4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
27 #include "qemu-common.h"
28 #define NO_CPU_IO_DEFS
31 #include "disas/disas.h"
32 #include "exec/exec-all.h"
34 #if defined(CONFIG_USER_ONLY)
36 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
37 #include <sys/param.h>
38 #if __FreeBSD_version >= 700104
39 #define HAVE_KINFO_GETVMMAP
40 #define sigqueue sigqueue_freebsd /* avoid redefinition */
42 #include <machine/profile.h>
51 #include "exec/address-spaces.h"
54 #include "exec/cputlb.h"
55 #include "exec/tb-hash.h"
56 #include "translate-all.h"
57 #include "qemu/bitmap.h"
58 #include "qemu/timer.h"
61 //#define DEBUG_TB_INVALIDATE
63 /* make various TB consistency checks */
64 //#define DEBUG_TB_CHECK
66 #if !defined(CONFIG_USER_ONLY)
67 /* TB consistency checks only implemented for usermode emulation. */
71 #define SMC_BITMAP_USE_THRESHOLD 10
73 typedef struct PageDesc
{
74 /* list of TBs intersecting this ram page */
75 TranslationBlock
*first_tb
;
77 /* in order to optimize self modifying code, we count the number
78 of lookups we do to a given page to use a bitmap */
79 unsigned int code_write_count
;
80 unsigned long *code_bitmap
;
86 /* In system mode we want L1_MAP to be based on ram offsets,
87 while in user mode we want it to be based on virtual addresses. */
88 #if !defined(CONFIG_USER_ONLY)
89 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
90 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
92 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
95 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
98 /* Size of the L2 (and L3, etc) page tables. */
100 #define V_L2_SIZE (1 << V_L2_BITS)
102 /* The bits remaining after N lower levels of page tables. */
103 #define V_L1_BITS_REM \
104 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
106 #if V_L1_BITS_REM < 4
107 #define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
109 #define V_L1_BITS V_L1_BITS_REM
112 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
114 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
116 uintptr_t qemu_host_page_size
;
117 intptr_t qemu_host_page_mask
;
119 /* The bottom level has pointers to PageDesc */
120 static void *l1_map
[V_L1_SIZE
];
122 /* code generation context */
125 /* translation block context */
126 #ifdef CONFIG_USER_ONLY
127 __thread
int have_tb_lock
;
132 #ifdef CONFIG_USER_ONLY
133 assert(!have_tb_lock
);
134 qemu_mutex_lock(&tcg_ctx
.tb_ctx
.tb_lock
);
141 #ifdef CONFIG_USER_ONLY
142 assert(have_tb_lock
);
144 qemu_mutex_unlock(&tcg_ctx
.tb_ctx
.tb_lock
);
148 void tb_lock_reset(void)
150 #ifdef CONFIG_USER_ONLY
152 qemu_mutex_unlock(&tcg_ctx
.tb_ctx
.tb_lock
);
158 static TranslationBlock
*tb_find_pc(uintptr_t tc_ptr
);
160 void cpu_gen_init(void)
162 tcg_context_init(&tcg_ctx
);
165 /* Encode VAL as a signed leb128 sequence at P.
166 Return P incremented past the encoded value. */
167 static uint8_t *encode_sleb128(uint8_t *p
, target_long val
)
174 more
= !((val
== 0 && (byte
& 0x40) == 0)
175 || (val
== -1 && (byte
& 0x40) != 0));
185 /* Decode a signed leb128 sequence at *PP; increment *PP past the
186 decoded value. Return the decoded value. */
187 static target_long
decode_sleb128(uint8_t **pp
)
195 val
|= (target_ulong
)(byte
& 0x7f) << shift
;
197 } while (byte
& 0x80);
198 if (shift
< TARGET_LONG_BITS
&& (byte
& 0x40)) {
199 val
|= -(target_ulong
)1 << shift
;
206 /* Encode the data collected about the instructions while compiling TB.
207 Place the data at BLOCK, and return the number of bytes consumed.
209 The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
210 which come from the target's insn_start data, followed by a uintptr_t
211 which comes from the host pc of the end of the code implementing the insn.
213 Each line of the table is encoded as sleb128 deltas from the previous
214 line. The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
215 That is, the first column is seeded with the guest pc, the last column
216 with the host pc, and the middle columns with zeros. */
218 static int encode_search(TranslationBlock
*tb
, uint8_t *block
)
220 uint8_t *highwater
= tcg_ctx
.code_gen_highwater
;
224 tb
->tc_search
= block
;
226 for (i
= 0, n
= tb
->icount
; i
< n
; ++i
) {
229 for (j
= 0; j
< TARGET_INSN_START_WORDS
; ++j
) {
231 prev
= (j
== 0 ? tb
->pc
: 0);
233 prev
= tcg_ctx
.gen_insn_data
[i
- 1][j
];
235 p
= encode_sleb128(p
, tcg_ctx
.gen_insn_data
[i
][j
] - prev
);
237 prev
= (i
== 0 ? 0 : tcg_ctx
.gen_insn_end_off
[i
- 1]);
238 p
= encode_sleb128(p
, tcg_ctx
.gen_insn_end_off
[i
] - prev
);
240 /* Test for (pending) buffer overflow. The assumption is that any
241 one row beginning below the high water mark cannot overrun
242 the buffer completely. Thus we can test for overflow after
243 encoding a row without having to check during encoding. */
244 if (unlikely(p
> highwater
)) {
252 /* The cpu state corresponding to 'searched_pc' is restored. */
253 static int cpu_restore_state_from_tb(CPUState
*cpu
, TranslationBlock
*tb
,
254 uintptr_t searched_pc
)
256 target_ulong data
[TARGET_INSN_START_WORDS
] = { tb
->pc
};
257 uintptr_t host_pc
= (uintptr_t)tb
->tc_ptr
;
258 CPUArchState
*env
= cpu
->env_ptr
;
259 uint8_t *p
= tb
->tc_search
;
260 int i
, j
, num_insns
= tb
->icount
;
261 #ifdef CONFIG_PROFILER
262 int64_t ti
= profile_getclock();
265 if (searched_pc
< host_pc
) {
269 /* Reconstruct the stored insn data while looking for the point at
270 which the end of the insn exceeds the searched_pc. */
271 for (i
= 0; i
< num_insns
; ++i
) {
272 for (j
= 0; j
< TARGET_INSN_START_WORDS
; ++j
) {
273 data
[j
] += decode_sleb128(&p
);
275 host_pc
+= decode_sleb128(&p
);
276 if (host_pc
> searched_pc
) {
283 if (tb
->cflags
& CF_USE_ICOUNT
) {
285 /* Reset the cycle counter to the start of the block. */
286 cpu
->icount_decr
.u16
.low
+= num_insns
;
287 /* Clear the IO flag. */
290 cpu
->icount_decr
.u16
.low
-= i
;
291 restore_state_to_opc(env
, tb
, data
);
293 #ifdef CONFIG_PROFILER
294 tcg_ctx
.restore_time
+= profile_getclock() - ti
;
295 tcg_ctx
.restore_count
++;
300 bool cpu_restore_state(CPUState
*cpu
, uintptr_t retaddr
)
302 TranslationBlock
*tb
;
304 tb
= tb_find_pc(retaddr
);
306 cpu_restore_state_from_tb(cpu
, tb
, retaddr
);
307 if (tb
->cflags
& CF_NOCACHE
) {
308 /* one-shot translation, invalidate it immediately */
309 tb_phys_invalidate(tb
, -1);
317 void page_size_init(void)
319 /* NOTE: we can always suppose that qemu_host_page_size >=
321 qemu_real_host_page_size
= getpagesize();
322 qemu_real_host_page_mask
= -(intptr_t)qemu_real_host_page_size
;
323 if (qemu_host_page_size
== 0) {
324 qemu_host_page_size
= qemu_real_host_page_size
;
326 if (qemu_host_page_size
< TARGET_PAGE_SIZE
) {
327 qemu_host_page_size
= TARGET_PAGE_SIZE
;
329 qemu_host_page_mask
= -(intptr_t)qemu_host_page_size
;
332 static void page_init(void)
335 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
337 #ifdef HAVE_KINFO_GETVMMAP
338 struct kinfo_vmentry
*freep
;
341 freep
= kinfo_getvmmap(getpid(), &cnt
);
344 for (i
= 0; i
< cnt
; i
++) {
345 unsigned long startaddr
, endaddr
;
347 startaddr
= freep
[i
].kve_start
;
348 endaddr
= freep
[i
].kve_end
;
349 if (h2g_valid(startaddr
)) {
350 startaddr
= h2g(startaddr
) & TARGET_PAGE_MASK
;
352 if (h2g_valid(endaddr
)) {
353 endaddr
= h2g(endaddr
);
354 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
356 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
358 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
369 last_brk
= (unsigned long)sbrk(0);
371 f
= fopen("/compat/linux/proc/self/maps", "r");
376 unsigned long startaddr
, endaddr
;
379 n
= fscanf(f
, "%lx-%lx %*[^\n]\n", &startaddr
, &endaddr
);
381 if (n
== 2 && h2g_valid(startaddr
)) {
382 startaddr
= h2g(startaddr
) & TARGET_PAGE_MASK
;
384 if (h2g_valid(endaddr
)) {
385 endaddr
= h2g(endaddr
);
389 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
402 * Called with mmap_lock held for user-mode emulation.
