intc/arm_gic: Implement virtualization extensions in gic_(deactivate|complete_irq)
[qemu/armbru.git] / hw / intc / arm_gic.c
blob3cddf658269a68b2099801b893dc0b7f9e55f37b
1 /*
2 * ARM Generic/Distributed Interrupt Controller
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
8 */
10 /* This file contains implementation code for the RealView EB interrupt
11 * controller, MPCore distributed interrupt controller and ARMv7-M
12 * Nested Vectored Interrupt Controller.
13 * It is compiled in two ways:
14 * (1) as a standalone file to produce a sysbus device which is a GIC
15 * that can be used on the realview board and as one of the builtin
16 * private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17 * (2) by being directly #included into armv7m_nvic.c to produce the
18 * armv7m_nvic device.
21 #include "qemu/osdep.h"
22 #include "hw/sysbus.h"
23 #include "gic_internal.h"
24 #include "qapi/error.h"
25 #include "qom/cpu.h"
26 #include "qemu/log.h"
27 #include "trace.h"
28 #include "sysemu/kvm.h"
30 /* #define DEBUG_GIC */
32 #ifdef DEBUG_GIC
33 #define DEBUG_GIC_GATE 1
34 #else
35 #define DEBUG_GIC_GATE 0
36 #endif
38 #define DPRINTF(fmt, ...) do { \
39 if (DEBUG_GIC_GATE) { \
40 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
41 } \
42 } while (0)
44 static const uint8_t gic_id_11mpcore[] = {
45 0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
48 static const uint8_t gic_id_gicv1[] = {
49 0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
52 static const uint8_t gic_id_gicv2[] = {
53 0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
56 static inline int gic_get_current_cpu(GICState *s)
58 if (s->num_cpu > 1) {
59 return current_cpu->cpu_index;
61 return 0;
64 static inline int gic_get_current_vcpu(GICState *s)
66 return gic_get_current_cpu(s) + GIC_NCPU;
69 /* Return true if this GIC config has interrupt groups, which is
70 * true if we're a GICv2, or a GICv1 with the security extensions.
72 static inline bool gic_has_groups(GICState *s)
74 return s->revision == 2 || s->security_extn;
77 static inline bool gic_cpu_ns_access(GICState *s, int cpu, MemTxAttrs attrs)
79 return !gic_is_vcpu(cpu) && s->security_extn && !attrs.secure;
82 /* TODO: Many places that call this routine could be optimized. */
83 /* Update interrupt status after enabled or pending bits have been changed. */
84 static void gic_update(GICState *s)
86 int best_irq;
87 int best_prio;
88 int irq;
89 int irq_level, fiq_level;
90 int cpu;
91 int cm;
93 for (cpu = 0; cpu < s->num_cpu; cpu++) {
94 cm = 1 << cpu;
95 s->current_pending[cpu] = 1023;
96 if (!(s->ctlr & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1))
97 || !(s->cpu_ctlr[cpu] & (GICC_CTLR_EN_GRP0 | GICC_CTLR_EN_GRP1))) {
98 qemu_irq_lower(s->parent_irq[cpu]);
99 qemu_irq_lower(s->parent_fiq[cpu]);
100 continue;
102 best_prio = 0x100;
103 best_irq = 1023;
104 for (irq = 0; irq < s->num_irq; irq++) {
105 if (GIC_DIST_TEST_ENABLED(irq, cm) &&
106 gic_test_pending(s, irq, cm) &&
107 (!GIC_DIST_TEST_ACTIVE(irq, cm)) &&
108 (irq < GIC_INTERNAL || GIC_DIST_TARGET(irq) & cm)) {
109 if (GIC_DIST_GET_PRIORITY(irq, cpu) < best_prio) {
110 best_prio = GIC_DIST_GET_PRIORITY(irq, cpu);
111 best_irq = irq;
116 if (best_irq != 1023) {
117 trace_gic_update_bestirq(cpu, best_irq, best_prio,
118 s->priority_mask[cpu], s->running_priority[cpu]);
121 irq_level = fiq_level = 0;
123 if (best_prio < s->priority_mask[cpu]) {
124 s->current_pending[cpu] = best_irq;
125 if (best_prio < s->running_priority[cpu]) {
126 int group = GIC_DIST_TEST_GROUP(best_irq, cm);
128 if (extract32(s->ctlr, group, 1) &&
129 extract32(s->cpu_ctlr[cpu], group, 1)) {
130 if (group == 0 && s->cpu_ctlr[cpu] & GICC_CTLR_FIQ_EN) {
131 DPRINTF("Raised pending FIQ %d (cpu %d)\n",
132 best_irq, cpu);
133 fiq_level = 1;
134 trace_gic_update_set_irq(cpu, "fiq", fiq_level);
135 } else {
136 DPRINTF("Raised pending IRQ %d (cpu %d)\n",
137 best_irq, cpu);
138 irq_level = 1;
139 trace_gic_update_set_irq(cpu, "irq", irq_level);
145 qemu_set_irq(s->parent_irq[cpu], irq_level);
146 qemu_set_irq(s->parent_fiq[cpu], fiq_level);
150 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
151 int cm, int target)
153 if (level) {
154 GIC_DIST_SET_LEVEL(irq, cm);
155 if (GIC_DIST_TEST_EDGE_TRIGGER(irq) || GIC_DIST_TEST_ENABLED(irq, cm)) {
156 DPRINTF("Set %d pending mask %x\n", irq, target);
157 GIC_DIST_SET_PENDING(irq, target);
159 } else {
160 GIC_DIST_CLEAR_LEVEL(irq, cm);
164 static void gic_set_irq_generic(GICState *s, int irq, int level,
165 int cm, int target)
167 if (level) {
168 GIC_DIST_SET_LEVEL(irq, cm);
169 DPRINTF("Set %d pending mask %x\n", irq, target);
170 if (GIC_DIST_TEST_EDGE_TRIGGER(irq)) {
171 GIC_DIST_SET_PENDING(irq, target);
173 } else {
174 GIC_DIST_CLEAR_LEVEL(irq, cm);
178 /* Process a change in an external IRQ input. */
179 static void gic_set_irq(void *opaque, int irq, int level)
181 /* Meaning of the 'irq' parameter:
182 * [0..N-1] : external interrupts
183 * [N..N+31] : PPI (internal) interrupts for CPU 0
184 * [N+32..N+63] : PPI (internal interrupts for CPU 1
185 * ...
