ati-vga: Implement fallback for pixman routines
[qemu/armbru.git] / hw / arm / smmuv3.c
blobc3871ae067ffb74a315025a8f54513e6e81b2a11
1 /*
2 * Copyright (C) 2014-2016 Broadcom Corporation
3 * Copyright (c) 2017 Red Hat, Inc.
4 * Written by Prem Mallappa, Eric Auger
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qemu/bitops.h"
21 #include "hw/irq.h"
22 #include "hw/sysbus.h"
23 #include "migration/vmstate.h"
24 #include "hw/qdev-properties.h"
25 #include "hw/qdev-core.h"
26 #include "hw/pci/pci.h"
27 #include "cpu.h"
28 #include "trace.h"
29 #include "qemu/log.h"
30 #include "qemu/error-report.h"
31 #include "qapi/error.h"
33 #include "hw/arm/smmuv3.h"
34 #include "smmuv3-internal.h"
35 #include "smmu-internal.h"
37 #define PTW_RECORD_FAULT(cfg) (((cfg)->stage == 1) ? (cfg)->record_faults : \
38 (cfg)->s2cfg.record_faults)
40 /**
41 * smmuv3_trigger_irq - pulse @irq if enabled and update
42 * GERROR register in case of GERROR interrupt
44 * @irq: irq type
45 * @gerror_mask: mask of gerrors to toggle (relevant if @irq is GERROR)
47 static void smmuv3_trigger_irq(SMMUv3State *s, SMMUIrq irq,
48 uint32_t gerror_mask)
51 bool pulse = false;
53 switch (irq) {
54 case SMMU_IRQ_EVTQ:
55 pulse = smmuv3_eventq_irq_enabled(s);
56 break;
57 case SMMU_IRQ_PRIQ:
58 qemu_log_mask(LOG_UNIMP, "PRI not yet supported\n");
59 break;
60 case SMMU_IRQ_CMD_SYNC:
61 pulse = true;
62 break;
63 case SMMU_IRQ_GERROR:
65 uint32_t pending = s->gerror ^ s->gerrorn;
66 uint32_t new_gerrors = ~pending & gerror_mask;
68 if (!new_gerrors) {
69 /* only toggle non pending errors */
70 return;
72 s->gerror ^= new_gerrors;
73 trace_smmuv3_write_gerror(new_gerrors, s->gerror);
75 pulse = smmuv3_gerror_irq_enabled(s);
76 break;
79 if (pulse) {
80 trace_smmuv3_trigger_irq(irq);
81 qemu_irq_pulse(s->irq[irq]);
85 static void smmuv3_write_gerrorn(SMMUv3State *s, uint32_t new_gerrorn)
87 uint32_t pending = s->gerror ^ s->gerrorn;
88 uint32_t toggled = s->gerrorn ^ new_gerrorn;
90 if (toggled & ~pending) {
91 qemu_log_mask(LOG_GUEST_ERROR,
92 "guest toggles non pending errors = 0x%x\n",
93 toggled & ~pending);
97 * We do not raise any error in case guest toggles bits corresponding
98 * to not active IRQs (CONSTRAINED UNPREDICTABLE)
100 s->gerrorn = new_gerrorn;
102 trace_smmuv3_write_gerrorn(toggled & pending, s->gerrorn);
105 static inline MemTxResult queue_read(SMMUQueue *q, Cmd *cmd)
107 dma_addr_t addr = Q_CONS_ENTRY(q);
108 MemTxResult ret;
109 int i;
111 ret = dma_memory_read(&address_space_memory, addr, cmd, sizeof(Cmd),
112 MEMTXATTRS_UNSPECIFIED);
113 if (ret != MEMTX_OK) {
114 return ret;
116 for (i = 0; i < ARRAY_SIZE(cmd->word); i++) {
117 le32_to_cpus(&cmd->word[i]);
119 return ret;
122 static MemTxResult queue_write(SMMUQueue *q, Evt *evt_in)
124 dma_addr_t addr = Q_PROD_ENTRY(q);
125 MemTxResult ret;
126 Evt evt = *evt_in;
127 int i;
129 for (i = 0; i < ARRAY_SIZE(evt.word); i++) {
130 cpu_to_le32s(&evt.word[i]);
132 ret = dma_memory_write(&address_space_memory, addr, &evt, sizeof(Evt),
133 MEMTXATTRS_UNSPECIFIED);
134 if (ret != MEMTX_OK) {
135 return ret;
138 queue_prod_incr(q);
139 return MEMTX_OK;
142 static MemTxResult smmuv3_write_eventq(SMMUv3State *s, Evt *evt)
144 SMMUQueue *q = &s->eventq;
145 MemTxResult r;
147 if (!smmuv3_eventq_enabled(s)) {
148 return MEMTX_ERROR;
151 if (smmuv3_q_full(q)) {
152 return MEMTX_ERROR;
155 r = queue_write(q, evt);
156 if (r != MEMTX_OK) {
157 return r;
160 if (!smmuv3_q_empty(q)) {
161 smmuv3_trigger_irq(s, SMMU_IRQ_EVTQ, 0);
163 return MEMTX_OK;
166 void smmuv3_record_event(SMMUv3State *s, SMMUEventInfo *info)
168 Evt evt = {};
169 MemTxResult r;
171 if (!smmuv3_eventq_enabled(s)) {
172 return;
175 EVT_SET_TYPE(&evt, info->type);
176 EVT_SET_SID(&evt, info->sid);
178 switch (info->type) {
179 case SMMU_EVT_NONE:
180 return;
181 case SMMU_EVT_F_UUT:
182 EVT_SET_SSID(&evt, info->u.f_uut.ssid);
183 EVT_SET_SSV(&evt, info->u.f_uut.ssv);
184 EVT_SET_ADDR(&evt, info->u.f_uut.addr);
185 EVT_SET_RNW(&evt, info->u.f_uut.rnw);
186 EVT_SET_PNU(&evt, info->u.f_uut.pnu);
187 EVT_SET_IND(&evt, info->u.f_uut.ind);
188 break;
189 case SMMU_EVT_C_BAD_STREAMID:
190 EVT_SET_SSID(&evt, info->u.c_bad_streamid.ssid);
191 EVT_SET_SSV(&evt, info->u.c_bad_streamid.ssv);
192 break;
193 case SMMU_EVT_F_STE_FETCH:
194 EVT_SET_SSID(&evt, info->u.f_ste_fetch.ssid);
195 EVT_SET_SSV(&evt, info->u.f_ste_fetch.ssv);
196 EVT_SET_ADDR2(&evt, info->u.f_ste_fetch.addr);
197 break;
198 case SMMU_EVT_C_BAD_STE:
199 EVT_SET_SSID(&evt, info->u.c_bad_ste.ssid);
200 EVT_SET_SSV(&evt, info->u.c_bad_ste.ssv);
201 break;
202 case SMMU_EVT_F_STREAM_DISABLED:
203 break;
204 case SMMU_EVT_F_TRANS_FORBIDDEN:
205 EVT_SET_ADDR(&evt, info->u.f_transl_forbidden.addr);
206 EVT_SET_RNW(&evt, info->u.f_transl_forbidden.rnw);
207 break;
208 case SMMU_EVT_C_BAD_SUBSTREAMID:
209 EVT_SET_SSID(&evt, info->u.c_bad_substream.ssid);
210 break;
211 case SMMU_EVT_F_CD_FETCH:
212 EVT_SET_SSID(&evt, info->u.f_cd_fetch.ssid);
213 EVT_SET_SSV(&evt, info->u.f_cd_fetch.ssv);
214 EVT_SET_ADDR(&evt, info->u.f_cd_fetch.addr);
215 break;
216 case SMMU_EVT_C_BAD_CD:
217 EVT_SET_SSID(&evt, info->u.c_bad_cd.ssid);
218 EVT_SET_SSV(&evt, info->u.c_bad_cd.ssv);
219 break;
220 case SMMU_EVT_F_WALK_EABT:
221 case SMMU_EVT_F_TRANSLATION:
222 case SMMU_EVT_F_ADDR_SIZE:
223 case SMMU_EVT_F_ACCESS:
224 case SMMU_EVT_F_PERMISSION:
225 EVT_SET_STALL(&evt, info->u.f_walk_eabt.stall);
226 EVT_SET_STAG(&evt, info->u.f_walk_eabt.stag);
227 EVT_SET_SSID(&evt, info->u.f_walk_eabt.ssid);
228 EVT_SET_SSV(&evt, info->u.f_walk_eabt.ssv);
229 EVT_SET_S2(&evt, info->u.f_walk_eabt.s2);
230 EVT_SET_ADDR(&evt, info->u.f_walk_eabt.addr);
231 EVT_SET_RNW(&evt, info->u.f_walk_eabt.rnw);
232 EVT_SET_PNU(&evt, info->u.f_walk_eabt.pnu);
233 EVT_SET_IND(&evt, info->u.f_walk_eabt.ind);
234 EVT_SET_CLASS(&evt, info->u.f_walk_eabt.class);
235 EVT_SET_ADDR2(&evt, info->u.f_walk_eabt.addr2);
236 break;
237 case SMMU_EVT_F_CFG_CONFLICT:
238 EVT_SET_SSID(&evt, info->u.f_cfg_conflict.ssid);
239 EVT_SET_SSV(&evt, info->u.f_cfg_conflict.ssv);
240 break;
241 /* rest is not implemented */
242 case SMMU_EVT_F_BAD_ATS_TREQ:
243 case SMMU_EVT_F_TLB_CONFLICT:
244 case SMMU_EVT_E_PAGE_REQ:
245 default:
246 g_assert_not_reached();
249 trace_smmuv3_record_event(smmu_event_string(info->type), info->sid);
