tcg: access cpu->icount_decr.u16.high with atomics
[qemu/ar7.git] / accel / tcg / translate-all.c
blob356dcd0948b615c6ea606f7702f964e15cb2f60f
1 /*
2 * Host code generation
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #ifdef _WIN32
20 #include <windows.h>
21 #endif
22 #include "qemu/osdep.h"
25 #include "qemu-common.h"
26 #define NO_CPU_IO_DEFS
27 #include "cpu.h"
28 #include "trace.h"
29 #include "disas/disas.h"
30 #include "exec/exec-all.h"
31 #include "tcg.h"
32 #if defined(CONFIG_USER_ONLY)
33 #include "qemu.h"
34 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
35 #include <sys/param.h>
36 #if __FreeBSD_version >= 700104
37 #define HAVE_KINFO_GETVMMAP
38 #define sigqueue sigqueue_freebsd /* avoid redefinition */
39 #include <sys/proc.h>
40 #include <machine/profile.h>
41 #define _KERNEL
42 #include <sys/user.h>
43 #undef _KERNEL
44 #undef sigqueue
45 #include <libutil.h>
46 #endif
47 #endif
48 #else
49 #include "exec/ram_addr.h"
50 #endif
52 #include "exec/cputlb.h"
53 #include "exec/tb-hash.h"
54 #include "translate-all.h"
55 #include "qemu/bitmap.h"
56 #include "qemu/error-report.h"
57 #include "qemu/timer.h"
58 #include "qemu/main-loop.h"
59 #include "exec/log.h"
60 #include "sysemu/cpus.h"
62 /* #define DEBUG_TB_INVALIDATE */
63 /* #define DEBUG_TB_FLUSH */
64 /* make various TB consistency checks */
65 /* #define DEBUG_TB_CHECK */
67 #ifdef DEBUG_TB_INVALIDATE
68 #define DEBUG_TB_INVALIDATE_GATE 1
69 #else
70 #define DEBUG_TB_INVALIDATE_GATE 0
71 #endif
73 #ifdef DEBUG_TB_FLUSH
74 #define DEBUG_TB_FLUSH_GATE 1
75 #else
76 #define DEBUG_TB_FLUSH_GATE 0
77 #endif
79 #if !defined(CONFIG_USER_ONLY)
80 /* TB consistency checks only implemented for usermode emulation. */
81 #undef DEBUG_TB_CHECK
82 #endif
84 #ifdef DEBUG_TB_CHECK
85 #define DEBUG_TB_CHECK_GATE 1
86 #else
87 #define DEBUG_TB_CHECK_GATE 0
88 #endif
90 /* Access to the various translations structures need to be serialised via locks
91 * for consistency.
92 * In user-mode emulation access to the memory related structures are protected
93 * with mmap_lock.
94 * In !user-mode we use per-page locks.
96 #ifdef CONFIG_SOFTMMU
97 #define assert_memory_lock()
98 #else
99 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock())
100 #endif
102 #define SMC_BITMAP_USE_THRESHOLD 10
104 typedef struct PageDesc {
105 /* list of TBs intersecting this ram page */
106 uintptr_t first_tb;
107 #ifdef CONFIG_SOFTMMU
108 /* in order to optimize self modifying code, we count the number
109 of lookups we do to a given page to use a bitmap */
110 unsigned long *code_bitmap;
111 unsigned int code_write_count;
112 #else
113 unsigned long flags;
114 #endif
115 #ifndef CONFIG_USER_ONLY
116 QemuSpin lock;
117 #endif
118 } PageDesc;
121 * struct page_entry - page descriptor entry
122 * @pd: pointer to the &struct PageDesc of the page this entry represents
123 * @index: page index of the page
124 * @locked: whether the page is locked
126 * This struct helps us keep track of the locked state of a page, without
127 * bloating &struct PageDesc.
129 * A page lock protects accesses to all fields of &struct PageDesc.
131 * See also: &struct page_collection.
133 struct page_entry {
134 PageDesc *pd;
135 tb_page_addr_t index;
136 bool locked;
140 * struct page_collection - tracks a set of pages (i.e. &struct page_entry's)
141 * @tree: Binary search tree (BST) of the pages, with key == page index
142 * @max: Pointer to the page in @tree with the highest page index
144 * To avoid deadlock we lock pages in ascending order of page index.
145 * When operating on a set of pages, we need to keep track of them so that
146 * we can lock them in order and also unlock them later. For this we collect
147 * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the
148 * @tree implementation we use does not provide an O(1) operation to obtain the
149 * highest-ranked element, we use @max to keep track of the inserted page
150 * with the highest index. This is valuable because if a page is not in
151 * the tree and its index is higher than @max's, then we can lock it
152 * without breaking the locking order rule.
154 * Note on naming: 'struct page_set' would be shorter, but we already have a few
155 * page_set_*() helpers, so page_collection is used instead to avoid confusion.
157 * See also: page_collection_lock().
159 struct page_collection {
160 GTree *tree;
161 struct page_entry *max;
164 /* list iterators for lists of tagged pointers in TranslationBlock */
165 #define TB_FOR_EACH_TAGGED(head, tb, n, field) \
166 for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \
167 tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \
168 tb = (TranslationBlock *)((uintptr_t)tb & ~1))
170 #define PAGE_FOR_EACH_TB(pagedesc, tb, n) \
171 TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next)
173 #define TB_FOR_EACH_JMP(head_tb, tb, n) \
174 TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next)
176 /* In system mode we want L1_MAP to be based on ram offsets,
177 while in user mode we want it to be based on virtual addresses. */
178 #if !defined(CONFIG_USER_ONLY)
179 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
180 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
181 #else
182 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
183 #endif
184 #else
185 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
186 #endif
188 /* Size of the L2 (and L3, etc) page tables. */
189 #define V_L2_BITS 10
190 #define V_L2_SIZE (1 << V_L2_BITS)
192 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */
193 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS >
194 sizeof_field(TranslationBlock, trace_vcpu_dstate)
195 * BITS_PER_BYTE);
198 * L1 Mapping properties
200 static int v_l1_size;
201 static int v_l1_shift;
202 static int v_l2_levels;
204 /* The bottom level has pointers to PageDesc, and is indexed by
205 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
207 #define V_L1_MIN_BITS 4
208 #define V_L1_MAX_BITS (V_L2_BITS + 3)
209 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
211 static void *l1_map[V_L1_MAX_SIZE];
213 /* code generation context */
214 TCGContext tcg_init_ctx;
215 __thread TCGContext *tcg_ctx;
216 TBContext tb_ctx;
217 bool parallel_cpus;
219 static void page_table_config_init(void)
221 uint32_t v_l1_bits;
223 assert(TARGET_PAGE_BITS);
224 /* The bits remaining after N lower levels of page tables. */
225 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
226 if (v_l1_bits < V_L1_MIN_BITS) {
227 v_l1_bits += V_L2_BITS;
230 v_l1_size = 1 << v_l1_bits;
231 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
232 v_l2_levels = v_l1_shift / V_L2_BITS - 1;
234 assert(v_l1_bits <= V_L1_MAX_BITS);
235 assert(v_l1_shift % V_L2_BITS == 0);
236 assert(v_l2_levels >= 0);
239 void cpu_gen_init(void)
241 tcg_context_init(&tcg_init_ctx);
244 /* Encode VAL as a signed leb128 sequence at P.
245 Return P incremented past the encoded value. */
246 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
248 int more, byte;
250 do {
251 byte = val & 0x7f;
252 val >>= 7;
253 more = !((val == 0 && (byte & 0x40) == 0)
254 || (val == -1 && (byte & 0x40) != 0));
255 if (more) {
256 byte |= 0x80;
258 *p++ = byte;
259 } while (more);
261 return p;
264 /* Decode a signed leb128 sequence at *PP; increment *PP past the
265 decoded value. Return the decoded value. */
266 static target_long decode_sleb128(uint8_t **pp)
268 uint8_t *p = *pp;
269 target_long val = 0;
270 int byte, shift = 0;
272 do {
273 byte = *p++;
274 val |= (target_ulong)(byte & 0x7f) << shift;
275 shift += 7;
276 } while (byte & 0x80);
277 if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
278 val |= -(target_ulong)1 << shift;
281 *pp = p;
282 return val;
285 /* Encode the data collected about the instructions while compiling TB.
286 Place the data at BLOCK, and return the number of bytes consumed.
288 The logical table consists of TARGET_INSN_START_WORDS target_ulong's,
289 which come from the target's insn_start data, followed by a uintptr_t
290 which comes from the host pc of the end of the code implementing the insn.
292 Each line of the table is encoded as sleb128 deltas from the previous
293 line. The seed for the first line is { tb->pc, 0..., tb->tc.ptr }.
294 That is, the first column is seeded with the guest pc, the last column
295 with the host pc, and the middle columns with zeros. */
297 static int encode_search(TranslationBlock *tb, uint8_t *block)
299 uint8_t *highwater = tcg_ctx->code_gen_highwater;
300 uint8_t *p = block;
301 int i, j, n;
303 for (i = 0, n = tb->icount; i < n; ++i) {
304 target_ulong prev;
306 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
307 if (i == 0) {
308 prev = (j == 0 ? tb->pc : 0);
309 } else {
310 prev = tcg_ctx->gen_insn_data[i - 1][j];
312 p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev);
314 prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]);
315 p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev);
317 /* Test for (pending) buffer overflow. The assumption is that any
318 one row beginning below the high water mark cannot overrun
319 the buffer completely. Thus we can test for overflow after
320 encoding a row without having to check during encoding. */
321 if (unlikely(p > highwater)) {
322 return -1;
326 return p - block;
329 /* The cpu state corresponding to 'searched_pc' is restored.
