4 # This work is licensed under the terms of the GNU GPL, version 2 or later.
5 # See the COPYING file in the top-level directory.
14 # The comprehensive enumeration of QEMU system emulation ("softmmu")
15 # targets. Run "./configure --help" in the project root directory, and
16 # look for the \*-softmmu targets near the "--target-list" option. The
17 # individual target constants are not documented here, for the time
23 # Notes: The resulting QMP strings can be appended to the "qemu-system-"
24 # prefix to produce the corresponding QEMU executable name. This
25 # is true even for "qemu-system-x86_64".
29 { 'enum' : 'SysEmuTarget',
30 'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'cris', 'hppa', 'i386', 'lm32',
31 'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64',
32 'mips64el', 'mipsel', 'moxie', 'nios2', 'or1k', 'ppc',
33 'ppc64', 'riscv32', 'riscv64', 'rx', 's390x', 'sh4',
34 'sh4eb', 'sparc', 'sparc64', 'tricore', 'unicore32',
35 'x86_64', 'xtensa', 'xtensaeb' ] }
40 # An enumeration of cpu types that enable additional information during
41 # @query-cpus and @query-cpus-fast.
49 { 'enum': 'CpuInfoArch',
50 'data': ['x86', 'sparc', 'ppc', 'mips', 'tricore', 's390', 'riscv', 'other' ] }
55 # Information about a virtual CPU
57 # @CPU: the index of the virtual CPU
59 # @current: this only exists for backwards compatibility and should be ignored
61 # @halted: true if the virtual CPU is in the halt state. Halt usually refers
62 # to a processor specific low power mode.
64 # @qom_path: path to the CPU object in the QOM tree (since 2.4)
66 # @thread_id: ID of the underlying host thread
68 # @props: properties describing to which node/socket/core/thread
69 # virtual CPU belongs to, provided if supported by board (since 2.10)
71 # @arch: architecture of the cpu, which determines which additional fields
72 # will be listed (since 2.6)
76 # Notes: @halted is a transient state that changes frequently. By the time the
77 # data is sent to the client, the guest may no longer be halted.
80 'base': {'CPU': 'int', 'current': 'bool', 'halted': 'bool',
81 'qom_path': 'str', 'thread_id': 'int',
82 '*props': 'CpuInstanceProperties', 'arch': 'CpuInfoArch' },
83 'discriminator': 'arch',
84 'data': { 'x86': 'CpuInfoX86',
85 'sparc': 'CpuInfoSPARC',
87 'mips': 'CpuInfoMIPS',
88 'tricore': 'CpuInfoTricore',
89 's390': 'CpuInfoS390',
90 'riscv': 'CpuInfoRISCV' } }
95 # Additional information about a virtual i386 or x86_64 CPU
97 # @pc: the 64-bit instruction pointer
101 { 'struct': 'CpuInfoX86', 'data': { 'pc': 'int' } }
106 # Additional information about a virtual SPARC CPU
108 # @pc: the PC component of the instruction pointer
110 # @npc: the NPC component of the instruction pointer
114 { 'struct': 'CpuInfoSPARC', 'data': { 'pc': 'int', 'npc': 'int' } }
119 # Additional information about a virtual PPC CPU
121 # @nip: the instruction pointer
125 { 'struct': 'CpuInfoPPC', 'data': { 'nip': 'int' } }
130 # Additional information about a virtual MIPS CPU
132 # @PC: the instruction pointer
136 { 'struct': 'CpuInfoMIPS', 'data': { 'PC': 'int' } }
141 # Additional information about a virtual Tricore CPU
143 # @PC: the instruction pointer
147 { 'struct': 'CpuInfoTricore', 'data': { 'PC': 'int' } }
152 # Additional information about a virtual RISCV CPU
154 # @pc: the instruction pointer
158 { 'struct': 'CpuInfoRISCV', 'data': { 'pc': 'int' } }
163 # An enumeration of cpu states that can be assumed by a virtual
168 { 'enum': 'CpuS390State',
169 'prefix': 'S390_CPU_STATE',
170 'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
175 # Additional information about a virtual S390 CPU
177 # @cpu-state: the virtual CPU's state
181 { 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } }
186 # Returns a list of information about each virtual CPU.
188 # This command causes vCPU threads to exit to userspace, which causes
189 # a small interruption to guest CPU execution. This will have a negative
190 # impact on realtime guests and other latency sensitive guest workloads.