250 r = smmuv3_write_eventq(s, &evt);
251 if (r != MEMTX_OK) {
252 smmuv3_trigger_irq(s, SMMU_IRQ_GERROR, R_GERROR_EVENTQ_ABT_ERR_MASK);
254 info->recorded = true;
257 static void smmuv3_init_regs(SMMUv3State *s)
259 /* Based on sys property, the stages supported in smmu will be advertised.*/
260 if (s->stage && !strcmp("2", s->stage)) {
261 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, S2P, 1);
262 } else {
263 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, S1P, 1);
266 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TTF, 2); /* AArch64 PTW only */
267 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, COHACC, 1); /* IO coherent */
268 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, ASID16, 1); /* 16-bit ASID */
269 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, VMID16, 1); /* 16-bit VMID */
270 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TTENDIAN, 2); /* little endian */
271 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, STALL_MODEL, 1); /* No stall */
272 /* terminated transaction will always be aborted/error returned */
273 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TERM_MODEL, 1);
274 /* 2-level stream table supported */
275 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, STLEVEL, 1);
277 s->idr[1] = FIELD_DP32(s->idr[1], IDR1, SIDSIZE, SMMU_IDR1_SIDSIZE);
278 s->idr[1] = FIELD_DP32(s->idr[1], IDR1, EVENTQS, SMMU_EVENTQS);
279 s->idr[1] = FIELD_DP32(s->idr[1], IDR1, CMDQS, SMMU_CMDQS);
281 s->idr[3] = FIELD_DP32(s->idr[3], IDR3, HAD, 1);
282 if (FIELD_EX32(s->idr[0], IDR0, S2P)) {
283 /* XNX is a stage-2-specific feature */
284 s->idr[3] = FIELD_DP32(s->idr[3], IDR3, XNX, 1);
286 s->idr[3] = FIELD_DP32(s->idr[3], IDR3, RIL, 1);
287 s->idr[3] = FIELD_DP32(s->idr[3], IDR3, BBML, 2);
289 s->idr[5] = FIELD_DP32(s->idr[5], IDR5, OAS, SMMU_IDR5_OAS); /* 44 bits */
290 /* 4K, 16K and 64K granule support */
291 s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN4K, 1);
292 s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN16K, 1);
293 s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN64K, 1);
295 s->cmdq.base = deposit64(s->cmdq.base, 0, 5, SMMU_CMDQS);
296 s->cmdq.prod = 0;
297 s->cmdq.cons = 0;
298 s->cmdq.entry_size = sizeof(struct Cmd);
299 s->eventq.base = deposit64(s->eventq.base, 0, 5, SMMU_EVENTQS);
300 s->eventq.prod = 0;
301 s->eventq.cons = 0;
302 s->eventq.entry_size = sizeof(struct Evt);
304 s->features = 0;
305 s->sid_split = 0;
306 s->aidr = 0x1;
307 s->cr[0] = 0;
308 s->cr0ack = 0;
309 s->irq_ctrl = 0;
310 s->gerror = 0;
311 s->gerrorn = 0;
312 s->statusr = 0;
313 s->gbpa = SMMU_GBPA_RESET_VAL;
316 static int smmu_get_ste(SMMUv3State *s, dma_addr_t addr, STE *buf,
317 SMMUEventInfo *event)
319 int ret, i;
321 trace_smmuv3_get_ste(addr);
322 /* TODO: guarantee 64-bit single-copy atomicity */
323 ret = dma_memory_read(&address_space_memory, addr, buf, sizeof(*buf),
324 MEMTXATTRS_UNSPECIFIED);
325 if (ret != MEMTX_OK) {
326 qemu_log_mask(LOG_GUEST_ERROR,
327 "Cannot fetch pte at address=0x%"PRIx64"\n", addr);
328 event->type = SMMU_EVT_F_STE_FETCH;
329 event->u.f_ste_fetch.addr = addr;
330 return -EINVAL;
332 for (i = 0; i < ARRAY_SIZE(buf->word); i++) {
333 le32_to_cpus(&buf->word[i]);
335 return 0;
339 /* @ssid > 0 not supported yet */
340 static int smmu_get_cd(SMMUv3State *s, STE *ste, uint32_t ssid,
341 CD *buf, SMMUEventInfo *event)
343 dma_addr_t addr = STE_CTXPTR(ste);
344 int ret, i;
346 trace_smmuv3_get_cd(addr);
347 /* TODO: guarantee 64-bit single-copy atomicity */
348 ret = dma_memory_read(&address_space_memory, addr, buf, sizeof(*buf),
349 MEMTXATTRS_UNSPECIFIED);
350 if (ret != MEMTX_OK) {
351 qemu_log_mask(LOG_GUEST_ERROR,
352 "Cannot fetch pte at address=0x%"PRIx64"\n", addr);
353 event->type = SMMU_EVT_F_CD_FETCH;
354 event->u.f_ste_fetch.addr = addr;
355 return -EINVAL;
357 for (i = 0; i < ARRAY_SIZE(buf->word); i++) {
358 le32_to_cpus(&buf->word[i]);
360 return 0;
364 * Max valid value is 39 when SMMU_IDR3.STT == 0.
365 * In architectures after SMMUv3.0:
366 * - If STE.S2TG selects a 4KB or 16KB granule, the minimum valid value for this
367 * field is MAX(16, 64-IAS)
368 * - If STE.S2TG selects a 64KB granule, the minimum valid value for this field
369 * is (64-IAS).
370 * As we only support AA64, IAS = OAS.
372 static bool s2t0sz_valid(SMMUTransCfg *cfg)
374 if (cfg->s2cfg.tsz > 39) {
375 return false;
378 if (cfg->s2cfg.granule_sz == 16) {
379 return (cfg->s2cfg.tsz >= 64 - oas2bits(SMMU_IDR5_OAS));
382 return (cfg->s2cfg.tsz >= MAX(64 - oas2bits(SMMU_IDR5_OAS), 16));
386 * Return true if s2 page table config is valid.
387 * This checks with the configured start level, ias_bits and granularity we can
388 * have a valid page table as described in ARM ARM D8.2 Translation process.
389 * The idea here is to see for the highest possible number of IPA bits, how
390 * many concatenated tables we would need, if it is more than 16, then this is
391 * not possible.
393 static bool s2_pgtable_config_valid(uint8_t sl0, uint8_t t0sz, uint8_t gran)
395 int level = get_start_level(sl0, gran);
396 uint64_t ipa_bits = 64 - t0sz;
397 uint64_t max_ipa = (1ULL << ipa_bits) - 1;
398 int nr_concat = pgd_concat_idx(level, gran, max_ipa) + 1;
400 return nr_concat <= VMSA_MAX_S2_CONCAT;
403 static int decode_ste_s2_cfg(SMMUTransCfg *cfg, STE *ste)
405 cfg->stage = 2;
407 if (STE_S2AA64(ste) == 0x0) {
408 qemu_log_mask(LOG_UNIMP,
409 "SMMUv3 AArch32 tables not supported\n");
410 g_assert_not_reached();
413 switch (STE_S2TG(ste)) {
414 case 0x0: /* 4KB */
415 cfg->s2cfg.granule_sz = 12;
416 break;
417 case 0x1: /* 64KB */
418 cfg->s2cfg.granule_sz = 16;
419 break;
420 case 0x2: /* 16KB */
421 cfg->s2cfg.granule_sz = 14;
422 break;
423 default:
424 qemu_log_mask(LOG_GUEST_ERROR,
425 "SMMUv3 bad STE S2TG: %x\n", STE_S2TG(ste));
426 goto bad_ste;
429 cfg->s2cfg.vttb = STE_S2TTB(ste);
431 cfg->s2cfg.sl0 = STE_S2SL0(ste);
432 /* FEAT_TTST not supported. */
433 if (cfg->s2cfg.sl0 == 0x3) {
434 qemu_log_mask(LOG_UNIMP, "SMMUv3 S2SL0 = 0x3 has no meaning!\n");
435 goto bad_ste;
438 /* For AA64, The effective S2PS size is capped to the OAS. */
439 cfg->s2cfg.eff_ps = oas2bits(MIN(STE_S2PS(ste), SMMU_IDR5_OAS));
441 * It is ILLEGAL for the address in S2TTB to be outside the range
442 * described by the effective S2PS value.