330 * When reset_icount is true, current TB will be interrupted and
331 * icount should be recalculated.
333 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
334 uintptr_t searched_pc, bool reset_icount)
336 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
337 uintptr_t host_pc = (uintptr_t)tb->tc.ptr;
338 CPUArchState *env = cpu->env_ptr;
339 uint8_t *p = tb->tc.ptr + tb->tc.size;
340 int i, j, num_insns = tb->icount;
341 #ifdef CONFIG_PROFILER
342 TCGProfile *prof = &tcg_ctx->prof;
343 int64_t ti = profile_getclock();
344 #endif
346 searched_pc -= GETPC_ADJ;
348 if (searched_pc < host_pc) {
349 return -1;
352 /* Reconstruct the stored insn data while looking for the point at
353 which the end of the insn exceeds the searched_pc. */
354 for (i = 0; i < num_insns; ++i) {
355 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
356 data[j] += decode_sleb128(&p);
358 host_pc += decode_sleb128(&p);
359 if (host_pc > searched_pc) {
360 goto found;
363 return -1;
365 found:
366 if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) {
367 assert(use_icount);
368 /* Reset the cycle counter to the start of the block
369 and shift if to the number of actually executed instructions */
370 cpu->icount_decr.u16.low += num_insns - i;
372 restore_state_to_opc(env, tb, data);
374 #ifdef CONFIG_PROFILER
375 atomic_set(&prof->restore_time,
376 prof->restore_time + profile_getclock() - ti);
377 atomic_set(&prof->restore_count, prof->restore_count + 1);
378 #endif
379 return 0;
382 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit)
384 TranslationBlock *tb;
385 bool r = false;
386 uintptr_t check_offset;
388 /* The host_pc has to be in the region of current code buffer. If
389 * it is not we will not be able to resolve it here. The two cases
390 * where host_pc will not be correct are:
392 * - fault during translation (instruction fetch)
393 * - fault from helper (not using GETPC() macro)
395 * Either way we need return early as we can't resolve it here.
397 * We are using unsigned arithmetic so if host_pc <
398 * tcg_init_ctx.code_gen_buffer check_offset will wrap to way
399 * above the code_gen_buffer_size
401 check_offset = host_pc - (uintptr_t) tcg_init_ctx.code_gen_buffer;
403 if (check_offset < tcg_init_ctx.code_gen_buffer_size) {
404 tb = tcg_tb_lookup(host_pc);
405 if (tb) {
406 cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit);
407 if (tb_cflags(tb) & CF_NOCACHE) {
408 /* one-shot translation, invalidate it immediately */
409 tb_phys_invalidate(tb, -1);
410 tcg_tb_remove(tb);
412 r = true;
416 return r;
419 static void page_init(void)
421 page_size_init();
422 page_table_config_init();
424 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
426 #ifdef HAVE_KINFO_GETVMMAP
427 struct kinfo_vmentry *freep;
428 int i, cnt;
430 freep = kinfo_getvmmap(getpid(), &cnt);
431 if (freep) {
432 mmap_lock();
433 for (i = 0; i < cnt; i++) {
434 unsigned long startaddr, endaddr;
436 startaddr = freep[i].kve_start;
437 endaddr = freep[i].kve_end;
438 if (h2g_valid(startaddr)) {
439 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
441 if (h2g_valid(endaddr)) {
442 endaddr = h2g(endaddr);
443 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
444 } else {
445 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
446 endaddr = ~0ul;
447 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
448 #endif
452 free(freep);
453 mmap_unlock();
455 #else
456 FILE *f;
458 last_brk = (unsigned long)sbrk(0);
460 f = fopen("/compat/linux/proc/self/maps", "r");
461 if (f) {
462 mmap_lock();
464 do {
465 unsigned long startaddr, endaddr;
466 int n;
468 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
470 if (n == 2 && h2g_valid(startaddr)) {
471 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
473 if (h2g_valid(endaddr)) {
474 endaddr = h2g(endaddr);
475 } else {
476 endaddr = ~0ul;
478 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
480 } while (!feof(f));
482 fclose(f);
483 mmap_unlock();
485 #endif
487 #endif
490 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
492 PageDesc *pd;
493 void **lp;
494 int i;
496 /* Level 1. Always allocated. */
497 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
499 /* Level 2..N-1. */
500 for (i = v_l2_levels; i > 0; i--) {
501 void **p = atomic_rcu_read(lp);
503 if (p == NULL) {
504 void *existing;
506 if (!alloc) {
507 return NULL;
509 p = g_new0(void *, V_L2_SIZE);
510 existing = atomic_cmpxchg(lp, NULL, p);
511 if (unlikely(existing)) {
512 g_free(p);
513 p = existing;
517 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
520 pd = atomic_rcu_read(lp);
521 if (pd == NULL) {
522 void *existing;
524 if (!alloc) {
525 return NULL;
527 pd = g_new0(PageDesc, V_L2_SIZE);
528 #ifndef CONFIG_USER_ONLY
530 int i;
532 for (i = 0; i < V_L2_SIZE; i++) {
533 qemu_spin_init(&pd[i].lock);
536 #endif
537 existing = atomic_cmpxchg(lp, NULL, pd);
538 if (unlikely(existing)) {
539 g_free(pd);
540 pd = existing;
544 return pd + (index & (V_L2_SIZE - 1));
547 static inline PageDesc *page_find(tb_page_addr_t index)
549 return page_find_alloc(index, 0);
552 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
553 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc);
555 /* In user-mode page locks aren't used; mmap_lock is enough */
556 #ifdef CONFIG_USER_ONLY
558 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock())
560 static inline void page_lock(PageDesc *pd)
563 static inline void page_unlock(PageDesc *pd)
566 static inline void page_lock_tb(const TranslationBlock *tb)
569 static inline void page_unlock_tb(const TranslationBlock *tb)
572 struct page_collection *
573 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
575 return NULL;
578 void page_collection_unlock(struct page_collection *set)
580 #else /* !CONFIG_USER_ONLY */
582 #ifdef CONFIG_DEBUG_TCG
584 static __thread GHashTable *ht_pages_locked_debug;
586 static void ht_pages_locked_debug_init(void)
588 if (ht_pages_locked_debug) {
589 return;
591 ht_pages_locked_debug = g_hash_table_new(NULL, NULL);
594 static bool page_is_locked(const PageDesc *pd)
596 PageDesc *found;
598 ht_pages_locked_debug_init();
599 found = g_hash_table_lookup(ht_pages_locked_debug, pd);
600 return !!found;
603 static void page_lock__debug(PageDesc *pd)
605 ht_pages_locked_debug_init();
606 g_assert(!page_is_locked(pd));
607 g_hash_table_insert(ht_pages_locked_debug, pd, pd);
610 static void page_unlock__debug(const PageDesc *pd)
612 bool removed;
614 ht_pages_locked_debug_init();
615 g_assert(page_is_locked(pd));
616 removed = g_hash_table_remove(ht_pages_locked_debug, pd);
617 g_assert(removed);
620 static void
621 do_assert_page_locked(const PageDesc *pd, const char *file, int line)
623 if (unlikely(!page_is_locked(pd))) {
624 error_report("assert_page_lock: PageDesc %p not locked @ %s:%d",
625 pd, file, line);
626 abort();
630 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__)
632 void assert_no_pages_locked(void)
634 ht_pages_locked_debug_init();
635 g_assert(g_hash_table_size(ht_pages_locked_debug) == 0);
638 #else /* !CONFIG_DEBUG_TCG */
640 #define assert_page_locked(pd)
642 static inline void page_lock__debug(const PageDesc *pd)
646 static inline void page_unlock__debug(const PageDesc *pd)
650 #endif /* CONFIG_DEBUG_TCG */
652 static inline void page_lock(PageDesc *pd)
654 page_lock__debug(pd);
655 qemu_spin_lock(&pd->lock);
658 static inline void page_unlock(PageDesc *pd)
660 qemu_spin_unlock(&pd->lock);
661 page_unlock__debug(pd);
664 /* lock the page(s) of a TB in the correct acquisition order */
665 static inline void page_lock_tb(const TranslationBlock *tb)
667 page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0);
670 static inline void page_unlock_tb(const TranslationBlock *tb)
672 PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
674 page_unlock(p1);
675 if (unlikely(tb->page_addr[1] != -1)) {
676 PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
678 if (p2 != p1) {
679 page_unlock(p2);
684 static inline struct page_entry *
685 page_entry_new(PageDesc *pd, tb_page_addr_t index)
687 struct page_entry *pe = g_malloc(sizeof(*pe));
689 pe->index = index;
690 pe->pd = pd;
691 pe->locked = false;
692 return pe;
695 static void page_entry_destroy(gpointer p)
697 struct page_entry *pe = p;
699 g_assert(pe->locked);
700 page_unlock(pe->pd);
701 g_free(pe);
704 /* returns false on success */
705 static bool page_entry_trylock(struct page_entry *pe)
707 bool busy;
709 busy = qemu_spin_trylock(&pe->pd->lock);
710 if (!busy) {
711 g_assert(!pe->locked);
712 pe->locked = true;
713 page_lock__debug(pe->pd);
715 return busy;
718 static void do_page_entry_lock(struct page_entry *pe)
720 page_lock(pe->pd);
721 g_assert(!pe->locked);
722 pe->locked = true;
725 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data)
727 struct page_entry *pe = value;
729 do_page_entry_lock(pe);
730 return FALSE;
733 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data)
735 struct page_entry *pe = value;
737 if (pe->locked) {
738 pe->locked = false;
739 page_unlock(pe->pd);
741 return FALSE;
745 * Trylock a page, and if successful, add the page to a collection.