193 # @deprecated: This command is deprecated, because it interferes with
194 # the guest. Use 'query-cpus-fast' instead to avoid the vCPU
197 # Returns: a list of @CpuInfo for each virtual CPU
203 # -> { "execute": "query-cpus" }
209 # "qom_path":"/machine/unattached/device[0]",
218 # "qom_path":"/machine/unattached/device[2]",
227 { 'command': 'query-cpus', 'returns': ['CpuInfo'],
228 'features': [ 'deprecated' ] }
233 # Information about a virtual CPU
235 # @cpu-index: index of the virtual CPU
237 # @qom-path: path to the CPU object in the QOM tree
239 # @thread-id: ID of the underlying host thread
241 # @props: properties describing to which node/socket/core/thread
242 # virtual CPU belongs to, provided if supported by board
244 # @arch: base architecture of the cpu
246 # @target: the QEMU system emulation target, which determines which
247 # additional fields will be listed (since 3.0)
250 # @deprecated: Member @arch is deprecated. Use @target instead.
255 { 'union' : 'CpuInfoFast',
256 'base' : { 'cpu-index' : 'int',
259 '*props' : 'CpuInstanceProperties',
260 'arch' : { 'type': 'CpuInfoArch',
261 'features': [ 'deprecated' ] },
262 'target' : 'SysEmuTarget' },
263 'discriminator' : 'target',
264 'data' : { 's390x' : 'CpuInfoS390' } }
269 # Returns information about all virtual CPUs. This command does not
270 # incur a performance penalty and should be used in production
271 # instead of query-cpus.
273 # Returns: list of @CpuInfoFast
279 # -> { "execute": "query-cpus-fast" }
282 # "thread-id": 25627,
288 # "qom-path": "/machine/unattached/device[0]",
294 # "thread-id": 25628,
300 # "qom-path": "/machine/unattached/device[2]",
308 { 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
313 # Information describing a machine.
315 # @name: the name of the machine
317 # @alias: an alias for the machine name
319 # @is-default: whether the machine is default
321 # @cpu-max: maximum number of CPUs supported by the machine type
324 # @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7)
326 # @numa-mem-supported: true if '-numa node,mem' option is supported by
327 # the machine type and false otherwise (since 4.1)
329 # @deprecated: if true, the machine type is deprecated and may be removed
330 # in future versions of QEMU according to the QEMU deprecation
333 # @default-cpu-type: default CPU model typename if none is requested via
334 # the -cpu argument. (since 4.2)
336 # @default-ram-id: the default ID of initial RAM memory backend (since 5.2)
340 { 'struct': 'MachineInfo',
341 'data': { 'name': 'str', '*alias': 'str',
342 '*is-default': 'bool', 'cpu-max': 'int',
343 'hotpluggable-cpus': 'bool', 'numa-mem-supported': 'bool',
344 'deprecated': 'bool', '*default-cpu-type': 'str',
345 '*default-ram-id': 'str' } }
350 # Return a list of supported machines
352 # Returns: a list of MachineInfo
356 { 'command': 'query-machines', 'returns': ['MachineInfo'] }
359 # @CurrentMachineParams:
361 # Information describing the running machine parameters.
363 # @wakeup-suspend-support: true if the machine supports wake up from
368 { 'struct': 'CurrentMachineParams',
369 'data': { 'wakeup-suspend-support': 'bool'} }
372 # @query-current-machine:
374 # Return information on the current virtual machine.
376 # Returns: CurrentMachineParams
380 { 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' }
385 # Information describing the QEMU target.
387 # @arch: the target architecture
391 { 'struct': 'TargetInfo',
392 'data': { 'arch': 'SysEmuTarget' } }
397 # Return information about the target for this QEMU
399 # Returns: TargetInfo
403 { 'command': 'query-target', 'returns': 'TargetInfo' }
408 # Guest UUID information (Universally Unique Identifier).
410 # @UUID: the UUID of the guest
414 # Notes: If no UUID was specified for the guest, a null UUID is returned.
416 { 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
421 # Query the guest UUID information.
423 # Returns: The @UuidInfo for the guest
429 # -> { "execute": "query-uuid" }
430 # <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
433 { 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
440 # @guid: the globally unique identifier
444 { 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
447 # @query-vm-generation-id:
449 # Show Virtual Machine Generation ID
453 { 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
458 # Performs a hard reset of a guest.
