vfio/pci: Cache vendor and device ID
[qemu/ar7.git] / target-arm / internals.h
blob36a56aadb0b5222a97a1417bf465d3aaef09ae5f
1 /*
2 * QEMU ARM CPU -- internal functions and types
4 * Copyright (c) 2014 Linaro Ltd
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
20 * This header defines functions, types, etc which need to be shared
21 * between different source files within target-arm/ but which are
22 * private to it and not required by the rest of QEMU.
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
28 static inline bool excp_is_internal(int excp)
30 /* Return true if this exception number represents a QEMU-internal
31 * exception that will not be passed to the guest.
33 return excp == EXCP_INTERRUPT
34 || excp == EXCP_HLT
35 || excp == EXCP_DEBUG
36 || excp == EXCP_HALTED
37 || excp == EXCP_EXCEPTION_EXIT
38 || excp == EXCP_KERNEL_TRAP
39 || excp == EXCP_SEMIHOST
40 || excp == EXCP_STREX;
43 /* Exception names for debug logging; note that not all of these
44 * precisely correspond to architectural exceptions.
46 static const char * const excnames[] = {
47 [EXCP_UDEF] = "Undefined Instruction",
48 [EXCP_SWI] = "SVC",
49 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
50 [EXCP_DATA_ABORT] = "Data Abort",
51 [EXCP_IRQ] = "IRQ",
52 [EXCP_FIQ] = "FIQ",
53 [EXCP_BKPT] = "Breakpoint",
54 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
55 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
56 [EXCP_STREX] = "QEMU intercept of STREX",
57 [EXCP_HVC] = "Hypervisor Call",
58 [EXCP_HYP_TRAP] = "Hypervisor Trap",
59 [EXCP_SMC] = "Secure Monitor Call",
60 [EXCP_VIRQ] = "Virtual IRQ",
61 [EXCP_VFIQ] = "Virtual FIQ",
62 [EXCP_SEMIHOST] = "Semihosting call",
65 static inline void arm_log_exception(int idx)
67 if (qemu_loglevel_mask(CPU_LOG_INT)) {
68 const char *exc = NULL;
70 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
71 exc = excnames[idx];
73 if (!exc) {
74 exc = "unknown";
76 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
80 /* Scale factor for generic timers, ie number of ns per tick.
81 * This gives a 62.5MHz timer.
83 #define GTIMER_SCALE 16
86 * For AArch64, map a given EL to an index in the banked_spsr array.
87 * Note that this mapping and the AArch32 mapping defined in bank_number()
88 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
89 * mandated mapping between each other.
91 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
93 static const unsigned int map[4] = {
94 [1] = 1, /* EL1. */
95 [2] = 6, /* EL2. */
96 [3] = 7, /* EL3. */
98 assert(el >= 1 && el <= 3);
99 return map[el];
102 int bank_number(int mode);
103 void switch_mode(CPUARMState *, int);
104 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
105 void arm_translate_init(void);
107 enum arm_fprounding {
108 FPROUNDING_TIEEVEN,
109 FPROUNDING_POSINF,
110 FPROUNDING_NEGINF,
111 FPROUNDING_ZERO,
112 FPROUNDING_TIEAWAY,
113 FPROUNDING_ODD
116 int arm_rmode_to_sf(int rmode);
118 static inline void aarch64_save_sp(CPUARMState *env, int el)
120 if (env->pstate & PSTATE_SP) {
121 env->sp_el[el] = env->xregs[31];
122 } else {
123 env->sp_el[0] = env->xregs[31];
127 static inline void aarch64_restore_sp(CPUARMState *env, int el)
129 if (env->pstate & PSTATE_SP) {
130 env->xregs[31] = env->sp_el[el];
131 } else {
132 env->xregs[31] = env->sp_el[0];
136 static inline void update_spsel(CPUARMState *env, uint32_t imm)
138 unsigned int cur_el = arm_current_el(env);
139 /* Update PSTATE SPSel bit; this requires us to update the
140 * working stack pointer in xregs[31].
142 if (!((imm ^ env->pstate) & PSTATE_SP)) {
143 return;
145 aarch64_save_sp(env, cur_el);
146 env->pstate = deposit32(env->pstate, 0, 1, imm);
148 /* We rely on illegal updates to SPsel from EL0 to get trapped
149 * at translation time.
151 assert(cur_el >= 1 && cur_el <= 3);
152 aarch64_restore_sp(env, cur_el);
155 /* Return true if extended addresses are enabled.
156 * This is always the case if our translation regime is 64 bit,
157 * but depends on TTBCR.EAE for 32 bit.
159 static inline bool extended_addresses_enabled(CPUARMState *env)
161 TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
162 return arm_el_is_aa64(env, 1) ||
163 (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
166 /* Valid Syndrome Register EC field values */
167 enum arm_exception_class {
168 EC_UNCATEGORIZED = 0x00,
169 EC_WFX_TRAP = 0x01,
170 EC_CP15RTTRAP = 0x03,
171 EC_CP15RRTTRAP = 0x04,
172 EC_CP14RTTRAP = 0x05,
173 EC_CP14DTTRAP = 0x06,
174 EC_ADVSIMDFPACCESSTRAP = 0x07,
175 EC_FPIDTRAP = 0x08,
176 EC_CP14RRTTRAP = 0x0c,
177 EC_ILLEGALSTATE = 0x0e,
178 EC_AA32_SVC = 0x11,
179 EC_AA32_HVC = 0x12,
180 EC_AA32_SMC = 0x13,
181 EC_AA64_SVC = 0x15,
182 EC_AA64_HVC = 0x16,
183 EC_AA64_SMC = 0x17,
184 EC_SYSTEMREGISTERTRAP = 0x18,
185 EC_INSNABORT = 0x20,
186 EC_INSNABORT_SAME_EL = 0x21,
187 EC_PCALIGNMENT = 0x22,
188 EC_DATAABORT = 0x24,
189 EC_DATAABORT_SAME_EL = 0x25,
190 EC_SPALIGNMENT = 0x26,
191 EC_AA32_FPTRAP = 0x28,
192 EC_AA64_FPTRAP = 0x2c,
193 EC_SERROR = 0x2f,
194 EC_BREAKPOINT = 0x30,
195 EC_BREAKPOINT_SAME_EL = 0x31,
196 EC_SOFTWARESTEP = 0x32,
197 EC_SOFTWARESTEP_SAME_EL = 0x33,
198 EC_WATCHPOINT = 0x34,
199 EC_WATCHPOINT_SAME_EL = 0x35,
200 EC_AA32_BKPT = 0x38,
201 EC_VECTORCATCH = 0x3a,
202 EC_AA64_BKPT = 0x3c,
205 #define ARM_EL_EC_SHIFT 26
206 #define ARM_EL_IL_SHIFT 25
207 #define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
209 /* Utility functions for constructing various kinds of syndrome value.