746 * Returns true ("busy") if the page could not be locked; false otherwise.
748 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr)
750 tb_page_addr_t index = addr >> TARGET_PAGE_BITS;
751 struct page_entry *pe;
752 PageDesc *pd;
754 pe = g_tree_lookup(set->tree, &index);
755 if (pe) {
756 return false;
759 pd = page_find(index);
760 if (pd == NULL) {
761 return false;
764 pe = page_entry_new(pd, index);
765 g_tree_insert(set->tree, &pe->index, pe);
768 * If this is either (1) the first insertion or (2) a page whose index
769 * is higher than any other so far, just lock the page and move on.
771 if (set->max == NULL || pe->index > set->max->index) {
772 set->max = pe;
773 do_page_entry_lock(pe);
774 return false;
777 * Try to acquire out-of-order lock; if busy, return busy so that we acquire
778 * locks in order.
780 return page_entry_trylock(pe);
783 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata)
785 tb_page_addr_t a = *(const tb_page_addr_t *)ap;
786 tb_page_addr_t b = *(const tb_page_addr_t *)bp;
788 if (a == b) {
789 return 0;
790 } else if (a < b) {
791 return -1;
793 return 1;
797 * Lock a range of pages ([@start,@end[) as well as the pages of all
798 * intersecting TBs.
799 * Locking order: acquire locks in ascending order of page index.
801 struct page_collection *
802 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
804 struct page_collection *set = g_malloc(sizeof(*set));
805 tb_page_addr_t index;
806 PageDesc *pd;
808 start >>= TARGET_PAGE_BITS;
809 end >>= TARGET_PAGE_BITS;
810 g_assert(start <= end);
812 set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL,
813 page_entry_destroy);
814 set->max = NULL;
815 assert_no_pages_locked();
817 retry:
818 g_tree_foreach(set->tree, page_entry_lock, NULL);
820 for (index = start; index <= end; index++) {
821 TranslationBlock *tb;
822 int n;
824 pd = page_find(index);
825 if (pd == NULL) {
826 continue;
828 if (page_trylock_add(set, index << TARGET_PAGE_BITS)) {
829 g_tree_foreach(set->tree, page_entry_unlock, NULL);
830 goto retry;
832 assert_page_locked(pd);
833 PAGE_FOR_EACH_TB(pd, tb, n) {
834 if (page_trylock_add(set, tb->page_addr[0]) ||
835 (tb->page_addr[1] != -1 &&
836 page_trylock_add(set, tb->page_addr[1]))) {
837 /* drop all locks, and reacquire in order */
838 g_tree_foreach(set->tree, page_entry_unlock, NULL);
839 goto retry;
843 return set;
846 void page_collection_unlock(struct page_collection *set)
848 /* entries are unlocked and freed via page_entry_destroy */
849 g_tree_destroy(set->tree);
850 g_free(set);
853 #endif /* !CONFIG_USER_ONLY */
855 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
856 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc)
858 PageDesc *p1, *p2;
859 tb_page_addr_t page1;
860 tb_page_addr_t page2;
862 assert_memory_lock();
863 g_assert(phys1 != -1);
865 page1 = phys1 >> TARGET_PAGE_BITS;
866 page2 = phys2 >> TARGET_PAGE_BITS;
868 p1 = page_find_alloc(page1, alloc);
869 if (ret_p1) {
870 *ret_p1 = p1;
872 if (likely(phys2 == -1)) {
873 page_lock(p1);
874 return;
875 } else if (page1 == page2) {
876 page_lock(p1);
877 if (ret_p2) {
878 *ret_p2 = p1;
880 return;
882 p2 = page_find_alloc(page2, alloc);
883 if (ret_p2) {
884 *ret_p2 = p2;
886 if (page1 < page2) {
887 page_lock(p1);
888 page_lock(p2);
889 } else {
890 page_lock(p2);
891 page_lock(p1);
895 #if defined(CONFIG_USER_ONLY)
896 /* Currently it is not recommended to allocate big chunks of data in
897 user mode. It will change when a dedicated libc will be used. */
898 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
899 region in which the guest needs to run. Revisit this. */
900 #define USE_STATIC_CODE_GEN_BUFFER
901 #endif
903 /* Minimum size of the code gen buffer. This number is randomly chosen,
904 but not so small that we can't have a fair number of TB's live. */
905 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
907 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
908 indicated, this is constrained by the range of direct branches on the
909 host cpu, as used by the TCG implementation of goto_tb. */
910 #if defined(__x86_64__)
911 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
912 #elif defined(__sparc__)
913 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
914 #elif defined(__powerpc64__)
915 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
916 #elif defined(__powerpc__)
917 # define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024)
918 #elif defined(__aarch64__)
919 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
920 #elif defined(__s390x__)
921 /* We have a +- 4GB range on the branches; leave some slop. */
922 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
923 #elif defined(__mips__)
924 /* We have a 256MB branch region, but leave room to make sure the
925 main executable is also within that region. */
926 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
927 #else
928 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
929 #endif
931 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
933 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
934 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
935 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
937 static inline size_t size_code_gen_buffer(size_t tb_size)
939 /* Size the buffer. */
940 if (tb_size == 0) {
941 #ifdef USE_STATIC_CODE_GEN_BUFFER
942 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
943 #else
944 /* ??? Needs adjustments. */
945 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
946 static buffer, we could size this on RESERVED_VA, on the text
947 segment size of the executable, or continue to use the default. */
948 tb_size = (unsigned long)(ram_size / 4);
949 #endif
951 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
952 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
954 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
955 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
957 return tb_size;
960 #ifdef __mips__
961 /* In order to use J and JAL within the code_gen_buffer, we require
962 that the buffer not cross a 256MB boundary. */
963 static inline bool cross_256mb(void *addr, size_t size)
965 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
968 /* We weren't able to allocate a buffer without crossing that boundary,
969 so make do with the larger portion of the buffer that doesn't cross.
970 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
971 static inline void *split_cross_256mb(void *buf1, size_t size1)
973 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
974 size_t size2 = buf1 + size1 - buf2;
976 size1 = buf2 - buf1;
977 if (size1 < size2) {
978 size1 = size2;
979 buf1 = buf2;
982 tcg_ctx->code_gen_buffer_size = size1;
983 return buf1;
985 #endif
987 #ifdef USE_STATIC_CODE_GEN_BUFFER
988 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
989 __attribute__((aligned(CODE_GEN_ALIGN)));
991 static inline void *alloc_code_gen_buffer(void)
993 void *buf = static_code_gen_buffer;
994 void *end = static_code_gen_buffer + sizeof(static_code_gen_buffer);
995 size_t size;
997 /* page-align the beginning and end of the buffer */
998 buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size);
999 end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size);
1001 size = end - buf;
1003 /* Honor a command-line option limiting the size of the buffer. */
1004 if (size > tcg_ctx->code_gen_buffer_size) {
1005 size = QEMU_ALIGN_DOWN(tcg_ctx->code_gen_buffer_size,
1006 qemu_real_host_page_size);
1008 tcg_ctx->code_gen_buffer_size = size;
1010 #ifdef __mips__
1011 if (cross_256mb(buf, size)) {
1012 buf = split_cross_256mb(buf, size);
1013 size = tcg_ctx->code_gen_buffer_size;
1015 #endif
1017 if (qemu_mprotect_rwx(buf, size)) {
1018 abort();
1020 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1022 return buf;
1024 #elif defined(_WIN32)
1025 static inline void *alloc_code_gen_buffer(void)
1027 size_t size = tcg_ctx->code_gen_buffer_size;
1028 return VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT,
1029 PAGE_EXECUTE_READWRITE);
1031 #else
1032 static inline void *alloc_code_gen_buffer(void)
1034 int prot = PROT_WRITE | PROT_READ | PROT_EXEC;
1035 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
1036 uintptr_t start = 0;
1037 size_t size = tcg_ctx->code_gen_buffer_size;
1038 void *buf;
1040 /* Constrain the position of the buffer based on the host cpu.
1041 Note that these addresses are chosen in concert with the
1042 addresses assigned in the relevant linker script file. */
1043 # if defined(__PIE__) || defined(__PIC__)
1044 /* Don't bother setting a preferred location if we're building
1045 a position-independent executable. We're more likely to get
1046 an address near the main executable if we let the kernel
1047 choose the address. */
1048 # elif defined(__x86_64__) && defined(MAP_32BIT)
1049 /* Force the memory down into low memory with the executable.