187 GICState *s = (GICState *)opaque;
188 int cm, target;
189 if (irq < (s->num_irq - GIC_INTERNAL)) {
190 /* The first external input line is internal interrupt 32. */
191 cm = ALL_CPU_MASK;
192 irq += GIC_INTERNAL;
193 target = GIC_DIST_TARGET(irq);
194 } else {
195 int cpu;
196 irq -= (s->num_irq - GIC_INTERNAL);
197 cpu = irq / GIC_INTERNAL;
198 irq %= GIC_INTERNAL;
199 cm = 1 << cpu;
200 target = cm;
203 assert(irq >= GIC_NR_SGIS);
205 if (level == GIC_DIST_TEST_LEVEL(irq, cm)) {
206 return;
209 if (s->revision == REV_11MPCORE) {
210 gic_set_irq_11mpcore(s, irq, level, cm, target);
211 } else {
212 gic_set_irq_generic(s, irq, level, cm, target);
214 trace_gic_set_irq(irq, level, cm, target);
216 gic_update(s);
219 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
220 MemTxAttrs attrs)
222 uint16_t pending_irq = s->current_pending[cpu];
224 if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
225 int group = gic_test_group(s, pending_irq, cpu);
227 /* On a GIC without the security extensions, reading this register
228 * behaves in the same way as a secure access to a GIC with them.
230 bool secure = !gic_cpu_ns_access(s, cpu, attrs);
232 if (group == 0 && !secure) {
233 /* Group0 interrupts hidden from Non-secure access */
234 return 1023;
236 if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
237 /* Group1 interrupts only seen by Secure access if
238 * AckCtl bit set.
240 return 1022;
243 return pending_irq;
246 static int gic_get_group_priority(GICState *s, int cpu, int irq)
248 /* Return the group priority of the specified interrupt
249 * (which is the top bits of its priority, with the number
250 * of bits masked determined by the applicable binary point register).
252 int bpr;
253 uint32_t mask;
255 if (gic_has_groups(s) &&
256 !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
257 gic_test_group(s, irq, cpu)) {
258 bpr = s->abpr[cpu] - 1;
259 assert(bpr >= 0);
260 } else {
261 bpr = s->bpr[cpu];
264 /* a BPR of 0 means the group priority bits are [7:1];
265 * a BPR of 1 means they are [7:2], and so on down to
266 * a BPR of 7 meaning no group priority bits at all.
268 mask = ~0U << ((bpr & 7) + 1);
270 return gic_get_priority(s, irq, cpu) & mask;
273 static void gic_activate_irq(GICState *s, int cpu, int irq)
275 /* Set the appropriate Active Priority Register bit for this IRQ,
276 * and update the running priority.
278 int prio = gic_get_group_priority(s, cpu, irq);
279 int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
280 int preemption_level = prio >> (min_bpr + 1);
281 int regno = preemption_level / 32;
282 int bitno = preemption_level % 32;
283 uint32_t *papr = NULL;
285 if (gic_is_vcpu(cpu)) {
286 assert(regno == 0);
287 papr = &s->h_apr[gic_get_vcpu_real_id(cpu)];
288 } else if (gic_has_groups(s) && gic_test_group(s, irq, cpu)) {
289 papr = &s->nsapr[regno][cpu];
290 } else {
291 papr = &s->apr[regno][cpu];
294 *papr |= (1 << bitno);
296 s->running_priority[cpu] = prio;
297 gic_set_active(s, irq, cpu);
300 static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
302 /* Recalculate the current running priority for this CPU based
303 * on the set bits in the Active Priority Registers.
305 int i;
307 if (gic_is_vcpu(cpu)) {
308 uint32_t apr = s->h_apr[gic_get_vcpu_real_id(cpu)];
309 if (apr) {
310 return ctz32(apr) << (GIC_VIRT_MIN_BPR + 1);
311 } else {
312 return 0x100;
316 for (i = 0; i < GIC_NR_APRS; i++) {
317 uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
318 if (!apr) {
319 continue;
321 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
323 return 0x100;
326 static void gic_drop_prio(GICState *s, int cpu, int group)
328 /* Drop the priority of the currently active interrupt in the
329 * specified group.
331 * Note that we can guarantee (because of the requirement to nest
332 * GICC_IAR reads [which activate an interrupt and raise priority]
333 * with GICC_EOIR writes [which drop the priority for the interrupt])
334 * that the interrupt we're being called for is the highest priority
335 * active interrupt, meaning that it has the lowest set bit in the
336 * APR registers.
338 * If the guest does not honour the ordering constraints then the
339 * behaviour of the GIC is UNPREDICTABLE, which for us means that
340 * the values of the APR registers might become incorrect and the
341 * running priority will be wrong, so interrupts that should preempt
342 * might not do so, and interrupts that should not preempt might do so.
344 if (gic_is_vcpu(cpu)) {
345 int rcpu = gic_get_vcpu_real_id(cpu);
347 if (s->h_apr[rcpu]) {
348 /* Clear lowest set bit */
349 s->h_apr[rcpu] &= s->h_apr[rcpu] - 1;
351 } else {
352 int i;
354 for (i = 0; i < GIC_NR_APRS; i++) {
355 uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
356 if (!*papr) {
357 continue;
359 /* Clear lowest set bit */
360 *papr &= *papr - 1;
361 break;
365 s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
368 static inline uint32_t gic_clear_pending_sgi(GICState *s, int irq, int cpu)
370 int src;
371 uint32_t ret;
373 if (!gic_is_vcpu(cpu)) {
374 /* Lookup the source CPU for the SGI and clear this in the
375 * sgi_pending map. Return the src and clear the overall pending
376 * state on this CPU if the SGI is not pending from any CPUs.
