_t excp_idx;
588 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
590 if (interrupt_request & CPU_INTERRUPT_FIQ) {
591 excp_idx = EXCP_FIQ;
592 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
593 if (arm_excp_unmasked(cs, excp_idx, target_el,
594 cur_el, secure, hcr_el2)) {
595 goto found;
598 if (interrupt_request & CPU_INTERRUPT_HARD) {
599 excp_idx = EXCP_IRQ;
600 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
601 if (arm_excp_unmasked(cs, excp_idx, target_el,
602 cur_el, secure, hcr_el2)) {
603 goto found;
606 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
607 excp_idx = EXCP_VIRQ;
608 target_el = 1;
609 if (arm_excp_unmasked(cs, excp_idx, target_el,
610 cur_el, secure, hcr_el2)) {
611 goto found;
614 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
615 excp_idx = EXCP_VFIQ;
616 target_el = 1;
617 if (arm_excp_unmasked(cs, excp_idx, target_el,
618 cur_el, secure, hcr_el2)) {
619 goto found;
622 return false;
624 found:
625 cs->exception_index = excp_idx;
626 env->exception.target_el = target_el;
627 cc->tcg_ops->do_interrupt(cs);
628 return true;
630 #endif /* !CONFIG_USER_ONLY */
632 void arm_cpu_update_virq(ARMCPU *cpu)
635 * Update the interrupt level for VIRQ, which is the logical OR of
636 * the HCR_EL2.VI bit and the input line level from the GIC.
638 CPUARMState *env = &cpu->env;
639 CPUState *cs = CPU(cpu);
641 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
642 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
644 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
645 if (new_state) {
646 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
647 } else {
648 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
653 void arm_cpu_update_vfiq(ARMCPU *cpu)
656 * Update the interrupt level for VFIQ, which is the logical OR of
657 * the HCR_EL2.VF bit and the input line level from the GIC.
659 CPUARMState *env = &cpu->env;
660 CPUState *cs = CPU(cpu);
662 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
663 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
665 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
666 if (new_state) {
667 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
668 } else {
669 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
674 #ifndef CONFIG_USER_ONLY
675 static void arm_cpu_set_irq(void *opaque, int irq, int level)
677 ARMCPU *cpu = opaque;
678 CPUARMState *env = &cpu->env;
679 CPUState *cs = CPU(cpu);
680 static const int mask[] = {
681 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
682 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
683 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
684 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
687 if (level) {
688 env->irq_line_state |= mask[irq];
689 } else {
690 env->irq_line_state &= ~mask[irq];
693 switch (irq) {
694 case ARM_CPU_VIRQ:
695 assert(arm_feature(env, ARM_FEATURE_EL2));
696 arm_cpu_update_virq(cpu);
697 break;
698 case ARM_CPU_VFIQ:
699 assert(arm_feature(env, ARM_FEATURE_EL2));
700 arm_cpu_update_vfiq(cpu);
701 break;
702 case ARM_CPU_IRQ:
703 case ARM_CPU_FIQ:
704 if (level) {
705 cpu_interrupt(cs, mask[irq]);
706 } else {
707 cpu_reset_interrupt(cs, mask[irq]);
709 break;
710 default:
711 g_assert_not_reached();
715 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
717 #ifdef CONFIG_KVM
718 ARMCPU *cpu = opaque;
719 CPUARMState *env = &cpu->env;
720 CPUState *cs = CPU(cpu);
721 uint32_t linestate_bit;
722 int irq_id;
724 switch (irq) {
725 case ARM_CPU_IRQ:
726 irq_id = KVM_ARM_IRQ_CPU_IRQ;
727 linestate_bit = CPU_INTERRUPT_HARD;
728 break;
729 case ARM_CPU_FIQ:
730 irq_id = KVM_ARM_IRQ_CPU_FIQ;
731 linestate_bit = CPU_INTERRUPT_FIQ;
732 break;
733 default:
734 g_assert_not_reached();
737 if (level) {
738 env->irq_line_state |= linestate_bit;
739 } else {
740 env->irq_line_state &= ~linestate_bit;
742 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
743 #endif
746 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
748 ARMCPU *cpu = ARM_CPU(cs);
749 CPUARMState *env = &cpu->env;
751 cpu_synchronize_state(cs);
752 return arm_cpu_data_is_big_endian(env);
755 #endif
757 static int
758 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
760 return print_insn_arm(pc | 1, info);
763 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
765 ARMCPU *ac = ARM_CPU(cpu);
766 CPUARMState *env = &ac->env;
767 bool sctlr_b;
769 if (is_a64(env)) {
770 /* We might not be compiled with the A64 disassembler
771 * because it needs a C++ compiler. Leave print_insn
772 * unset in this case to use the caller default behaviour.