444 if (cfg->s2cfg.vttb & ~(MAKE_64BIT_MASK(0, cfg->s2cfg.eff_ps))) {
445 qemu_log_mask(LOG_GUEST_ERROR,
446 "SMMUv3 S2TTB too large 0x%" PRIx64
447 ", effective PS %d bits\n",
448 cfg->s2cfg.vttb, cfg->s2cfg.eff_ps);
449 goto bad_ste;
452 cfg->s2cfg.tsz = STE_S2T0SZ(ste);
454 if (!s2t0sz_valid(cfg)) {
455 qemu_log_mask(LOG_GUEST_ERROR, "SMMUv3 bad STE S2T0SZ = %d\n",
456 cfg->s2cfg.tsz);
457 goto bad_ste;
460 if (!s2_pgtable_config_valid(cfg->s2cfg.sl0, cfg->s2cfg.tsz,
461 cfg->s2cfg.granule_sz)) {
462 qemu_log_mask(LOG_GUEST_ERROR,
463 "SMMUv3 STE stage 2 config not valid!\n");
464 goto bad_ste;
467 /* Only LE supported(IDR0.TTENDIAN). */
468 if (STE_S2ENDI(ste)) {
469 qemu_log_mask(LOG_GUEST_ERROR,
470 "SMMUv3 STE_S2ENDI only supports LE!\n");
471 goto bad_ste;
474 cfg->s2cfg.affd = STE_S2AFFD(ste);
476 cfg->s2cfg.record_faults = STE_S2R(ste);
477 /* As stall is not supported. */
478 if (STE_S2S(ste)) {
479 qemu_log_mask(LOG_UNIMP, "SMMUv3 Stall not implemented!\n");
480 goto bad_ste;
483 return 0;
485 bad_ste:
486 return -EINVAL;
489 /* Returns < 0 in case of invalid STE, 0 otherwise */
490 static int decode_ste(SMMUv3State *s, SMMUTransCfg *cfg,
491 STE *ste, SMMUEventInfo *event)
493 uint32_t config;
494 int ret;
496 if (!STE_VALID(ste)) {
497 if (!event->inval_ste_allowed) {
498 qemu_log_mask(LOG_GUEST_ERROR, "invalid STE\n");
500 goto bad_ste;
503 config = STE_CONFIG(ste);
505 if (STE_CFG_ABORT(config)) {
506 cfg->aborted = true;
507 return 0;
510 if (STE_CFG_BYPASS(config)) {
511 cfg->bypassed = true;
512 return 0;
516 * If a stage is enabled in SW while not advertised, throw bad ste
517 * according to user manual(IHI0070E) "5.2 Stream Table Entry".
519 if (!STAGE1_SUPPORTED(s) && STE_CFG_S1_ENABLED(config)) {
520 qemu_log_mask(LOG_GUEST_ERROR, "SMMUv3 S1 used but not supported.\n");
521 goto bad_ste;
523 if (!STAGE2_SUPPORTED(s) && STE_CFG_S2_ENABLED(config)) {
524 qemu_log_mask(LOG_GUEST_ERROR, "SMMUv3 S2 used but not supported.\n");
525 goto bad_ste;
528 if (STAGE2_SUPPORTED(s)) {
529 /* VMID is considered even if s2 is disabled. */
530 cfg->s2cfg.vmid = STE_S2VMID(ste);
531 } else {
532 /* Default to -1 */
533 cfg->s2cfg.vmid = -1;
536 if (STE_CFG_S2_ENABLED(config)) {
538 * Stage-1 OAS defaults to OAS even if not enabled as it would be used
539 * in input address check for stage-2.
541 cfg->oas = oas2bits(SMMU_IDR5_OAS);
542 ret = decode_ste_s2_cfg(cfg, ste);
543 if (ret) {
544 goto bad_ste;
548 if (STE_S1CDMAX(ste) != 0) {
549 qemu_log_mask(LOG_UNIMP,
550 "SMMUv3 does not support multiple context descriptors yet\n");
551 goto bad_ste;
554 if (STE_S1STALLD(ste)) {
555 qemu_log_mask(LOG_UNIMP,
556 "SMMUv3 S1 stalling fault model not allowed yet\n");
557 goto bad_ste;
559 return 0;
561 bad_ste:
562 event->type = SMMU_EVT_C_BAD_STE;
563 return -EINVAL;
567 * smmu_find_ste - Return the stream table entry associated
568 * to the sid
570 * @s: smmuv3 handle
571 * @sid: stream ID
572 * @ste: returned stream table entry
573 * @event: handle to an event info
575 * Supports linear and 2-level stream table
576 * Return 0 on success, -EINVAL otherwise
578 static int smmu_find_ste(SMMUv3State *s, uint32_t sid, STE *ste,
579 SMMUEventInfo *event)
581 dma_addr_t addr, strtab_base;
582 uint32_t log2size;
583 int strtab_size_shift;
584 int ret;
586 trace_smmuv3_find_ste(sid, s->features, s->sid_split);
587 log2size = FIELD_EX32(s->strtab_base_cfg, STRTAB_BASE_CFG, LOG2SIZE);
589 * Check SID range against both guest-configured and implementation limits
591 if (sid >= (1 << MIN(log2size, SMMU_IDR1_SIDSIZE))) {
592 event->type = SMMU_EVT_C_BAD_STREAMID;
593 return -EINVAL;
595 if (s->features & SMMU_FEATURE_2LVL_STE) {
596 int l1_ste_offset, l2_ste_offset, max_l2_ste, span, i;
597 dma_addr_t l1ptr, l2ptr;
598 STEDesc l1std;
601 * Align strtab base address to table size. For this purpose, assume it
602 * is not bounded by SMMU_IDR1_SIDSIZE.
604 strtab_size_shift = MAX(5, (int)log2size - s->sid_split - 1 + 3);
605 strtab_base = s->strtab_base & SMMU_BASE_ADDR_MASK &
606 ~MAKE_64BIT_MASK(0, strtab_size_shift);
607 l1_ste_offset = sid >> s->sid_split;
608 l2_ste_offset = sid & ((1 << s->sid_split) - 1);
609 l1ptr = (dma_addr_t)(strtab_base + l1_ste_offset * sizeof(l1std));
610 /* TODO: guarantee 64-bit single-copy atomicity */
611 ret = dma_memory_read(&address_space_memory, l1ptr, &l1std,
612 sizeof(l1std), MEMTXATTRS_UNSPECIFIED);
613 if (ret != MEMTX_OK) {
614 qemu_log_mask(LOG_GUEST_ERROR,
615 "Could not read L1PTR at 0X%"PRIx64"\n", l1ptr);
616 event->type = SMMU_EVT_F_STE_FETCH;
617 event->u.f_ste_fetch.addr = l1ptr;
618 return -EINVAL;
620 for (i = 0; i < ARRAY_SIZE(l1std.word); i++) {
621 le32_to_cpus(&l1std.word[i]);
624 span = L1STD_SPAN(&l1std);
626 if (!span) {
627 /* l2ptr is not valid */
628 if (!event->inval_ste_allowed) {
629 qemu_log_mask(LOG_GUEST_ERROR,
630 "invalid sid=%d (L1STD span=0)\n", sid);
632 event->type = SMMU_EVT_C_BAD_STREAMID;
633 return -EINVAL;
635 max_l2_ste = (1 << span) - 1;
636 l2ptr = l1std_l2ptr(&l1std);
637 trace_smmuv3_find_ste_2lvl(s->strtab_base, l1ptr, l1_ste_offset,
638 l2ptr, l2_ste_offset, max_l2_ste);
639 if (l2_ste_offset > max_l2_ste) {
640 qemu_log_mask(LOG_GUEST_ERROR,
641 "l2_ste_offset=%d > max_l2_ste=%d\n",
642 l2_ste_offset, max_l2_ste);
643 event->type = SMMU_EVT_C_BAD_STE;
644 return -EINVAL;
646 addr = l2ptr + l2_ste_offset * sizeof(*ste);
647 } else {
648 strtab_size_shift = log2size + 5;
649 strtab_base = s->strtab_base & SMMU_BASE_ADDR_MASK &
650 ~MAKE_64BIT_MASK(0, strtab_size_shift);
651 addr = strtab_base + sid * sizeof(*ste);
654 if (smmu_get_ste(s, addr, ste, event)) {
655 return -EINVAL;
658 return 0;
661 static int decode_cd(SMMUTransCfg *cfg, CD *cd, SMMUEventInfo *event)
663 int ret = -EINVAL;
664 int i;
666 if (!CD_VALID(cd) || !CD_AARCH64(cd)) {
667 goto bad_cd;
669 if (!CD_A(cd)) {
670 goto bad_cd; /* SMMU_IDR0.TERM_MODEL == 1 */
672 if (CD_S(cd)) {
673 goto bad_cd; /* !STE_SECURE && SMMU_IDR0.STALL_MODEL == 1 */
675 if (CD_HA(cd) || CD_HD(cd)) {
676 goto bad_cd; /* HTTU = 0 */
679 /* we support only those at the moment */
680 cfg->aa64 = true;
681 cfg->stage = 1;
683 cfg->oas = oas2bits(CD_IPS(cd));
684 cfg->oas = MIN(oas2bits(SMMU_IDR5_OAS), cfg->oas);
685 cfg->tbi = CD_TBI(cd);
686 cfg->asid = CD_ASID(cd);
688 trace_smmuv3_decode_cd(cfg->oas);
690 /* decode data dependent on TT */
691 for (i = 0; i <= 1; i++) {
692 int tg, tsz;
693 SMMUTransTableInfo *tt = &cfg->tt[i];
695 cfg->tt[i].disabled = CD_EPD(cd, i);
696 if (cfg->tt[i].disabled) {
697 continue;
700 tsz = CD_TSZ(cd, i);
701 if (tsz < 16 || tsz > 39) {
702 goto bad_cd;
705 tg = CD_TG(cd, i);
706 tt->granule_sz = tg2granule(tg, i);
707 if ((tt->granule_sz != 12 && tt->granule_sz != 14 &&
708 tt->granule_sz != 16) || CD_ENDI(cd)) {
709 goto bad_cd;
712 tt->tsz = tsz;
713 tt->ttb = CD_TTB(cd, i);
714 if (tt->ttb & ~(MAKE_64BIT_MASK(0, cfg->oas))) {
715 goto bad_cd;
717 tt->had = CD_HAD(cd, i);
718 trace_smmuv3_decode_cd_tt(i, tt->tsz, tt->ttb, tt->granule_sz, tt->had);
721 cfg->record_faults = CD_R(cd);
723 return 0;
725 bad_cd:
726 event->type = SMMU_EVT_C_BAD_CD;
727 return ret;
731 * smmuv3_decode_config - Prepare the translation configuration
732 * for the @mr iommu region
733 * @mr: iommu memory region the translation config must be prepared for
734 * @cfg: output translation configuration which is populated through
735 * the different configuration decoding steps
736 * @event: must be zero'ed by the caller
738 * return < 0 in case of config decoding error (@event is filled
739 * accordingly). Return 0 otherwise.
