target/arm: Remove fp_status from helper_{recpe, rsqrte}_u32
[qemu/ar7.git] / target / arm / vec_helper.c
blob096fea67efc84592130764e7995f3a9b48d95768
1 /*
2 * ARM AdvSIMD / SVE Vector Operations
4 * Copyright (c) 2018 Linaro
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/helper-proto.h"
23 #include "tcg/tcg-gvec-desc.h"
24 #include "fpu/softfloat.h"
27 /* Note that vector data is stored in host-endian 64-bit chunks,
28 so addressing units smaller than that needs a host-endian fixup. */
29 #ifdef HOST_WORDS_BIGENDIAN
30 #define H1(x) ((x) ^ 7)
31 #define H2(x) ((x) ^ 3)
32 #define H4(x) ((x) ^ 1)
33 #else
34 #define H1(x) (x)
35 #define H2(x) (x)
36 #define H4(x) (x)
37 #endif
39 #define SET_QC() env->vfp.qc[0] = 1
41 static void clear_tail(void *vd, uintptr_t opr_sz, uintptr_t max_sz)
43 uint64_t *d = vd + opr_sz;
44 uintptr_t i;
46 for (i = opr_sz; i < max_sz; i += 8) {
47 *d++ = 0;
51 /* Signed saturating rounding doubling multiply-accumulate high half, 16-bit */
52 static uint16_t inl_qrdmlah_s16(CPUARMState *env, int16_t src1,
53 int16_t src2, int16_t src3)
55 /* Simplify:
56 * = ((a3 << 16) + ((e1 * e2) << 1) + (1 << 15)) >> 16
57 * = ((a3 << 15) + (e1 * e2) + (1 << 14)) >> 15
59 int32_t ret = (int32_t)src1 * src2;
60 ret = ((int32_t)src3 << 15) + ret + (1 << 14);
61 ret >>= 15;
62 if (ret != (int16_t)ret) {
63 SET_QC();
64 ret = (ret < 0 ? -0x8000 : 0x7fff);
66 return ret;
69 uint32_t HELPER(neon_qrdmlah_s16)(CPUARMState *env, uint32_t src1,
70 uint32_t src2, uint32_t src3)
72 uint16_t e1 = inl_qrdmlah_s16(env, src1, src2, src3);
73 uint16_t e2 = inl_qrdmlah_s16(env, src1 >> 16, src2 >> 16, src3 >> 16);
74 return deposit32(e1, 16, 16, e2);
77 void HELPER(gvec_qrdmlah_s16)(void *vd, void *vn, void *vm,
78 void *ve, uint32_t desc)
80 uintptr_t opr_sz = simd_oprsz(desc);
81 int16_t *d = vd;
82 int16_t *n = vn;
83 int16_t *m = vm;
84 CPUARMState *env = ve;
85 uintptr_t i;
87 for (i = 0; i < opr_sz / 2; ++i) {
88 d[i] = inl_qrdmlah_s16(env, n[i], m[i], d[i]);
90 clear_tail(d, opr_sz, simd_maxsz(desc));
93 /* Signed saturating rounding doubling multiply-subtract high half, 16-bit */
94 static uint16_t inl_qrdmlsh_s16(CPUARMState *env, int16_t src1,
95 int16_t src2, int16_t src3)
97 /* Similarly, using subtraction:
98 * = ((a3 << 16) - ((e1 * e2) << 1) + (1 << 15)) >> 16
99 * = ((a3 << 15) - (e1 * e2) + (1 << 14)) >> 15
101 int32_t ret = (int32_t)src1 * src2;
102 ret = ((int32_t)src3 << 15) - ret + (1 << 14);
103 ret >>= 15;
104 if (ret != (int16_t)ret) {
105 SET_QC();
106 ret = (ret < 0 ? -0x8000 : 0x7fff);
108 return ret;
111 uint32_t HELPER(neon_qrdmlsh_s16)(CPUARMState *env, uint32_t src1,
112 uint32_t src2, uint32_t src3)
114 uint16_t e1 = inl_qrdmlsh_s16(env, src1, src2, src3);
115 uint16_t e2 = inl_qrdmlsh_s16(env, src1 >> 16, src2 >> 16, src3 >> 16);
116 return deposit32(e1, 16, 16, e2);
119 void HELPER(gvec_qrdmlsh_s16)(void *vd, void *vn, void *vm,
120 void *ve, uint32_t desc)
122 uintptr_t opr_sz = simd_oprsz(desc);
123 int16_t *d = vd;
124 int16_t *n = vn;
125 int16_t *m = vm;
126 CPUARMState *env = ve;
127 uintptr_t i;
129 for (i = 0; i < opr_sz / 2; ++i) {
130 d[i] = inl_qrdmlsh_s16(env, n[i], m[i], d[i]);
132 clear_tail(d, opr_sz, simd_maxsz(desc));
135 /* Signed saturating rounding doubling multiply-accumulate high half, 32-bit */
136 uint32_t HELPER(neon_qrdmlah_s32)(CPUARMState *env, int32_t src1,
137 int32_t src2, int32_t src3)
139 /* Simplify similarly to int_qrdmlah_s16 above. */
140 int64_t ret = (int64_t)src1 * src2;
141 ret = ((int64_t)src3 << 31) + ret + (1 << 30);
142 ret >>= 31;
143 if (ret != (int32_t)ret) {
144 SET_QC();
145 ret = (ret < 0 ? INT32_MIN : INT32_MAX);
147 return ret;
150 void HELPER(gvec_qrdmlah_s32)(void *vd, void *vn, void *vm,
151 void *ve, uint32_t desc)
153 uintptr_t opr_sz = simd_oprsz(desc);
154 int32_t *d = vd;
155 int32_t *n = vn;
156 int32_t *m = vm;
157 CPUARMState *env = ve;
158 uintptr_t i;
160 for (i = 0; i < opr_sz / 4; ++i) {
161 d[i] = helper_neon_qrdmlah_s32(env, n[i], m[i], d[i]);
163 clear_tail(d, opr_sz, simd_maxsz(desc));
166 /* Signed saturating rounding doubling multiply-subtract high half, 32-bit */
167 uint32_t HELPER(neon_qrdmlsh_s32)(CPUARMState *env, int32_t src1,
168 int32_t src2, int32_t src3)
170 /* Simplify similarly to int_qrdmlsh_s16 above. */
171 int64_t ret = (int64_t)src1 * src2;
172 ret = ((int64_t)src3 << 31) - ret + (1 << 30);
173 ret >>= 31;
174 if (ret != (int32_t)ret) {
175 SET_QC();
176 ret = (ret < 0 ? INT32_MIN : INT32_MAX);
178 return ret;
181 void HELPER(gvec_qrdmlsh_s32)(void *vd, void *vn, void *vm,
182 void *ve, uint32_t desc)
184 uintptr_t opr_sz = simd_oprsz(desc);
185 int32_t *d = vd;
186 int32_t *n = vn;
187 int32_t *m = vm;
188 CPUARMState *env = ve;
189 uintptr_t i;
191 for (i = 0; i < opr_sz / 4; ++i) {
192 d[i] = helper_neon_qrdmlsh_s32(env, n[i], m[i], d[i]);
194 clear_tail(d, opr_sz, simd_maxsz(desc));
197 /* Integer 8 and 16-bit dot-product.
