2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
5 * Copyright Red Hat, Inc. 2015-2016
8 * Michael R. Hines <mrhines@us.ibm.com>
9 * Jiuxing Liu <jl@us.ibm.com>
10 * Daniel P. Berrange <berrange@redhat.com>
12 * This work is licensed under the terms of the GNU GPL, version 2 or
13 * later. See the COPYING file in the top-level directory.
17 #include "qemu/osdep.h"
18 #include "qapi/error.h"
19 #include "qemu/cutils.h"
20 #include "exec/target_page.h"
22 #include "migration.h"
23 #include "migration-stats.h"
24 #include "qemu-file.h"
26 #include "qemu/error-report.h"
27 #include "qemu/main-loop.h"
28 #include "qemu/module.h"
30 #include "qemu/sockets.h"
31 #include "qemu/bitmap.h"
32 #include "qemu/coroutine.h"
33 #include "exec/memory.h"
34 #include <sys/socket.h>
36 #include <arpa/inet.h>
37 #include <rdma/rdma_cma.h>
39 #include "qom/object.h"
43 #define RDMA_RESOLVE_TIMEOUT_MS 10000
45 /* Do not merge data if larger than this. */
46 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
47 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
49 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
52 * This is only for non-live state being migrated.
53 * Instead of RDMA_WRITE messages, we use RDMA_SEND
54 * messages for that state, which requires a different
55 * delivery design than main memory.
57 #define RDMA_SEND_INCREMENT 32768
60 * Maximum size infiniband SEND message
62 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
63 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
65 #define RDMA_CONTROL_VERSION_CURRENT 1
67 * Capabilities for negotiation.
69 #define RDMA_CAPABILITY_PIN_ALL 0x01
72 * Add the other flags above to this list of known capabilities
73 * as they are introduced.
75 static uint32_t known_capabilities
= RDMA_CAPABILITY_PIN_ALL
;
78 * A work request ID is 64-bits and we split up these bits
81 * bits 0-15 : type of control message, 2^16
82 * bits 16-29: ram block index, 2^14
83 * bits 30-63: ram block chunk number, 2^34
85 * The last two bit ranges are only used for RDMA writes,
86 * in order to track their completion and potentially
87 * also track unregistration status of the message.
89 #define RDMA_WRID_TYPE_SHIFT 0UL
90 #define RDMA_WRID_BLOCK_SHIFT 16UL
91 #define RDMA_WRID_CHUNK_SHIFT 30UL
93 #define RDMA_WRID_TYPE_MASK \
94 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
96 #define RDMA_WRID_BLOCK_MASK \
97 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
99 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
102 * RDMA migration protocol:
103 * 1. RDMA Writes (data messages, i.e. RAM)
104 * 2. IB Send/Recv (control channel messages)
108 RDMA_WRID_RDMA_WRITE
= 1,
109 RDMA_WRID_SEND_CONTROL
= 2000,
110 RDMA_WRID_RECV_CONTROL
= 4000,
114 * Work request IDs for IB SEND messages only (not RDMA writes).
115 * This is used by the migration protocol to transmit
116 * control messages (such as device state and registration commands)
118 * We could use more WRs, but we have enough for now.
128 * SEND/RECV IB Control Messages.
131 RDMA_CONTROL_NONE
= 0,
133 RDMA_CONTROL_READY
, /* ready to receive */
134 RDMA_CONTROL_QEMU_FILE
, /* QEMUFile-transmitted bytes */
135 RDMA_CONTROL_RAM_BLOCKS_REQUEST
, /* RAMBlock synchronization */
136 RDMA_CONTROL_RAM_BLOCKS_RESULT
, /* RAMBlock synchronization */
137 RDMA_CONTROL_COMPRESS
, /* page contains repeat values */
138 RDMA_CONTROL_REGISTER_REQUEST
, /* dynamic page registration */
139 RDMA_CONTROL_REGISTER_RESULT
, /* key to use after registration */
140 RDMA_CONTROL_REGISTER_FINISHED
, /* current iteration finished */
141 RDMA_CONTROL_UNREGISTER_REQUEST
, /* dynamic UN-registration */
142 RDMA_CONTROL_UNREGISTER_FINISHED
, /* unpinning finished */
147 * Memory and MR structures used to represent an IB Send/Recv work request.
148 * This is *not* used for RDMA writes, only IB Send/Recv.
151 uint8_t control
[RDMA_CONTROL_MAX_BUFFER
]; /* actual buffer to register */
152 struct ibv_mr
*control_mr
; /* registration metadata */
153 size_t control_len
; /* length of the message */
154 uint8_t *control_curr
; /* start of unconsumed bytes */
155 } RDMAWorkRequestData
;
158 * Negotiate RDMA capabilities during connection-setup time.
165 static void caps_to_network(RDMACapabilities
*cap
)
167 cap
->version
= htonl(cap
->version
);
168 cap
->flags
= htonl(cap
->flags
);
171 static void network_to_caps(RDMACapabilities
*cap
)
173 cap
->version
= ntohl(cap
->version
);
174 cap
->flags
= ntohl(cap
->flags
);
178 * Representation of a RAMBlock from an RDMA perspective.
179 * This is not transmitted, only local.
180 * This and subsequent structures cannot be linked lists
181 * because we're using a single IB message to transmit
182 * the information. It's small anyway, so a list is overkill.
184 typedef struct RDMALocalBlock
{
186 uint8_t *local_host_addr
; /* local virtual address */
187 uint64_t remote_host_addr
; /* remote virtual address */
190 struct ibv_mr
**pmr
; /* MRs for chunk-level registration */
191 struct ibv_mr
*mr
; /* MR for non-chunk-level registration */
192 uint32_t *remote_keys
; /* rkeys for chunk-level registration */
193 uint32_t remote_rkey
; /* rkeys for non-chunk-level registration */
194 int index
; /* which block are we */
195 unsigned int src_index
; /* (Only used on dest) */
198 unsigned long *transit_bitmap
;
199 unsigned long *unregister_bitmap
;
203 * Also represents a RAMblock, but only on the dest.
204 * This gets transmitted by the dest during connection-time
205 * to the source VM and then is used to populate the
206 * corresponding RDMALocalBlock with
207 * the information needed to perform the actual RDMA.
209 typedef struct QEMU_PACKED RDMADestBlock
{
210 uint64_t remote_host_addr
;
213 uint32_t remote_rkey
;
217 static const char *control_desc(unsigned int rdma_control
)
219 static const char *strs
[] = {
220 [RDMA_CONTROL_NONE
] = "NONE",
221 [RDMA_CONTROL_ERROR
] = "ERROR",
222 [RDMA_CONTROL_READY
] = "READY",
223 [RDMA_CONTROL_QEMU_FILE
] = "QEMU FILE",
224 [RDMA_CONTROL_RAM_BLOCKS_REQUEST
] = "RAM BLOCKS REQUEST",
225 [RDMA_CONTROL_RAM_BLOCKS_RESULT
] = "RAM BLOCKS RESULT",
226 [RDMA_CONTROL_COMPRESS
] = "COMPRESS",
227 [RDMA_CONTROL_REGISTER_REQUEST
] = "REGISTER REQUEST",
228 [RDMA_CONTROL_REGISTER_RESULT
] = "REGISTER RESULT",
229 [RDMA_CONTROL_REGISTER_FINISHED
] = "REGISTER FINISHED",
230 [RDMA_CONTROL_UNREGISTER_REQUEST
] = "UNREGISTER REQUEST",
231 [RDMA_CONTROL_UNREGISTER_FINISHED
] = "UNREGISTER FINISHED",
234 if (rdma_control
> RDMA_CONTROL_UNREGISTER_FINISHED
) {
235 return "??BAD CONTROL VALUE??";
238 return strs
[rdma_control
];
241 static uint64_t htonll(uint64_t v
)
243 union { uint32_t lv
[2]; uint64_t llv
; } u
;
244 u
.lv
[0] = htonl(v
>> 32);
245 u
.lv
[1] = htonl(v
& 0xFFFFFFFFULL
);
249 static uint64_t ntohll(uint64_t v
)
251 union { uint32_t lv
[2]; uint64_t llv
; } u
;
253 return ((uint64_t)ntohl(u
.lv
[0]) << 32) | (uint64_t) ntohl(u
.lv
[1]);
256 static void dest_block_to_network(RDMADestBlock
*db
)
258 db
->remote_host_addr
= htonll(db
->remote_host_addr
);
259 db
->offset
= htonll(db
->offset
);
260 db
->length
= htonll(db
->length
);
261 db
->remote_rkey
= htonl(db
->remote_rkey
);
264 static void network_to_dest_block(RDMADestBlock
*db
)
266 db
->remote_host_addr
= ntohll(db
->remote_host_addr
);
267 db
->offset
= ntohll(db
->offset
);
268 db
->length
= ntohll(db
->length
);
269 db
->remote_rkey
= ntohl(db
->remote_rkey
);
273 * Virtual address of the above structures used for transmitting
274 * the RAMBlock descriptions at connection-time.
275 * This structure is *not* transmitted.
277 typedef struct RDMALocalBlocks
{
279 bool init
; /* main memory init complete */
280 RDMALocalBlock
*block
;
284 * Main data structure for RDMA state.
285 * While there is only one copy of this structure being allocated right now,
286 * this is the place where one would start if you wanted to consider
287 * having more than one RDMA connection open at the same time.
289 typedef struct RDMAContext
{
294 RDMAWorkRequestData wr_data
[RDMA_WRID_MAX
];
297 * This is used by *_exchange_send() to figure out whether or not
298 * the initial "READY" message has already been received or not.
299 * This is because other functions may potentially poll() and detect
300 * the READY message before send() does, in which case we need to
301 * know if it completed.
303 int control_ready_expected
;
305 /* number of outstanding writes */
308 /* store info about current buffer so that we can
309 merge it with future sends */
310 uint64_t current_addr
;
311 uint64_t current_length
;
312 /* index of ram block the current buffer belongs to */
314 /* index of the chunk in the current ram block */
320 * infiniband-specific variables for opening the device
321 * and maintaining connection state and so forth.
323 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
324 * cm_id->verbs, cm_id->channel, and cm_id->qp.
326 struct rdma_cm_id
*cm_id
; /* connection manager ID */
327 struct rdma_cm_id
*listen_id
;
330 struct ibv_context
*verbs
;
331 struct rdma_event_channel
*channel
;
332 struct ibv_qp
*qp
; /* queue pair */
333 struct ibv_comp_channel
*recv_comp_channel
; /* recv completion channel */
334 struct ibv_comp_channel
*send_comp_channel
; /* send completion channel */
335 struct ibv_pd
*pd
; /* protection domain */
336 struct ibv_cq
*recv_cq
; /* recvieve completion queue */
337 struct ibv_cq
*send_cq
; /* send completion queue */
340 * If a previous write failed (perhaps because of a failed
341 * memory registration, then do not attempt any future work
342 * and remember the error state.
349 * Description of ram blocks used throughout the code.
351 RDMALocalBlocks local_ram_blocks
;
352 RDMADestBlock
*dest_blocks
;
354 /* Index of the next RAMBlock received during block registration */
355 unsigned int next_src_index
;
358 * Migration on *destination* started.
359 * Then use coroutine yield function.
360 * Source runs in a thread, so we don't care.
362 int migration_started_on_destination
;
364 int total_registrations
;
367 int unregister_current
, unregister_next
;
368 uint64_t unregistrations
[RDMA_SIGNALED_SEND_MAX
];
370 GHashTable
*blockmap
;
372 /* the RDMAContext for return path */
373 struct RDMAContext
*return_path
;
377 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
378 OBJECT_DECLARE_SIMPLE_TYPE(QIOChannelRDMA
, QIO_CHANNEL_RDMA
)
382 struct QIOChannelRDMA
{
385 RDMAContext
*rdmaout
;
387 bool blocking
; /* XXX we don't actually honour this yet */
391 * Main structure for IB Send/Recv control messages.
392 * This gets prepended at the beginning of every Send/Recv.
394 typedef struct QEMU_PACKED
{
395 uint32_t len
; /* Total length of data portion */
396 uint32_t type
; /* which control command to perform */
397 uint32_t repeat
; /* number of commands in data portion of same type */
401 static void control_to_network(RDMAControlHeader
*control
)
403 control
->type
= htonl(control
->type
);
404 control
->len
= htonl(control
->len
);
405 control
->repeat
= htonl(control
->repeat
);
408 static void network_to_control(RDMAControlHeader
*control
)
410 control
->type
= ntohl(control
->type
);
411 control
->len
= ntohl(control
->len
);
412 control
->repeat
= ntohl(control
->repeat
);
416 * Register a single Chunk.
417 * Information sent by the source VM to inform the dest
418 * to register an single chunk of memory before we can perform
419 * the actual RDMA operation.
421 typedef struct QEMU_PACKED
{
423 uint64_t current_addr
; /* offset into the ram_addr_t space */
424 uint64_t chunk
; /* chunk to lookup if unregistering */
426 uint32_t current_index
; /* which ramblock the chunk belongs to */
428 uint64_t chunks
; /* how many sequential chunks to register */
431 static bool rdma_errored(RDMAContext
*rdma
)
433 if (rdma
->errored
&& !rdma
->error_reported
) {
434 error_report("RDMA is in an error state waiting migration"
436 rdma
->error_reported
= true;
438 return rdma
->errored
;
441 static void register_to_network(RDMAContext
*rdma
, RDMARegister
*reg
)
443 RDMALocalBlock
*local_block
;
444 local_block
= &rdma
->local_ram_blocks
.block
[reg
->current_index
];
446 if (local_block
->is_ram_block
) {
448 * current_addr as passed in is an address in the local ram_addr_t
449 * space, we need to translate this for the destination
451 reg
->key
.current_addr
-= local_block
->offset
;
452 reg
->key
.current_addr
+= rdma
->dest_blocks
[reg
->current_index
].offset
;
454 reg
->key
.current_addr
= htonll(reg
->key
.current_addr
);
455 reg
->current_index
= htonl(reg
->current_index
);
456 reg
->chunks
= htonll(reg
->chunks
);
459 static void network_to_register(RDMARegister
*reg
)
461 reg
->key
.current_addr
= ntohll(reg
->key
.current_addr
);
462 reg
->current_index
= ntohl(reg
->current_index
);
463 reg
->chunks
= ntohll(reg
->chunks
);
466 typedef struct QEMU_PACKED
{
467 uint32_t value
; /* if zero, we will madvise() */
468 uint32_t block_idx
; /* which ram block index */
469 uint64_t offset
; /* Address in remote ram_addr_t space */
470 uint64_t length
; /* length of the chunk */
473 static void compress_to_network(RDMAContext
*rdma
, RDMACompress
*comp
)
475 comp
->value
= htonl(comp
->value
);
477 * comp->offset as passed in is an address in the local ram_addr_t
478 * space, we need to translate this for the destination
480 comp
->offset
-= rdma
->local_ram_blocks
.block
[comp
->block_idx
].offset
;
481 comp
->offset
+= rdma
->dest_blocks
[comp
->block_idx
].offset
;
482 comp
->block_idx
= htonl(comp
->block_idx
);
483 comp
->offset
= htonll(comp
->offset
);
484 comp
->length
= htonll(comp
->length
);
487 static void network_to_compress(RDMACompress
*comp
)
489 comp
->value
= ntohl(comp
->value
);
490 comp
->block_idx
= ntohl(comp
->block_idx
);
491 comp
->offset
= ntohll(comp
->offset
);
492 comp
->length
= ntohll(comp
->length
);
496 * The result of the dest's memory registration produces an "rkey"
497 * which the source VM must reference in order to perform
498 * the RDMA operation.