741 static int smmuv3_decode_config(IOMMUMemoryRegion *mr, SMMUTransCfg *cfg,
742 SMMUEventInfo *event)
744 SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
745 uint32_t sid = smmu_get_sid(sdev);
746 SMMUv3State *s = sdev->smmu;
747 int ret;
748 STE ste;
749 CD cd;
751 /* ASID defaults to -1 (if s1 is not supported). */
752 cfg->asid = -1;
754 ret = smmu_find_ste(s, sid, &ste, event);
755 if (ret) {
756 return ret;
759 ret = decode_ste(s, cfg, &ste, event);
760 if (ret) {
761 return ret;
764 if (cfg->aborted || cfg->bypassed || (cfg->stage == 2)) {
765 return 0;
768 ret = smmu_get_cd(s, &ste, 0 /* ssid */, &cd, event);
769 if (ret) {
770 return ret;
773 return decode_cd(cfg, &cd, event);
777 * smmuv3_get_config - Look up for a cached copy of configuration data for
778 * @sdev and on cache miss performs a configuration structure decoding from
779 * guest RAM.
781 * @sdev: SMMUDevice handle
782 * @event: output event info
784 * The configuration cache contains data resulting from both STE and CD
785 * decoding under the form of an SMMUTransCfg struct. The hash table is indexed
786 * by the SMMUDevice handle.
788 static SMMUTransCfg *smmuv3_get_config(SMMUDevice *sdev, SMMUEventInfo *event)
790 SMMUv3State *s = sdev->smmu;
791 SMMUState *bc = &s->smmu_state;
792 SMMUTransCfg *cfg;
794 cfg = g_hash_table_lookup(bc->configs, sdev);
795 if (cfg) {
796 sdev->cfg_cache_hits++;
797 trace_smmuv3_config_cache_hit(smmu_get_sid(sdev),
798 sdev->cfg_cache_hits, sdev->cfg_cache_misses,
799 100 * sdev->cfg_cache_hits /
800 (sdev->cfg_cache_hits + sdev->cfg_cache_misses));
801 } else {
802 sdev->cfg_cache_misses++;
803 trace_smmuv3_config_cache_miss(smmu_get_sid(sdev),
804 sdev->cfg_cache_hits, sdev->cfg_cache_misses,
805 100 * sdev->cfg_cache_hits /
806 (sdev->cfg_cache_hits + sdev->cfg_cache_misses));
807 cfg = g_new0(SMMUTransCfg, 1);
809 if (!smmuv3_decode_config(&sdev->iommu, cfg, event)) {
810 g_hash_table_insert(bc->configs, sdev, cfg);
811 } else {
812 g_free(cfg);
813 cfg = NULL;
816 return cfg;
819 static void smmuv3_flush_config(SMMUDevice *sdev)
821 SMMUv3State *s = sdev->smmu;
822 SMMUState *bc = &s->smmu_state;
824 trace_smmuv3_config_cache_inv(smmu_get_sid(sdev));
825 g_hash_table_remove(bc->configs, sdev);
828 static IOMMUTLBEntry smmuv3_translate(IOMMUMemoryRegion *mr, hwaddr addr,
829 IOMMUAccessFlags flag, int iommu_idx)
831 SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
832 SMMUv3State *s = sdev->smmu;
833 uint32_t sid = smmu_get_sid(sdev);
834 SMMUEventInfo event = {.type = SMMU_EVT_NONE,
835 .sid = sid,
836 .inval_ste_allowed = false};
837 SMMUPTWEventInfo ptw_info = {};
838 SMMUTranslationStatus status;
839 SMMUState *bs = ARM_SMMU(s);
840 uint64_t page_mask, aligned_addr;
841 SMMUTLBEntry *cached_entry = NULL;
842 SMMUTransTableInfo *tt;
843 SMMUTransCfg *cfg = NULL;
844 IOMMUTLBEntry entry = {
845 .target_as = &address_space_memory,
846 .iova = addr,
847 .translated_addr = addr,
848 .addr_mask = ~(hwaddr)0,
849 .perm = IOMMU_NONE,
852 * Combined attributes used for TLB lookup, as only one stage is supported,
853 * it will hold attributes based on the enabled stage.
855 SMMUTransTableInfo tt_combined;
857 qemu_mutex_lock(&s->mutex);
859 if (!smmu_enabled(s)) {
860 if (FIELD_EX32(s->gbpa, GBPA, ABORT)) {
861 status = SMMU_TRANS_ABORT;
862 } else {
863 status = SMMU_TRANS_DISABLE;
865 goto epilogue;
868 cfg = smmuv3_get_config(sdev, &event);
869 if (!cfg) {
870 status = SMMU_TRANS_ERROR;
871 goto epilogue;
874 if (cfg->aborted) {
875 status = SMMU_TRANS_ABORT;
876 goto epilogue;
879 if (cfg->bypassed) {
880 status = SMMU_TRANS_BYPASS;
881 goto epilogue;
884 if (cfg->stage == 1) {
885 /* Select stage1 translation table. */
886 tt = select_tt(cfg, addr);
887 if (!tt) {
888 if (cfg->record_faults) {
889 event.type = SMMU_EVT_F_TRANSLATION;
890 event.u.f_translation.addr = addr;
891 event.u.f_translation.rnw = flag & 0x1;
893 status = SMMU_TRANS_ERROR;
894 goto epilogue;
896 tt_combined.granule_sz = tt->granule_sz;
897 tt_combined.tsz = tt->tsz;
899 } else {
900 /* Stage2. */
901 tt_combined.granule_sz = cfg->s2cfg.granule_sz;
902 tt_combined.tsz = cfg->s2cfg.tsz;
905 * TLB lookup looks for granule and input size for a translation stage,
906 * as only one stage is supported right now, choose the right values
907 * from the configuration.
909 page_mask = (1ULL << tt_combined.granule_sz) - 1;
910 aligned_addr = addr & ~page_mask;
912 cached_entry = smmu_iotlb_lookup(bs, cfg, &tt_combined, aligned_addr);
913 if (cached_entry) {
914 if ((flag & IOMMU_WO) && !(cached_entry->entry.perm & IOMMU_WO)) {
915 status = SMMU_TRANS_ERROR;
917 * We know that the TLB only contains either stage-1 or stage-2 as
918 * nesting is not supported. So it is sufficient to check the
919 * translation stage to know the TLB stage for now.
921 event.u.f_walk_eabt.s2 = (cfg->stage == 2);
922 if (PTW_RECORD_FAULT(cfg)) {
923 event.type = SMMU_EVT_F_PERMISSION;
924 event.u.f_permission.addr = addr;
925 event.u.f_permission.rnw = flag & 0x1;
927 } else {
928 status = SMMU_TRANS_SUCCESS;
930 goto epilogue;
933 cached_entry = g_new0(SMMUTLBEntry, 1);
935 if (smmu_ptw(cfg, aligned_addr, flag, cached_entry, &ptw_info)) {
936 /* All faults from PTW has S2 field. */
937 event.u.f_walk_eabt.s2 = (ptw_info.stage == 2);
938 g_free(cached_entry);
939 switch (ptw_info.type) {
940 case SMMU_PTW_ERR_WALK_EABT:
941 event.type = SMMU_EVT_F_WALK_EABT;
942 event.u.f_walk_eabt.addr = addr;
943 event.u.f_walk_eabt.rnw = flag & 0x1;
944 event.u.f_walk_eabt.class = 0x1;
945 event.u.f_walk_eabt.addr2 = ptw_info.addr;
946 break;
947 case SMMU_PTW_ERR_TRANSLATION:
948 if (PTW_RECORD_FAULT(cfg)) {
949 event.type = SMMU_EVT_F_TRANSLATION;
950 event.u.f_translation.addr = addr;
951 event.u.f_translation.rnw = flag & 0x1;
953 break;
954 case SMMU_PTW_ERR_ADDR_SIZE:
955 if (PTW_RECORD_FAULT(cfg)) {
956 event.type = SMMU_EVT_F_ADDR_SIZE;
957 event.u.f_addr_size.addr = addr;
958 event.u.f_addr_size.rnw = flag & 0x1;
960 break;
961 case SMMU_PTW_ERR_ACCESS:
962 if (PTW_RECORD_FAULT(cfg)) {
963 event.type = SMMU_EVT_F_ACCESS;
964 event.u.f_access.addr = addr;
965 event.u.f_access.rnw = flag & 0x1;
967 break;
968 case SMMU_PTW_ERR_PERMISSION:
969 if (PTW_RECORD_FAULT(cfg)) {
970 event.type = SMMU_EVT_F_PERMISSION;
971 event.u.f_permission.addr = addr;
972 event.u.f_permission.rnw = flag & 0x1;
974 break;
975 default:
976 g_assert_not_reached();
978 status = SMMU_TRANS_ERROR;
979 } else {
980 smmu_iotlb_insert(bs, cfg, cached_entry);
981 status = SMMU_TRANS_SUCCESS;
984 epilogue:
985 qemu_mutex_unlock(&s->mutex);
986 switch (status) {
987 case SMMU_TRANS_SUCCESS:
988 entry.perm = cached_entry->entry.perm;
989 entry.translated_addr = cached_entry->entry.translated_addr +
990 (addr & cached_entry->entry.addr_mask);
991 entry.addr_mask = cached_entry->entry.addr_mask;
992 trace_smmuv3_translate_success(mr->parent_obj.name, sid, addr,
993 entry.translated_addr, entry.perm);
994 break;
995 case SMMU_TRANS_DISABLE:
996 entry.perm = flag;
997 entry.addr_mask = ~TARGET_PAGE_MASK;
998 trace_smmuv3_translate_disable(mr->parent_obj.name, sid, addr,
999 entry.perm);
1000 break;
1001 case SMMU_TRANS_BYPASS:
1002 entry.perm = flag;
1003 entry.addr_mask = ~TARGET_PAGE_MASK;
1004 trace_smmuv3_translate_bypass(mr->parent_obj.name, sid, addr,
1005 entry.perm);
1006 break;
1007 case SMMU_TRANS_ABORT:
1008 /* no event is recorded on abort */
1009 trace_smmuv3_translate_abort(mr->parent_obj.name, sid, addr,
1010 entry.perm);
1011 break;
1012 case SMMU_TRANS_ERROR:
1013 qemu_log_mask(LOG_GUEST_ERROR,
1014 "%s translation failed for iova=0x%"PRIx64" (%s)\n",
1015 mr->parent_obj.name, addr, smmu_event_string(event.type));
1016 smmuv3_record_event(s, &event);
1017 break;
1020 return entry;
1024 * smmuv3_notify_iova - call the notifier @n for a given
1025 * @asid and @iova tuple.