199 * Note that for the loops herein, host endianness does not matter
200 * with respect to the ordering of data within the 64-bit lanes.
201 * All elements are treated equally, no matter where they are.
204 void HELPER(gvec_sdot_b)(void *vd, void *vn, void *vm, uint32_t desc)
206 intptr_t i, opr_sz = simd_oprsz(desc);
207 uint32_t *d = vd;
208 int8_t *n = vn, *m = vm;
210 for (i = 0; i < opr_sz / 4; ++i) {
211 d[i] += n[i * 4 + 0] * m[i * 4 + 0]
212 + n[i * 4 + 1] * m[i * 4 + 1]
213 + n[i * 4 + 2] * m[i * 4 + 2]
214 + n[i * 4 + 3] * m[i * 4 + 3];
216 clear_tail(d, opr_sz, simd_maxsz(desc));
219 void HELPER(gvec_udot_b)(void *vd, void *vn, void *vm, uint32_t desc)
221 intptr_t i, opr_sz = simd_oprsz(desc);
222 uint32_t *d = vd;
223 uint8_t *n = vn, *m = vm;
225 for (i = 0; i < opr_sz / 4; ++i) {
226 d[i] += n[i * 4 + 0] * m[i * 4 + 0]
227 + n[i * 4 + 1] * m[i * 4 + 1]
228 + n[i * 4 + 2] * m[i * 4 + 2]
229 + n[i * 4 + 3] * m[i * 4 + 3];
231 clear_tail(d, opr_sz, simd_maxsz(desc));
234 void HELPER(gvec_sdot_h)(void *vd, void *vn, void *vm, uint32_t desc)
236 intptr_t i, opr_sz = simd_oprsz(desc);
237 uint64_t *d = vd;
238 int16_t *n = vn, *m = vm;
240 for (i = 0; i < opr_sz / 8; ++i) {
241 d[i] += (int64_t)n[i * 4 + 0] * m[i * 4 + 0]
242 + (int64_t)n[i * 4 + 1] * m[i * 4 + 1]
243 + (int64_t)n[i * 4 + 2] * m[i * 4 + 2]
244 + (int64_t)n[i * 4 + 3] * m[i * 4 + 3];
246 clear_tail(d, opr_sz, simd_maxsz(desc));
249 void HELPER(gvec_udot_h)(void *vd, void *vn, void *vm, uint32_t desc)
251 intptr_t i, opr_sz = simd_oprsz(desc);
252 uint64_t *d = vd;
253 uint16_t *n = vn, *m = vm;
255 for (i = 0; i < opr_sz / 8; ++i) {
256 d[i] += (uint64_t)n[i * 4 + 0] * m[i * 4 + 0]
257 + (uint64_t)n[i * 4 + 1] * m[i * 4 + 1]
258 + (uint64_t)n[i * 4 + 2] * m[i * 4 + 2]
259 + (uint64_t)n[i * 4 + 3] * m[i * 4 + 3];
261 clear_tail(d, opr_sz, simd_maxsz(desc));
264 void HELPER(gvec_sdot_idx_b)(void *vd, void *vn, void *vm, uint32_t desc)
266 intptr_t i, segend, opr_sz = simd_oprsz(desc), opr_sz_4 = opr_sz / 4;
267 intptr_t index = simd_data(desc);
268 uint32_t *d = vd;
269 int8_t *n = vn;
270 int8_t *m_indexed = (int8_t *)vm + index * 4;
272 /* Notice the special case of opr_sz == 8, from aa64/aa32 advsimd.
273 * Otherwise opr_sz is a multiple of 16.
275 segend = MIN(4, opr_sz_4);
276 i = 0;
277 do {
278 int8_t m0 = m_indexed[i * 4 + 0];
279 int8_t m1 = m_indexed[i * 4 + 1];
280 int8_t m2 = m_indexed[i * 4 + 2];
281 int8_t m3 = m_indexed[i * 4 + 3];
283 do {
284 d[i] += n[i * 4 + 0] * m0
285 + n[i * 4 + 1] * m1
286 + n[i * 4 + 2] * m2
287 + n[i * 4 + 3] * m3;
288 } while (++i < segend);
289 segend = i + 4;
290 } while (i < opr_sz_4);
292 clear_tail(d, opr_sz, simd_maxsz(desc));
295 void HELPER(gvec_udot_idx_b)(void *vd, void *vn, void *vm, uint32_t desc)
297 intptr_t i, segend, opr_sz = simd_oprsz(desc), opr_sz_4 = opr_sz / 4;
298 intptr_t index = simd_data(desc);
299 uint32_t *d = vd;
300 uint8_t *n = vn;
301 uint8_t *m_indexed = (uint8_t *)vm + index * 4;
303 /* Notice the special case of opr_sz == 8, from aa64/aa32 advsimd.
304 * Otherwise opr_sz is a multiple of 16.
306 segend = MIN(4, opr_sz_4);
307 i = 0;
308 do {
309 uint8_t m0 = m_indexed[i * 4 + 0];
310 uint8_t m1 = m_indexed[i * 4 + 1];
311 uint8_t m2 = m_indexed[i * 4 + 2];
312 uint8_t m3 = m_indexed[i * 4 + 3];
314 do {
315 d[i] += n[i * 4 + 0] * m0
316 + n[i * 4 + 1] * m1
317 + n[i * 4 + 2] * m2
318 + n[i * 4 + 3] * m3;
319 } while (++i < segend);
320 segend = i + 4;
321 } while (i < opr_sz_4);
323 clear_tail(d, opr_sz, simd_maxsz(desc));
326 void HELPER(gvec_sdot_idx_h)(void *vd, void *vn, void *vm, uint32_t desc)
328 intptr_t i, opr_sz = simd_oprsz(desc), opr_sz_8 = opr_sz / 8;
329 intptr_t index = simd_data(desc);
330 uint64_t *d = vd;
331 int16_t *n = vn;
332 int16_t *m_indexed = (int16_t *)vm + index * 4;
334 /* This is supported by SVE only, so opr_sz is always a multiple of 16.
335 * Process the entire segment all at once, writing back the results
336 * only after we've consumed all of the inputs.