500 typedef struct QEMU_PACKED
{
504 } RDMARegisterResult
;
506 static void result_to_network(RDMARegisterResult
*result
)
508 result
->rkey
= htonl(result
->rkey
);
509 result
->host_addr
= htonll(result
->host_addr
);
512 static void network_to_result(RDMARegisterResult
*result
)
514 result
->rkey
= ntohl(result
->rkey
);
515 result
->host_addr
= ntohll(result
->host_addr
);
518 static int qemu_rdma_exchange_send(RDMAContext
*rdma
, RDMAControlHeader
*head
,
519 uint8_t *data
, RDMAControlHeader
*resp
,
521 int (*callback
)(RDMAContext
*rdma
,
525 static inline uint64_t ram_chunk_index(const uint8_t *start
,
528 return ((uintptr_t) host
- (uintptr_t) start
) >> RDMA_REG_CHUNK_SHIFT
;
531 static inline uint8_t *ram_chunk_start(const RDMALocalBlock
*rdma_ram_block
,
534 return (uint8_t *)(uintptr_t)(rdma_ram_block
->local_host_addr
+
535 (i
<< RDMA_REG_CHUNK_SHIFT
));
538 static inline uint8_t *ram_chunk_end(const RDMALocalBlock
*rdma_ram_block
,
541 uint8_t *result
= ram_chunk_start(rdma_ram_block
, i
) +
542 (1UL << RDMA_REG_CHUNK_SHIFT
);
544 if (result
> (rdma_ram_block
->local_host_addr
+ rdma_ram_block
->length
)) {
545 result
= rdma_ram_block
->local_host_addr
+ rdma_ram_block
->length
;
551 static void rdma_add_block(RDMAContext
*rdma
, const char *block_name
,
553 ram_addr_t block_offset
, uint64_t length
)
555 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
556 RDMALocalBlock
*block
;
557 RDMALocalBlock
*old
= local
->block
;
559 local
->block
= g_new0(RDMALocalBlock
, local
->nb_blocks
+ 1);
561 if (local
->nb_blocks
) {
564 if (rdma
->blockmap
) {
565 for (x
= 0; x
< local
->nb_blocks
; x
++) {
566 g_hash_table_remove(rdma
->blockmap
,
567 (void *)(uintptr_t)old
[x
].offset
);
568 g_hash_table_insert(rdma
->blockmap
,
569 (void *)(uintptr_t)old
[x
].offset
,
573 memcpy(local
->block
, old
, sizeof(RDMALocalBlock
) * local
->nb_blocks
);
577 block
= &local
->block
[local
->nb_blocks
];
579 block
->block_name
= g_strdup(block_name
);
580 block
->local_host_addr
= host_addr
;
581 block
->offset
= block_offset
;
582 block
->length
= length
;
583 block
->index
= local
->nb_blocks
;
584 block
->src_index
= ~0U; /* Filled in by the receipt of the block list */
585 block
->nb_chunks
= ram_chunk_index(host_addr
, host_addr
+ length
) + 1UL;
586 block
->transit_bitmap
= bitmap_new(block
->nb_chunks
);
587 bitmap_clear(block
->transit_bitmap
, 0, block
->nb_chunks
);
588 block
->unregister_bitmap
= bitmap_new(block
->nb_chunks
);
589 bitmap_clear(block
->unregister_bitmap
, 0, block
->nb_chunks
);
590 block
->remote_keys
= g_new0(uint32_t, block
->nb_chunks
);
592 block
->is_ram_block
= local
->init
? false : true;
594 if (rdma
->blockmap
) {
595 g_hash_table_insert(rdma
->blockmap
, (void *)(uintptr_t)block_offset
, block
);
598 trace_rdma_add_block(block_name
, local
->nb_blocks
,
599 (uintptr_t) block
->local_host_addr
,
600 block
->offset
, block
->length
,
601 (uintptr_t) (block
->local_host_addr
+ block
->length
),
602 BITS_TO_LONGS(block
->nb_chunks
) *
603 sizeof(unsigned long) * 8,
610 * Memory regions need to be registered with the device and queue pairs setup
611 * in advanced before the migration starts. This tells us where the RAM blocks
612 * are so that we can register them individually.
614 static int qemu_rdma_init_one_block(RAMBlock
*rb
, void *opaque
)
616 const char *block_name
= qemu_ram_get_idstr(rb
);
617 void *host_addr
= qemu_ram_get_host_addr(rb
);
618 ram_addr_t block_offset
= qemu_ram_get_offset(rb
);
619 ram_addr_t length
= qemu_ram_get_used_length(rb
);
620 rdma_add_block(opaque
, block_name
, host_addr
, block_offset
, length
);
625 * Identify the RAMBlocks and their quantity. They will be references to
626 * identify chunk boundaries inside each RAMBlock and also be referenced
627 * during dynamic page registration.
629 static void qemu_rdma_init_ram_blocks(RDMAContext
*rdma
)
631 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
634 assert(rdma
->blockmap
== NULL
);
635 memset(local
, 0, sizeof *local
);
636 ret
= foreach_not_ignored_block(qemu_rdma_init_one_block
, rdma
);
638 trace_qemu_rdma_init_ram_blocks(local
->nb_blocks
);
639 rdma
->dest_blocks
= g_new0(RDMADestBlock
,
640 rdma
->local_ram_blocks
.nb_blocks
);
645 * Note: If used outside of cleanup, the caller must ensure that the destination
646 * block structures are also updated
648 static void rdma_delete_block(RDMAContext
*rdma
, RDMALocalBlock
*block
)
650 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
651 RDMALocalBlock
*old
= local
->block
;
654 if (rdma
->blockmap
) {
655 g_hash_table_remove(rdma
->blockmap
, (void *)(uintptr_t)block
->offset
);
660 for (j
= 0; j
< block
->nb_chunks
; j
++) {
661 if (!block
->pmr
[j
]) {
664 ibv_dereg_mr(block
->pmr
[j
]);
665 rdma
->total_registrations
--;
672 ibv_dereg_mr(block
->mr
);
673 rdma
->total_registrations
--;
677 g_free(block
->transit_bitmap
);
678 block
->transit_bitmap
= NULL
;
680 g_free(block
->unregister_bitmap
);
681 block
->unregister_bitmap
= NULL
;
683 g_free(block
->remote_keys
);
684 block
->remote_keys
= NULL
;
686 g_free(block
->block_name
);
687 block
->block_name
= NULL
;
689 if (rdma
->blockmap
) {
690 for (x
= 0; x
< local
->nb_blocks
; x
++) {
691 g_hash_table_remove(rdma
->blockmap
,
692 (void *)(uintptr_t)old
[x
].offset
);
696 if (local
->nb_blocks
> 1) {
698 local
->block
= g_new0(RDMALocalBlock
, local
->nb_blocks
- 1);
701 memcpy(local
->block
, old
, sizeof(RDMALocalBlock
) * block
->index
);
704 if (block
->index
< (local
->nb_blocks
- 1)) {
705 memcpy(local
->block
+ block
->index
, old
+ (block
->index
+ 1),
706 sizeof(RDMALocalBlock
) *
707 (local
->nb_blocks
- (block
->index
+ 1)));
708 for (x
= block
->index
; x
< local
->nb_blocks
- 1; x
++) {
709 local
->block
[x
].index
--;
713 assert(block
== local
->block
);
717 trace_rdma_delete_block(block
, (uintptr_t)block
->local_host_addr
,
718 block
->offset
, block
->length
,
719 (uintptr_t)(block
->local_host_addr
+ block
->length
),
720 BITS_TO_LONGS(block
->nb_chunks
) *
721 sizeof(unsigned long) * 8, block
->nb_chunks
);
727 if (local
->nb_blocks
&& rdma
->blockmap
) {
728 for (x
= 0; x
< local
->nb_blocks
; x
++) {
729 g_hash_table_insert(rdma
->blockmap
,
730 (void *)(uintptr_t)local
->block
[x
].offset
,
737 * Put in the log file which RDMA device was opened and the details
738 * associated with that device.
740 static void qemu_rdma_dump_id(const char *who
, struct ibv_context
*verbs
)
742 struct ibv_port_attr port
;
744 if (ibv_query_port(verbs
, 1, &port
)) {
745 error_report("Failed to query port information");
749 printf("%s RDMA Device opened: kernel name %s "
750 "uverbs device name %s, "
751 "infiniband_verbs class device path %s, "
752 "infiniband class device path %s, "
753 "transport: (%d) %s\n",
756 verbs
->device
->dev_name
,
757 verbs
->device
->dev_path
,
758 verbs
->device
->ibdev_path
,
760 (port
.link_layer
== IBV_LINK_LAYER_INFINIBAND
) ? "Infiniband" :
761 ((port
.link_layer
== IBV_LINK_LAYER_ETHERNET
)
762 ? "Ethernet" : "Unknown"));
766 * Put in the log file the RDMA gid addressing information,
767 * useful for folks who have trouble understanding the
768 * RDMA device hierarchy in the kernel.
770 static void qemu_rdma_dump_gid(const char *who
, struct rdma_cm_id
*id
)
774 inet_ntop(AF_INET6
, &id
->route
.addr
.addr
.ibaddr
.sgid
, sgid
, sizeof sgid
);
775 inet_ntop(AF_INET6
, &id
->route
.addr
.addr
.ibaddr
.dgid
, dgid
, sizeof dgid
);
776 trace_qemu_rdma_dump_gid(who
, sgid
, dgid
);
780 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
781 * We will try the next addrinfo struct, and fail if there are
782 * no other valid addresses to bind against.
784 * If user is listening on '[::]', then we will not have a opened a device
785 * yet and have no way of verifying if the device is RoCE or not.
787 * In this case, the source VM will throw an error for ALL types of
788 * connections (both IPv4 and IPv6) if the destination machine does not have
789 * a regular infiniband network available for use.
791 * The only way to guarantee that an error is thrown for broken kernels is
792 * for the management software to choose a *specific* interface at bind time
793 * and validate what time of hardware it is.
795 * Unfortunately, this puts the user in a fix:
797 * If the source VM connects with an IPv4 address without knowing that the
798 * destination has bound to '[::]' the migration will unconditionally fail
799 * unless the management software is explicitly listening on the IPv4
800 * address while using a RoCE-based device.
802 * If the source VM connects with an IPv6 address, then we're OK because we can
803 * throw an error on the source (and similarly on the destination).
805 * But in mixed environments, this will be broken for a while until it is fixed
808 * We do provide a *tiny* bit of help in this function: We can list all of the
809 * devices in the system and check to see if all the devices are RoCE or
812 * If we detect that we have a *pure* RoCE environment, then we can safely
813 * thrown an error even if the management software has specified '[::]' as the
816 * However, if there is are multiple hetergeneous devices, then we cannot make
817 * this assumption and the user just has to be sure they know what they are
820 * Patches are being reviewed on linux-rdma.
822 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context
*verbs
, Error
**errp
)
824 /* This bug only exists in linux, to our knowledge. */
826 struct ibv_port_attr port_attr
;
829 * Verbs are only NULL if management has bound to '[::]'.
831 * Let's iterate through all the devices and see if there any pure IB
832 * devices (non-ethernet).
834 * If not, then we can safely proceed with the migration.
835 * Otherwise, there are no guarantees until the bug is fixed in linux.
839 struct ibv_device
**dev_list
= ibv_get_device_list(&num_devices
);
840 bool roce_found
= false;
841 bool ib_found
= false;
843 for (x
= 0; x
< num_devices
; x
++) {
844 verbs
= ibv_open_device(dev_list
[x
]);
846 * ibv_open_device() is not documented to set errno. If
847 * it does, it's somebody else's doc bug. If it doesn't,
848 * the use of errno below is wrong.
849 * TODO Find out whether ibv_open_device() sets errno.
852 if (errno
== EPERM
) {
855 error_setg_errno(errp
, errno
,
856 "could not open RDMA device context");
861 if (ibv_query_port(verbs
, 1, &port_attr
)) {
862 ibv_close_device(verbs
);
864 "RDMA ERROR: Could not query initial IB port");
868 if (port_attr
.link_layer
== IBV_LINK_LAYER_INFINIBAND
) {
870 } else if (port_attr
.link_layer
== IBV_LINK_LAYER_ETHERNET
) {
874 ibv_close_device(verbs
);
880 fprintf(stderr
, "WARN: migrations may fail:"
881 " IPv6 over RoCE / iWARP in linux"
882 " is broken. But since you appear to have a"
883 " mixed RoCE / IB environment, be sure to only"
884 " migrate over the IB fabric until the kernel "
885 " fixes the bug.\n");
887 error_setg(errp
, "RDMA ERROR: "
888 "You only have RoCE / iWARP devices in your systems"
889 " and your management software has specified '[::]'"
890 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
899 * If we have a verbs context, that means that some other than '[::]' was
900 * used by the management software for binding. In which case we can
901 * actually warn the user about a potentially broken kernel.
904 /* IB ports start with 1, not 0 */
905 if (ibv_query_port(verbs
, 1, &port_attr
)) {
906 error_setg(errp
, "RDMA ERROR: Could not query initial IB port");
910 if (port_attr
.link_layer
== IBV_LINK_LAYER_ETHERNET
) {
911 error_setg(errp
, "RDMA ERROR: "
912 "Linux kernel's RoCE / iWARP does not support IPv6 "
913 "(but patches on linux-rdma in progress)");
923 * Figure out which RDMA device corresponds to the requested IP hostname
924 * Also create the initial connection manager identifiers for opening
927 static int qemu_rdma_resolve_host(RDMAContext
*rdma
, Error
**errp
)
931 struct rdma_addrinfo
*res
;
933 struct rdma_cm_event
*cm_event
;
934 char ip
[40] = "unknown";
935 struct rdma_addrinfo
*e
;
937 if (rdma
->host
== NULL
|| !strcmp(rdma
->host
, "")) {
938 error_setg(errp
, "RDMA ERROR: RDMA hostname has not been set");
942 /* create CM channel */
943 rdma
->channel
= rdma_create_event_channel();
944 if (!rdma
->channel
) {
945 error_setg(errp
, "RDMA ERROR: could not create CM channel");
950 ret
= rdma_create_id(rdma
->channel
, &rdma
->cm_id
, NULL
, RDMA_PS_TCP
);
952 error_setg(errp
, "RDMA ERROR: could not create channel id");
953 goto err_resolve_create_id
;
956 snprintf(port_str
, 16, "%d", rdma
->port
);
959 ret
= rdma_getaddrinfo(rdma
->host
, port_str
, NULL
, &res
);
961 error_setg(errp
, "RDMA ERROR: could not rdma_getaddrinfo address %s",
963 goto err_resolve_get_addr
;
966 /* Try all addresses, saving the first error in @err */
967 for (e
= res
; e
!= NULL
; e
= e
->ai_next
) {
968 Error
**local_errp
= err
? NULL
: &err
;
970 inet_ntop(e
->ai_family
,
971 &((struct sockaddr_in
*) e
->ai_dst_addr
)->sin_addr
, ip
, sizeof ip
);
972 trace_qemu_rdma_resolve_host_trying(rdma
->host
, ip
);
974 ret
= rdma_resolve_addr(rdma
->cm_id
, NULL
, e
->ai_dst_addr
,
975 RDMA_RESOLVE_TIMEOUT_MS
);
977 if (e
->ai_family
== AF_INET6
) {
978 ret
= qemu_rdma_broken_ipv6_kernel(rdma
->cm_id
->verbs
,
989 rdma_freeaddrinfo(res
);
991 error_propagate(errp
, err
);
993 error_setg(errp
, "RDMA ERROR: could not resolve address %s",
996 goto err_resolve_get_addr
;
999 rdma_freeaddrinfo(res
);
1000 qemu_rdma_dump_gid("source_resolve_addr", rdma
->cm_id
);
1002 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
1004 error_setg(errp
, "RDMA ERROR: could not perform event_addr_resolved");
1005 goto err_resolve_get_addr
;
1008 if (cm_event
->event
!= RDMA_CM_EVENT_ADDR_RESOLVED
) {
1010 "RDMA ERROR: result not equal to event_addr_resolved %s",
1011 rdma_event_str(cm_event
->event
));
1012 rdma_ack_cm_event(cm_event
);
1013 goto err_resolve_get_addr
;
1015 rdma_ack_cm_event(cm_event
);
1018 ret
= rdma_resolve_route(rdma
->cm_id
, RDMA_RESOLVE_TIMEOUT_MS
);
1020 error_setg(errp
, "RDMA ERROR: could not resolve rdma route");
1021 goto err_resolve_get_addr
;
1024 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
1026 error_setg(errp
, "RDMA ERROR: could not perform event_route_resolved");
1027 goto err_resolve_get_addr
;
1029 if (cm_event
->event
!= RDMA_CM_EVENT_ROUTE_RESOLVED
) {
1030 error_setg(errp
, "RDMA ERROR: "
1031 "result not equal to event_route_resolved: %s",
1032 rdma_event_str(cm_event
->event
));
1033 rdma_ack_cm_event(cm_event
);
1034 goto err_resolve_get_addr
;
1036 rdma_ack_cm_event(cm_event
);
1037 rdma
->verbs
= rdma
->cm_id
->verbs
;
1038 qemu_rdma_dump_id("source_resolve_host", rdma
->cm_id
->verbs
);
1039 qemu_rdma_dump_gid("source_resolve_host", rdma
->cm_id
);
1042 err_resolve_get_addr
:
1043 rdma_destroy_id(rdma
->cm_id
);
1045 err_resolve_create_id
:
1046 rdma_destroy_event_channel(rdma
->channel
);
1047 rdma
->channel
= NULL
;
1052 * Create protection domain and completion queues
1054 static int qemu_rdma_alloc_pd_cq(RDMAContext
*rdma
, Error
**errp
)
1057 rdma
->pd
= ibv_alloc_pd(rdma
->verbs
);
1059 error_setg(errp
, "failed to allocate protection domain");
1063 /* create receive completion channel */
1064 rdma
->recv_comp_channel
= ibv_create_comp_channel(rdma
->verbs
);
1065 if (!rdma
->recv_comp_channel
) {
1066 error_setg(errp
, "failed to allocate receive completion channel");
1067 goto err_alloc_pd_cq
;
1071 * Completion queue can be filled by read work requests.