378 assert(s->sgi_pending[irq][cpu] != 0);
379 src = ctz32(s->sgi_pending[irq][cpu]);
380 s->sgi_pending[irq][cpu] &= ~(1 << src);
381 if (s->sgi_pending[irq][cpu] == 0) {
382 gic_clear_pending(s, irq, cpu);
384 ret = irq | ((src & 0x7) << 10);
385 } else {
386 uint32_t *lr_entry = gic_get_lr_entry(s, irq, cpu);
387 src = GICH_LR_CPUID(*lr_entry);
389 gic_clear_pending(s, irq, cpu);
390 ret = irq | (src << 10);
393 return ret;
396 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
398 int ret, irq;
400 /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
401 * for the case where this GIC supports grouping and the pending interrupt
402 * is in the wrong group.
404 irq = gic_get_current_pending_irq(s, cpu, attrs);
405 trace_gic_acknowledge_irq(gic_get_vcpu_real_id(cpu), irq);
407 if (irq >= GIC_MAXIRQ) {
408 DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
409 return irq;
412 if (gic_get_priority(s, irq, cpu) >= s->running_priority[cpu]) {
413 DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
414 return 1023;
417 gic_activate_irq(s, cpu, irq);
419 if (s->revision == REV_11MPCORE) {
420 /* Clear pending flags for both level and edge triggered interrupts.
421 * Level triggered IRQs will be reasserted once they become inactive.
423 gic_clear_pending(s, irq, cpu);
424 ret = irq;
425 } else {
426 if (irq < GIC_NR_SGIS) {
427 ret = gic_clear_pending_sgi(s, irq, cpu);
428 } else {
429 gic_clear_pending(s, irq, cpu);
430 ret = irq;
434 gic_update(s);
435 DPRINTF("ACK %d\n", irq);
436 return ret;
439 void gic_dist_set_priority(GICState *s, int cpu, int irq, uint8_t val,
440 MemTxAttrs attrs)
442 if (s->security_extn && !attrs.secure) {
443 if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
444 return; /* Ignore Non-secure access of Group0 IRQ */
446 val = 0x80 | (val >> 1); /* Non-secure view */
449 if (irq < GIC_INTERNAL) {
450 s->priority1[irq][cpu] = val;
451 } else {
452 s->priority2[(irq) - GIC_INTERNAL] = val;
456 static uint32_t gic_dist_get_priority(GICState *s, int cpu, int irq,
457 MemTxAttrs attrs)
459 uint32_t prio = GIC_DIST_GET_PRIORITY(irq, cpu);
461 if (s->security_extn && !attrs.secure) {
462 if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
463 return 0; /* Non-secure access cannot read priority of Group0 IRQ */
465 prio = (prio << 1) & 0xff; /* Non-secure view */
467 return prio;
470 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
471 MemTxAttrs attrs)
473 if (gic_cpu_ns_access(s, cpu, attrs)) {
474 if (s->priority_mask[cpu] & 0x80) {
475 /* Priority Mask in upper half */
476 pmask = 0x80 | (pmask >> 1);
477 } else {
478 /* Non-secure write ignored if priority mask is in lower half */
479 return;
482 s->priority_mask[cpu] = pmask;
485 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
487 uint32_t pmask = s->priority_mask[cpu];
489 if (gic_cpu_ns_access(s, cpu, attrs)) {
490 if (pmask & 0x80) {
491 /* Priority Mask in upper half, return Non-secure view */
492 pmask = (pmask << 1) & 0xff;
493 } else {
494 /* Priority Mask in lower half, RAZ */
495 pmask = 0;
498 return pmask;
501 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
503 uint32_t ret = s->cpu_ctlr[cpu];
505 if (gic_cpu_ns_access(s, cpu, attrs)) {
506 /* Construct the NS banked view of GICC_CTLR from the correct
507 * bits of the S banked view. We don't need to move the bypass
508 * control bits because we don't implement that (IMPDEF) part
509 * of the GIC architecture.
511 ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
513 return ret;
516 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
517 MemTxAttrs attrs)
519 uint32_t mask;
521 if (gic_cpu_ns_access(s, cpu, attrs)) {
522 /* The NS view can only write certain bits in the register;
523 * the rest are unchanged
525 mask = GICC_CTLR_EN_GRP1;
526 if (s->revision == 2) {
527 mask |= GICC_CTLR_EOIMODE_NS;
529 s->cpu_ctlr[cpu] &= ~mask;
530 s->cpu_ctlr[cpu] |= (value << 1) & mask;
531 } else {
532 if (s->revision == 2) {
533 mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
534 } else {
535 mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
537 s->cpu_ctlr[cpu] = value & mask;
539 DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
540 "Group1 Interrupts %sabled\n", cpu,
541 (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
542 (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
545 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
547 if ((s->revision != REV_11MPCORE) && (s->running_priority[cpu] > 0xff)) {
548 /* Idle priority */
549 return 0xff;
552 if (gic_cpu_ns_access(s, cpu, attrs)) {
553 if (s->running_priority[cpu] & 0x80) {
554 /* Running priority in upper half of range: return the Non-secure
555 * view of the priority.
557 return s->running_priority[cpu] << 1;
558 } else {
559 /* Running priority in lower half of range: RAZ */
560 return 0;
562 } else {
563 return s->running_priority[cpu];
567 /* Return true if we should split priority drop and interrupt deactivation,
568 * ie whether the relevant EOIMode bit is set.
570 static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
572 if (s->revision != 2) {
573 /* Before GICv2 prio-drop and deactivate are not separable */
574 return false;
576 if (gic_cpu_ns_access(s, cpu, attrs)) {
577 return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
579 return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
582 static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
584 int group;
586 if (irq >= GIC_MAXIRQ || (!gic_is_vcpu(cpu) && irq >= s->num_irq)) {
588 * This handles two cases:
589 * 1. If software writes the ID of a spurious interrupt [ie 1023]
590 * to the GICC_DIR, the GIC ignores that write.
591 * 2. If software writes the number of a non-existent interrupt
592 * this must be a subcase of "value written is not an active interrupt"
593 * and so this is UNPREDICTABLE. We choose to ignore it. For vCPUs,
594 * all IRQs potentially exist, so this limit does not apply.