338 for (i = 0; i < opr_sz_8 ; i += 2) {
339 uint64_t d0, d1;
341 d0 = n[i * 4 + 0] * (int64_t)m_indexed[i * 4 + 0];
342 d0 += n[i * 4 + 1] * (int64_t)m_indexed[i * 4 + 1];
343 d0 += n[i * 4 + 2] * (int64_t)m_indexed[i * 4 + 2];
344 d0 += n[i * 4 + 3] * (int64_t)m_indexed[i * 4 + 3];
345 d1 = n[i * 4 + 4] * (int64_t)m_indexed[i * 4 + 0];
346 d1 += n[i * 4 + 5] * (int64_t)m_indexed[i * 4 + 1];
347 d1 += n[i * 4 + 6] * (int64_t)m_indexed[i * 4 + 2];
348 d1 += n[i * 4 + 7] * (int64_t)m_indexed[i * 4 + 3];
350 d[i + 0] += d0;
351 d[i + 1] += d1;
354 clear_tail(d, opr_sz, simd_maxsz(desc));
357 void HELPER(gvec_udot_idx_h)(void *vd, void *vn, void *vm, uint32_t desc)
359 intptr_t i, opr_sz = simd_oprsz(desc), opr_sz_8 = opr_sz / 8;
360 intptr_t index = simd_data(desc);
361 uint64_t *d = vd;
362 uint16_t *n = vn;
363 uint16_t *m_indexed = (uint16_t *)vm + index * 4;
365 /* This is supported by SVE only, so opr_sz is always a multiple of 16.
366 * Process the entire segment all at once, writing back the results
367 * only after we've consumed all of the inputs.
369 for (i = 0; i < opr_sz_8 ; i += 2) {
370 uint64_t d0, d1;
372 d0 = n[i * 4 + 0] * (uint64_t)m_indexed[i * 4 + 0];
373 d0 += n[i * 4 + 1] * (uint64_t)m_indexed[i * 4 + 1];
374 d0 += n[i * 4 + 2] * (uint64_t)m_indexed[i * 4 + 2];
375 d0 += n[i * 4 + 3] * (uint64_t)m_indexed[i * 4 + 3];
376 d1 = n[i * 4 + 4] * (uint64_t)m_indexed[i * 4 + 0];
377 d1 += n[i * 4 + 5] * (uint64_t)m_indexed[i * 4 + 1];
378 d1 += n[i * 4 + 6] * (uint64_t)m_indexed[i * 4 + 2];
379 d1 += n[i * 4 + 7] * (uint64_t)m_indexed[i * 4 + 3];
381 d[i + 0] += d0;
382 d[i + 1] += d1;
385 clear_tail(d, opr_sz, simd_maxsz(desc));
388 void HELPER(gvec_fcaddh)(void *vd, void *vn, void *vm,
389 void *vfpst, uint32_t desc)
391 uintptr_t opr_sz = simd_oprsz(desc);
392 float16 *d = vd;
393 float16 *n = vn;
394 float16 *m = vm;
395 float_status *fpst = vfpst;
396 uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1);
397 uint32_t neg_imag = neg_real ^ 1;
398 uintptr_t i;
400 /* Shift boolean to the sign bit so we can xor to negate. */
401 neg_real <<= 15;
402 neg_imag <<= 15;
404 for (i = 0; i < opr_sz / 2; i += 2) {
405 float16 e0 = n[H2(i)];
406 float16 e1 = m[H2(i + 1)] ^ neg_imag;
407 float16 e2 = n[H2(i + 1)];
408 float16 e3 = m[H2(i)] ^ neg_real;
410 d[H2(i)] = float16_add(e0, e1, fpst);
411 d[H2(i + 1)] = float16_add(e2, e3, fpst);
413 clear_tail(d, opr_sz, simd_maxsz(desc));
416 void HELPER(gvec_fcadds)(void *vd, void *vn, void *vm,
417 void *vfpst, uint32_t desc)
419 uintptr_t opr_sz = simd_oprsz(desc);
420 float32 *d = vd;
421 float32 *n = vn;
422 float32 *m = vm;
423 float_status *fpst = vfpst;
424 uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1);
425 uint32_t neg_imag = neg_real ^ 1;
426 uintptr_t i;
428 /* Shift boolean to the sign bit so we can xor to negate. */
429 neg_real <<= 31;
430 neg_imag <<= 31;
432 for (i = 0; i < opr_sz / 4; i += 2) {
433 float32 e0 = n[H4(i)];
434 float32 e1 = m[H4(i + 1)] ^ neg_imag;
435 float32 e2 = n[H4(i + 1)];
436 float32 e3 = m[H4(i)] ^ neg_real;
438 d[H4(i)] = float32_add(e0, e1, fpst);
439 d[H4(i + 1)] = float32_add(e2, e3, fpst);
441 clear_tail(d, opr_sz, simd_maxsz(desc));
444 void HELPER(gvec_fcaddd)(void *vd, void *vn, void *vm,
445 void *vfpst, uint32_t desc)
447 uintptr_t opr_sz = simd_oprsz(desc);
448 float64 *d = vd;
449 float64 *n = vn;
450 float64 *m = vm;
451 float_status *fpst = vfpst;
452 uint64_t neg_real = extract64(desc, SIMD_DATA_SHIFT, 1);
453 uint64_t neg_imag = neg_real ^ 1;
454 uintptr_t i;
456 /* Shift boolean to the sign bit so we can xor to negate. */
457 neg_real <<= 63;
458 neg_imag <<= 63;
460 for (i = 0; i < opr_sz / 8; i += 2) {
461 float64 e0 = n[i];
462 float64 e1 = m[i + 1] ^ neg_imag;
463 float64 e2 = n[i + 1];
464 float64 e3 = m[i] ^ neg_real;
466 d[i] = float64_add(e0, e1, fpst);
467 d[i + 1] = float64_add(e2, e3, fpst);
469 clear_tail(d, opr_sz, simd_maxsz(desc));
472 void HELPER(gvec_fcmlah)(void *vd, void *vn, void *vm,
473 void *vfpst, uint32_t desc)
475 uintptr_t opr_sz = simd_oprsz(desc);
476 float16 *d = vd;
477 float16 *n = vn;
478 float16 *m = vm;
479 float_status *fpst = vfpst;
480 intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
481 uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
482 uint32_t neg_real = flip ^ neg_imag;
483 uintptr_t i;
485 /* Shift boolean to the sign bit so we can xor to negate. */
486 neg_real <<= 15;
487 neg_imag <<= 15;
489 for (i = 0; i < opr_sz / 2; i += 2) {
490 float16 e2 = n[H2(i + flip)];
491 float16 e1 = m[H2(i + flip)] ^ neg_real;
492 float16 e4 = e2;
493 float16 e3 = m[H2(i + 1 - flip)] ^ neg_imag;
495 d[H2(i)] = float16_muladd(e2, e1, d[H2(i)], 0, fpst);
496 d[H2(i + 1)] = float16_muladd(e4, e3, d[H2(i + 1)], 0, fpst);
498 clear_tail(d, opr_sz, simd_maxsz(desc));