1073 rdma
->recv_cq
= ibv_create_cq(rdma
->verbs
, (RDMA_SIGNALED_SEND_MAX
* 3),
1074 NULL
, rdma
->recv_comp_channel
, 0);
1075 if (!rdma
->recv_cq
) {
1076 error_setg(errp
, "failed to allocate receive completion queue");
1077 goto err_alloc_pd_cq
;
1080 /* create send completion channel */
1081 rdma
->send_comp_channel
= ibv_create_comp_channel(rdma
->verbs
);
1082 if (!rdma
->send_comp_channel
) {
1083 error_setg(errp
, "failed to allocate send completion channel");
1084 goto err_alloc_pd_cq
;
1087 rdma
->send_cq
= ibv_create_cq(rdma
->verbs
, (RDMA_SIGNALED_SEND_MAX
* 3),
1088 NULL
, rdma
->send_comp_channel
, 0);
1089 if (!rdma
->send_cq
) {
1090 error_setg(errp
, "failed to allocate send completion queue");
1091 goto err_alloc_pd_cq
;
1098 ibv_dealloc_pd(rdma
->pd
);
1100 if (rdma
->recv_comp_channel
) {
1101 ibv_destroy_comp_channel(rdma
->recv_comp_channel
);
1103 if (rdma
->send_comp_channel
) {
1104 ibv_destroy_comp_channel(rdma
->send_comp_channel
);
1106 if (rdma
->recv_cq
) {
1107 ibv_destroy_cq(rdma
->recv_cq
);
1108 rdma
->recv_cq
= NULL
;
1111 rdma
->recv_comp_channel
= NULL
;
1112 rdma
->send_comp_channel
= NULL
;
1118 * Create queue pairs.
1120 static int qemu_rdma_alloc_qp(RDMAContext
*rdma
)
1122 struct ibv_qp_init_attr attr
= { 0 };
1125 attr
.cap
.max_send_wr
= RDMA_SIGNALED_SEND_MAX
;
1126 attr
.cap
.max_recv_wr
= 3;
1127 attr
.cap
.max_send_sge
= 1;
1128 attr
.cap
.max_recv_sge
= 1;
1129 attr
.send_cq
= rdma
->send_cq
;
1130 attr
.recv_cq
= rdma
->recv_cq
;
1131 attr
.qp_type
= IBV_QPT_RC
;
1133 ret
= rdma_create_qp(rdma
->cm_id
, rdma
->pd
, &attr
);
1138 rdma
->qp
= rdma
->cm_id
->qp
;
1142 /* Check whether On-Demand Paging is supported by RDAM device */
1143 static bool rdma_support_odp(struct ibv_context
*dev
)
1145 struct ibv_device_attr_ex attr
= {0};
1146 int ret
= ibv_query_device_ex(dev
, NULL
, &attr
);
1151 if (attr
.odp_caps
.general_caps
& IBV_ODP_SUPPORT
) {
1159 * ibv_advise_mr to avoid RNR NAK error as far as possible.
1160 * The responder mr registering with ODP will sent RNR NAK back to
1161 * the requester in the face of the page fault.
1163 static void qemu_rdma_advise_prefetch_mr(struct ibv_pd
*pd
, uint64_t addr
,
1164 uint32_t len
, uint32_t lkey
,
1165 const char *name
, bool wr
)
1167 #ifdef HAVE_IBV_ADVISE_MR
1169 int advice
= wr
? IBV_ADVISE_MR_ADVICE_PREFETCH_WRITE
:
1170 IBV_ADVISE_MR_ADVICE_PREFETCH
;
1171 struct ibv_sge sg_list
= {.lkey
= lkey
, .addr
= addr
, .length
= len
};
1173 ret
= ibv_advise_mr(pd
, advice
,
1174 IBV_ADVISE_MR_FLAG_FLUSH
, &sg_list
, 1);
1175 /* ignore the error */
1176 trace_qemu_rdma_advise_mr(name
, len
, addr
, strerror(ret
));
1180 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext
*rdma
, Error
**errp
)
1183 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
1185 for (i
= 0; i
< local
->nb_blocks
; i
++) {
1186 int access
= IBV_ACCESS_LOCAL_WRITE
| IBV_ACCESS_REMOTE_WRITE
;
1188 local
->block
[i
].mr
=
1189 ibv_reg_mr(rdma
->pd
,
1190 local
->block
[i
].local_host_addr
,
1191 local
->block
[i
].length
, access
1194 * ibv_reg_mr() is not documented to set errno. If it does,
1195 * it's somebody else's doc bug. If it doesn't, the use of
1196 * errno below is wrong.
1197 * TODO Find out whether ibv_reg_mr() sets errno.
1199 if (!local
->block
[i
].mr
&&
1200 errno
== ENOTSUP
&& rdma_support_odp(rdma
->verbs
)) {
1201 access
|= IBV_ACCESS_ON_DEMAND
;
1202 /* register ODP mr */
1203 local
->block
[i
].mr
=
1204 ibv_reg_mr(rdma
->pd
,
1205 local
->block
[i
].local_host_addr
,
1206 local
->block
[i
].length
, access
);
1207 trace_qemu_rdma_register_odp_mr(local
->block
[i
].block_name
);
1209 if (local
->block
[i
].mr
) {
1210 qemu_rdma_advise_prefetch_mr(rdma
->pd
,
1211 (uintptr_t)local
->block
[i
].local_host_addr
,
1212 local
->block
[i
].length
,
1213 local
->block
[i
].mr
->lkey
,
1214 local
->block
[i
].block_name
,
1219 if (!local
->block
[i
].mr
) {
1220 error_setg_errno(errp
, errno
,
1221 "Failed to register local dest ram block!");
1224 rdma
->total_registrations
++;
1230 for (i
--; i
>= 0; i
--) {
1231 ibv_dereg_mr(local
->block
[i
].mr
);
1232 local
->block
[i
].mr
= NULL
;
1233 rdma
->total_registrations
--;
1241 * Find the ram block that corresponds to the page requested to be
1242 * transmitted by QEMU.
1244 * Once the block is found, also identify which 'chunk' within that
1245 * block that the page belongs to.
1247 static void qemu_rdma_search_ram_block(RDMAContext
*rdma
,
1248 uintptr_t block_offset
,
1251 uint64_t *block_index
,
1252 uint64_t *chunk_index
)
1254 uint64_t current_addr
= block_offset
+ offset
;
1255 RDMALocalBlock
*block
= g_hash_table_lookup(rdma
->blockmap
,
1256 (void *) block_offset
);
1258 assert(current_addr
>= block
->offset
);
1259 assert((current_addr
+ length
) <= (block
->offset
+ block
->length
));
1261 *block_index
= block
->index
;
1262 *chunk_index
= ram_chunk_index(block
->local_host_addr
,
1263 block
->local_host_addr
+ (current_addr
- block
->offset
));
1267 * Register a chunk with IB. If the chunk was already registered
1268 * previously, then skip.
1270 * Also return the keys associated with the registration needed
1271 * to perform the actual RDMA operation.
1273 static int qemu_rdma_register_and_get_keys(RDMAContext
*rdma
,
1274 RDMALocalBlock
*block
, uintptr_t host_addr
,
1275 uint32_t *lkey
, uint32_t *rkey
, int chunk
,
1276 uint8_t *chunk_start
, uint8_t *chunk_end
)
1280 *lkey
= block
->mr
->lkey
;
1283 *rkey
= block
->mr
->rkey
;
1288 /* allocate memory to store chunk MRs */
1290 block
->pmr
= g_new0(struct ibv_mr
*, block
->nb_chunks
);
1294 * If 'rkey', then we're the destination, so grant access to the source.
1296 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1298 if (!block
->pmr
[chunk
]) {
1299 uint64_t len
= chunk_end
- chunk_start
;
1300 int access
= rkey
? IBV_ACCESS_LOCAL_WRITE
| IBV_ACCESS_REMOTE_WRITE
:
1303 trace_qemu_rdma_register_and_get_keys(len
, chunk_start
);
1305 block
->pmr
[chunk
] = ibv_reg_mr(rdma
->pd
, chunk_start
, len
, access
);
1307 * ibv_reg_mr() is not documented to set errno. If it does,
1308 * it's somebody else's doc bug. If it doesn't, the use of
1309 * errno below is wrong.
1310 * TODO Find out whether ibv_reg_mr() sets errno.
1312 if (!block
->pmr
[chunk
] &&
1313 errno
== ENOTSUP
&& rdma_support_odp(rdma
->verbs
)) {
1314 access
|= IBV_ACCESS_ON_DEMAND
;
1315 /* register ODP mr */
1316 block
->pmr
[chunk
] = ibv_reg_mr(rdma
->pd
, chunk_start
, len
, access
);
1317 trace_qemu_rdma_register_odp_mr(block
->block_name
);
1319 if (block
->pmr
[chunk
]) {
1320 qemu_rdma_advise_prefetch_mr(rdma
->pd
, (uintptr_t)chunk_start
,
1321 len
, block
->pmr
[chunk
]->lkey
,
1322 block
->block_name
, rkey
);
1327 if (!block
->pmr
[chunk
]) {
1328 perror("Failed to register chunk!");
1329 fprintf(stderr
, "Chunk details: block: %d chunk index %d"
1330 " start %" PRIuPTR
" end %" PRIuPTR
1332 " local %" PRIuPTR
" registrations: %d\n",
1333 block
->index
, chunk
, (uintptr_t)chunk_start
,
1334 (uintptr_t)chunk_end
, host_addr
,
1335 (uintptr_t)block
->local_host_addr
,
1336 rdma
->total_registrations
);
1339 rdma
->total_registrations
++;
1342 *lkey
= block
->pmr
[chunk
]->lkey
;
1345 *rkey
= block
->pmr
[chunk
]->rkey
;
1351 * Register (at connection time) the memory used for control
1354 static int qemu_rdma_reg_control(RDMAContext
*rdma
, int idx
)
1356 rdma
->wr_data
[idx
].control_mr
= ibv_reg_mr(rdma
->pd
,
1357 rdma
->wr_data
[idx
].control
, RDMA_CONTROL_MAX_BUFFER
,
1358 IBV_ACCESS_LOCAL_WRITE
| IBV_ACCESS_REMOTE_WRITE
);
1359 if (rdma
->wr_data
[idx
].control_mr
) {
1360 rdma
->total_registrations
++;
1367 * Perform a non-optimized memory unregistration after every transfer
1368 * for demonstration purposes, only if pin-all is not requested.
1370 * Potential optimizations:
1371 * 1. Start a new thread to run this function continuously
1373 - and for receipt of unregister messages
1375 * 3. Use workload hints.
1377 static int qemu_rdma_unregister_waiting(RDMAContext
*rdma
)
1381 while (rdma
->unregistrations
[rdma
->unregister_current
]) {
1383 uint64_t wr_id
= rdma
->unregistrations
[rdma
->unregister_current
];
1385 (wr_id
& RDMA_WRID_CHUNK_MASK
) >> RDMA_WRID_CHUNK_SHIFT
;
1387 (wr_id
& RDMA_WRID_BLOCK_MASK
) >> RDMA_WRID_BLOCK_SHIFT
;
1388 RDMALocalBlock
*block
=
1389 &(rdma
->local_ram_blocks
.block
[index
]);
1390 RDMARegister reg
= { .current_index
= index
};
1391 RDMAControlHeader resp
= { .type
= RDMA_CONTROL_UNREGISTER_FINISHED
,
1393 RDMAControlHeader head
= { .len
= sizeof(RDMARegister
),
1394 .type
= RDMA_CONTROL_UNREGISTER_REQUEST
,
1398 trace_qemu_rdma_unregister_waiting_proc(chunk
,
1399 rdma
->unregister_current
);
1401 rdma
->unregistrations
[rdma
->unregister_current
] = 0;
1402 rdma
->unregister_current
++;
1404 if (rdma
->unregister_current
== RDMA_SIGNALED_SEND_MAX
) {
1405 rdma
->unregister_current
= 0;
1410 * Unregistration is speculative (because migration is single-threaded
1411 * and we cannot break the protocol's inifinband message ordering).
1412 * Thus, if the memory is currently being used for transmission,
1413 * then abort the attempt to unregister and try again
1414 * later the next time a completion is received for this memory.
1416 clear_bit(chunk
, block
->unregister_bitmap
);
1418 if (test_bit(chunk
, block
->transit_bitmap
)) {
1419 trace_qemu_rdma_unregister_waiting_inflight(chunk
);
1423 trace_qemu_rdma_unregister_waiting_send(chunk
);
1425 ret
= ibv_dereg_mr(block
->pmr
[chunk
]);
1426 block
->pmr
[chunk
] = NULL
;
1427 block
->remote_keys
[chunk
] = 0;
1431 * FIXME perror() is problematic, bcause ibv_dereg_mr() is
1432 * not documented to set errno. Will go away later in
1435 perror("unregistration chunk failed");
1438 rdma
->total_registrations
--;
1440 reg
.key
.chunk
= chunk
;
1441 register_to_network(rdma
, ®
);
1442 ret
= qemu_rdma_exchange_send(rdma
, &head
, (uint8_t *) ®
,
1443 &resp
, NULL
, NULL
, &err
);
1445 error_report_err(err
);
1449 trace_qemu_rdma_unregister_waiting_complete(chunk
);
1455 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id
, uint64_t index
,
1458 uint64_t result
= wr_id
& RDMA_WRID_TYPE_MASK
;
1460 result
|= (index
<< RDMA_WRID_BLOCK_SHIFT
);
1461 result
|= (chunk
<< RDMA_WRID_CHUNK_SHIFT
);
1467 * Consult the connection manager to see a work request
1468 * (of any kind) has completed.
1469 * Return the work request ID that completed.