596 return;
599 if (!gic_eoi_split(s, cpu, attrs)) {
600 /* This is UNPREDICTABLE; we choose to ignore it */
601 qemu_log_mask(LOG_GUEST_ERROR,
602 "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
603 return;
606 if (gic_is_vcpu(cpu) && !gic_virq_is_valid(s, irq, cpu)) {
607 /* This vIRQ does not have an LR entry which is either active or
608 * pending and active. Increment EOICount and ignore the write.
610 int rcpu = gic_get_vcpu_real_id(cpu);
611 s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
612 return;
615 group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
617 if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
618 DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
619 return;
622 gic_clear_active(s, irq, cpu);
625 static void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
627 int cm = 1 << cpu;
628 int group;
630 DPRINTF("EOI %d\n", irq);
631 if (gic_is_vcpu(cpu)) {
632 /* The call to gic_prio_drop() will clear a bit in GICH_APR iff the
633 * running prio is < 0x100.
635 bool prio_drop = s->running_priority[cpu] < 0x100;
637 if (irq >= GIC_MAXIRQ) {
638 /* Ignore spurious interrupt */
639 return;
642 gic_drop_prio(s, cpu, 0);
644 if (!gic_eoi_split(s, cpu, attrs)) {
645 bool valid = gic_virq_is_valid(s, irq, cpu);
646 if (prio_drop && !valid) {
647 /* We are in a situation where:
648 * - V_CTRL.EOIMode is false (no EOI split),
649 * - The call to gic_drop_prio() cleared a bit in GICH_APR,
650 * - This vIRQ does not have an LR entry which is either
651 * active or pending and active.
652 * In that case, we must increment EOICount.
654 int rcpu = gic_get_vcpu_real_id(cpu);
655 s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
656 } else if (valid) {
657 gic_clear_active(s, irq, cpu);
661 return;
664 if (irq >= s->num_irq) {
665 /* This handles two cases:
666 * 1. If software writes the ID of a spurious interrupt [ie 1023]
667 * to the GICC_EOIR, the GIC ignores that write.
668 * 2. If software writes the number of a non-existent interrupt
669 * this must be a subcase of "value written does not match the last
670 * valid interrupt value read from the Interrupt Acknowledge
671 * register" and so this is UNPREDICTABLE. We choose to ignore it.
673 return;
675 if (s->running_priority[cpu] == 0x100) {
676 return; /* No active IRQ. */
679 if (s->revision == REV_11MPCORE) {
680 /* Mark level triggered interrupts as pending if they are still
681 raised. */
682 if (!GIC_DIST_TEST_EDGE_TRIGGER(irq) && GIC_DIST_TEST_ENABLED(irq, cm)
683 && GIC_DIST_TEST_LEVEL(irq, cm)
684 && (GIC_DIST_TARGET(irq) & cm) != 0) {
685 DPRINTF("Set %d pending mask %x\n", irq, cm);
686 GIC_DIST_SET_PENDING(irq, cm);
690 group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
692 if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
693 DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
694 return;
697 /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
698 * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
699 * i.e. go ahead and complete the irq anyway.
702 gic_drop_prio(s, cpu, group);
704 /* In GICv2 the guest can choose to split priority-drop and deactivate */
705 if (!gic_eoi_split(s, cpu, attrs)) {
706 gic_clear_active(s, irq, cpu);
708 gic_update(s);
711 static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
713 GICState *s = (GICState *)opaque;
714 uint32_t res;
715 int irq;
716 int i;
717 int cpu;
718 int cm;
719 int mask;
721 cpu = gic_get_current_cpu(s);
722 cm = 1 << cpu;
723 if (offset < 0x100) {
724 if (offset == 0) { /* GICD_CTLR */
725 if (s->security_extn && !attrs.secure) {
726 /* The NS bank of this register is just an alias of the
727 * EnableGrp1 bit in the S bank version.
729 return extract32(s->ctlr, 1, 1);
730 } else {
731 return s->ctlr;
734 if (offset == 4)
735 /* Interrupt Controller Type Register */
736 return ((s->num_irq / 32) - 1)
737 | ((s->num_cpu - 1) << 5)
738 | (s->security_extn << 10);
739 if (offset < 0x08)
740 return 0;
741 if (offset >= 0x80) {
742 /* Interrupt Group Registers: these RAZ/WI if this is an NS
743 * access to a GIC with the security extensions, or if the GIC
744 * doesn't have groups at all.
746 res = 0;
747 if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
748 /* Every byte offset holds 8 group status bits */
749 irq = (offset - 0x080) * 8 + GIC_BASE_IRQ;
750 if (irq >= s->num_irq) {
751 goto bad_reg;
753 for (i = 0; i < 8; i++) {
754 if (GIC_DIST_TEST_GROUP(irq + i, cm)) {
755 res |= (1 << i);
759 return res;
761 goto bad_reg;
762 } else if (offset < 0x200) {
763 /* Interrupt Set/Clear Enable. */
764 if (offset < 0x180)
765 irq = (offset - 0x100) * 8;
766 else
767 irq = (offset - 0x180) * 8;
768 irq += GIC_BASE_IRQ;
769 if (irq >= s->num_irq)
770 goto bad_reg;
771 res = 0;
772 for (i = 0; i < 8; i++) {
773 if (s->security_extn && !attrs.secure &&
774 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
775 continue; /* Ignore Non-secure access of Group0 IRQ */
778 if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
779 res |= (1 << i);