774 #if defined(CONFIG_ARM_A64_DIS)
775 info->print_insn = print_insn_arm_a64;
776 #endif
777 info->cap_arch = CS_ARCH_ARM64;
778 info->cap_insn_unit = 4;
779 info->cap_insn_split = 4;
780 } else {
781 int cap_mode;
782 if (env->thumb) {
783 info->print_insn = print_insn_thumb1;
784 info->cap_insn_unit = 2;
785 info->cap_insn_split = 4;
786 cap_mode = CS_MODE_THUMB;
787 } else {
788 info->print_insn = print_insn_arm;
789 info->cap_insn_unit = 4;
790 info->cap_insn_split = 4;
791 cap_mode = CS_MODE_ARM;
793 if (arm_feature(env, ARM_FEATURE_V8)) {
794 cap_mode |= CS_MODE_V8;
796 if (arm_feature(env, ARM_FEATURE_M)) {
797 cap_mode |= CS_MODE_MCLASS;
799 info->cap_arch = CS_ARCH_ARM;
800 info->cap_mode = cap_mode;
803 sctlr_b = arm_sctlr_b(env);
804 if (bswap_code(sctlr_b)) {
805 #ifdef TARGET_WORDS_BIGENDIAN
806 info->endian = BFD_ENDIAN_LITTLE;
807 #else
808 info->endian = BFD_ENDIAN_BIG;
809 #endif
811 info->flags &= ~INSN_ARM_BE32;
812 #ifndef CONFIG_USER_ONLY
813 if (sctlr_b) {
814 info->flags |= INSN_ARM_BE32;
816 #endif
819 #ifdef TARGET_AARCH64
821 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
823 ARMCPU *cpu = ARM_CPU(cs);
824 CPUARMState *env = &cpu->env;
825 uint32_t psr = pstate_read(env);
826 int i;
827 int el = arm_current_el(env);
828 const char *ns_status;
830 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
831 for (i = 0; i < 32; i++) {
832 if (i == 31) {
833 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
834 } else {
835 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
836 (i + 2) % 3 ? " " : "\n");
840 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
841 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
842 } else {
843 ns_status = "";
845 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
846 psr,
847 psr & PSTATE_N ? 'N' : '-',
848 psr & PSTATE_Z ? 'Z' : '-',
849 psr & PSTATE_C ? 'C' : '-',
850 psr & PSTATE_V ? 'V' : '-',
851 ns_status,
853 psr & PSTATE_SP ? 'h' : 't');
855 if (cpu_isar_feature(aa64_bti, cpu)) {
856 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
858 if (!(flags & CPU_DUMP_FPU)) {
859 qemu_fprintf(f, "\n");
860 return;
862 if (fp_exception_el(env, el) != 0) {
863 qemu_fprintf(f, " FPU disabled\n");
864 return;
866 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
867 vfp_get_fpcr(env), vfp_get_fpsr(env));
869 if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
870 int j, zcr_len = sve_zcr_len_for_el(env, el);
872 for (i = 0; i <= FFR_PRED_NUM; i++) {
873 bool eol;
874 if (i == FFR_PRED_NUM) {
875 qemu_fprintf(f, "FFR=");
876 /* It's last, so end the line. */
877 eol = true;
878 } else {
879 qemu_fprintf(f, "P%02d=", i);
880 switch (zcr_len) {
881 case 0:
882 eol = i % 8 == 7;
883 break;
884 case 1:
885 eol = i % 6 == 5;
886 break;
887 case 2:
888 case 3:
889 eol = i % 3 == 2;
890 break;
891 default:
892 /* More than one quadword per predicate. */
893 eol = true;
894 break;
897 for (j = zcr_len / 4; j >= 0; j--) {
898 int digits;
899 if (j * 4 + 4 <= zcr_len + 1) {
900 digits = 16;
901 } else {
902 digits = (zcr_len % 4 + 1) * 4;
904 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
905 env->vfp.pregs[i].p[j],
906 j ? ":" : eol ? "\n" : " ");
910 for (i = 0; i < 32; i++) {
911 if (zcr_len == 0) {
912 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
913 i, env->vfp.zregs[i].d[1],
914 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
915 } else if (zcr_len == 1) {
916 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
917 ":%016" PRIx64 ":%016" PRIx64 "\n",
918 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
919 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
920 } else {
921 for (j = zcr_len; j >= 0; j--) {
922 bool odd = (zcr_len - j) % 2 != 0;
923 if (j == zcr_len) {
924 qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
925 } else if (!odd) {
926 if (j > 0) {
927 qemu_fprintf(f, " [%x-%x]=", j, j - 1);
928 } else {
929 qemu_fprintf(f, " [%x]=", j);
932 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
933 env->vfp.zregs[i].d[j * 2 + 1],
934 env->vfp.zregs[i].d[j * 2],
935 odd || j == 0 ? "\n" : ":");
939 } else {
940 for (i = 0; i < 32; i++) {
941 uint64_t *q = aa64_vfp_qreg(env, i);
942 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
943 i, q[1], q[0], (i & 1 ? "\n" : " "));
948 #else
950 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
952 g_assert_not_reached();
955 #endif
957 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
959 ARMCPU *cpu = ARM_CPU(cs);
960 CPUARMState *env = &cpu->env;
961 int i;
963 if (is_a64(env)) {
964 aarch64_cpu_dump_state(cs, f, flags);
965 return;
968 for (i = 0; i < 16; i++) {
969 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
970 if ((i % 4) == 3) {
971 qemu_fprintf(f, "\n");
972 } else {
973 qemu_fprintf(f, " ");
977 if (arm_feature(env, ARM_FEATURE_M)) {
978 uint32_t xpsr = xpsr_read(env);
979 const char *mode;
980 const char *ns_status = "";
982 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
983 ns_status = env->v7m.secure ? "S " : "NS ";
986 if (xpsr & XPSR_EXCP) {
987 mode = "handler";
988 } else {
989 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
990 mode = "unpriv-thread";
991 } else {
992 mode = "priv-thread";
996 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
997 xpsr,
998 xpsr & XPSR_N ? 'N' : '-',
999 xpsr & XPSR_Z ? 'Z' : '-',
1000 xpsr & XPSR_C ? 'C' : '-',
1001 xpsr & XPSR_V ? 'V' : '-',
1002 xpsr & XPSR_T ? 'T' : 'A',
1003 ns_status,
1004 mode);
1005 } else {
1006 uint32_t psr = cpsr_read(env);
1007 const char *ns_status = "";
1009 if (arm_feature(env, ARM_FEATURE_EL3) &&
1010 (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1011 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1014 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1015 psr,
1016 psr & CPSR_N ? 'N' : '-',
1017 psr & CPSR_Z ? 'Z' : '-',
1018 psr & CPSR_C ? 'C' : '-',
1019 psr & CPSR_V ? 'V' : '-',