404 static PageDesc
*page_find_alloc(tb_page_addr_t index
, int alloc
)
410 /* Level 1. Always allocated. */
411 lp
= l1_map
+ ((index
>> V_L1_SHIFT
) & (V_L1_SIZE
- 1));
414 for (i
= V_L1_SHIFT
/ V_L2_BITS
- 1; i
> 0; i
--) {
415 void **p
= atomic_rcu_read(lp
);
421 p
= g_new0(void *, V_L2_SIZE
);
422 atomic_rcu_set(lp
, p
);
425 lp
= p
+ ((index
>> (i
* V_L2_BITS
)) & (V_L2_SIZE
- 1));
428 pd
= atomic_rcu_read(lp
);
433 pd
= g_new0(PageDesc
, V_L2_SIZE
);
434 atomic_rcu_set(lp
, pd
);
437 return pd
+ (index
& (V_L2_SIZE
- 1));
440 static inline PageDesc
*page_find(tb_page_addr_t index
)
442 return page_find_alloc(index
, 0);
445 #if defined(CONFIG_USER_ONLY)
446 /* Currently it is not recommended to allocate big chunks of data in
447 user mode. It will change when a dedicated libc will be used. */
448 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
449 region in which the guest needs to run. Revisit this. */
450 #define USE_STATIC_CODE_GEN_BUFFER
453 /* Minimum size of the code gen buffer. This number is randomly chosen,
454 but not so small that we can't have a fair number of TB's live. */
455 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
457 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
458 indicated, this is constrained by the range of direct branches on the
459 host cpu, as used by the TCG implementation of goto_tb. */
460 #if defined(__x86_64__)
461 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
462 #elif defined(__sparc__)
463 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
464 #elif defined(__powerpc64__)
465 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
466 #elif defined(__powerpc__)
467 # define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024)
468 #elif defined(__aarch64__)
469 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
470 #elif defined(__arm__)
471 # define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
472 #elif defined(__s390x__)
473 /* We have a +- 4GB range on the branches; leave some slop. */
474 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
475 #elif defined(__mips__)
476 /* We have a 256MB branch region, but leave room to make sure the
477 main executable is also within that region. */
478 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
480 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
483 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
485 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
486 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
487 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
489 static inline size_t size_code_gen_buffer(size_t tb_size
)
491 /* Size the buffer. */
493 #ifdef USE_STATIC_CODE_GEN_BUFFER
494 tb_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
496 /* ??? Needs adjustments. */
497 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
498 static buffer, we could size this on RESERVED_VA, on the text
499 segment size of the executable, or continue to use the default. */
500 tb_size
= (unsigned long)(ram_size
/ 4);
503 if (tb_size
< MIN_CODE_GEN_BUFFER_SIZE
) {
504 tb_size
= MIN_CODE_GEN_BUFFER_SIZE
;
506 if (tb_size
> MAX_CODE_GEN_BUFFER_SIZE
) {
507 tb_size
= MAX_CODE_GEN_BUFFER_SIZE
;
513 /* In order to use J and JAL within the code_gen_buffer, we require
514 that the buffer not cross a 256MB boundary. */
515 static inline bool cross_256mb(void *addr
, size_t size
)
517 return ((uintptr_t)addr
^ ((uintptr_t)addr
+ size
)) & ~0x0ffffffful
;
520 /* We weren't able to allocate a buffer without crossing that boundary,
521 so make do with the larger portion of the buffer that doesn't cross.
522 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
523 static inline void *split_cross_256mb(void *buf1
, size_t size1
)
525 void *buf2
= (void *)(((uintptr_t)buf1
+ size1
) & ~0x0ffffffful
);
526 size_t size2
= buf1
+ size1
- buf2
;
534 tcg_ctx
.code_gen_buffer_size
= size1
;
539 #ifdef USE_STATIC_CODE_GEN_BUFFER
540 static uint8_t static_code_gen_buffer
[DEFAULT_CODE_GEN_BUFFER_SIZE
]
541 __attribute__((aligned(CODE_GEN_ALIGN
)));
544 static inline void do_protect(void *addr
, long size
, int prot
)
547 VirtualProtect(addr
, size
, prot
, &old_protect
);
550 static inline void map_exec(void *addr
, long size
)
552 do_protect(addr
, size
, PAGE_EXECUTE_READWRITE
);
555 static inline void map_none(void *addr
, long size
)
557 do_protect(addr
, size
, PAGE_NOACCESS
);
560 static inline void do_protect(void *addr
, long size
, int prot
)
562 uintptr_t start
, end
;
564 start
= (uintptr_t)addr
;
565 start
&= qemu_real_host_page_mask
;
567 end
= (uintptr_t)addr
+ size
;
568 end
= ROUND_UP(end
, qemu_real_host_page_size
);
570 mprotect((void *)start
, end
- start
, prot
);
573 static inline void map_exec(void *addr
, long size
)
575 do_protect(addr
, size
, PROT_READ
| PROT_WRITE
| PROT_EXEC
);
578 static inline void map_none(void *addr
, long size
)
580 do_protect(addr
, size
, PROT_NONE
);
584 static inline void *alloc_code_gen_buffer(void)
586 void *buf
= static_code_gen_buffer
;
587 size_t full_size
, size
;
589 /* The size of the buffer, rounded down to end on a page boundary. */
590 full_size
= (((uintptr_t)buf
+ sizeof(static_code_gen_buffer
))
591 & qemu_real_host_page_mask
) - (uintptr_t)buf
;
593 /* Reserve a guard page. */
594 size
= full_size
- qemu_real_host_page_size
;
596 /* Honor a command-line option limiting the size of the buffer. */
597 if (size
> tcg_ctx
.code_gen_buffer_size
) {
598 size
= (((uintptr_t)buf
+ tcg_ctx
.code_gen_buffer_size
)
599 & qemu_real_host_page_mask
) - (uintptr_t)buf
;
601 tcg_ctx
.code_gen_buffer_size
= size
;
604 if (cross_256mb(buf
, size
)) {
605 buf
= split_cross_256mb(buf
, size
);
606 size
= tcg_ctx
.code_gen_buffer_size
;
611 map_none(buf
+ size
, qemu_real_host_page_size
);
612 qemu_madvise(buf
, size
, QEMU_MADV_HUGEPAGE
);
616 #elif defined(_WIN32)
617 static inline void *alloc_code_gen_buffer(void)
619 size_t size
= tcg_ctx
.code_gen_buffer_size
;
622 /* Perform the allocation in two steps, so that the guard page
623 is reserved but uncommitted. */
624 buf1
= VirtualAlloc(NULL
, size
+ qemu_real_host_page_size
,
625 MEM_RESERVE
, PAGE_NOACCESS
);
627 buf2
= VirtualAlloc(buf1
, size
, MEM_COMMIT
, PAGE_EXECUTE_READWRITE
);
628 assert(buf1
== buf2
);
634 static inline void *alloc_code_gen_buffer(void)
636 int flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
638 size_t size
= tcg_ctx
.code_gen_buffer_size
;
641 /* Constrain the position of the buffer based on the host cpu.