501 void HELPER(gvec_fcmlah_idx)(void *vd, void *vn, void *vm,
502 void *vfpst, uint32_t desc)
504 uintptr_t opr_sz = simd_oprsz(desc);
505 float16 *d = vd;
506 float16 *n = vn;
507 float16 *m = vm;
508 float_status *fpst = vfpst;
509 intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
510 uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
511 intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2);
512 uint32_t neg_real = flip ^ neg_imag;
513 intptr_t elements = opr_sz / sizeof(float16);
514 intptr_t eltspersegment = 16 / sizeof(float16);
515 intptr_t i, j;
517 /* Shift boolean to the sign bit so we can xor to negate. */
518 neg_real <<= 15;
519 neg_imag <<= 15;
521 for (i = 0; i < elements; i += eltspersegment) {
522 float16 mr = m[H2(i + 2 * index + 0)];
523 float16 mi = m[H2(i + 2 * index + 1)];
524 float16 e1 = neg_real ^ (flip ? mi : mr);
525 float16 e3 = neg_imag ^ (flip ? mr : mi);
527 for (j = i; j < i + eltspersegment; j += 2) {
528 float16 e2 = n[H2(j + flip)];
529 float16 e4 = e2;
531 d[H2(j)] = float16_muladd(e2, e1, d[H2(j)], 0, fpst);
532 d[H2(j + 1)] = float16_muladd(e4, e3, d[H2(j + 1)], 0, fpst);
535 clear_tail(d, opr_sz, simd_maxsz(desc));
538 void HELPER(gvec_fcmlas)(void *vd, void *vn, void *vm,
539 void *vfpst, uint32_t desc)
541 uintptr_t opr_sz = simd_oprsz(desc);
542 float32 *d = vd;
543 float32 *n = vn;
544 float32 *m = vm;
545 float_status *fpst = vfpst;
546 intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
547 uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
548 uint32_t neg_real = flip ^ neg_imag;
549 uintptr_t i;
551 /* Shift boolean to the sign bit so we can xor to negate. */
552 neg_real <<= 31;
553 neg_imag <<= 31;
555 for (i = 0; i < opr_sz / 4; i += 2) {
556 float32 e2 = n[H4(i + flip)];
557 float32 e1 = m[H4(i + flip)] ^ neg_real;
558 float32 e4 = e2;
559 float32 e3 = m[H4(i + 1 - flip)] ^ neg_imag;
561 d[H4(i)] = float32_muladd(e2, e1, d[H4(i)], 0, fpst);
562 d[H4(i + 1)] = float32_muladd(e4, e3, d[H4(i + 1)], 0, fpst);
564 clear_tail(d, opr_sz, simd_maxsz(desc));
567 void HELPER(gvec_fcmlas_idx)(void *vd, void *vn, void *vm,
568 void *vfpst, uint32_t desc)
570 uintptr_t opr_sz = simd_oprsz(desc);
571 float32 *d = vd;
572 float32 *n = vn;
573 float32 *m = vm;
574 float_status *fpst = vfpst;
575 intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
576 uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
577 intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2);
578 uint32_t neg_real = flip ^ neg_imag;
579 intptr_t elements = opr_sz / sizeof(float32);
580 intptr_t eltspersegment = 16 / sizeof(float32);
581 intptr_t i, j;
583 /* Shift boolean to the sign bit so we can xor to negate. */
584 neg_real <<= 31;
585 neg_imag <<= 31;
587 for (i = 0; i < elements; i += eltspersegment) {
588 float32 mr = m[H4(i + 2 * index + 0)];
589 float32 mi = m[H4(i + 2 * index + 1)];
590 float32 e1 = neg_real ^ (flip ? mi : mr);
591 float32 e3 = neg_imag ^ (flip ? mr : mi);
593 for (j = i; j < i + eltspersegment; j += 2) {
594 float32 e2 = n[H4(j + flip)];
595 float32 e4 = e2;
597 d[H4(j)] = float32_muladd(e2, e1, d[H4(j)], 0, fpst);
598 d[H4(j + 1)] = float32_muladd(e4, e3, d[H4(j + 1)], 0, fpst);
601 clear_tail(d, opr_sz, simd_maxsz(desc));
604 void HELPER(gvec_fcmlad)(void *vd, void *vn, void *vm,
605 void *vfpst, uint32_t desc)
607 uintptr_t opr_sz = simd_oprsz(desc);
608 float64 *d = vd;
609 float64 *n = vn;
610 float64 *m = vm;
611 float_status *fpst = vfpst;
612 intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
613 uint64_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
614 uint64_t neg_real = flip ^ neg_imag;
615 uintptr_t i;
617 /* Shift boolean to the sign bit so we can xor to negate. */
618 neg_real <<= 63;
619 neg_imag <<= 63;
621 for (i = 0; i < opr_sz / 8; i += 2) {
622 float64 e2 = n[i + flip];
623 float64 e1 = m[i + flip] ^ neg_real;
624 float64 e4 = e2;
625 float64 e3 = m[i + 1 - flip] ^ neg_imag;
627 d[i] = float64_muladd(e2, e1, d[i], 0, fpst);
628 d[i + 1] = float64_muladd(e4, e3, d[i + 1], 0, fpst);
630 clear_tail(d, opr_sz, simd_maxsz(desc));
633 #define DO_2OP(NAME, FUNC, TYPE) \
634 void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc) \
636 intptr_t i, oprsz = simd_oprsz(desc); \
637 TYPE *d = vd, *n = vn; \
638 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
639 d[i] = FUNC(n[i], stat); \
641 clear_tail(d, oprsz, simd_maxsz(desc)); \
644 DO_2OP(gvec_frecpe_h, helper_recpe_f16, float16)
645 DO_2OP(gvec_frecpe_s, helper_recpe_f32, float32)
646 DO_2OP(gvec_frecpe_d, helper_recpe_f64, float64)
648 DO_2OP(gvec_frsqrte_h, helper_rsqrte_f16, float16)
649 DO_2OP(gvec_frsqrte_s, helper_rsqrte_f32, float32)
650 DO_2OP(gvec_frsqrte_d, helper_rsqrte_f64, float64)
652 #undef DO_2OP
654 /* Floating-point trigonometric starting value.
655 * See the ARM ARM pseudocode function FPTrigSMul.