1050 Leave the choice of exact location with the kernel. */
1051 flags |= MAP_32BIT;
1052 /* Cannot expect to map more than 800MB in low memory. */
1053 if (size > 800u * 1024 * 1024) {
1054 tcg_ctx->code_gen_buffer_size = size = 800u * 1024 * 1024;
1056 # elif defined(__sparc__)
1057 start = 0x40000000ul;
1058 # elif defined(__s390x__)
1059 start = 0x90000000ul;
1060 # elif defined(__mips__)
1061 # if _MIPS_SIM == _ABI64
1062 start = 0x128000000ul;
1063 # else
1064 start = 0x08000000ul;
1065 # endif
1066 # endif
1068 buf = mmap((void *)start, size, prot, flags, -1, 0);
1069 if (buf == MAP_FAILED) {
1070 return NULL;
1073 #ifdef __mips__
1074 if (cross_256mb(buf, size)) {
1075 /* Try again, with the original still mapped, to avoid re-acquiring
1076 that 256mb crossing. This time don't specify an address. */
1077 size_t size2;
1078 void *buf2 = mmap(NULL, size, prot, flags, -1, 0);
1079 switch ((int)(buf2 != MAP_FAILED)) {
1080 case 1:
1081 if (!cross_256mb(buf2, size)) {
1082 /* Success! Use the new buffer. */
1083 munmap(buf, size);
1084 break;
1086 /* Failure. Work with what we had. */
1087 munmap(buf2, size);
1088 /* fallthru */
1089 default:
1090 /* Split the original buffer. Free the smaller half. */
1091 buf2 = split_cross_256mb(buf, size);
1092 size2 = tcg_ctx->code_gen_buffer_size;
1093 if (buf == buf2) {
1094 munmap(buf + size2, size - size2);
1095 } else {
1096 munmap(buf, size - size2);
1098 size = size2;
1099 break;
1101 buf = buf2;
1103 #endif
1105 /* Request large pages for the buffer. */
1106 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1108 return buf;
1110 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
1112 static inline void code_gen_alloc(size_t tb_size)
1114 tcg_ctx->code_gen_buffer_size = size_code_gen_buffer(tb_size);
1115 tcg_ctx->code_gen_buffer = alloc_code_gen_buffer();
1116 if (tcg_ctx->code_gen_buffer == NULL) {
1117 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
1118 exit(1);
1122 static bool tb_cmp(const void *ap, const void *bp)
1124 const TranslationBlock *a = ap;
1125 const TranslationBlock *b = bp;
1127 return a->pc == b->pc &&
1128 a->cs_base == b->cs_base &&
1129 a->flags == b->flags &&
1130 (tb_cflags(a) & CF_HASH_MASK) == (tb_cflags(b) & CF_HASH_MASK) &&
1131 a->trace_vcpu_dstate == b->trace_vcpu_dstate &&
1132 a->page_addr[0] == b->page_addr[0] &&
1133 a->page_addr[1] == b->page_addr[1];
1136 static void tb_htable_init(void)
1138 unsigned int mode = QHT_MODE_AUTO_RESIZE;
1140 qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode);
1143 /* Must be called before using the QEMU cpus. 'tb_size' is the size
1144 (in bytes) allocated to the translation buffer. Zero means default
1145 size. */
1146 void tcg_exec_init(unsigned long tb_size)
1148 tcg_allowed = true;
1149 cpu_gen_init();
1150 page_init();
1151 tb_htable_init();
1152 code_gen_alloc(tb_size);
1153 #if defined(CONFIG_SOFTMMU)
1154 /* There's no guest base to take into account, so go ahead and
1155 initialize the prologue now. */
1156 tcg_prologue_init(tcg_ctx);
1157 #endif
1161 * Allocate a new translation block. Flush the translation buffer if
1162 * too many translation blocks or too much generated code.
1164 static TranslationBlock *tb_alloc(target_ulong pc)
1166 TranslationBlock *tb;
1168 assert_memory_lock();
1170 tb = tcg_tb_alloc(tcg_ctx);
1171 if (unlikely(tb == NULL)) {
1172 return NULL;
1174 return tb;
1177 /* call with @p->lock held */
1178 static inline void invalidate_page_bitmap(PageDesc *p)
1180 assert_page_locked(p);
1181 #ifdef CONFIG_SOFTMMU
1182 g_free(p->code_bitmap);
1183 p->code_bitmap = NULL;
1184 p->code_write_count = 0;
1185 #endif
1188 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
1189 static void page_flush_tb_1(int level, void **lp)
1191 int i;
1193 if (*lp == NULL) {
1194 return;
1196 if (level == 0) {
1197 PageDesc *pd = *lp;
1199 for (i = 0; i < V_L2_SIZE; ++i) {
1200 page_lock(&pd[i]);
1201 pd[i].first_tb = (uintptr_t)NULL;
1202 invalidate_page_bitmap(pd + i);
1203 page_unlock(&pd[i]);
1205 } else {
1206 void **pp = *lp;
1208 for (i = 0; i < V_L2_SIZE; ++i) {
1209 page_flush_tb_1(level - 1, pp + i);
1214 static void page_flush_tb(void)
1216 int i, l1_sz = v_l1_size;
1218 for (i = 0; i < l1_sz; i++) {
1219 page_flush_tb_1(v_l2_levels, l1_map + i);
1223 static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data)
1225 const TranslationBlock *tb = value;
1226 size_t *size = data;
1228 *size += tb->tc.size;
1229 return false;
1232 /* flush all the translation blocks */
1233 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
1235 mmap_lock();
1236 /* If it is already been done on request of another CPU,
1237 * just retry.
1239 if (tb_ctx.tb_flush_count != tb_flush_count.host_int) {
1240 goto done;
1243 if (DEBUG_TB_FLUSH_GATE) {
1244 size_t nb_tbs = tcg_nb_tbs();
1245 size_t host_size = 0;
1247 tcg_tb_foreach(tb_host_size_iter, &host_size);
1248 printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n",
1249 tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0);
1252 CPU_FOREACH(cpu) {
1253 cpu_tb_jmp_cache_clear(cpu);
1256 qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
1257 page_flush_tb();
1259 tcg_region_reset_all();
1260 /* XXX: flush processor icache at this point if cache flush is
1261 expensive */
1262 atomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1);
1264 done:
1265 mmap_unlock();
1268 void tb_flush(CPUState *cpu)
1270 if (tcg_enabled()) {
1271 unsigned tb_flush_count = atomic_mb_read(&tb_ctx.tb_flush_count);
1272 async_safe_run_on_cpu(cpu, do_tb_flush,
1273 RUN_ON_CPU_HOST_INT(tb_flush_count));
1278 * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only,
1279 * so in order to prevent bit rot we compile them unconditionally in user-mode,
1280 * and let the optimizer get rid of them by wrapping their user-only callers
1281 * with if (DEBUG_TB_CHECK_GATE).
1283 #ifdef CONFIG_USER_ONLY
1285 static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp)
1287 TranslationBlock *tb = p;
1288 target_ulong addr = *(target_ulong *)userp;
1290 if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
1291 printf("ERROR invalidate: address=" TARGET_FMT_lx
1292 " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
1296 /* verify that all the pages have correct rights for code
1298 * Called with mmap_lock held.
1300 static void tb_invalidate_check(target_ulong address)
1302 address &= TARGET_PAGE_MASK;
1303 qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address);
1306 static void do_tb_page_check(void *p, uint32_t hash, void *userp)
1308 TranslationBlock *tb = p;
1309 int flags1, flags2;
1311 flags1 = page_get_flags(tb->pc);
1312 flags2 = page_get_flags(tb->pc + tb->size - 1);
1313 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
1314 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
1315 (long)tb->pc, tb->size, flags1, flags2);
1319 /* verify that all the pages have correct rights for code */
1320 static void tb_page_check(void)
1322 qht_iter(&tb_ctx.htable, do_tb_page_check, NULL);
1325 #endif /* CONFIG_USER_ONLY */
1328 * user-mode: call with mmap_lock held
1329 * !user-mode: call with @pd->lock held
1331 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb)
1333 TranslationBlock *tb1;
1334 uintptr_t *pprev;
1335 unsigned int n1;
1337 assert_page_locked(pd);
1338 pprev = &pd->first_tb;
1339 PAGE_FOR_EACH_TB(pd, tb1, n1) {
1340 if (tb1 == tb) {
1341 *pprev = tb1->page_next[n1];
1342 return;
1344 pprev = &tb1->page_next[n1];
1346 g_assert_not_reached();
1349 /* remove @orig from its @n_orig-th jump list */
1350 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig)
1352 uintptr_t ptr, ptr_locked;
1353 TranslationBlock *dest;
1354 TranslationBlock *tb;
1355 uintptr_t *pprev;
1356 int n;
1358 /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */
1359 ptr = atomic_or_fetch(&orig->jmp_dest[n_orig], 1);
1360 dest = (TranslationBlock *)(ptr & ~1);
1361 if (dest == NULL) {
1362 return;
1365 qemu_spin_lock(&dest->jmp_lock);
1367 * While acquiring the lock, the jump might have been removed if the
1368 * destination TB was invalidated; check again.
1370 ptr_locked = atomic_read(&orig->jmp_dest[n_orig]);
1371 if (ptr_locked != ptr) {
1372 qemu_spin_unlock(&dest->jmp_lock);
1374 * The only possibility is that the jump was unlinked via
1375 * tb_jump_unlink(dest). Seeing here another destination would be a bug,
1376 * because we set the LSB above.
1378 g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID);
1379 return;
1382 * We first acquired the lock, and since the destination pointer matches,
1383 * we know for sure that @orig is in the jmp list.
1385 pprev = &dest->jmp_list_head;
1386 TB_FOR_EACH_JMP(dest, tb, n) {
1387 if (tb == orig && n == n_orig) {
1388 *pprev = tb->jmp_list_next[n];
1389 /* no need to set orig->jmp_dest[n]; setting the LSB was enough */
1390 qemu_spin_unlock(&dest->jmp_lock);
1391 return;
1393 pprev = &tb->jmp_list_next[n];
1395 g_assert_not_reached();
1398 /* reset the jump entry 'n' of a TB so that it is not chained to
1399 another TB */
1400 static inline void tb_reset_jump(TranslationBlock *tb, int n)
1402 uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]);
1403 tb_set_jmp_target(tb, n, addr);
1406 /* remove any jumps to the TB */
1407 static inline void tb_jmp_unlink(TranslationBlock *dest)
1409 TranslationBlock *tb;
1410 int n;
1412 qemu_spin_lock(&dest->jmp_lock);
1414 TB_FOR_EACH_JMP(dest, tb, n) {
1415 tb_reset_jump(tb, n);
1416 atomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1);
1417 /* No need to clear the list entry; setting the dest ptr is enough */
1419 dest->jmp_list_head = (uintptr_t)NULL;
1421 qemu_spin_unlock(&dest->jmp_lock);
1425 * In user-mode, call with mmap_lock held.