642 Note that these addresses are chosen in concert with the
643 addresses assigned in the relevant linker script file. */
644 # if defined(__PIE__) || defined(__PIC__)
645 /* Don't bother setting a preferred location if we're building
646 a position-independent executable. We're more likely to get
647 an address near the main executable if we let the kernel
648 choose the address. */
649 # elif defined(__x86_64__) && defined(MAP_32BIT)
650 /* Force the memory down into low memory with the executable.
651 Leave the choice of exact location with the kernel. */
653 /* Cannot expect to map more than 800MB in low memory. */
654 if (size
> 800u * 1024 * 1024) {
655 tcg_ctx
.code_gen_buffer_size
= size
= 800u * 1024 * 1024;
657 # elif defined(__sparc__)
658 start
= 0x40000000ul
;
659 # elif defined(__s390x__)
660 start
= 0x90000000ul
;
661 # elif defined(__mips__)
662 # if _MIPS_SIM == _ABI64
663 start
= 0x128000000ul
;
665 start
= 0x08000000ul
;
669 buf
= mmap((void *)start
, size
+ qemu_real_host_page_size
,
670 PROT_NONE
, flags
, -1, 0);
671 if (buf
== MAP_FAILED
) {
676 if (cross_256mb(buf
, size
)) {
677 /* Try again, with the original still mapped, to avoid re-acquiring
678 that 256mb crossing. This time don't specify an address. */
680 void *buf2
= mmap(NULL
, size
+ qemu_real_host_page_size
,
681 PROT_NONE
, flags
, -1, 0);
682 switch (buf2
!= MAP_FAILED
) {
684 if (!cross_256mb(buf2
, size
)) {
685 /* Success! Use the new buffer. */
686 munmap(buf
, size
+ qemu_real_host_page_size
);
689 /* Failure. Work with what we had. */
690 munmap(buf2
, size
+ qemu_real_host_page_size
);
693 /* Split the original buffer. Free the smaller half. */
694 buf2
= split_cross_256mb(buf
, size
);
695 size2
= tcg_ctx
.code_gen_buffer_size
;
697 munmap(buf
+ size2
+ qemu_real_host_page_size
, size
- size2
);
699 munmap(buf
, size
- size2
);
708 /* Make the final buffer accessible. The guard page at the end
709 will remain inaccessible with PROT_NONE. */
710 mprotect(buf
, size
, PROT_WRITE
| PROT_READ
| PROT_EXEC
);
712 /* Request large pages for the buffer. */
713 qemu_madvise(buf
, size
, QEMU_MADV_HUGEPAGE
);
717 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
719 static inline void code_gen_alloc(size_t tb_size
)
721 tcg_ctx
.code_gen_buffer_size
= size_code_gen_buffer(tb_size
);
722 tcg_ctx
.code_gen_buffer
= alloc_code_gen_buffer();
723 if (tcg_ctx
.code_gen_buffer
== NULL
) {
724 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
728 /* Estimate a good size for the number of TBs we can support. We
729 still haven't deducted the prologue from the buffer size here,
730 but that's minimal and won't affect the estimate much. */
731 tcg_ctx
.code_gen_max_blocks
732 = tcg_ctx
.code_gen_buffer_size
/ CODE_GEN_AVG_BLOCK_SIZE
;
733 tcg_ctx
.tb_ctx
.tbs
= g_new(TranslationBlock
, tcg_ctx
.code_gen_max_blocks
);
735 qemu_mutex_init(&tcg_ctx
.tb_ctx
.tb_lock
);
738 /* Must be called before using the QEMU cpus. 'tb_size' is the size
739 (in bytes) allocated to the translation buffer. Zero means default
741 void tcg_exec_init(unsigned long tb_size
)
745 code_gen_alloc(tb_size
);
746 #if defined(CONFIG_SOFTMMU)
747 /* There's no guest base to take into account, so go ahead and
748 initialize the prologue now. */
749 tcg_prologue_init(&tcg_ctx
);
753 bool tcg_enabled(void)
755 return tcg_ctx
.code_gen_buffer
!= NULL
;
758 /* Allocate a new translation block. Flush the translation buffer if
759 too many translation blocks or too much generated code. */
760 static TranslationBlock
*tb_alloc(target_ulong pc
)
762 TranslationBlock
*tb
;
764 if (tcg_ctx
.tb_ctx
.nb_tbs
>= tcg_ctx
.code_gen_max_blocks
) {
767 tb
= &tcg_ctx
.tb_ctx
.tbs
[tcg_ctx
.tb_ctx
.nb_tbs
++];
773 void tb_free(TranslationBlock
*tb
)
775 /* In practice this is mostly used for single use temporary TB
776 Ignore the hard cases and just back up if this TB happens to
777 be the last one generated. */
778 if (tcg_ctx
.tb_ctx
.nb_tbs
> 0 &&
779 tb
== &tcg_ctx
.tb_ctx
.tbs
[tcg_ctx
.tb_ctx
.nb_tbs
- 1]) {
780 tcg_ctx
.code_gen_ptr
= tb
->tc_ptr
;
781 tcg_ctx
.tb_ctx
.nb_tbs
--;
785 static inline void invalidate_page_bitmap(PageDesc
*p
)
787 #ifdef CONFIG_SOFTMMU
788 g_free(p
->code_bitmap
);
789 p
->code_bitmap
= NULL
;
790 p
->code_write_count
= 0;
794 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
795 static void page_flush_tb_1(int level
, void **lp
)
805 for (i
= 0; i
< V_L2_SIZE
; ++i
) {
806 pd
[i
].first_tb
= NULL
;
807 invalidate_page_bitmap(pd
+ i
);
812 for (i
= 0; i
< V_L2_SIZE
; ++i
) {
813 page_flush_tb_1(level
- 1, pp
+ i
);
818 static void page_flush_tb(void)
822 for (i
= 0; i
< V_L1_SIZE
; i
++) {
823 page_flush_tb_1(V_L1_SHIFT
/ V_L2_BITS
- 1, l1_map
+ i
);
827 /* flush all the translation blocks */
828 /* XXX: tb_flush is currently not thread safe */
829 void tb_flush(CPUState
*cpu
)
831 #if defined(DEBUG_FLUSH)
832 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
833 (unsigned long)(tcg_ctx
.code_gen_ptr
- tcg_ctx
.code_gen_buffer
),
834 tcg_ctx
.tb_ctx
.nb_tbs
, tcg_ctx
.tb_ctx
.nb_tbs
> 0 ?