657 static float16 float16_ftsmul(float16 op1, uint16_t op2, float_status *stat)
659 float16 result = float16_mul(op1, op1, stat);
660 if (!float16_is_any_nan(result)) {
661 result = float16_set_sign(result, op2 & 1);
663 return result;
666 static float32 float32_ftsmul(float32 op1, uint32_t op2, float_status *stat)
668 float32 result = float32_mul(op1, op1, stat);
669 if (!float32_is_any_nan(result)) {
670 result = float32_set_sign(result, op2 & 1);
672 return result;
675 static float64 float64_ftsmul(float64 op1, uint64_t op2, float_status *stat)
677 float64 result = float64_mul(op1, op1, stat);
678 if (!float64_is_any_nan(result)) {
679 result = float64_set_sign(result, op2 & 1);
681 return result;
684 #define DO_3OP(NAME, FUNC, TYPE) \
685 void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
687 intptr_t i, oprsz = simd_oprsz(desc); \
688 TYPE *d = vd, *n = vn, *m = vm; \
689 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
690 d[i] = FUNC(n[i], m[i], stat); \
692 clear_tail(d, oprsz, simd_maxsz(desc)); \
695 DO_3OP(gvec_fadd_h, float16_add, float16)
696 DO_3OP(gvec_fadd_s, float32_add, float32)
697 DO_3OP(gvec_fadd_d, float64_add, float64)
699 DO_3OP(gvec_fsub_h, float16_sub, float16)
700 DO_3OP(gvec_fsub_s, float32_sub, float32)
701 DO_3OP(gvec_fsub_d, float64_sub, float64)
703 DO_3OP(gvec_fmul_h, float16_mul, float16)
704 DO_3OP(gvec_fmul_s, float32_mul, float32)
705 DO_3OP(gvec_fmul_d, float64_mul, float64)
707 DO_3OP(gvec_ftsmul_h, float16_ftsmul, float16)
708 DO_3OP(gvec_ftsmul_s, float32_ftsmul, float32)
709 DO_3OP(gvec_ftsmul_d, float64_ftsmul, float64)
711 #ifdef TARGET_AARCH64
713 DO_3OP(gvec_recps_h, helper_recpsf_f16, float16)
714 DO_3OP(gvec_recps_s, helper_recpsf_f32, float32)
715 DO_3OP(gvec_recps_d, helper_recpsf_f64, float64)
717 DO_3OP(gvec_rsqrts_h, helper_rsqrtsf_f16, float16)
718 DO_3OP(gvec_rsqrts_s, helper_rsqrtsf_f32, float32)
719 DO_3OP(gvec_rsqrts_d, helper_rsqrtsf_f64, float64)
721 #endif
722 #undef DO_3OP
724 /* For the indexed ops, SVE applies the index per 128-bit vector segment.
725 * For AdvSIMD, there is of course only one such vector segment.
728 #define DO_MUL_IDX(NAME, TYPE, H) \
729 void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
731 intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE); \
732 intptr_t idx = simd_data(desc); \
733 TYPE *d = vd, *n = vn, *m = vm; \
734 for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \
735 TYPE mm = m[H(i + idx)]; \
736 for (j = 0; j < segment; j++) { \
737 d[i + j] = TYPE##_mul(n[i + j], mm, stat); \
742 DO_MUL_IDX(gvec_fmul_idx_h, float16, H2)
743 DO_MUL_IDX(gvec_fmul_idx_s, float32, H4)
744 DO_MUL_IDX(gvec_fmul_idx_d, float64, )
746 #undef DO_MUL_IDX
748 #define DO_FMLA_IDX(NAME, TYPE, H) \
749 void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, \
750 void *stat, uint32_t desc) \
752 intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE); \
753 TYPE op1_neg = extract32(desc, SIMD_DATA_SHIFT, 1); \
754 intptr_t idx = desc >> (SIMD_DATA_SHIFT + 1); \
755 TYPE *d = vd, *n = vn, *m = vm, *a = va; \
756 op1_neg <<= (8 * sizeof(TYPE) - 1); \
757 for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \
758 TYPE mm = m[H(i + idx)]; \
759 for (j = 0; j < segment; j++) { \
760 d[i + j] = TYPE##_muladd(n[i + j] ^ op1_neg, \
761 mm, a[i + j], 0, stat); \
766 DO_FMLA_IDX(gvec_fmla_idx_h, float16, H2)
767 DO_FMLA_IDX(gvec_fmla_idx_s, float32, H4)
768 DO_FMLA_IDX(gvec_fmla_idx_d, float64, )
770 #undef DO_FMLA_IDX
772 #define DO_SAT(NAME, WTYPE, TYPEN, TYPEM, OP, MIN, MAX) \
773 void HELPER(NAME)(void *vd, void *vq, void *vn, void *vm, uint32_t desc) \
775 intptr_t i, oprsz = simd_oprsz(desc); \
776 TYPEN *d = vd, *n = vn; TYPEM *m = vm; \
777 bool q = false; \
778 for (i = 0; i < oprsz / sizeof(TYPEN); i++) { \
779 WTYPE dd = (WTYPE)n[i] OP m[i]; \
780 if (dd < MIN) { \
781 dd = MIN; \
782 q = true; \
783 } else if (dd > MAX) { \
784 dd = MAX; \
785 q = true; \
787 d[i] = dd; \
789 if (q) { \
790 uint32_t *qc = vq; \
791 qc[0] = 1; \
793 clear_tail(d, oprsz, simd_maxsz(desc)); \
796 DO_SAT(gvec_uqadd_b, int, uint8_t, uint8_t, +, 0, UINT8_MAX)
797 DO_SAT(gvec_uqadd_h, int, uint16_t, uint16_t, +, 0, UINT16_MAX)
798 DO_SAT(gvec_uqadd_s, int64_t, uint32_t, uint32_t, +, 0, UINT32_MAX)
800 DO_SAT(gvec_sqadd_b, int, int8_t, int8_t, +, INT8_MIN, INT8_MAX)
801 DO_SAT(gvec_sqadd_h, int, int16_t, int16_t, +, INT16_MIN, INT16_MAX)
802 DO_SAT(gvec_sqadd_s, int64_t, int32_t, int32_t, +, INT32_MIN, INT32_MAX)
804 DO_SAT(gvec_uqsub_b, int, uint8_t, uint8_t, -, 0, UINT8_MAX)
805 DO_SAT(gvec_uqsub_h, int, uint16_t, uint16_t, -, 0, UINT16_MAX)
806 DO_SAT(gvec_uqsub_s, int64_t, uint32_t, uint32_t, -, 0, UINT32_MAX)
808 DO_SAT(gvec_sqsub_b, int, int8_t, int8_t, -, INT8_MIN, INT8_MAX)
809 DO_SAT(gvec_sqsub_h, int, int16_t, int16_t, -, INT16_MIN, INT16_MAX)
810 DO_SAT(gvec_sqsub_s, int64_t, int32_t, int32_t, -, INT32_MIN, INT32_MAX)
812 #undef DO_SAT
814 void HELPER(gvec_uqadd_d)(void *vd, void *vq, void *vn,