1027 * @mr: IOMMU mr region handle
1028 * @n: notifier to be called
1029 * @asid: address space ID or negative value if we don't care
1030 * @vmid: virtual machine ID or negative value if we don't care
1031 * @iova: iova
1032 * @tg: translation granule (if communicated through range invalidation)
1033 * @num_pages: number of @granule sized pages (if tg != 0), otherwise 1
1035 static void smmuv3_notify_iova(IOMMUMemoryRegion *mr,
1036 IOMMUNotifier *n,
1037 int asid, int vmid,
1038 dma_addr_t iova, uint8_t tg,
1039 uint64_t num_pages)
1041 SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
1042 IOMMUTLBEvent event;
1043 uint8_t granule;
1044 SMMUv3State *s = sdev->smmu;
1046 if (!tg) {
1047 SMMUEventInfo eventinfo = {.inval_ste_allowed = true};
1048 SMMUTransCfg *cfg = smmuv3_get_config(sdev, &eventinfo);
1049 SMMUTransTableInfo *tt;
1051 if (!cfg) {
1052 return;
1055 if (asid >= 0 && cfg->asid != asid) {
1056 return;
1059 if (vmid >= 0 && cfg->s2cfg.vmid != vmid) {
1060 return;
1063 if (STAGE1_SUPPORTED(s)) {
1064 tt = select_tt(cfg, iova);
1065 if (!tt) {
1066 return;
1068 granule = tt->granule_sz;
1069 } else {
1070 granule = cfg->s2cfg.granule_sz;
1073 } else {
1074 granule = tg * 2 + 10;
1077 event.type = IOMMU_NOTIFIER_UNMAP;
1078 event.entry.target_as = &address_space_memory;
1079 event.entry.iova = iova;
1080 event.entry.addr_mask = num_pages * (1 << granule) - 1;
1081 event.entry.perm = IOMMU_NONE;
1083 memory_region_notify_iommu_one(n, &event);
1086 /* invalidate an asid/vmid/iova range tuple in all mr's */
1087 static void smmuv3_inv_notifiers_iova(SMMUState *s, int asid, int vmid,
1088 dma_addr_t iova, uint8_t tg,
1089 uint64_t num_pages)
1091 SMMUDevice *sdev;
1093 QLIST_FOREACH(sdev, &s->devices_with_notifiers, next) {
1094 IOMMUMemoryRegion *mr = &sdev->iommu;
1095 IOMMUNotifier *n;
1097 trace_smmuv3_inv_notifiers_iova(mr->parent_obj.name, asid, vmid,
1098 iova, tg, num_pages);
1100 IOMMU_NOTIFIER_FOREACH(n, mr) {
1101 smmuv3_notify_iova(mr, n, asid, vmid, iova, tg, num_pages);
1106 static void smmuv3_range_inval(SMMUState *s, Cmd *cmd)
1108 dma_addr_t end, addr = CMD_ADDR(cmd);
1109 uint8_t type = CMD_TYPE(cmd);
1110 int vmid = -1;
1111 uint8_t scale = CMD_SCALE(cmd);
1112 uint8_t num = CMD_NUM(cmd);
1113 uint8_t ttl = CMD_TTL(cmd);
1114 bool leaf = CMD_LEAF(cmd);
1115 uint8_t tg = CMD_TG(cmd);
1116 uint64_t num_pages;
1117 uint8_t granule;
1118 int asid = -1;
1119 SMMUv3State *smmuv3 = ARM_SMMUV3(s);
1121 /* Only consider VMID if stage-2 is supported. */
1122 if (STAGE2_SUPPORTED(smmuv3)) {
1123 vmid = CMD_VMID(cmd);
1126 if (type == SMMU_CMD_TLBI_NH_VA) {
1127 asid = CMD_ASID(cmd);
1130 if (!tg) {
1131 trace_smmuv3_range_inval(vmid, asid, addr, tg, 1, ttl, leaf);
1132 smmuv3_inv_notifiers_iova(s, asid, vmid, addr, tg, 1);
1133 smmu_iotlb_inv_iova(s, asid, vmid, addr, tg, 1, ttl);
1134 return;
1137 /* RIL in use */
1139 num_pages = (num + 1) * BIT_ULL(scale);
1140 granule = tg * 2 + 10;
1142 /* Split invalidations into ^2 range invalidations */
1143 end = addr + (num_pages << granule) - 1;
1145 while (addr != end + 1) {
1146 uint64_t mask = dma_aligned_pow2_mask(addr, end, 64);
1148 num_pages = (mask + 1) >> granule;
1149 trace_smmuv3_range_inval(vmid, asid, addr, tg, num_pages, ttl, leaf);
1150 smmuv3_inv_notifiers_iova(s, asid, vmid, addr, tg, num_pages);
1151 smmu_iotlb_inv_iova(s, asid, vmid, addr, tg, num_pages, ttl);
1152 addr += mask + 1;
1156 static gboolean
1157 smmuv3_invalidate_ste(gpointer key, gpointer value, gpointer user_data)
1159 SMMUDevice *sdev = (SMMUDevice *)key;
1160 uint32_t sid = smmu_get_sid(sdev);
1161 SMMUSIDRange *sid_range = (SMMUSIDRange *)user_data;
1163 if (sid < sid_range->start || sid > sid_range->end) {
1164 return false;
1166 trace_smmuv3_config_cache_inv(sid);
1167 return true;
1170 static int smmuv3_cmdq_consume(SMMUv3State *s)
1172 SMMUState *bs = ARM_SMMU(s);
1173 SMMUCmdError cmd_error = SMMU_CERROR_NONE;
1174 SMMUQueue *q = &s->cmdq;
1175 SMMUCommandType type = 0;
1177 if (!smmuv3_cmdq_enabled(s)) {
1178 return 0;
1181 * some commands depend on register values, typically CR0. In case those
1182 * register values change while handling the command, spec says it
1183 * is UNPREDICTABLE whether the command is interpreted under the new
1184 * or old value.