1020 psr & CPSR_T ? 'T' : 'A',
1021 ns_status,
1022 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1025 if (flags & CPU_DUMP_FPU) {
1026 int numvfpregs = 0;
1027 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1028 numvfpregs = 32;
1029 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1030 numvfpregs = 16;
1032 for (i = 0; i < numvfpregs; i++) {
1033 uint64_t v = *aa32_vfp_dreg(env, i);
1034 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1035 i * 2, (uint32_t)v,
1036 i * 2 + 1, (uint32_t)(v >> 32),
1037 i, v);
1039 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1040 if (cpu_isar_feature(aa32_mve, cpu)) {
1041 qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1046 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1048 uint32_t Aff1 = idx / clustersz;
1049 uint32_t Aff0 = idx % clustersz;
1050 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1053 static void cpreg_hashtable_data_destroy(gpointer data)
1056 * Destroy function for cpu->cp_regs hashtable data entries.
1057 * We must free the name string because it was g_strdup()ed in
1058 * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1059 * from r->name because we know we definitely allocated it.
1061 ARMCPRegInfo *r = data;
1063 g_free((void *)r->name);
1064 g_free(r);
1067 static void arm_cpu_initfn(Object *obj)
1069 ARMCPU *cpu = ARM_CPU(obj);
1071 cpu_set_cpustate_pointers(cpu);
1072 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1073 g_free, cpreg_hashtable_data_destroy);
1075 QLIST_INIT(&cpu->pre_el_change_hooks);
1076 QLIST_INIT(&cpu->el_change_hooks);
1078 #ifdef CONFIG_USER_ONLY
1079 # ifdef TARGET_AARCH64
1081 * The linux kernel defaults to 512-bit vectors, when sve is supported.
1082 * See documentation for /proc/sys/abi/sve_default_vector_length, and
1083 * our corresponding sve-default-vector-length cpu property.
1085 cpu->sve_default_vq = 4;
1086 # endif
1087 #else
1088 /* Our inbound IRQ and FIQ lines */
1089 if (kvm_enabled()) {
1090 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1091 * the same interface as non-KVM CPUs.
1093 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1094 } else {
1095 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1098 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1099 ARRAY_SIZE(cpu->gt_timer_outputs));
1101 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1102 "gicv3-maintenance-interrupt", 1);
1103 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1104 "pmu-interrupt", 1);
1105 #endif
1107 /* DTB consumers generally don't in fact care what the 'compatible'
1108 * string is, so always provide some string and trust that a hypothetical
1109 * picky DTB consumer will also provide a helpful error message.
1111 cpu->dtb_compatible = "qemu,unknown";
1112 cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1113 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1115 if (tcg_enabled()) {
1116 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
1120 static Property arm_cpu_gt_cntfrq_property =
1121 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1122 NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1124 static Property arm_cpu_reset_cbar_property =
1125 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1127 static Property arm_cpu_reset_hivecs_property =
1128 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1130 static Property arm_cpu_rvbar_property =
1131 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1133 #ifndef CONFIG_USER_ONLY
1134 static Property arm_cpu_has_el2_property =
1135 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1137 static Property arm_cpu_has_el3_property =
1138 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1139 #endif
1141 static Property arm_cpu_cfgend_property =
1142 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1144 static Property arm_cpu_has_vfp_property =
1145 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1147 static Property arm_cpu_has_neon_property =
1148 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1150 static Property arm_cpu_has_dsp_property =
1151 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1153 static Property arm_cpu_has_mpu_property =
1154 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1156 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1157 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1158 * the right value for that particular CPU type, and we don't want
1159 * to override that with an incorrect constant value.
1161 static Property arm_cpu_pmsav7_dregion_property =
1162 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1163 pmsav7_dregion,
1164 qdev_prop_uint32, uint32_t);
1166 static bool arm_get_pmu(Object *obj, Error **errp)
1168 ARMCPU *cpu = ARM_CPU(obj);
1170 return cpu->has_pmu;
1173 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1175 ARMCPU *cpu = ARM_CPU(obj);
1177 if (value) {
1178 if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1179 error_setg(errp, "'pmu' feature not supported by KVM on this host");
1180 return;
1182 set_feature(&cpu->env, ARM_FEATURE_PMU);
1183 } else {
1184 unset_feature(&cpu->env, ARM_FEATURE_PMU);
1186 cpu->has_pmu = value;
1189 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1192 * The exact approach to calculating guest ticks is:
1194 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1195 * NANOSECONDS_PER_SECOND);
1197 * We don't do that. Rather we intentionally use integer division
1198 * truncation below and in the caller for the conversion of host monotonic
1199 * time to guest ticks to provide the exact inverse for the semantics of
1200 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1201 * it loses precision when representing frequencies where
1202 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1203 * provide an exact inverse leads to scheduling timers with negative
1204 * periods, which in turn leads to sticky behaviour in the guest.