782 } else if (offset < 0x300) {
783 /* Interrupt Set/Clear Pending. */
784 if (offset < 0x280)
785 irq = (offset - 0x200) * 8;
786 else
787 irq = (offset - 0x280) * 8;
788 irq += GIC_BASE_IRQ;
789 if (irq >= s->num_irq)
790 goto bad_reg;
791 res = 0;
792 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
793 for (i = 0; i < 8; i++) {
794 if (s->security_extn && !attrs.secure &&
795 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
796 continue; /* Ignore Non-secure access of Group0 IRQ */
799 if (gic_test_pending(s, irq + i, mask)) {
800 res |= (1 << i);
803 } else if (offset < 0x400) {
804 /* Interrupt Set/Clear Active. */
805 if (offset < 0x380) {
806 irq = (offset - 0x300) * 8;
807 } else if (s->revision == 2) {
808 irq = (offset - 0x380) * 8;
809 } else {
810 goto bad_reg;
813 irq += GIC_BASE_IRQ;
814 if (irq >= s->num_irq)
815 goto bad_reg;
816 res = 0;
817 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
818 for (i = 0; i < 8; i++) {
819 if (s->security_extn && !attrs.secure &&
820 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
821 continue; /* Ignore Non-secure access of Group0 IRQ */
824 if (GIC_DIST_TEST_ACTIVE(irq + i, mask)) {
825 res |= (1 << i);
828 } else if (offset < 0x800) {
829 /* Interrupt Priority. */
830 irq = (offset - 0x400) + GIC_BASE_IRQ;
831 if (irq >= s->num_irq)
832 goto bad_reg;
833 res = gic_dist_get_priority(s, cpu, irq, attrs);
834 } else if (offset < 0xc00) {
835 /* Interrupt CPU Target. */
836 if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
837 /* For uniprocessor GICs these RAZ/WI */
838 res = 0;
839 } else {
840 irq = (offset - 0x800) + GIC_BASE_IRQ;
841 if (irq >= s->num_irq) {
842 goto bad_reg;
844 if (irq < 29 && s->revision == REV_11MPCORE) {
845 res = 0;
846 } else if (irq < GIC_INTERNAL) {
847 res = cm;
848 } else {
849 res = GIC_DIST_TARGET(irq);
852 } else if (offset < 0xf00) {
853 /* Interrupt Configuration. */
854 irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
855 if (irq >= s->num_irq)
856 goto bad_reg;
857 res = 0;
858 for (i = 0; i < 4; i++) {
859 if (s->security_extn && !attrs.secure &&
860 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
861 continue; /* Ignore Non-secure access of Group0 IRQ */
864 if (GIC_DIST_TEST_MODEL(irq + i)) {
865 res |= (1 << (i * 2));
867 if (GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
868 res |= (2 << (i * 2));
871 } else if (offset < 0xf10) {
872 goto bad_reg;
873 } else if (offset < 0xf30) {
874 if (s->revision == REV_11MPCORE) {
875 goto bad_reg;
878 if (offset < 0xf20) {
879 /* GICD_CPENDSGIRn */
880 irq = (offset - 0xf10);
881 } else {
882 irq = (offset - 0xf20);
883 /* GICD_SPENDSGIRn */
886 if (s->security_extn && !attrs.secure &&
887 !GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
888 res = 0; /* Ignore Non-secure access of Group0 IRQ */
889 } else {
890 res = s->sgi_pending[irq][cpu];
892 } else if (offset < 0xfd0) {
893 goto bad_reg;
894 } else if (offset < 0x1000) {
895 if (offset & 3) {
896 res = 0;
897 } else {
898 switch (s->revision) {
899 case REV_11MPCORE:
900 res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
901 break;
902 case 1:
903 res = gic_id_gicv1[(offset - 0xfd0) >> 2];
904 break;
905 case 2:
906 res = gic_id_gicv2[(offset - 0xfd0) >> 2];
907 break;
908 default:
909 res = 0;
912 } else {
913 g_assert_not_reached();
915 return res;
916 bad_reg:
917 qemu_log_mask(LOG_GUEST_ERROR,
918 "gic_dist_readb: Bad offset %x\n", (int)offset);
919 return 0;
922 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
923 unsigned size, MemTxAttrs attrs)
925 switch (size) {
926 case 1:
927 *data = gic_dist_readb(opaque, offset, attrs);
928 return MEMTX_OK;
929 case 2:
930 *data = gic_dist_readb(opaque, offset, attrs);
931 *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
932 return MEMTX_OK;
933 case 4:
934 *data = gic_dist_readb(opaque, offset, attrs);
935 *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
936 *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
937 *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
938 return MEMTX_OK;
939 default:
940 return MEMTX_ERROR;
944 static void gic_dist_writeb(void *opaque, hwaddr offset,
945 uint32_t value, MemTxAttrs attrs)
947 GICState *s = (GICState *)opaque;
948 int irq;
949 int i;
950 int cpu;
952 cpu = gic_get_current_cpu(s);
953 if (offset < 0x100) {
954 if (offset == 0) {
955 if (s->security_extn && !attrs.secure) {
956 /* NS version is just an alias of the S version's bit 1 */
957 s->ctlr = deposit32(s->ctlr, 1, 1, value);
958 } else if (gic_has_groups(s)) {
959 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
960 } else {
961 s->ctlr = value & GICD_CTLR_EN_GRP0;
963 DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
964 s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
965 s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
966 } else if (offset < 4) {
967 /* ignored. */
968 } else if (offset >= 0x80) {
969 /* Interrupt Group Registers: RAZ/WI for NS access to secure
970 * GIC, or for GICs without groups.