1187 while (!smmuv3_q_empty(q)) {
1188 uint32_t pending = s->gerror ^ s->gerrorn;
1189 Cmd cmd;
1191 trace_smmuv3_cmdq_consume(Q_PROD(q), Q_CONS(q),
1192 Q_PROD_WRAP(q), Q_CONS_WRAP(q));
1194 if (FIELD_EX32(pending, GERROR, CMDQ_ERR)) {
1195 break;
1198 if (queue_read(q, &cmd) != MEMTX_OK) {
1199 cmd_error = SMMU_CERROR_ABT;
1200 break;
1203 type = CMD_TYPE(&cmd);
1205 trace_smmuv3_cmdq_opcode(smmu_cmd_string(type));
1207 qemu_mutex_lock(&s->mutex);
1208 switch (type) {
1209 case SMMU_CMD_SYNC:
1210 if (CMD_SYNC_CS(&cmd) & CMD_SYNC_SIG_IRQ) {
1211 smmuv3_trigger_irq(s, SMMU_IRQ_CMD_SYNC, 0);
1213 break;
1214 case SMMU_CMD_PREFETCH_CONFIG:
1215 case SMMU_CMD_PREFETCH_ADDR:
1216 break;
1217 case SMMU_CMD_CFGI_STE:
1219 uint32_t sid = CMD_SID(&cmd);
1220 IOMMUMemoryRegion *mr = smmu_iommu_mr(bs, sid);
1221 SMMUDevice *sdev;
1223 if (CMD_SSEC(&cmd)) {
1224 cmd_error = SMMU_CERROR_ILL;
1225 break;
1228 if (!mr) {
1229 break;
1232 trace_smmuv3_cmdq_cfgi_ste(sid);
1233 sdev = container_of(mr, SMMUDevice, iommu);
1234 smmuv3_flush_config(sdev);
1236 break;
1238 case SMMU_CMD_CFGI_STE_RANGE: /* same as SMMU_CMD_CFGI_ALL */
1240 uint32_t sid = CMD_SID(&cmd), mask;
1241 uint8_t range = CMD_STE_RANGE(&cmd);
1242 SMMUSIDRange sid_range;
1244 if (CMD_SSEC(&cmd)) {
1245 cmd_error = SMMU_CERROR_ILL;
1246 break;
1249 mask = (1ULL << (range + 1)) - 1;
1250 sid_range.start = sid & ~mask;
1251 sid_range.end = sid_range.start + mask;
1253 trace_smmuv3_cmdq_cfgi_ste_range(sid_range.start, sid_range.end);
1254 g_hash_table_foreach_remove(bs->configs, smmuv3_invalidate_ste,
1255 &sid_range);
1256 break;
1258 case SMMU_CMD_CFGI_CD:
1259 case SMMU_CMD_CFGI_CD_ALL:
1261 uint32_t sid = CMD_SID(&cmd);
1262 IOMMUMemoryRegion *mr = smmu_iommu_mr(bs, sid);
1263 SMMUDevice *sdev;
1265 if (CMD_SSEC(&cmd)) {
1266 cmd_error = SMMU_CERROR_ILL;
1267 break;
1270 if (!mr) {
1271 break;
1274 trace_smmuv3_cmdq_cfgi_cd(sid);
1275 sdev = container_of(mr, SMMUDevice, iommu);
1276 smmuv3_flush_config(sdev);
1277 break;
1279 case SMMU_CMD_TLBI_NH_ASID:
1281 uint16_t asid = CMD_ASID(&cmd);
1283 if (!STAGE1_SUPPORTED(s)) {
1284 cmd_error = SMMU_CERROR_ILL;
1285 break;
1288 trace_smmuv3_cmdq_tlbi_nh_asid(asid);
1289 smmu_inv_notifiers_all(&s->smmu_state);
1290 smmu_iotlb_inv_asid(bs, asid);
1291 break;
1293 case SMMU_CMD_TLBI_NH_ALL:
1294 if (!STAGE1_SUPPORTED(s)) {
1295 cmd_error = SMMU_CERROR_ILL;
1296 break;
1298 QEMU_FALLTHROUGH;
1299 case SMMU_CMD_TLBI_NSNH_ALL:
1300 trace_smmuv3_cmdq_tlbi_nh();
1301 smmu_inv_notifiers_all(&s->smmu_state);
1302 smmu_iotlb_inv_all(bs);
1303 break;
1304 case SMMU_CMD_TLBI_NH_VAA:
1305 case SMMU_CMD_TLBI_NH_VA:
1306 if (!STAGE1_SUPPORTED(s)) {
1307 cmd_error = SMMU_CERROR_ILL;
1308 break;
1310 smmuv3_range_inval(bs, &cmd);
1311 break;
1312 case SMMU_CMD_TLBI_S12_VMALL:
1314 uint16_t vmid = CMD_VMID(&cmd);
1316 if (!STAGE2_SUPPORTED(s)) {
1317 cmd_error = SMMU_CERROR_ILL;
1318 break;
1321 trace_smmuv3_cmdq_tlbi_s12_vmid(vmid);
1322 smmu_inv_notifiers_all(&s->smmu_state);
1323 smmu_iotlb_inv_vmid(bs, vmid);
1324 break;
1326 case SMMU_CMD_TLBI_S2_IPA:
1327 if (!STAGE2_SUPPORTED(s)) {
1328 cmd_error = SMMU_CERROR_ILL;
1329 break;
1332 * As currently only either s1 or s2 are supported
1333 * we can reuse same function for s2.
1335 smmuv3_range_inval(bs, &cmd);
1336 break;
1337 case SMMU_CMD_TLBI_EL3_ALL:
1338 case SMMU_CMD_TLBI_EL3_VA:
1339 case SMMU_CMD_TLBI_EL2_ALL:
1340 case SMMU_CMD_TLBI_EL2_ASID:
1341 case SMMU_CMD_TLBI_EL2_VA:
1342 case SMMU_CMD_TLBI_EL2_VAA:
1343 case SMMU_CMD_ATC_INV:
1344 case SMMU_CMD_PRI_RESP:
1345 case SMMU_CMD_RESUME:
1346 case SMMU_CMD_STALL_TERM:
1347 trace_smmuv3_unhandled_cmd(type);
1348 break;
1349 default:
1350 cmd_error = SMMU_CERROR_ILL;
1351 break;
1353 qemu_mutex_unlock(&s->mutex);
1354 if (cmd_error) {
1355 if (cmd_error == SMMU_CERROR_ILL) {
1356 qemu_log_mask(LOG_GUEST_ERROR,
1357 "Illegal command type: %d\n", CMD_TYPE(&cmd));
1359 break;
1362 * We only increment the cons index after the completion of
1363 * the command. We do that because the SYNC returns immediately
1364 * and does not check the completion of previous commands
1366 queue_cons_incr(q);
1369 if (cmd_error) {
1370 trace_smmuv3_cmdq_consume_error(smmu_cmd_string(type), cmd_error);
1371 smmu_write_cmdq_err(s, cmd_error);
1372 smmuv3_trigger_irq(s, SMMU_IRQ_GERROR, R_GERROR_CMDQ_ERR_MASK);
1375 trace_smmuv3_cmdq_consume_out(Q_PROD(q), Q_CONS(q),
1376 Q_PROD_WRAP(q), Q_CONS_WRAP(q));
1378 return 0;
1381 static MemTxResult smmu_writell(SMMUv3State *s, hwaddr offset,
1382 uint64_t data, MemTxAttrs attrs)
1384 switch (offset) {
1385 case A_GERROR_IRQ_CFG0:
1386 s->gerror_irq_cfg0 = data;
1387 return MEMTX_OK;
1388 case A_STRTAB_BASE:
1389 s->strtab_base = data;
1390 return MEMTX_OK;
1391 case A_CMDQ_BASE:
1392 s->cmdq.base = data;
1393 s->cmdq.log2size = extract64(s->cmdq.base, 0, 5);
1394 if (s->cmdq.log2size > SMMU_CMDQS) {
1395 s->cmdq.log2size = SMMU_CMDQS;
1397 return MEMTX_OK;
1398 case A_EVENTQ_BASE:
1399 s->eventq.base = data;
1400 s->eventq.log2size = extract64(s->eventq.base, 0, 5);
1401 if (s->eventq.log2size > SMMU_EVENTQS) {
1402 s->eventq.log2size = SMMU_EVENTQS;
1404 return MEMTX_OK;
1405 case A_EVENTQ_IRQ_CFG0:
1406 s->eventq_irq_cfg0 = data;
1407 return MEMTX_OK;
1408 default:
1409 qemu_log_mask(LOG_UNIMP,
1410 "%s Unexpected 64-bit access to 0x%"PRIx64" (WI)\n",
1411 __func__, offset);
1412 return MEMTX_OK;
1416 static MemTxResult smmu_writel(SMMUv3State *s, hwaddr offset,
1417 uint64_t data, MemTxAttrs attrs)
1419 switch (offset) {
1420 case A_CR0:
1421 s->cr[0] = data;
1422 s->cr0ack = data & ~SMMU_CR0_RESERVED;
1423 /* in case the command queue has been enabled */
1424 smmuv3_cmdq_consume(s);
1425 return MEMTX_OK;
1426 case A_CR1:
1427 s->cr[1] = data;
1428 return MEMTX_OK;
1429 case A_CR2:
1430 s->cr[2] = data;
1431 return MEMTX_OK;
1432 case A_IRQ_CTRL:
1433 s->irq_ctrl = data;
1434 return MEMTX_OK;
1435 case A_GERRORN:
1436 smmuv3_write_gerrorn(s, data);
1438 * By acknowledging the CMDQ_ERR, SW may notify cmds can
1439 * be processed again
1441 smmuv3_cmdq_consume(s);
1442 return MEMTX_OK;
1443 case A_GERROR_IRQ_CFG0: /* 64b */
1444 s->gerror_irq_cfg0 = deposit64(s->gerror_irq_cfg0, 0, 32, data);
1445 return MEMTX_OK;
1446 case A_GERROR_IRQ_CFG0 + 4:
1447 s->gerror_irq_cfg0 = deposit64(s->gerror_irq_cfg0, 32, 32, data);
1448 return MEMTX_OK;
1449 case A_GERROR_IRQ_CFG1:
1450 s->gerror_irq_cfg1 = data;
1451 return MEMTX_OK;
1452 case A_GERROR_IRQ_CFG2:
1453 s->gerror_irq_cfg2 = data;
1454 return MEMTX_OK;
1455 case A_GBPA:
1457 * If UPDATE is not set, the write is ignored. This is the only
1458 * permitted behavior in SMMUv3.2 and later.