1426 * In !user-mode, if @rm_from_page_list is set, call with the TB's pages'
1427 * locks held.
1429 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list)
1431 CPUState *cpu;
1432 PageDesc *p;
1433 uint32_t h;
1434 tb_page_addr_t phys_pc;
1436 assert_memory_lock();
1438 /* make sure no further incoming jumps will be chained to this TB */
1439 qemu_spin_lock(&tb->jmp_lock);
1440 atomic_set(&tb->cflags, tb->cflags | CF_INVALID);
1441 qemu_spin_unlock(&tb->jmp_lock);
1443 /* remove the TB from the hash list */
1444 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1445 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb_cflags(tb) & CF_HASH_MASK,
1446 tb->trace_vcpu_dstate);
1447 if (!(tb->cflags & CF_NOCACHE) &&
1448 !qht_remove(&tb_ctx.htable, tb, h)) {
1449 return;
1452 /* remove the TB from the page list */
1453 if (rm_from_page_list) {
1454 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1455 tb_page_remove(p, tb);
1456 invalidate_page_bitmap(p);
1457 if (tb->page_addr[1] != -1) {
1458 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1459 tb_page_remove(p, tb);
1460 invalidate_page_bitmap(p);
1464 /* remove the TB from the hash list */
1465 h = tb_jmp_cache_hash_func(tb->pc);
1466 CPU_FOREACH(cpu) {
1467 if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
1468 atomic_set(&cpu->tb_jmp_cache[h], NULL);
1472 /* suppress this TB from the two jump lists */
1473 tb_remove_from_jmp_list(tb, 0);
1474 tb_remove_from_jmp_list(tb, 1);
1476 /* suppress any remaining jumps to this TB */
1477 tb_jmp_unlink(tb);
1479 atomic_set(&tcg_ctx->tb_phys_invalidate_count,
1480 tcg_ctx->tb_phys_invalidate_count + 1);
1483 static void tb_phys_invalidate__locked(TranslationBlock *tb)
1485 do_tb_phys_invalidate(tb, true);
1488 /* invalidate one TB
1490 * Called with mmap_lock held in user-mode.
1492 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
1494 if (page_addr == -1 && tb->page_addr[0] != -1) {
1495 page_lock_tb(tb);
1496 do_tb_phys_invalidate(tb, true);
1497 page_unlock_tb(tb);
1498 } else {
1499 do_tb_phys_invalidate(tb, false);
1503 #ifdef CONFIG_SOFTMMU
1504 /* call with @p->lock held */
1505 static void build_page_bitmap(PageDesc *p)
1507 int n, tb_start, tb_end;
1508 TranslationBlock *tb;
1510 assert_page_locked(p);
1511 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1513 PAGE_FOR_EACH_TB(p, tb, n) {
1514 /* NOTE: this is subtle as a TB may span two physical pages */
1515 if (n == 0) {
1516 /* NOTE: tb_end may be after the end of the page, but
1517 it is not a problem */
1518 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1519 tb_end = tb_start + tb->size;
1520 if (tb_end > TARGET_PAGE_SIZE) {
1521 tb_end = TARGET_PAGE_SIZE;
1523 } else {
1524 tb_start = 0;
1525 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1527 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1530 #endif
1532 /* add the tb in the target page and protect it if necessary
1534 * Called with mmap_lock held for user-mode emulation.
1535 * Called with @p->lock held in !user-mode.
1537 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb,
1538 unsigned int n, tb_page_addr_t page_addr)
1540 #ifndef CONFIG_USER_ONLY
1541 bool page_already_protected;
1542 #endif
1544 assert_page_locked(p);
1546 tb->page_addr[n] = page_addr;
1547 tb->page_next[n] = p->first_tb;
1548 #ifndef CONFIG_USER_ONLY
1549 page_already_protected = p->first_tb != (uintptr_t)NULL;
1550 #endif
1551 p->first_tb = (uintptr_t)tb | n;
1552 invalidate_page_bitmap(p);
1554 #if defined(CONFIG_USER_ONLY)
1555 if (p->flags & PAGE_WRITE) {
1556 target_ulong addr;
1557 PageDesc *p2;
1558 int prot;
1560 /* force the host page as non writable (writes will have a
1561 page fault + mprotect overhead) */
1562 page_addr &= qemu_host_page_mask;
1563 prot = 0;
1564 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1565 addr += TARGET_PAGE_SIZE) {
1567 p2 = page_find(addr >> TARGET_PAGE_BITS);
1568 if (!p2) {
1569 continue;
1571 prot |= p2->flags;
1572 p2->flags &= ~PAGE_WRITE;
1574 mprotect(g2h(page_addr), qemu_host_page_size,
1575 (prot & PAGE_BITS) & ~PAGE_WRITE);
1576 if (DEBUG_TB_INVALIDATE_GATE) {
1577 printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr);
1580 #else
1581 /* if some code is already present, then the pages are already
1582 protected. So we handle the case where only the first TB is
1583 allocated in a physical page */
1584 if (!page_already_protected) {
1585 tlb_protect_code(page_addr);
1587 #endif
1590 /* add a new TB and link it to the physical page tables. phys_page2 is
1591 * (-1) to indicate that only one page contains the TB.
1593 * Called with mmap_lock held for user-mode emulation.
1595 * Returns a pointer @tb, or a pointer to an existing TB that matches @tb.
1596 * Note that in !user-mode, another thread might have already added a TB
1597 * for the same block of guest code that @tb corresponds to. In that case,
1598 * the caller should discard the original @tb, and use instead the returned TB.
1600 static TranslationBlock *
1601 tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1602 tb_page_addr_t phys_page2)
1604 PageDesc *p;
1605 PageDesc *p2 = NULL;
1607 assert_memory_lock();
1609 if (phys_pc == -1) {
1611 * If the TB is not associated with a physical RAM page then
1612 * it must be a temporary one-insn TB, and we have nothing to do
1613 * except fill in the page_addr[] fields.
1615 assert(tb->cflags & CF_NOCACHE);
1616 tb->page_addr[0] = tb->page_addr[1] = -1;
1617 return tb;
1621 * Add the TB to the page list, acquiring first the pages's locks.
1622 * We keep the locks held until after inserting the TB in the hash table,
1623 * so that if the insertion fails we know for sure that the TBs are still
1624 * in the page descriptors.
1625 * Note that inserting into the hash table first isn't an option, since
1626 * we can only insert TBs that are fully initialized.
1628 page_lock_pair(&p, phys_pc, &p2, phys_page2, 1);
1629 tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK);
1630 if (p2) {
1631 tb_page_add(p2, tb, 1, phys_page2);
1632 } else {
1633 tb->page_addr[1] = -1;
1636 if (!(tb->cflags & CF_NOCACHE)) {
1637 void *existing_tb = NULL;
1638 uint32_t h;
1640 /* add in the hash table */
1641 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK,
1642 tb->trace_vcpu_dstate);
1643 qht_insert(&tb_ctx.htable, tb, h, &existing_tb);
1645 /* remove TB from the page(s) if we couldn't insert it */
1646 if (unlikely(existing_tb)) {
1647 tb_page_remove(p, tb);
1648 invalidate_page_bitmap(p);
1649 if (p2) {
1650 tb_page_remove(p2, tb);
1651 invalidate_page_bitmap(p2);
1653 tb = existing_tb;
1657 if (p2 && p2 != p) {
1658 page_unlock(p2);
1660 page_unlock(p);
1662 #ifdef CONFIG_USER_ONLY
1663 if (DEBUG_TB_CHECK_GATE) {
1664 tb_page_check();
1666 #endif
1667 return tb;
1670 /* Called with mmap_lock held for user mode emulation. */
1671 TranslationBlock *tb_gen_code(CPUState *cpu,
1672 target_ulong pc, target_ulong cs_base,
1673 uint32_t flags, int cflags)
1675 CPUArchState *env = cpu->env_ptr;
1676 TranslationBlock *tb, *existing_tb;
1677 tb_page_addr_t phys_pc, phys_page2;
1678 target_ulong virt_page2;
1679 tcg_insn_unit *gen_code_buf;
1680 int gen_code_size, search_size;
1681 #ifdef CONFIG_PROFILER
1682 TCGProfile *prof = &tcg_ctx->prof;
1683 int64_t ti;
1684 #endif
1685 assert_memory_lock();
1687 phys_pc = get_page_addr_code(env, pc);
1689 if (phys_pc == -1) {
1690 /* Generate a temporary TB with 1 insn in it */
1691 cflags &= ~CF_COUNT_MASK;
1692 cflags |= CF_NOCACHE | 1;
1695 buffer_overflow:
1696 tb = tb_alloc(pc);
1697 if (unlikely(!tb)) {
1698 /* flush must be done */
1699 tb_flush(cpu);
1700 mmap_unlock();
1701 /* Make the execution loop process the flush as soon as possible. */
1702 cpu->exception_index = EXCP_INTERRUPT;
1703 cpu_loop_exit(cpu);
1706 gen_code_buf = tcg_ctx->code_gen_ptr;
1707 tb->tc.ptr = gen_code_buf;
1708 tb->pc = pc;
1709 tb->cs_base = cs_base;
1710 tb->flags = flags;
1711 tb->cflags = cflags;
1712 tb->trace_vcpu_dstate = *cpu->trace_dstate;
1713 tcg_ctx->tb_cflags = cflags;
1715 #ifdef CONFIG_PROFILER
1716 /* includes aborted translations because of exceptions */
1717 atomic_set(&prof->tb_count1, prof->tb_count1 + 1);
1718 ti = profile_getclock();
1719 #endif
1721 tcg_func_start(tcg_ctx);
1723 tcg_ctx->cpu = ENV_GET_CPU(env);
1724 gen_intermediate_code(cpu, tb);
1725 tcg_ctx->cpu = NULL;
1727 trace_translate_block(tb, tb->pc, tb->tc.ptr);
1729 /* generate machine code */
1730 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1731 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1732 tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset;