972 if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
973 /* Every byte offset holds 8 group status bits */
974 irq = (offset - 0x80) * 8 + GIC_BASE_IRQ;
975 if (irq >= s->num_irq) {
976 goto bad_reg;
978 for (i = 0; i < 8; i++) {
979 /* Group bits are banked for private interrupts */
980 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
981 if (value & (1 << i)) {
982 /* Group1 (Non-secure) */
983 GIC_DIST_SET_GROUP(irq + i, cm);
984 } else {
985 /* Group0 (Secure) */
986 GIC_DIST_CLEAR_GROUP(irq + i, cm);
990 } else {
991 goto bad_reg;
993 } else if (offset < 0x180) {
994 /* Interrupt Set Enable. */
995 irq = (offset - 0x100) * 8 + GIC_BASE_IRQ;
996 if (irq >= s->num_irq)
997 goto bad_reg;
998 if (irq < GIC_NR_SGIS) {
999 value = 0xff;
1002 for (i = 0; i < 8; i++) {
1003 if (value & (1 << i)) {
1004 int mask =
1005 (irq < GIC_INTERNAL) ? (1 << cpu)
1006 : GIC_DIST_TARGET(irq + i);
1007 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1009 if (s->security_extn && !attrs.secure &&
1010 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1011 continue; /* Ignore Non-secure access of Group0 IRQ */
1014 if (!GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1015 DPRINTF("Enabled IRQ %d\n", irq + i);
1016 trace_gic_enable_irq(irq + i);
1018 GIC_DIST_SET_ENABLED(irq + i, cm);
1019 /* If a raised level triggered IRQ enabled then mark
1020 is as pending. */
1021 if (GIC_DIST_TEST_LEVEL(irq + i, mask)
1022 && !GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
1023 DPRINTF("Set %d pending mask %x\n", irq + i, mask);
1024 GIC_DIST_SET_PENDING(irq + i, mask);
1028 } else if (offset < 0x200) {
1029 /* Interrupt Clear Enable. */
1030 irq = (offset - 0x180) * 8 + GIC_BASE_IRQ;
1031 if (irq >= s->num_irq)
1032 goto bad_reg;
1033 if (irq < GIC_NR_SGIS) {
1034 value = 0;
1037 for (i = 0; i < 8; i++) {
1038 if (value & (1 << i)) {
1039 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1041 if (s->security_extn && !attrs.secure &&
1042 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1043 continue; /* Ignore Non-secure access of Group0 IRQ */
1046 if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1047 DPRINTF("Disabled IRQ %d\n", irq + i);
1048 trace_gic_disable_irq(irq + i);
1050 GIC_DIST_CLEAR_ENABLED(irq + i, cm);
1053 } else if (offset < 0x280) {
1054 /* Interrupt Set Pending. */
1055 irq = (offset - 0x200) * 8 + GIC_BASE_IRQ;
1056 if (irq >= s->num_irq)
1057 goto bad_reg;
1058 if (irq < GIC_NR_SGIS) {
1059 value = 0;
1062 for (i = 0; i < 8; i++) {
1063 if (value & (1 << i)) {
1064 if (s->security_extn && !attrs.secure &&
1065 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1066 continue; /* Ignore Non-secure access of Group0 IRQ */
1069 GIC_DIST_SET_PENDING(irq + i, GIC_DIST_TARGET(irq + i));
1072 } else if (offset < 0x300) {
1073 /* Interrupt Clear Pending. */
1074 irq = (offset - 0x280) * 8 + GIC_BASE_IRQ;
1075 if (irq >= s->num_irq)
1076 goto bad_reg;
1077 if (irq < GIC_NR_SGIS) {
1078 value = 0;
1081 for (i = 0; i < 8; i++) {
1082 if (s->security_extn && !attrs.secure &&
1083 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1084 continue; /* Ignore Non-secure access of Group0 IRQ */
1087 /* ??? This currently clears the pending bit for all CPUs, even
1088 for per-CPU interrupts. It's unclear whether this is the
1089 corect behavior. */
1090 if (value & (1 << i)) {
1091 GIC_DIST_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
1094 } else if (offset < 0x380) {
1095 /* Interrupt Set Active. */
1096 if (s->revision != 2) {
1097 goto bad_reg;
1100 irq = (offset - 0x300) * 8 + GIC_BASE_IRQ;
1101 if (irq >= s->num_irq) {
1102 goto bad_reg;
1105 /* This register is banked per-cpu for PPIs */
1106 int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1108 for (i = 0; i < 8; i++) {
1109 if (s->security_extn && !attrs.secure &&
1110 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1111 continue; /* Ignore Non-secure access of Group0 IRQ */
1114 if (value & (1 << i)) {
1115 GIC_DIST_SET_ACTIVE(irq + i, cm);
1118 } else if (offset < 0x400) {
1119 /* Interrupt Clear Active. */
1120 if (s->revision != 2) {
1121 goto bad_reg;
1124 irq = (offset - 0x380) * 8 + GIC_BASE_IRQ;
1125 if (irq >= s->num_irq) {
1126 goto bad_reg;
1129 /* This register is banked per-cpu for PPIs */
1130 int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1132 for (i = 0; i < 8; i++) {
1133 if (s->security_extn && !attrs.secure &&
1134 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1135 continue; /* Ignore Non-secure access of Group0 IRQ */
1138 if (value & (1 << i)) {
1139 GIC_DIST_CLEAR_ACTIVE(irq + i, cm);
1142 } else if (offset < 0x800) {
1143 /* Interrupt Priority. */
1144 irq = (offset - 0x400) + GIC_BASE_IRQ;
1145 if (irq >= s->num_irq)
1146 goto bad_reg;
1147 gic_dist_set_priority(s, cpu, irq, value, attrs);
1148 } else if (offset < 0xc00) {
1149 /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
1150 * annoying exception of the 11MPCore's GIC.