1206 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1207 * cannot become zero.
1209 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1210 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1213 void arm_cpu_post_init(Object *obj)
1215 ARMCPU *cpu = ARM_CPU(obj);
1217 /* M profile implies PMSA. We have to do this here rather than
1218 * in realize with the other feature-implication checks because
1219 * we look at the PMSA bit to see if we should add some properties.
1221 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1222 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1225 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1226 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1227 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1230 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1231 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1234 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1235 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1238 #ifndef CONFIG_USER_ONLY
1239 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1240 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1241 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1243 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1245 object_property_add_link(obj, "secure-memory",
1246 TYPE_MEMORY_REGION,
1247 (Object **)&cpu->secure_memory,
1248 qdev_prop_allow_set_link_before_realize,
1249 OBJ_PROP_LINK_STRONG);
1252 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1253 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1255 #endif
1257 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1258 cpu->has_pmu = true;
1259 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1263 * Allow user to turn off VFP and Neon support, but only for TCG --
1264 * KVM does not currently allow us to lie to the guest about its
1265 * ID/feature registers, so the guest always sees what the host has.
1267 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1268 ? cpu_isar_feature(aa64_fp_simd, cpu)
1269 : cpu_isar_feature(aa32_vfp, cpu)) {
1270 cpu->has_vfp = true;
1271 if (!kvm_enabled()) {
1272 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1276 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1277 cpu->has_neon = true;
1278 if (!kvm_enabled()) {
1279 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1283 if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1284 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1285 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1288 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1289 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1290 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1291 qdev_property_add_static(DEVICE(obj),
1292 &arm_cpu_pmsav7_dregion_property);
1296 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1297 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1298 qdev_prop_allow_set_link_before_realize,
1299 OBJ_PROP_LINK_STRONG);
1301 * M profile: initial value of the Secure VTOR. We can't just use
1302 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1303 * the property to be set after realize.
1305 object_property_add_uint32_ptr(obj, "init-svtor",
1306 &cpu->init_svtor,
1307 OBJ_PROP_FLAG_READWRITE);
1309 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1311 * Initial value of the NS VTOR (for cores without the Security
1312 * extension, this is the only VTOR)
1314 object_property_add_uint32_ptr(obj, "init-nsvtor",
1315 &cpu->init_nsvtor,
1316 OBJ_PROP_FLAG_READWRITE);
1319 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1321 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1322 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1325 if (kvm_enabled()) {
1326 kvm_arm_add_vcpu_properties(obj);
1329 #ifndef CONFIG_USER_ONLY
1330 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1331 cpu_isar_feature(aa64_mte, cpu)) {
1332 object_property_add_link(obj, "tag-memory",
1333 TYPE_MEMORY_REGION,
1334 (Object **)&cpu->tag_memory,
1335 qdev_prop_allow_set_link_before_realize,
1336 OBJ_PROP_LINK_STRONG);
1338 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1339 object_property_add_link(obj, "secure-tag-memory",
1340 TYPE_MEMORY_REGION,
1341 (Object **)&cpu->secure_tag_memory,
1342 qdev_prop_allow_set_link_before_realize,
1343 OBJ_PROP_LINK_STRONG);
1346 #endif
1349 static void arm_cpu_finalizefn(Object *obj)
1351 ARMCPU *cpu = ARM_CPU(obj);
1352 ARMELChangeHook *hook, *next;
1354 g_hash_table_destroy(cpu->cp_regs);
1356 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1357 QLIST_REMOVE(hook, node);
1358 g_free(hook);
1360 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1361 QLIST_REMOVE(hook, node);
1362 g_free(hook);
1364 #ifndef CONFIG_USER_ONLY
1365 if (cpu->pmu_timer) {
1366 timer_free(cpu->pmu_timer);
1368 #endif
1371 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1373 Error *local_err = NULL;
1375 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1376 arm_cpu_sve_finalize(cpu, &local_err);
1377 if (local_err != NULL) {
1378 error_propagate(errp, local_err);
1379 return;
1383 * KVM does not support modifications to this feature.
1384 * We have not registered the cpu properties when KVM
1385 * is in use, so the user will not be able to set them.
1387 if (!kvm_enabled()) {
1388 arm_cpu_pauth_finalize(cpu, &local_err);
1389 if (local_err != NULL) {
1390 error_propagate(errp, local_err);
1391 return;
1396 if (kvm_enabled()) {
1397 kvm_arm_steal_time_finalize(cpu, &local_err);
1398 if (local_err != NULL) {
1399 error_propagate(errp, local_err);
1400 return;
1405 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1407 CPUState *cs = CPU(dev);
1408 ARMCPU *cpu = ARM_CPU(dev);
1409 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1410 CPUARMState *env = &cpu->env;
1411 int pagebits;
1412 Error *local_err = NULL;
1413 bool no_aa32 = false;
1415 /* If we needed to query the host kernel for the CPU features
1416 * then it's possible that might have failed in the initfn, but
1417 * this is the first point where we can report it.
1419 if (cpu->host_cpu_probe_failed) {
1420 if (!kvm_enabled()) {
1421 error_setg(errp, "The 'host' CPU type can only be used with KVM");
1422 } else {
1423 error_setg(errp, "Failed to retrieve host CPU features");
1425 return;
1428 #ifndef CONFIG_USER_ONLY
1429 /* The NVIC and M-profile CPU are two halves of a single piece of
1430 * hardware; trying to use one without the other is a command line
1431 * error and will result in segfaults if not caught here.