1471 static int qemu_rdma_poll(RDMAContext
*rdma
, struct ibv_cq
*cq
,
1472 uint64_t *wr_id_out
, uint32_t *byte_len
)
1478 ret
= ibv_poll_cq(cq
, 1, &wc
);
1481 *wr_id_out
= RDMA_WRID_NONE
;
1486 error_report("ibv_poll_cq failed");
1490 wr_id
= wc
.wr_id
& RDMA_WRID_TYPE_MASK
;
1492 if (wc
.status
!= IBV_WC_SUCCESS
) {
1493 fprintf(stderr
, "ibv_poll_cq wc.status=%d %s!\n",
1494 wc
.status
, ibv_wc_status_str(wc
.status
));
1495 fprintf(stderr
, "ibv_poll_cq wrid=%" PRIu64
"!\n", wr_id
);
1500 if (rdma
->control_ready_expected
&&
1501 (wr_id
>= RDMA_WRID_RECV_CONTROL
)) {
1502 trace_qemu_rdma_poll_recv(wr_id
- RDMA_WRID_RECV_CONTROL
, wr_id
,
1504 rdma
->control_ready_expected
= 0;
1507 if (wr_id
== RDMA_WRID_RDMA_WRITE
) {
1509 (wc
.wr_id
& RDMA_WRID_CHUNK_MASK
) >> RDMA_WRID_CHUNK_SHIFT
;
1511 (wc
.wr_id
& RDMA_WRID_BLOCK_MASK
) >> RDMA_WRID_BLOCK_SHIFT
;
1512 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[index
]);
1514 trace_qemu_rdma_poll_write(wr_id
, rdma
->nb_sent
,
1515 index
, chunk
, block
->local_host_addr
,
1516 (void *)(uintptr_t)block
->remote_host_addr
);
1518 clear_bit(chunk
, block
->transit_bitmap
);
1520 if (rdma
->nb_sent
> 0) {
1524 trace_qemu_rdma_poll_other(wr_id
, rdma
->nb_sent
);
1527 *wr_id_out
= wc
.wr_id
;
1529 *byte_len
= wc
.byte_len
;
1535 /* Wait for activity on the completion channel.
1536 * Returns 0 on success, none-0 on error.
1538 static int qemu_rdma_wait_comp_channel(RDMAContext
*rdma
,
1539 struct ibv_comp_channel
*comp_channel
)
1541 struct rdma_cm_event
*cm_event
;
1545 * Coroutine doesn't start until migration_fd_process_incoming()
1546 * so don't yield unless we know we're running inside of a coroutine.
1548 if (rdma
->migration_started_on_destination
&&
1549 migration_incoming_get_current()->state
== MIGRATION_STATUS_ACTIVE
) {
1550 yield_until_fd_readable(comp_channel
->fd
);
1552 /* This is the source side, we're in a separate thread
1553 * or destination prior to migration_fd_process_incoming()
1554 * after postcopy, the destination also in a separate thread.
1555 * we can't yield; so we have to poll the fd.
1556 * But we need to be able to handle 'cancel' or an error
1557 * without hanging forever.
1559 while (!rdma
->errored
&& !rdma
->received_error
) {
1561 pfds
[0].fd
= comp_channel
->fd
;
1562 pfds
[0].events
= G_IO_IN
| G_IO_HUP
| G_IO_ERR
;
1563 pfds
[0].revents
= 0;
1565 pfds
[1].fd
= rdma
->channel
->fd
;
1566 pfds
[1].events
= G_IO_IN
| G_IO_HUP
| G_IO_ERR
;
1567 pfds
[1].revents
= 0;
1569 /* 0.1s timeout, should be fine for a 'cancel' */
1570 switch (qemu_poll_ns(pfds
, 2, 100 * 1000 * 1000)) {
1572 case 1: /* fd active */
1573 if (pfds
[0].revents
) {
1577 if (pfds
[1].revents
) {
1578 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
1580 error_report("failed to get cm event while wait "
1581 "completion channel");
1585 error_report("receive cm event while wait comp channel,"
1586 "cm event is %d", cm_event
->event
);
1587 if (cm_event
->event
== RDMA_CM_EVENT_DISCONNECTED
||
1588 cm_event
->event
== RDMA_CM_EVENT_DEVICE_REMOVAL
) {
1589 rdma_ack_cm_event(cm_event
);
1592 rdma_ack_cm_event(cm_event
);
1596 case 0: /* Timeout, go around again */
1599 default: /* Error of some type -
1600 * I don't trust errno from qemu_poll_ns
1602 error_report("%s: poll failed", __func__
);
1606 if (migrate_get_current()->state
== MIGRATION_STATUS_CANCELLING
) {
1607 /* Bail out and let the cancellation happen */
1613 if (rdma
->received_error
) {
1616 return -rdma
->errored
;
1619 static struct ibv_comp_channel
*to_channel(RDMAContext
*rdma
, uint64_t wrid
)
1621 return wrid
< RDMA_WRID_RECV_CONTROL
? rdma
->send_comp_channel
:
1622 rdma
->recv_comp_channel
;
1625 static struct ibv_cq
*to_cq(RDMAContext
*rdma
, uint64_t wrid
)
1627 return wrid
< RDMA_WRID_RECV_CONTROL
? rdma
->send_cq
: rdma
->recv_cq
;
1631 * Block until the next work request has completed.
1633 * First poll to see if a work request has already completed,
1636 * If we encounter completed work requests for IDs other than
1637 * the one we're interested in, then that's generally an error.
1639 * The only exception is actual RDMA Write completions. These
1640 * completions only need to be recorded, but do not actually
1641 * need further processing.
1643 static int qemu_rdma_block_for_wrid(RDMAContext
*rdma
,
1644 uint64_t wrid_requested
,
1647 int num_cq_events
= 0, ret
;
1650 uint64_t wr_id
= RDMA_WRID_NONE
, wr_id_in
;
1651 struct ibv_comp_channel
*ch
= to_channel(rdma
, wrid_requested
);
1652 struct ibv_cq
*poll_cq
= to_cq(rdma
, wrid_requested
);
1654 if (ibv_req_notify_cq(poll_cq
, 0)) {
1658 while (wr_id
!= wrid_requested
) {
1659 ret
= qemu_rdma_poll(rdma
, poll_cq
, &wr_id_in
, byte_len
);
1664 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
1666 if (wr_id
== RDMA_WRID_NONE
) {
1669 if (wr_id
!= wrid_requested
) {
1670 trace_qemu_rdma_block_for_wrid_miss(wrid_requested
, wr_id
);
1674 if (wr_id
== wrid_requested
) {
1679 ret
= qemu_rdma_wait_comp_channel(rdma
, ch
);
1681 goto err_block_for_wrid
;
1684 ret
= ibv_get_cq_event(ch
, &cq
, &cq_ctx
);
1687 * FIXME perror() is problematic, because ibv_reg_mr() is
1688 * not documented to set errno. Will go away later in
1691 perror("ibv_get_cq_event");
1692 goto err_block_for_wrid
;
1697 if (ibv_req_notify_cq(cq
, 0)) {
1698 goto err_block_for_wrid
;
1701 while (wr_id
!= wrid_requested
) {
1702 ret
= qemu_rdma_poll(rdma
, poll_cq
, &wr_id_in
, byte_len
);
1704 goto err_block_for_wrid
;
1707 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
1709 if (wr_id
== RDMA_WRID_NONE
) {
1712 if (wr_id
!= wrid_requested
) {
1713 trace_qemu_rdma_block_for_wrid_miss(wrid_requested
, wr_id
);
1717 if (wr_id
== wrid_requested
) {
1718 goto success_block_for_wrid
;
1722 success_block_for_wrid
:
1723 if (num_cq_events
) {
1724 ibv_ack_cq_events(cq
, num_cq_events
);
1729 if (num_cq_events
) {
1730 ibv_ack_cq_events(cq
, num_cq_events
);
1733 rdma
->errored
= true;
1738 * Post a SEND message work request for the control channel
1739 * containing some data and block until the post completes.
1741 static int qemu_rdma_post_send_control(RDMAContext
*rdma
, uint8_t *buf
,
1742 RDMAControlHeader
*head
,
1746 RDMAWorkRequestData
*wr
= &rdma
->wr_data
[RDMA_WRID_CONTROL
];
1747 struct ibv_send_wr
*bad_wr
;
1748 struct ibv_sge sge
= {
1749 .addr
= (uintptr_t)(wr
->control
),
1750 .length
= head
->len
+ sizeof(RDMAControlHeader
),
1751 .lkey
= wr
->control_mr
->lkey
,
1753 struct ibv_send_wr send_wr
= {
1754 .wr_id
= RDMA_WRID_SEND_CONTROL
,
1755 .opcode
= IBV_WR_SEND
,
1756 .send_flags
= IBV_SEND_SIGNALED
,
1761 trace_qemu_rdma_post_send_control(control_desc(head
->type
));
1764 * We don't actually need to do a memcpy() in here if we used
1765 * the "sge" properly, but since we're only sending control messages
1766 * (not RAM in a performance-critical path), then its OK for now.
1768 * The copy makes the RDMAControlHeader simpler to manipulate
1769 * for the time being.
1771 assert(head
->len
<= RDMA_CONTROL_MAX_BUFFER
- sizeof(*head
));
1772 memcpy(wr
->control
, head
, sizeof(RDMAControlHeader
));
1773 control_to_network((void *) wr
->control
);
1776 memcpy(wr
->control
+ sizeof(RDMAControlHeader
), buf
, head
->len
);
1780 ret
= ibv_post_send(rdma
->qp
, &send_wr
, &bad_wr
);
1783 error_setg(errp
, "Failed to use post IB SEND for control");
1787 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_SEND_CONTROL
, NULL
);
1789 error_setg(errp
, "rdma migration: send polling control error");
1797 * Post a RECV work request in anticipation of some future receipt
1798 * of data on the control channel.
1800 static int qemu_rdma_post_recv_control(RDMAContext
*rdma
, int idx
,
1803 struct ibv_recv_wr
*bad_wr
;
1804 struct ibv_sge sge
= {
1805 .addr
= (uintptr_t)(rdma
->wr_data
[idx
].control
),
1806 .length
= RDMA_CONTROL_MAX_BUFFER
,
1807 .lkey
= rdma
->wr_data
[idx
].control_mr
->lkey
,
1810 struct ibv_recv_wr recv_wr
= {
1811 .wr_id
= RDMA_WRID_RECV_CONTROL
+ idx
,
1817 if (ibv_post_recv(rdma
->qp
, &recv_wr
, &bad_wr
)) {
1818 error_setg(errp
, "error posting control recv");
1826 * Block and wait for a RECV control channel message to arrive.
1828 static int qemu_rdma_exchange_get_response(RDMAContext
*rdma
,
1829 RDMAControlHeader
*head
, uint32_t expecting
, int idx
,
1833 int ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RECV_CONTROL
+ idx
,
1837 error_setg(errp
, "rdma migration: recv polling control error!");
1841 network_to_control((void *) rdma
->wr_data
[idx
].control
);
1842 memcpy(head
, rdma
->wr_data
[idx
].control
, sizeof(RDMAControlHeader
));
1844 trace_qemu_rdma_exchange_get_response_start(control_desc(expecting
));
1846 if (expecting
== RDMA_CONTROL_NONE
) {
1847 trace_qemu_rdma_exchange_get_response_none(control_desc(head
->type
),
1849 } else if (head
->type
!= expecting
|| head
->type
== RDMA_CONTROL_ERROR
) {
1850 error_setg(errp
, "Was expecting a %s (%d) control message"
1851 ", but got: %s (%d), length: %d",
1852 control_desc(expecting
), expecting
,
1853 control_desc(head
->type
), head
->type
, head
->len
);
1854 if (head
->type
== RDMA_CONTROL_ERROR
) {
1855 rdma
->received_error
= true;
1859 if (head
->len
> RDMA_CONTROL_MAX_BUFFER
- sizeof(*head
)) {
1860 error_setg(errp
, "too long length: %d", head
->len
);
1863 if (sizeof(*head
) + head
->len
!= byte_len
) {
1864 error_setg(errp
, "Malformed length: %d byte_len %d",
1865 head
->len
, byte_len
);
1873 * When a RECV work request has completed, the work request's
1874 * buffer is pointed at the header.
1876 * This will advance the pointer to the data portion
1877 * of the control message of the work request's buffer that
1878 * was populated after the work request finished.
1880 static void qemu_rdma_move_header(RDMAContext
*rdma
, int idx
,
1881 RDMAControlHeader
*head
)
1883 rdma
->wr_data
[idx
].control_len
= head
->len
;
1884 rdma
->wr_data
[idx
].control_curr
=
1885 rdma
->wr_data
[idx
].control
+ sizeof(RDMAControlHeader
);
1889 * This is an 'atomic' high-level operation to deliver a single, unified
1890 * control-channel message.
1892 * Additionally, if the user is expecting some kind of reply to this message,
1893 * they can request a 'resp' response message be filled in by posting an
1894 * additional work request on behalf of the user and waiting for an additional
1897 * The extra (optional) response is used during registration to us from having
1898 * to perform an *additional* exchange of message just to provide a response by
1899 * instead piggy-backing on the acknowledgement.
1901 static int qemu_rdma_exchange_send(RDMAContext
*rdma
, RDMAControlHeader
*head
,
1902 uint8_t *data
, RDMAControlHeader
*resp
,
1904 int (*callback
)(RDMAContext
*rdma
,
1911 * Wait until the dest is ready before attempting to deliver the message
1912 * by waiting for a READY message.
1914 if (rdma
->control_ready_expected
) {
1915 RDMAControlHeader resp_ignored
;
1917 ret
= qemu_rdma_exchange_get_response(rdma
, &resp_ignored
,
1919 RDMA_WRID_READY
, errp
);
1926 * If the user is expecting a response, post a WR in anticipation of it.
1929 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_DATA
, errp
);
1936 * Post a WR to replace the one we just consumed for the READY message.
1938 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
, errp
);
1944 * Deliver the control message that was requested.
1946 ret
= qemu_rdma_post_send_control(rdma
, data
, head
, errp
);
1953 * If we're expecting a response, block and wait for it.
1957 trace_qemu_rdma_exchange_send_issue_callback();
1958 ret
= callback(rdma
, errp
);
1964 trace_qemu_rdma_exchange_send_waiting(control_desc(resp
->type
));
1965 ret
= qemu_rdma_exchange_get_response(rdma
, resp
,
1966 resp
->type
, RDMA_WRID_DATA
,
1973 qemu_rdma_move_header(rdma
, RDMA_WRID_DATA
, resp
);
1975 *resp_idx
= RDMA_WRID_DATA
;
1977 trace_qemu_rdma_exchange_send_received(control_desc(resp
->type
));
1980 rdma
->control_ready_expected
= 1;
1986 * This is an 'atomic' high-level operation to receive a single, unified
1987 * control-channel message.
1989 static int qemu_rdma_exchange_recv(RDMAContext
*rdma
, RDMAControlHeader
*head
,
1990 uint32_t expecting
, Error
**errp
)
1992 RDMAControlHeader ready
= {
1994 .type
= RDMA_CONTROL_READY
,
2000 * Inform the source that we're ready to receive a message.
2002 ret
= qemu_rdma_post_send_control(rdma
, NULL
, &ready
, errp
);
2009 * Block and wait for the message.
2011 ret
= qemu_rdma_exchange_get_response(rdma
, head
,
2012 expecting
, RDMA_WRID_READY
, errp
);
2018 qemu_rdma_move_header(rdma
, RDMA_WRID_READY
, head
);
2021 * Post a new RECV work request to replace the one we just consumed.
2023 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
, errp
);
2032 * Write an actual chunk of memory using RDMA.
2034 * If we're using dynamic registration on the dest-side, we have to
2035 * send a registration command first.