1152 if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
1153 irq = (offset - 0x800) + GIC_BASE_IRQ;
1154 if (irq >= s->num_irq) {
1155 goto bad_reg;
1157 if (irq < 29 && s->revision == REV_11MPCORE) {
1158 value = 0;
1159 } else if (irq < GIC_INTERNAL) {
1160 value = ALL_CPU_MASK;
1162 s->irq_target[irq] = value & ALL_CPU_MASK;
1164 } else if (offset < 0xf00) {
1165 /* Interrupt Configuration. */
1166 irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
1167 if (irq >= s->num_irq)
1168 goto bad_reg;
1169 if (irq < GIC_NR_SGIS)
1170 value |= 0xaa;
1171 for (i = 0; i < 4; i++) {
1172 if (s->security_extn && !attrs.secure &&
1173 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1174 continue; /* Ignore Non-secure access of Group0 IRQ */
1177 if (s->revision == REV_11MPCORE) {
1178 if (value & (1 << (i * 2))) {
1179 GIC_DIST_SET_MODEL(irq + i);
1180 } else {
1181 GIC_DIST_CLEAR_MODEL(irq + i);
1184 if (value & (2 << (i * 2))) {
1185 GIC_DIST_SET_EDGE_TRIGGER(irq + i);
1186 } else {
1187 GIC_DIST_CLEAR_EDGE_TRIGGER(irq + i);
1190 } else if (offset < 0xf10) {
1191 /* 0xf00 is only handled for 32-bit writes. */
1192 goto bad_reg;
1193 } else if (offset < 0xf20) {
1194 /* GICD_CPENDSGIRn */
1195 if (s->revision == REV_11MPCORE) {
1196 goto bad_reg;
1198 irq = (offset - 0xf10);
1200 if (!s->security_extn || attrs.secure ||
1201 GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1202 s->sgi_pending[irq][cpu] &= ~value;
1203 if (s->sgi_pending[irq][cpu] == 0) {
1204 GIC_DIST_CLEAR_PENDING(irq, 1 << cpu);
1207 } else if (offset < 0xf30) {
1208 /* GICD_SPENDSGIRn */
1209 if (s->revision == REV_11MPCORE) {
1210 goto bad_reg;
1212 irq = (offset - 0xf20);
1214 if (!s->security_extn || attrs.secure ||
1215 GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1216 GIC_DIST_SET_PENDING(irq, 1 << cpu);
1217 s->sgi_pending[irq][cpu] |= value;
1219 } else {
1220 goto bad_reg;
1222 gic_update(s);
1223 return;
1224 bad_reg:
1225 qemu_log_mask(LOG_GUEST_ERROR,
1226 "gic_dist_writeb: Bad offset %x\n", (int)offset);
1229 static void gic_dist_writew(void *opaque, hwaddr offset,
1230 uint32_t value, MemTxAttrs attrs)
1232 gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1233 gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1236 static void gic_dist_writel(void *opaque, hwaddr offset,
1237 uint32_t value, MemTxAttrs attrs)
1239 GICState *s = (GICState *)opaque;
1240 if (offset == 0xf00) {
1241 int cpu;
1242 int irq;
1243 int mask;
1244 int target_cpu;
1246 cpu = gic_get_current_cpu(s);
1247 irq = value & 0x3ff;
1248 switch ((value >> 24) & 3) {
1249 case 0:
1250 mask = (value >> 16) & ALL_CPU_MASK;
1251 break;
1252 case 1:
1253 mask = ALL_CPU_MASK ^ (1 << cpu);
1254 break;
1255 case 2:
1256 mask = 1 << cpu;
1257 break;
1258 default:
1259 DPRINTF("Bad Soft Int target filter\n");
1260 mask = ALL_CPU_MASK;
1261 break;
1263 GIC_DIST_SET_PENDING(irq, mask);
1264 target_cpu = ctz32(mask);
1265 while (target_cpu < GIC_NCPU) {
1266 s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1267 mask &= ~(1 << target_cpu);
1268 target_cpu = ctz32(mask);
1270 gic_update(s);
1271 return;
1273 gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1274 gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1277 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1278 unsigned size, MemTxAttrs attrs)
1280 switch (size) {
1281 case 1:
1282 gic_dist_writeb(opaque, offset, data, attrs);
1283 return MEMTX_OK;
1284 case 2:
1285 gic_dist_writew(opaque, offset, data, attrs);
1286 return MEMTX_OK;
1287 case 4:
1288 gic_dist_writel(opaque, offset, data, attrs);
1289 return MEMTX_OK;
1290 default:
1291 return MEMTX_ERROR;
1295 static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1297 /* Return the Nonsecure view of GICC_APR<regno>. This is the
1298 * second half of GICC_NSAPR.
1300 switch (GIC_MIN_BPR) {
1301 case 0:
1302 if (regno < 2) {
1303 return s->nsapr[regno + 2][cpu];
1305 break;
1306 case 1:
1307 if (regno == 0) {
1308 return s->nsapr[regno + 1][cpu];
1310 break;
1311 case 2:
1312 if (regno == 0) {
1313 return extract32(s->nsapr[0][cpu], 16, 16);
1315 break;
1316 case 3:
1317 if (regno == 0) {
1318 return extract32(s->nsapr[0][cpu], 8, 8);
1320 break;
1321 default:
1322 g_assert_not_reached();
1324 return 0;
1327 static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1328 uint32_t value)
1330 /* Write the Nonsecure view of GICC_APR<regno>. */
1331 switch (GIC_MIN_BPR) {
1332 case 0:
1333 if (regno < 2) {
1334 s->nsapr[regno + 2][cpu] = value;
1336 break;
1337 case 1:
1338 if (regno == 0) {
1339 s->nsapr[regno + 1][cpu] = value;
1341 break;
1342 case 2:
1343 if (regno == 0) {
1344 s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1346 break;
1347 case 3:
1348 if (regno == 0) {
1349 s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1351 break;
1352 default:
1353 g_assert_not_reached();
1357 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1358 uint64_t *data, MemTxAttrs attrs)
1360 switch (offset) {
1361 case 0x00: /* Control */
1362 *data = gic_get_cpu_control(s, cpu, attrs);
1363 break;
1364 case 0x04: /* Priority mask */
1365 *data = gic_get_priority_mask(s, cpu, attrs);
1366 break;
1367 case 0x08: /* Binary Point */
1368 if (gic_cpu_ns_access(s, cpu, attrs)) {
1369 if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1370 /* NS view of BPR when CBPR is 1 */
1371 *data = MIN(s->bpr[cpu] + 1, 7);
1372 } else {
1373 /* BPR is banked. Non-secure copy stored in ABPR. */
1374 *data = s->abpr[cpu];
1376 } else {
1377 *data = s->bpr[cpu];
1379 break;
1380 case 0x0c: /* Acknowledge */
1381 *data = gic_acknowledge_irq(s, cpu, attrs);
1382 break;
1383 case 0x14: /* Running Priority */
1384 *data = gic_get_running_priority(s, cpu, attrs);
1385 break;
1386 case 0x18: /* Highest Pending Interrupt */
1387 *data = gic_get_current_pending_irq(s, cpu, attrs);
1388 break;
1389 case 0x1c: /* Aliased Binary Point */
1390 /* GIC v2, no security: ABPR
1391 * GIC v1, no security: not implemented (RAZ/WI)
1392 * With security extensions, secure access: ABPR (alias of NS BPR)
1393 * With security extensions, nonsecure access: RAZ/WI
1395 if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1396 *data = 0;
1397 } else {
1398 *data = s->abpr[cpu];
1400 break;
1401 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1403 int regno = (offset - 0xd0) / 4;