1433 if (arm_feature(env, ARM_FEATURE_M)) {
1434 if (!env->nvic) {
1435 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1436 return;
1438 } else {
1439 if (env->nvic) {
1440 error_setg(errp, "This board can only be used with Cortex-M CPUs");
1441 return;
1445 if (kvm_enabled()) {
1447 * Catch all the cases which might cause us to create more than one
1448 * address space for the CPU (otherwise we will assert() later in
1449 * cpu_address_space_init()).
1451 if (arm_feature(env, ARM_FEATURE_M)) {
1452 error_setg(errp,
1453 "Cannot enable KVM when using an M-profile guest CPU");
1454 return;
1456 if (cpu->has_el3) {
1457 error_setg(errp,
1458 "Cannot enable KVM when guest CPU has EL3 enabled");
1459 return;
1461 if (cpu->tag_memory) {
1462 error_setg(errp,
1463 "Cannot enable KVM when guest CPUs has MTE enabled");
1464 return;
1469 uint64_t scale;
1471 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1472 if (!cpu->gt_cntfrq_hz) {
1473 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1474 cpu->gt_cntfrq_hz);
1475 return;
1477 scale = gt_cntfrq_period_ns(cpu);
1478 } else {
1479 scale = GTIMER_SCALE;
1482 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1483 arm_gt_ptimer_cb, cpu);
1484 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1485 arm_gt_vtimer_cb, cpu);
1486 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1487 arm_gt_htimer_cb, cpu);
1488 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1489 arm_gt_stimer_cb, cpu);
1490 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1491 arm_gt_hvtimer_cb, cpu);
1493 #endif
1495 cpu_exec_realizefn(cs, &local_err);
1496 if (local_err != NULL) {
1497 error_propagate(errp, local_err);
1498 return;
1501 arm_cpu_finalize_features(cpu, &local_err);
1502 if (local_err != NULL) {
1503 error_propagate(errp, local_err);
1504 return;
1507 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1508 cpu->has_vfp != cpu->has_neon) {
1510 * This is an architectural requirement for AArch64; AArch32 is
1511 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1513 error_setg(errp,
1514 "AArch64 CPUs must have both VFP and Neon or neither");
1515 return;
1518 if (!cpu->has_vfp) {
1519 uint64_t t;
1520 uint32_t u;
1522 t = cpu->isar.id_aa64isar1;
1523 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1524 cpu->isar.id_aa64isar1 = t;
1526 t = cpu->isar.id_aa64pfr0;
1527 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1528 cpu->isar.id_aa64pfr0 = t;
1530 u = cpu->isar.id_isar6;
1531 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1532 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1533 cpu->isar.id_isar6 = u;
1535 u = cpu->isar.mvfr0;
1536 u = FIELD_DP32(u, MVFR0, FPSP, 0);
1537 u = FIELD_DP32(u, MVFR0, FPDP, 0);
1538 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1539 u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1540 u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1541 if (!arm_feature(env, ARM_FEATURE_M)) {
1542 u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1543 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1545 cpu->isar.mvfr0 = u;
1547 u = cpu->isar.mvfr1;
1548 u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1549 u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1550 u = FIELD_DP32(u, MVFR1, FPHP, 0);
1551 if (arm_feature(env, ARM_FEATURE_M)) {
1552 u = FIELD_DP32(u, MVFR1, FP16, 0);
1554 cpu->isar.mvfr1 = u;
1556 u = cpu->isar.mvfr2;
1557 u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1558 cpu->isar.mvfr2 = u;
1561 if (!cpu->has_neon) {
1562 uint64_t t;
1563 uint32_t u;
1565 unset_feature(env, ARM_FEATURE_NEON);
1567 t = cpu->isar.id_aa64isar0;
1568 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1569 cpu->isar.id_aa64isar0 = t;
1571 t = cpu->isar.id_aa64isar1;
1572 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1573 t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1574 t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1575 cpu->isar.id_aa64isar1 = t;
1577 t = cpu->isar.id_aa64pfr0;
1578 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1579 cpu->isar.id_aa64pfr0 = t;
1581 u = cpu->isar.id_isar5;
1582 u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1583 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1584 cpu->isar.id_isar5 = u;
1586 u = cpu->isar.id_isar6;
1587 u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1588 u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1589 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1590 u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1591 cpu->isar.id_isar6 = u;
1593 if (!arm_feature(env, ARM_FEATURE_M)) {
1594 u = cpu->isar.mvfr1;
1595 u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1596 u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1597 u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1598 u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1599 cpu->isar.mvfr1 = u;
1601 u = cpu->isar.mvfr2;
1602 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1603 cpu->isar.mvfr2 = u;
1607 if (!cpu->has_neon && !cpu->has_vfp) {
1608 uint64_t t;
1609 uint32_t u;
1611 t = cpu->isar.id_aa64isar0;
1612 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1613 cpu->isar.id_aa64isar0 = t;
1615 t = cpu->isar.id_aa64isar1;
1616 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1617 cpu->isar.id_aa64isar1 = t;
1619 u = cpu->isar.mvfr0;
1620 u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1621 cpu->isar.mvfr0 = u;
1623 /* Despite the name, this field covers both VFP and Neon */
1624 u = cpu->isar.mvfr1;
1625 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1626 cpu->isar.mvfr1 = u;
1629 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1630 uint32_t u;
1632 unset_feature(env, ARM_FEATURE_THUMB_DSP);
1634 u = cpu->isar.id_isar1;
1635 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1636 cpu->isar.id_isar1 = u;
1638 u = cpu->isar.id_isar2;
1639 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1640 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1641 cpu->isar.id_isar2 = u;
1643 u = cpu->isar.id_isar3;
1644 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1645 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1646 cpu->isar.id_isar3 = u;
1649 /* Some features automatically imply others: */
1650 if (arm_feature(env, ARM_FEATURE_V8)) {
1651 if (arm_feature(env, ARM_FEATURE_M)) {
1652 set_feature(env, ARM_FEATURE_V7);
1653 } else {
1654 set_feature(env, ARM_FEATURE_V7VE);
1659 * There exist AArch64 cpus without AArch32 support. When KVM
1660 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1661 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1662 * As a general principle, we also do not make ID register
1663 * consistency checks anywhere unless using TCG, because only
1664 * for TCG would a consistency-check failure be a QEMU bug.