835 ((unsigned long)(tcg_ctx
.code_gen_ptr
- tcg_ctx
.code_gen_buffer
)) /
836 tcg_ctx
.tb_ctx
.nb_tbs
: 0);
838 if ((unsigned long)(tcg_ctx
.code_gen_ptr
- tcg_ctx
.code_gen_buffer
)
839 > tcg_ctx
.code_gen_buffer_size
) {
840 cpu_abort(cpu
, "Internal error: code buffer overflow\n");
842 tcg_ctx
.tb_ctx
.nb_tbs
= 0;
845 memset(cpu
->tb_jmp_cache
, 0, sizeof(cpu
->tb_jmp_cache
));
846 cpu
->tb_flushed
= true;
849 memset(tcg_ctx
.tb_ctx
.tb_phys_hash
, 0, sizeof(tcg_ctx
.tb_ctx
.tb_phys_hash
));
852 tcg_ctx
.code_gen_ptr
= tcg_ctx
.code_gen_buffer
;
853 /* XXX: flush processor icache at this point if cache flush is
855 tcg_ctx
.tb_ctx
.tb_flush_count
++;
858 #ifdef DEBUG_TB_CHECK
860 static void tb_invalidate_check(target_ulong address
)
862 TranslationBlock
*tb
;
865 address
&= TARGET_PAGE_MASK
;
866 for (i
= 0; i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
867 for (tb
= tcg_ctx
.tb_ctx
.tb_phys_hash
[i
]; tb
!= NULL
;
868 tb
= tb
->phys_hash_next
) {
869 if (!(address
+ TARGET_PAGE_SIZE
<= tb
->pc
||
870 address
>= tb
->pc
+ tb
->size
)) {
871 printf("ERROR invalidate: address=" TARGET_FMT_lx
872 " PC=%08lx size=%04x\n",
873 address
, (long)tb
->pc
, tb
->size
);
879 /* verify that all the pages have correct rights for code */
880 static void tb_page_check(void)
882 TranslationBlock
*tb
;
883 int i
, flags1
, flags2
;
885 for (i
= 0; i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
886 for (tb
= tcg_ctx
.tb_ctx
.tb_phys_hash
[i
]; tb
!= NULL
;
887 tb
= tb
->phys_hash_next
) {
888 flags1
= page_get_flags(tb
->pc
);
889 flags2
= page_get_flags(tb
->pc
+ tb
->size
- 1);
890 if ((flags1
& PAGE_WRITE
) || (flags2
& PAGE_WRITE
)) {
891 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
892 (long)tb
->pc
, tb
->size
, flags1
, flags2
);
900 static inline void tb_hash_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
)
902 TranslationBlock
*tb1
;
907 *ptb
= tb1
->phys_hash_next
;
910 ptb
= &tb1
->phys_hash_next
;
914 static inline void tb_page_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
)
916 TranslationBlock
*tb1
;
921 n1
= (uintptr_t)tb1
& 3;
922 tb1
= (TranslationBlock
*)((uintptr_t)tb1
& ~3);
924 *ptb
= tb1
->page_next
[n1
];
927 ptb
= &tb1
->page_next
[n1
];
931 /* remove the TB from a list of TBs jumping to the n-th jump target of the TB */
932 static inline void tb_remove_from_jmp_list(TranslationBlock
*tb
, int n
)
934 TranslationBlock
*tb1
;
938 ptb
= &tb
->jmp_list_next
[n
];
940 /* find tb(n) in circular list */
944 tb1
= (TranslationBlock
*)(ntb
& ~3);
945 if (n1
== n
&& tb1
== tb
) {
949 ptb
= &tb1
->jmp_list_first
;
951 ptb
= &tb1
->jmp_list_next
[n1
];
954 /* now we can suppress tb(n) from the list */
955 *ptb
= tb
->jmp_list_next
[n
];
957 tb
->jmp_list_next
[n
] = (uintptr_t)NULL
;
961 /* reset the jump entry 'n' of a TB so that it is not chained to
963 static inline void tb_reset_jump(TranslationBlock
*tb
, int n
)
965 uintptr_t addr
= (uintptr_t)(tb
->tc_ptr
+ tb
->jmp_reset_offset
[n
]);
966 tb_set_jmp_target(tb
, n
, addr
);
969 /* remove any jumps to the TB */
970 static inline void tb_jmp_unlink(TranslationBlock
*tb
)
972 TranslationBlock
*tb1
;
976 ptb
= &tb
->jmp_list_first
;
980 tb1
= (TranslationBlock
*)(ntb
& ~3);
984 tb_reset_jump(tb1
, n1
);
985 *ptb
= tb1
->jmp_list_next
[n1
];
986 tb1
->jmp_list_next
[n1
] = (uintptr_t)NULL
;
990 /* invalidate one TB */
991 void tb_phys_invalidate(TranslationBlock
*tb
, tb_page_addr_t page_addr
)
996 tb_page_addr_t phys_pc
;
998 /* remove the TB from the hash list */
999 phys_pc
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
1000 h
= tb_hash_func(phys_pc
, tb
->pc
, tb
->flags
);
1001 tb_hash_remove(&tcg_ctx
.tb_ctx
.tb_phys_hash
[h
], tb
);
1003 /* remove the TB from the page list */
1004 if (tb
->page_addr
[0] != page_addr
) {
1005 p
= page_find(tb
->page_addr
[0] >> TARGET_PAGE_BITS
);
1006 tb_page_remove(&p
->first_tb
, tb
);
1007 invalidate_page_bitmap(p
);
1009 if (tb
->page_addr
[1] != -1 && tb
->page_addr
[1] != page_addr
) {
1010 p
= page_find(tb
->page_addr
[1] >> TARGET_PAGE_BITS
);
1011 tb_page_remove(&p
->first_tb
, tb
);
1012 invalidate_page_bitmap(p
);
1015 /* remove the TB from the hash list */
1016 h
= tb_jmp_cache_hash_func(tb
->pc
);
1018 if (cpu
->tb_jmp_cache
[h
] == tb
) {
1019 cpu
->tb_jmp_cache
[h
] = NULL
;
1023 /* suppress this TB from the two jump lists */
1024 tb_remove_from_jmp_list(tb
, 0);
1025 tb_remove_from_jmp_list(tb
, 1);
1027 /* suppress any remaining jumps to this TB */
1030 tcg_ctx
.tb_ctx
.tb_phys_invalidate_count
++;
1033 #ifdef CONFIG_SOFTMMU
1034 static void build_page_bitmap(PageDesc
*p
)
1036 int n
, tb_start
, tb_end
;
1037 TranslationBlock
*tb
;
1039 p
->code_bitmap
= bitmap_new(TARGET_PAGE_SIZE
);
1042 while (tb
!= NULL
) {
1043 n
= (uintptr_t)tb
& 3;
1044 tb
= (TranslationBlock
*)((uintptr_t)tb
& ~3);
1045 /* NOTE: this is subtle as a TB may span two physical pages */
1047 /* NOTE: tb_end may be after the end of the page, but
1048 it is not a problem */
1049 tb_start
= tb
->pc
& ~TARGET_PAGE_MASK
;
1050 tb_end
= tb_start
+ tb
->size
;
1051 if (tb_end
> TARGET_PAGE_SIZE
) {
1052 tb_end
= TARGET_PAGE_SIZE
;
1056 tb_end
= ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
1058 bitmap_set(p
->code_bitmap
, tb_start
, tb_end
- tb_start
);
1059 tb
= tb
->page_next
[n
];
1064 /* add the tb in the target page and protect it if necessary
1066 * Called with mmap_lock held for user-mode emulation.
1068 static inline void tb_alloc_page(TranslationBlock
*tb
,
1069 unsigned int n
, tb_page_addr_t page_addr
)
1072 #ifndef CONFIG_USER_ONLY
1073 bool page_already_protected
;
1076 tb
->page_addr
[n
] = page_addr
;
1077 p
= page_find_alloc(page_addr
>> TARGET_PAGE_BITS
, 1);
1078 tb
->page_next
[n
] = p
->first_tb
;
1079 #ifndef CONFIG_USER_ONLY
1080 page_already_protected
= p
->first_tb
!= NULL
;
1082 p
->first_tb
= (TranslationBlock
*)((uintptr_t)tb
| n
);
1083 invalidate_page_bitmap(p
);
1085 #if defined(CONFIG_USER_ONLY)
1086 if (p
->flags
& PAGE_WRITE
) {
1091 /* force the host page as non writable (writes will have a
1092 page fault + mprotect overhead) */
1093 page_addr
&= qemu_host_page_mask
;
1095 for (addr
= page_addr
; addr
< page_addr
+ qemu_host_page_size
;
1096 addr
+= TARGET_PAGE_SIZE
) {
1098 p2
= page_find(addr
>> TARGET_PAGE_BITS
);
1103 p2
->flags
&= ~PAGE_WRITE
;
1105 mprotect(g2h(page_addr
), qemu_host_page_size
,
1106 (prot
& PAGE_BITS
) & ~PAGE_WRITE
);
1107 #ifdef DEBUG_TB_INVALIDATE
1108 printf("protecting code page: 0x" TARGET_FMT_lx
"\n",
1113 /* if some code is already present, then the pages are already
1114 protected. So we handle the case where only the first TB is
1115 allocated in a physical page */
1116 if (!page_already_protected
) {
1117 tlb_protect_code(page_addr
);
1122 /* add a new TB and link it to the physical page tables. phys_page2 is
1123 * (-1) to indicate that only one page contains the TB.