464 # -> { "execute": "system_reset" }
465 # <- { "return": {} }
468 { 'command': 'system_reset' }
473 # Requests that a guest perform a powerdown operation.
477 # Notes: A guest may or may not respond to this command. This command
478 # returning does not indicate that a guest has accepted the request or
479 # that it has shut down. Many guests will respond to this command by
480 # prompting the user in some way.
483 # -> { "execute": "system_powerdown" }
484 # <- { "return": {} }
487 { 'command': 'system_powerdown' }
492 # Wake up guest from suspend. If the guest has wake-up from suspend
493 # support enabled (wakeup-suspend-support flag from
494 # query-current-machine), wake-up guest from suspend if the guest is
495 # in SUSPENDED state. Return an error otherwise.
501 # Note: prior to 4.0, this command does nothing in case the guest
506 # -> { "execute": "system_wakeup" }
507 # <- { "return": {} }
510 { 'command': 'system_wakeup' }
515 # Policy for handling lost ticks in timer devices. Ticks end up getting
516 # lost when, for example, the guest is paused.
518 # @discard: throw away the missed ticks and continue with future injection
519 # normally. The guest OS will see the timer jump ahead by a
520 # potentially quite significant amount all at once, as if the
521 # intervening chunk of time had simply not existed; needless to
522 # say, such a sudden jump can easily confuse a guest OS which is
523 # not specifically prepared to deal with it. Assuming the guest
524 # OS can deal correctly with the time jump, the time in the guest
525 # and in the host should now match.
527 # @delay: continue to deliver ticks at the normal rate. The guest OS will
528 # not notice anything is amiss, as from its point of view time will
529 # have continued to flow normally. The time in the guest should now
530 # be behind the time in the host by exactly the amount of time during
531 # which ticks have been missed.
533 # @slew: deliver ticks at a higher rate to catch up with the missed ticks.
534 # The guest OS will not notice anything is amiss, as from its point
535 # of view time will have continued to flow normally. Once the timer
536 # has managed to catch up with all the missing ticks, the time in
537 # the guest and in the host should match.
541 { 'enum': 'LostTickPolicy',
542 'data': ['discard', 'delay', 'slew' ] }
547 # Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
548 # The command fails when the guest doesn't support injecting.
550 # Returns: If successful, nothing
554 # Note: prior to 2.1, this command was only supported for x86 and s390 VMs
558 # -> { "execute": "inject-nmi" }
559 # <- { "return": {} }
562 { 'command': 'inject-nmi' }
567 # Information about support for KVM acceleration
569 # @enabled: true if KVM acceleration is active
571 # @present: true if KVM acceleration is built into this executable
575 { 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
580 # Returns information about KVM acceleration
588 # -> { "execute": "query-kvm" }
589 # <- { "return": { "enabled": true, "present": true } }
592 { 'command': 'query-kvm', 'returns': 'KvmInfo' }
597 # @node: NUMA nodes configuration
599 # @dist: NUMA distance configuration (since 2.10)
601 # @cpu: property based CPU(s) to node mapping (Since: 2.10)
603 # @hmat-lb: memory latency and bandwidth information (Since: 5.0)
605 # @hmat-cache: memory side cache information (Since: 5.0)
609 { 'enum': 'NumaOptionsType',
610 'data': [ 'node', 'dist', 'cpu', 'hmat-lb', 'hmat-cache' ] }
615 # A discriminated record of NUMA options. (for OptsVisitor)
619 { 'union': 'NumaOptions',
620 'base': { 'type': 'NumaOptionsType' },
621 'discriminator': 'type',
623 'node': 'NumaNodeOptions',
624 'dist': 'NumaDistOptions',
625 'cpu': 'NumaCpuOptions',
626 'hmat-lb': 'NumaHmatLBOptions',
627 'hmat-cache': 'NumaHmatCacheOptions' }}
632 # Create a guest NUMA node. (for OptsVisitor)
634 # @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
636 # @cpus: VCPUs belonging to this node (assign VCPUS round-robin
639 # @mem: memory size of this node; mutually exclusive with @memdev.
640 # Equally divide total memory among nodes if both @mem and @memdev are
643 # @memdev: memory backend object. If specified for one node,
644 # it must be specified for all nodes.