815 void *vm, uint32_t desc)
817 intptr_t i, oprsz = simd_oprsz(desc);
818 uint64_t *d = vd, *n = vn, *m = vm;
819 bool q = false;
821 for (i = 0; i < oprsz / 8; i++) {
822 uint64_t nn = n[i], mm = m[i], dd = nn + mm;
823 if (dd < nn) {
824 dd = UINT64_MAX;
825 q = true;
827 d[i] = dd;
829 if (q) {
830 uint32_t *qc = vq;
831 qc[0] = 1;
833 clear_tail(d, oprsz, simd_maxsz(desc));
836 void HELPER(gvec_uqsub_d)(void *vd, void *vq, void *vn,
837 void *vm, uint32_t desc)
839 intptr_t i, oprsz = simd_oprsz(desc);
840 uint64_t *d = vd, *n = vn, *m = vm;
841 bool q = false;
843 for (i = 0; i < oprsz / 8; i++) {
844 uint64_t nn = n[i], mm = m[i], dd = nn - mm;
845 if (nn < mm) {
846 dd = 0;
847 q = true;
849 d[i] = dd;
851 if (q) {
852 uint32_t *qc = vq;
853 qc[0] = 1;
855 clear_tail(d, oprsz, simd_maxsz(desc));
858 void HELPER(gvec_sqadd_d)(void *vd, void *vq, void *vn,
859 void *vm, uint32_t desc)
861 intptr_t i, oprsz = simd_oprsz(desc);
862 int64_t *d = vd, *n = vn, *m = vm;
863 bool q = false;
865 for (i = 0; i < oprsz / 8; i++) {
866 int64_t nn = n[i], mm = m[i], dd = nn + mm;
867 if (((dd ^ nn) & ~(nn ^ mm)) & INT64_MIN) {
868 dd = (nn >> 63) ^ ~INT64_MIN;
869 q = true;
871 d[i] = dd;
873 if (q) {
874 uint32_t *qc = vq;
875 qc[0] = 1;
877 clear_tail(d, oprsz, simd_maxsz(desc));
880 void HELPER(gvec_sqsub_d)(void *vd, void *vq, void *vn,
881 void *vm, uint32_t desc)
883 intptr_t i, oprsz = simd_oprsz(desc);
884 int64_t *d = vd, *n = vn, *m = vm;
885 bool q = false;
887 for (i = 0; i < oprsz / 8; i++) {
888 int64_t nn = n[i], mm = m[i], dd = nn - mm;
889 if (((dd ^ nn) & (nn ^ mm)) & INT64_MIN) {
890 dd = (nn >> 63) ^ ~INT64_MIN;
891 q = true;
893 d[i] = dd;
895 if (q) {
896 uint32_t *qc = vq;
897 qc[0] = 1;
899 clear_tail(d, oprsz, simd_maxsz(desc));
903 #define DO_SRA(NAME, TYPE) \
904 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
906 intptr_t i, oprsz = simd_oprsz(desc); \
907 int shift = simd_data(desc); \
908 TYPE *d = vd, *n = vn; \
909 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
910 d[i] += n[i] >> shift; \
912 clear_tail(d, oprsz, simd_maxsz(desc)); \
915 DO_SRA(gvec_ssra_b, int8_t)
916 DO_SRA(gvec_ssra_h, int16_t)
917 DO_SRA(gvec_ssra_s, int32_t)
918 DO_SRA(gvec_ssra_d, int64_t)
920 DO_SRA(gvec_usra_b, uint8_t)
921 DO_SRA(gvec_usra_h, uint16_t)
922 DO_SRA(gvec_usra_s, uint32_t)
923 DO_SRA(gvec_usra_d, uint64_t)
925 #undef DO_SRA
927 #define DO_RSHR(NAME, TYPE) \
928 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
930 intptr_t i, oprsz = simd_oprsz(desc); \
931 int shift = simd_data(desc); \
932 TYPE *d = vd, *n = vn; \
933 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
934 TYPE tmp = n[i] >> (shift - 1); \
935 d[i] = (tmp >> 1) + (tmp & 1); \
937 clear_tail(d, oprsz, simd_maxsz(desc)); \
940 DO_RSHR(gvec_srshr_b, int8_t)
941 DO_RSHR(gvec_srshr_h, int16_t)
942 DO_RSHR(gvec_srshr_s, int32_t)
943 DO_RSHR(gvec_srshr_d, int64_t)
945 DO_RSHR(gvec_urshr_b, uint8_t)
946 DO_RSHR(gvec_urshr_h, uint16_t)
947 DO_RSHR(gvec_urshr_s, uint32_t)
948 DO_RSHR(gvec_urshr_d, uint64_t)
950 #undef DO_RSHR
952 #define DO_RSRA(NAME, TYPE) \
953 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
955 intptr_t i, oprsz = simd_oprsz(desc); \
956 int shift = simd_data(desc); \
957 TYPE *d = vd, *n = vn; \
958 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
959 TYPE tmp = n[i] >> (shift - 1); \
960 d[i] += (tmp >> 1) + (tmp & 1); \
962 clear_tail(d, oprsz, simd_maxsz(desc)); \
965 DO_RSRA(gvec_srsra_b, int8_t)
966 DO_RSRA(gvec_srsra_h, int16_t)
967 DO_RSRA(gvec_srsra_s, int32_t)
968 DO_RSRA(gvec_srsra_d, int64_t)
970 DO_RSRA(gvec_ursra_b, uint8_t)
971 DO_RSRA(gvec_ursra_h, uint16_t)
972 DO_RSRA(gvec_ursra_s, uint32_t)
973 DO_RSRA(gvec_ursra_d, uint64_t)
975 #undef DO_RSRA
977 #define DO_SRI(NAME, TYPE) \
978 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
980 intptr_t i, oprsz = simd_oprsz(desc); \
981 int shift = simd_data(desc); \
982 TYPE *d = vd, *n = vn; \
983 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
984 d[i] = deposit64(d[i], 0, sizeof(TYPE) * 8 - shift, n[i] >> shift); \
986 clear_tail(d, oprsz, simd_maxsz(desc)); \
989 DO_SRI(gvec_sri_b, uint8_t)
990 DO_SRI(gvec_sri_h, uint16_t)
991 DO_SRI(gvec_sri_s, uint32_t)
992 DO_SRI(gvec_sri_d, uint64_t)
994 #undef DO_SRI
996 #define DO_SLI(NAME, TYPE) \
997 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
999 intptr_t i, oprsz = simd_oprsz(desc); \
1000 int shift = simd_data(desc); \
1001 TYPE *d = vd, *n = vn; \
1002 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
1003 d[i] = deposit64(d[i], shift, sizeof(TYPE) * 8 - shift, n[i]); \
1005 clear_tail(d, oprsz, simd_maxsz(desc)); \
1008 DO_SLI(gvec_sli_b, uint8_t)
1009 DO_SLI(gvec_sli_h, uint16_t)
1010 DO_SLI(gvec_sli_s, uint32_t)
1011 DO_SLI(gvec_sli_d, uint64_t)
1013 #undef DO_SLI
1016 * Convert float16 to float32, raising no exceptions and
1017 * preserving exceptional values, including SNaN.
1018 * This is effectively an unpack+repack operation.