1125 * Called with mmap_lock held for user-mode emulation.
1127 static void tb_link_page(TranslationBlock
*tb
, tb_page_addr_t phys_pc
,
1128 tb_page_addr_t phys_page2
)
1131 TranslationBlock
**ptb
;
1133 /* add in the hash table */
1134 h
= tb_hash_func(phys_pc
, tb
->pc
, tb
->flags
);
1135 ptb
= &tcg_ctx
.tb_ctx
.tb_phys_hash
[h
];
1136 tb
->phys_hash_next
= *ptb
;
1139 /* add in the page list */
1140 tb_alloc_page(tb
, 0, phys_pc
& TARGET_PAGE_MASK
);
1141 if (phys_page2
!= -1) {
1142 tb_alloc_page(tb
, 1, phys_page2
);
1144 tb
->page_addr
[1] = -1;
1147 #ifdef DEBUG_TB_CHECK
1152 /* Called with mmap_lock held for user mode emulation. */
1153 TranslationBlock
*tb_gen_code(CPUState
*cpu
,
1154 target_ulong pc
, target_ulong cs_base
,
1155 uint32_t flags
, int cflags
)
1157 CPUArchState
*env
= cpu
->env_ptr
;
1158 TranslationBlock
*tb
;
1159 tb_page_addr_t phys_pc
, phys_page2
;
1160 target_ulong virt_page2
;
1161 tcg_insn_unit
*gen_code_buf
;
1162 int gen_code_size
, search_size
;
1163 #ifdef CONFIG_PROFILER
1167 phys_pc
= get_page_addr_code(env
, pc
);
1168 if (use_icount
&& !(cflags
& CF_IGNORE_ICOUNT
)) {
1169 cflags
|= CF_USE_ICOUNT
;
1173 if (unlikely(!tb
)) {
1175 /* flush must be done */
1177 /* cannot fail at this point */
1182 gen_code_buf
= tcg_ctx
.code_gen_ptr
;
1183 tb
->tc_ptr
= gen_code_buf
;
1184 tb
->cs_base
= cs_base
;
1186 tb
->cflags
= cflags
;
1188 #ifdef CONFIG_PROFILER
1189 tcg_ctx
.tb_count1
++; /* includes aborted translations because of
1191 ti
= profile_getclock();
1194 tcg_func_start(&tcg_ctx
);
1196 gen_intermediate_code(env
, tb
);
1198 trace_translate_block(tb
, tb
->pc
, tb
->tc_ptr
);
1200 /* generate machine code */
1201 tb
->jmp_reset_offset
[0] = TB_JMP_RESET_OFFSET_INVALID
;
1202 tb
->jmp_reset_offset
[1] = TB_JMP_RESET_OFFSET_INVALID
;
1203 tcg_ctx
.tb_jmp_reset_offset
= tb
->jmp_reset_offset
;
1204 #ifdef USE_DIRECT_JUMP
1205 tcg_ctx
.tb_jmp_insn_offset
= tb
->jmp_insn_offset
;
1206 tcg_ctx
.tb_jmp_target_addr
= NULL
;
1208 tcg_ctx
.tb_jmp_insn_offset
= NULL
;
1209 tcg_ctx
.tb_jmp_target_addr
= tb
->jmp_target_addr
;
1212 #ifdef CONFIG_PROFILER
1214 tcg_ctx
.interm_time
+= profile_getclock() - ti
;
1215 tcg_ctx
.code_time
-= profile_getclock();
1218 /* ??? Overflow could be handled better here. In particular, we
1219 don't need to re-do gen_intermediate_code, nor should we re-do
1220 the tcg optimization currently hidden inside tcg_gen_code. All
1221 that should be required is to flush the TBs, allocate a new TB,
1222 re-initialize it per above, and re-do the actual code generation. */
1223 gen_code_size
= tcg_gen_code(&tcg_ctx
, tb
);
1224 if (unlikely(gen_code_size
< 0)) {
1225 goto buffer_overflow
;
1227 search_size
= encode_search(tb
, (void *)gen_code_buf
+ gen_code_size
);
1228 if (unlikely(search_size
< 0)) {
1229 goto buffer_overflow
;
1232 #ifdef CONFIG_PROFILER
1233 tcg_ctx
.code_time
+= profile_getclock();
1234 tcg_ctx
.code_in_len
+= tb
->size
;
1235 tcg_ctx
.code_out_len
+= gen_code_size
;
1236 tcg_ctx
.search_out_len
+= search_size
;
1240 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM
) &&
1241 qemu_log_in_addr_range(tb
->pc
)) {
1242 qemu_log("OUT: [size=%d]\n", gen_code_size
);
1243 log_disas(tb
->tc_ptr
, gen_code_size
);
1249 tcg_ctx
.code_gen_ptr
= (void *)
1250 ROUND_UP((uintptr_t)gen_code_buf
+ gen_code_size
+ search_size
,
1253 /* init jump list */
1254 assert(((uintptr_t)tb
& 3) == 0);
1255 tb
->jmp_list_first
= (uintptr_t)tb
| 2;
1256 tb
->jmp_list_next
[0] = (uintptr_t)NULL
;
1257 tb
->jmp_list_next
[1] = (uintptr_t)NULL
;
1259 /* init original jump addresses wich has been set during tcg_gen_code() */
1260 if (tb
->jmp_reset_offset
[0] != TB_JMP_RESET_OFFSET_INVALID
) {
1261 tb_reset_jump(tb
, 0);
1263 if (tb
->jmp_reset_offset
[1] != TB_JMP_RESET_OFFSET_INVALID
) {
1264 tb_reset_jump(tb
, 1);
1267 /* check next page if needed */
1268 virt_page2
= (pc
+ tb
->size
- 1) & TARGET_PAGE_MASK
;
1270 if ((pc
& TARGET_PAGE_MASK
) != virt_page2
) {
1271 phys_page2
= get_page_addr_code(env
, virt_page2
);
1273 /* As long as consistency of the TB stuff is provided by tb_lock in user
1274 * mode and is implicit in single-threaded softmmu emulation, no explicit
1275 * memory barrier is required before tb_link_page() makes the TB visible
1276 * through the physical hash table and physical page list.