1405 if (regno >= GIC_NR_APRS || s->revision != 2) {
1406 *data = 0;
1407 } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1408 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1409 *data = gic_apr_ns_view(s, regno, cpu);
1410 } else {
1411 *data = s->apr[regno][cpu];
1413 break;
1415 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1417 int regno = (offset - 0xe0) / 4;
1419 if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1420 gic_cpu_ns_access(s, cpu, attrs)) {
1421 *data = 0;
1422 } else {
1423 *data = s->nsapr[regno][cpu];
1425 break;
1427 default:
1428 qemu_log_mask(LOG_GUEST_ERROR,
1429 "gic_cpu_read: Bad offset %x\n", (int)offset);
1430 *data = 0;
1431 break;
1433 return MEMTX_OK;
1436 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1437 uint32_t value, MemTxAttrs attrs)
1439 switch (offset) {
1440 case 0x00: /* Control */
1441 gic_set_cpu_control(s, cpu, value, attrs);
1442 break;
1443 case 0x04: /* Priority mask */
1444 gic_set_priority_mask(s, cpu, value, attrs);
1445 break;
1446 case 0x08: /* Binary Point */
1447 if (gic_cpu_ns_access(s, cpu, attrs)) {
1448 if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1449 /* WI when CBPR is 1 */
1450 return MEMTX_OK;
1451 } else {
1452 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1454 } else {
1455 s->bpr[cpu] = MAX(value & 0x7, GIC_MIN_BPR);
1457 break;
1458 case 0x10: /* End Of Interrupt */
1459 gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1460 return MEMTX_OK;
1461 case 0x1c: /* Aliased Binary Point */
1462 if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1463 /* unimplemented, or NS access: RAZ/WI */
1464 return MEMTX_OK;
1465 } else {
1466 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1468 break;
1469 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1471 int regno = (offset - 0xd0) / 4;
1473 if (regno >= GIC_NR_APRS || s->revision != 2) {
1474 return MEMTX_OK;
1476 if (gic_cpu_ns_access(s, cpu, attrs)) {
1477 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1478 gic_apr_write_ns_view(s, regno, cpu, value);
1479 } else {
1480 s->apr[regno][cpu] = value;
1482 break;
1484 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1486 int regno = (offset - 0xe0) / 4;
1488 if (regno >= GIC_NR_APRS || s->revision != 2) {
1489 return MEMTX_OK;
1491 if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1492 return MEMTX_OK;
1494 s->nsapr[regno][cpu] = value;
1495 break;
1497 case 0x1000:
1498 /* GICC_DIR */
1499 gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1500 break;
1501 default:
1502 qemu_log_mask(LOG_GUEST_ERROR,
1503 "gic_cpu_write: Bad offset %x\n", (int)offset);
1504 return MEMTX_OK;
1506 gic_update(s);
1507 return MEMTX_OK;
1510 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1511 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1512 unsigned size, MemTxAttrs attrs)
1514 GICState *s = (GICState *)opaque;
1515 return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1518 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1519 uint64_t value, unsigned size,
1520 MemTxAttrs attrs)
1522 GICState *s = (GICState *)opaque;
1523 return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1526 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1527 * These just decode the opaque pointer into GICState* + cpu id.
1529 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1530 unsigned size, MemTxAttrs attrs)
1532 GICState **backref = (GICState **)opaque;
1533 GICState *s = *backref;
1534 int id = (backref - s->backref);
1535 return gic_cpu_read(s, id, addr, data, attrs);
1538 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1539 uint64_t value, unsigned size,
1540 MemTxAttrs attrs)
1542 GICState **backref = (GICState **)opaque;
1543 GICState *s = *backref;
1544 int id = (backref - s->backref);
1545 return gic_cpu_write(s, id, addr, value, attrs);
1548 static const MemoryRegionOps gic_ops[2] = {
1550 .read_with_attrs = gic_dist_read,
1551 .write_with_attrs = gic_dist_write,
1552 .endianness = DEVICE_NATIVE_ENDIAN,
1555 .read_with_attrs = gic_thiscpu_read,
1556 .write_with_attrs = gic_thiscpu_write,
1557 .endianness = DEVICE_NATIVE_ENDIAN,
1561 static const MemoryRegionOps gic_cpu_ops = {
1562 .read_with_attrs = gic_do_cpu_read,
1563 .write_with_attrs = gic_do_cpu_write,
1564 .endianness = DEVICE_NATIVE_ENDIAN,
1567 static void arm_gic_realize(DeviceState *dev, Error **errp)
1569 /* Device instance realize function for the GIC sysbus device */
1570 int i;
1571 GICState *s = ARM_GIC(dev);
1572 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1573 ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
1574 Error *local_err = NULL;
1576 agc->parent_realize(dev, &local_err);
1577 if (local_err) {
1578 error_propagate(errp, local_err);
1579 return;
1582 if (kvm_enabled() && !kvm_arm_supports_user_irq()) {
1583 error_setg(errp, "KVM with user space irqchip only works when the "
1584 "host kernel supports KVM_CAP_ARM_USER_IRQ");
1585 return;
1588 /* This creates distributor and main CPU interface (s->cpuiomem[0]) */
1589 gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops, NULL);
1591 /* Extra core-specific regions for the CPU interfaces. This is
1592 * necessary for "franken-GIC" implementations, for example on
1593 * Exynos 4.
1594 * NB that the memory region size of 0x100 applies for the 11MPCore
1595 * and also cores following the GIC v1 spec (ie A9).
1596 * GIC v2 defines a larger memory region (0x1000) so this will need
1597 * to be extended when we implement A15.
1599 for (i = 0; i < s->num_cpu; i++) {
1600 s->backref[i] = s;
1601 memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
1602 &s->backref[i], "gic_cpu", 0x100);
1603 sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
1607 static void arm_gic_class_init(ObjectClass *klass, void *data)
1609 DeviceClass *dc = DEVICE_CLASS(klass);
1610 ARMGICClass *agc = ARM_GIC_CLASS(klass);
1612 device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize);
1615 static const TypeInfo arm_gic_info = {
1616 .name = TYPE_ARM_GIC,
1617 .parent = TYPE_ARM_GIC_COMMON,
1618 .instance_size = sizeof(GICState),
1619 .class_init = arm_gic_class_init,
1620 .class_size = sizeof(ARMGICClass),
1623 static void arm_gic_register_types(void)
1625 type_register_static(&arm_gic_info);
1628 type_init(arm_gic_register_types)