646 # @initiator: defined in ACPI 6.3 Chapter 5.2.27.3 Table 5-145,
647 # points to the nodeid which has the memory controller
648 # responsible for this NUMA node. This field provides
649 # additional information as to the initiator node that
650 # is closest (as in directly attached) to this node, and
651 # therefore has the best performance (since 5.0)
655 { 'struct': 'NumaNodeOptions',
661 '*initiator': 'uint16' }}
666 # Set the distance between 2 NUMA nodes.
668 # @src: source NUMA node.
670 # @dst: destination NUMA node.
672 # @val: NUMA distance from source node to destination node.
673 # When a node is unreachable from another node, set the distance
674 # between them to 255.
678 { 'struct': 'NumaDistOptions',
687 # A X86 32-bit register
691 { 'enum': 'X86CPURegister32',
692 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
695 # @X86CPUFeatureWordInfo:
697 # Information about a X86 CPU feature word
699 # @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
701 # @cpuid-input-ecx: Input ECX value for CPUID instruction for that
704 # @cpuid-register: Output register containing the feature bits
706 # @features: value of output register, containing the feature bits
710 { 'struct': 'X86CPUFeatureWordInfo',
711 'data': { 'cpuid-input-eax': 'int',
712 '*cpuid-input-ecx': 'int',
713 'cpuid-register': 'X86CPURegister32',
714 'features': 'int' } }
719 # Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
723 { 'struct': 'DummyForceArrays',
724 'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
729 # Option "-numa cpu" overrides default cpu to node mapping.
730 # It accepts the same set of cpu properties as returned by
731 # query-hotpluggable-cpus[].props, where node-id could be used to
732 # override default node mapping.
736 { 'struct': 'NumaCpuOptions',
737 'base': 'CpuInstanceProperties',
741 # @HmatLBMemoryHierarchy:
743 # The memory hierarchy in the System Locality Latency and Bandwidth
744 # Information Structure of HMAT (Heterogeneous Memory Attribute Table)
746 # For more information about @HmatLBMemoryHierarchy, see chapter
747 # 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec.
749 # @memory: the structure represents the memory performance
751 # @first-level: first level of memory side cache
753 # @second-level: second level of memory side cache
755 # @third-level: third level of memory side cache
759 { 'enum': 'HmatLBMemoryHierarchy',
760 'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] }
765 # Data type in the System Locality Latency and Bandwidth
766 # Information Structure of HMAT (Heterogeneous Memory Attribute Table)
768 # For more information about @HmatLBDataType, see chapter
769 # 5.2.27.4: Table 5-146: Field "Data Type" of ACPI 6.3 spec.
771 # @access-latency: access latency (nanoseconds)
773 # @read-latency: read latency (nanoseconds)
775 # @write-latency: write latency (nanoseconds)
777 # @access-bandwidth: access bandwidth (Bytes per second)
779 # @read-bandwidth: read bandwidth (Bytes per second)
781 # @write-bandwidth: write bandwidth (Bytes per second)
785 { 'enum': 'HmatLBDataType',
786 'data': [ 'access-latency', 'read-latency', 'write-latency',
787 'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] }
790 # @NumaHmatLBOptions:
792 # Set the system locality latency and bandwidth information
793 # between Initiator and Target proximity Domains.
795 # For more information about @NumaHmatLBOptions, see chapter
796 # 5.2.27.4: Table 5-146 of ACPI 6.3 spec.
798 # @initiator: the Initiator Proximity Domain.
800 # @target: the Target Proximity Domain.
802 # @hierarchy: the Memory Hierarchy. Indicates the performance
803 # of memory or side cache.
805 # @data-type: presents the type of data, access/read/write
806 # latency or hit latency.
808 # @latency: the value of latency from @initiator to @target
809 # proximity domain, the latency unit is "ns(nanosecond)".
811 # @bandwidth: the value of bandwidth between @initiator and @target
812 # proximity domain, the bandwidth unit is
813 # "Bytes per second".
817 { 'struct': 'NumaHmatLBOptions',
819 'initiator': 'uint16',
821 'hierarchy': 'HmatLBMemoryHierarchy',
822 'data-type': 'HmatLBDataType',
823 '*latency': 'uint64',
824 '*bandwidth': 'size' }}
827 # @HmatCacheAssociativity:
829 # Cache associativity in the Memory Side Cache Information Structure
832 # For more information of @HmatCacheAssociativity, see chapter
833 # 5.2.27.5: Table 5-147 of ACPI 6.3 spec.