1733 if (TCG_TARGET_HAS_direct_jump) {
1734 tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg;
1735 tcg_ctx->tb_jmp_target_addr = NULL;
1736 } else {
1737 tcg_ctx->tb_jmp_insn_offset = NULL;
1738 tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg;
1741 #ifdef CONFIG_PROFILER
1742 atomic_set(&prof->tb_count, prof->tb_count + 1);
1743 atomic_set(&prof->interm_time, prof->interm_time + profile_getclock() - ti);
1744 ti = profile_getclock();
1745 #endif
1747 /* ??? Overflow could be handled better here. In particular, we
1748 don't need to re-do gen_intermediate_code, nor should we re-do
1749 the tcg optimization currently hidden inside tcg_gen_code. All
1750 that should be required is to flush the TBs, allocate a new TB,
1751 re-initialize it per above, and re-do the actual code generation. */
1752 gen_code_size = tcg_gen_code(tcg_ctx, tb);
1753 if (unlikely(gen_code_size < 0)) {
1754 goto buffer_overflow;
1756 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1757 if (unlikely(search_size < 0)) {
1758 goto buffer_overflow;
1760 tb->tc.size = gen_code_size;
1762 #ifdef CONFIG_PROFILER
1763 atomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti);
1764 atomic_set(&prof->code_in_len, prof->code_in_len + tb->size);
1765 atomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size);
1766 atomic_set(&prof->search_out_len, prof->search_out_len + search_size);
1767 #endif
1769 #ifdef DEBUG_DISAS
1770 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1771 qemu_log_in_addr_range(tb->pc)) {
1772 qemu_log_lock();
1773 qemu_log("OUT: [size=%d]\n", gen_code_size);
1774 if (tcg_ctx->data_gen_ptr) {
1775 size_t code_size = tcg_ctx->data_gen_ptr - tb->tc.ptr;
1776 size_t data_size = gen_code_size - code_size;
1777 size_t i;
1779 log_disas(tb->tc.ptr, code_size);
1781 for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) {
1782 if (sizeof(tcg_target_ulong) == 8) {
1783 qemu_log("0x%08" PRIxPTR ": .quad 0x%016" PRIx64 "\n",
1784 (uintptr_t)tcg_ctx->data_gen_ptr + i,
1785 *(uint64_t *)(tcg_ctx->data_gen_ptr + i));
1786 } else {
1787 qemu_log("0x%08" PRIxPTR ": .long 0x%08x\n",
1788 (uintptr_t)tcg_ctx->data_gen_ptr + i,
1789 *(uint32_t *)(tcg_ctx->data_gen_ptr + i));
1792 } else {
1793 log_disas(tb->tc.ptr, gen_code_size);
1795 qemu_log("\n");
1796 qemu_log_flush();
1797 qemu_log_unlock();
1799 #endif
1801 atomic_set(&tcg_ctx->code_gen_ptr, (void *)
1802 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1803 CODE_GEN_ALIGN));
1805 /* init jump list */
1806 qemu_spin_init(&tb->jmp_lock);
1807 tb->jmp_list_head = (uintptr_t)NULL;
1808 tb->jmp_list_next[0] = (uintptr_t)NULL;
1809 tb->jmp_list_next[1] = (uintptr_t)NULL;
1810 tb->jmp_dest[0] = (uintptr_t)NULL;
1811 tb->jmp_dest[1] = (uintptr_t)NULL;
1813 /* init original jump addresses which have been set during tcg_gen_code() */
1814 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1815 tb_reset_jump(tb, 0);
1817 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1818 tb_reset_jump(tb, 1);
1821 /* check next page if needed */
1822 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1823 phys_page2 = -1;
1824 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1825 phys_page2 = get_page_addr_code(env, virt_page2);
1828 * No explicit memory barrier is required -- tb_link_page() makes the
1829 * TB visible in a consistent state.
1831 existing_tb = tb_link_page(tb, phys_pc, phys_page2);
1832 /* if the TB already exists, discard what we just translated */
1833 if (unlikely(existing_tb != tb)) {
1834 uintptr_t orig_aligned = (uintptr_t)gen_code_buf;
1836 orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize);
1837 atomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned);
1838 return existing_tb;
1840 tcg_tb_insert(tb);
1841 return tb;
1845 * @p must be non-NULL.
1846 * user-mode: call with mmap_lock held.
1847 * !user-mode: call with all @pages locked.
1849 static void
1850 tb_invalidate_phys_page_range__locked(struct page_collection *pages,
1851 PageDesc *p, tb_page_addr_t start,
1852 tb_page_addr_t end,
1853 int is_cpu_write_access)
1855 TranslationBlock *tb;
1856 tb_page_addr_t tb_start, tb_end;
1857 int n;
1858 #ifdef TARGET_HAS_PRECISE_SMC
1859 CPUState *cpu = current_cpu;
1860 CPUArchState *env = NULL;
1861 int current_tb_not_found = is_cpu_write_access;
1862 TranslationBlock *current_tb = NULL;
1863 int current_tb_modified = 0;
1864 target_ulong current_pc = 0;
1865 target_ulong current_cs_base = 0;
1866 uint32_t current_flags = 0;
1867 #endif /* TARGET_HAS_PRECISE_SMC */
1869 assert_page_locked(p);
1871 #if defined(TARGET_HAS_PRECISE_SMC)
1872 if (cpu != NULL) {
1873 env = cpu->env_ptr;
1875 #endif
1877 /* we remove all the TBs in the range [start, end[ */
1878 /* XXX: see if in some cases it could be faster to invalidate all
1879 the code */
1880 PAGE_FOR_EACH_TB(p, tb, n) {
1881 assert_page_locked(p);
1882 /* NOTE: this is subtle as a TB may span two physical pages */
1883 if (n == 0) {
1884 /* NOTE: tb_end may be after the end of the page, but
1885 it is not a problem */
1886 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1887 tb_end = tb_start + tb->size;
1888 } else {
1889 tb_start = tb->page_addr[1];
1890 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1892 if (!(tb_end <= start || tb_start >= end)) {
1893 #ifdef TARGET_HAS_PRECISE_SMC
1894 if (current_tb_not_found) {
1895 current_tb_not_found = 0;
1896 current_tb = NULL;
1897 if (cpu->mem_io_pc) {
1898 /* now we have a real cpu fault */
1899 current_tb = tcg_tb_lookup(cpu->mem_io_pc);
1902 if (current_tb == tb &&
1903 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
1904 /* If we are modifying the current TB, we must stop
1905 its execution. We could be more precise by checking
1906 that the modification is after the current PC, but it
1907 would require a specialized function to partially
1908 restore the CPU state */
1910 current_tb_modified = 1;
1911 cpu_restore_state_from_tb(cpu, current_tb,
1912 cpu->mem_io_pc, true);
1913 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1914 &current_flags);
1916 #endif /* TARGET_HAS_PRECISE_SMC */
1917 tb_phys_invalidate__locked(tb);
1920 #if !defined(CONFIG_USER_ONLY)
1921 /* if no code remaining, no need to continue to use slow writes */
1922 if (!p->first_tb) {
1923 invalidate_page_bitmap(p);
1924 tlb_unprotect_code(start);
1926 #endif
1927 #ifdef TARGET_HAS_PRECISE_SMC
1928 if (current_tb_modified) {
1929 page_collection_unlock(pages);
1930 /* Force execution of one insn next time. */
1931 cpu->cflags_next_tb = 1 | curr_cflags();
1932 mmap_unlock();
1933 cpu_loop_exit_noexc(cpu);
1935 #endif
1939 * Invalidate all TBs which intersect with the target physical address range
1940 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1941 * 'is_cpu_write_access' should be true if called from a real cpu write
1942 * access: the virtual CPU will exit the current TB if code is modified inside
1943 * this TB.
1945 * Called with mmap_lock held for user-mode emulation
1947 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1948 int is_cpu_write_access)
1950 struct page_collection *pages;
1951 PageDesc *p;
1953 assert_memory_lock();
1955 p = page_find(start >> TARGET_PAGE_BITS);
1956 if (p == NULL) {
1957 return;
1959 pages = page_collection_lock(start, end);
1960 tb_invalidate_phys_page_range__locked(pages, p, start, end,
1961 is_cpu_write_access);
1962 page_collection_unlock(pages);
1966 * Invalidate all TBs which intersect with the target physical address range
1967 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1968 * 'is_cpu_write_access' should be true if called from a real cpu write
1969 * access: the virtual CPU will exit the current TB if code is modified inside
1970 * this TB.
1972 * Called with mmap_lock held for user-mode emulation.
1974 #ifdef CONFIG_SOFTMMU
1975 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end)
1976 #else
1977 void tb_invalidate_phys_range(target_ulong start, target_ulong end)
1978 #endif
1980 struct page_collection *pages;
1981 tb_page_addr_t next;
1983 assert_memory_lock();
1985 pages = page_collection_lock(start, end);
1986 for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
1987 start < end;
1988 start = next, next += TARGET_PAGE_SIZE) {
1989 PageDesc *pd = page_find(start >> TARGET_PAGE_BITS);
1990 tb_page_addr_t bound = MIN(next, end);
1992 if (pd == NULL) {
1993 continue;
1995 tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0);
1997 page_collection_unlock(pages);
2000 #ifdef CONFIG_SOFTMMU
2001 /* len must be <= 8 and start must be a multiple of len.