1278 tb_link_page(tb
, phys_pc
, phys_page2
);
1283 * Invalidate all TBs which intersect with the target physical address range
1284 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1285 * 'is_cpu_write_access' should be true if called from a real cpu write
1286 * access: the virtual CPU will exit the current TB if code is modified inside
1289 * Called with mmap_lock held for user-mode emulation
1291 void tb_invalidate_phys_range(tb_page_addr_t start
, tb_page_addr_t end
)
1293 while (start
< end
) {
1294 tb_invalidate_phys_page_range(start
, end
, 0);
1295 start
&= TARGET_PAGE_MASK
;
1296 start
+= TARGET_PAGE_SIZE
;
1301 * Invalidate all TBs which intersect with the target physical address range
1302 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1303 * 'is_cpu_write_access' should be true if called from a real cpu write
1304 * access: the virtual CPU will exit the current TB if code is modified inside
1307 * Called with mmap_lock held for user-mode emulation
1309 void tb_invalidate_phys_page_range(tb_page_addr_t start
, tb_page_addr_t end
,
1310 int is_cpu_write_access
)
1312 TranslationBlock
*tb
, *tb_next
;
1313 #if defined(TARGET_HAS_PRECISE_SMC)
1314 CPUState
*cpu
= current_cpu
;
1315 CPUArchState
*env
= NULL
;
1317 tb_page_addr_t tb_start
, tb_end
;
1320 #ifdef TARGET_HAS_PRECISE_SMC
1321 int current_tb_not_found
= is_cpu_write_access
;
1322 TranslationBlock
*current_tb
= NULL
;
1323 int current_tb_modified
= 0;
1324 target_ulong current_pc
= 0;
1325 target_ulong current_cs_base
= 0;
1326 uint32_t current_flags
= 0;
1327 #endif /* TARGET_HAS_PRECISE_SMC */
1329 p
= page_find(start
>> TARGET_PAGE_BITS
);
1333 #if defined(TARGET_HAS_PRECISE_SMC)
1339 /* we remove all the TBs in the range [start, end[ */
1340 /* XXX: see if in some cases it could be faster to invalidate all
1343 while (tb
!= NULL
) {
1344 n
= (uintptr_t)tb
& 3;
1345 tb
= (TranslationBlock
*)((uintptr_t)tb
& ~3);
1346 tb_next
= tb
->page_next
[n
];
1347 /* NOTE: this is subtle as a TB may span two physical pages */
1349 /* NOTE: tb_end may be after the end of the page, but
1350 it is not a problem */
1351 tb_start
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
1352 tb_end
= tb_start
+ tb
->size
;
1354 tb_start
= tb
->page_addr
[1];
1355 tb_end
= tb_start
+ ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
1357 if (!(tb_end
<= start
|| tb_start
>= end
)) {
1358 #ifdef TARGET_HAS_PRECISE_SMC
1359 if (current_tb_not_found
) {
1360 current_tb_not_found
= 0;
1362 if (cpu
->mem_io_pc
) {
1363 /* now we have a real cpu fault */
1364 current_tb
= tb_find_pc(cpu
->mem_io_pc
);
1367 if (current_tb
== tb
&&
1368 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1369 /* If we are modifying the current TB, we must stop
1370 its execution. We could be more precise by checking
1371 that the modification is after the current PC, but it
1372 would require a specialized function to partially
1373 restore the CPU state */
1375 current_tb_modified
= 1;
1376 cpu_restore_state_from_tb(cpu
, current_tb
, cpu
->mem_io_pc
);
1377 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1380 #endif /* TARGET_HAS_PRECISE_SMC */
1381 tb_phys_invalidate(tb
, -1);
1385 #if !defined(CONFIG_USER_ONLY)
1386 /* if no code remaining, no need to continue to use slow writes */
1388 invalidate_page_bitmap(p
);
1389 tlb_unprotect_code(start
);
1392 #ifdef TARGET_HAS_PRECISE_SMC
1393 if (current_tb_modified
) {
1394 /* we generate a block containing just the instruction
1395 modifying the memory. It will ensure that it cannot modify
1397 tb_gen_code(cpu
, current_pc
, current_cs_base
, current_flags
, 1);
1398 cpu_loop_exit_noexc(cpu
);
1403 #ifdef CONFIG_SOFTMMU
1404 /* len must be <= 8 and start must be a multiple of len */
1405 void tb_invalidate_phys_page_fast(tb_page_addr_t start
, int len
)
1411 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1412 cpu_single_env
->mem_io_vaddr
, len
,
1413 cpu_single_env
->eip
,
1414 cpu_single_env
->eip
+
1415 (intptr_t)cpu_single_env
->segs
[R_CS
].base
);
1418 p
= page_find(start
>> TARGET_PAGE_BITS
);
1422 if (!p
->code_bitmap
&&
1423 ++p
->code_write_count
>= SMC_BITMAP_USE_THRESHOLD
) {
1424 /* build code bitmap */
1425 build_page_bitmap(p
);
1427 if (p
->code_bitmap
) {
1431 nr
= start
& ~TARGET_PAGE_MASK
;
1432 b
= p
->code_bitmap
[BIT_WORD(nr
)] >> (nr
& (BITS_PER_LONG
- 1));
1433 if (b
& ((1 << len
) - 1)) {
1438 tb_invalidate_phys_page_range(start
, start
+ len
, 1);
1442 /* Called with mmap_lock held. If pc is not 0 then it indicates the
1443 * host PC of the faulting store instruction that caused this invalidate.
1444 * Returns true if the caller needs to abort execution of the current
1445 * TB (because it was modified by this store and the guest CPU has
1446 * precise-SMC semantics).
1448 static bool tb_invalidate_phys_page(tb_page_addr_t addr
, uintptr_t pc
)
1450 TranslationBlock
*tb
;
1453 #ifdef TARGET_HAS_PRECISE_SMC
1454 TranslationBlock
*current_tb
= NULL
;
1455 CPUState
*cpu
= current_cpu
;
1456 CPUArchState
*env
= NULL
;
1457 int current_tb_modified
= 0;
1458 target_ulong current_pc
= 0;
1459 target_ulong current_cs_base
= 0;
1460 uint32_t current_flags
= 0;
1463 addr
&= TARGET_PAGE_MASK
;
1464 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1469 #ifdef TARGET_HAS_PRECISE_SMC
1470 if (tb
&& pc
!= 0) {
1471 current_tb
= tb_find_pc(pc
);
1477 while (tb
!= NULL
) {
1478 n
= (uintptr_t)tb
& 3;
1479 tb
= (TranslationBlock
*)((uintptr_t)tb
& ~3);
1480 #ifdef TARGET_HAS_PRECISE_SMC
1481 if (current_tb
== tb
&&
1482 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1483 /* If we are modifying the current TB, we must stop
1484 its execution. We could be more precise by checking
1485 that the modification is after the current PC, but it
1486 would require a specialized function to partially
1487 restore the CPU state */
1489 current_tb_modified
= 1;
1490 cpu_restore_state_from_tb(cpu
, current_tb
, pc
);
1491 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1494 #endif /* TARGET_HAS_PRECISE_SMC */
1495 tb_phys_invalidate(tb
, addr
);
1496 tb
= tb
->page_next
[n
];
1499 #ifdef TARGET_HAS_PRECISE_SMC
1500 if (current_tb_modified
) {
1501 /* we generate a block containing just the instruction
1502 modifying the memory. It will ensure that it cannot modify
1504 tb_gen_code(cpu
, current_pc
, current_cs_base
, current_flags
, 1);
1512 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1513 tb[1].tc_ptr. Return NULL if not found */
1514 static TranslationBlock
*tb_find_pc(uintptr_t tc_ptr
)
1516 int m_min
, m_max
, m
;
1518 TranslationBlock
*tb
;
1520 if (tcg_ctx
.tb_ctx
.nb_tbs
<= 0) {
1523 if (tc_ptr
< (uintptr_t)tcg_ctx
.code_gen_buffer
||
1524 tc_ptr
>= (uintptr_t)tcg_ctx
.code_gen_ptr
) {
1527 /* binary search (cf Knuth) */
1529 m_max
= tcg_ctx
.tb_ctx