1460 if (data & R_GBPA_UPDATE_MASK) {
1461 /* Ignore update bit as write is synchronous. */
1462 s->gbpa = data & ~R_GBPA_UPDATE_MASK;
1464 return MEMTX_OK;
1465 case A_STRTAB_BASE: /* 64b */
1466 s->strtab_base = deposit64(s->strtab_base, 0, 32, data);
1467 return MEMTX_OK;
1468 case A_STRTAB_BASE + 4:
1469 s->strtab_base = deposit64(s->strtab_base, 32, 32, data);
1470 return MEMTX_OK;
1471 case A_STRTAB_BASE_CFG:
1472 s->strtab_base_cfg = data;
1473 if (FIELD_EX32(data, STRTAB_BASE_CFG, FMT) == 1) {
1474 s->sid_split = FIELD_EX32(data, STRTAB_BASE_CFG, SPLIT);
1475 s->features |= SMMU_FEATURE_2LVL_STE;
1477 return MEMTX_OK;
1478 case A_CMDQ_BASE: /* 64b */
1479 s->cmdq.base = deposit64(s->cmdq.base, 0, 32, data);
1480 s->cmdq.log2size = extract64(s->cmdq.base, 0, 5);
1481 if (s->cmdq.log2size > SMMU_CMDQS) {
1482 s->cmdq.log2size = SMMU_CMDQS;
1484 return MEMTX_OK;
1485 case A_CMDQ_BASE + 4: /* 64b */
1486 s->cmdq.base = deposit64(s->cmdq.base, 32, 32, data);
1487 return MEMTX_OK;
1488 case A_CMDQ_PROD:
1489 s->cmdq.prod = data;
1490 smmuv3_cmdq_consume(s);
1491 return MEMTX_OK;
1492 case A_CMDQ_CONS:
1493 s->cmdq.cons = data;
1494 return MEMTX_OK;
1495 case A_EVENTQ_BASE: /* 64b */
1496 s->eventq.base = deposit64(s->eventq.base, 0, 32, data);
1497 s->eventq.log2size = extract64(s->eventq.base, 0, 5);
1498 if (s->eventq.log2size > SMMU_EVENTQS) {
1499 s->eventq.log2size = SMMU_EVENTQS;
1501 return MEMTX_OK;
1502 case A_EVENTQ_BASE + 4:
1503 s->eventq.base = deposit64(s->eventq.base, 32, 32, data);
1504 return MEMTX_OK;
1505 case A_EVENTQ_PROD:
1506 s->eventq.prod = data;
1507 return MEMTX_OK;
1508 case A_EVENTQ_CONS:
1509 s->eventq.cons = data;
1510 return MEMTX_OK;
1511 case A_EVENTQ_IRQ_CFG0: /* 64b */
1512 s->eventq_irq_cfg0 = deposit64(s->eventq_irq_cfg0, 0, 32, data);
1513 return MEMTX_OK;
1514 case A_EVENTQ_IRQ_CFG0 + 4:
1515 s->eventq_irq_cfg0 = deposit64(s->eventq_irq_cfg0, 32, 32, data);
1516 return MEMTX_OK;
1517 case A_EVENTQ_IRQ_CFG1:
1518 s->eventq_irq_cfg1 = data;
1519 return MEMTX_OK;
1520 case A_EVENTQ_IRQ_CFG2:
1521 s->eventq_irq_cfg2 = data;
1522 return MEMTX_OK;
1523 default:
1524 qemu_log_mask(LOG_UNIMP,
1525 "%s Unexpected 32-bit access to 0x%"PRIx64" (WI)\n",
1526 __func__, offset);
1527 return MEMTX_OK;
1531 static MemTxResult smmu_write_mmio(void *opaque, hwaddr offset, uint64_t data,
1532 unsigned size, MemTxAttrs attrs)
1534 SMMUState *sys = opaque;
1535 SMMUv3State *s = ARM_SMMUV3(sys);
1536 MemTxResult r;
1538 /* CONSTRAINED UNPREDICTABLE choice to have page0/1 be exact aliases */
1539 offset &= ~0x10000;
1541 switch (size) {
1542 case 8:
1543 r = smmu_writell(s, offset, data, attrs);
1544 break;
1545 case 4:
1546 r = smmu_writel(s, offset, data, attrs);
1547 break;
1548 default:
1549 r = MEMTX_ERROR;
1550 break;
1553 trace_smmuv3_write_mmio(offset, data, size, r);
1554 return r;
1557 static MemTxResult smmu_readll(SMMUv3State *s, hwaddr offset,
1558 uint64_t *data, MemTxAttrs attrs)
1560 switch (offset) {
1561 case A_GERROR_IRQ_CFG0:
1562 *data = s->gerror_irq_cfg0;
1563 return MEMTX_OK;
1564 case A_STRTAB_BASE:
1565 *data = s->strtab_base;
1566 return MEMTX_OK;
1567 case A_CMDQ_BASE:
1568 *data = s->cmdq.base;
1569 return MEMTX_OK;
1570 case A_EVENTQ_BASE:
1571 *data = s->eventq.base;
1572 return MEMTX_OK;
1573 default:
1574 *data = 0;
1575 qemu_log_mask(LOG_UNIMP,
1576 "%s Unexpected 64-bit access to 0x%"PRIx64" (RAZ)\n",
1577 __func__, offset);
1578 return MEMTX_OK;
1582 static MemTxResult smmu_readl(SMMUv3State *s, hwaddr offset,
1583 uint64_t *data, MemTxAttrs attrs)
1585 switch (offset) {
1586 case A_IDREGS ... A_IDREGS + 0x2f:
1587 *data = smmuv3_idreg(offset - A_IDREGS);
1588 return MEMTX_OK;
1589 case A_IDR0 ... A_IDR5:
1590 *data = s->idr[(offset - A_IDR0) / 4];
1591 return MEMTX_OK;
1592 case A_IIDR:
1593 *data = s->iidr;
1594 return MEMTX_OK;
1595 case A_AIDR:
1596 *data = s->aidr;
1597 return MEMTX_OK;
1598 case A_CR0:
1599 *data = s->cr[0];
1600 return MEMTX_OK;
1601 case A_CR0ACK:
1602 *data = s->cr0ack;
1603 return MEMTX_OK;
1604 case A_CR1:
1605 *data = s->cr[1];
1606 return MEMTX_OK;
1607 case A_CR2:
1608 *data = s->cr[2];
1609 return MEMTX_OK;
1610 case A_STATUSR:
1611 *data = s->statusr;
1612 return MEMTX_OK;
1613 case A_GBPA:
1614 *data = s->gbpa;
1615 return MEMTX_OK;
1616 case A_IRQ_CTRL:
1617 case A_IRQ_CTRL_ACK:
1618 *data = s->irq_ctrl;
1619 return MEMTX_OK;
1620 case A_GERROR:
1621 *data = s->gerror;
1622 return MEMTX_OK;
1623 case A_GERRORN:
1624 *data = s->gerrorn;
1625 return MEMTX_OK;
1626 case A_GERROR_IRQ_CFG0: /* 64b */
1627 *data = extract64(s->gerror_irq_cfg0, 0, 32);
1628 return MEMTX_OK;
1629 case A_GERROR_IRQ_CFG0 + 4:
1630 *data = extract64(s->gerror_irq_cfg0, 32, 32);
1631 return MEMTX_OK;
1632 case A_GERROR_IRQ_CFG1:
1633 *data = s->gerror_irq_cfg1;
1634 return MEMTX_OK;
1635 case A_GERROR_IRQ_CFG2:
1636 *data = s->gerror_irq_cfg2;
1637 return MEMTX_OK;
1638 case A_STRTAB_BASE: /* 64b */
1639 *data = extract64(s->strtab_base, 0, 32);
1640 return MEMTX_OK;
1641 case A_STRTAB_BASE + 4: /* 64b */
1642 *data = extract64(s->strtab_base, 32, 32);
1643 return MEMTX_OK;
1644 case A_STRTAB_BASE_CFG:
1645 *data = s->strtab_base_cfg;
1646 return MEMTX_OK;
1647 case A_CMDQ_BASE: /* 64b */
1648 *data = extract64(s->cmdq.base, 0, 32);
1649 return MEMTX_OK;
1650 case A_CMDQ_BASE + 4:
1651 *data = extract64(s->cmdq.base, 32, 32);
1652 return MEMTX_OK;
1653 case A_CMDQ_PROD:
1654 *data = s->cmdq.prod;
1655 return MEMTX_OK;
1656 case A_CMDQ_CONS:
1657 *data = s->cmdq.cons;
1658 return MEMTX_OK;
1659 case A_EVENTQ_BASE: /* 64b */
1660 *data = extract64(s->eventq.base, 0, 32);
1661 return MEMTX_OK;
1662 case A_EVENTQ_BASE + 4: /* 64b */
1663 *data = extract64(s->eventq.base, 32, 32);
1664 return MEMTX_OK;
1665 case A_EVENTQ_PROD:
1666 *data = s->eventq.prod;
1667 return MEMTX_OK;
1668 case A_EVENTQ_CONS:
1669 *data = s->eventq.cons;
1670 return MEMTX_OK;
1671 default:
1672 *data = 0;
1673 qemu_log_mask(LOG_UNIMP,
1674 "%s unhandled 32-bit access at 0x%"PRIx64" (RAZ)\n",
1675 __func__, offset);
1676 return MEMTX_OK;
1680 static MemTxResult smmu_read_mmio(void *opaque, hwaddr offset, uint64_t *data,
1681 unsigned size, MemTxAttrs attrs)
1683 SMMUState *sys = opaque;
1684 SMMUv3State *s = ARM_SMMUV3(sys);
1685 MemTxResult r;
1687 /* CONSTRAINED UNPREDICTABLE choice to have page0/1 be exact aliases */
1688 offset &= ~0x10000;