835 # @none: None (no memory side cache in this proximity domain,
836 # or cache associativity unknown)
838 # @direct: Direct Mapped
840 # @complex: Complex Cache Indexing (implementation specific)
844 { 'enum': 'HmatCacheAssociativity',
845 'data': [ 'none', 'direct', 'complex' ] }
848 # @HmatCacheWritePolicy:
850 # Cache write policy in the Memory Side Cache Information Structure
853 # For more information of @HmatCacheWritePolicy, see chapter
854 # 5.2.27.5: Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
856 # @none: None (no memory side cache in this proximity domain,
857 # or cache write policy unknown)
859 # @write-back: Write Back (WB)
861 # @write-through: Write Through (WT)
865 { 'enum': 'HmatCacheWritePolicy',
866 'data': [ 'none', 'write-back', 'write-through' ] }
869 # @NumaHmatCacheOptions:
871 # Set the memory side cache information for a given memory domain.
873 # For more information of @NumaHmatCacheOptions, see chapter
874 # 5.2.27.5: Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
876 # @node-id: the memory proximity domain to which the memory belongs.
878 # @size: the size of memory side cache in bytes.
880 # @level: the cache level described in this structure.
882 # @associativity: the cache associativity,
883 # none/direct-mapped/complex(complex cache indexing).
885 # @policy: the write policy, none/write-back/write-through.
887 # @line: the cache Line size in bytes.
891 { 'struct': 'NumaHmatCacheOptions',
896 'associativity': 'HmatCacheAssociativity',
897 'policy': 'HmatCacheWritePolicy',
903 # Host memory policy types
905 # @default: restore default policy, remove any nondefault policy
907 # @preferred: set the preferred host nodes for allocation
909 # @bind: a strict policy that restricts memory allocation to the
910 # host nodes specified
912 # @interleave: memory allocations are interleaved across the set
913 # of host nodes specified
917 { 'enum': 'HostMemPolicy',
918 'data': [ 'default', 'preferred', 'bind', 'interleave' ] }
923 # Save a portion of guest memory to a file.
925 # @val: the virtual address of the guest to start from
927 # @size: the size of memory region to save
929 # @filename: the file to save the memory to as binary data
931 # @cpu-index: the index of the virtual CPU to use for translating the
932 # virtual address (defaults to CPU 0)
934 # Returns: Nothing on success
938 # Notes: Errors were not reliably returned until 1.1
942 # -> { "execute": "memsave",
943 # "arguments": { "val": 10,
945 # "filename": "/tmp/virtual-mem-dump" } }
946 # <- { "return": {} }
949 { 'command': 'memsave',
950 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
955 # Save a portion of guest physical memory to a file.
957 # @val: the physical address of the guest to start from
959 # @size: the size of memory region to save
961 # @filename: the file to save the memory to as binary data
963 # Returns: Nothing on success
967 # Notes: Errors were not reliably returned until 1.1
971 # -> { "execute": "pmemsave",
972 # "arguments": { "val": 10,
974 # "filename": "/tmp/physical-mem-dump" } }
975 # <- { "return": {} }
978 { 'command': 'pmemsave',
979 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
984 # Information about memory backend
986 # @id: backend's ID if backend has 'id' property (since 2.9)
988 # @size: memory backend size
990 # @merge: enables or disables memory merge support
992 # @dump: includes memory backend's memory in a core dump or not
994 # @prealloc: enables or disables memory preallocation
996 # @host-nodes: host nodes for its memory policy
998 # @policy: memory policy of memory backend
1002 { 'struct': 'Memdev',
1009 'host-nodes': ['uint16'],
1010 'policy': 'HostMemPolicy' }}
1015 # Returns information for all memory backends.
1017 # Returns: a list of @Memdev.
1023 # -> { "execute": "query-memdev" }
1027 # "size": 536870912,
1030 # "prealloc": false,
1031 # "host-nodes": [0, 1],
1035 # "size": 536870912,
1039 # "host-nodes": [2, 3],
1040 # "policy": "preferred"
1046 { 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true }
1049 # @CpuInstanceProperties:
1051 # List of properties to be used for hotplugging a CPU instance,
1052 # it should be passed by management with device_add command when
1053 # a CPU is being hotplugged.