1666 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1667 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1670 if (arm_feature(env, ARM_FEATURE_V7VE)) {
1671 /* v7 Virtualization Extensions. In real hardware this implies
1672 * EL2 and also the presence of the Security Extensions.
1673 * For QEMU, for backwards-compatibility we implement some
1674 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1675 * include the various other features that V7VE implies.
1676 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1677 * Security Extensions is ARM_FEATURE_EL3.
1679 assert(!tcg_enabled() || no_aa32 ||
1680 cpu_isar_feature(aa32_arm_div, cpu));
1681 set_feature(env, ARM_FEATURE_LPAE);
1682 set_feature(env, ARM_FEATURE_V7);
1684 if (arm_feature(env, ARM_FEATURE_V7)) {
1685 set_feature(env, ARM_FEATURE_VAPA);
1686 set_feature(env, ARM_FEATURE_THUMB2);
1687 set_feature(env, ARM_FEATURE_MPIDR);
1688 if (!arm_feature(env, ARM_FEATURE_M)) {
1689 set_feature(env, ARM_FEATURE_V6K);
1690 } else {
1691 set_feature(env, ARM_FEATURE_V6);
1694 /* Always define VBAR for V7 CPUs even if it doesn't exist in
1695 * non-EL3 configs. This is needed by some legacy boards.
1697 set_feature(env, ARM_FEATURE_VBAR);
1699 if (arm_feature(env, ARM_FEATURE_V6K)) {
1700 set_feature(env, ARM_FEATURE_V6);
1701 set_feature(env, ARM_FEATURE_MVFR);
1703 if (arm_feature(env, ARM_FEATURE_V6)) {
1704 set_feature(env, ARM_FEATURE_V5);
1705 if (!arm_feature(env, ARM_FEATURE_M)) {
1706 assert(!tcg_enabled() || no_aa32 ||
1707 cpu_isar_feature(aa32_jazelle, cpu));
1708 set_feature(env, ARM_FEATURE_AUXCR);
1711 if (arm_feature(env, ARM_FEATURE_V5)) {
1712 set_feature(env, ARM_FEATURE_V4T);
1714 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1715 set_feature(env, ARM_FEATURE_V7MP);
1717 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1718 set_feature(env, ARM_FEATURE_CBAR);
1720 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1721 !arm_feature(env, ARM_FEATURE_M)) {
1722 set_feature(env, ARM_FEATURE_THUMB_DSP);
1726 * We rely on no XScale CPU having VFP so we can use the same bits in the
1727 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1729 assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1730 !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1731 !arm_feature(env, ARM_FEATURE_XSCALE));
1733 if (arm_feature(env, ARM_FEATURE_V7) &&
1734 !arm_feature(env, ARM_FEATURE_M) &&
1735 !arm_feature(env, ARM_FEATURE_PMSA)) {
1736 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1737 * can use 4K pages.
1739 pagebits = 12;
1740 } else {
1741 /* For CPUs which might have tiny 1K pages, or which have an
1742 * MPU and might have small region sizes, stick with 1K pages.
1744 pagebits = 10;
1746 if (!set_preferred_target_page_bits(pagebits)) {
1747 /* This can only ever happen for hotplugging a CPU, or if
1748 * the board code incorrectly creates a CPU which it has
1749 * promised via minimum_page_size that it will not.
1751 error_setg(errp, "This CPU requires a smaller page size than the "
1752 "system is using");
1753 return;
1756 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1757 * We don't support setting cluster ID ([16..23]) (known as Aff2
1758 * in later ARM ARM versions), or any of the higher affinity level fields,
1759 * so these bits always RAZ.
1761 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1762 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1763 ARM_DEFAULT_CPUS_PER_CLUSTER);
1766 if (cpu->reset_hivecs) {
1767 cpu->reset_sctlr |= (1 << 13);
1770 if (cpu->cfgend) {
1771 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1772 cpu->reset_sctlr |= SCTLR_EE;
1773 } else {
1774 cpu->reset_sctlr |= SCTLR_B;
1778 if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1779 /* If the has_el3 CPU property is disabled then we need to disable the
1780 * feature.