1690 switch (size) {
1691 case 8:
1692 r = smmu_readll(s, offset, data, attrs);
1693 break;
1694 case 4:
1695 r = smmu_readl(s, offset, data, attrs);
1696 break;
1697 default:
1698 r = MEMTX_ERROR;
1699 break;
1702 trace_smmuv3_read_mmio(offset, *data, size, r);
1703 return r;
1706 static const MemoryRegionOps smmu_mem_ops = {
1707 .read_with_attrs = smmu_read_mmio,
1708 .write_with_attrs = smmu_write_mmio,
1709 .endianness = DEVICE_LITTLE_ENDIAN,
1710 .valid = {
1711 .min_access_size = 4,
1712 .max_access_size = 8,
1714 .impl = {
1715 .min_access_size = 4,
1716 .max_access_size = 8,
1720 static void smmu_init_irq(SMMUv3State *s, SysBusDevice *dev)
1722 int i;
1724 for (i = 0; i < ARRAY_SIZE(s->irq); i++) {
1725 sysbus_init_irq(dev, &s->irq[i]);
1729 static void smmu_reset_hold(Object *obj)
1731 SMMUv3State *s = ARM_SMMUV3(obj);
1732 SMMUv3Class *c = ARM_SMMUV3_GET_CLASS(s);
1734 if (c->parent_phases.hold) {
1735 c->parent_phases.hold(obj);
1738 smmuv3_init_regs(s);
1741 static void smmu_realize(DeviceState *d, Error **errp)
1743 SMMUState *sys = ARM_SMMU(d);
1744 SMMUv3State *s = ARM_SMMUV3(sys);
1745 SMMUv3Class *c = ARM_SMMUV3_GET_CLASS(s);
1746 SysBusDevice *dev = SYS_BUS_DEVICE(d);
1747 Error *local_err = NULL;
1749 c->parent_realize(d, &local_err);
1750 if (local_err) {
1751 error_propagate(errp, local_err);
1752 return;
1755 qemu_mutex_init(&s->mutex);
1757 memory_region_init_io(&sys->iomem, OBJECT(s),
1758 &smmu_mem_ops, sys, TYPE_ARM_SMMUV3, 0x20000);
1760 sys->mrtypename = TYPE_SMMUV3_IOMMU_MEMORY_REGION;
1762 sysbus_init_mmio(dev, &sys->iomem);
1764 smmu_init_irq(s, dev);
1767 static const VMStateDescription vmstate_smmuv3_queue = {
1768 .name = "smmuv3_queue",
1769 .version_id = 1,
1770 .minimum_version_id = 1,
1771 .fields = (VMStateField[]) {
1772 VMSTATE_UINT64(base, SMMUQueue),
1773 VMSTATE_UINT32(prod, SMMUQueue),
1774 VMSTATE_UINT32(cons, SMMUQueue),
1775 VMSTATE_UINT8(log2size, SMMUQueue),
1776 VMSTATE_END_OF_LIST(),
1780 static bool smmuv3_gbpa_needed(void *opaque)
1782 SMMUv3State *s = opaque;
1784 /* Only migrate GBPA if it has different reset value. */
1785 return s->gbpa != SMMU_GBPA_RESET_VAL;
1788 static const VMStateDescription vmstate_gbpa = {
1789 .name = "smmuv3/gbpa",
1790 .version_id = 1,
1791 .minimum_version_id = 1,
1792 .needed = smmuv3_gbpa_needed,
1793 .fields = (VMStateField[]) {
1794 VMSTATE_UINT32(gbpa, SMMUv3State),
1795 VMSTATE_END_OF_LIST()
1799 static const VMStateDescription vmstate_smmuv3 = {
1800 .name = "smmuv3",
1801 .version_id = 1,
1802 .minimum_version_id = 1,
1803 .priority = MIG_PRI_IOMMU,
1804 .fields = (VMStateField[]) {
1805 VMSTATE_UINT32(features, SMMUv3State),
1806 VMSTATE_UINT8(sid_size, SMMUv3State),
1807 VMSTATE_UINT8(sid_split, SMMUv3State),
1809 VMSTATE_UINT32_ARRAY(cr, SMMUv3State, 3),
1810 VMSTATE_UINT32(cr0ack, SMMUv3State),
1811 VMSTATE_UINT32(statusr, SMMUv3State),
1812 VMSTATE_UINT32(irq_ctrl, SMMUv3State),
1813 VMSTATE_UINT32(gerror, SMMUv3State),
1814 VMSTATE_UINT32(gerrorn, SMMUv3State),
1815 VMSTATE_UINT64(gerror_irq_cfg0, SMMUv3State),
1816 VMSTATE_UINT32(gerror_irq_cfg1, SMMUv3State),
1817 VMSTATE_UINT32(gerror_irq_cfg2, SMMUv3State),
1818 VMSTATE_UINT64(strtab_base, SMMUv3State),
1819 VMSTATE_UINT32(strtab_base_cfg, SMMUv3State),
1820 VMSTATE_UINT64(eventq_irq_cfg0, SMMUv3State),
1821 VMSTATE_UINT32(eventq_irq_cfg1, SMMUv3State),
1822 VMSTATE_UINT32(eventq_irq_cfg2, SMMUv3State),
1824 VMSTATE_STRUCT(cmdq, SMMUv3State, 0, vmstate_smmuv3_queue, SMMUQueue),
1825 VMSTATE_STRUCT(eventq, SMMUv3State, 0, vmstate_smmuv3_queue, SMMUQueue),
1827 VMSTATE_END_OF_LIST(),
1829 .subsections = (const VMStateDescription * []) {
1830 &vmstate_gbpa,
1831 NULL
1835 static Property smmuv3_properties[] = {
1837 * Stages of translation advertised.
1838 * "1": Stage 1
1839 * "2": Stage 2
1840 * Defaults to stage 1
1842 DEFINE_PROP_STRING("stage", SMMUv3State, stage),
1843 DEFINE_PROP_END_OF_LIST()
1846 static void smmuv3_instance_init(Object *obj)
1848 /* Nothing much to do here as of now */
1851 static void smmuv3_class_init(ObjectClass *klass, void *data)
1853 DeviceClass *dc = DEVICE_CLASS(klass);
1854 ResettableClass *rc = RESETTABLE_CLASS(klass);
1855 SMMUv3Class *c = ARM_SMMUV3_CLASS(klass);
1857 dc->vmsd = &vmstate_smmuv3;
1858 resettable_class_set_parent_phases(rc, NULL, smmu_reset_hold, NULL,
1859 &c->parent_phases);
1860 c->parent_realize = dc->realize;
1861 dc->realize = smmu_realize;
1862 device_class_set_props(dc, smmuv3_properties);
1865 static int smmuv3_notify_flag_changed(IOMMUMemoryRegion *iommu,
1866 IOMMUNotifierFlag old,
1867 IOMMUNotifierFlag new,
1868 Error **errp)
1870 SMMUDevice *sdev = container_of(iommu, SMMUDevice, iommu);
1871 SMMUv3State *s3 = sdev->smmu;
1872 SMMUState *s = &(s3->smmu_state);
1874 if (new & IOMMU_NOTIFIER_DEVIOTLB_UNMAP) {
1875 error_setg(errp, "SMMUv3 does not support dev-iotlb yet");
1876 return -EINVAL;
1879 if (new & IOMMU_NOTIFIER_MAP) {
1880 error_setg(errp,
1881 "device %02x.%02x.%x requires iommu MAP notifier which is "
1882 "not currently supported", pci_bus_num(sdev->bus),
1883 PCI_SLOT(sdev->devfn), PCI_FUNC(sdev->devfn));
1884 return -EINVAL;
1887 if (old == IOMMU_NOTIFIER_NONE) {
1888 trace_smmuv3_notify_flag_add(iommu->parent_obj.name);
1889 QLIST_INSERT_HEAD(&s->devices_with_notifiers, sdev, next);
1890 } else if (new == IOMMU_NOTIFIER_NONE) {
1891 trace_smmuv3_notify_flag_del(iommu->parent_obj.name);
1892 QLIST_REMOVE(sdev, next);
1894 return 0;
1897 static void smmuv3_iommu_memory_region_class_init(ObjectClass *klass,
1898 void *data)
1900 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
1902 imrc->translate = smmuv3_translate;
1903 imrc->notify_flag_changed = smmuv3_notify_flag_changed;
1906 static const TypeInfo smmuv3_type_info = {
1907 .name = TYPE_ARM_SMMUV3,
1908 .parent = TYPE_ARM_SMMU,
1909 .instance_size = sizeof(SMMUv3State),
1910 .instance_init = smmuv3_instance_init,
1911 .class_size = sizeof(SMMUv3Class),
1912 .class_init = smmuv3_class_init,
1915 static const TypeInfo smmuv3_iommu_memory_region_info = {
1916 .parent = TYPE_IOMMU_MEMORY_REGION,
1917 .name = TYPE_SMMUV3_IOMMU_MEMORY_REGION,
1918 .class_init = smmuv3_iommu_memory_region_class_init,
1921 static void smmuv3_register_types(void)
1923 type_register(&smmuv3_type_info);
1924 type_register(&smmuv3_iommu_memory_region_info);
1927 type_init(smmuv3_register_types)