1020 static float32 float16_to_float32_by_bits(uint32_t f16, bool fz16)
1022 const int f16_bias = 15;
1023 const int f32_bias = 127;
1024 uint32_t sign = extract32(f16, 15, 1);
1025 uint32_t exp = extract32(f16, 10, 5);
1026 uint32_t frac = extract32(f16, 0, 10);
1028 if (exp == 0x1f) {
1029 /* Inf or NaN */
1030 exp = 0xff;
1031 } else if (exp == 0) {
1032 /* Zero or denormal. */
1033 if (frac != 0) {
1034 if (fz16) {
1035 frac = 0;
1036 } else {
1038 * Denormal; these are all normal float32.
1039 * Shift the fraction so that the msb is at bit 11,
1040 * then remove bit 11 as the implicit bit of the
1041 * normalized float32. Note that we still go through
1042 * the shift for normal numbers below, to put the
1043 * float32 fraction at the right place.
1045 int shift = clz32(frac) - 21;
1046 frac = (frac << shift) & 0x3ff;
1047 exp = f32_bias - f16_bias - shift + 1;
1050 } else {
1051 /* Normal number; adjust the bias. */
1052 exp += f32_bias - f16_bias;
1054 sign <<= 31;
1055 exp <<= 23;
1056 frac <<= 23 - 10;
1058 return sign | exp | frac;
1061 static uint64_t load4_f16(uint64_t *ptr, int is_q, int is_2)
1064 * Branchless load of u32[0], u64[0], u32[1], or u64[1].
1065 * Load the 2nd qword iff is_q & is_2.
1066 * Shift to the 2nd dword iff !is_q & is_2.
1067 * For !is_q & !is_2, the upper bits of the result are garbage.
1069 return ptr[is_q & is_2] >> ((is_2 & ~is_q) << 5);
1073 * Note that FMLAL requires oprsz == 8 or oprsz == 16,
1074 * as there is not yet SVE versions that might use blocking.
1077 static void do_fmlal(float32 *d, void *vn, void *vm, float_status *fpst,
1078 uint32_t desc, bool fz16)
1080 intptr_t i, oprsz = simd_oprsz(desc);
1081 int is_s = extract32(desc, SIMD_DATA_SHIFT, 1);
1082 int is_2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
1083 int is_q = oprsz == 16;
1084 uint64_t n_4, m_4;
1086 /* Pre-load all of the f16 data, avoiding overlap issues. */
1087 n_4 = load4_f16(vn, is_q, is_2);
1088 m_4 = load4_f16(vm, is_q, is_2);
1090 /* Negate all inputs for FMLSL at once. */
1091 if (is_s) {
1092 n_4 ^= 0x8000800080008000ull;
1095 for (i = 0; i < oprsz / 4; i++) {
1096 float32 n_1 = float16_to_float32_by_bits(n_4 >> (i * 16), fz16);
1097 float32 m_1 = float16_to_float32_by_bits(m_4 >> (i * 16), fz16);
1098 d[H4(i)] = float32_muladd(n_1, m_1, d[H4(i)], 0, fpst);
1100 clear_tail(d, oprsz, simd_maxsz(desc));
1103 void HELPER(gvec_fmlal_a32)(void *vd, void *vn, void *vm,
1104 void *venv, uint32_t desc)
1106 CPUARMState *env = venv;
1107 do_fmlal(vd, vn, vm, &env->vfp.standard_fp_status, desc,
1108 get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1111 void HELPER(gvec_fmlal_a64)(void *vd, void *vn, void *vm,
1112 void *venv, uint32_t desc)
1114 CPUARMState *env = venv;
1115 do_fmlal(vd, vn, vm, &env->vfp.fp_status, desc,
1116 get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1119 static void do_fmlal_idx(float32 *d, void *vn, void *vm, float_status *fpst,
1120 uint32_t desc, bool fz16)
1122 intptr_t i, oprsz = simd_oprsz(desc);
1123 int is_s = extract32(desc, SIMD_DATA_SHIFT, 1);
1124 int is_2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
1125 int index = extract32(desc, SIMD_DATA_SHIFT + 2, 3);
1126 int is_q = oprsz == 16;
1127 uint64_t n_4;
1128 float32 m_1;
1130 /* Pre-load all of the f16 data, avoiding overlap issues. */
1131 n_4 = load4_f16(vn, is_q, is_2);
1133 /* Negate all inputs for FMLSL at once. */
1134 if (is_s) {
1135 n_4 ^= 0x8000800080008000ull;
1138 m_1 = float16_to_float32_by_bits(((float16 *)vm)[H2(index)], fz16);
1140 for (i = 0; i < oprsz / 4; i++) {
1141 float32 n_1 = float16_to_float32_by_bits(n_4 >> (i * 16), fz16);
1142 d[H4(i)] = float32_muladd(n_1, m_1, d[H4(i)], 0, fpst);
1144 clear_tail(d, oprsz, simd_maxsz(desc));
1147 void HELPER(gvec_fmlal_idx_a32)(void *vd, void *vn, void *vm,
1148 void *venv, uint32_t desc)
1150 CPUARMState *env = venv;
1151 do_fmlal_idx(vd, vn, vm, &env->vfp.standard_fp_status, desc,
1152 get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1155 void HELPER(gvec_fmlal_idx_a64)(void *vd, void *vn, void *vm,
1156 void *venv, uint32_t desc)
1158 CPUARMState *env = venv;
1159 do_fmlal_idx(vd, vn, vm, &env->vfp.fp_status, desc,
1160 get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1163 void HELPER(gvec_sshl_b)(void *vd, void *vn, void *vm, uint32_t desc)
1165 intptr_t i, opr_sz = simd_oprsz(desc);
1166 int8_t *d = vd, *n = vn, *m = vm;
1168 for (i = 0; i < opr_sz; ++i) {
1169 int8_t mm = m[i];
1170 int8_t nn = n[i];
1171 int8_t res = 0;
1172 if (mm >= 0) {
1173 if (mm < 8) {
1174 res = nn << mm;
1176 } else {
1177 res = nn >> (mm > -8 ? -mm : 7);
1179 d[i] = res;
1181 clear_tail(d, opr_sz, simd_maxsz(desc));
1184 void HELPER(gvec_sshl_h)(void *vd, void *vn, void *vm, uint32_t desc)
1186 intptr_t i, opr_sz = simd_oprsz(desc);
1187 int16_t *d = vd, *n = vn, *m = vm;
1189 for (i = 0; i < opr_sz / 2; ++i) {
1190 int8_t mm = m[i]; /* only 8 bits of shift are significant */
1191 int16_t nn = n[i];
1192 int16_t res = 0;
1193 if (mm >= 0) {
1194 if (mm < 16) {
1195 res = nn << mm;
1197 } else {
1198 res = nn >> (mm > -16 ? -mm : 15);
1200 d[i] = res;
1202 clear_tail(d, opr_sz, simd_maxsz(desc));
1205 void HELPER(gvec_ushl_b)(void *vd, void *vn, void *vm, uint32_t desc)
1207 intptr_t i, opr_sz = simd_oprsz(desc);
1208 uint8_t *d = vd, *n = vn, *m = vm;
1210 for (i = 0; i < opr_sz; ++i) {
1211 int8_t mm = m[i];
1212 uint8_t nn = n[i];
1213 uint8_t res = 0;
1214 if (mm >= 0) {
1215 if (mm < 8) {
1216 res = nn << mm;
1218 } else {
1219 if (mm > -8) {
1220 res = nn >> -mm;
1223 d[i] = res;
1225 clear_tail(d, opr_sz, simd_maxsz(desc));
1228 void HELPER(gvec_ushl_h)(void *vd, void *vn, void *vm, uint32_t desc)
1230 intptr_t i, opr_sz = simd_oprsz(desc);
1231 uint16_t *d = vd, *n = vn, *m = vm;
1233 for (i = 0; i < opr_sz / 2; ++i) {
1234 int8_t mm = m[i]; /* only 8 bits of shift are significant */
1235 uint16_t nn = n[i];
1236 uint16_t res = 0;
1237 if (mm >= 0) {
1238 if (mm < 16) {
1239 res = nn << mm;
1241 } else {
1242 if (mm > -16) {
1243 res = nn >> -mm;
1246 d[i] = res;
1248 clear_tail(d, opr_sz, simd_maxsz(desc));
1252 * 8x8->8 polynomial multiply.