1055 # @node-id: NUMA node ID the CPU belongs to
1056 # @socket-id: socket number within node/board the CPU belongs to
1057 # @die-id: die number within node/board the CPU belongs to (Since 4.1)
1058 # @core-id: core number within die the CPU belongs to
1059 # @thread-id: thread number within core the CPU belongs to
1061 # Note: currently there are 5 properties that could be present
1062 # but management should be prepared to pass through other
1063 # properties with device_add command to allow for future
1064 # interface extension. This also requires the filed names to be kept in
1065 # sync with the properties passed to -device/device_add.
1069 { 'struct': 'CpuInstanceProperties',
1070 'data': { '*node-id': 'int',
1071 '*socket-id': 'int',
1081 # @type: CPU object type for usage with device_add command
1082 # @props: list of properties to be used for hotplugging CPU
1083 # @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
1084 # @qom-path: link to existing CPU object if CPU is present or
1085 # omitted if CPU is not present.
1089 { 'struct': 'HotpluggableCPU',
1090 'data': { 'type': 'str',
1091 'vcpus-count': 'int',
1092 'props': 'CpuInstanceProperties',
1098 # @query-hotpluggable-cpus:
1100 # TODO: Better documentation; currently there is none.
1102 # Returns: a list of HotpluggableCPU objects.
1108 # For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
1110 # -> { "execute": "query-hotpluggable-cpus" }
1112 # { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core",
1113 # "vcpus-count": 1 },
1114 # { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core",
1115 # "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
1118 # For pc machine type started with -smp 1,maxcpus=2:
1120 # -> { "execute": "query-hotpluggable-cpus" }
1123 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
1124 # "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
1127 # "qom-path": "/machine/unattached/device[0]",
1128 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
1129 # "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
1133 # For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu
1136 # -> { "execute": "query-hotpluggable-cpus" }
1139 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
1140 # "props": { "core-id": 1 }
1143 # "qom-path": "/machine/unattached/device[0]",
1144 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
1145 # "props": { "core-id": 0 }
1150 { 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
1151 'allow-preconfig': true }
1156 # Runtime equivalent of '-numa' CLI option, available at
1157 # preconfigure stage to configure numa mapping before initializing
1162 { 'command': 'set-numa-node', 'boxed': true,
1163 'data': 'NumaOptions',
1164 'allow-preconfig': true
1170 # Request the balloon driver to change its balloon size.
1172 # @value: the target logical size of the VM in bytes.
1173 # We can deduce the size of the balloon using this formula:
1175 # logical_vm_size = vm_ram_size - balloon_size
1177 # From it we have: balloon_size = vm_ram_size - @value
1179 # Returns: - Nothing on success
1180 # - If the balloon driver is enabled but not functional because the KVM
1181 # kernel module cannot support it, KvmMissingCap
1182 # - If no balloon device is present, DeviceNotActive
1184 # Notes: This command just issues a request to the guest. When it returns,
1185 # the balloon size may not have changed. A guest can change the balloon
1186 # size independent of this command.
1192 # -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1193 # <- { "return": {} }
1195 # With a 2.5GiB guest this command inflated the ballon to 3GiB.
1198 { 'command': 'balloon', 'data': {'value': 'int'} }
1203 # Information about the guest balloon device.
1205 # @actual: the logical size of the VM in bytes
1206 # Formula used: logical_vm_size = vm_ram_size - balloon_size
1211 { 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
1216 # Return information about the balloon device.
1218 # Returns: - @BalloonInfo on success
1219 # - If the balloon driver is enabled but not functional because the KVM
1220 # kernel module cannot support it, KvmMissingCap
1221 # - If no balloon device is present, DeviceNotActive
1227 # -> { "execute": "query-balloon" }
1229 # "actual": 1073741824,
1234 { 'command': 'query-balloon', 'returns': 'BalloonInfo' }
1239 # Emitted when the guest changes the actual BALLOON level. This value is
1240 # equivalent to the @actual field return by the 'query-balloon' command
1242 # @actual: the logical size of the VM in bytes
1243 # Formula used: logical_vm_size = vm_ram_size - balloon_size
1245 # Note: this event is rate-limited.
1251 # <- { "event": "BALLOON_CHANGE",
1252 # "data": { "actual": 944766976 },
1253 # "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
1256 { 'event': 'BALLOON_CHANGE',
1257 'data': { 'actual': 'int' } }
1262 # Actual memory information in bytes.