2002 * Called via softmmu_template.h when code areas are written to with
2003 * iothread mutex not held.
2005 * Call with all @pages in the range [@start, @start + len[ locked.
2007 void tb_invalidate_phys_page_fast(struct page_collection *pages,
2008 tb_page_addr_t start, int len)
2010 PageDesc *p;
2012 assert_memory_lock();
2014 p = page_find(start >> TARGET_PAGE_BITS);
2015 if (!p) {
2016 return;
2019 assert_page_locked(p);
2020 if (!p->code_bitmap &&
2021 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
2022 build_page_bitmap(p);
2024 if (p->code_bitmap) {
2025 unsigned int nr;
2026 unsigned long b;
2028 nr = start & ~TARGET_PAGE_MASK;
2029 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
2030 if (b & ((1 << len) - 1)) {
2031 goto do_invalidate;
2033 } else {
2034 do_invalidate:
2035 tb_invalidate_phys_page_range__locked(pages, p, start, start + len, 1);
2038 #else
2039 /* Called with mmap_lock held. If pc is not 0 then it indicates the
2040 * host PC of the faulting store instruction that caused this invalidate.
2041 * Returns true if the caller needs to abort execution of the current
2042 * TB (because it was modified by this store and the guest CPU has
2043 * precise-SMC semantics).
2045 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
2047 TranslationBlock *tb;
2048 PageDesc *p;
2049 int n;
2050 #ifdef TARGET_HAS_PRECISE_SMC
2051 TranslationBlock *current_tb = NULL;
2052 CPUState *cpu = current_cpu;
2053 CPUArchState *env = NULL;
2054 int current_tb_modified = 0;
2055 target_ulong current_pc = 0;
2056 target_ulong current_cs_base = 0;
2057 uint32_t current_flags = 0;
2058 #endif
2060 assert_memory_lock();
2062 addr &= TARGET_PAGE_MASK;
2063 p = page_find(addr >> TARGET_PAGE_BITS);
2064 if (!p) {
2065 return false;
2068 #ifdef TARGET_HAS_PRECISE_SMC
2069 if (p->first_tb && pc != 0) {
2070 current_tb = tcg_tb_lookup(pc);
2072 if (cpu != NULL) {
2073 env = cpu->env_ptr;
2075 #endif
2076 assert_page_locked(p);
2077 PAGE_FOR_EACH_TB(p, tb, n) {
2078 #ifdef TARGET_HAS_PRECISE_SMC
2079 if (current_tb == tb &&
2080 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
2081 /* If we are modifying the current TB, we must stop
2082 its execution. We could be more precise by checking
2083 that the modification is after the current PC, but it
2084 would require a specialized function to partially
2085 restore the CPU state */
2087 current_tb_modified = 1;
2088 cpu_restore_state_from_tb(cpu, current_tb, pc, true);
2089 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
2090 &current_flags);
2092 #endif /* TARGET_HAS_PRECISE_SMC */
2093 tb_phys_invalidate(tb, addr);
2095 p->first_tb = (uintptr_t)NULL;
2096 #ifdef TARGET_HAS_PRECISE_SMC
2097 if (current_tb_modified) {
2098 /* Force execution of one insn next time. */
2099 cpu->cflags_next_tb = 1 | curr_cflags();
2100 return true;
2102 #endif
2104 return false;
2106 #endif
2108 /* user-mode: call with mmap_lock held */
2109 void tb_check_watchpoint(CPUState *cpu)
2111 TranslationBlock *tb;
2113 assert_memory_lock();
2115 tb = tcg_tb_lookup(cpu->mem_io_pc);
2116 if (tb) {
2117 /* We can use retranslation to find the PC. */
2118 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc, true);
2119 tb_phys_invalidate(tb, -1);
2120 } else {
2121 /* The exception probably happened in a helper. The CPU state should
2122 have been saved before calling it. Fetch the PC from there. */
2123 CPUArchState *env = cpu->env_ptr;
2124 target_ulong pc, cs_base;
2125 tb_page_addr_t addr;
2126 uint32_t flags;
2128 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
2129 addr = get_page_addr_code(env, pc);
2130 if (addr != -1) {
2131 tb_invalidate_phys_range(addr, addr + 1);
2136 #ifndef CONFIG_USER_ONLY
2137 /* in deterministic execution mode, instructions doing device I/Os
2138 * must be at the end of the TB.
2140 * Called by softmmu_template.h, with iothread mutex not held.
2142 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
2144 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
2145 CPUArchState *env = cpu->env_ptr;
2146 #endif
2147 TranslationBlock *tb;
2148 uint32_t n;
2150 tb = tcg_tb_lookup(retaddr);
2151 if (!tb) {
2152 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
2153 (void *)retaddr);
2155 cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2157 /* On MIPS and SH, delay slot instructions can only be restarted if
2158 they were already the first instruction in the TB. If this is not
2159 the first instruction in a TB then re-execute the preceding
2160 branch. */
2161 n = 1;
2162 #if defined(TARGET_MIPS)
2163 if ((env->hflags & MIPS_HFLAG_BMASK) != 0
2164 && env->active_tc.PC != tb->pc) {
2165 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
2166 cpu->icount_decr.u16.low++;
2167 env->hflags &= ~MIPS_HFLAG_BMASK;
2168 n = 2;
2170 #elif defined(TARGET_SH4)
2171 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
2172 && env->pc != tb->pc) {
2173 env->pc -= 2;
2174 cpu->icount_decr.u16.low++;
2175 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
2176 n = 2;
2178 #endif
2180 /* Generate a new TB executing the I/O insn. */
2181 cpu->cflags_next_tb = curr_cflags() | CF_LAST_IO | n;
2183 if (tb_cflags(tb) & CF_NOCACHE) {
2184 if (tb->orig_tb) {
2185 /* Invalidate original TB if this TB was generated in
2186 * cpu_exec_nocache() */
2187 tb_phys_invalidate(tb->orig_tb, -1);
2189 tcg_tb_remove(tb);
2192 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2193 * the first in the TB) then we end up generating a whole new TB and
2194 * repeating the fault, which is horribly inefficient.
2195 * Better would be to execute just this insn uncached, or generate a
2196 * second new TB.
2198 cpu_loop_exit_noexc(cpu);
2201 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
2203 unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr);
2205 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
2206 atomic_set(&cpu->tb_jmp_cache[i0 + i], NULL);
2210 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
2212 /* Discard jump cache entries for any tb which might potentially
2213 overlap the flushed page. */
2214 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
2215 tb_jmp_cache_clear_page(cpu, addr);
2218 static void print_qht_statistics(FILE *f, fprintf_function cpu_fprintf,
2219 struct qht_stats hst)
2221 uint32_t hgram_opts;
2222 size_t hgram_bins;
2223 char *hgram;
2225 if (!hst.head_buckets) {
2226 return;
2228 cpu_fprintf(f, "TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n",
2229 hst.used_head_buckets, hst.head_buckets,
2230 (double)hst.used_head_buckets / hst.head_buckets * 100);
2232 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
2233 hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT;
2234 if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
2235 hgram_opts |= QDIST_PR_NODECIMAL;
2237 hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
2238 cpu_fprintf(f, "TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n",
2239 qdist_avg(&hst.occupancy) * 100, hgram);
2240 g_free(hgram);
2242 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
2243 hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
2244 if (hgram_bins > 10) {
2245 hgram_bins = 10;
2246 } else {
2247 hgram_bins = 0;
2248 hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
2250 hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
2251 cpu_fprintf(f, "TB hash avg chain %0.3f buckets. Histogram: %s\n",
2252 qdist_avg(&hst.chain), hgram);
2253 g_free(hgram);
2256 struct tb_tree_stats {
2257 size_t nb_tbs;
2258 size_t host_size;
2259 size_t target_size;
2260 size_t max_target_size;
2261 size_t direct_jmp_count;
2262 size_t direct_jmp2_count;
2263 size_t cross_page;
2266 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data)
2268 const TranslationBlock *tb = value;
2269 struct tb_tree_stats *tst = data;
2271 tst->nb_tbs++;
2272 tst->host_size += tb->tc.size;
2273 tst->target_size += tb->size;
2274 if (tb->size > tst->max_target_size) {
2275 tst->max_target_size = tb->size;
2277 if (tb->page_addr[1] != -1) {
2278 tst->cross_page++;
2280 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
2281 tst->direct_jmp_count++;
2282 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
2283 tst->direct_jmp2_count++;
2286 return false;
2289 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
2291 struct tb_tree_stats tst = {};
2292 struct qht_stats hst;
2293 size_t nb_tbs;
2295 tcg_tb_foreach(tb_tree_stats_iter, &tst);
2296 nb_tbs = tst.nb_tbs;
2297 /* XXX: avoid using doubles ? */
2298 cpu_fprintf(f, "Translation buffer state:\n");
2300 * Report total code size including the padding and TB structs;
2301 * otherwise users might think "-tb-size" is not honoured.
2302 * For avg host size we use the precise numbers from tb_tree_stats though.