1782 unset_feature(env, ARM_FEATURE_EL3);
1784 /* Disable the security extension feature bits in the processor feature
1785 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1787 cpu->isar.id_pfr1 &= ~0xf0;
1788 cpu->isar.id_aa64pfr0 &= ~0xf000;
1791 if (!cpu->has_el2) {
1792 unset_feature(env, ARM_FEATURE_EL2);
1795 if (!cpu->has_pmu) {
1796 unset_feature(env, ARM_FEATURE_PMU);
1798 if (arm_feature(env, ARM_FEATURE_PMU)) {
1799 pmu_init(cpu);
1801 if (!kvm_enabled()) {
1802 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1803 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1806 #ifndef CONFIG_USER_ONLY
1807 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1808 cpu);
1809 #endif
1810 } else {
1811 cpu->isar.id_aa64dfr0 =
1812 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1813 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1814 cpu->pmceid0 = 0;
1815 cpu->pmceid1 = 0;
1818 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1819 /* Disable the hypervisor feature bits in the processor feature
1820 * registers if we don't have EL2. These are id_pfr1[15:12] and
1821 * id_aa64pfr0_el1[11:8].
1823 cpu->isar.id_aa64pfr0 &= ~0xf00;
1824 cpu->isar.id_pfr1 &= ~0xf000;
1827 #ifndef CONFIG_USER_ONLY
1828 if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1830 * Disable the MTE feature bits if we do not have tag-memory
1831 * provided by the machine.
1833 cpu->isar.id_aa64pfr1 =
1834 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1836 #endif
1838 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1839 * to false or by setting pmsav7-dregion to 0.
1841 if (!cpu->has_mpu) {
1842 cpu->pmsav7_dregion = 0;
1844 if (cpu->pmsav7_dregion == 0) {
1845 cpu->has_mpu = false;
1848 if (arm_feature(env, ARM_FEATURE_PMSA) &&
1849 arm_feature(env, ARM_FEATURE_V7)) {
1850 uint32_t nr = cpu->pmsav7_dregion;
1852 if (nr > 0xff) {
1853 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1854 return;
1857 if (nr) {
1858 if (arm_feature(env, ARM_FEATURE_V8)) {
1859 /* PMSAv8 */
1860 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1861 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1862 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1863 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1864 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1866 } else {
1867 env->pmsav7.drbar = g_new0(uint32_t, nr);
1868 env->pmsav7.drsr = g_new0(uint32_t, nr);
1869 env->pmsav7.dracr = g_new0(uint32_t, nr);
1874 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1875 uint32_t nr = cpu->sau_sregion;
1877 if (nr > 0xff) {
1878 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1879 return;
1882 if (nr) {
1883 env->sau.rbar = g_new0(uint32_t, nr);
1884 env->sau.rlar = g_new0(uint32_t, nr);
1888 if (arm_feature(env, ARM_FEATURE_EL3)) {
1889 set_feature(env, ARM_FEATURE_VBAR);
1892 register_cp_regs_for_features(cpu);
1893 arm_cpu_register_gdb_regs_for_features(cpu);
1895 init_cpreg_list(cpu);
1897 #ifndef CONFIG_USER_ONLY
1898 MachineState *ms = MACHINE(qdev_get_machine());
1899 unsigned int smp_cpus = ms->smp.cpus;
1900 bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1903 * We must set cs->num_ases to the final value before
1904 * the first call to cpu_address_space_init.
1906 if (cpu->tag_memory != NULL) {
1907 cs->num_ases = 3 + has_secure;
1908 } else {
1909 cs->num_ases = 1 + has_secure;
1912 if (has_secure) {
1913 if (!cpu->secure_memory) {
1914 cpu->secure_memory = cs->memory;
1916 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1917 cpu->secure_memory);
1920 if (cpu->tag_memory != NULL) {
1921 cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1922 cpu->tag_memory);
1923 if (has_secure) {
1924 cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1925 cpu->secure_tag_memory);
1929 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1931 /* No core_count specified, default to smp_cpus. */
1932 if (cpu->core_count == -1) {
1933 cpu->core_count = smp_cpus;
1935 #endif
1937 if (tcg_enabled()) {
1938 int dcz_blocklen = 4 << cpu->dcz_blocksize;
1941 * We only support DCZ blocklen that fits on one page.
1943 * Architectually this is always true. However TARGET_PAGE_SIZE
1944 * is variable and, for compatibility with -machine virt-2.7,
1945 * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
1946 * But even then, while the largest architectural DCZ blocklen
1947 * is 2KiB, no cpu actually uses such a large blocklen.
1949 assert(dcz_blocklen <= TARGET_PAGE_SIZE);
1952 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
1953 * both nibbles of each byte storing tag data may be written at once.
1954 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
1956 if (cpu_isar_feature(aa64_mte, cpu)) {
1957 assert(dcz_blocklen >= 2 * TAG_GRANULE);
1961 qemu_init_vcpu(cs);
1962 cpu_reset(cs);
1964 acc->parent_realize(dev, errp);
1967 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1969 ObjectClass *oc;
1970 char *typename;
1971 char **cpuname;
1972 const char *cpunamestr;
1974 cpuname = g_strsplit(cpu_model, ",", 1);
1975 cpunamestr = cpuname[0];
1976 #ifdef CONFIG_USER_ONLY
1977 /* For backwards compatibility usermode emulation allows "-cpu any",
1978 * which has the same semantics as "-cpu max".