1264 # @base-memory: size of "base" memory specified with command line
1267 # @plugged-memory: size of memory that can be hot-unplugged. This field
1268 # is omitted if target doesn't support memory hotplug
1269 # (i.e. CONFIG_MEM_DEVICE not defined at build time).
1273 { 'struct': 'MemoryInfo',
1274 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } }
1277 # @query-memory-size-summary:
1279 # Return the amount of initially allocated and present hotpluggable (if
1280 # enabled) memory in bytes.
1284 # -> { "execute": "query-memory-size-summary" }
1285 # <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
1289 { 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
1292 # @PCDIMMDeviceInfo:
1294 # PCDIMMDevice state information
1298 # @addr: physical address, where device is mapped
1300 # @size: size of memory that the device provides
1302 # @slot: slot number at which device is plugged in
1304 # @node: NUMA node number where device is plugged in
1306 # @memdev: memory backend linked with device
1308 # @hotplugged: true if device was hotplugged
1310 # @hotpluggable: true if device if could be added/removed while machine is running
1314 { 'struct': 'PCDIMMDeviceInfo',
1315 'data': { '*id': 'str',
1321 'hotplugged': 'bool',
1322 'hotpluggable': 'bool'
1327 # @VirtioPMEMDeviceInfo:
1329 # VirtioPMEM state information
1333 # @memaddr: physical address in memory, where device is mapped
1335 # @size: size of memory that the device provides
1337 # @memdev: memory backend linked with device
1341 { 'struct': 'VirtioPMEMDeviceInfo',
1342 'data': { '*id': 'str',
1350 # @VirtioMEMDeviceInfo:
1352 # VirtioMEMDevice state information
1356 # @memaddr: physical address in memory, where device is mapped
1358 # @requested-size: the user requested size of the device
1360 # @size: the (current) size of memory that the device provides
1362 # @max-size: the maximum size of memory that the device can provide
1364 # @block-size: the block size of memory that the device provides
1366 # @node: NUMA node number where device is assigned to
1368 # @memdev: memory backend linked with the region
1372 { 'struct': 'VirtioMEMDeviceInfo',
1373 'data': { '*id': 'str',
1375 'requested-size': 'size',
1378 'block-size': 'size',
1385 # @MemoryDeviceInfo:
1387 # Union containing information about a memory device
1389 # nvdimm is included since 2.12. virtio-pmem is included since 4.1.
1390 # virtio-mem is included since 5.1.
1394 { 'union': 'MemoryDeviceInfo',
1395 'data': { 'dimm': 'PCDIMMDeviceInfo',
1396 'nvdimm': 'PCDIMMDeviceInfo',
1397 'virtio-pmem': 'VirtioPMEMDeviceInfo',
1398 'virtio-mem': 'VirtioMEMDeviceInfo'
1403 # @query-memory-devices:
1405 # Lists available memory devices and their state
1411 # -> { "execute": "query-memory-devices" }
1412 # <- { "return": [ { "data":
1413 # { "addr": 5368709120,
1414 # "hotpluggable": true,
1415 # "hotplugged": true,
1417 # "memdev": "/objects/memX",
1419 # "size": 1073741824,
1425 { 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
1428 # @MEMORY_DEVICE_SIZE_CHANGE:
1430 # Emitted when the size of a memory device changes. Only emitted for memory
1431 # devices that can actually change the size (e.g., virtio-mem due to guest
1435 # @size: the new size of memory that the device provides
1437 # Note: this event is rate-limited.
1443 # <- { "event": "MEMORY_DEVICE_SIZE_CHANGE",
1444 # "data": { "id": "vm0", "size": 1073741824},
1445 # "timestamp": { "seconds": 1588168529, "microseconds": 201316 } }
1448 { 'event': 'MEMORY_DEVICE_SIZE_CHANGE',
1449 'data': { '*id': 'str', 'size': 'size' } }
1453 # @MEM_UNPLUG_ERROR:
1455 # Emitted when memory hot unplug error occurs.
1457 # @device: device name
1459 # @msg: Informative message
1465 # <- { "event": "MEM_UNPLUG_ERROR"
1466 # "data": { "device": "dimm1",
1467 # "msg": "acpi: device unplug for unsupported device"
1469 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1472 { 'event': 'MEM_UNPLUG_ERROR',
1473 'data': { 'device': 'str', 'msg': 'str' } }