2037 static int qemu_rdma_write_one(RDMAContext
*rdma
,
2038 int current_index
, uint64_t current_addr
,
2039 uint64_t length
, Error
**errp
)
2042 struct ibv_send_wr send_wr
= { 0 };
2043 struct ibv_send_wr
*bad_wr
;
2044 int reg_result_idx
, ret
, count
= 0;
2045 uint64_t chunk
, chunks
;
2046 uint8_t *chunk_start
, *chunk_end
;
2047 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[current_index
]);
2049 RDMARegisterResult
*reg_result
;
2050 RDMAControlHeader resp
= { .type
= RDMA_CONTROL_REGISTER_RESULT
};
2051 RDMAControlHeader head
= { .len
= sizeof(RDMARegister
),
2052 .type
= RDMA_CONTROL_REGISTER_REQUEST
,
2057 sge
.addr
= (uintptr_t)(block
->local_host_addr
+
2058 (current_addr
- block
->offset
));
2059 sge
.length
= length
;
2061 chunk
= ram_chunk_index(block
->local_host_addr
,
2062 (uint8_t *)(uintptr_t)sge
.addr
);
2063 chunk_start
= ram_chunk_start(block
, chunk
);
2065 if (block
->is_ram_block
) {
2066 chunks
= length
/ (1UL << RDMA_REG_CHUNK_SHIFT
);
2068 if (chunks
&& ((length
% (1UL << RDMA_REG_CHUNK_SHIFT
)) == 0)) {
2072 chunks
= block
->length
/ (1UL << RDMA_REG_CHUNK_SHIFT
);
2074 if (chunks
&& ((block
->length
% (1UL << RDMA_REG_CHUNK_SHIFT
)) == 0)) {
2079 trace_qemu_rdma_write_one_top(chunks
+ 1,
2081 (1UL << RDMA_REG_CHUNK_SHIFT
) / 1024 / 1024);
2083 chunk_end
= ram_chunk_end(block
, chunk
+ chunks
);
2086 while (test_bit(chunk
, block
->transit_bitmap
)) {
2088 trace_qemu_rdma_write_one_block(count
++, current_index
, chunk
,
2089 sge
.addr
, length
, rdma
->nb_sent
, block
->nb_chunks
);
2091 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
2094 error_setg(errp
, "Failed to Wait for previous write to complete "
2095 "block %d chunk %" PRIu64
2096 " current %" PRIu64
" len %" PRIu64
" %d",
2097 current_index
, chunk
, sge
.addr
, length
, rdma
->nb_sent
);
2102 if (!rdma
->pin_all
|| !block
->is_ram_block
) {
2103 if (!block
->remote_keys
[chunk
]) {
2105 * This chunk has not yet been registered, so first check to see
2106 * if the entire chunk is zero. If so, tell the other size to
2107 * memset() + madvise() the entire chunk without RDMA.
2110 if (buffer_is_zero((void *)(uintptr_t)sge
.addr
, length
)) {
2111 RDMACompress comp
= {
2112 .offset
= current_addr
,
2114 .block_idx
= current_index
,
2118 head
.len
= sizeof(comp
);
2119 head
.type
= RDMA_CONTROL_COMPRESS
;
2121 trace_qemu_rdma_write_one_zero(chunk
, sge
.length
,
2122 current_index
, current_addr
);
2124 compress_to_network(rdma
, &comp
);
2125 ret
= qemu_rdma_exchange_send(rdma
, &head
,
2126 (uint8_t *) &comp
, NULL
, NULL
, NULL
, errp
);
2133 * TODO: Here we are sending something, but we are not
2134 * accounting for anything transferred. The following is wrong:
2136 * stat64_add(&mig_stats.rdma_bytes, sge.length);
2138 * because we are using some kind of compression. I
2139 * would think that head.len would be the more similar
2140 * thing to a correct value.
2142 stat64_add(&mig_stats
.zero_pages
,
2143 sge
.length
/ qemu_target_page_size());
2148 * Otherwise, tell other side to register.
2150 reg
.current_index
= current_index
;
2151 if (block
->is_ram_block
) {
2152 reg
.key
.current_addr
= current_addr
;
2154 reg
.key
.chunk
= chunk
;
2156 reg
.chunks
= chunks
;
2158 trace_qemu_rdma_write_one_sendreg(chunk
, sge
.length
, current_index
,
2161 register_to_network(rdma
, ®
);
2162 ret
= qemu_rdma_exchange_send(rdma
, &head
, (uint8_t *) ®
,
2163 &resp
, ®_result_idx
, NULL
, errp
);
2168 /* try to overlap this single registration with the one we sent. */
2169 if (qemu_rdma_register_and_get_keys(rdma
, block
, sge
.addr
,
2170 &sge
.lkey
, NULL
, chunk
,
2171 chunk_start
, chunk_end
)) {
2172 error_setg(errp
, "cannot get lkey");
2176 reg_result
= (RDMARegisterResult
*)
2177 rdma
->wr_data
[reg_result_idx
].control_curr
;
2179 network_to_result(reg_result
);
2181 trace_qemu_rdma_write_one_recvregres(block
->remote_keys
[chunk
],
2182 reg_result
->rkey
, chunk
);
2184 block
->remote_keys
[chunk
] = reg_result
->rkey
;
2185 block
->remote_host_addr
= reg_result
->host_addr
;
2187 /* already registered before */
2188 if (qemu_rdma_register_and_get_keys(rdma
, block
, sge
.addr
,
2189 &sge
.lkey
, NULL
, chunk
,
2190 chunk_start
, chunk_end
)) {
2191 error_setg(errp
, "cannot get lkey!");
2196 send_wr
.wr
.rdma
.rkey
= block
->remote_keys
[chunk
];
2198 send_wr
.wr
.rdma
.rkey
= block
->remote_rkey
;
2200 if (qemu_rdma_register_and_get_keys(rdma
, block
, sge
.addr
,
2201 &sge
.lkey
, NULL
, chunk
,
2202 chunk_start
, chunk_end
)) {
2203 error_setg(errp
, "cannot get lkey!");
2209 * Encode the ram block index and chunk within this wrid.
2210 * We will use this information at the time of completion
2211 * to figure out which bitmap to check against and then which
2212 * chunk in the bitmap to look for.
2214 send_wr
.wr_id
= qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE
,
2215 current_index
, chunk
);
2217 send_wr
.opcode
= IBV_WR_RDMA_WRITE
;
2218 send_wr
.send_flags
= IBV_SEND_SIGNALED
;
2219 send_wr
.sg_list
= &sge
;
2220 send_wr
.num_sge
= 1;
2221 send_wr
.wr
.rdma
.remote_addr
= block
->remote_host_addr
+
2222 (current_addr
- block
->offset
);
2224 trace_qemu_rdma_write_one_post(chunk
, sge
.addr
, send_wr
.wr
.rdma
.remote_addr
,
2228 * ibv_post_send() does not return negative error numbers,
2229 * per the specification they are positive - no idea why.
2231 ret
= ibv_post_send(rdma
->qp
, &send_wr
, &bad_wr
);
2233 if (ret
== ENOMEM
) {
2234 trace_qemu_rdma_write_one_queue_full();
2235 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
2237 error_setg(errp
, "rdma migration: failed to make "
2238 "room in full send queue!");
2244 } else if (ret
> 0) {
2245 error_setg_errno(errp
, ret
,
2246 "rdma migration: post rdma write failed");
2250 set_bit(chunk
, block
->transit_bitmap
);
2251 stat64_add(&mig_stats
.normal_pages
, sge
.length
/ qemu_target_page_size());
2253 * We are adding to transferred the amount of data written, but no
2254 * overhead at all. I will asume that RDMA is magicaly and don't
2255 * need to transfer (at least) the addresses where it wants to
2256 * write the pages. Here it looks like it should be something
2258 * sizeof(send_wr) + sge.length
2259 * but this being RDMA, who knows.
2261 stat64_add(&mig_stats
.rdma_bytes
, sge
.length
);
2262 ram_transferred_add(sge
.length
);
2263 rdma
->total_writes
++;
2269 * Push out any unwritten RDMA operations.
2271 * We support sending out multiple chunks at the same time.
2272 * Not all of them need to get signaled in the completion queue.
2274 static int qemu_rdma_write_flush(RDMAContext
*rdma
, Error
**errp
)
2278 if (!rdma
->current_length
) {
2282 ret
= qemu_rdma_write_one(rdma
, rdma
->current_index
, rdma
->current_addr
,
2283 rdma
->current_length
, errp
);
2291 trace_qemu_rdma_write_flush(rdma
->nb_sent
);
2294 rdma
->current_length
= 0;
2295 rdma
->current_addr
= 0;
2300 static inline bool qemu_rdma_buffer_mergeable(RDMAContext
*rdma
,
2301 uint64_t offset
, uint64_t len
)
2303 RDMALocalBlock
*block
;
2307 if (rdma
->current_index
< 0) {
2311 if (rdma
->current_chunk
< 0) {
2315 block
= &(rdma
->local_ram_blocks
.block
[rdma
->current_index
]);
2316 host_addr
= block
->local_host_addr
+ (offset
- block
->offset
);
2317 chunk_end
= ram_chunk_end(block
, rdma
->current_chunk
);
2319 if (rdma
->current_length
== 0) {
2324 * Only merge into chunk sequentially.
2326 if (offset
!= (rdma
->current_addr
+ rdma
->current_length
)) {
2330 if (offset
< block
->offset
) {
2334 if ((offset
+ len
) > (block
->offset
+ block
->length
)) {
2338 if ((host_addr
+ len
) > chunk_end
) {
2346 * We're not actually writing here, but doing three things:
2348 * 1. Identify the chunk the buffer belongs to.
2349 * 2. If the chunk is full or the buffer doesn't belong to the current
2350 * chunk, then start a new chunk and flush() the old chunk.
2351 * 3. To keep the hardware busy, we also group chunks into batches
2352 * and only require that a batch gets acknowledged in the completion
2353 * queue instead of each individual chunk.
2355 static int qemu_rdma_write(RDMAContext
*rdma
,
2356 uint64_t block_offset
, uint64_t offset
,
2357 uint64_t len
, Error
**errp
)
2359 uint64_t current_addr
= block_offset
+ offset
;
2360 uint64_t index
= rdma
->current_index
;
2361 uint64_t chunk
= rdma
->current_chunk
;
2364 /* If we cannot merge it, we flush the current buffer first. */
2365 if (!qemu_rdma_buffer_mergeable(rdma
, current_addr
, len
)) {
2366 ret
= qemu_rdma_write_flush(rdma
, errp
);
2370 rdma
->current_length
= 0;
2371 rdma
->current_addr
= current_addr
;
2373 qemu_rdma_search_ram_block(rdma
, block_offset
,
2374 offset
, len
, &index
, &chunk
);
2375 rdma
->current_index
= index
;
2376 rdma
->current_chunk
= chunk
;
2380 rdma
->current_length
+= len
;
2382 /* flush it if buffer is too large */
2383 if (rdma
->current_length
>= RDMA_MERGE_MAX
) {
2384 return qemu_rdma_write_flush(rdma
, errp
);
2390 static void qemu_rdma_cleanup(RDMAContext
*rdma
)
2395 if (rdma
->cm_id
&& rdma
->connected
) {
2396 if ((rdma
->errored
||
2397 migrate_get_current()->state
== MIGRATION_STATUS_CANCELLING
) &&
2398 !rdma
->received_error
) {
2399 RDMAControlHeader head
= { .len
= 0,
2400 .type
= RDMA_CONTROL_ERROR
,
2403 error_report("Early error. Sending error.");
2404 if (qemu_rdma_post_send_control(rdma
, NULL
, &head
, &err
) < 0) {
2405 error_report_err(err
);
2409 rdma_disconnect(rdma
->cm_id
);
2410 trace_qemu_rdma_cleanup_disconnect();
2411 rdma
->connected
= false;
2414 if (rdma
->channel
) {
2415 qemu_set_fd_handler(rdma
->channel
->fd
, NULL
, NULL
, NULL
);
2417 g_free(rdma
->dest_blocks
);
2418 rdma
->dest_blocks
= NULL
;
2420 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2421 if (rdma
->wr_data
[idx
].control_mr
) {
2422 rdma
->total_registrations
--;
2423 ibv_dereg_mr(rdma
->wr_data
[idx
].control_mr
);
2425 rdma
->wr_data
[idx
].control_mr
= NULL
;
2428 if (rdma
->local_ram_blocks
.block
) {
2429 while (rdma
->local_ram_blocks
.nb_blocks
) {
2430 rdma_delete_block(rdma
, &rdma
->local_ram_blocks
.block
[0]);
2435 rdma_destroy_qp(rdma
->cm_id
);
2438 if (rdma
->recv_cq
) {
2439 ibv_destroy_cq(rdma
->recv_cq
);
2440 rdma
->recv_cq
= NULL
;
2442 if (rdma
->send_cq
) {
2443 ibv_destroy_cq(rdma
->send_cq
);
2444 rdma
->send_cq
= NULL
;
2446 if (rdma
->recv_comp_channel
) {
2447 ibv_destroy_comp_channel(rdma
->recv_comp_channel
);
2448 rdma
->recv_comp_channel
= NULL
;
2450 if (rdma
->send_comp_channel
) {
2451 ibv_destroy_comp_channel(rdma
->send_comp_channel
);
2452 rdma
->send_comp_channel
= NULL
;
2455 ibv_dealloc_pd(rdma
->pd
);
2459 rdma_destroy_id(rdma
->cm_id
);
2463 /* the destination side, listen_id and channel is shared */
2464 if (rdma
->listen_id
) {
2465 if (!rdma
->is_return_path
) {
2466 rdma_destroy_id(rdma
->listen_id
);
2468 rdma
->listen_id
= NULL
;
2470 if (rdma
->channel
) {
2471 if (!rdma
->is_return_path
) {
2472 rdma_destroy_event_channel(rdma
->channel
);
2474 rdma
->channel
= NULL
;
2478 if (rdma
->channel
) {
2479 rdma_destroy_event_channel(rdma
->channel
);
2480 rdma
->channel
= NULL
;
2483 g_free(rdma
->host_port
);
2485 rdma
->host_port
= NULL
;
2489 static int qemu_rdma_source_init(RDMAContext
*rdma
, bool pin_all
, Error
**errp
)
2494 * Will be validated against destination's actual capabilities
2495 * after the connect() completes.
2497 rdma
->pin_all
= pin_all
;
2499 ret
= qemu_rdma_resolve_host(rdma
, errp
);
2501 goto err_rdma_source_init
;
2504 ret
= qemu_rdma_alloc_pd_cq(rdma
, errp
);
2506 goto err_rdma_source_init
;
2509 ret
= qemu_rdma_alloc_qp(rdma
);
2511 error_setg(errp
, "RDMA ERROR: rdma migration: error allocating qp!");
2512 goto err_rdma_source_init
;
2515 qemu_rdma_init_ram_blocks(rdma
);
2517 /* Build the hash that maps from offset to RAMBlock */
2518 rdma
->blockmap
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
2519 for (idx
= 0; idx
< rdma
->local_ram_blocks
.nb_blocks
; idx
++) {
2520 g_hash_table_insert(rdma
->blockmap
,
2521 (void *)(uintptr_t)rdma
->local_ram_blocks
.block
[idx
].offset
,
2522 &rdma
->local_ram_blocks
.block
[idx
]);
2525 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2526 ret
= qemu_rdma_reg_control(rdma
, idx
);
2529 "RDMA ERROR: rdma migration: error registering %d control!",
2531 goto err_rdma_source_init
;
2537 err_rdma_source_init
:
2538 qemu_rdma_cleanup(rdma
);
2542 static int qemu_get_cm_event_timeout(RDMAContext
*rdma
,
2543 struct rdma_cm_event
**cm_event
,
2544 long msec
, Error
**errp
)
2547 struct pollfd poll_fd
= {
2548 .fd
= rdma
->channel
->fd
,
2554 ret
= poll(&poll_fd
, 1, msec
);
2555 } while (ret
< 0 && errno
== EINTR
);
2558 error_setg(errp
, "RDMA ERROR: poll cm event timeout");
2560 } else if (ret
< 0) {
2561 error_setg(errp
, "RDMA ERROR: failed to poll cm event, errno=%i",
2564 } else if (poll_fd
.revents
& POLLIN
) {
2565 if (rdma_get_cm_event(rdma
->channel
, cm_event
) < 0) {
2566 error_setg(errp
, "RDMA ERROR: failed to get cm event");
2571 error_setg(errp
, "RDMA ERROR: no POLLIN event, revent=%x",
2577 static int qemu_rdma_connect(RDMAContext
*rdma
, bool return_path
,
2580 RDMACapabilities cap
= {
2581 .version
= RDMA_CONTROL_VERSION_CURRENT
,
2584 struct rdma_conn_param conn_param
= { .initiator_depth
= 2,
2586 .private_data
= &cap
,
2587 .private_data_len
= sizeof(cap
),
2589 struct rdma_cm_event
*cm_event
;
2593 * Only negotiate the capability with destination if the user
2594 * on the source first requested the capability.