.nb_tbs
- 1;
1530 while (m_min
<= m_max
) {
1531 m
= (m_min
+ m_max
) >> 1;
1532 tb
= &tcg_ctx
.tb_ctx
.tbs
[m
];
1533 v
= (uintptr_t)tb
->tc_ptr
;
1536 } else if (tc_ptr
< v
) {
1542 return &tcg_ctx
.tb_ctx
.tbs
[m_max
];
1545 #if !defined(CONFIG_USER_ONLY)
1546 void tb_invalidate_phys_addr(AddressSpace
*as
, hwaddr addr
)
1548 ram_addr_t ram_addr
;
1553 mr
= address_space_translate(as
, addr
, &addr
, &l
, false);
1554 if (!(memory_region_is_ram(mr
)
1555 || memory_region_is_romd(mr
))) {
1559 ram_addr
= memory_region_get_ram_addr(mr
) + addr
;
1560 tb_invalidate_phys_page_range(ram_addr
, ram_addr
+ 1, 0);
1563 #endif /* !defined(CONFIG_USER_ONLY) */
1565 void tb_check_watchpoint(CPUState
*cpu
)
1567 TranslationBlock
*tb
;
1569 tb
= tb_find_pc(cpu
->mem_io_pc
);
1571 /* We can use retranslation to find the PC. */
1572 cpu_restore_state_from_tb(cpu
, tb
, cpu
->mem_io_pc
);
1573 tb_phys_invalidate(tb
, -1);
1575 /* The exception probably happened in a helper. The CPU state should
1576 have been saved before calling it. Fetch the PC from there. */
1577 CPUArchState
*env
= cpu
->env_ptr
;
1578 target_ulong pc
, cs_base
;
1579 tb_page_addr_t addr
;
1582 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &flags
);
1583 addr
= get_page_addr_code(env
, pc
);
1584 tb_invalidate_phys_range(addr
, addr
+ 1);
1588 #ifndef CONFIG_USER_ONLY
1589 /* in deterministic execution mode, instructions doing device I/Os
1590 must be at the end of the TB */
1591 void cpu_io_recompile(CPUState
*cpu
, uintptr_t retaddr
)
1593 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
1594 CPUArchState
*env
= cpu
->env_ptr
;
1596 TranslationBlock
*tb
;
1598 target_ulong pc
, cs_base
;
1601 tb
= tb_find_pc(retaddr
);
1603 cpu_abort(cpu
, "cpu_io_recompile: could not find TB for pc=%p",
1606 n
= cpu
->icount_decr
.u16
.low
+ tb
->icount
;
1607 cpu_restore_state_from_tb(cpu
, tb
, retaddr
);
1608 /* Calculate how many instructions had been executed before the fault
1610 n
= n
- cpu
->icount_decr
.u16
.low
;
1611 /* Generate a new TB ending on the I/O insn. */
1613 /* On MIPS and SH, delay slot instructions can only be restarted if
1614 they were already the first instruction in the TB. If this is not
1615 the first instruction in a TB then re-execute the preceding
1617 #if defined(TARGET_MIPS)
1618 if ((env
->hflags
& MIPS_HFLAG_BMASK
) != 0 && n
> 1) {
1619 env
->active_tc
.PC
-= (env
->hflags
& MIPS_HFLAG_B16
? 2 : 4);
1620 cpu
->icount_decr
.u16
.low
++;
1621 env
->hflags
&= ~MIPS_HFLAG_BMASK
;
1623 #elif defined(TARGET_SH4)
1624 if ((env
->flags
& ((DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
))) != 0
1627 cpu
->icount_decr
.u16
.low
++;
1628 env
->flags
&= ~(DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
);
1631 /* This should never happen. */
1632 if (n
> CF_COUNT_MASK
) {
1633 cpu_abort(cpu
, "TB too big during recompile");
1636 cflags
= n
| CF_LAST_IO
;
1638 cs_base
= tb
->cs_base
;
1640 tb_phys_invalidate(tb
, -1);
1641 if (tb
->cflags
& CF_NOCACHE
) {
1643 /* Invalidate original TB if this TB was generated in
1644 * cpu_exec_nocache() */
1645 tb_phys_invalidate(tb
->orig_tb
, -1);
1649 /* FIXME: In theory this could raise an exception. In practice
1650 we have already translated the block once so it's probably ok. */
1651 tb_gen_code(cpu
, pc
, cs_base
, flags
, cflags
);
1652 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1653 the first in the TB) then we end up generating a whole new TB and
1654 repeating the fault, which is horribly inefficient.
1655 Better would be to execute just this insn uncached, or generate a
1657 cpu_loop_exit_noexc(cpu
);
1660 void tb_flush_jmp_cache(CPUState
*cpu
, target_ulong addr
)
1664 /* Discard jump cache entries for any tb which might potentially
1665 overlap the flushed page. */
1666 i
= tb_jmp_cache_hash_page(addr
- TARGET_PAGE_SIZE
);
1667 memset(&cpu
->tb_jmp_cache
[i
], 0,
1668 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1670 i
= tb_jmp_cache_hash_page(addr
);
1671 memset(&cpu
->tb_jmp_cache
[i
], 0,
1672 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1675 void dump_exec_info(FILE *f
, fprintf_function cpu_fprintf
)
1677 int i
, target_code_size
, max_target_code_size
;
1678 int direct_jmp_count
, direct_jmp2_count
, cross_page
;
1679 TranslationBlock
*tb
;
1681 target_code_size
= 0;
1682 max_target_code_size
= 0;
1684 direct_jmp_count
= 0;
1685 direct_jmp2_count
= 0;
1686 for (i
= 0; i
< tcg_ctx
.tb_ctx
.nb_tbs
; i
++) {
1687 tb
= &tcg_ctx
.tb_ctx
.tbs
[i
];
1688 target_code_size
+= tb
->size
;
1689 if (tb
->size
> max_target_code_size
) {
1690 max_target_code_size
= tb
->size
;
1692 if (tb
->page_addr
[1] != -1) {
1695 if (tb
->jmp_reset_offset
[0] != TB_JMP_RESET_OFFSET_INVALID
) {
1697 if (tb
->jmp_reset_offset
[1] != TB_JMP_RESET_OFFSET_INVALID
) {
1698 direct_jmp2_count
++;
1702 /* XXX: avoid using doubles ? */
1703 cpu_fprintf(f
, "Translation buffer state:\n");
1704 cpu_fprintf(f
, "gen code size %td/%zd\n",
1705 tcg_ctx
.code_gen_ptr
- tcg_ctx
.code_gen_buffer
,
1706 tcg_ctx
.code_gen_highwater
- tcg_ctx
.code_gen_buffer
);
1707 cpu_fprintf(f
, "TB count %d/%d\n",
1708 tcg_ctx
.tb_ctx
.nb_tbs
, tcg_ctx
.code_gen_max_blocks
);
1709 cpu_fprintf(f
, "TB avg target size %d max=%d bytes\n",
1710 tcg_ctx
.tb_ctx
.nb_tbs
? target_code_size
/
1711 tcg_ctx
.tb_ctx
.nb_tbs
: 0,
1712 max_target_code_size
);
1713 cpu_fprintf(f
, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
1714 tcg_ctx
.tb_ctx
.nb_tbs
? (tcg_ctx
.code_gen_ptr
-
1715 tcg_ctx
.code_gen_buffer
) /
1716 tcg_ctx
.tb_ctx
.nb_tbs
: 0,
1717 target_code_size
? (double) (tcg_ctx
.code_gen_ptr
-
1718 tcg_ctx
.code_gen_buffer
) /
1719 target_code_size
: 0);
1720 cpu_fprintf(f
, "cross page TB count %d (%d%%)\n", cross_page
,
1721 tcg_ctx
.tb_ctx
.nb_tbs
? (cross_page
* 100) /
1722 tcg_ctx
.tb_ctx
.nb_tbs
: 0);
1723 cpu_fprintf(f
, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1725 tcg_ctx
.tb_ctx
.nb_tbs
? (direct_jmp_count
* 100) /
1726 tcg_ctx
.tb_ctx
.nb_tbs
: 0,
1728 tcg_ctx
.tb_ctx
.nb_tbs
? (direct_jmp2_count
* 100) /
1729 tcg_ctx
.tb_ctx
.nb_tbs
: 0);
1730 cpu_fprintf(f
, "\nStatistics:\n");
1731 cpu_fprintf(f
, "TB flush count %d\n", tcg_ctx
.tb_ctx
.tb_flush_count
);
1732 cpu_fprintf(f
, "TB invalidate count %d\n",
1733 tcg_ctx
.tb_ctx
.tb_phys_invalidate_count
);
1734 cpu_fprintf(f
, "TLB flush count %d\n", tlb_flush_count
);
1735 tcg_dump_info(f
, cpu_fprintf
);
1738 void dump_opcount_info(FILE *f
, fprintf_function cpu_fprintf
)
1740 tcg_dump_op_count(f
, cpu_fprintf
);
1743 #else /* CONFIG_USER_ONLY */
1745 void cpu_interrupt(CPUState
*cpu
, int mask
)
1747 cpu
->interrupt_request
|= mask
;
1748 cpu
->tcg_exit_req
= 1;
1752 * Walks guest process memory "regions" one by one
1753 * and calls callback function 'fn' for each region.