1254 * Polynomial multiplication is like integer multiplication except the
1255 * partial products are XORed, not added.
1257 * TODO: expose this as a generic vector operation, as it is a common
1258 * crypto building block.
1260 void HELPER(gvec_pmul_b)(void *vd, void *vn, void *vm, uint32_t desc)
1262 intptr_t i, j, opr_sz = simd_oprsz(desc);
1263 uint64_t *d = vd, *n = vn, *m = vm;
1265 for (i = 0; i < opr_sz / 8; ++i) {
1266 uint64_t nn = n[i];
1267 uint64_t mm = m[i];
1268 uint64_t rr = 0;
1270 for (j = 0; j < 8; ++j) {
1271 uint64_t mask = (nn & 0x0101010101010101ull) * 0xff;
1272 rr ^= mm & mask;
1273 mm = (mm << 1) & 0xfefefefefefefefeull;
1274 nn >>= 1;
1276 d[i] = rr;
1278 clear_tail(d, opr_sz, simd_maxsz(desc));
1282 * 64x64->128 polynomial multiply.
1283 * Because of the lanes are not accessed in strict columns,
1284 * this probably cannot be turned into a generic helper.
1286 void HELPER(gvec_pmull_q)(void *vd, void *vn, void *vm, uint32_t desc)
1288 intptr_t i, j, opr_sz = simd_oprsz(desc);
1289 intptr_t hi = simd_data(desc);
1290 uint64_t *d = vd, *n = vn, *m = vm;
1292 for (i = 0; i < opr_sz / 8; i += 2) {
1293 uint64_t nn = n[i + hi];
1294 uint64_t mm = m[i + hi];
1295 uint64_t rhi = 0;
1296 uint64_t rlo = 0;
1298 /* Bit 0 can only influence the low 64-bit result. */
1299 if (nn & 1) {
1300 rlo = mm;
1303 for (j = 1; j < 64; ++j) {
1304 uint64_t mask = -((nn >> j) & 1);
1305 rlo ^= (mm << j) & mask;
1306 rhi ^= (mm >> (64 - j)) & mask;
1308 d[i] = rlo;
1309 d[i + 1] = rhi;
1311 clear_tail(d, opr_sz, simd_maxsz(desc));
1315 * 8x8->16 polynomial multiply.
1317 * The byte inputs are expanded to (or extracted from) half-words.
1318 * Note that neon and sve2 get the inputs from different positions.
1319 * This allows 4 bytes to be processed in parallel with uint64_t.
1322 static uint64_t expand_byte_to_half(uint64_t x)
1324 return (x & 0x000000ff)
1325 | ((x & 0x0000ff00) << 8)
1326 | ((x & 0x00ff0000) << 16)
1327 | ((x & 0xff000000) << 24);
1330 static uint64_t pmull_h(uint64_t op1, uint64_t op2)
1332 uint64_t result = 0;
1333 int i;
1335 for (i = 0; i < 8; ++i) {
1336 uint64_t mask = (op1 & 0x0001000100010001ull) * 0xffff;
1337 result ^= op2 & mask;
1338 op1 >>= 1;
1339 op2 <<= 1;
1341 return result;
1344 void HELPER(neon_pmull_h)(void *vd, void *vn, void *vm, uint32_t desc)
1346 int hi = simd_data(desc);
1347 uint64_t *d = vd, *n = vn, *m = vm;
1348 uint64_t nn = n[hi], mm = m[hi];
1350 d[0] = pmull_h(expand_byte_to_half(nn), expand_byte_to_half(mm));
1351 nn >>= 32;
1352 mm >>= 32;
1353 d[1] = pmull_h(expand_byte_to_half(nn), expand_byte_to_half(mm));
1355 clear_tail(d, 16, simd_maxsz(desc));
1358 #ifdef TARGET_AARCH64
1359 void HELPER(sve2_pmull_h)(void *vd, void *vn, void *vm, uint32_t desc)
1361 int shift = simd_data(desc) * 8;
1362 intptr_t i, opr_sz = simd_oprsz(desc);
1363 uint64_t *d = vd, *n = vn, *m = vm;
1365 for (i = 0; i < opr_sz / 8; ++i) {
1366 uint64_t nn = (n[i] >> shift) & 0x00ff00ff00ff00ffull;
1367 uint64_t mm = (m[i] >> shift) & 0x00ff00ff00ff00ffull;
1369 d[i] = pmull_h(nn, mm);
1372 #endif
1374 #define DO_CMP0(NAME, TYPE, OP) \
1375 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
1377 intptr_t i, opr_sz = simd_oprsz(desc); \
1378 for (i = 0; i < opr_sz; i += sizeof(TYPE)) { \
1379 TYPE nn = *(TYPE *)(vn + i); \
1380 *(TYPE *)(vd + i) = -(nn OP 0); \
1382 clear_tail(vd, opr_sz, simd_maxsz(desc)); \
1385 DO_CMP0(gvec_ceq0_b, int8_t, ==)
1386 DO_CMP0(gvec_clt0_b, int8_t, <)
1387 DO_CMP0(gvec_cle0_b, int8_t, <=)
1388 DO_CMP0(gvec_cgt0_b, int8_t, >)
1389 DO_CMP0(gvec_cge0_b, int8_t, >=)
1391 DO_CMP0(gvec_ceq0_h, int16_t, ==)
1392 DO_CMP0(gvec_clt0_h, int16_t, <)
1393 DO_CMP0(gvec_cle0_h, int16_t, <=)
1394 DO_CMP0(gvec_cgt0_h, int16_t, >)
1395 DO_CMP0(gvec_cge0_h, int16_t, >=)
1397 #undef DO_CMP0