1980 if (!strcmp(cpunamestr, "any")) {
1981 cpunamestr = "max";
1983 #endif
1984 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1985 oc = object_class_by_name(typename);
1986 g_strfreev(cpuname);
1987 g_free(typename);
1988 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1989 object_class_is_abstract(oc)) {
1990 return NULL;
1992 return oc;
1995 static Property arm_cpu_properties[] = {
1996 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1997 DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
1998 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1999 mp_affinity, ARM64_AFFINITY_INVALID),
2000 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2001 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2002 DEFINE_PROP_END_OF_LIST()
2005 static gchar *arm_gdb_arch_name(CPUState *cs)
2007 ARMCPU *cpu = ARM_CPU(cs);
2008 CPUARMState *env = &cpu->env;
2010 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2011 return g_strdup("iwmmxt");
2013 return g_strdup("arm");
2016 #ifndef CONFIG_USER_ONLY
2017 #include "hw/core/sysemu-cpu-ops.h"
2019 static const struct SysemuCPUOps arm_sysemu_ops = {
2020 .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2021 .asidx_from_attrs = arm_asidx_from_attrs,
2022 .write_elf32_note = arm_cpu_write_elf32_note,
2023 .write_elf64_note = arm_cpu_write_elf64_note,
2024 .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2025 .legacy_vmsd = &vmstate_arm_cpu,
2027 #endif
2029 #ifdef CONFIG_TCG
2030 static const struct TCGCPUOps arm_tcg_ops = {
2031 .initialize = arm_translate_init,
2032 .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2033 .tlb_fill = arm_cpu_tlb_fill,
2034 .debug_excp_handler = arm_debug_excp_handler,
2036 #if !defined(CONFIG_USER_ONLY)
2037 .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2038 .do_interrupt = arm_cpu_do_interrupt,
2039 .do_transaction_failed = arm_cpu_do_transaction_failed,
2040 .do_unaligned_access = arm_cpu_do_unaligned_access,
2041 .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2042 .debug_check_watchpoint = arm_debug_check_watchpoint,
2043 .debug_check_breakpoint = arm_debug_check_breakpoint,
2044 #endif /* !CONFIG_USER_ONLY */
2046 #endif /* CONFIG_TCG */
2048 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2050 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2051 CPUClass *cc = CPU_CLASS(acc);
2052 DeviceClass *dc = DEVICE_CLASS(oc);
2054 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2055 &acc->parent_realize);
2057 device_class_set_props(dc, arm_cpu_properties);
2058 device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2060 cc->class_by_name = arm_cpu_class_by_name;
2061 cc->has_work = arm_cpu_has_work;
2062 cc->dump_state = arm_cpu_dump_state;
2063 cc->set_pc = arm_cpu_set_pc;
2064 cc->gdb_read_register = arm_cpu_gdb_read_register;
2065 cc->gdb_write_register = arm_cpu_gdb_write_register;
2066 #ifndef CONFIG_USER_ONLY
2067 cc->sysemu_ops = &arm_sysemu_ops;
2068 #endif
2069 cc->gdb_num_core_regs = 26;
2070 cc->gdb_core_xml_file = "arm-core.xml";
2071 cc->gdb_arch_name = arm_gdb_arch_name;
2072 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2073 cc->gdb_stop_before_watchpoint = true;
2074 cc->disas_set_info = arm_disas_set_info;
2076 #ifdef CONFIG_TCG
2077 cc->tcg_ops = &arm_tcg_ops;
2078 #endif /* CONFIG_TCG */
2081 #ifdef CONFIG_KVM
2082 static void arm_host_initfn(Object *obj)
2084 ARMCPU *cpu = ARM_CPU(obj);
2086 kvm_arm_set_cpu_features_from_host(cpu);
2087 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2088 aarch64_add_sve_properties(obj);
2090 arm_cpu_post_init(obj);
2093 static const TypeInfo host_arm_cpu_type_info = {
2094 .name = TYPE_ARM_HOST_CPU,
2095 .parent = TYPE_AARCH64_CPU,
2096 .instance_init = arm_host_initfn,
2099 #endif
2101 static void arm_cpu_instance_init(Object *obj)
2103 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2105 acc->info->initfn(obj);
2106 arm_cpu_post_init(obj);
2109 static void cpu_register_class_init(ObjectClass *oc, void *data)
2111 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2113 acc->info = data;
2116 void arm_cpu_register(const ARMCPUInfo *info)
2118 TypeInfo type_info = {
2119 .parent = TYPE_ARM_CPU,
2120 .instance_size = sizeof(ARMCPU),
2121 .instance_align = __alignof__(ARMCPU),
2122 .instance_init = arm_cpu_instance_init,
2123 .class_size = sizeof(ARMCPUClass),
2124 .class_init = info->class_init ?: cpu_register_class_init,
2125 .class_data = (void *)info,
2128 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2129 type_register(&type_info);
2130 g_free((void *)type_info.name);
2133 static const TypeInfo arm_cpu_type_info = {
2134 .name = TYPE_ARM_CPU,
2135 .parent = TYPE_CPU,
2136 .instance_size = sizeof(ARMCPU),
2137 .instance_align = __alignof__(ARMCPU),
2138 .instance_init = arm_cpu_initfn,
2139 .instance_finalize = arm_cpu_finalizefn,
2140 .abstract = true,
2141 .class_size = sizeof(ARMCPUClass),
2142 .class_init = arm_cpu_class_init,
2145 static void arm_cpu_register_types(void)
2147 type_register_static(&arm_cpu_type_info);
2149 #ifdef CONFIG_KVM
2150 type_register_static(&host_arm_cpu_type_info);
2151 #endif
2154 type_init(arm_cpu_register_types)