2596 if (rdma
->pin_all
) {
2597 trace_qemu_rdma_connect_pin_all_requested();
2598 cap
.flags
|= RDMA_CAPABILITY_PIN_ALL
;
2601 caps_to_network(&cap
);
2603 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
, errp
);
2605 goto err_rdma_source_connect
;
2608 ret
= rdma_connect(rdma
->cm_id
, &conn_param
);
2610 error_setg_errno(errp
, errno
,
2611 "RDMA ERROR: connecting to destination!");
2612 goto err_rdma_source_connect
;
2616 ret
= qemu_get_cm_event_timeout(rdma
, &cm_event
, 5000, errp
);
2618 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
2620 error_setg_errno(errp
, errno
,
2621 "RDMA ERROR: failed to get cm event");
2625 goto err_rdma_source_connect
;
2628 if (cm_event
->event
!= RDMA_CM_EVENT_ESTABLISHED
) {
2629 error_setg(errp
, "RDMA ERROR: connecting to destination!");
2630 rdma_ack_cm_event(cm_event
);
2631 goto err_rdma_source_connect
;
2633 rdma
->connected
= true;
2635 memcpy(&cap
, cm_event
->param
.conn
.private_data
, sizeof(cap
));
2636 network_to_caps(&cap
);
2639 * Verify that the *requested* capabilities are supported by the destination
2640 * and disable them otherwise.
2642 if (rdma
->pin_all
&& !(cap
.flags
& RDMA_CAPABILITY_PIN_ALL
)) {
2643 warn_report("RDMA: Server cannot support pinning all memory. "
2644 "Will register memory dynamically.");
2645 rdma
->pin_all
= false;
2648 trace_qemu_rdma_connect_pin_all_outcome(rdma
->pin_all
);
2650 rdma_ack_cm_event(cm_event
);
2652 rdma
->control_ready_expected
= 1;
2656 err_rdma_source_connect
:
2657 qemu_rdma_cleanup(rdma
);
2661 static int qemu_rdma_dest_init(RDMAContext
*rdma
, Error
**errp
)
2665 struct rdma_cm_id
*listen_id
;
2666 char ip
[40] = "unknown";
2667 struct rdma_addrinfo
*res
, *e
;
2671 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2672 rdma
->wr_data
[idx
].control_len
= 0;
2673 rdma
->wr_data
[idx
].control_curr
= NULL
;
2676 if (!rdma
->host
|| !rdma
->host
[0]) {
2677 error_setg(errp
, "RDMA ERROR: RDMA host is not set!");
2678 rdma
->errored
= true;
2681 /* create CM channel */
2682 rdma
->channel
= rdma_create_event_channel();
2683 if (!rdma
->channel
) {
2684 error_setg(errp
, "RDMA ERROR: could not create rdma event channel");
2685 rdma
->errored
= true;
2690 ret
= rdma_create_id(rdma
->channel
, &listen_id
, NULL
, RDMA_PS_TCP
);
2692 error_setg(errp
, "RDMA ERROR: could not create cm_id!");
2693 goto err_dest_init_create_listen_id
;
2696 snprintf(port_str
, 16, "%d", rdma
->port
);
2697 port_str
[15] = '\0';
2699 ret
= rdma_getaddrinfo(rdma
->host
, port_str
, NULL
, &res
);
2701 error_setg(errp
, "RDMA ERROR: could not rdma_getaddrinfo address %s",
2703 goto err_dest_init_bind_addr
;
2706 ret
= rdma_set_option(listen_id
, RDMA_OPTION_ID
, RDMA_OPTION_ID_REUSEADDR
,
2707 &reuse
, sizeof reuse
);
2709 error_setg(errp
, "RDMA ERROR: Error: could not set REUSEADDR option");
2710 goto err_dest_init_bind_addr
;
2713 /* Try all addresses, saving the first error in @err */
2714 for (e
= res
; e
!= NULL
; e
= e
->ai_next
) {
2715 Error
**local_errp
= err
? NULL
: &err
;
2717 inet_ntop(e
->ai_family
,
2718 &((struct sockaddr_in
*) e
->ai_dst_addr
)->sin_addr
, ip
, sizeof ip
);
2719 trace_qemu_rdma_dest_init_trying(rdma
->host
, ip
);
2720 ret
= rdma_bind_addr(listen_id
, e
->ai_dst_addr
);
2724 if (e
->ai_family
== AF_INET6
) {
2725 ret
= qemu_rdma_broken_ipv6_kernel(listen_id
->verbs
,
2735 rdma_freeaddrinfo(res
);
2738 error_propagate(errp
, err
);
2740 error_setg(errp
, "RDMA ERROR: Error: could not rdma_bind_addr!");
2742 goto err_dest_init_bind_addr
;
2745 rdma
->listen_id
= listen_id
;
2746 qemu_rdma_dump_gid("dest_init", listen_id
);
2749 err_dest_init_bind_addr
:
2750 rdma_destroy_id(listen_id
);
2751 err_dest_init_create_listen_id
:
2752 rdma_destroy_event_channel(rdma
->channel
);
2753 rdma
->channel
= NULL
;
2754 rdma
->errored
= true;
2759 static void qemu_rdma_return_path_dest_init(RDMAContext
*rdma_return_path
,
2764 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2765 rdma_return_path
->wr_data
[idx
].control_len
= 0;
2766 rdma_return_path
->wr_data
[idx
].control_curr
= NULL
;
2769 /*the CM channel and CM id is shared*/
2770 rdma_return_path
->channel
= rdma
->channel
;
2771 rdma_return_path
->listen_id
= rdma
->listen_id
;
2773 rdma
->return_path
= rdma_return_path
;
2774 rdma_return_path
->return_path
= rdma
;
2775 rdma_return_path
->is_return_path
= true;
2778 static RDMAContext
*qemu_rdma_data_init(const char *host_port
, Error
**errp
)
2780 RDMAContext
*rdma
= NULL
;
2781 InetSocketAddress
*addr
;
2783 rdma
= g_new0(RDMAContext
, 1);
2784 rdma
->current_index
= -1;
2785 rdma
->current_chunk
= -1;
2787 addr
= g_new(InetSocketAddress
, 1);
2788 if (!inet_parse(addr
, host_port
, NULL
)) {
2789 rdma
->port
= atoi(addr
->port
);
2790 rdma
->host
= g_strdup(addr
->host
);
2791 rdma
->host_port
= g_strdup(host_port
);
2793 error_setg(errp
, "RDMA ERROR: bad RDMA migration address '%s'",
2799 qapi_free_InetSocketAddress(addr
);
2804 * QEMUFile interface to the control channel.
2805 * SEND messages for control only.
2806 * VM's ram is handled with regular RDMA messages.
2808 static ssize_t
qio_channel_rdma_writev(QIOChannel
*ioc
,
2809 const struct iovec
*iov
,
2816 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2822 RCU_READ_LOCK_GUARD();
2823 rdma
= qatomic_rcu_read(&rioc
->rdmaout
);
2826 error_setg(errp
, "RDMA control channel output is not set");
2830 if (rdma
->errored
) {
2832 "RDMA is in an error state waiting migration to abort!");
2837 * Push out any writes that
2838 * we're queued up for VM's ram.
2840 ret
= qemu_rdma_write_flush(rdma
, errp
);
2842 rdma
->errored
= true;
2846 for (i
= 0; i
< niov
; i
++) {
2847 size_t remaining
= iov
[i
].iov_len
;
2848 uint8_t * data
= (void *)iov
[i
].iov_base
;
2850 RDMAControlHeader head
= {};
2852 len
= MIN(remaining
, RDMA_SEND_INCREMENT
);
2856 head
.type
= RDMA_CONTROL_QEMU_FILE
;
2858 ret
= qemu_rdma_exchange_send(rdma
, &head
,
2859 data
, NULL
, NULL
, NULL
, errp
);
2862 rdma
->errored
= true;
2874 static size_t qemu_rdma_fill(RDMAContext
*rdma
, uint8_t *buf
,
2875 size_t size
, int idx
)
2879 if (rdma
->wr_data
[idx
].control_len
) {
2880 trace_qemu_rdma_fill(rdma
->wr_data
[idx
].control_len
, size
);
2882 len
= MIN(size
, rdma
->wr_data
[idx
].control_len
);
2883 memcpy(buf
, rdma
->wr_data
[idx
].control_curr
, len
);
2884 rdma
->wr_data
[idx
].control_curr
+= len
;
2885 rdma
->wr_data
[idx
].control_len
-= len
;
2892 * QEMUFile interface to the control channel.
2893 * RDMA links don't use bytestreams, so we have to
2894 * return bytes to QEMUFile opportunistically.
2896 static ssize_t
qio_channel_rdma_readv(QIOChannel
*ioc
,
2897 const struct iovec
*iov
,
2904 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2906 RDMAControlHeader head
;
2911 RCU_READ_LOCK_GUARD();
2912 rdma
= qatomic_rcu_read(&rioc
->rdmain
);
2915 error_setg(errp
, "RDMA control channel input is not set");
2919 if (rdma
->errored
) {
2921 "RDMA is in an error state waiting migration to abort!");
2925 for (i
= 0; i
< niov
; i
++) {
2926 size_t want
= iov
[i
].iov_len
;
2927 uint8_t *data
= (void *)iov
[i
].iov_base
;
2930 * First, we hold on to the last SEND message we
2931 * were given and dish out the bytes until we run
2934 len
= qemu_rdma_fill(rdma
, data
, want
, 0);
2937 /* Got what we needed, so go to next iovec */
2942 /* If we got any data so far, then don't wait
2943 * for more, just return what we have */
2949 /* We've got nothing at all, so lets wait for
2952 ret
= qemu_rdma_exchange_recv(rdma
, &head
, RDMA_CONTROL_QEMU_FILE
,
2956 rdma
->errored
= true;
2961 * SEND was received with new bytes, now try again.
2963 len
= qemu_rdma_fill(rdma
, data
, want
, 0);
2967 /* Still didn't get enough, so lets just return */
2970 return QIO_CHANNEL_ERR_BLOCK
;
2980 * Block until all the outstanding chunks have been delivered by the hardware.
2982 static int qemu_rdma_drain_cq(RDMAContext
*rdma
)
2987 if (qemu_rdma_write_flush(rdma
, &err
) < 0) {
2988 error_report_err(err
);
2992 while (rdma
->nb_sent
) {
2993 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
2995 error_report("rdma migration: complete polling error!");
3000 qemu_rdma_unregister_waiting(rdma
);
3006 static int qio_channel_rdma_set_blocking(QIOChannel
*ioc
,
3010 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
3011 /* XXX we should make readv/writev actually honour this :-) */
3012 rioc
->blocking
= blocking
;
3017 typedef struct QIOChannelRDMASource QIOChannelRDMASource
;
3018 struct QIOChannelRDMASource
{
3020 QIOChannelRDMA
*rioc
;
3021 GIOCondition condition
;
3025 qio_channel_rdma_source_prepare(GSource
*source
,
3028 QIOChannelRDMASource
*rsource
= (QIOChannelRDMASource
*)source
;
3030 GIOCondition cond
= 0;
3033 RCU_READ_LOCK_GUARD();
3034 if (rsource
->condition
== G_IO_IN
) {
3035 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmain
);
3037 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmaout
);
3041 error_report("RDMAContext is NULL when prepare Gsource");
3045 if (rdma
->wr_data
[0].control_len
) {
3050 return cond
& rsource
->condition
;
3054 qio_channel_rdma_source_check(GSource
*source
)
3056 QIOChannelRDMASource
*rsource
= (QIOChannelRDMASource
*)source
;
3058 GIOCondition cond
= 0;
3060 RCU_READ_LOCK_GUARD();
3061 if (rsource
->condition
== G_IO_IN
) {
3062 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmain
);
3064 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmaout
);
3068 error_report("RDMAContext is NULL when check Gsource");
3072 if (rdma
->wr_data
[0].control_len
) {
3077 return cond
& rsource
->condition
;
3081 qio_channel_rdma_source_dispatch(GSource
*source
,
3082 GSourceFunc callback
,
3085 QIOChannelFunc func
= (QIOChannelFunc
)callback
;
3086 QIOChannelRDMASource
*rsource
= (QIOChannelRDMASource
*)source
;
3088 GIOCondition cond
= 0;
3090 RCU_READ_LOCK_GUARD();
3091 if (rsource
->condition
== G_IO_IN
) {
3092 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmain
);
3094 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmaout
);
3098 error_report("RDMAContext is NULL when dispatch Gsource");
3102 if (rdma
->wr_data
[0].control_len
) {
3107 return (*func
)(QIO_CHANNEL(rsource
->rioc
),
3108 (cond
& rsource
->condition
),
3113 qio_channel_rdma_source_finalize(GSource
*source
)
3115 QIOChannelRDMASource
*ssource
= (QIOChannelRDMASource
*)source
;
3117 object_unref(OBJECT(ssource
->rioc
));
3120 static GSourceFuncs qio_channel_rdma_source_funcs
= {
3121 qio_channel_rdma_source_prepare
,
3122 qio_channel_rdma_source_check
,
3123 qio_channel_rdma_source_dispatch
,
3124 qio_channel_rdma_source_finalize
3127 static GSource
*qio_channel_rdma_create_watch(QIOChannel
*ioc
,
3128 GIOCondition condition
)
3130 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
3131 QIOChannelRDMASource
*ssource
;
3134 source
= g_source_new(&qio_channel_rdma_source_funcs
,
3135 sizeof(QIOChannelRDMASource
));
3136 ssource
= (QIOChannelRDMASource
*)source
;
3138 ssource
->rioc
= rioc
;
3139 object_ref(OBJECT(rioc
));
3141 ssource
->condition
= condition
;
3146 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel
*ioc
,
3147 AioContext
*read_ctx
,
3149 AioContext
*write_ctx
,
3150 IOHandler
*io_write
,
3153 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
3155 aio_set_fd_handler(read_ctx
, rioc
->rdmain
->recv_comp_channel
->fd
,
3156 io_read
, io_write
, NULL
, NULL
, opaque
);
3157 aio_set_fd_handler(read_ctx
, rioc
->rdmain
->send_comp_channel
->fd
,
3158 io_read
, io_write
, NULL
, NULL
, opaque
);
3160 aio_set_fd_handler(write_ctx
, rioc
->rdmaout
->recv_comp_channel
->fd
,
3161 io_read
, io_write
, NULL
, NULL
, opaque
);
3162 aio_set_fd_handler(write_ctx
, rioc
->rdmaout
->send_comp_channel
->fd
,
3163 io_read
, io_write
, NULL
, NULL
, opaque
);
3167 struct rdma_close_rcu
{
3168 struct rcu_head rcu
;
3169 RDMAContext
*rdmain
;
3170 RDMAContext
*rdmaout
;
3173 /* callback from qio_channel_rdma_close via call_rcu */
3174 static void qio_channel_rdma_close_rcu(struct rdma_close_rcu
*rcu
)
3177 qemu_rdma_cleanup(rcu
->rdmain
);
3181 qemu_rdma_cleanup(rcu
->rdmaout
);
3184 g_free(rcu
->rdmain
);
3185 g_free(rcu
->rdmaout
);
3189 static int qio_channel_rdma_close(QIOChannel
*ioc
,
3192 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
3193 RDMAContext
*rdmain
, *rdmaout
;
3194 struct rdma_close_rcu
*rcu
= g_new(struct rdma_close_rcu
, 1);
3196 trace_qemu_rdma_close();
3198 rdmain
= rioc
->rdmain
;
3200 qatomic_rcu_set(&rioc
->rdmain
, NULL
);
3203 rdmaout
= rioc
->rdmaout
;
3205 qatomic_rcu_set(&rioc
->rdmaout
, NULL
);
3208 rcu
->rdmain
= rdmain
;
3209 rcu
->rdmaout
= rdmaout
;
3210 call_rcu(rcu
, qio_channel_rdma_close_rcu
, rcu
);
3216 qio_channel_rdma_shutdown(QIOChannel
*ioc
,
3217 QIOChannelShutdown how
,
3220 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
3221 RDMAContext
*rdmain
, *rdmaout
;
3223 RCU_READ_LOCK_GUARD();
3225 rdmain
= qatomic_rcu_read(&rioc
->rdmain
);
3226 rdmaout
= qatomic_rcu_read(&rioc
->rdmain
);
3229 case QIO_CHANNEL_SHUTDOWN_READ
:
3231 rdmain
->errored
= true;
3234 case QIO_CHANNEL_SHUTDOWN_WRITE
:
3236 rdmaout
->errored
= true;
3239 case QIO_CHANNEL_SHUTDOWN_BOTH
:
3242 rdmain
->errored
= true;
3245 rdmaout
->errored
= true;
3256 * This means that 'block_offset' is a full virtual address that does not
3257 * belong to a RAMBlock of the virtual machine and instead
3258 * represents a private malloc'd memory area that the caller wishes to
3262 * Offset is an offset to be added to block_offset and used
3263 * to also lookup the corresponding RAMBlock.