1755 struct walk_memory_regions_data
{
1756 walk_memory_regions_fn fn
;
1762 static int walk_memory_regions_end(struct walk_memory_regions_data
*data
,
1763 target_ulong end
, int new_prot
)
1765 if (data
->start
!= -1u) {
1766 int rc
= data
->fn(data
->priv
, data
->start
, end
, data
->prot
);
1772 data
->start
= (new_prot
? end
: -1u);
1773 data
->prot
= new_prot
;
1778 static int walk_memory_regions_1(struct walk_memory_regions_data
*data
,
1779 target_ulong base
, int level
, void **lp
)
1785 return walk_memory_regions_end(data
, base
, 0);
1791 for (i
= 0; i
< V_L2_SIZE
; ++i
) {
1792 int prot
= pd
[i
].flags
;
1794 pa
= base
| (i
<< TARGET_PAGE_BITS
);
1795 if (prot
!= data
->prot
) {
1796 rc
= walk_memory_regions_end(data
, pa
, prot
);
1805 for (i
= 0; i
< V_L2_SIZE
; ++i
) {
1806 pa
= base
| ((target_ulong
)i
<<
1807 (TARGET_PAGE_BITS
+ V_L2_BITS
* level
));
1808 rc
= walk_memory_regions_1(data
, pa
, level
- 1, pp
+ i
);
1818 int walk_memory_regions(void *priv
, walk_memory_regions_fn fn
)
1820 struct walk_memory_regions_data data
;
1828 for (i
= 0; i
< V_L1_SIZE
; i
++) {
1829 int rc
= walk_memory_regions_1(&data
, (target_ulong
)i
<< (V_L1_SHIFT
+ TARGET_PAGE_BITS
),
1830 V_L1_SHIFT
/ V_L2_BITS
- 1, l1_map
+ i
);
1836 return walk_memory_regions_end(&data
, 0, 0);
1839 static int dump_region(void *priv
, target_ulong start
,
1840 target_ulong end
, unsigned long prot
)
1842 FILE *f
= (FILE *)priv
;
1844 (void) fprintf(f
, TARGET_FMT_lx
"-"TARGET_FMT_lx
1845 " "TARGET_FMT_lx
" %c%c%c\n",
1846 start
, end
, end
- start
,
1847 ((prot
& PAGE_READ
) ? 'r' : '-'),
1848 ((prot
& PAGE_WRITE
) ? 'w' : '-'),
1849 ((prot
& PAGE_EXEC
) ? 'x' : '-'));
1854 /* dump memory mappings */
1855 void page_dump(FILE *f
)
1857 const int length
= sizeof(target_ulong
) * 2;
1858 (void) fprintf(f
, "%-*s %-*s %-*s %s\n",
1859 length
, "start", length
, "end", length
, "size", "prot");
1860 walk_memory_regions(f
, dump_region
);
1863 int page_get_flags(target_ulong address
)
1867 p
= page_find(address
>> TARGET_PAGE_BITS
);
1874 /* Modify the flags of a page and invalidate the code if necessary.
1875 The flag PAGE_WRITE_ORG is positioned automatically depending
1876 on PAGE_WRITE. The mmap_lock should already be held. */
1877 void page_set_flags(target_ulong start
, target_ulong end
, int flags
)
1879 target_ulong addr
, len
;
1881 /* This function should never be called with addresses outside the
1882 guest address space. If this assert fires, it probably indicates
1883 a missing call to h2g_valid. */
1884 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1885 assert(end
< ((target_ulong
)1 << L1_MAP_ADDR_SPACE_BITS
));
1887 assert(start
< end
);
1889 start
= start
& TARGET_PAGE_MASK
;
1890 end
= TARGET_PAGE_ALIGN(end
);
1892 if (flags
& PAGE_WRITE
) {
1893 flags
|= PAGE_WRITE_ORG
;
1896 for (addr
= start
, len
= end
- start
;
1898 len
-= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
1899 PageDesc
*p
= page_find_alloc(addr
>> TARGET_PAGE_BITS
, 1);
1901 /* If the write protection bit is set, then we invalidate
1903 if (!(p
->flags
& PAGE_WRITE
) &&
1904 (flags
& PAGE_WRITE
) &&
1906 tb_invalidate_phys_page(addr
, 0);
1912 int page_check_range(target_ulong start
, target_ulong len
, int flags
)
1918 /* This function should never be called with addresses outside the
1919 guest address space. If this assert fires, it probably indicates
1920 a missing call to h2g_valid. */
1921 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1922 assert(start
< ((target_ulong
)1 << L1_MAP_ADDR_SPACE_BITS
));
1928 if (start
+ len
- 1 < start
) {
1929 /* We've wrapped around. */
1933 /* must do before we loose bits in the next step */
1934 end
= TARGET_PAGE_ALIGN(start
+ len
);
1935 start
= start
& TARGET_PAGE_MASK
;
1937 for (addr
= start
, len
= end
- start
;
1939 len
-= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
1940 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1944 if (!(p
->flags
& PAGE_VALID
)) {
1948 if ((flags
& PAGE_READ
) && !(p
->flags
& PAGE_READ
)) {
1951 if (flags
& PAGE_WRITE
) {
1952 if (!(p
->flags
& PAGE_WRITE_ORG
)) {
1955 /* unprotect the page if it was put read-only because it
1956 contains translated code */
1957 if (!(p
->flags
& PAGE_WRITE
)) {
1958 if (!page_unprotect(addr
, 0)) {
1967 /* called from signal handler: invalidate the code and unprotect the
1968 * page. Return 0 if the fault was not handled, 1 if it was handled,
1969 * and 2 if it was handled but the caller must cause the TB to be
1970 * immediately exited. (We can only return 2 if the 'pc' argument is
1973 int page_unprotect(target_ulong address
, uintptr_t pc
)
1977 target_ulong host_start
, host_end
, addr
;
1979 /* Technically this isn't safe inside a signal handler. However we
1980 know this only ever happens in a synchronous SEGV handler, so in
1981 practice it seems to be ok. */
1984 p
= page_find(address
>> TARGET_PAGE_BITS
);
1990 /* if the page was really writable, then we change its
1991 protection back to writable */
1992 if ((p
->flags
& PAGE_WRITE_ORG
) && !(p
->flags
& PAGE_WRITE
)) {
1993 host_start
= address
& qemu_host_page_mask
;
1994 host_end
= host_start
+ qemu_host_page_size
;
1997 for (addr
= host_start
; addr
< host_end
; addr
+= TARGET_PAGE_SIZE
) {
1998 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1999 p
->flags
|= PAGE_WRITE
;
2002 /* and since the content will be modified, we must invalidate
2003 the corresponding translated code. */
2004 if (tb_invalidate_phys_page(addr
, pc
)) {
2008 #ifdef DEBUG_TB_CHECK
2009 tb_invalidate_check(addr
);
2012 mprotect((void *)g2h(host_start
), qemu_host_page_size
,
2021 #endif /* CONFIG_USER_ONLY */