210 * Note that in general we follow the AArch64 syndrome values; in a
211 * few cases the value in HSR for exceptions taken to AArch32 Hyp
212 * mode differs slightly, so if we ever implemented Hyp mode then the
213 * syndrome value would need some massaging on exception entry.
214 * (One example of this is that AArch64 defaults to IL bit set for
215 * exceptions which don't specifically indicate information about the
216 * trapping instruction, whereas AArch32 defaults to IL bit clear.)
218 static inline uint32_t syn_uncategorized(void)
220 return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
223 static inline uint32_t syn_aa64_svc(uint32_t imm16)
225 return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
228 static inline uint32_t syn_aa64_hvc(uint32_t imm16)
230 return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
233 static inline uint32_t syn_aa64_smc(uint32_t imm16)
235 return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
238 static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_thumb)
240 return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
241 | (is_thumb ? 0 : ARM_EL_IL);
244 static inline uint32_t syn_aa32_hvc(uint32_t imm16)
246 return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
249 static inline uint32_t syn_aa32_smc(void)
251 return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
254 static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
256 return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
259 static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_thumb)
261 return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
262 | (is_thumb ? 0 : ARM_EL_IL);
265 static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
266 int crn, int crm, int rt,
267 int isread)
269 return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
270 | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
271 | (crm << 1) | isread;
274 static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
275 int crn, int crm, int rt, int isread,
276 bool is_thumb)
278 return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
279 | (is_thumb ? 0 : ARM_EL_IL)
280 | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
281 | (crn << 10) | (rt << 5) | (crm << 1) | isread;
284 static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
285 int crn, int crm, int rt, int isread,
286 bool is_thumb)
288 return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
289 | (is_thumb ? 0 : ARM_EL_IL)
290 | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
291 | (crn << 10) | (rt << 5) | (crm << 1) | isread;
294 static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
295 int rt, int rt2, int isread,
296 bool is_thumb)
298 return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
299 | (is_thumb ? 0 : ARM_EL_IL)
300 | (cv << 24) | (cond << 20) | (opc1 << 16)
301 | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
304 static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
305 int rt, int rt2, int isread,
306 bool is_thumb)
308 return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
309 | (is_thumb ? 0 : ARM_EL_IL)
310 | (cv << 24) | (cond << 20) | (opc1 << 16)
311 | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
314 static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_thumb)
316 return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
317 | (is_thumb ? 0 : ARM_EL_IL)
318 | (cv << 24) | (cond << 20);
321 static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
323 return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
324 | (ea << 9) | (s1ptw << 7) | fsc;
327 static inline uint32_t syn_data_abort(int same_el, int ea, int cm, int s1ptw,
328 int wnr, int fsc)
330 return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
331 | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
334 static inline uint32_t syn_swstep(int same_el, int isv, int ex)
336 return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
337 | (isv << 24) | (ex << 6) | 0x22;
340 static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
342 return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
343 | (cm << 8) | (wnr << 6) | 0x22;
346 static inline uint32_t syn_breakpoint(int same_el)
348 return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
349 | ARM_EL_IL | 0x22;
352 static inline uint32_t syn_wfx(int cv, int cond, int ti)
354 return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) |
355 (cv << 24) | (cond << 20) | ti;
358 /* Update a QEMU watchpoint based on the information the guest has set in the
359 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
361 void hw_watchpoint_update(ARMCPU *cpu, int n);
362 /* Update the QEMU watchpoints for every guest watchpoint. This does a
363 * complete delete-and-reinstate of the QEMU watchpoint list and so is
364 * suitable for use after migration or on reset.
366 void hw_watchpoint_update_all(ARMCPU *cpu);
367 /* Update a QEMU breakpoint based on the information the guest has set in the
368 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
370 void hw_breakpoint_update(ARMCPU *cpu, int n);
371 /* Update the QEMU breakpoints for every guest breakpoint. This does a
372 * complete delete-and-reinstate of the QEMU breakpoint list and so is
373 * suitable for use after migration or on reset.
375 void hw_breakpoint_update_all(ARMCPU *cpu);
377 /* Callback function for when a watchpoint or breakpoint triggers. */
378 void arm_debug_excp_handler(CPUState *cs);
380 #ifdef CONFIG_USER_ONLY
381 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
383 return false;
385 #else
386 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
387 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
388 /* Actually handle a PSCI call */
389 void arm_handle_psci_call(ARMCPU *cpu);
390 #endif
392 /* Do a page table walk and add page to TLB if possible */
393 bool arm_tlb_fill(CPUState *cpu, vaddr address, int rw, int mmu_idx,
394 uint32_t *fsr);
396 #endif