3265 * @size : Number of bytes to transfer
3267 * @pages_sent : User-specificed pointer to indicate how many pages were
3268 * sent. Usually, this will not be more than a few bytes of
3269 * the protocol because most transfers are sent asynchronously.
3271 static int qemu_rdma_save_page(QEMUFile
*f
, ram_addr_t block_offset
,
3272 ram_addr_t offset
, size_t size
)
3274 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(qemu_file_get_ioc(f
));
3279 if (migration_in_postcopy()) {
3280 return RAM_SAVE_CONTROL_NOT_SUPP
;
3283 RCU_READ_LOCK_GUARD();
3284 rdma
= qatomic_rcu_read(&rioc
->rdmaout
);
3290 if (rdma_errored(rdma
)) {
3297 * Add this page to the current 'chunk'. If the chunk
3298 * is full, or the page doesn't belong to the current chunk,
3299 * an actual RDMA write will occur and a new chunk will be formed.
3301 ret
= qemu_rdma_write(rdma
, block_offset
, offset
, size
, &err
);
3303 error_report_err(err
);
3308 * Drain the Completion Queue if possible, but do not block,
3311 * If nothing to poll, the end of the iteration will do this
3312 * again to make sure we don't overflow the request queue.
3315 uint64_t wr_id
, wr_id_in
;
3316 ret
= qemu_rdma_poll(rdma
, rdma
->recv_cq
, &wr_id_in
, NULL
);
3319 error_report("rdma migration: polling error");
3323 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
3325 if (wr_id
== RDMA_WRID_NONE
) {
3331 uint64_t wr_id
, wr_id_in
;
3332 ret
= qemu_rdma_poll(rdma
, rdma
->send_cq
, &wr_id_in
, NULL
);
3335 error_report("rdma migration: polling error");
3339 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
3341 if (wr_id
== RDMA_WRID_NONE
) {
3346 return RAM_SAVE_CONTROL_DELAYED
;
3349 rdma
->errored
= true;
3353 static void rdma_accept_incoming_migration(void *opaque
);
3355 static void rdma_cm_poll_handler(void *opaque
)
3357 RDMAContext
*rdma
= opaque
;
3359 struct rdma_cm_event
*cm_event
;
3360 MigrationIncomingState
*mis
= migration_incoming_get_current();
3362 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
3364 error_report("get_cm_event failed %d", errno
);
3368 if (cm_event
->event
== RDMA_CM_EVENT_DISCONNECTED
||
3369 cm_event
->event
== RDMA_CM_EVENT_DEVICE_REMOVAL
) {
3370 if (!rdma
->errored
&&
3371 migration_incoming_get_current()->state
!=
3372 MIGRATION_STATUS_COMPLETED
) {
3373 error_report("receive cm event, cm event is %d", cm_event
->event
);
3374 rdma
->errored
= true;
3375 if (rdma
->return_path
) {
3376 rdma
->return_path
->errored
= true;
3379 rdma_ack_cm_event(cm_event
);
3380 if (mis
->loadvm_co
) {
3381 qemu_coroutine_enter(mis
->loadvm_co
);
3385 rdma_ack_cm_event(cm_event
);
3388 static int qemu_rdma_accept(RDMAContext
*rdma
)
3391 RDMACapabilities cap
;
3392 struct rdma_conn_param conn_param
= {
3393 .responder_resources
= 2,
3394 .private_data
= &cap
,
3395 .private_data_len
= sizeof(cap
),
3397 RDMAContext
*rdma_return_path
= NULL
;
3398 struct rdma_cm_event
*cm_event
;
3399 struct ibv_context
*verbs
;
3403 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
3405 goto err_rdma_dest_wait
;
3408 if (cm_event
->event
!= RDMA_CM_EVENT_CONNECT_REQUEST
) {
3409 rdma_ack_cm_event(cm_event
);
3410 goto err_rdma_dest_wait
;
3414 * initialize the RDMAContext for return path for postcopy after first
3415 * connection request reached.
3417 if ((migrate_postcopy() || migrate_return_path())
3418 && !rdma
->is_return_path
) {
3419 rdma_return_path
= qemu_rdma_data_init(rdma
->host_port
, NULL
);
3420 if (rdma_return_path
== NULL
) {
3421 rdma_ack_cm_event(cm_event
);
3422 goto err_rdma_dest_wait
;
3425 qemu_rdma_return_path_dest_init(rdma_return_path
, rdma
);
3428 memcpy(&cap
, cm_event
->param
.conn
.private_data
, sizeof(cap
));
3430 network_to_caps(&cap
);
3432 if (cap
.version
< 1 || cap
.version
> RDMA_CONTROL_VERSION_CURRENT
) {
3433 error_report("Unknown source RDMA version: %d, bailing...",
3435 rdma_ack_cm_event(cm_event
);
3436 goto err_rdma_dest_wait
;
3440 * Respond with only the capabilities this version of QEMU knows about.
3442 cap
.flags
&= known_capabilities
;
3445 * Enable the ones that we do know about.
3446 * Add other checks here as new ones are introduced.
3448 if (cap
.flags
& RDMA_CAPABILITY_PIN_ALL
) {
3449 rdma
->pin_all
= true;
3452 rdma
->cm_id
= cm_event
->id
;
3453 verbs
= cm_event
->id
->verbs
;
3455 rdma_ack_cm_event(cm_event
);
3457 trace_qemu_rdma_accept_pin_state(rdma
->pin_all
);
3459 caps_to_network(&cap
);
3461 trace_qemu_rdma_accept_pin_verbsc(verbs
);
3464 rdma
->verbs
= verbs
;
3465 } else if (rdma
->verbs
!= verbs
) {
3466 error_report("ibv context not matching %p, %p!", rdma
->verbs
,
3468 goto err_rdma_dest_wait
;
3471 qemu_rdma_dump_id("dest_init", verbs
);
3473 ret
= qemu_rdma_alloc_pd_cq(rdma
, &err
);
3475 error_report_err(err
);
3476 goto err_rdma_dest_wait
;
3479 ret
= qemu_rdma_alloc_qp(rdma
);
3481 error_report("rdma migration: error allocating qp!");
3482 goto err_rdma_dest_wait
;
3485 qemu_rdma_init_ram_blocks(rdma
);
3487 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
3488 ret
= qemu_rdma_reg_control(rdma
, idx
);
3490 error_report("rdma: error registering %d control", idx
);
3491 goto err_rdma_dest_wait
;
3495 /* Accept the second connection request for return path */
3496 if ((migrate_postcopy() || migrate_return_path())
3497 && !rdma
->is_return_path
) {
3498 qemu_set_fd_handler(rdma
->channel
->fd
, rdma_accept_incoming_migration
,
3500 (void *)(intptr_t)rdma
->return_path
);
3502 qemu_set_fd_handler(rdma
->channel
->fd
, rdma_cm_poll_handler
,
3506 ret
= rdma_accept(rdma
->cm_id
, &conn_param
);
3508 error_report("rdma_accept failed");
3509 goto err_rdma_dest_wait
;
3512 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
3514 error_report("rdma_accept get_cm_event failed");
3515 goto err_rdma_dest_wait
;
3518 if (cm_event
->event
!= RDMA_CM_EVENT_ESTABLISHED
) {
3519 error_report("rdma_accept not event established");
3520 rdma_ack_cm_event(cm_event
);
3521 goto err_rdma_dest_wait
;
3524 rdma_ack_cm_event(cm_event
);
3525 rdma
->connected
= true;
3527 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
, &err
);
3529 error_report_err(err
);
3530 goto err_rdma_dest_wait
;
3533 qemu_rdma_dump_gid("dest_connect", rdma
->cm_id
);
3538 rdma
->errored
= true;
3539 qemu_rdma_cleanup(rdma
);
3540 g_free(rdma_return_path
);
3544 static int dest_ram_sort_func(const void *a
, const void *b
)
3546 unsigned int a_index
= ((const RDMALocalBlock
*)a
)->src_index
;
3547 unsigned int b_index
= ((const RDMALocalBlock
*)b
)->src_index
;
3549 return (a_index
< b_index
) ? -1 : (a_index
!= b_index
);
3553 * During each iteration of the migration, we listen for instructions
3554 * by the source VM to perform dynamic page registrations before they
3555 * can perform RDMA operations.
3557 * We respond with the 'rkey'.
3559 * Keep doing this until the source tells us to stop.
3561 static int qemu_rdma_registration_handle(QEMUFile
*f
)
3563 RDMAControlHeader reg_resp
= { .len
= sizeof(RDMARegisterResult
),
3564 .type
= RDMA_CONTROL_REGISTER_RESULT
,
3567 RDMAControlHeader unreg_resp
= { .len
= 0,
3568 .type
= RDMA_CONTROL_UNREGISTER_FINISHED
,
3571 RDMAControlHeader blocks
= { .type
= RDMA_CONTROL_RAM_BLOCKS_RESULT
,
3573 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(qemu_file_get_ioc(f
));
3576 RDMALocalBlocks
*local
;
3577 RDMAControlHeader head
;
3578 RDMARegister
*reg
, *registers
;
3580 RDMARegisterResult
*reg_result
;
3581 static RDMARegisterResult results
[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE
];
3582 RDMALocalBlock
*block
;
3589 RCU_READ_LOCK_GUARD();
3590 rdma
= qatomic_rcu_read(&rioc
->rdmain
);
3596 if (rdma_errored(rdma
)) {
3600 local
= &rdma
->local_ram_blocks
;
3602 trace_qemu_rdma_registration_handle_wait();
3604 ret
= qemu_rdma_exchange_recv(rdma
, &head
, RDMA_CONTROL_NONE
, &err
);
3607 error_report_err(err
);
3611 if (head
.repeat
> RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE
) {
3612 error_report("rdma: Too many requests in this message (%d)."
3613 "Bailing.", head
.repeat
);
3617 switch (head
.type
) {
3618 case RDMA_CONTROL_COMPRESS
:
3619 comp
= (RDMACompress
*) rdma
->wr_data
[idx
].control_curr
;
3620 network_to_compress(comp
);
3622 trace_qemu_rdma_registration_handle_compress(comp
->length
,
3625 if (comp
->block_idx
>= rdma
->local_ram_blocks
.nb_blocks
) {
3626 error_report("rdma: 'compress' bad block index %u (vs %d)",
3627 (unsigned int)comp
->block_idx
,
3628 rdma
->local_ram_blocks
.nb_blocks
);
3631 block
= &(rdma
->local_ram_blocks
.block
[comp
->block_idx
]);
3633 host_addr
= block
->local_host_addr
+
3634 (comp
->offset
- block
->offset
);
3636 ram_handle_compressed(host_addr
, comp
->value
, comp
->length
);
3639 case RDMA_CONTROL_REGISTER_FINISHED
:
3640 trace_qemu_rdma_registration_handle_finished();
3643 case RDMA_CONTROL_RAM_BLOCKS_REQUEST
:
3644 trace_qemu_rdma_registration_handle_ram_blocks();
3646 /* Sort our local RAM Block list so it's the same as the source,
3647 * we can do this since we've filled in a src_index in the list
3648 * as we received the RAMBlock list earlier.
3650 qsort(rdma
->local_ram_blocks
.block
,
3651 rdma
->local_ram_blocks
.nb_blocks
,
3652 sizeof(RDMALocalBlock
), dest_ram_sort_func
);
3653 for (i
= 0; i
< local
->nb_blocks
; i
++) {
3654 local
->block
[i
].index
= i
;
3657 if (rdma
->pin_all
) {
3658 ret
= qemu_rdma_reg_whole_ram_blocks(rdma
, &err
);
3660 error_report_err(err
);
3666 * Dest uses this to prepare to transmit the RAMBlock descriptions
3667 * to the source VM after connection setup.
3668 * Both sides use the "remote" structure to communicate and update
3669 * their "local" descriptions with what was sent.