2304 cpu_fprintf(f, "gen code size %zu/%zu\n",
2305 tcg_code_size(), tcg_code_capacity());
2306 cpu_fprintf(f, "TB count %zu\n", nb_tbs);
2307 cpu_fprintf(f, "TB avg target size %zu max=%zu bytes\n",
2308 nb_tbs ? tst.target_size / nb_tbs : 0,
2309 tst.max_target_size);
2310 cpu_fprintf(f, "TB avg host size %zu bytes (expansion ratio: %0.1f)\n",
2311 nb_tbs ? tst.host_size / nb_tbs : 0,
2312 tst.target_size ? (double)tst.host_size / tst.target_size : 0);
2313 cpu_fprintf(f, "cross page TB count %zu (%zu%%)\n", tst.cross_page,
2314 nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0);
2315 cpu_fprintf(f, "direct jump count %zu (%zu%%) (2 jumps=%zu %zu%%)\n",
2316 tst.direct_jmp_count,
2317 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0,
2318 tst.direct_jmp2_count,
2319 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0);
2321 qht_statistics_init(&tb_ctx.htable, &hst);
2322 print_qht_statistics(f, cpu_fprintf, hst);
2323 qht_statistics_destroy(&hst);
2325 cpu_fprintf(f, "\nStatistics:\n");
2326 cpu_fprintf(f, "TB flush count %u\n",
2327 atomic_read(&tb_ctx.tb_flush_count));
2328 cpu_fprintf(f, "TB invalidate count %zu\n", tcg_tb_phys_invalidate_count());
2329 cpu_fprintf(f, "TLB flush count %zu\n", tlb_flush_count());
2330 tcg_dump_info(f, cpu_fprintf);
2333 void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
2335 tcg_dump_op_count(f, cpu_fprintf);
2338 #else /* CONFIG_USER_ONLY */
2340 void cpu_interrupt(CPUState *cpu, int mask)
2342 g_assert(qemu_mutex_iothread_locked());
2343 cpu->interrupt_request |= mask;
2344 atomic_set(&cpu->icount_decr.u16.high, -1);
2348 * Walks guest process memory "regions" one by one
2349 * and calls callback function 'fn' for each region.
2351 struct walk_memory_regions_data {
2352 walk_memory_regions_fn fn;
2353 void *priv;
2354 target_ulong start;
2355 int prot;
2358 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2359 target_ulong end, int new_prot)
2361 if (data->start != -1u) {
2362 int rc = data->fn(data->priv, data->start, end, data->prot);
2363 if (rc != 0) {
2364 return rc;
2368 data->start = (new_prot ? end : -1u);
2369 data->prot = new_prot;
2371 return 0;
2374 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2375 target_ulong base, int level, void **lp)
2377 target_ulong pa;
2378 int i, rc;
2380 if (*lp == NULL) {
2381 return walk_memory_regions_end(data, base, 0);
2384 if (level == 0) {
2385 PageDesc *pd = *lp;
2387 for (i = 0; i < V_L2_SIZE; ++i) {
2388 int prot = pd[i].flags;
2390 pa = base | (i << TARGET_PAGE_BITS);
2391 if (prot != data->prot) {
2392 rc = walk_memory_regions_end(data, pa, prot);
2393 if (rc != 0) {
2394 return rc;
2398 } else {
2399 void **pp = *lp;
2401 for (i = 0; i < V_L2_SIZE; ++i) {
2402 pa = base | ((target_ulong)i <<
2403 (TARGET_PAGE_BITS + V_L2_BITS * level));
2404 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2405 if (rc != 0) {
2406 return rc;
2411 return 0;
2414 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2416 struct walk_memory_regions_data data;
2417 uintptr_t i, l1_sz = v_l1_size;
2419 data.fn = fn;
2420 data.priv = priv;
2421 data.start = -1u;
2422 data.prot = 0;
2424 for (i = 0; i < l1_sz; i++) {
2425 target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
2426 int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
2427 if (rc != 0) {
2428 return rc;
2432 return walk_memory_regions_end(&data, 0, 0);
2435 static int dump_region(void *priv, target_ulong start,
2436 target_ulong end, unsigned long prot)
2438 FILE *f = (FILE *)priv;
2440 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
2441 " "TARGET_FMT_lx" %c%c%c\n",
2442 start, end, end - start,
2443 ((prot & PAGE_READ) ? 'r' : '-'),
2444 ((prot & PAGE_WRITE) ? 'w' : '-'),
2445 ((prot & PAGE_EXEC) ? 'x' : '-'));
2447 return 0;
2450 /* dump memory mappings */
2451 void page_dump(FILE *f)
2453 const int length = sizeof(target_ulong) * 2;
2454 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
2455 length, "start", length, "end", length, "size", "prot");
2456 walk_memory_regions(f, dump_region);
2459 int page_get_flags(target_ulong address)
2461 PageDesc *p;
2463 p = page_find(address >> TARGET_PAGE_BITS);
2464 if (!p) {
2465 return 0;
2467 return p->flags;
2470 /* Modify the flags of a page and invalidate the code if necessary.
2471 The flag PAGE_WRITE_ORG is positioned automatically depending
2472 on PAGE_WRITE. The mmap_lock should already be held. */
2473 void page_set_flags(target_ulong start, target_ulong end, int flags)
2475 target_ulong addr, len;
2477 /* This function should never be called with addresses outside the
2478 guest address space. If this assert fires, it probably indicates
2479 a missing call to h2g_valid. */
2480 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2481 assert(end <= ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2482 #endif
2483 assert(start < end);
2484 assert_memory_lock();
2486 start = start & TARGET_PAGE_MASK;
2487 end = TARGET_PAGE_ALIGN(end);
2489 if (flags & PAGE_WRITE) {
2490 flags |= PAGE_WRITE_ORG;
2493 for (addr = start, len = end - start;
2494 len != 0;
2495 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2496 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2498 /* If the write protection bit is set, then we invalidate
2499 the code inside. */
2500 if (!(p->flags & PAGE_WRITE) &&
2501 (flags & PAGE_WRITE) &&
2502 p->first_tb) {
2503 tb_invalidate_phys_page(addr, 0);
2505 p->flags = flags;
2509 int page_check_range(target_ulong start, target_ulong len, int flags)
2511 PageDesc *p;
2512 target_ulong end;
2513 target_ulong addr;
2515 /* This function should never be called with addresses outside the
2516 guest address space. If this assert fires, it probably indicates
2517 a missing call to h2g_valid. */
2518 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2519 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2520 #endif
2522 if (len == 0) {
2523 return 0;
2525 if (start + len - 1 < start) {
2526 /* We've wrapped around. */
2527 return -1;
2530 /* must do before we loose bits in the next step */
2531 end = TARGET_PAGE_ALIGN(start + len);
2532 start = start & TARGET_PAGE_MASK;
2534 for (addr = start, len = end - start;
2535 len != 0;
2536 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2537 p = page_find(addr >> TARGET_PAGE_BITS);
2538 if (!p) {
2539 return -1;
2541 if (!(p->flags & PAGE_VALID)) {
2542 return -1;
2545 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
2546 return -1;
2548 if (flags & PAGE_WRITE) {
2549 if (!(p->flags & PAGE_WRITE_ORG)) {
2550 return -1;
2552 /* unprotect the page if it was put read-only because it
2553 contains translated code */
2554 if (!(p->flags & PAGE_WRITE)) {
2555 if (!page_unprotect(addr, 0)) {
2556 return -1;
2561 return 0;
2564 /* called from signal handler: invalidate the code and unprotect the
2565 * page. Return 0 if the fault was not handled, 1 if it was handled,
2566 * and 2 if it was handled but the caller must cause the TB to be
2567 * immediately exited. (We can only return 2 if the 'pc' argument is
2568 * non-zero.)
2570 int page_unprotect(target_ulong address, uintptr_t pc)
2572 unsigned int prot;
2573 bool current_tb_invalidated;
2574 PageDesc *p;
2575 target_ulong host_start, host_end, addr;
2577 /* Technically this isn't safe inside a signal handler. However we
2578 know this only ever happens in a synchronous SEGV handler, so in
2579 practice it seems to be ok. */
2580 mmap_lock();
2582 p = page_find(address >> TARGET_PAGE_BITS);
2583 if (!p) {
2584 mmap_unlock();
2585 return 0;
2588 /* if the page was really writable, then we change its
2589 protection back to writable */
2590 if (p->flags & PAGE_WRITE_ORG) {
2591 current_tb_invalidated = false;
2592 if (p->flags & PAGE_WRITE) {
2593 /* If the page is actually marked WRITE then assume this is because
2594 * this thread raced with another one which got here first and
2595 * set the page to PAGE_WRITE and did the TB invalidate for us.
2597 #ifdef TARGET_HAS_PRECISE_SMC
2598 TranslationBlock *current_tb = tcg_tb_lookup(pc);
2599 if (current_tb) {
2600 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
2602 #endif
2603 } else {
2604 host_start = address & qemu_host_page_mask;
2605 host_end = host_start + qemu_host_page_size;
2607 prot = 0;
2608 for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) {
2609 p = page_find(addr >> TARGET_PAGE_BITS);
2610 p->flags |= PAGE_WRITE;
2611 prot |= p->flags;
2613 /* and since the content will be modified, we must invalidate
2614 the corresponding translated code. */
2615 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2616 #ifdef CONFIG_USER_ONLY
2617 if (DEBUG_TB_CHECK_GATE) {
2618 tb_invalidate_check(addr);
2620 #endif
2622 mprotect((void *)g2h(host_start), qemu_host_page_size,
2623 prot & PAGE_BITS);
2625 mmap_unlock();
2626 /* If current TB was invalidated return to main loop */
2627 return current_tb_invalidated ? 2 : 1;
2629 mmap_unlock();
2630 return 0;
2632 #endif /* CONFIG_USER_ONLY */
2634 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */
2635 void tcg_flush_softmmu_tlb(CPUState *cs)
2637 #ifdef CONFIG_SOFTMMU
2638 tlb_flush(cs);
2639 #endif