3671 for (i
= 0; i
< local
->nb_blocks
; i
++) {
3672 rdma
->dest_blocks
[i
].remote_host_addr
=
3673 (uintptr_t)(local
->block
[i
].local_host_addr
);
3675 if (rdma
->pin_all
) {
3676 rdma
->dest_blocks
[i
].remote_rkey
= local
->block
[i
].mr
->rkey
;
3679 rdma
->dest_blocks
[i
].offset
= local
->block
[i
].offset
;
3680 rdma
->dest_blocks
[i
].length
= local
->block
[i
].length
;
3682 dest_block_to_network(&rdma
->dest_blocks
[i
]);
3683 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3684 local
->block
[i
].block_name
,
3685 local
->block
[i
].offset
,
3686 local
->block
[i
].length
,
3687 local
->block
[i
].local_host_addr
,
3688 local
->block
[i
].src_index
);
3691 blocks
.len
= rdma
->local_ram_blocks
.nb_blocks
3692 * sizeof(RDMADestBlock
);
3695 ret
= qemu_rdma_post_send_control(rdma
,
3696 (uint8_t *) rdma
->dest_blocks
, &blocks
,
3700 error_report_err(err
);
3705 case RDMA_CONTROL_REGISTER_REQUEST
:
3706 trace_qemu_rdma_registration_handle_register(head
.repeat
);
3708 reg_resp
.repeat
= head
.repeat
;
3709 registers
= (RDMARegister
*) rdma
->wr_data
[idx
].control_curr
;
3711 for (count
= 0; count
< head
.repeat
; count
++) {
3713 uint8_t *chunk_start
, *chunk_end
;
3715 reg
= ®isters
[count
];
3716 network_to_register(reg
);
3718 reg_result
= &results
[count
];
3720 trace_qemu_rdma_registration_handle_register_loop(count
,
3721 reg
->current_index
, reg
->key
.current_addr
, reg
->chunks
);
3723 if (reg
->current_index
>= rdma
->local_ram_blocks
.nb_blocks
) {
3724 error_report("rdma: 'register' bad block index %u (vs %d)",
3725 (unsigned int)reg
->current_index
,
3726 rdma
->local_ram_blocks
.nb_blocks
);
3729 block
= &(rdma
->local_ram_blocks
.block
[reg
->current_index
]);
3730 if (block
->is_ram_block
) {
3731 if (block
->offset
> reg
->key
.current_addr
) {
3732 error_report("rdma: bad register address for block %s"
3733 " offset: %" PRIx64
" current_addr: %" PRIx64
,
3734 block
->block_name
, block
->offset
,
3735 reg
->key
.current_addr
);
3738 host_addr
= (block
->local_host_addr
+
3739 (reg
->key
.current_addr
- block
->offset
));
3740 chunk
= ram_chunk_index(block
->local_host_addr
,
3741 (uint8_t *) host_addr
);
3743 chunk
= reg
->key
.chunk
;
3744 host_addr
= block
->local_host_addr
+
3745 (reg
->key
.chunk
* (1UL << RDMA_REG_CHUNK_SHIFT
));
3746 /* Check for particularly bad chunk value */
3747 if (host_addr
< (void *)block
->local_host_addr
) {
3748 error_report("rdma: bad chunk for block %s"
3750 block
->block_name
, reg
->key
.chunk
);
3754 chunk_start
= ram_chunk_start(block
, chunk
);
3755 chunk_end
= ram_chunk_end(block
, chunk
+ reg
->chunks
);
3756 /* avoid "-Waddress-of-packed-member" warning */
3757 uint32_t tmp_rkey
= 0;
3758 if (qemu_rdma_register_and_get_keys(rdma
, block
,
3759 (uintptr_t)host_addr
, NULL
, &tmp_rkey
,
3760 chunk
, chunk_start
, chunk_end
)) {
3761 error_report("cannot get rkey");
3764 reg_result
->rkey
= tmp_rkey
;
3766 reg_result
->host_addr
= (uintptr_t)block
->local_host_addr
;
3768 trace_qemu_rdma_registration_handle_register_rkey(
3771 result_to_network(reg_result
);
3774 ret
= qemu_rdma_post_send_control(rdma
,
3775 (uint8_t *) results
, ®_resp
, &err
);
3778 error_report_err(err
);
3782 case RDMA_CONTROL_UNREGISTER_REQUEST
:
3783 trace_qemu_rdma_registration_handle_unregister(head
.repeat
);
3784 unreg_resp
.repeat
= head
.repeat
;
3785 registers
= (RDMARegister
*) rdma
->wr_data
[idx
].control_curr
;
3787 for (count
= 0; count
< head
.repeat
; count
++) {
3788 reg
= ®isters
[count
];
3789 network_to_register(reg
);
3791 trace_qemu_rdma_registration_handle_unregister_loop(count
,
3792 reg
->current_index
, reg
->key
.chunk
);
3794 block
= &(rdma
->local_ram_blocks
.block
[reg
->current_index
]);
3796 ret
= ibv_dereg_mr(block
->pmr
[reg
->key
.chunk
]);
3797 block
->pmr
[reg
->key
.chunk
] = NULL
;
3800 perror("rdma unregistration chunk failed");
3804 rdma
->total_registrations
--;
3806 trace_qemu_rdma_registration_handle_unregister_success(
3810 ret
= qemu_rdma_post_send_control(rdma
, NULL
, &unreg_resp
, &err
);
3813 error_report_err(err
);
3817 case RDMA_CONTROL_REGISTER_RESULT
:
3818 error_report("Invalid RESULT message at dest.");
3821 error_report("Unknown control message %s", control_desc(head
.type
));
3827 rdma
->errored
= true;
3832 * Called via a ram_control_load_hook during the initial RAM load section which
3833 * lists the RAMBlocks by name. This lets us know the order of the RAMBlocks
3835 * We've already built our local RAMBlock list, but not yet sent the list to
3839 rdma_block_notification_handle(QEMUFile
*f
, const char *name
)
3842 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(qemu_file_get_ioc(f
));
3846 RCU_READ_LOCK_GUARD();
3847 rdma
= qatomic_rcu_read(&rioc
->rdmain
);
3853 /* Find the matching RAMBlock in our local list */
3854 for (curr
= 0; curr
< rdma
->local_ram_blocks
.nb_blocks
; curr
++) {
3855 if (!strcmp(rdma
->local_ram_blocks
.block
[curr
].block_name
, name
)) {
3862 error_report("RAMBlock '%s' not found on destination", name
);
3866 rdma
->local_ram_blocks
.block
[curr
].src_index
= rdma
->next_src_index
;
3867 trace_rdma_block_notification_handle(name
, rdma
->next_src_index
);
3868 rdma
->next_src_index
++;
3873 static int rdma_load_hook(QEMUFile
*f
, uint64_t flags
, void *data
)
3876 case RAM_CONTROL_BLOCK_REG
:
3877 return rdma_block_notification_handle(f
, data
);
3879 case RAM_CONTROL_HOOK
:
3880 return qemu_rdma_registration_handle(f
);
3883 /* Shouldn't be called with any other values */
3888 static int qemu_rdma_registration_start(QEMUFile
*f
,
3889 uint64_t flags
, void *data
)
3891 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(qemu_file_get_ioc(f
));
3894 if (migration_in_postcopy()) {
3898 RCU_READ_LOCK_GUARD();
3899 rdma
= qatomic_rcu_read(&rioc
->rdmaout
);
3904 if (rdma_errored(rdma
)) {
3908 trace_qemu_rdma_registration_start(flags
);
3909 qemu_put_be64(f
, RAM_SAVE_FLAG_HOOK
);
3916 * Inform dest that dynamic registrations are done for now.
3917 * First, flush writes, if any.
3919 static int qemu_rdma_registration_stop(QEMUFile
*f
,
3920 uint64_t flags
, void *data
)
3922 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(qemu_file_get_ioc(f
));
3925 RDMAControlHeader head
= { .len
= 0, .repeat
= 1 };
3928 if (migration_in_postcopy()) {
3932 RCU_READ_LOCK_GUARD();
3933 rdma
= qatomic_rcu_read(&rioc
->rdmaout
);
3938 if (rdma_errored(rdma
)) {
3943 ret
= qemu_rdma_drain_cq(rdma
);
3949 if (flags
== RAM_CONTROL_SETUP
) {
3950 RDMAControlHeader resp
= {.type
= RDMA_CONTROL_RAM_BLOCKS_RESULT
};
3951 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
3952 int reg_result_idx
, i
, nb_dest_blocks
;
3954 head
.type
= RDMA_CONTROL_RAM_BLOCKS_REQUEST
;
3955 trace_qemu_rdma_registration_stop_ram();
3958 * Make sure that we parallelize the pinning on both sides.
3959 * For very large guests, doing this serially takes a really
3960 * long time, so we have to 'interleave' the pinning locally
3961 * with the control messages by performing the pinning on this
3962 * side before we receive the control response from the other
3963 * side that the pinning has completed.
3965 ret
= qemu_rdma_exchange_send(rdma
, &head
, NULL
, &resp
,
3966 ®_result_idx
, rdma
->pin_all
?
3967 qemu_rdma_reg_whole_ram_blocks
: NULL
,
3970 error_report_err(err
);
3974 nb_dest_blocks
= resp
.len
/ sizeof(RDMADestBlock
);
3977 * The protocol uses two different sets of rkeys (mutually exclusive):
3978 * 1. One key to represent the virtual address of the entire ram block.
3979 * (dynamic chunk registration disabled - pin everything with one rkey.)
3980 * 2. One to represent individual chunks within a ram block.
3981 * (dynamic chunk registration enabled - pin individual chunks.)
3983 * Once the capability is successfully negotiated, the destination transmits
3984 * the keys to use (or sends them later) including the virtual addresses
3985 * and then propagates the remote ram block descriptions to his local copy.
3988 if (local
->nb_blocks
!= nb_dest_blocks
) {
3989 fprintf(stderr
, "ram blocks mismatch (Number of blocks %d vs %d) "
3990 "Your QEMU command line parameters are probably "
3991 "not identical on both the source and destination.",
3992 local
->nb_blocks
, nb_dest_blocks
);
3993 rdma
->errored
= true;
3997 qemu_rdma_move_header(rdma
, reg_result_idx
, &resp
);
3998 memcpy(rdma
->dest_blocks
,
3999 rdma
->wr_data
[reg_result_idx
].control_curr
, resp
.len
);
4000 for (i
= 0; i
< nb_dest_blocks
; i
++) {
4001 network_to_dest_block(&rdma
->dest_blocks
[i
]);
4003 /* We require that the blocks are in the same order */
4004 if (rdma
->dest_blocks
[i
].length
!= local
->block
[i
].length
) {
4005 fprintf(stderr
, "Block %s/%d has a different length %" PRIu64
4006 "vs %" PRIu64
, local
->block
[i
].block_name
, i
,
4007 local
->block
[i
].length
,
4008 rdma
->dest_blocks
[i
].length
);
4009 rdma
->errored
= true;
4012 local
->block
[i
].remote_host_addr
=
4013 rdma
->dest_blocks
[i
].remote_host_addr
;
4014 local
->block
[i
].remote_rkey
= rdma
->dest_blocks
[i
].remote_rkey
;
4018 trace_qemu_rdma_registration_stop(flags
);
4020 head
.type
= RDMA_CONTROL_REGISTER_FINISHED
;
4021 ret
= qemu_rdma_exchange_send(rdma
, &head
, NULL
, NULL
, NULL
, NULL
, &err
);
4024 error_report_err(err
);
4030 rdma
->errored
= true;
4034 static const QEMUFileHooks rdma_read_hooks
= {
4035 .hook_ram_load
= rdma_load_hook
,
4038 static const QEMUFileHooks rdma_write_hooks
= {
4039 .before_ram_iterate
= qemu_rdma_registration_start
,
4040 .after_ram_iterate
= qemu_rdma_registration_stop
,
4041 .save_page
= qemu_rdma_save_page
,
4045 static void qio_channel_rdma_finalize(Object
*obj
)
4047 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(obj
);
4049 qemu_rdma_cleanup(rioc
->rdmain
);
4050 g_free(rioc
->rdmain
);
4051 rioc
->rdmain
= NULL
;
4053 if (rioc
->rdmaout
) {
4054 qemu_rdma_cleanup(rioc
->rdmaout
);
4055 g_free(rioc
->rdmaout
);
4056 rioc
->rdmaout
= NULL
;
4060 static void qio_channel_rdma_class_init(ObjectClass
*klass
,
4061 void *class_data G_GNUC_UNUSED
)
4063 QIOChannelClass
*ioc_klass
= QIO_CHANNEL_CLASS(klass
);
4065 ioc_klass
->io_writev
= qio_channel_rdma_writev
;
4066 ioc_klass
->io_readv
= qio_channel_rdma_readv
;
4067 ioc_klass
->io_set_blocking
= qio_channel_rdma_set_blocking
;
4068 ioc_klass
->io_close
= qio_channel_rdma_close
;
4069 ioc_klass
->io_create_watch
= qio_channel_rdma_create_watch
;
4070 ioc_klass
->io_set_aio_fd_handler
= qio_channel_rdma_set_aio_fd_handler
;
4071 ioc_klass
->io_shutdown
= qio_channel_rdma_shutdown
;
4074 static const TypeInfo qio_channel_rdma_info
= {
4075 .parent
= TYPE_QIO_CHANNEL
,
4076 .name
= TYPE_QIO_CHANNEL_RDMA
,
4077 .instance_size
= sizeof(QIOChannelRDMA
),
4078 .instance_finalize
= qio_channel_rdma_finalize
,
4079 .class_init
= qio_channel_rdma_class_init
,
4082 static void qio_channel_rdma_register_types(void)
4084 type_register_static(&qio_channel_rdma_info
);
4087 type_init(qio_channel_rdma_register_types
);
4089 static QEMUFile
*rdma_new_input(RDMAContext
*rdma
)
4091 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA
));
4093 rioc
->file
= qemu_file_new_input(QIO_CHANNEL(rioc
));
4094 rioc
->rdmain
= rdma
;
4095 rioc
->rdmaout
= rdma
->return_path
;
4096 qemu_file_set_hooks(rioc
->file
, &rdma_read_hooks
);
4101 static QEMUFile
*rdma_new_output(RDMAContext
*rdma
)
4103 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA
));
4105 rioc
->file
= qemu_file_new_output(QIO_CHANNEL(rioc
));
4106 rioc
->rdmaout
= rdma
;
4107 rioc
->rdmain
= rdma
->return_path
;
4108 qemu_file_set_hooks(rioc
->file
, &rdma_write_hooks
);
4113 static void rdma_accept_incoming_migration(void *opaque
)
4115 RDMAContext
*rdma
= opaque
;
4118 Error
*local_err
= NULL
;
4120 trace_qemu_rdma_accept_incoming_migration();
4121 ret
= qemu_rdma_accept(rdma
);
4124 fprintf(stderr
, "RDMA ERROR: Migration initialization failed\n");
4128 trace_qemu_rdma_accept_incoming_migration_accepted();
4130 if (rdma
->is_return_path
) {
4134 f
= rdma_new_input(rdma
);
4136 fprintf(stderr
, "RDMA ERROR: could not open RDMA for input\n");
4137 qemu_rdma_cleanup(rdma
);
4141 rdma
->migration_started_on_destination
= 1;
4142 migration_fd_process_incoming(f
, &local_err
);
4144 error_reportf_err(local_err
, "RDMA ERROR:");
4148 void rdma_start_incoming_migration(const char *host_port
, Error
**errp
)
4153 trace_rdma_start_incoming_migration();
4155 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4156 if (ram_block_discard_is_required()) {
4157 error_setg(errp
, "RDMA: cannot disable RAM discard");
4161 rdma
= qemu_rdma_data_init(host_port
, errp
);
4166 ret
= qemu_rdma_dest_init(rdma
, errp
);
4171 trace_rdma_start_incoming_migration_after_dest_init();
4173 ret
= rdma_listen(rdma
->listen_id
, 5);
4176 error_setg(errp
, "RDMA ERROR: listening on socket!");
4180 trace_rdma_start_incoming_migration_after_rdma_listen();
4182 qemu_set_fd_handler(rdma
->channel
->fd
, rdma_accept_incoming_migration
,
4183 NULL
, (void *)(intptr_t)rdma
);
4187 qemu_rdma_cleanup(rdma
);
4191 g_free(rdma
->host_port
);
4196 void rdma_start_outgoing_migration(void *opaque
,
4197 const char *host_port
, Error
**errp
)
4199 MigrationState
*s
= opaque
;
4200 RDMAContext
*rdma_return_path
= NULL
;
4204 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4205 if (ram_block_discard_is_required()) {
4206 error_setg(errp
, "RDMA: cannot disable RAM discard");
4210 rdma
= qemu_rdma_data_init(host_port
, errp
);
4215 ret
= qemu_rdma_source_init(rdma
, migrate_rdma_pin_all(), errp
);
4221 trace_rdma_start_outgoing_migration_after_rdma_source_init();
4222 ret
= qemu_rdma_connect(rdma
, false, errp
);
4228 /* RDMA postcopy need a separate queue pair for return path */
4229 if (migrate_postcopy() || migrate_return_path()) {
4230 rdma_return_path
= qemu_rdma_data_init(host_port
, errp
);
4232 if (rdma_return_path
== NULL
) {
4233 goto return_path_err
;
4236 ret
= qemu_rdma_source_init(rdma_return_path
,
4237 migrate_rdma_pin_all(), errp
);
4240 goto return_path_err
;
4243 ret
= qemu_rdma_connect(rdma_return_path
, true, errp
);
4246 goto return_path_err
;
4249 rdma
->return_path
= rdma_return_path
;
4250 rdma_return_path
->return_path
= rdma
;
4251 rdma_return_path
->is_return_path
= true;
4254 trace_rdma_start_outgoing_migration_after_rdma_connect();
4256 s
->to_dst_file
= rdma_new_output(rdma
);
4257 migrate_fd_connect(s
, NULL
);
4260 qemu_rdma_cleanup(rdma
);
4263 g_free(rdma_return_path
);